A/B Contracts

George Georgiadis

Michael Powell

Northwestern Kellogg

Georgiadis and Powell

In a Nutshell

- Firms understand that there is a lot to learn from experimentation
 - e.g., firms use it for product design, pricing, advertising, etc...
- A crucial area in managing a firm is designing compensation structures and how people should be rewarded for outcomes
- This question has largely evaded trends in data-driven decision-making
- We show that under mild assumptions about the way people respond to incentives and value rewards, simple experimentation coupled with theoretical insights can lead a long way towards optimal contracting.

In a Nutshell

- Firms understand that there is a lot to learn from experimentation
 - e.g., firms use it for product design, pricing, advertising, etc...
- A crucial area in managing a firm is designing compensation structures and how people should be rewarded for outcomes
- This question has largely evaded trends in data-driven decision-making
- We show that under mild assumptions about the way people respond to incentives and value rewards, simple experimentation coupled with theoretical insights can lead a long way towards optimal contracting.

How to Improve upon an Incentive Contract?

- Imagine that you run a company that sells kitchen knife sets, you hire teenagers every summer to sell door-to-door, and you pay them a simple piece rate
- Your expected profits

$$\Pi = (m - \alpha)a$$

where *m* is profit margin, α is your piece rate, and *a* are mean sales

- You want to know whether and how to change your piece rate
- If you marginally increase α , then your profits change by

$$\frac{d\Pi}{d\alpha} = (m - \alpha)\frac{da}{d\alpha} - a.$$

So you want to know whether $d\Pi/d\alpha \ge 0$

How to Improve upon an Incentive Contract?

- Imagine that you run a company that sells kitchen knife sets, you hire teenagers every summer to sell door-to-door, and you pay them a simple piece rate
- Your expected profits

$$\Pi = (m - \alpha)a$$

where *m* is profit margin, α is your piece rate, and *a* are mean sales

- You want to know whether and how to change your piece rate
- If you marginally increase α , then your profits change by

$$\frac{d\Pi}{d\alpha}=(m-\alpha)\frac{da}{d\alpha}-a.$$

So you want to know whether $d\Pi/d\alpha \gtrless 0$

Georgiadis and Powell

Experiments Reveal Behavioral Responses

- To answer this question, must know the behavioral response, da/dα
 Given just observational data, need to know production environment
 - *i.e.*, employee's effort costs, mapping from effort to sales, etc...
- You do not need this knowledge if you run an A/B test:
 - Split your salespeople into a treatment and control group,
 - Perturb the piece rate for treatment group, and collect sales data
- You can use this data to estimate $da/d\alpha$, and determine whether you

should increase or decrease your piece rate.

Experiments Reveal Behavioral Responses

- To answer this question, must know the behavioral response, da/dlpha
- Given just observational data, need to know *production environment i.e.*, employee's effort costs, mapping from effort to sales, etc...
- You do not need this knowledge if you run an A/B test:
 - Split your salespeople into a treatment and control group,
 - Perturb the piece rate for treatment group, and collect sales data
- You can use this data to estimate $da/d\alpha$, and determine whether you

should increase or decrease your piece rate.

Two Main Theoretical Issues to Address

This paper: How to improve upon a given contract?

- What does the principal need to know & how to use information
- It restricted attention to linear contracts
 - A nonlinear contract can be modified in a continuum of ways
 - Need to know how productivity responds to every possible modification
 - Key lemma: A single A/B test together with an assumption about the agent's preferences for money provides all the needed information.
- It asked a *local* question
 - In practice, one is interested in non-local changes to the contract
 - We provide conditions so that a single A/B test suffices to extrapolate, and determine how to optimally adjust a given contract (non-locally).

Two Main Theoretical Issues to Address

This paper: How to improve upon a given contract?

- What does the principal need to know & how to use information
- It restricted attention to linear contracts
 - A nonlinear contract can be modified in a continuum of ways
 - Need to know how productivity responds to every possible modification
 - Key lemma: A single A/B test together with an assumption about the agent's preferences for money provides all the needed information.
- It asked a *local* question
 - In practice, one is interested in non-local changes to the contract
 - We provide conditions so that a single A/B test suffices to extrapolate, and determine how to optimally adjust a given contract (non-locally)

Two Main Theoretical Issues to Address

This paper: How to improve upon a given contract?

- What does the principal need to know & how to use information
- It restricted attention to linear contracts
 - A nonlinear contract can be modified in a continuum of ways
 - Need to know how productivity responds to every possible modification
 - Key lemma: A single A/B test together with an assumption about the agent's preferences for money provides all the needed information.
- It asked a *local* question
 - In practice, one is interested in non-local changes to the contract
 - We provide conditions so that a single A/B test suffices to extrapolate, and determine how to optimally adjust a given contract (non-locally).

Two Empirical Exercises

- Evaluate methodology using dataset from DellaVigna & Pope (2017)
 - Real-effort experiment with several different incentive treatments
- I. Test our model's ability to predict out-of-sample performance
 - For each pair of treatments, take this pair to be our A/B test, and use the model to predict performance in the remaining treatments
 - Correlation between predicted and actual performance > 0.9, and mean APE < 2% (performance varies 18% across treatments)
- II. Assess performance of adjusted contract generated by our procedure
 - Use all treatments to construct a benchmark
 - Use data from each A/B test to compute *test-optimal* contract
 - On average, this contract attains > 2/3 of the profit gap between the status quo and the *benchmark-optimal* contract.

Two Empirical Exercises

- Evaluate methodology using dataset from DellaVigna & Pope (2017)
 - Real-effort experiment with several different incentive treatments
- I. Test our model's ability to predict out-of-sample performance
 - For each pair of treatments, take this pair to be our A/B test, and use the model to predict performance in the remaining treatments
 - Correlation between predicted and actual performance > 0.9, and mean APE < 2% (performance varies 18% across treatments)

II. Assess performance of adjusted contract generated by our procedure

- Use all treatments to construct a benchmark
- Use data from each A/B test to compute *test-optimal* contract
- On average, this contract attains > 2/3 of the profit gap between the status quo and the *benchmark-optimal* contract.

A/B Contracts

Two Empirical Exercises

- Evaluate methodology using dataset from DellaVigna & Pope (2017)
 - Real-effort experiment with several different incentive treatments
- I. Test our model's ability to predict out-of-sample performance
 - For each pair of treatments, take this pair to be our A/B test, and use the model to predict performance in the remaining treatments
 - Correlation between predicted and actual performance > 0.9, and mean APE < 2% (performance varies 18% across treatments)
- II. Assess performance of adjusted contract generated by our procedure
 - Use all treatments to construct a benchmark
 - Use data from each A/B test to compute *test-optimal* contract
 - On average, this contract attains > 2/3 of the profit gap between the status quo and the *benchmark-optimal* contract.

A/B Contracts

Related Literature

- Agency problems Theory:
 - Mirrlees (1976), Holmström (1979), ...
 - Carroll (2015), Gottlieb & Moreira (2017), Chade & Swinkels (2019), ...
- Agency problems Empirics:
 - Lazear (2000), Shearer (2004), Fehr & Goette (2007), Guiteras
 & Jack (2018), Balbuzanov et al. (2017), Hong et al. (2018), ...
 - Prendergast (2014), d'Haultfoeuille & Fevrier (2020), ...
- Sufficient statistics:
 - Monopoly pricing: Lerner (1934), Wilson (1993), ...
 - Optimal taxation: Saez (2001), ...
 - Welfare analysis: Chetty (2009), ...

Model

- Principal-agent model with the following timing:
 - **1** Principal offers a contract $w(\cdot)$.
 - 2 Agent observes $w(\cdot)$ and chooses effort *a*.
 - Solution Output $x \sim f(\cdot|a)$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)

• Preferences:

- Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
- Principal's profit: $\pi(w) := ma(w) \int w(x)f(x|a(w))dx$.
- Information: P = (f, c) is the production environment
 - The agent knows P
 - Principal knows v and has access to outcome data from a status quo contract w^A and a test contract w^B; i.e., f(x|a(w^A)) and f(x|a(w^B))

Model

- Principal-agent model with the following timing:
 - **1** Principal offers a contract $w(\cdot)$.
 - 2 Agent observes $w(\cdot)$ and chooses effort *a*.
 - Solution Output $x \sim f(\cdot|a)$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)
- Preferences:
 - Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
 - Principal's profit: $\pi(w) \coloneqq ma(w) \int w(x)f(x|a(w))dx$.
- Information: P = (f, c) is the production environment
 - The agent knows P
 - Principal knows v and has access to outcome data from a status quo contract w^A and a test contract w^B; i.e., f(x|a(w^A)) and f(x|a(w^B))

Model

- Principal-agent model with the following timing:
 - Principal offers a contract $w(\cdot)$.
 - 2 Agent observes $w(\cdot)$ and chooses effort *a*.
 - Solution Output $x \sim f(\cdot|a)$ and payoffs are realized. (Normalize $\mathbb{E}[x|a] = a$.)
- Preferences:
 - Agent's utility: $\int v(w(x))f(x|a)dx c(a)$
 - Principal's profit: $\pi(w) \coloneqq ma(w) \int w(x)f(x|a(w))dx$.
- Information: P = (f, c) is the production environment
 - The agent knows P
 - Principal knows v and has access to outcome data from a status quo contract w^A and a test contract w^B; i.e., f(x|a(w^A)) and f(x|a(w^B))

Agent's Problem

• Given contract w, the agent's expected utility

$$u(w) = \max_{a} \int v(w(x))f(x|a)dx - c(a)$$

• Define the agent's marginal incentives as

$$I(w,a) = \int v(w(x))f_a(x|a)dx$$

• Assume optimal effort a(w) is implicitly defined by

$$I(w,a) = c'(a)$$

i.e., optimal effort equates marginal benefit to marginal cost

 Principal's objective is to choose a profit-maximizing contract that gives the agent at least as much expected utility as w^A:

$$\max_{w(x),a} ma - \int w(x)f(x|a)dx$$
$$a \in \arg\max_{\widetilde{a}} \int v(w(x))f(x|\widetilde{a})dx - c(\widetilde{a})$$
s.t.
$$\int v(w(x))f(x|a)dx - c(a) \ge u(w^{A})$$

Outline

• Theoretical results:

Local adjustments

- Suppose the principal focuses on w such that $||w w^{A}||$ is small
- How to find the optimal adjustment?
- $\bullet\,$ Will show how a local A/B test provides the needed information
- 2 Non-local Adjustments
 - Consider the full set of contracts
 - Provide conditions such that we can extrapolate logic
 - $\bullet\,$ Will show that an A/B test suffices to find optimal adjustment

Empirical exercises

Definition: Gateaux differential

- We will want to evaluate how profits are affected if the status quo contract is perturbed in some arbitrary direction.
 - *i.e.*, if the contract w(x) is replaced by $w(x) + \theta t(x)$ for some small θ .
- Given contract *w* and function *q*(*w*), **define** the *Gateaux differential* in the direction *t*:

$$\mathcal{D}q(w,t) = \lim_{\theta \to 0} \frac{q(w+\theta t) - q(w)}{\theta}$$

• Intuitively $\mathcal{D}q(w,t)$ measures how $q(w+\theta t)$ changes with θ for $\theta \simeq 0$

Definition: Gateaux differential

• We will want to evaluate how profits are affected if the status quo contract is perturbed in some arbitrary direction.

i.e., if the contract w(x) is replaced by $w(x) + \theta t(x)$ for some small θ .

• Given contract *w* and function *q*(*w*), **define** the *Gateaux differential* in the direction *t*:

$$\mathcal{D}q(w,t) = \lim_{\theta \to 0} \frac{q(w+\theta t) - q(w)}{\theta}$$

• Intuitively $\mathcal{D}q(w,t)$ measures how $q(w+\theta t)$ changes with θ for $\theta \simeq 0$

Agent's Responses

• How does a(w) and u(w) change if w is replaced by $w + \theta t$ for $\theta \simeq 0$?

Lemma 1.

Locally adjusting contract w in direction t changes the agent's effort by

$$\mathcal{D}a(w,t) = \frac{\mathcal{D}I(w,t)}{c'' - \int v(w) f_{aa} dx}$$

where $\mathcal{D}I(w,t) \coloneqq \int tv'(w) f_a dx$, and his expected utility by

$$\mathcal{D}u(w,t) = \int tv'(w) f dx$$

• Observations:

1) The ratio $\mathcal{D}a(w,t)/\mathcal{D}l(w,t)$ does not depend on t

Ohange in agent's utility does not directly depend on his cost function

Agent's Responses

• How does a(w) and u(w) change if w is replaced by $w + \theta t$ for $\theta \simeq 0$?

Lemma 1.

Locally adjusting contract w in direction t changes the agent's effort by

$$\mathcal{D}a(w,t) = \frac{\mathcal{D}I(w,t)}{c'' - \int v(w) f_{aa} dx}$$

where $\mathcal{D}I(w,t) \coloneqq \int tv'(w) f_a dx$, and his expected utility by

$$\mathcal{D}u(w,t)=\int tv'(w) f \, dx$$

• Observations:

- The ratio $\mathcal{D}a(w,t)/\mathcal{D}I(w,t)$ does not depend on t
- ② Change in agent's utility does not directly depend on his cost function

• The principal's expected profit under contract w is

$$\pi(w) = ma(w) - \int w(x)f(x|a(w))dx$$

• If w is adjusted in direction t, profits change according to

$$\mathcal{D}\pi(w,t) = \left[m - \int w(x)f_a(x|a(w))dx\right]\mathcal{D}a(w,t) - \int t(x)f(x|a(w))dx$$

• The principal's goal is to

$$\max_{t: \|t\| \le 1} \mathcal{D}\pi(w^A, t)$$

s.t. $\mathcal{D}u(w^A, t) \ge 0$

i.e., seeks direction *t* in which profits increase at fastest rate subject to giving the agent at least as much utility as the status quo contract

Georgiadis and Powell

• The principal's expected profit under contract w is

$$\pi(w) = ma(w) - \int w(x)f(x|a(w))dx$$

• If w is adjusted in direction t, profits change according to

$$\mathcal{D}\pi(w,t) = \left[m - \int w(x)f_a(x|a(w))dx\right]\mathcal{D}a(w,t) - \int t(x)f(x|a(w))dx$$

• The principal's goal is to

$$\max_{t: \|t\| \le 1} \mathcal{D}\pi(w^A, t)$$

s.t. $\mathcal{D}u(w^A, t) \ge 0$

i.e., seeks direction *t* in which profits increase at fastest rate subject to giving the agent at least as much utility as the status quo contract

• The principal's expected profit under contract w is

$$\pi(w) = ma(w) - \int w(x)f(x|a(w))dx$$

• If w is adjusted in direction t, profits change according to

$$\mathcal{D}\pi(w,t) = \left[m - \int w(x)f_a(x|a(w))dx\right]\mathcal{D}a(w,t) - \int t(x)f(x|a(w))dx$$

• The principal's goal is to

$$\max_{t: \|t\| \le 1} \mathcal{D}\pi(w^A, t)$$

s.t. $\mathcal{D}u(w^A, t) \ge 0$

i.e., seeks direction t in which profits increase at fastest rate subject to giving the agent at least as much utility as the status quo contract.

Georgiadis and Powell

Informational Requirements

- What does the principal need to know to solve this problem?
- Principal's problem can be written in terms of primitives as

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a dx \right) \mathcal{D}a(w^A, t) - \int tf \, dx \qquad (\mathrm{Adj}_{loc})$$

s.t.
$$\int tv' \left(w^A \right) f \, dx \ge 0$$

Lemma 2 shows that:

The relevant aspects of production environment for solving (Adj_{loc}) are:

•
$$f(x|a(w^A))$$
 and $f_a(x|a(w^A))$, and

• $\mathcal{D}a(w^A, t)$ for all t

We will argue that knowing f_a(x|a(w^A)) and Da(w^A, t) for some t

suffices to evaluate $\mathcal{D}a(w^A, t')$ for every other

Informational Requirements

- What does the principal need to know to solve this problem?
- Principal's problem can be written in terms of primitives as

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a dx \right) \mathcal{D}a(w^A, t) - \int tf \, dx \qquad (\mathrm{Adj}_{loc})$$

s.t.
$$\int tv' \left(w^A \right) f \, dx \ge 0$$

Lemma 2 shows that:

The relevant aspects of production environment for solving (Adj_{loc}) are:

•
$$f(x|a(w^A))$$
 and $f_a(x|a(w^A))$, and

• $\mathcal{D}a(w^A, t)$ for all t

• We will argue that knowing $f_a(x|a(w^A))$ and $\mathcal{D}a(w^A, t)$ for some t

suffices to evaluate $\mathcal{D}a(w^A, t')$ for every other t'.

Georgiadis and Powell

A/B Contracts

Informational Requirements

- What does the principal need to know to solve this problem?
- Principal's problem can be written in terms of primitives as

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a dx \right) \mathcal{D}a(w^A, t) - \int tf \, dx \qquad (\mathrm{Adj}_{loc})$$

s.t.
$$\int tv' \left(w^A \right) f \, dx \ge 0$$

Lemma 2 shows that:

The relevant aspects of production environment for solving (Adj_{loc}) are:

•
$$f(x|a(w^A))$$
 and $f_a(x|a(w^A))$, and

- $\mathcal{D}a(w^A, t)$ for all t
- We will argue that knowing $f_a(x|a(w^A))$ and $\mathcal{D}a(w^A, t)$ for some t suffices to evaluate $\mathcal{D}a(w^A, t')$ for every other t'.

Definitions: A/B Test and Local A/B Test

• An A/B test for contracts w^A and w^B is a pair $AB(w^A, w^B) = (f^A, f^B)$

• A local A/B test is a triple

$$LAB(w^{A}, w^{B}) = \left(f^{A}, f^{A}_{a}, \mathcal{D}a(w^{A}, w^{B})\right)$$

• Interpretation: Test comprises data for w^A and $w^A + \theta w^B$ as $\theta \to 0$

• Assume that $\mathcal{D}a(w^A, w^B) \neq 0$; *i.e.*, local A/B test is informative

Definitions: A/B Test and Local A/B Test

• An A/B test for contracts w^A and w^B is a pair

$$AB(w^A, w^B) = (f^A, f^B)$$

• A local A/B test is a triple

$$LAB(w^A, w^B) = \left(f^A, f^A_a, \mathcal{D}a(w^A, w^B)\right)$$

• Interpretation: Test comprises data for w^A and $w^A + \theta w^B$ as $\theta \to 0$

• Assume that $\mathcal{D}a(w^A, w^B) \neq 0$; *i.e.*, local A/B test is informative

• Recall: The principal seeks to solve

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a^A dx \right) \mathcal{D}a(w^A, t) - \int t f^A dx \qquad (\mathrm{Adj}_{loc})$$

s.t. $\int t v' (w^A) f^A dx \ge 0$

Proposition 1 shows that:

The information provided by a local A/B test suffices to solve problem.

• Knowing f_a^A , the principal can evaluate for every t,

$$\mathcal{D}I(w,t) \coloneqq \int tv'(w) f_a^A dx$$

• Knowing f_a^A and $\mathcal{D}a(w^A, w^B)$, she can evaluate for every t,

$$\mathcal{D}a\left(w^{A},t\right) = \frac{\mathcal{D}a\left(w^{A},w^{B}\right)}{\mathcal{D}I\left(w^{A},w^{B}\right)}\mathcal{D}I\left(w^{A},t\right)$$

• Recall: The principal seeks to solve

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a^A dx \right) \mathcal{D}a(w^A, t) - \int t f^A dx \qquad (\mathrm{Adj}_{loc})$$

s.t. $\int t v' (w^A) f^A dx \ge 0$

Proposition 1 shows that:

The information provided by a local A/B test suffices to solve problem.

• Knowing f_a^A , the principal can evaluate for every t,

$$\mathcal{D}I(w,t) \coloneqq \int tv'(w) f_a^A dx$$

• Knowing f_a^A and $\mathcal{D}a(w^A, w^B)$, she can evaluate for every t,

$$\mathcal{D}a\left(w^{A},t\right) = \frac{\mathcal{D}a\left(w^{A},w^{B}\right)}{\mathcal{D}I\left(w^{A},w^{B}\right)}\mathcal{D}I\left(w^{A},t\right)$$

• Recall: The principal seeks to solve

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a^A dx \right) \mathcal{D}a(w^A, t) - \int t f^A dx \qquad (\mathrm{Adj}_{loc})$$

s.t. $\int t v' (w^A) f^A dx \ge 0$

Proposition 1 shows that:

The information provided by a local A/B test suffices to solve problem.

• Knowing f_a^A , the principal can evaluate for every t,

$$\mathcal{D}I(w,t) \coloneqq \int tv'(w) f_a^A dx$$

• Knowing f_a^A and $\mathcal{D}a(w^A, w^B)$, she can evaluate for every t,

$$\mathcal{D}a(w^{A},t) = \frac{\mathcal{D}a(w^{A},w^{B})}{\mathcal{D}I(w^{A},w^{B})}\mathcal{D}I(w^{A},t)$$

• Recall: The principal seeks to solve

$$\max_{t: \|t\| \le 1} \left(m - \int w f_a^A dx \right) \mathcal{D}a(w^A, t) - \int t f^A dx \qquad (\mathrm{Adj}_{loc})$$

s.t.
$$\int t v'(w^A) f^A dx \ge 0$$

Proposition 1 shows that:

The information provided by a local A/B test suffices to solve problem.

- Knowing f^A , she can evaluate
 - the effect of t on her compensation costs; *i.e.*, $\int t f^A dx$
 - the (participation) constraint

Optimal Local Adjustment

• (Adj_{loc}) is a standard convex optimization program

Proposition 2:

- Characterizes the optimal local adjustment; and
- Gives a condition for w^A to be locally optimal; *i.e.*, $t^* \equiv 0$

Outline

• Theoretical results:

Local adjustments

- Suppose the principal focuses on w such that $||w w^{A}||$ is small
- How to find the optimal adjustment?
- $\bullet\,$ Will show how a local A/B test provides the needed information

2 Non-local Adjustments

- Consider the full set of contracts
- Provide conditions such that we can extrapolate logic
- $\bullet\,$ Will show that an A/B test suffices to find optimal adjustment

Empirical exercises

Non-Local Adjustments

In practice,

- A/B tests are not local, and
- firms are interested in non-local adjustments
- To find the optimal non-local adjustment, in general, one must know the entire production environment P = (f, c).
- We provide two conditions allowing us to extrapolate the ideas from previous part to assess such adjustments with only an A/B test.

Non-Local Adjustments

- In practice,
 - A/B tests are not local, and
 - firms are interested in non-local adjustments
- To find the optimal non-local adjustment, in general, one must know the entire production environment P = (f, c).
- We provide two conditions allowing us to extrapolate the ideas from previous part to assess such adjustments with only an A/B test.

Condition 1: Output distribution is affine in effort

Condition 1.

The output distribution f(x|a) is affine in *a*; *i.e.*, f(x|a) = g(x) + ah(x)for some functions g(x) and h(x)

Given an A/B test (f^A, f^B) , one can determine $f(\cdot|a)$ for every a

2 Because $f_a(x|a) \equiv h(x)$ for all a, the marginal incentives

$$l(w) = \int v(w(x))h(x)dx$$

do not depend on a.

Condition 1: Output distribution is affine in effort

Condition 1.

The output distribution f(x|a) is affine in *a*; *i.e.*, f(x|a) = g(x) + ah(x)for some functions g(x) and h(x)

• Given an A/B test (f^A, f^B) , one can determine $f(\cdot|a)$ for every a

Because $f_a(x|a) \equiv h(x)$ for all a, the marginal incentives

$$I(w) = \int v(w(x))h(x)dx$$

do not depend on a.

Condition 1: Output distribution is affine in effort

Condition 1.

The output distribution f(x|a) is affine in *a*; *i.e.*, f(x|a) = g(x) + ah(x)for some functions g(x) and h(x)

• Given an A/B test (f^A, f^B) , one can determine $f(\cdot|a)$ for every a

2 Because $f_a(x|a) \equiv h(x)$ for all *a*, the marginal incentives

$$I(w) = \int v(w(x))h(x)dx$$

do not depend on a.

Condition 2: Isoelastic effort costs

Condition 2.

The agent has isoelastic effort costs:

$$c'(a) = e^{-\beta/\epsilon} a^{1/\epsilon}$$

• This condition implies that for any contract w, we have

$$\ln a(w) = \beta + \epsilon \ln I(w)$$

• Given an A/B test,

- One can evaluate I(w) for any w, and
- $a(w^A)$ and $a(w^B)$ since a(w) is the expected output given w.
- Thus, principal can pin down β and ϵ , and predict a(w) for any w

Condition 2: Isoelastic effort costs

Condition 2.

The agent has isoelastic effort costs:

$$c'(a) = e^{-\beta/\epsilon} a^{1/\epsilon}$$

• This condition implies that for any contract w, we have

$$\ln a(w) = \beta + \epsilon \ln I(w)$$

- Given an A/B test,
 - One can evaluate I(w) for any w, and
 - $a(w^A)$ and $a(w^B)$ since a(w) is the expected output given w.
- Thus, principal can pin down β and ϵ , and predict a(w) for any w

Principal's Problem

• The principal's profit if she offers contract w is

$$\pi(w) = ma(w) - \int w(x) \left[g(x) + a(w)h(x)\right] dx$$

• Given status quo contract w^A , she solves

$$\max_{w} \pi(w)$$

s.t. $u(w) \ge u(w^{A})$

Proposition 3 shows that:

The information provided by an A/B test suffices to solve this problem.

- This problem can be solved in two stages a-la Grossman and Hart:
 - i. Fix an a and find cost-minimizing contract that implements this effort
 - ii. Find profit-maximizing a(w)

Principal's Problem

• The principal's profit if she offers contract w is

$$\pi(w) = ma(w) - \int w(x) \left[g(x) + a(w)h(x)\right] dx$$

• Given status quo contract w^A , she solves

$$\max_{w} \pi(w)$$

s.t. $u(w) \ge u(w^{A})$

Proposition 3 shows that:

The information provided by an A/B test suffices to solve this problem.

- This problem can be solved in two stages a-la Grossman and Hart:
 - i. Fix an a and find cost-minimizing contract that implements this effort
 - ii. Find profit-maximizing a(w)

Dataset

- Goal: Assess performance of our model
- Dataset from DellaVigna and Pope (2017)
- Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min
- 7 treatments with different monetary incentives:

	Contract (in ¢)	Avg. $\#$ points (x)	Ν
No incentives	$w_1(x) = 100$	1521	540
Piece-rate	$w_2(x) = 100 + 0.001x$	1883	538
	$w_3(x) = 100 + 0.01x$	2029	558
	$w_4(x) = 100 + 0.04x$	2132	566
	$w_5(x) = 100 + 0.10x$	2175	538
Bonus	$w_6(x) = 100 + 40 \mathbb{I}_{\{x \ge 2000\}}$	2136	545
	$w_7(x) = 100 + 80 \mathbb{I}_{\{x \ge 2000\}}$	2187	532

• Each subject participated in a single treatment, once.

Two Exercises

- I. Assess our model's ability to predict performance out-of-sample
 - Use data from each pair of treatments to predict mean performance in the remaining treatments.
 - We then compare our predictions to observed performance
- II. Assess the performance of optimal adjustments
 - Use all treatments to construct production environment (f, c)
 - Using (f, c), compute the *benchmark-optimal* contract
 - For each pair of treatments, take this pair to constitute our A/B test, and use its data to compute the *test-optimal* contract
 - Compare its profit to that of w^A and benchmark-optimal contract

Two Exercises

- I. Assess our model's ability to predict performance out-of-sample
 - Use data from each pair of treatments to predict mean performance in the remaining treatments.
 - We then compare our predictions to observed performance
- II. Assess the performance of optimal adjustments
 - Use all treatments to construct production environment (f, c)
 - Using (f, c), compute the *benchmark-optimal* contract
 - For each pair of treatments, take this pair to constitute our A/B test, and use its data to compute the *test-optimal* contract
 - Compare its profit to that of w^A and benchmark-optimal contract

Prediction Exercise: Procedure

- Assume each subject has CRRA utility: v'(ω) = ω^{-ρ} with ρ = 0.3
 Normalize a(w_i) = (Avg. #points)_i.
- Take an arbitrary pair of treatments, labeled w^A and w^B
 - i. Using a kernel estimator, construct the pdfs \widehat{f}^A and \widehat{f}^B
 - ii. For every treatment C, compute the marginal incentives

$$\hat{l}_{C}^{AB} = \int v(w^{C}(x)) \hat{h}^{AB}(x) dx \text{ , where } \hat{h}^{AB}(x) = \frac{\hat{f}^{A}(x) - \hat{f}^{B}(x)}{a^{A} - a^{B}}$$

- iii. Estimate the cost parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- iv. Predict performance for every treatment $C \notin \{A, B\}$ using

$$\ln \hat{a}_{C}^{AB} = \hat{\beta}^{AB} + \hat{\varepsilon}^{AB} \ln \hat{l}_{C}^{AB}$$

• Focus on A/B tests where w^A and w^B belong to same class.

Prediction Exercise: Procedure

() Assume each subject has CRRA utility: $v'(\omega) = \omega^{-\rho}$ with $\rho = 0.3$

③ Take an arbitrary pair of treatments, labeled w^A and w^B

- i. Using a kernel estimator, construct the pdfs \hat{f}^A and \hat{f}^B
- ii. For every treatment C, compute the marginal incentives

$$\hat{l}_{C}^{AB} = \int v(w^{C}(x)) \hat{h}^{AB}(x) dx \text{ , where } \hat{h}^{AB}(x) = \frac{\hat{f}^{A}(x) - \hat{f}^{B}(x)}{a^{A} - a^{B}}$$

- iii. Estimate the cost parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- iv. Predict performance for every treatment $C \notin \{A, B\}$ using

$$\ln \hat{a}_{C}^{AB} = \hat{\beta}^{AB} + \hat{\varepsilon}^{AB} \ln \hat{I}_{C}^{AB}$$

• Focus on A/B tests where w^A and w^B belong to same class.

Prediction Exercise: Procedure

() Assume each subject has CRRA utility: $v'(\omega) = \omega^{-\rho}$ with $\rho = 0.3$

③ Take an arbitrary pair of treatments, labeled w^A and w^B

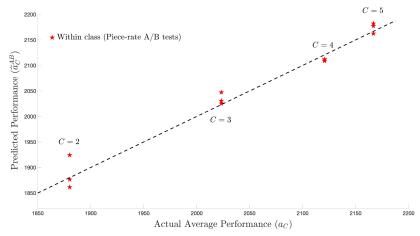
- i. Using a kernel estimator, construct the pdfs \hat{f}^A and \hat{f}^B
- ii. For every treatment C, compute the marginal incentives

$$\hat{l}_{C}^{AB} = \int v(w^{C}(x)) \hat{h}^{AB}(x) dx \text{ , where } \hat{h}^{AB}(x) = \frac{\hat{f}^{A}(x) - \hat{f}^{B}(x)}{a^{A} - a^{B}}$$

- iii. Estimate the cost parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- iv. Predict performance for every treatment $C \notin \{A, B\}$ using

$$\ln \hat{a}_{C}^{AB} = \hat{\beta}^{AB} + \hat{\varepsilon}^{AB} \ln \hat{I}_{C}^{AB}$$

• Focus on A/B tests where w^A and w^B belong to same class.



i. Predicted performance is close to actual performance

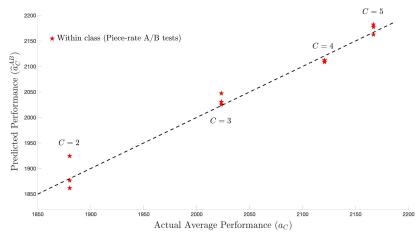
ii. Under-predicts performance in (bonus) treatments 6 and 7

iii. Predictions are similar no matter which A/B test is used

Georgiadis and Powell

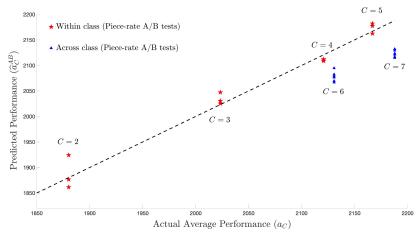
A/B Contracts

Northwestern Kellogg 27 / 36



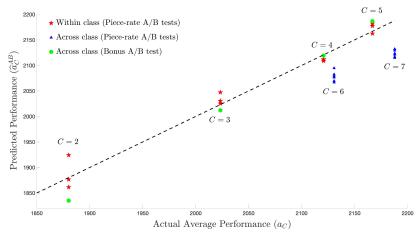
- i. Predicted performance is close to actual performance
- ii. Under-predicts performance in (bonus) treatments 6 and 7
- iii. Predictions are similar no matter which A/B test is used

Georgiadis and Powell



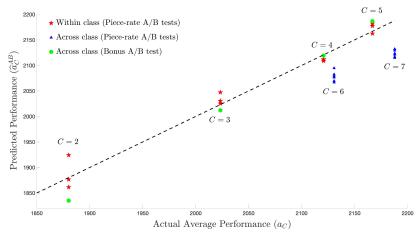
- i. Predicted performance is close to actual performance
- ii. Under-predicts performance in (bonus) treatments 6 and 7
- iii. Predictions are similar no matter which A/B test is used

Georgiadis and Powell



- i. Predicted performance is close to actual performance
- ii. Under-predicts performance in (bonus) treatments 6 and 7
- iii. Predictions are similar no matter which A/B test is used

Georgiadis and Powell



- i. Predicted performance is close to actual performance
- ii. Under-predicts performance in (bonus) treatments 6 and 7
- iii. Predictions are similar no matter which A/B test is used

Georgiadis and Powell

Prediction Exercise: Sensitivity

Coefficient of relative risk aversion (ρ) 0.3

Homogeneous A/B Tests (w ^A and w ^B	belong to same class)
$\operatorname{Corr}\left(\hat{a}_{C}^{AB}, a_{C}\right)$	0.94
Mean Absolute Percentage Error (APE)	1.59
Worst-case APE	3.34

i. Hybrid A/B tests sometimes generate poor predictions

- ii. Prediction accuracy is insensitive to the coefficient of risk aversion
- iii. Similar accuracy if we assume quadratic utility function

Prediction Exercise: Sensitivity

Coefficient of relative risk aversion (ρ) 0.3

Homogeneous A/B Tests (w ^A and	w ^B belong to same class)
$\operatorname{Corr}\left(\hat{a}_{C}^{AB}, a_{C}\right)$	0.94
Mean Absolute Percentage Error (APE)	1.59
Worst-case APE	3.34

Hybrid A/B Tests (w ^A and w	' ^B belong to different classes)
$\operatorname{Corr}\left(\hat{a}_{C}^{AB}, a_{C}\right)$	0.84
Mean APE	2.16
Worst-case APE	10.70

i. Hybrid A/B tests sometimes generate poor predictions

ii. Prediction accuracy is insensitive to the coefficient of risk aversion

iii. Similar accuracy if we assume quadratic utility function

Prediction Exercise: Sensitivity

Coefficient of relative risk aversion (ρ) 0 0.3 0.5 1

Homogeneous A/B Tests (w^A and w^B belong to same class)				
$\operatorname{Corr}\left(\hat{a}_{C}^{AB}, a_{C}\right)$	0.92	0.94	0.96	0.97
Mean Absolute Percentage Error (APE)	1.76	1.59	1.54	1.64
Worst-case APE	3.65	3.34	3.08	4.30

Hybrid	I A∕B Tests (w	^A and w ^B	belong to	different	classes)	
$\operatorname{Corr}\left(\hat{a}_{C}^{AB}, a_{C}\right)$	•)		0.86	0.84	0.83	0.78
Mean APE			2.19	2.16	2.14	2.18
Worst-case A	PE		10.61	10.70	11.40	12.69

- i. Hybrid A/B tests sometimes generate poor predictions
- ii. Prediction accuracy is insensitive to the coefficient of risk aversion
- iii. Similar accuracy if we assume quadratic utility function

• Use all 7 treatments to construct production environment (f, c)

• Constructing *f* :

- For each $a = a(w_i)$, we use a kernel estimator to construct pdf f(x|a)
- For each $a \neq a(w_i)$, we use a spline interpolation to construct f(x|a)

• Constructing *c*:

- Assume $c'(a) = c_0 a^p l_0$ for some parameters c_0 , p, and l_0 TBD
- Assume $u'(\omega) = \omega^{-\rho}$, $\rho = 0.3$, and fit parameters with NLS estimation
- Assume that each unit of x is worth m = 0.2c to the principal
- For each treatment *C*, compute the profit-maximizing contract that gives the agent at least as much utility as w^C .
 - Denote profit of the benchmark-optimal contract by $\pi^*(w^C)$

- Use all 7 treatments to construct production environment (f, c)
- Constructing *f* :
 - For each $a = a(w_i)$, we use a kernel estimator to construct pdf f(x|a)
 - For each $a \neq a(w_i)$, we use a spline interpolation to construct f(x|a)
- Constructing *c*:
 - Assume $c'(a) = c_0 a^p I_0$ for some parameters c_0 , p, and I_0 TBD
 - Assume $u'(\omega) = \omega^{-\rho}$, $\rho = 0.3$, and fit parameters with NLS estimation
- Assume that each unit of x is worth m = 0.2c to the principal
- For each treatment *C*, compute the profit-maximizing contract that gives the agent at least as much utility as w^C .
 - Denote profit of the benchmark-optimal contract by $\pi^*(w^C)$

- Use all 7 treatments to construct production environment (f, c)
- Constructing *f*:
 - For each $a = a(w_i)$, we use a kernel estimator to construct pdf f(x|a)
 - For each $a \neq a(w_i)$, we use a spline interpolation to construct f(x|a)
- Constructing *c*:
 - Assume $c'(a) = c_0 a^p I_0$ for some parameters c_0 , p, and I_0 TBD
 - Assume $u'(\omega) = \omega^{-\rho}$, $\rho = 0.3$, and fit parameters with NLS estimation
- Assume that each unit of x is worth m = 0.2c to the principal
- For each treatment *C*, compute the profit-maximizing contract that gives the agent at least as much utility as w^C .
 - Denote profit of the benchmark-optimal contract by $\pi^*(w^C)$

- Use all 7 treatments to construct production environment (f, c)
- Constructing *f*:
 - For each $a = a(w_i)$, we use a kernel estimator to construct pdf f(x|a)
 - For each $a \neq a(w_i)$, we use a spline interpolation to construct f(x|a)
- Constructing c:
 - Assume $c'(a) = c_0 a^p I_0$ for some parameters c_0 , p, and I_0 TBD
 - Assume $u'(\omega) = \omega^{-\rho}$, $\rho = 0.3$, and fit parameters with NLS estimation
- Assume that each unit of x is worth m = 0.2c to the principal
- For each treatment *C*, compute the profit-maximizing contract that gives the agent at least as much utility as w^C .
 - Denote profit of the benchmark-optimal contract by $\pi^*(w^C)$

- Use all 7 treatments to construct production environment (f, c)
- Constructing *f*:
 - For each $a = a(w_i)$, we use a kernel estimator to construct pdf f(x|a)
 - For each $a \neq a(w_i)$, we use a spline interpolation to construct f(x|a)
- Constructing *c*:
 - Assume $c'(a) = c_0 a^p I_0$ for some parameters c_0 , p, and I_0 TBD
 - Assume $u'(\omega) = \omega^{-\rho}$, $\rho = 0.3$, and fit parameters with NLS estimation
- Assume that each unit of x is worth m = 0.2c to the principal
- For each treatment *C*, compute the profit-maximizing contract that gives the agent at least as much utility as w^C .
 - Denote profit of the benchmark-optimal contract by $\pi^*(w^{C})$

Exercise 2: Optimal Adjustments

- Take an arbitrary pair of treatments, labeled w^A and w^B
- Using the same procedure as in the prediction exercise, construct the pdfs \hat{f}^A and \hat{f}^B , and the parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- For every treatment *C*, compute the test-optimal contract that gives the agent at least as much utility as w^C
- Using the constructed production environment, evaluate the profit of each test-optimal contract, which we denote $\pi^{AB}(w^{C})$

Exercise 2: Optimal Adjustments

- Take an arbitrary pair of treatments, labeled w^A and w^B
- Using the same procedure as in the prediction exercise, construct the pdfs \hat{f}^A and \hat{f}^B , and the parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- For every treatment *C*, compute the test-optimal contract that gives the agent at least as much utility as w^C
- Using the constructed production environment, evaluate the profit of each test-optimal contract, which we denote $\pi^{AB}(w^{C})$

Exercise 2: Optimal Adjustments

- Take an arbitrary pair of treatments, labeled w^A and w^B
- Using the same procedure as in the prediction exercise, construct the pdfs \hat{f}^A and \hat{f}^B , and the parameters $\hat{\epsilon}^{AB}$ and $\hat{\beta}^{AB}$
- For every treatment *C*, compute the test-optimal contract that gives the agent at least as much utility as w^C
- Using the constructed production environment, evaluate the profit of each test-optimal contract, which we denote $\pi^{AB}(w^{C})$

Evaluating the Performance of Optimal Adjustments

• Maximum available gains for treatment C:

$$\mathsf{MaxGains}^{\mathsf{C}} = \pi^* \left(w^{\mathsf{C}} \right) - \pi \left(w^{\mathsf{C}} \right)$$

• Average Realized gains for treatment C:

AvgGains^C =
$$\frac{1}{|Hom. Tests|} \sum_{A,B \in Hom} \pi^{AB} (w^{C}) - \pi (w^{C})$$

i.e., we average the realized gains across all homogeneous A/B tests.

- Averaging across treatments C ∈ {2,...,7}, the average realized gains are 68% of the maximum available gains.
- Ratio is insensitive to different choices of *m* and coefficient of RRA

Evaluating the Performance of Optimal Adjustments

• Maximum available gains for treatment C:

$$\mathsf{MaxGains}^{\mathsf{C}} = \pi^* \left(w^{\mathsf{C}} \right) - \pi \left(w^{\mathsf{C}} \right)$$

• Average Realized gains for treatment C:

AvgGains^C =
$$\frac{1}{|Hom. Tests|} \sum_{A,B \in Hom} \pi^{AB} (w^{C}) - \pi (w^{C})$$

i.e., we average the realized gains across all homogeneous A/B tests.

- Averaging across treatments C ∈ {2,...,7}, the average realized gains are 68% of the maximum available gains.
- Ratio is insensitive to different choices of *m* and coefficient of RRA

Evaluating the Performance of Optimal Adjustments

• Maximum available gains for treatment C:

$$\mathsf{MaxGains}^{\mathsf{C}} = \pi^* \left(w^{\mathsf{C}} \right) - \pi \left(w^{\mathsf{C}} \right)$$

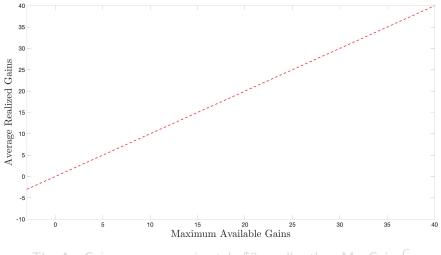
• Average Realized gains for treatment C:

AvgGains^C =
$$\frac{1}{|Hom. Tests|} \sum_{A,B \in Hom} \pi^{AB} (w^{C}) - \pi (w^{C})$$

i.e., we average the realized gains across all homogeneous A/B tests.

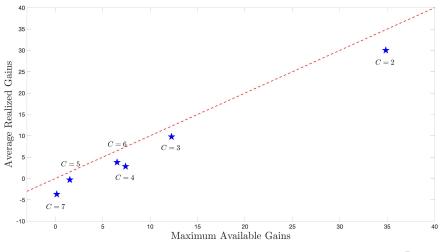
- Averaging across treatments C ∈ {2,...,7}, the average realized gains are 68% of the maximum available gains.
- Ratio is insensitive to different choices of *m* and coefficient of RRA

Performance of Optimal Adjustments: Illustrated



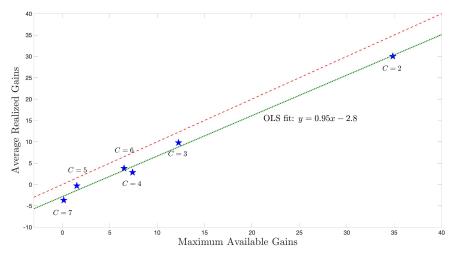
• The AvgGains_C are approximately \$3 smaller than MaxGains^C

Performance of Optimal Adjustments: Illustrated



• The AvgGains_C are approximately \$3 smaller than MaxGains^C

Performance of Optimal Adjustments: Illustrated



• The AvgGains_C are approximately \$3 smaller than MaxGains^C

- Two reasons why AvgGains is smaller than MaxGains:
 - a. Principal overpays to implement a given effort; or
 - b. Implements an effort that is not profit-maximizing
- For each treatment *C*, we compare
 - (A) Wage bill of the test-optimal contract to wage bill of the costminimizing contract that implements the same effort.
 - (B) Effort implemented by test-optimal contract to the optimal effort.
- On average:
 - (A') The test-optimal contract overpays by ~ 1.8
 - (B') Implements an effort ~ 7 units too low, losing $7 \times (m = 0.2) =$ 1.4

• Two reasons why AvgGains is smaller than MaxGains:

- a. Principal overpays to implement a given effort; or
- b. Implements an effort that is not profit-maximizing
- For each treatment C, we compare
 - (A) Wage bill of the test-optimal contract to wage bill of the costminimizing contract that implements the same effort.
 - (B) Effort implemented by test-optimal contract to the optimal effort.
- On average:
 - (A') The test-optimal contract overpays by ~ 1.8
 - (B') Implements an effort ~ 7 units too low, losing $7 \times (m = 0.2) =$ \$1.4

• Two reasons why AvgGains is smaller than MaxGains:

- a. Principal overpays to implement a given effort; or
- b. Implements an effort that is not profit-maximizing
- For each treatment C, we compare
 - (A) Wage bill of the test-optimal contract to wage bill of the costminimizing contract that implements the same effort.

B) Effort implemented by test-optimal contract to the optimal effort.

• On average:

(A') The test-optimal contract overpays by ~ \$1.8

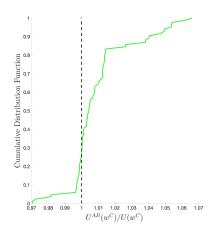
(B') Implements an effort ~ 7 units too low, losing $7 \times (m = 0.2) =$ \$1.4

- Two reasons why AvgGains is smaller than MaxGains:
 - a. Principal overpays to implement a given effort; or
 - b. Implements an effort that is not profit-maximizing
- For each treatment C, we compare
 - (A) Wage bill of the test-optimal contract to wage bill of the costminimizing contract that implements the same effort.
 - (B) Effort implemented by test-optimal contract to the optimal effort.
- On average:
 - (A') The test-optimal contract overpays by \sim \$1.8
 - (B') Implements an effort ~7 units too low, losing $7 \times (m = 0.2) =$ \$1.4

- Two reasons why AvgGains is smaller than MaxGains:
 - a. Principal overpays to implement a given effort; or
 - b. Implements an effort that is not profit-maximizing
- For each treatment C, we compare
 - (A) Wage bill of the test-optimal contract to wage bill of the costminimizing contract that implements the same effort.
 - (B) Effort implemented by test-optimal contract to the optimal effort.
- On average:
 - (A') The test-optimal contract overpays by \sim \$1.8
 - (B') Implements an effort ~ 7 units too low, losing $7 \times (m = 0.2) =$ \$1.4

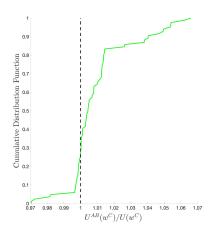
Agent's Utility

- For ea. A/B test and treatment C, we sought a profit-maximizing contract that gives the agent at least as much utility as w^C.
- This figure illustrates the CDF of the ratio of the agent's utility under the test-optimal contract to the target utility.
- Ratio ranges from 0.97 to 1.07, and it is greater than 1 in ~ 75% of cases.



Agent's Utility

- For ea. A/B test and treatment C, we sought a profit-maximizing contract that gives the agent at least as much utility as w^C.
- This figure illustrates the CDF of the ratio of the agent's utility under the test-optimal contract to the target utility.
- Ratio ranges from 0.97 to 1.07, and it is greater than 1 in ~ 75% of cases.



Beyond the Classic Model

- I. Multitasking. Effort $\mathbf{a} \in \mathbb{R}^M$ and output $\mathbf{x} \in \mathbb{R}^M$
 - e.g., effort towards quantity & quality, or selling different products.
 - Need $\left[\left(M+1\right)/2\right]$ linearly independently test contracts
- II. Parametric contract classes. Restrict attention to contracts of the form w_{α} , where α is a vector of parameters.
 - e.g., linear, piecewise linear, or bonus contracts
 - Similar logic and same informational requirements
- III. *Heterogeneous workers.* Principal offers a common contract to agents with heterogeneous effort costs.
 - Straightforward application
 - Can induce selection by imposing participation for subset of types

Summary & Future Work

• What does a firm need to know to improve an existing contract?

- We showed how an A/B test can provide this information
- Provided a proof of concept
- Many open questions, lots to do:
 - Statistical and approximation error?
 - How to design an A/B test optimally?
 - How to account for strategic manipulation; e.g., ratchet effects
 - Intertemporal (dynamic) incentives?
 - Incentive design for teams of workers?

Summary & Future Work

• What does a firm need to know to improve an existing contract?

- We showed how an A/B test can provide this information
- Provided a proof of concept
- Many open questions, lots to do:
 - Statistical and approximation error?
 - How to design an A/B test optimally?
 - How to account for strategic manipulation; e.g., ratchet effects
 - Intertemporal (dynamic) incentives?
 - Incentive design for teams of workers?