Optimal Contracts with a Risk-Taking Agent*

Daniel Barron, George Georgiadis, and Jeroen Swinkels†

February 19, 2019

Abstract

Consider an agent who can costlessly add mean-preserving noise to his output. To deter such risk-taking, the principal optimally offers a contract that makes the agent’s utility concave in output. If the agent is risk-neutral and protected by limited liability, this concavity constraint binds and so linear contracts maximize profit. If the agent is risk averse, the concavity constraint might bind for some outputs but not others. We characterize the unique profit-maximizing contract and show how deterring risk-taking affects the insurance-incentive tradeoff. Our logic extends to costly risk-taking and to dynamic settings where the agent can shift output over time.

*We are grateful to Simon Board, Ralph Boesovsky, Luis Cabral, Odilon Câmara, Gabriel Carroll, Bengt Holmström, Hugo Hopenhayn, Johannes Hörner, Eddie Lazear, Elliot Lipnowski, Erik Madsen, Niko Matouschek, John Matsusaka, Meg Meyer, Konstantin Milbradt, Dimitri Papamikolaou, Andrea Prat, Lars Stole, Doron Ravid, Luis Rayo, Patrick Rey, Balazs Szentes, Dimitri Vayanos, Glen Weyl, and seminar participants at Cambridge University, New York University, Northwestern University, the University of Chicago, the University of Southern California, University College London, the University of Miami, the University of Exeter, the University of Rochester, the University of Warwick, the 2016 ASU Theory Conference, the 2016 Transatlantic Theory Conference, CRETE 2017, CSIO-IDEI 2017, and the Spring 2018 NBER Organizational Economics meeting for helpful comments and discussions.

†Kellogg School of Management, Northwestern University, Evanston, IL 60208, U.S.A.

D. Barron: d-barron@kellogg.northwestern.edu
G. Georgiadis: g-georgiadis@kellogg.northwestern.edu
J. Swinkels: j-swinkels@kellogg.northwestern.edu
1 Introduction

Contractual incentives motivate employees, suppliers, and partners to exert effort, but improperly designed incentives can instead encourage excessive risk-taking. These risk-taking motives are most obvious when they have dramatic consequences for society as a whole. For instance, following the 2008 financial crisis, Federal Reserve Chairman Ben Bernanke stated that “compensation practices at some banking organizations have led to misaligned incentives and excessive risk-taking, contributing to bank losses and financial instability” [Federal Reserve Press Release (10/22/2009)]. Garicano and Rayo (2016) suggest that poorly designed incentives led the American International Group (AIG) to expose itself to massive tail risk in exchange for the appearance of stable earnings. Rajan (2011) echoes these concerns and suggests that misaligned incentives worsened the effects of the crisis.

Even without such disastrous outcomes, agents face opportunities to game their incentives by engaging in risk-taking in many other settings. Portfolio managers can choose riskier investments, as well as exert effort, to influence their returns (Brown, Harlow, and Starks (1996); Chevalier and Ellison (1997); de Figueiredo, Rawley, and Shelef (2014)). Executives and entrepreneurs work hard to innovate, but also choose whether to pursue moonshot or incremental projects (Matta and Beamish (2008); Rahmandad, Henderson, and Repenning (2016); Vereshchagina and Hopenhayn (2009)). In what we will see is a related phenomenon, salespeople can both work to sell more products and choose when those sales count towards their quotas (Oyler (1998); Larkin (2014)).

In addition to the obvious social costs of excessive risk, the fact that agents can game their incentives in this way has a second cost as well: the possibility of risk-taking makes it harder for firms to motivate their agents to work hard. In this paper, we focus on this incentive cost by exploring how risk-taking constrains optimal contracts in a canonical moral hazard setting. We argue that the fact that the agent can game his incentives in this way renders convex incentives ineffective. Consequently, the principal can do no better than to offer a contract that makes the agent’s utility concave in output. This simple but central result spurs us to analyze optimal concave contracts, with the goal of exploring how this additional concavity constraint changes the structure of incentives, profits, and productivity.

Our model considers a principal who offers an incentive contract to a potentially
liquidity-constrained and risk-averse agent. If the agent accepts the contract, then he exerts costly effort that produces a non-contractible intermediate output, the distribution of which satisfies the increasing marginal likelihood ratio property. The key twist on this canonical framework is that the agent can engage in risk-taking by costlessly adding mean-preserving noise to this intermediate output, which in turn determines the contractible final output.

Building on the arguments of Jensen and Meckling (1976) and others, Section 3 shows that the agent engages in risk-taking whenever the contract makes his utility convex in output. In so doing, the agent makes his expected utility concave in intermediate output. So long as both the principal and the agent are weakly risk-averse, the principal finds it optimal to deter risk-taking entirely by offering an incentive scheme that directly makes the agent’s utility concave in output. We refer to this additional constraint – that utility be weakly concave in output – as the no-gaming constraint. Wherever the no-gaming constraint binds, the optimal contract makes the agent’s utility linear in output.

In Section 4 we consider the case of a risk-neutral agent and a weakly risk-averse principal. Absent the no-gaming constraint, the principal would like to offer a convex contract in this setting in order to concentrate high pay on high outcomes and so inexpensively motivate the agent while respecting his limited liability constraint. As a result, we show that the no-gaming constraint binds everywhere, which means that a linear (technically, affine) contract is optimal, remains so regardless of the principal’s attitude toward risk (even if she is risk-loving), and is uniquely optimal if the principal is risk averse. In particular, relative to any strictly concave contract, we show that there is a linear contract that both better motivates the agent and better insures the principal.

Section 5 explores the consequences of risk-taking in the case of a risk-averse agent and a risk-neutral principal. In this setting, the no-gaming constraint implies that the agent’s utility must be concave in output. Similar to Section 4, the optimal contract makes the agent’s utility linear wherever this constraint binds. Unlike that section, however, the no-gaming constraint does not necessarily bind everywhere, so the agent’s payoff under the optimal contract might have both linear and strictly concave regions.

If the limited liability constraint binds and the participation constraint is slack in this setting, then the optimal contract follows a logic similar to the case with
a risk-neutral agent. The principal would like to offer a contract that makes the agent’s payoff convex over any output that suggests less than the desired effort. The profit-maximizing contract therefore makes the agent’s utility linear over low outputs. Unlike the case with a risk-neutral agent, however, the principal finds it increasingly expensive to give the agent higher and higher utility. Consequently, the optimal incentive scheme might make the agent’s utility strictly concave following sufficiently high output.

If the limited liability constraint is instead slack, then the optimal contract is shaped by the same trade-off between incentives and insurance that arises in classic moral hazard problems: in the absence of risk-taking, the optimal contract would equate output-by-output the principal’s marginal cost of paying the agent to the marginal benefit of relaxing his participation and incentive constraints (as in Mirrlees (1976) and Holmström (1979)). However, doing so at each output might result in a non-concave contract and so violate the no-gaming constraint. Where this constraint binds, we show that the optimal contract is instead ironed, in the sense that it is linear in utility over some interval and sets expected marginal benefits equal to expected marginal costs on that interval. For instance, if the no-gaming constraint binds for low output but not for high output, then the optimal contract makes the agent’s utility linear for low outputs. For high outputs, the no-gaming constraint is slack and so the contract equates the marginal benefits to the marginal costs of pay at each output. In the extreme, if no-gaming is slack everywhere, then the contract characterized by Mirrlees (1976) and Holmström (1979) is optimal; if it binds everywhere, then the optimal contract makes the agent’s utility linear in output.

We prove the results for a risk-averse agent by developing a set of necessary and sufficient conditions that characterize the unique profit-maximizing contract in this setting. As discussed above, we cannot apply the techniques of Mirrlees (1976) and Holmström (1979) because the resulting contract might violate the no-gaming constraint. We instead construct two simple perturbations of a candidate contract that respect this constraint while changing either the level or the slope of the agent’s utility over appropriate intervals of output. Perhaps surprisingly, we prove that it suffices to consider these two perturbations, so that a contract is profit-maximizing if, and only if, it cannot be improved by them.

The unifying idea behind all of our results is that the possibility of risk-taking renders convex incentives ineffective. Section 6 extends this intuition to three other
settings, all of which assume that both the principal and the agent are risk-neutral. First, we alter the timing of the model so that the agent engages in risk-taking before he observes intermediate output. We show that the possibility of ex ante risk-taking leads optimal incentives to be a concave function of the agent’s effort, rather than a concave function of intermediate output. This modified no-gaming constraint binds under mild conditions, in which case a linear contract is optimal.

Second, we modify the agent’s payoff so that he incurs a cost that is increasing in the variance of his risk-taking distribution. It turns out that this extension can be reformulated as a variant of our analysis in Section 4. We show that the unique optimal contract is strictly convex in output, but not so convex as to induce gaming, and that this contract converges to a linear contract as gaming becomes costless.

Finally, we exhibit a close connection between risk-taking and another type of gaming: manipulating the timing of output. To do so, we study a dynamic setting in which the principal offers a stationary contract that the agent can game by choosing when output is realized over an interval of time. For example, [Oyer (1998)] and [Larkin (2014)] document how salespeople accelerate or delay sales in order to game convex incentive schemes over a sales cycle. We show that this setting is equivalent to our risk-taking model. Thus, a linear contract is optimal, since a strictly convex contract would induce the agent to bunch sales over short time intervals and a strictly concave contract would provide subpar effort incentives.

Our analysis is inspired by [Diamond (1998)] and [Garicano and Rayo (2016)]. The latter includes a model of risk-taking that is similar to ours, but it fixes an exogenous (non-concave) contract to focus on the social costs of excessive risk. The former is a seminal exploration of optimal contracts when the agent can both exert effort and make other choices that affect the output distribution. In particular, part of [Diamond (1998)] argues that linear contracts are (non-uniquely) optimal in an example with risk-neutral parties, binary effort, and an agent who can choose any mean-preserving spread of output. Our Proposition 2 expands this result to settings with a risk-averse principal, as well as more general effort choices and output distributions. In doing so, we identify an additional advantage of linear contracts with a risk-neutral agent: relative to any strictly concave contract, they better insure the principal and so are uniquely optimal if the principal is even slightly risk-averse.

The rest of our analysis departs further from [Diamond (1998)]. Section 3 shows that the fundamental consequence of agent risk-taking is to constrain incentives to
be concave, not necessarily linear. Linear contracts are instead a consequence of this concavity constraint binding everywhere, as it does if the agent is risk-neutral. However, as Section 5 demonstrates, the concavity constraint need not necessarily bind everywhere if the agent is risk-averse, in which case the optimal contract may make utility strictly concave in output. Our analysis in this section is new and shows how risk-taking affects contracts in a simple moral hazard setting. Moreover, Section 6 explores how a similar logic shapes optimal contracts in several related settings.

Our model of risk-taking is embedded in a classic moral hazard problem. With a risk-neutral agent, our model builds on Innes (1990), Spulber and Poblete (2012), and other papers for which limited liability is the central contracting friction. With a risk-averse agent, we build on Mirrlees (1976) and Holmström (1979) if the limited liability constraint is slack, and Jewitt, Kadan, and Swinkels (2008) if it binds. Within the classic agency literature, our analysis is conceptually related to papers that study principal-agent relationships in which the agent both exerts effort and makes other decisions. Classic examples include Lambert (1986) on how agency problems in information-gathering can lead to inefficient investment in risky projects and Holmström and Ricart i Costa (1986) on project selection under career concerns. Malcomson (2009) presents a general model of such settings, but differs from our analysis by assuming that decisions are contractible. Other papers consider settings in which the principal also chooses actions other than the agent’s wage contract, such as an endogenous performance measure; see for example, Halac and Prat (2016) and Georgiadis and Szentes (2018).

A growing literature studies agent risk-taking. Some papers in this literature assume that an agent chooses from a parametric class of risk-taking distributions in either static (Palomino and Prat (2003); Hellwig (2009)) or dynamic (Demarzo, Livdan, and Tchistyj (2014)) settings. We differ by allowing our agent to choose any mean-preserving spread of output, which means that our optimal contract must deter a more flexible form of gaming. Therefore, we join other papers that study non-parametric risk-taking, again in either static (Robson (1992); Diamond (1998); Hébert (2018)) or dynamic (Ray and Robson (2012); Makarov and Plantin (2015)) settings. We differ from these papers by identifying concavity as the key constraint on the optimal incentive scheme if the agent can costlessly take on risk and then characterizing optimal incentives given this constraint.\footnote{In Ray and Robson (2012), Condition R2 is a version of a concavity constraint. However, that}
More broadly, our work is related to a long-standing literature which argues that optimal contracts must both induce effort and deter gaming. A seminal example is Holmström and Milgrom (1987), which displays a dynamic environment in which linear contracts are optimal. (Ederer et al., 2018) shows how opacity (i.e., randomization over compensation schemes) can be used to deter gaming. Others, including Chassang (2013), Carroll (2015), and Antic (2016) depart from a Bayesian framework and prove that simple contracts perform well under min-max or other non-Bayesian preferences. In contrast, our paper considers contracts that deter gaming in a setting that lies firmly within the Bayesian tradition.

While Carroll’s paper considers a max-min rather than a Bayesian solution concept, its intuition is related to ours. In that paper, Nature selects a set of actions available to the agent in order to minimize the principal’s expected payoffs. As in our setting, Nature might allow the agent to take on additional risk to game a convex incentive scheme. However, Nature might also allow the agent to choose a distribution with less risk to game a concave incentive scheme, while we allow the agent to add risk but not reduce it. That is, we model a moral hazard problem in which output is intrinsically risky and that risk cannot be completely hedged away. This difference is most striking if the agent is risk-averse, in which case Carroll’s optimal contract makes the agent’s utility linear in output, while ours might make utility strictly concave. One advantage of our approach is that our model imposes a concavity constraint in an otherwise canonical contracting problem. Consequently, our technology would be straightforward to embed in Bayesian models of other applications.

2 Model

We consider a static game between a principal (P, “she”) and an agent (A, “he”). The agent has limited liability, so he cannot pay more than \(M \in \mathbb{R} \) to the principal. Let \([y, \bar{y}] \equiv \mathcal{Y} \subseteq \mathbb{R} \) be the set of contractible outputs with \(y < 0 \). The timing is as follows:

1. The principal offers an upper semicontinuous contract \(s(y) : \mathcal{Y} \rightarrow [-M, \infty) \).\(^2\)

\(^2\)One can show that the restriction to upper semicontinuous contracts is without loss: if the agent has an optimal action given a contract \(s(\cdot) \), then there exists an upper semicontinuous contract that induces the same equilibrium payoffs and distribution over final output.
2. The agent accepts or rejects the contract. If he rejects, the game ends, he receives \(u_0 \), and the principal receives 0.

3. If the agent accepts, he chooses effort \(a \geq 0 \).

4. Intermediate output \(x \) is realized according to \(F(\cdot|a) \in \Delta(Y) \).

5. The agent chooses a distribution \(G_x \in \Delta(Y) \) subject to \(\mathbb{E}_{G_x}[y] = x \).

6. Final output \(y \) is realized according to \(G_x \), and the agent is paid \(s(y) \).

The principal's and agent's payoffs are equal to \(\pi(y - s(y)) \) and \(u(s(y)) - c(a) \), respectively.

We assume that \(\pi(\cdot) \) and \(u(\cdot) \) are strictly increasing and weakly concave, with \(u(\cdot) \) onto, and that \(c(\cdot) \) is infinitely differentiable, strictly increasing, and strictly convex. We also assume that \(F(\cdot|a) \) has full support for all \(a \in [0, \bar{y}] \), satisfies \(\mathbb{E}_{F(\cdot|a)}[x] = a \), and is infinitely differentiable with a density \(f(\cdot|a) \) that is strictly MLRP-increasing in \(a \), with \(\frac{f_x(\cdot|a)}{f(\cdot|a)} \) uniformly bounded for all \(a \).

This game is similar to a canonical moral hazard problem, with the twist that the agent can engage in risk-taking by choosing a mean-preserving spread \(G_x \) of intermediate output \(x \). Let

\[
\mathcal{G} = \{ G : Y \rightarrow \Delta(Y) \mid \mathbb{E}_{G_x}[y] = x \text{ for all } x \in Y \}
\]

denote the set of mappings \(x \mapsto G_x \). Without loss, we can treat the agent as choosing \(a \) and \(G \in \mathcal{G} \) simultaneously.

Intermediate output has different interpretations in different settings. For instance, CEOs typically have advance information about whether or not they will hit their earnings targets in a given quarter, and they can cut maintenance or R&D expenditures if they are likely to fall short, taking on tail risk for the appearance of higher earnings (Rahmandad, Henderson, and Repenning (2016)). Similarly, portfolio managers are typically compensated based on their annual returns and can adjust the riskiness of their investments over the course of the year in order to game those.

\footnote{We assume that \(\bar{y} \) is sufficiently large such that the principal never offers a contract that induces the agent to choose \(a = \bar{y} \). Together with \(y < 0 \) and \(a \geq 0 \), this also ensures that the agent can always choose a non-degenerate distribution \(G_x \).}
Incentives (Chevalier and Ellison (1997)).

After the agent observes x but before y is realized, we have a setting with both a hidden type and a hidden action. In such problems, it is often useful to ask the agent to report his type, in this case x. By punishing differences between this report and y, the principal may be able to dissuade some or all gambling. We restrict attention to situations where such intermediate reports are not useful. The simplest way to do so is to assume that the timing of x is random, and gambling is instantaneous. We think this is the economically correct modeling assumption in many settings. Indeed, the spirit of the model is that the agent can misbehave in a particular way, and it seems unlikely that the principal can catalog the precise moments in which this might occur.

3 Risk-taking and optimal incentives

This section explores how the agent’s ability to engage in risk-taking constrains the contract offered by the principal.

We find it convenient to rewrite the principal’s problem in terms of the utility $v(y) \equiv u(s(y))$ that the agent receives for each output y. If we define $u \equiv u(-M)$, then an optimal contract solves the following constrained maximization problem:

$$\max_{a, G \in G, v(\cdot)} \mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_x} \left[\pi \left(y - u^{-1} (v(y)) \right) \right] \right] \quad \text{(Obj)}$$

subject to

$$a, G \in \arg \max_{a, G \in G} \left\{ \mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_x} [v(y)] \right] - c(a) \right\} \quad \text{(IC)}$$

$$\mathbb{E}_{F(\cdot|a)} \left[\mathbb{E}_{G_x} [v(y)] \right] - c(a) \geq u_0 \quad \text{(IR)}$$

$$v(y) \geq u \quad \text{for all } y \quad \text{(LL)}$$

The main result of this section is Proposition 1 which characterizes how the threat of gaming affects the incentive schemes $v(\cdot)$ that the principal offers. The principal optimally offers a contract that deters risk-taking entirely, but doing so constrains her to incentive schemes that are weakly concave in output. Define G^D so that for

4 An alternative assumption is that the agent engages in risk-taking before uncertainty is resolved, which may be more natural in some applications. Section 6.1 explores this alternative.

5 Allowing reports would change the agent’s gaming incentives but not completely eliminate them. Online Appendix E.1 presents an analysis with risk-neutral parties and shows that linear contracts are optimal even if such reports are allowed.
each $x \in \mathcal{Y}$, G_x^D is degenerate at x.

Proposition 1. Suppose $(a, G, v(\cdot))$ satisfies $\text{(IC)} - \text{(LL)}$. Then there exists a weakly concave $\hat{v}(\cdot)$ such that $(a, G^D, \hat{v}(\cdot))$ satisfies $\text{(IC)} - \text{(LL)}$ and gives the principal a weakly higher expected payoff.

The proof of Proposition 1 is in Appendix A. For an arbitrary incentive scheme $v(\cdot)$, define $v^c(\cdot): \mathcal{Y} \to \mathbb{R}$ as its concave closure,

$$v^c(x) = \sup_{w, z \in \mathcal{Y}, p \in [0, 1] \text{ s.t. } (1-p)w + pz = x} \{(1-p)v(w) + pv(z)\}. \tag{1}$$

At any outcome x such that the agent does not earn $v^c(x)$, he can engage in risk-taking to earn that amount in expectation (but no more). But then the principal can do at least as well by directly offering a concave contract, and if either the agent or the principal is strictly risk-averse, then offering a concave contract is strictly more profitable than inducing risk-taking.

Given Proposition 1 we can write the optimal contracting problem as one without risk-taking but with a no-gaming constraint that requires the agent’s utility to be concave in output, with the caveat that our solution is one of many if (but only if) both parties are risk-neutral over the relevant payments:

$$\max_{a, v(\cdot)} \mathbb{E}_{F(\cdot|a)} \left[\pi \left(y - u^{-1}(v(y)) \right) \right] \tag{Obj}$$

s.t. $a \in \arg \max_{\tilde{a}} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} [v(y)] - c(\tilde{a}) \right\}$ \tag{IC}

$$\mathbb{E}_{F(\cdot|a)} [v(y)] - c(a) \geq u_0 \tag{IR}$$

$v(y) \geq u$ for all $y \in \mathcal{Y}$ \tag{LL}

$v(\cdot)$ weakly concave. \tag{NG}

For a fixed effort $a \geq 0$, we say that $v(\cdot)$ implements a if it satisfies $\text{(IC)} - \text{(NG)}$ for a, and it does so at maximum profit if it maximizes (Obj) subject to $\text{(IC)} - \text{(NG)}$. An optimal $v(\cdot)$ implements the optimal effort level $a^* \geq 0$ at maximum profit.

Mathematically, the set of concave contracts is well-behaved. Consequently, we can show that for any $a \geq 0$, a contract that implements a at maximum profit exists, and is unique if either $\pi(\cdot)$ or $u(\cdot)$ is strictly concave.
Lemma 1. Fix \(a \geq 0\) and suppose that \(u > -\infty\). Then there exists a contract that implements \(a\) at maximum profit, and does so uniquely if either \(\pi(\cdot)\) or \(u(\cdot)\) is strictly concave.

This result, which follows from the Theorem of the Maximum, is an implication of Proposition 6 in Online Appendix D. Existence is guaranteed by \([NG]\); for example, without this constraint, no profit-maximizing contract would exist with risk-neutral parties.\(^7\) If at least one player is strictly risk-averse, then Jensen’s Inequality implies that a convex combination of two different contracts that implement \(a\) also implements \(a\) and gives the principal a strictly higher payoff, which proves uniqueness.

4 Optimal Contracts for a Risk-Neutral Agent

Suppose the agent is risk-neutral, so \(u(y) = y\), \(v(\cdot) = s(\cdot)\), and \(u = -M\). In this setting, the key friction is the agent’s limited liability constraint, which might prevent the principal from simply “selling the firm” to the agent.

For any effort level \(a\), define

\[
s^L_{a}(y) = c'(a)(y - y) - w,
\]

where \(w = \min\{M, c'(a)(a - y) - c(a) - u_0\}\). Intuitively, \(s^L_{a}(y)\) is the least costly linear contract that implements \(a\). Note that for a linear contract, \([IC]\) can be replaced by its first-order condition because expected output is linear in effort and the cost of effort is convex.

Define the first-best effort \(a^{FB} \in \mathbb{R}_+\) as the unique effort that maximizes \(y - c(y)\) and so satisfies \(c'(a^{FB}) = 1\). We prove that an optimal contract is linear and implements no more than first-best effort.

Proposition 2. Let \(u(s) \equiv s\). If \(a^*\) is optimal, then \(a^* \leq a^{FB}\) and \(s^L_{a^*}(\cdot)\) is optimal.

The proofs for all results in this section can be found in Appendix A. To see the intuition for Proposition 2, consider \(s^L_{a^{FB}}(\cdot)\), which both implements \(a^{FB}\) and provides

\(^6\)All online appendices may be found at https://sites.google.com/site/danielbarronecon/

\(^7\)With risk-neutral parties, the principal wants to pay the agent only after an arbitrarily narrow range of the highest outputs, since those outputs are most indicative of high effort. See, e.g., Innes (1990).

11
full insurance to the principal. If $s_{aFB}^L(\cdot)$ satisfies [IR] with equality, then it is clearly optimal.

Suppose instead that [IR] is slack for $s_{aFB}^L(\cdot)$, in which case [LL] must bind. Suppose that $(a^*, s^*(\cdot))$ is optimal, and let $\hat{s}(\cdot)$ be the linear contract that agrees with $s^*(\cdot)$ at y and gives the agent the same utility as $s^*(\cdot)$ if he chooses effort optimally. As shown in Figure 1, $\hat{s}(\cdot)$ must single-cross $s^*(\cdot)$ from below, effectively moving payments from low to high outputs. Since $F(\cdot|a)$ satisfies MLRP, paying more for high output motivates more effort and so $\hat{s}(\cdot)$ implements some $\hat{a} \geq a^*$. If $\hat{a} \geq a^{FB}$, then $\hat{s}(\cdot) \geq s_{aFB}^L(\cdot)$, and so the principal prefers $s_{aFB}^L(\cdot)$ to $s^*(\cdot)$ because it induces first-best effort, perfectly insures the principal, and gives the agent less utility than $s^*(\cdot)$.

If $\hat{a} < a^{FB}$, then $\hat{s}'(\cdot) < 1$ and so the principal’s wealth under $\hat{s}(\cdot)$, $y - \hat{s}(y)$, is increasing in y. Consequently, the principal likes that $\hat{s}(\cdot)$ induces more effort than $s^*(\cdot)$. Moreover, $\hat{s}(y) > s^*(y)$ exactly when output is high and so her marginal utility of wealth is low, and so $\hat{s}(\cdot)$ also insures the principal better than $s^*(\cdot)$. So the principal prefers $\hat{s}(\cdot)$ to $s^*(\cdot)$, and a fortiori prefers $s_{a}^L(\cdot)$, which lies weakly below $\hat{s}(\cdot)$. We conclude that any optimal contract $s^*(\cdot)$ must satisfy $s^*(\cdot) \equiv s_{aFB}^L(\cdot)$.

Lemma 1 implies that $s_{aFB}^L(\cdot)$ is uniquely optimal if the principal is even slightly risk-averse. If she is risk-neutral, then $s_{aFB}^L(\cdot)$ is optimal but not uniquely so; in particular,
any contract with a concave closure equal to \(s_{a^*}^L(\cdot) \) would give identical expected payoffs.

For any \(a > 0 \), the agent’s promised utility under \(s_{a^*}^L(\cdot) \) depends on \(y \), the worst possible outcome over which the agent can gamble. In particular, such a \(s_{a^*}^L(\cdot) \) starts at \(y \) and has a strictly positive slope, so that the agent’s expected compensation
\[
E_y[s_{a^*}^L(y)] = s_{a^*}^L(a)
\]
increases without bound as \(y \) decreases. That is, as the agent’s ability to take on left-tail risk becomes arbitrarily severe, motivating effort while deterring risk-taking becomes arbitrarily costly to the principal. Consequently, the optimal effort level converges to 0 as \(y \) becomes arbitrarily negative. Moreover, if the principal is risk-neutral, then we can show that effort is strictly increasing in \(y \); as the agent’s ability to take left-tail risks becomes more severe, the principal responds by inducing lower effort. See Appendix E.3 for details.

The additional constraint [NG] unambiguously harms the principal. However, the agent might benefit from the possibility of risk-taking. In particular, there are examples with risk-neutral parties in which the agent earns close to his outside option in the relaxed problem without [NG] but earns a strictly positive rent under the optimal contract that satisfies [NG].

In some applications, the principal might have risk-seeking preferences over output, for instance because she also faces convex incentives. For example, [Rajan (2011)] argues that, anticipating the possibility of bailouts, shareholders of financial institutions might have had an incentive to encourage risk-taking prior to the 2008 financial crisis. We can model such settings by allowing \(\pi(\cdot) \) to be any strictly increasing and continuous function. Proposition 1 does not directly apply in this case because the principal might strictly prefer the agent to take on additional risk following some realizations of \(x \). Nevertheless, we can modify the argument from Proposition 2 to show that a linear contract is optimal.

Corollary 1. Let \(u(s) \equiv s \) and let \(\pi(\cdot) \) be an arbitrary continuous and strictly increasing function that has concave closure \(\pi^c(\cdot) \). If \(a^* \) is optimal, then \(a^* \leq a^{FB} \) and \(s_{a^*}^L(\cdot) \) is optimal.

To see the proof of Corollary 1, note that the principal’s expected payoff cannot exceed \(\pi^c(\cdot) \) for reasons similar to Proposition 1. Therefore, the contract that maximizes
\[
E_{F(\cdot|a)}[\pi^c(x - s(x))] \text{ subject to (IC)-(NG)}
\]
provides an upper bound on the principal’s payoff. But Proposition 2 asserts that \(s_{a^*}^L(\cdot) \) is optimal in this problem because \(\pi^c(\cdot) \)
is concave. Given \(z_a(\cdot) \), the agent is indifferent among distributions \(G \in \mathcal{G} \), so he is willing to choose \(G \) such that the principal’s expected payoff equals \(\pi^c(\cdot) \).

5 Optimal contracts if the agent is risk averse

This section characterizes the unique contract that implements a given \(a > 0 \) at maximum profit in a setting with a risk-averse agent and a risk-neutral principal. Section 5.1 explores how the agent’s ability to engage in risk-taking constrains profit-maximizing incentives. These results follow from our necessary and sufficient conditions for a profit-maximizing contract, developed in Section 5.2.

We impose two simplifying assumptions to make the analysis tractable. First, letting \(w \) denote the infimum of the domain of \(u(\cdot) \), we assume that \(\lim_{w \uparrow w} u'(w) = \infty \) and \(\lim_{w \uparrow \infty} u'(w) = 0 \). Second, we replace (IC) with the weaker condition that local incentives are slack at the implemented effort level \(a > 0 \),

\[
\frac{d}{da} \left\{ \mathbb{E}_{F(\cdot|\tilde{a})} [v(y)] - c(\tilde{a}) \right\} \big|_{\tilde{a} = a} \geq 0.
\]

(IC-FOC)

Replacing (IC) with (IC-FOC) entails no loss under mild regularity conditions on \(F(\cdot|\cdot) \). Given (NG), Proposition 5 of Chade and Swinkels (2016) shows that the agent’s expected utility is concave in effort so long as expected output is concave in effort and \(F_{aa}(\cdot|a) \) is never first negative and then positive. For a fixed effort \(a \geq 0 \), define the principal’s problem

\[
\max_{v(\cdot)} \{(\text{Obj}) \text{ subject to (IC-FOC), (IR), (LL), and (NG)}\}.
\]

(P)

For \(a \geq 0 \) and \(y \in \mathcal{Y} \), define the likelihood function

\[
l(y|a) = \frac{f_a(y|a)}{f(y|a)}.
\]

Define \(\rho(\cdot) \) as the function that maps \(\frac{1}{u'(\cdot)} \) into \(u(\cdot) \); that is, for every \(z \) in the range of \(\frac{1}{u'(\cdot)} \), \(\rho(z) = u\left((u')^{-1} \left(\frac{1}{z} \right) \right) \). Then \(\rho^{-1}(v(y)) \) equals the marginal cost to the principal of giving the agent extra utility at \(y \).

If \(u > -\infty \), then Lemma 1 implies that a unique solution to (P) exists. If \(u = -\infty \), then Online Appendix D shows that a unique solution exists so long as \(u'(\cdot) \) is not too convex. In particular, we can define the concavity of a positive function \(h(\cdot) \), con(h),
as the largest number \(t \) such that \(\frac{h^t}{t} \) is concave. If \(h \) is concave, then \(\text{con}(h) \geq 1 \), while if \(h \) is log-concave, then \(\text{con}(h) \geq 0 \). For the case \(u = -\infty \), an optimal contract exists so long as \(\text{con}(u') \geq -2 \), which is much weaker than \(u'(\cdot) \) being log-concave.\(^8\) Our results in this section apply in either setting. Unless otherwise noted, proofs for this section may be found in Appendix B.

5.1 Implications of the No-Gaming Constraint

This section illustrates how risk-taking affects the trade-off between insuring and motivating the agent that lies at the heart of this moral hazard problem. For a broad class of settings, we show that optimal incentives are linear in output where \([\text{NG}]\) binds and otherwise equate the marginal costs and benefits of incentive pay at each output.

Given the program (P), let \(\lambda \) and \(\mu \) be the shadow values on \([\text{IR}]\) and \([\text{IC-FOC}]\), respectively. For a fixed \(a \geq 0 \) and an incentive scheme \(v(\cdot) \) that implements \(a \), define

\[
n(y) \equiv \rho^{-1}(v(y)) - \lambda - \mu l(y|a) \tag{2}
\]

as the net cost of increasing \(v(\cdot) \) at \(y \), taking into account how that increase affects \([\text{IR}]\) and \([\text{IC-FOC}]\). In particular, increasing \(v(y) \) increases the principal’s cost at rate \(\rho^{-1}(v(y))f(y|a) \), relaxes \([\text{IR}]\) at rate \(f(y|a) \), which has implicit value \(\lambda \), and relaxes \([\text{IC-FOC}]\) at rate \(f_\alpha(y|a) \), which has implicit value \(\mu \). Taking the difference between these costs and benefits and dividing by \(f(y|a) \) yields \(n(y) \).

Suppose that \([\text{LL}]\) is slack. Absent \([\text{NG}]\), the optimal contract would set \(n(y) = 0 \) output-by-output and so \(v(\cdot) = \rho(\lambda + \mu l(\cdot|a)) \). Indeed, this incentive scheme (with the appropriate \(\lambda \) and \(\mu \)) is the Holmström–Màrrlees contract characterized in [Mirrlees (1976)] and [Holmström (1979)]. However, setting \(n(y) = 0 \) at each \(y \) might violate \([\text{NG}]\).

Nevertheless, profit-maximizing contracts build on this basic logic. Intuitively, if setting \(n(y) = 0 \) at some output \(y \) would violate \([\text{NG}]\), then this constraint binds, and so the optimal contract is locally linear in utility. These linear segments are “ironed” in the sense that they set net cost equal to 0 in expectation, even if they do not do so point-by-point. Outside of these ironed regions, \([\text{NG}]\) is slack and so \(n(y) = 0 \) at

\(^8\)This condition is satisfied for, for instance, \(u(w) = w^\alpha \) for \(\alpha < \frac{1}{2} \). See [Prekopa (1973)] and [Borell (1975)] for details.
each output.

We demonstrate this intuition if \(\rho(\lambda + \mu l(|a|)) \) is first convex and then concave, which we argue is a natural case to consider.

Lemma 2. Suppose \(u(\cdot) \) and \(F(\cdot|a) \) are analytic and \(\text{con}(\rho') + \text{con}(l_y) > -1 \). Then for any \(\lambda \) and \(\mu \), there exists \(y_t \) such that \(\rho(\lambda + \mu l(|a|)) \) is convex on \([y, y_t]\) and concave on \((y_t, \bar{y}]\).

The proof of Lemma 2 may be found in Appendix E.2. The requirement that \(\text{con}(\rho') + \text{con}(l_y) > -1 \) is relatively mild. It is automatic if \(\rho' \) and \(l_y \) are log-concave, but it also holds, for example, if \(l_y \) is strictly log-concave and the agent’s utility function is from a broad class that satisfy Hyperbolic Absolute Risk Aversion, including \(u(w) = \log w \).

The following Proposition characterizes the optimal contract if \(\rho(\lambda + \mu l(|a|)) \) is first convex and then concave and \((\text{LL}) \) is slack.

Proposition 3. Fix \(a \geq 0 \) and \(\pi(y) \equiv y \). Let \(v^*(\cdot) \) solve \((P) \), let \(\lambda \) and \(\mu \) be the shadow values on \((\text{IR}) \) and \((\text{IC-FOC}) \), respectively, and suppose that \(v^*(y) > u \).

Suppose there exists \(y_t \) such that \(\rho(\lambda + \mu l(|a|)) \) is convex on \([y, y_t]\) and concave on \((y_t, \bar{y}]\). Then \(v^*(\cdot) \) satisfies \((\text{IR}) \) and \((\text{IC-FOC}) \) with equality, and there exist \(\hat{y} \geq y_t, y \in \mathbb{R}, \) and \(\alpha \in \mathbb{R}_+ \) such that \(v^*(\cdot) \) is continuous,

\[
v^*(y) = \begin{cases} y + \alpha(y - \bar{y}) & \text{if } y < \hat{y} \\ \rho(\lambda + \mu l(y|a)) & \text{otherwise,} \end{cases}
\]

and \(\int_{\underline{y}}^{\hat{y}} n(y)f(y)dy = 0 \). If \(y_t = y \), then \(\hat{y} = y \).

We interpret Proposition 3 here and defer a discussion of the proof to Section 5.2. Under the condition that \(\rho(\lambda + \mu l(|a|)) \) is first convex and then concave and \((\text{LL}) \)

\[9\text{Recall that HARA utility satisfies } u(w) = \frac{1-\gamma}{1-\gamma} \left(\frac{\mu w}{1-\gamma} + \beta \right)^{\gamma}. \text{ If } l_y \text{ is strictly log-concave, then } \rho(\lambda + \mu l(|a|)) \text{ is first convex and then concave if either } \gamma < 0 \text{ or } \gamma \in \left(\frac{1}{2}, 1 \right). \text{ To see this result for } u(w) = \log w, \text{ observe that } \frac{1}{u'(w)} = u(w) \text{ in this case. By definition, } \rho \left(\frac{1}{u'(w)} \right) = u(w), \text{ which means that } \rho(w) = \log w. \text{ Then } \rho'(w) = \frac{1}{w}, \text{ which satisfies } \text{con}(\rho'(w)) = -1 \text{ because } \frac{1}{(1/w)^{-1}} = -w. \text{ The assumption that } l_y \text{ is strictly log-concave then ensures that } \text{con}(l_y) > 0 \text{ and hence } \text{con}(\rho') + \text{con}(l_y) > -1. \]

\[10\text{Appendix D gives conditions under which an optimal contract exists even if } u = -\infty. \text{ Under those conditions, this existence proof also shows that } (\text{LL}) \text{ is slack if } u > -\infty \text{ is sufficiently negative.} \]
is slack, the profit-maximizing contract \(v^*(\cdot) \) is linear in utility for low output and otherwise sets \(n(y) = 0 \) output-by-output. Moreover, on the linear region of \(v^*(\cdot) \), expected net costs equal 0. See Figure 2 for an illustration.

In the extremes, if \(\rho(\lambda + \mu l(\cdot|a)) \) is convex everywhere, then the profit-maximizing contract is linear\(^{11}\) while the profit-maximizing contract equals \(\rho(\lambda + \mu l(\cdot|a)) \) if the latter is concave. Intuitively, \(\rho(\lambda + \mu l(\cdot|a)) \) is likely to be convex if the principal would like to “insure against downside risk” by offering low-powered incentives for low output and “motivate with upside risk” by giving steeper incentives for high output. For instance, \(\rho(\cdot) \) tends to be more convex if prudence is large relative to absolute risk aversion, which means that risk aversion declines sufficiently quickly as compensation increases\(^{12}\). Conversely, \(\rho(\lambda + \mu l(\cdot|a)) \) is likely to be concave if the principal would like to “motivate with downside risk” and “insure against upside risk.”

Proposition 3 focuses on the case where \((\text{LL})\) is slack, but \((\text{NG})\) has a similar effect if \((\text{IR})\) is slack so that \((\text{LL})\) binds. In that case, the principal would like to pay the agent as little as possible for any \(y \) with \(l(y|a) < 0 \), since paying for low output

\(^{11}\)This case obtains if, for example, \(l(\cdot|a) \) is convex and \(\rho(\cdot) \) is convex on the range of \(\lambda + \mu l(\cdot|a) \). Note that \(\rho(\cdot) \) cannot be convex over its entire domain, because \(\rho(0) = -\infty \).

\(^{12}\)In particular, \(\rho(\lambda + \mu l(\cdot|a)) \) is concave (convex) if both \(\rho(\cdot) \) and \(l(\cdot|a) \) are concave (convex). Recalling that prudence is \(-u''(\cdot)\) and absolute risk aversion is \(-\frac{u''(\cdot)}{u'(\cdot)}\), we can show that \(\rho(\cdot) \) is convex if the ratio of prudence to absolute risk aversion exceeds 3. Note that this condition is equivalent to \(\text{con}(u') < -2 \). The border case is \(u(w) = \sqrt{w} \), which corresponds to a linear \(\rho(\cdot) \).
both increases the agent’s rent and tightens (IC-FOC) (Jewitt, Kadan, and Swinkels (2008)). But paying the agent as little as possible for low output and rewarding high output would violate (NG), so this constraint binds following low output.

Proposition 4. Fix $a \geq 0$ and $\pi(y) \equiv y$. Let $v^*(\cdot)$ solve (P), and suppose that (IR) is slack under $v^*(\cdot)$. Define y_0 such that $l(y_0|a) = 0$. Then $v^*(\cdot)$ is linear on $[y, y_0]$.

If (IR) is slack and $v^*(\cdot)$ is strictly concave for $y < y_0$, then making it “flatter” on $[y, y_0]$ by taking a convex combination of it with the linear segment that connects $v(y)$ and $v(y_0)$ improves the agent’s incentives and decreases the principal’s expected payment. So the profit-maximizing $v^*(\cdot)$ is linear on $[y, y_0]$, though it can be strictly concave for higher output.

Before turning to our characterization, it is worth emphasizing that the effects of risk-taking extend beyond those outputs for which (NG) binds. In particular, so long as (NG) binds somewhere, risk-taking potentially distorts both λ and μ away from their levels absent (NG), which affects optimal incentives even over regions where (NG) is slack. That is, λ and μ both shape, and are shaped by, the profit-maximizing incentive scheme.

5.2 A Characterization

This section develops the necessary and sufficient conditions for a profit-maximizing contract that underpin the results in Section 5.1. Since setting $n(y) = 0$ output-by-output might violate (NG), we instead identify perturbations that respect (NG) and affect an interval of an incentive scheme. Then we prove that an incentive scheme is profit-maximizing if and only if it cannot be improved by these perturbations.

We begin by defining several features of $v(\cdot)$ that will be useful for our construction.

Definition 1. Given $v(\cdot)$:

1. An interval $[y_L, y_H]$ is a **linear segment** if $v(\cdot)$ is linear on $[y_L, y_H]$ but not on any strictly larger interval. Point y is **free** if it is not on the interior of any linear segment.

2. A free $y \in (\bar{y}, \bar{y})$ is a **kink point** of $v(\cdot)$ if two linear segments meet at y, and a **point of normal concavity** otherwise.
Figure 3: *Raise* and *tilt*. These perturbations require care around y_L and y_H to ensure that concavity is preserved. For this reason, we need both y_L and y_H to be free for *raise*. For *tilt up*, we need y_L to be free, while y_H must be free for *tilt down*.

Consider the following two perturbations, formally defined in Appendix B and illustrated in Figure 3. *Raise* increases the level of $v(\cdot)$ by a constant over an interval, while *tilt* increases the slope of $v(\cdot)$ by a constant over an interval. *Raising* an interval typically introduces non-concavities into $v(\cdot)$ at both endpoints of the interval. *Tilting* it a positive amount may introduce a non-concavity at the lower end of the interval, and *tilting* it a negative amount may introduce a non-concavity at the upper end of the interval. Appendix B shows that for small perturbations, we can repair these non-concavities on an arbitrarily small interval so long as the relevant endpoints are free.

Raise and *tilt* affect both [IR] and [IC-FOC]. However, Appendix B uses the fact that $F(\cdot|a)$ satisfies MLRP to show that these two perturbations have non-collinear effects on [IR] and [IC-FOC], which means that we can construct combinations of them to affect each constraint separately. Therefore, so long as there exists at least one free point $\hat{y} < \bar{y}$ such that $v(\hat{y}) > u$, we can use *raise* and *tilt* on $[\hat{y}, \bar{y}]$ to establish the shadow values λ and μ of relaxing [IR] and [IC-FOC].

A profit-maximizing incentive scheme $v(\cdot)$ cannot be improved by either *raise* or *tilt* on any valid interval. That is, raising $v(\cdot)$ on an interval $[y_L, y_H]$ with both

\[13\text{If no such point exists, then } v(\cdot) \text{ is linear and } v(y) = u.\]
endpoints free must have non-negative expected net cost:

\[\int_{y_L}^{y_H} n(y) f(y|a) dy \geq 0. \] \hfill (3)

If \(v(y_L) > u \), then we can raise \(v(\cdot) \) by a negative amount on \([y_L, y_H]\), in which case \((3) \) holds with equality.

Similarly, if \(y_L \) is free, then tilting \(v(\cdot) \) on \([y_L, y_H]\) must have non-negative expected net cost:

\[\int_{y_L}^{y_H} n(y) (y - y_L) f(y|a) dy + (y_H - y_L) \int_{y_H}^{\bar{y}} n(y) f(y|a) dy \geq 0, \] \hfill (4)

where the first term represents the fact that tilt increases the slope of \(v(\cdot) \) from \(y_L \) to \(y_H \) and the second represents the resulting higher level of \(v(\cdot) \) from \(y_H \) to \(\bar{y} \). If \(y_H \) is free, then applying negative tilt yields the reverse inequality:

\[\int_{y_L}^{y_H} n(y) (y - y_L) f(y|a) dy + (y_H - y_L) \int_{y_H}^{\bar{y}} n(y) f(y|a) dy \leq 0. \] \hfill (5)

Our characterization combines these perturbations with the usual complementary slackness condition that \(\lambda = 0 \) if \((IR) \) is slack (so that \((LL) \) binds).

Definition 2. A contract \(v(\cdot) \) is Generalized Holmström-Mirrlees (GHM) if \((IC-FOC) \) holds with equality, \((IR) \), \((LL) \), and \((NG) \) are satisfied, there exist \(\lambda \geq 0 \) and \(\mu > 0 \) such that

\[\lambda \left(\int_{y_L}^{\bar{y}} v(y) f(y|a) dy - c(a) - u_0 \right) = 0, \]

and for any \(y_L < y_H \),

1. if \(y_L \) and \(y_H \) are free, then \((3) \) holds, and holds with equality if \(v(y_L) > u \);
2. if \(y_L \) is free, then \((4) \) holds;
3. if \(y_H \) is free, then \((5) \) holds.

Our main result in this section characterizes the unique incentive scheme that implements any \(a > 0 \) at maximum profit.

Proposition 5. Suppose \(u(\cdot) \) is strictly concave and \(\pi(y) \equiv y \). Then for any \(a > 0 \), \(v(\cdot) \) implements \(a \) at maximum profit if and only if it is GHM.
The necessity of GHM follows from the arguments above. To establish sufficiency, we first show that if any \(\tilde{v}(\cdot) \) implements \(a \) at higher profit than \(v(\cdot) \), then there exists a local perturbation that improves \(v(\cdot) \). Then we show that among local perturbations, it suffices to consider tilt and raise on valid intervals. This result follows because any perturbation that respects concavity can be approximated arbitrarily closely by a combination of valid tilts and raises. Therefore, if any perturbation improves the principal’s profitability, then so must some individual tilt or raise.

One implication of Proposition 5 is that net cost equals 0 for any output where both (LL) and (NG) are slack.

Corollary 2. Suppose \(u(\cdot) \) is strictly concave and \(\pi(y) \equiv y \). For any \(a > 0 \), let \(v(\cdot) \) solve (P) and suppose \(y \in (y, \bar{y}) \) is free. Then \(n(y) \leq 0 \), and \(n(y) = 0 \) if \(y \) is a point of normal concavity.

At any point of normal concavity \(y \), we can find two free points that are arbitrarily close to \(y \). Proposition 5 implies that (3) holds with equality between these points; taking a limit as these points approach \(y \) yields \(n(y) = 0 \). If \(y \) is a kink point, then we cannot perturb \(v(\cdot) \) around \(y \) and preserve concavity. However, there is a sense in which (NG) binds on the linear segments on either side of \(y \): Lemma 3 in Appendix B proves that absent (NG), the principal would want to increase payments near the ends of a linear segment and decrease them somewhere in the middle of that segment. Therefore, \(n(y) \leq 0 \) at the endpoints of any linear segment, which includes any kink point.

Together, Proposition 5 and Corollary 2 imply Proposition 3. If (LL) is slack, then (3) holds with equality over any valid interval. Therefore, for each \(y \), the profit-maximizing incentive scheme either sets \(n(y) = 0 \) or is linear, with expected net cost equal to 0 over each linear segment. This is the sense in which our profit-maximizing contract “irons” \(\rho(\lambda + \mu l(\cdot|a)) \). Moreover, since (NG) binds on any linear segment, \(n(\cdot) \) must be negative at the endpoints of that segment and positive somewhere in the middle. So a GHM contract \(v(\cdot) \) can have two linear segments only if \(\rho(\lambda + \mu l(\cdot|a)) \) has a strictly concave region followed by a weakly convex region, which is assumed away in Proposition 5 and ruled out by the condition in Lemma 2.

\(^{14}\)See Claim 1 in Appendix B.
6 Extensions and Reinterpretations

This section considers three extensions, all of which assume that both the principal and the agent are risk-neutral. Section 6.1 alters the timing so that the agent gambles before observing intermediate output. Section 6.2 changes the agent’s utility so that he must incur a cost to gamble. Section 6.3 reinterprets the baseline model as a dynamic setting in which, rather than gambling, the agent can choose when output is realized in order to game a stationary contract. Proofs for this section may be found in Online Appendix C.

6.1 Risk-Taking Before Intermediate Output is Realized

If the agent engages in risk-taking before observing intermediate output, then he gambles to concaveiy his expected utility given effort. This section gives conditions under which linear contracts are optimal for this alternative timing.

Consider the following game:

1. The principal offers a contract \(s(y) : \mathcal{Y} \to [-M, \infty) \).

2. The agent accepts or rejects the contract. If he rejects, the game ends, he receives \(u_0 \), and the principal receives 0.

3. The agent chooses an effort \(a \geq 0 \) and a distribution \(G(\cdot) \in \Delta(\mathcal{Y}) \) subject to the constraint \(\mathbb{E}_{G}[x|a] = a \).

4. The outcome of the gamble \(x \sim G(\cdot) \) is realized, and final output is realized according to \(y \sim F(\cdot|x) \). We assume that \(F(\cdot|x) \) has full support, with \(\mathbb{E}_{F(\cdot|x)}[y] = x \) and a density \(f(\cdot|x) \) that satisfies strict MLRP in \(x \).

The principal and agent earn \(y - s(y) \) and \(s(y) - c(a) \), respectively, where \(c(\cdot) \) is strictly convex.

By choosing \(G(\cdot) \), the agent essentially randomizes his level of effort. This feature means that the contract cannot increase the agent’s expected payoff following effort \(a \) without also increasing the expected payoff of exerting less effort and randomizing between \(x = a \) and some lower \(x \). The agent will therefore engage in risk-taking.

\(^{15}\)With some notational inconvenience, one can extend this argument to more general mappings from \(a \) to \(\mathbb{E}_{G}[x|a] \).
whenever his expected payoff as a function of effort is convex. One advantage of this model is that our tools extend naturally to it, a feature that is not shared by every model of ex ante risk-taking.\footnote{For example, if instead the agent could choose the distribution of an additively separable noise term that affects output, then linear contracts would not necessarily be optimal.}

As an example of the kind of risk-taking that fits this setting, suppose the principal is an investor and the agent is an entrepreneur who chooses among many possible projects. The entrepreneur can exert more effort to identify better projects, but he can also work less hard and choose a riskier project that succeeds wildly in some environments but fails miserably in others. The inherent riskiness of the project is then captured by the entrepreneur’s choice of $G(\cdot)$, while $F(\cdot|x)$ represents residual uncertainty that remains even if the entrepreneur picks the “safest” project that he has identified.\footnote{If $\int_y F_x(y|x)dy \geq 0$ for all $z \in \mathcal{Y}$ and x, then a riskier $G(\cdot)$ leads to a riskier distribution over final output (in each case, in the sense of second-order stochastic dominance).}

Given $s(\cdot)$ and x, the agent’s expected payoff equals

$$V_s(x) \equiv \int_y \tilde{y} s(y)f(y|x)dy.$$ \hspace{1cm} (6)

As in (1), let $V^c_s(\cdot)$ be the concave closure of $V_s(\cdot)$. Analogous to Proposition 1, the agent will optimally choose G such that $E_G (V_s(x)) = V^c_s(a)$. Since $E_G (E_{F(\cdot|x)}[y]) = a$ for any $G(\cdot)$, the principal’s problem is

$$\max_{a, s(\cdot)} a - V^c_s(a)$$

s.t. $a \in \arg \max \{V^c_s(\tilde{a}) - c(\tilde{a})\}$

$$V^c_s(a) - c(a) \geq u_0$$

$s(\cdot) \geq -M$.

We prove that a linear contract solves this problem.

Proposition 6. If $a^* \geq 0$ is optimal in the program (7), then $a^* \leq a^{FB}$ and $s^L_{a^*}(\cdot)$ is optimal.

To see the argument, relax the optimal contracting problem by assuming that the principal can choose $V^c_s(\cdot)$ directly, subject only to the constraints that $V^c_s(\cdot)$ is...
concave and $V^c_s(\cdot) \geq -M$. This relaxed problem is very similar to (Obj)-(NG) except that $V^c_s(\cdot)$ is a function of effort rather than of intermediate output. Nevertheless, a linear $V^c_s(\cdot)$ is optimal for reasons similar to Proposition 2. But $V^c_s(\cdot)$ is linear if $V_s(\cdot)$ is linear, and $V_s(\cdot)$ is linear if $s(\cdot)$ is linear because $\mathbb{E}_{F(\cdot|x)}[y] = x$. Hence, $s^L_s(\cdot)$ induces the optimal $V^c_s(\cdot)$ from the relaxed problem and so is optimal.

6.2 Costly Risk-Taking

In many settings, the agent might have to bear a cost to engage in risk-taking. This extension shows that we can adapt the arguments in Propositions 1 and 2 to a model with costly risk-taking. The resulting contracts are strictly convex, providing a rationale for such contracts in practice.

Consider the model from Section 2 and suppose that the agent must pay a private cost $\mathbb{E}_{G_x}[d(y)] - d(x)$ to implement distribution G_x following the realization of x, where $d(\cdot)$ is smooth, strictly increasing, and strictly convex, with $d(y) = 0$. For example, this cost function equals the variance of G_x if $d(y) = y^2$. More generally, $d(\cdot)$ captures the idea that the agent must incur a higher cost to take on more dispersed risk. The principal’s and agent’s payoffs are $y - s(y)$ and $s(y) - c(a) - d(y) + d(x)$, respectively.

For any contract $s(\cdot)$, define

$\tilde{v}(y) \equiv s(y) - d(y)$ and $\tilde{c}(a) \equiv c(a) - \mathbb{E}_{F(\cdot|x)}[d(x)]$,

so that conditional on effort, the agent’s payoff equals $\tilde{v}(y) - \tilde{c}(a)$. Then the principal’s payoff equals $\tilde{\pi}(y) - \tilde{v}(y)$, where $\tilde{\pi}(y) \equiv y - d(y)$ is strictly concave.

As in Section 3 the agent chooses G_x so that his expected payoff equals $\tilde{v}^c(x)$. Since $\tilde{\pi}(\cdot)$ is strictly concave, the principal prefers to deter risk-taking by offering a contract that makes the agent’s payoff $\tilde{v}(\cdot)$ concave. Consequently, we can modify the proof of Proposition 2 to show that the principal’s optimal contract makes $\tilde{v}(\cdot)$ linear. The optimal $s(\cdot)$ equals $\tilde{v}(\cdot) + d(\cdot)$ and is therefore strictly convex.

Proposition 7. Assume $\tilde{c}(\cdot)$ is strictly increasing and strictly convex. For optimal effort $a^* \geq 0$, define $s^*(y) = \tilde{c}'(a^*)(y - y) + d(y) - \tilde{w}$, where $\tilde{w} = \min \{ M, \tilde{c}'(a^*)(a - y) - \tilde{c}(a^*) - u_0 \}$. Then $s^*(\cdot)$ is optimal.

18 We are grateful to Doron Ravid for suggesting this formulation of the cost function.
This result follows a similar logic to Proposition 2 where the optimal $s^* (\cdot)$ ensures that $\tilde{v} (\cdot)$ is linear. Intuitively, $s^* (\cdot)$ is the most convex contract that deters the agent from gambling. Note that the principal earns more if risk-taking is costly, since she can offer somewhat convex incentives without inducing gaming.

6.3 Manipulating the Timing of Output

In this section, we argue that risk-taking is very similar to another common form of gaming: manipulating when output is realized over time. To make this point, we consider a model in which the principal offers a stationary contract that the agent can game by shifting output across time, rather than by engaging in risk-taking. This model turns out to be equivalent to the setting in Section 4.

Consider a continuous-time game between an agent and a principal on the time interval $[0, 1]$. Both parties are risk-neutral and do not discount time. At $t = 0$:

1. The principal offers a stationary contract $s(y) : \mathcal{Y} \to [-M, \infty)$.
2. The agent accepts or rejects. If he rejects, he earns u_0 and the principal earns 0.
3. The agent chooses an effort $a \geq 0$.
4. Total output x is realized according to $F(\cdot|a) \in \Delta(\mathcal{Y})$.
5. The agent chooses a mapping from time t to output at time t, $y_x : [0, 1] \to \mathcal{Y}$, subject to $\int_0^1 y_x(t) dt = x$.
6. The agent is paid $\int_0^1 s(y_x(t)) dt$.

The principal’s and agent’s payoffs are $\int_0^1 [y_t - s(y_t)] dt$ and $\int_0^1 s(y_t) dt - c(a)$, respectively. Let $F(\cdot|\cdot)$ and $c(\cdot)$ satisfy the conditions from Section 2.

Crucially, the principal must offer a stationary contract $s(\cdot)$ in this model. Without this restriction, the principal could eliminate gaming incentives entirely, for instance by paying only for cumulative output at $t = 1$. While stationarity is a significant restriction, we believe it is realistic in many settings: as documented by Oyer (1998) and Larkin (2014), contracts tend to be stationary over some period of time (such as a quarter or a year).

19 We are grateful to Lars Stole for suggesting this interpretation of the model.
This problem is equivalent to one in which, rather than choosing the realized output \(y_x(t) \) at each time \(t \), the agent instead decides what fraction of time in \(t \in [0,1] \) to spend producing each possible output \(y \in \mathcal{Y} \). In particular, define \(G_x(y) \) as the fraction of time for which \(y_x(t) \leq y \). Then \(G_x(\cdot) \) is a distribution that satisfies \(\mathbb{E}_{G_x}[y] = x \), and the agent’s and principal’s payoffs are \(\mathbb{E}_{G_x}[s(y)] - c(a) \) and \(\mathbb{E}_{G_x}[y - s(y)] \), respectively. That is, intertemporal gaming plays exactly the same role as gambling in our baseline model.

Proposition 8. The optimal contracting problem in this setting coincides with \((\text{Obj})-(\text{LLF})\) with \(u(y) \equiv y \) and \(\pi(y) \equiv y \). Hence, if \(a^* \geq 0 \) is optimal, then \(a^* \leq a^{FB} \) and \(s_{a^*}^L(\cdot) \) is optimal.

Intuitively, the agent will adjust his realized output so that his total payoff equals the concave closure of \(s(\cdot) \). He does so by smoothing output over time if \(s(\cdot) \) is concave, or bunching it in a short interval if \(s(\cdot) \) is convex. This behavior is consistent with [Oyer (1998)] and [Larkin (2014)], which find that salespeople facing convex incentives concentrate their sales. Conversely, [Brav et al. (2005)] find that CEOs and CFOs smooth earnings to avoid the severe penalties that come from falling short of market expectations.

7 Concluding Remarks

Risk-taking fundamentally constrains how a principal motivates her agents. This paper argues that risk-taking blunts convex incentives, which has significant effects on optimal incentive provision. Apart for Corollary 1, the agent does not engage in risk-taking under our optimal contract. Therefore, our analysis focuses on the incentive costs of risk-taking, rather than any direct costs that risk-taking has on society.

Nevertheless, our framework provides a natural starting point to consider why contracts might not deter risk-taking. Corollary 1 suggests one reason: the principal might be risk-seeking, for instance because her own incentives are non-concave. A second reason is implicit in our assumption that the principal can commit to an incentive scheme. Commitment might be difficult in some settings, for instance because output can serve as the basis for future compensation ([Chevalier and Ellison (1997)]).

\[G_x(y) = \mathcal{L}(\{t | y_x(t) \leq y\}) \]

Formally, \(G_x(y) = \mathcal{L}(\{t | y_x(t) \leq y\}) \), where \(\mathcal{L}(\cdot) \) denotes the Lebesgue measure.
Makarov and Plantin (2015). More generally, an agent’s competitive context shapes the incentives they face, which in turn determine the kinds of risks they optimally pursue; see Fang and Noel (2015) for a step in this direction. Our model provides a foundation on which to study the consequences of risk-taking behavior for markets, organizations, and society.

References

28

A Proofs for Sections 3 and 4

For notational convenience, we use the indefinite integral to indicate an integral on \([y, \bar{y}]\) in all of the appendices. Proofs are ordered based on where the corresponding results appear in the text. Some proofs depend on later results. We point out each of these dependencies as they arise; see Footnotes 21, 23, and 24.

A.1 Proof of Proposition 1

Fix \(a \geq 0\), and let \(v(\cdot)\) implement \(a\) at maximum profit. We first claim that following each realization \(x\), the agent’s payoff equals \(v^c(x)\) and the principal’s payoff is no larger than \(\pi(x - \hat{v}^c(x))\).

Fix \(x \in \mathcal{Y}\). Since \(v\) is upper semicontinuous, there exists \(p \in [0, 1]\) and \(z_1, z_2 \in \mathcal{Y}\) such that \(pz_1 + (1 - p)z_2 = x\) and \(pv(z_1) + (1 - p)v(z_2) = v^c(x)\). Since the agent can choose \(\tilde{G}_x\) to assign probability \(p\) to \(z_1\) and \(1 - p\) to \(z_2\), his expected equilibrium payoff satisfies \(E_{\tilde{G}_x}[v(y)] \geq v^c(x)\). But \(v^c\) is concave and \(v^c(y) \geq v(y)\) for any \(y \in \mathcal{Y}\), so by Jensen’s Inequality \(E_{\tilde{G}_x}[v(y)] \leq E_{G_x}[v^c(y)] \leq E_{G_x}[v^c(y)] = v^c(x)\). So \(E_{G_x}[v(y)] = v^c(x)\), and hence the contract \(v^c(x)\) satisfies (IC\(F\))-(LL\(F\)) for effort \(a\) and the degenerate distribution \(G\).

Next, consider the principal’s expected payoff. Since \(\pi(\cdot)\) is concave, applying Jensen’s Inequality and the previous result yields

\[
E_{F(\cdot|a)}[E_{G_x}[\pi(y - u^{-1}(v(y)))]] \leq E_{F(\cdot|a)}[\pi(E_{G_x}[y - u^{-1}(v(y))])] \leq E_{F(\cdot|a)}[\pi(x - u^{-1}(v^c(x)))],
\]

where the first inequality is strict if \(\pi\) is strictly concave and the second is strict if \(u\) is strictly concave (so that \(-u^{-1}\) is also strictly concave). Therefore, the principal weakly prefers the contract \(v^c(x)\), and strictly so if either \(\pi(\cdot)\) or \(u(\cdot)\) is strictly concave. \(\blacksquare\)

A.2 Proof of Lemma 1

Existence follows from Proposition 9 in Appendix D.21 To prove uniqueness, suppose at least one of \(\pi(\cdot)\) or \(u(\cdot)\) is strictly concave, and suppose that two contracts \(v(\cdot)\)

21Proposition 9 is self-contained and thus presents no circularities.
and $v(\cdot)$ both implement $a \geq 0$ at maximum profit, with $v(x) \neq \hat{v}(x)$ for some $x \in \mathcal{Y}$. Since $v(\cdot)$ and $\hat{v}(\cdot)$ are upper semi-continuous and concave, they must differ on an interval of positive length. But then the contract $v^*(\cdot) \equiv \frac{1}{2}(v(\cdot) + \hat{v}(\cdot))$ satisfies [ICF] for effort a, and the principal’s payoff under v^* is

$$
\mathbb{E}_{F(\cdot|a)}[\pi(y - u^{-1}(v^*(y)))] \geq \mathbb{E}_{F(\cdot|a)}[\pi(y - \frac{1}{2}(u^{-1}(v(y)) + u^{-1}(\hat{v}(y)))]
\geq \frac{1}{2}\mathbb{E}_{F(\cdot|a)}[\pi(y - u^{-1}(v(y)))] + \frac{1}{2}\mathbb{E}_{F(\cdot|a)}[\pi(y - u^{-1}(\hat{v}(y)))] ,
$$

by Jensen’s Inequality, where at least one of the inequalities is strict.

A.3 Proof of Proposition 2

For any contract s, write $U(s) = \max_a \{\mathbb{E}_{F(\cdot|a)}[s(y)] - c(a)\}$. Fix an optimal pair (a^*, s^*) where $s^*(\cdot)$ implements a^*. Recall that for each a, s^L_{a} is the lowest-cost linear contract that implements a, and that s^L_{aFB} has slope 1.

Assume first that $U(s^*) \geq U(s^L_{aFB})$. Then

$$
\mathbb{E}_{F(\cdot|a^*)}[\pi(y - s^*(y))] \leq \pi(\mathbb{E}_{F(\cdot|a^*)}[y - s^*(y)])
= \pi(a^* - \mathbb{E}_{F(\cdot|a^*)}[s^*(y)])
= \pi(a^* - c(a^*) - (\mathbb{E}_{F(\cdot|a^*)}[s^*(y)] - c(a^*))
\leq \pi(a^{FB} - c(a^{FB}) - (\mathbb{E}_{F(\cdot|a^{FB})}[s^L_{a^{FB}}(y)] - c(a^{FB}))
= \pi(\mathbb{E}_{F(\cdot|a^{FB})}[y - s^L_{a^{FB}}(y)])
= \mathbb{E}_{F(\cdot|a^{FB})}[\pi(y - s^L_{a^{FB}}(y))].
$$

The first inequality is Jensen’s, and is strict unless either $y - s^*(y)$ is constant or the principal is risk neutral. The second inequality uses $U(s^*) \geq U(s^L_{a^{FB}})$ and $a^* - c(a^*) \leq a^{FB} - c(a^{FB})$, and is strict unless $a^* = a^{FB}$ and $U(s^*) = U(s^L_{a^{FB}})$. The final equality uses that $y - s^L_{a^{FB}}(y)$ is a constant. For (a^*, s^*) to be optimal, these inequalities must hold with equality, so $a^* = a^{FB}$, $s^L_{a^{FB}}(\cdot)$ is optimal, and moreover $s^* = s^L_{a^{FB}}$ if the principal is risk averse.

Assume instead that $U(s^L_{a^{FB}}) > U(s^*)$. Then, since $U(s^*) \geq u_0$, it follows that $s^L_{a^{FB}}(y) = -M$. For each a, let $\hat{s}_a(\cdot)$ be the linear contract $\hat{s}_a(y) = s^*(y) + c'(a)(y - y)$ that equals $s^*(\cdot)$ at y and implements a. Note that $\hat{s}_{a^{FB}}(y) \geq s^L_{a^{FB}}(y)$ for any y, so $U(\hat{s}_{a^{FB}}) \geq U(s^L_{a^{FB}}) > U(s^*)$.

32
We claim that \(U(\hat{s}_a) \leq U(s^*) \). To see this, define \(\hat{u} \) so that

\[
\int (\hat{s}_{a^*}(y) - (s^*(y) + \hat{u})) f(x|a^*) dx = 0 \tag{8}
\]

and suppose to the contrary that \(\hat{u} > 0 \). Then, since \(\hat{s}_{a^*}(y) < s^*(y) + \hat{u} \), and since \(\hat{s}_{a^*}(\cdot) \) is linear and \(s^*(\cdot) + \hat{u} \) is concave, there exists \(\bar{y} > y \) such that \(\hat{s}_{\bar{a}}(\cdot) - (s^*(\cdot) + \hat{u}) \) is strictly negative below \(\bar{y} \) and strictly positive above \(\bar{y} \). Hence, since \(\frac{f_a(|a^*|)}{f(|a^*|)} \) is strictly increasing, by Beesack’s inequality \[22\] (8) implies that

\[
0 < \int (\hat{s}_{a^*}(y) - (s^*(y) + \hat{u})) \frac{f_a(y|a^*)}{f(y|a^*)} f(y|a^*) dy
\]

\[
= \int (\hat{s}_{a^*}(y) - s^*(y)) f_a(y|a^*) dy
\]

where the equality uses that \(\int f_a(y|a^*) dy = 0 \). This contradicts that both \(\hat{s}_{a^*} \) and \(s^* \) implement \(a^* \), and so \(U(\hat{s}_{a^*}) \leq U(s^*) \).

Since \(U(\hat{s}_a) \) is continuous in \(a \) and \(U(\hat{s}_{aFB}) > U(s^*) \geq U(s_{a^*}) \), there exists \(\hat{a} \in [a^*, a^{FB}] \) such that \(U(\hat{s}_{\hat{a}}) = U(s^*) \). Since \(s^L_{\hat{a}} \) is weakly below \(\hat{s}_{\hat{a}} \),

\[
\mathbb{E}_{F(\cdot|a^*)} [s^L_{\hat{a}}(y)] \leq \mathbb{E}_{F(\cdot|a^*)} [\hat{s}_{\hat{a}}(y)]
\]

\[
= \mathbb{E}_{F(\cdot|\hat{a})} [\hat{s}_{\hat{a}}(y)] - \int_{a^*}^{\hat{a}} \left(\frac{\partial}{\partial a} \mathbb{E}_{F(\cdot|a)} [\hat{s}_{\hat{a}}(y)] \right) da
\]

\[
= \mathbb{E}_{F(\cdot|\hat{a})} [\hat{s}_{\hat{a}}(y)] - c'(\hat{a})(\hat{a} - a^*)
\]

\[
= U(\hat{s}_{\hat{a}}) + c(\hat{a}) - c'(\hat{a})(\hat{a} - a^*)
\]

\[
\leq U(\hat{s}_{\hat{a}}) + c(a^*)
\]

\[
= U(s^*) + c(a^*)
\]

\[
= \mathbb{E}_{F(\cdot|a^*)} [s^*(y)].
\]

Here, the second equality uses that \(\mathbb{E}_{F(\cdot|a)} [\hat{s}_{\hat{a}}(y)] \) is linear in \(a \) and that \(\hat{s}_{\hat{a}}(\cdot) \) implements \(\hat{a} \), and the second inequality uses that \(c(\cdot) \) is convex.

Choose \(\hat{y} \) so that \(s^L_{\hat{a}}(\cdot) \) crosses the concave contract \(s^*(\cdot) \) from below at \(\hat{y} \), where if \(s^L_{\hat{a}}(y) < s^*(y) \) for all \(y \), then \(\hat{y} = \bar{y} \). Since \(\hat{a} < a^{FB} \), and hence \(s^L_{\hat{a}}(\cdot) \) has slope strictly

\[22\] The relevant version of Beesack’s inequality states that if a function \(h(\cdot) \) single-crosses 0 from below and satisfies \(\int h(x) dx = 0 \), then for any increasing function \(g(\cdot) \), \(\int h(x)g(x) dx \geq 0 \), and strictly so if \(g(\cdot) \) is strictly increasing and \(h(\cdot) \) is not everywhere 0. See Beesack [1957], available online at https://www.jstor.org/stable/2033682.

33
less than 1, it follows that for all \(y < \hat{y} \) and \(t > s^{L}_{\hat{a}}(y) \),
\[
\pi'(y - t) \geq \pi'(y - s^{L}_{\hat{a}}(y)) \geq \pi'(\hat{y} - s^{L}_{\hat{a}}(\hat{y})),
\]
and strictly so if \(\pi(\cdot) \) is not linear. Similarly, for all \(y > \hat{y} \) and \(t < s^{L}_{\hat{a}}(y) \),
\[
\pi'(y - t) \leq \pi'(y - s^{L}_{\hat{a}}(y)) \leq \pi'(\hat{y} - s^{L}_{\hat{a}}(\hat{y})),
\]
and strictly so if \(\pi(\cdot) \) is not linear. That is, the marginal cost to the principal is no less than \(\pi'(\hat{y} - s^{L}_{\hat{a}}(\hat{y})) \) for \(y < \hat{y} \), and no more than this amount for \(y > \hat{y} \).

But then, since \(\mathbb{E}_{F(\cdot|a^*)} [s^{L}_{\hat{a}}(y)] \leq \mathbb{E}_{F(\cdot|a^*)} [s^*(y)] \) and \(s^{L}_{\hat{a}}(y) < s^*(y) \) if and only if \(y < \hat{y} \),
\[
\mathbb{E}_{F(\cdot|a^*)} [\pi(y - s^{L}_{\hat{a}}(y))] \geq \mathbb{E}_{F(\cdot|a^*)} [\pi(y - s^*(y))],
\]
and strictly so unless the principal is risk neutral, or \(s^{L}_{\hat{a}}(\cdot) \) and \(s^*(\cdot) \) agree. Finally, since the slope of \(s^{L}_{\hat{a}}(\cdot) \) is strictly less than 1 and \(\hat{a} \geq a^* \),
\[
\mathbb{E}_{F(\cdot|\hat{a})} [\pi(y - s^{L}_{\hat{a}}(y))] \geq \mathbb{E}_{F(\cdot|a^*)} [\pi(y - s^{L}_{\hat{a}}(y))],
\]
and strictly so unless \(\hat{a} = a^* \).

To conclude the proof, note that since \((a^*, s^*) \) is optimal, each of these inequalities is an equality, and hence \(a^* = \hat{a} \leq a^B \). If the principal is risk averse, then \(s^* = s^{L}_{\hat{a}} \) as well. If the principal is risk neutral, then \(s^{L}_{\hat{a}}(\cdot) \) is optimal but not uniquely so.

A.4 Proof of Corollary 1

Fix \(a > 0 \) and consider the problem \((\text{Obj}_{\mathcal{F}}), (\text{LL}_{\mathcal{F}})\) with an arbitrary \(\pi(\cdot) \) and \(u(s) \equiv s \). Define \(\mathbb{E}_{G_x} [\pi(y)] = \pi^c(x) \), where \(\pi^c(\cdot) \) denotes the concave closure of \(\pi(\cdot) \).

Modify \((\text{Obj})-(\text{NG})\) so that the principal’s utility equals \(\pi^c(\cdot) \). Since \(\pi^c(y) \geq \pi(y) \) for any \(y \), so the principal’s payoff in this modified problem must be weakly larger than under the original problem. But \(\pi^c(\cdot) \) is concave and \(s^{L}_{\hat{a}}(y) = -M \), so Proposition 2 implies that \(s^{L}_{\hat{a}}(\cdot) \) implements \(a \) at maximum profit in this modified problem. So the principal’s expected payoff equals \(\mathbb{E}_{F(\cdot|a)} [\pi^c(x - s^{L}_{\hat{a}}(x))] \) in this modified problem.

Now, consider the contract \(s^{L}_{\hat{a}}(x) \) in the original problem \((\text{Obj})-(\text{NG})\). For any distribution \(G_x \in \Delta(\mathcal{Y}) \) such that \(\mathbb{E}_{G_x} [y] = x \), \(\mathbb{E}_{G_x} [y - s^{L}_{\hat{a}}(y)] = x - s^{L}_{\hat{a}}(x) \) be-
cause \(s^L_a \) is linear. Therefore, as in Proposition \([\text{1}]\) there exists some \(G^P_x \) such that
\[
\mathbb{E}_{G^P_x} \left[\pi(y - s^L_a(y)) \right] = \pi^c(x - s^L_a(x)).
\]
Furthermore, conditional on \(x \), the agent’s expected payoff satisfies
\[
\mathbb{E}_{G_x} \left[s^L_a(y) - c(a) \right] = s^L_a(x) - c(a)
\]
for any \(G_x \) with \(\mathbb{E}_{G_x} [y] = x \). So \(s^L_a(\cdot) \) satisfies \([\text{CF}],[\text{LL}_F]\) for \(a > 0 \) and \(G_x = G^P_x \) for each \(x \in \mathcal{X} \). The principal’s expected payoff if she offers \(s^L_a \) equals
\[
\mathbb{E}_{F(\cdot|a)} \left[\pi^c(x - s^L_a(x)) \right],
\]
her payoff from the modified problem. So \(s^L_a \) \textit{a fortiori} implements \(a \) at maximum profit for any \(a \geq 0 \).
B Proofs for Sections 5

First, we prove some preliminary properties of optimal incentive schemes. If \(u > -\infty \), Lemma 1 has shown that any profit-maximizing incentive scheme \(v(\cdot) \) must be unique, and Online Appendix D shows the same for \(u = -\infty \). We prove that \(v(\cdot) \) must be monotonically increasing and satisfy (IC-FOC) with equality.

Suppose \(v(\cdot) \) is concave and not everywhere increasing. Then, we can find \(y \in \mathcal{Y} \) such that if we replace \(v(y) \) by a constant \(v(\tilde{y}) \) to the right of \(\tilde{y} \), the resultant contract is concave, gives the same utility to the agent, is cheaper, and, using MLRP and Beesack’s inequality makes (IC-FOC) slack. So any optimal \(v(\cdot) \) must be increasing.

Suppose \(v(\cdot) \) does not satisfy (IC-FOC) with equality. Then, a convex combination of \(v \) and the contract which gives utility constant and equal to \(\max\{u, u_0 + c(a)\} \geq 0 \) implements \(a \), is strictly cheaper than \(v \), and satisfies (IC-FOC) with equality. So any optimal \(v(\cdot) \) must satisfy (IC-FOC) with equality.

Consider an interval \([y_L, y_H]\). The initial impact of raising the agent’s utility on this interval is given by

\[
r_{y_L,y_H}(y) = \begin{cases}
1 & y \in [y_L, y_H] \\
0 & \text{else}
\end{cases}
\]

Similarly, tilting this interval has an initial impact on the agent’s utility given by

\[
t_{y_L,y_H}(y) = \begin{cases}
0 & y \leq y_L \\
y - y_L & y \in (y_L, y_H) \\
y_H - y_L & y \geq y_H
\end{cases}
\]

We will carefully define the perturbations raise and tilt and show that they respect concavity in Section B.3.2.

Our first result proves two useful properties of any contract that is GHM.

Lemma 3. Let \(v \) be GHM, and let \([y_L, y_H]\) be a linear segment of \(v \). Then, for each \(\hat{y} \in (y_L, y_H) \), there is \(\bar{y} \in (\hat{y}, y_H) \) such that

\[
n(\bar{y}) \leq 0.
\]

If \(v(y_L) > u \), then such a \(\bar{y} \) exists in \((y_L, \hat{y})\) as well. But, somewhere on \((y_L, y_H)\), \(n(y) \geq 0 \).
Proof. Note that for \(y > y_H \), \(t_{\hat{y}, y_H} (y) = y_H - \hat{y} = (y_H - \hat{y}) r_{y_H, \hat{y}} (y) \). Since \(v \) satisfies IC, since \(a > 0 \), and since \(v \) is concave and weakly increasing, \(v \) must be strictly increasing near \(\hat{y} \). Hence, since \(y_H > \hat{y} \), \(v (y_H) > u \). We thus have \(\int n (y) r_{y_H, \hat{y}} (y) f (y|a) dy = 0 \) by Definition \(2.1 \). Hence, by Definition \(2.3 \), we have

\[
0 \geq \int n (y) t_{\hat{y}, y_H} (y) f (y|a) dy
= \int n (y) t_{\hat{y}, y_H} (y) f (y|a) dy - (y_H - \hat{y}) \int n (y) r_{y_H, \hat{y}} (y) f (y|a) dy
= \int_{\hat{y}}^{y_H} n (y) t_{\hat{y}, y_H} (y) f (y|a) dy,
\]

and so at some point \(\hat{y} \in (\hat{y}, y_H) \), the integrand is weakly negative. Since \(t_{\hat{y}, y_H} (\hat{y}) > 0 \), it follows that \(n (\hat{y}) \leq 0 \).

Similarly, note that if \(v (y_L) > u \), then \(\int n (y) r_{y_L, \hat{y}} (y) f (y|a) dy = 0 \) by Definition \(2.1 \), and so by Definition \(2.2 \),

\[
0 \leq \int n (y) t_{y_L, \hat{y}} (y) f (y|a) dy
= \int n (y) t_{y_L, \hat{y}} (y) f (y|a) dy - (\hat{y} - y_L) \int n (y) r_{y_L, \hat{y}} (y) f (y|a) dy
= \int_{y_L}^{\hat{y}} n (y) [t_{y_L, \hat{y}} (y) - (\hat{y} - y_L)] f (y|a) dy,
\]

where, since the bracketed term is strictly negative on \((y_L, \hat{y}) \), it follows that \(n (y) \) is somewhere weakly negative on \((y_L, \hat{y}) \).

Finally, since \(\int n (y) r_{y_L, y_H} (y) f (y|a) dy \geq 0 \), and since we have established that \(n (y) \) is weakly negative somewhere on \((y_L, y_H) \), we must also have \(n (y) \) weakly positive somewhere on the same interval.

\[\square\]

B.1 Proof of Proposition 3

This proof uses both Proposition 5 and Corollary 2, which are proven below.\(^{23} \)

Suppose that there exists some \(y_t \in [y, \hat{y}] \) such that \(\rho (\lambda + \mu l (\cdot|a)) \) is convex on \([y, y_t] \) and concave on \([y_t, \hat{y}] \), let \(v^* (\cdot) \) implement \(a \geq 0 \) at maximum profit, and

\(^{23}\)It is easy to verify that the proofs of both Proposition 5 and Corollary 2 do not use any of the results established in this proof, and hence there are no circularities.
suppose \(v^*(y) > u \). Since \(v^*(\cdot) \) is increasing, \([\text{LL}]\) must be slack.

First, we show that \(v^*(\cdot) \) has no more than one linear segment. Since \(v^*(\cdot) \) implements \(a \) at maximum profit, it is GHM by Proposition \([5]\). Consequently, if \(v^*(\cdot) \) has more than one linear segment, then Lemma \([3]\) implies that \(n(\cdot) \) must be positive, then negative, then positive over each segment. Hence, \(v^*(\cdot) - \rho(\lambda + \mu l(\cdot|a)) \) must be negative, then positive, then negative over each linear segment. But then \(\rho(\lambda + \mu l(\cdot|a)) \) must have two disjoint non-concave regions, which is ruled out by assumption.

If \(y_I = y \), then \(v^*(\cdot) \) cannot have any linear segments, since on any such segment \(v^*(\cdot) - \rho(\lambda + \mu l(\cdot|a)) \) would be positive, then negative, then positive. But then any interior free point must be a point of normal concavity, and so Corollary \([2]\) implies that \(v^*(\cdot) = \rho(\lambda + \mu l(\cdot|a)) \) over \((y, \bar{y})\).

If \(y_I > y \), then \(v^*(\cdot) \) must have a linear segment because it cannot coincide with \(\rho(\lambda + \mu l(\cdot|a)) \) everywhere. We claim that this linear segment must be \([y, \hat{y}]\) for some \(\hat{y} \geq y_I \). If the linear segment starts at some \(\hat{y} > y \), then every \(y \in (\hat{y}, y_I) \) must be a point of normal concavity. But then \(v^*(\cdot) = \rho(\lambda + \mu l(\cdot|a)) \) on \((y, \hat{y})\), which violates \([\text{NG}]\) because \(\rho(\lambda + \mu l(\cdot|a)) \) is convex on that region by assumption. Similarly, if \(\hat{y} < y_I \), then every \(y \in (\hat{y}, y_I) \) must be a point of normal concavity, which again violates \([\text{NG}]\).

So \(v^*(\cdot) \) has a single linear segment \([y, \hat{y}]\), where \(\hat{y} \geq y_I \). Since \(v^*(\cdot) \) is GHM and \(v^*(y) > u \), \([3]\) holds with equality on this linear segment and so \(\int_{\hat{y}}^{y_I} n(y)f(y)dy = 0 \).

Finally, any \(y \in (\hat{y}, y_I) \) is again a point of normal concavity, and so \(v^*(\cdot) = \rho(\lambda + \mu l(\cdot|a)) \) at all such points. This proves the result. \(\blacksquare\)

B.2 Proof of Proposition 4

Let \(v(\cdot) \) be an optimal incentive scheme, and suppose \([\text{IR}]\) does not bind. Towards a contradiction, suppose that \(v(\cdot) \) is strictly concave at some \(y < y_0 \). Consider the alternative contract

\[
\tilde{v}(y) = \begin{cases}
\alpha v(y) + (1 - \alpha) \left[v(y) + (y - y) \frac{v(y_0) - v(y)}{y_0 - y} \right] & y \leq y_0 \\
v(y) & y > y_0
\end{cases}
\]

Note that \(\tilde{v}(\cdot) \) is concave, \(\tilde{v}(y) \leq v(y) \) for all \(y \in \mathcal{Y} \), \(\tilde{v}(y) \geq u \), and there exists an interval in \([y, y_0]\) such that \(\tilde{v}(y) < v(y) \) on that interval. Therefore, \(\tilde{v}(\cdot) \) is strictly less expensive than \(v(\cdot) \) to the principal. Since \([\text{IR}]\) does not bind, there exists some
\[\alpha \in [0, 1) \text{ such that } \tilde{v}(\cdot) \text{satisfies } \text{IR}. \]
Furthermore,
\[
\int \tilde{v}(y)f_a(y|a)dy = \int_{y_0}^{y_0} \tilde{v}(y)f_a(y|a)dy + \int_{y_0}^{\bar{y}} v(y)f_a(y|a)dy > \\
\int_{y_0}^{y_0} v(y)f_a(y|a)dy + \int_{y_0}^{\bar{y}} v(y)f_a(y|a)dy = \int v(y)f_a(y|a)dy,
\]
where the strict inequality follows because \(f_a(y|a)\) is negative on \(y \in [y, y_0]\). Hence, \(\tilde{v}(\cdot)\) satisfies \([\text{IC-FOC}]\). So \(\tilde{v}(\cdot)\) implements \(a\), contradicting that \(v(\cdot)\) is optimal.

B.3 Proof of Proposition 5

The discussion prior to the statement of Proposition 5 proves necessity, given well-defined perturbations that satisfy concavity, and well-defined shadow values. This section begins by formally defining the relevant perturbations, showing that they preserve concavity, and then showing how they can be used to establish shadow values for \([\text{IR}]\) and \([\text{IC-FOC}]\). We then turn to sufficiency.

B.3.1 Preliminaries

Definition 2 and Proposition 5 are phrased in terms of free points. But, not every free point is a convenient place to define a perturbation. Instead, for any given \(v\), let \(C_v\) be the set of points \(y\) at which there exists a supporting plane \(L\) such that \(L(y') > v(y')\) for all \(y' \neq y\).

Clearly any kink point (see the discussion immediately before Corollary 2) is an element of \(C_v\). The next claim shows that for every other free point, there is an arbitrarily close-by element of \(C_v\).

Claim 1. Let \(\hat{y}\) be any point of normal concavity. Then, for each \(\delta\), there is a point in \(\{(\hat{y} - \delta, \hat{y} + \delta) \setminus \hat{y}\} \cap C_v\). From this, it follows that for each \(\varepsilon > 0\), there exists \(y_L < y_H\) such that \(y_L, y_H \in C_v\), and such that \(y_L, y_H \in [\hat{y} - \varepsilon, \hat{y} + \varepsilon]\).

Proof of Claim. We will show first that for each \(\delta\), there is a point in \(\{(\hat{y} - \delta, \hat{y} + \delta) \setminus \hat{y}\} \cap C_v\). To see that this suffices to show the second part, apply the result first to find a point \(y_1\) in \(\{(\hat{y} - \varepsilon, \hat{y} + \varepsilon) \setminus \hat{y}\} \cap C_v\). Apply the result again to find \(y_2\) in

\[\text{Lemma 5}, \text{which establishes the existence of an optimal contract when } u = -\infty. \text{ Again, it is easy to verify that this lemma is self-contained, and thus presents no circularities.}\]
\{(\hat{y} - \delta, \hat{y} + \delta) \setminus \hat{y} \} \cap C_v \text{ where } \delta = (1/2) |y_1 - \hat{y}|, \text{ and finally take } y_L \text{ and } y_H \text{ as the smaller and larger of } y_1 \text{ and } y_2.

So, fix } \delta > 0. \text{ Since } \hat{y} \text{ is not on the interior of a linear segment and not a kink point, there is at least one side of } \hat{y}, \text{ without loss of generality the right side, such that } v(\cdot) \text{ is not linear on } (\hat{y}, \hat{y} + \delta). \text{ Let } S(\cdot) \text{ be the correspondence which for each } y \text{ assigns the set of slopes of supporting planes at } y, \text{ and let } s(\cdot) \text{ be any selection from } S(\cdot). \text{ Note that since } v \text{ is concave, for any } y'' > y', \max \{S(y'')\} \leq \min \{S(y')\}, \text{ and hence } s \text{ is decreasing. Assume first that there is a point } \tilde{y} \in (\hat{y}, \hat{y} + \delta) \text{ where } s(\cdot) \text{ jumps downward, say from } s'' \text{ to } s' < s''. \text{ Then, the supporting plane at } \tilde{y} \text{ with slope } (s' + s'')/2 \text{ qualifies. Assume instead that } s(\cdot) \text{ is continuous on } (\hat{y}, \hat{y} + \delta). \text{ It cannot be everywhere constant, since } v(\cdot) \text{ is not linear on } (\hat{y}, \hat{y} + \delta). \text{ Hence, since } s(\cdot) \text{ is continuous, there is a point } \tilde{y} \text{ at which it is strictly decreasing, so that in specific, } s(\tilde{y}) < s(y) \text{ for all } y < \tilde{y}, \text{ and } s(\tilde{y}) > s(y) \text{ for all } y > \tilde{y}. \text{ The supporting plane at } \tilde{y} \text{ with slope } s(\tilde{y}) \text{ then qualifies.}

\[\square\]

To see that why Claim \[1\] is helpful, assume that some part of Definition \[2\] is violated. For example, assume some optimal contract has a pair of free points \(y_L\) and \(y_H\) such that \(\int n(y) r_{y_L,y_H} f(y) dy < 0\). If either \(y_L\) or \(y_H\) is a kink point, then it is also an element of \(C_v\). If not, then we can apply Claim \[4\] to replace each relevant point by a sufficiently close-by element of \(C_v\) that the strict inequality is maintained. Hence, it is enough to prove Proposition \[5\] when each restriction to a free point is tightened to a restriction to \(C_v\).

B.3.2 Formal Definition and Properties of the Perturbations

This section defines \textit{raise} and \textit{tilt}, being careful in particular to maintain concavity at the endpoints of the perturbed interval. We will need to consider as many as three perturbations at once, where, given the previous discussion, we will require the relevant points to be in \(C_v\). First, we will have some small amount \(\varepsilon_p\) of a perturbation \(p\) where \(p\) could be \(r_{y_L,y_H}\) or \(t_{y_L,y_H}\) in each case with \(\varepsilon_p\) positive or negative. Second, for some \(\hat{y} \in C_v\), we will need to consider some amount \(\varepsilon_t\) of \(t_{\hat{y},\hat{y}}\) and \(\varepsilon_r\) of \(r_{\hat{y},\hat{y}}\). Intuitively, we will use \(t_{\hat{y},\hat{y}}\) and \(r_{\hat{y},\hat{y}}\) to establish shadow values for \([\text{IC-FOC}]\) and \([\text{IR}]\), and then, for any particular perturbation \(p\), consider the three deviations together where one uses \(t_{\hat{y},\hat{y}}\) and \(r_{\hat{y},\hat{y}}\) to undo the effect of \(p\) on \([\text{IC-FOC}]\) and \([\text{IR}]\).
Fix $y_L, y_H,$ and \hat{y}. *A priori*, \hat{y} may have arbitrary position relative to y_L and y_H, and moreover, in the case where p is t_{y_L, y_H}, one of y_L or y_H may not be in C_v, depending on whether ε_p is negative or positive. Define $y_0 < y_1 < \cdots < y_K$, $K \leq 4$, as elements of the set $\{y, y_L, y_H, \hat{y}, \bar{y}\} \cap C_v$. For any given $\varepsilon = (\varepsilon_p, \varepsilon_l, \varepsilon_r)$, let $d(\cdot; \varepsilon) : [y, \bar{y}] \to \mathbb{R}$ be given by

$$d(\cdot; \varepsilon) = \varepsilon_p p(\cdot) + \varepsilon_l t_{\hat{y}, \bar{y}}(\cdot) + \varepsilon_r r_{\hat{y}, \bar{y}}(\cdot).$$

If y_L and y_H are both elements of $\{y_0, \cdots, y_K\}$, as must be true if p is r_{y_L, y_H}, then it follows that d is linear on each interval of the form (y_{k-1}, y_k). Assume that $y_H \notin \{y_0, \cdots, y_K\}$. Then, it must be that p is t_{y_L, y_H} with $\varepsilon_p \geq 0$. In this case, if $y_H \notin (y_{k-1}, y_k)$, then $d(\cdot; \varepsilon)$ is linear on (y_{k-1}, y_k), while if $y_H \in (y_{k-1}, y_k)$, then, since $\varepsilon_p \geq 0$, $d(\cdot; \varepsilon)$ is concave with two linear segments on (y_{k-1}, y_k). Finally, assume $y_L \notin \{y_0, \cdots, y_K\}$. Then, p is t_{y_L, y_H} with $\varepsilon_p \leq 0$, and once again, if $y_L \notin (y_{k-1}, y_k)$, then $d(\cdot; \varepsilon)$ is linear on (y_{k-1}, y_k), while if $y_L \in (y_{k-1}, y_k)$, then since $\varepsilon_p \leq 0$, $d(\cdot; \varepsilon)$ is once again concave with two linear segments on (y_{k-1}, y_k).

For each k, let $L_k^- (\cdot; \varepsilon)$ be the line that coincides with the linear segment of $d(\cdot; \varepsilon)$ immediately to the right of y_{k-1} and let $L_k^+ (\cdot; \varepsilon)$ be the line that coincides with the linear segment immediately to the left of y_k (these are the same line if d is linear on (y_{k-1}, y_k)), and let

$$d_k(y; \varepsilon) = \begin{cases} L_k^- (y; \varepsilon) & y \leq y_{k-1} \\ d(y; \varepsilon) & y \in (y_{k-1}, y_k) \\ L_k^+ (y; \varepsilon) & y \geq y_k \end{cases}.$$

Note that d_k is concave, and that as $|\varepsilon| = |\varepsilon_p| + |\varepsilon_l| + |\varepsilon_r| \to 0$, d_k converges uniformly to the function that is constant at 0.

For each k, let L_k be a supporting line to v at y_k, where since $y_k \in C_v$, we can choose L_k such that $L_k(y) > v(y)$ for all $y \neq y_k$, and let

$$v_k(y) = \begin{cases} L_{k-1}^- (y) & y \leq y_{k-1} \\ v(y) & y \in (y_{k-1}, y_k) \\ L_k(y) & y \geq y_k \end{cases}.$$
so that \(v_k (\cdot) \) is concave. Define \(\hat{\nu} (\cdot; \varepsilon) \) by

\[
\hat{\nu} (y; \varepsilon) = \min_{k \in \{1, \ldots, K\}} \left(v_k (y) + d_k (y; \varepsilon) \right).
\]

As the minimum over concave functions, \(\hat{\nu} (\cdot; \varepsilon) \) is concave.

Fix \(k \) and consider any \(y \in (y_{k-1}, y_k) \). Since \(d_k (y, 0) = 0 \), and by the fact that for each \(k' \), \(L_{k'} (y) \geq v (y) \) for all \(y \neq y_{k'} \), \(k \) is the unique minimizer of \(v_k (y) + d_k (y; 0) \). From this, it follows first that \(\hat{\nu} (y; 0) = v_k (y) = v (y) \), and second, that for all \(\varepsilon \) in some neighborhood of \(0 \) (where \(\varepsilon_p \) is restricted in sign if \(p = t_{y_L, y_H} \) and if one of \(y_L \) or \(y_H \) is not in \(C_v \)),

\[
\begin{align*}
\hat{\nu}_{\varepsilon_p} (y; \varepsilon) &= d_{\varepsilon_p} (y; \varepsilon) = p (y), \\
\hat{\nu}_{\varepsilon_t} (y; \varepsilon) &= d_{\varepsilon_t} (y; \varepsilon) = t_{y_L, y_H} (y), \text{ and} \\
\hat{\nu}_{\varepsilon_r} (y; \varepsilon) &= d_{\varepsilon_r} (y; \varepsilon) = r_{y_L, y_H} (y).
\end{align*}
\]

But then, except on the zero-measure set of points \(\{y_0, \ldots, y_K\} \),

\[
\begin{align*}
\hat{\nu}_{\varepsilon_p} (\cdot; 0) &= p (\cdot), \\
\hat{\nu}_{\varepsilon_t} (\cdot; 0) &= t_{y_L, y_H} (\cdot), \text{ and} \\
\hat{\nu}_{\varepsilon_r} (\cdot; 0) &= r_{y_L, y_H} (\cdot).
\end{align*}
\]

B.3.3 Shadow Values

We need to establish that starting from \(\varepsilon = 0 \) the effects of perturbation \(p \) can be undone via \(t_{y_L, y_H} \) and \(r_{y_L, y_H} \). To do so, let

\[
Q (\varepsilon) = \begin{bmatrix}
\int \hat{\nu}_{\varepsilon_t} (y, \varepsilon) f_a (y|a) dy & \int \hat{\nu}_{\varepsilon_r} (y, \varepsilon) f_a (y|a) dy \\
\int \hat{\nu}_{\varepsilon_t} (y, \varepsilon) f (y|a) dy & \int \hat{\nu}_{\varepsilon_r} (y, \varepsilon) f (y|a) dy
\end{bmatrix}.
\]

The top row of \(Q \) tracks the rate at which \(\varepsilon_t \) and \(\varepsilon_r \) respectively affect \((\mu, \sigma, \eta) \), while the bottom row tracks the rate at which \(\varepsilon_t \) and \(\varepsilon_r \) respectively affect \((\theta, \varphi) \). Then,
from (9),

\[
Q(0) = \begin{bmatrix}
\int t_{\tilde{y},\tilde{y}} f_a(y|a) \, dy & \int r_{\tilde{y},\tilde{y}} f_a(y|a) \, dy \\
\int t_{\tilde{y},\tilde{y}} f(y|a) \, dy & \int r_{\tilde{y},\tilde{y}} f(y|a) \, dy
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\int \tilde{y} (y - \tilde{y}) f_a(y|a) \, dy & \int \tilde{y} f_a(y|a) \, dy \\
\int \tilde{y} (y - \tilde{y}) f(y|a) \, dy & \int \tilde{y} f(y|a) \, dy
\end{bmatrix},
\]

and so

\[
|Q(0)| = \int \tilde{y} (y - \tilde{y}) f_a(y|a) \, dy \int \tilde{y} f(y|a) \, dy - \int \tilde{y} (y - \tilde{y}) f(y|a) \int \tilde{y} f_a(y|a) \, dy
\]

\[
= \int \tilde{y} l(y|a) \int \tilde{y} (y - \tilde{y}) f(y|a) \, dy - \int \tilde{y} l(y|a) \int \tilde{y} f(y|a) \, dy,
\]

where the symbol \(=\) means “has (strictly) the same sign as.”

Thus, \(|Q(0)|\) has the same sign as the difference between two expectations of \(l(\cdot|a)\). Using that \((y - \tilde{y})\) is strictly increasing, the density in the first integral strictly likelihood-ratio dominates the density in the second integral. Since \(l(\cdot|a)\) is strictly increasing, it follows that \(|Q(0)|\) is strictly positive (and so remains so for all \(\varepsilon\) in some ball around 0.) But then by the implicit function theorem, for each \(p \in \{t_{yL,yH}, r_{yL,yH}\}\), we can on the appropriate neighborhood implicitly define \(\varepsilon_r(\cdot)\) and \(\varepsilon_t(\cdot)\) by

\[
\int \hat{v}(y; \varepsilon_p, \varepsilon_t(\varepsilon_p), \varepsilon_r(\varepsilon_p)) f(y|a) \, dy = c(a) + u_0, \text{ and }
\]

\[
\int \hat{v}(y; \varepsilon_p, \varepsilon_t(\varepsilon_p), \varepsilon_r(\varepsilon_p)) f_a(y|a) \, dy = c'(a),
\]

so that starting from \(\varepsilon = 0\), if we make the small perturbation \(\varepsilon_p\) to \(v\), we can restore \([\text{IC-FOC}]\) and \([\text{IR}]\) by a suitable combination of small applications \(\varepsilon_t\) and \(\varepsilon_r\) of \(t_{\tilde{y},\tilde{y}}\) and \(r_{\tilde{y},\tilde{y}}\).

Let \(\lambda\) be the rate of change of costs as one relaxes \([\text{IR}]\) using \(t_{\tilde{y},\tilde{y}}\) and \(r_{\tilde{y},\tilde{y}}\). That is, if we let

\[
\begin{pmatrix}
q_t^{\text{IR}} \\
q_r^{\text{IR}}
\end{pmatrix} = [Q(0)]^{-1} \begin{pmatrix}
0 \\
1
\end{pmatrix},
\]

43
then
\[\lambda = \int \rho^{-1}(v(y)) \left(q_t^{IR} t_{\bar{g}, \hat{g}}(y) + q_r^{IR} r_{\bar{g}, \hat{g}}(y) \right) f(y | a) \, dy. \]

Similarly, if
\[\left(\begin{array}{c} q_t^{IC} \\ q_r^{IC} \end{array} \right) = [Q(0)]^{-1} \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \]
then the rate of change of costs as one relaxes \(\text{[IC-FOC]} \) using \(t_{\bar{g}, \hat{g}} \) and \(r_{\bar{g}, \hat{g}} \) is
\[\mu = \int \rho^{-1}(v(y)) \left(q_t^{IC} t_{\bar{g}, \hat{g}}(y) + q_r^{IC} r_{\bar{g}, \hat{g}}(y) \right) f(y | a) \, dy. \]

Given the shadow values \(\lambda \) and \(\mu \), the argument in Section 5 (prior to Definition 2) completes the proof of necessity in Proposition 5. \(\blacksquare \)

B.3.4 Proof of Sufficiency

We begin by proving the following useful result.

Lemma 4. Let \(v(\cdot) \) be GHM and suppose \(y \in (y, \bar{y}) \) is free. Then \(n(y) \leq 0 \), and \(n(y) = 0 \) if \(y \) is a point of normal concavity (as defined immediately before Corollary 2).

Proof. If \(y \) is a kink point, then Lemma 3 applied to the left of \(y \) implies that \(n(y) \leq 0 \). If \(y \) is a point of normal concavity, then by Lemma 1 there exist sequences of points \(\{y^L_k\}, \{y^H_k\} \in C_v \) such that \(y^L_k < y < y^H_k \) for all \(k \in \mathbb{N} \) and \(\lim_k y^L_k = \lim_k y^H_k = y \). These points are free, so Lemma 3 holds with equality on each interval \([y^L_k, y^H_k] \). Hence, in the limit, \(n(y) = 0 \).

Now, let \(v \), with associated \(\lambda \) and \(\mu \), be GHM. Let us show that \(v \) is optimal. We will argue by contradiction. Assume \(v \) is not optimal, and let \(v^* \) be a lower cost contract satisfying \(\text{[IC-FOC]} \) and \(\text{[R]-[NG]} \). As in the argument at the beginning of Appendix B, \(v^* \) can be taken to be increasing, satisfy \(\text{[IC-FOC]} \) exactly, and as in the proof of Lemma 5 in Appendix D, \(v^*(\bar{y}) \) and \(v^*(y) \) can be taken to be finite.

Enumerate the closed linear segments \(S_1, S_2, \cdots \) of \(v \), and let \(S = \cup S_i \). Let \(\delta(y) = v^*(y) - v(y) \), and let \(\hat{v}(y; \varepsilon) = v(y) + \varepsilon \delta(y) \), so that \(\hat{v}(\cdot, 0) = v(\cdot) \) and \(\hat{v}(\cdot, 1) = v^*(\cdot) \). Then, for each \(\varepsilon \), \(\hat{v}(\cdot; \varepsilon) \) is a convex combination of the concave contracts \(v \) and \(v^* \). Hence, \(\hat{v}(\cdot; \varepsilon) \) satisfies \(\text{[IC-FOC]} \) and \(\text{[R]-[NG]} \). Since \(u^{-1}(\cdot) \) is convex, and since
for each y, $\hat{v}(y; \varepsilon)$ is linear in ε, it follows that $\int u^{-1}(\hat{v}(y; \varepsilon)) f(y|a) \, dy$ is convex in ε. Thus, since

$$
\int u^{-1}(\hat{v}(y; 0)) f(y|a) \, dx = \int u^{-1}(v(y)) f(y|a) \, dy > \int u^{-1}(v^*(y)) f(y|a) \, dy = \int u^{-1}(\hat{v}(y; 1)) f(y|a) \, dy,
$$

it follows that

$$
0 > \frac{d}{d\varepsilon} \int u^{-1}(\hat{v}(y; 0)) f(y|a) \, dy = \frac{1}{u'(u^{-1}(\hat{v}(y; 0)))} \delta(y) f(y|a) \, dy = \int \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy = \int_S \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy + \int_{\mathcal{Y}\setminus S} \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy,
$$

and so, since every point in $\mathcal{Y}\setminus S$ is a point of normal concavity (noting that we took the sets S_i to be closed, and so any kink point is in S), we have

$$
\int_S \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy < -\int_{\mathcal{Y}\setminus S} \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy = -\int_{\mathcal{Y}\setminus S} (\lambda + \mu l(y|a)) \delta(y) f(y|a) \, dy = -\lambda \int_{\mathcal{Y}\setminus S} \delta(y) f(y|a) \, dy - \mu \int_{\mathcal{Y}\setminus S} \delta(y) f_a(y|a) \, dy.
$$

where the first equality follows by Lemma 4.

Both v and v^* satisfy [IC-FOC] with equality, and hence $\int \delta(y) f_a(y|a) \, dy = 0$, from which

$$
-\mu \int_{\mathcal{Y}\setminus S} \delta(y) f_a(y|a) \, dy = \mu \int_S \delta(y) f_a(y|a) \, dy.
$$

Similarly, either [IR] is binding at v, in which case $\int \delta(y) f(y|a) \, dy \geq 0$, or [IR] does
not bind at \(v \), in which case \(\lambda = 0 \), and hence in either case

\[
-\lambda \int_{Y \setminus S} \delta(y) f(y|a) \, dy \leq \lambda \int_{S} \delta(y) f(y|a) \, dy.
\]

Making these two substitutions thus yields

\[
\int_{S} \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy < \lambda \int_{S} \delta(y) f(y|a) \, dy + \mu \int_{S} \delta(y) f_a(y|a) \, dy.
\]

Hence, since \(S = \bigcup S_i \), where the \(S_i \)'s are disjoint except possibly at their zero-measure boundaries, there must be some \(i \) such that

\[
\int_{S_i} \rho^{-1}(v(y)) \delta(y) f(y|a) \, dy < \lambda \int_{S_i} \delta(y) f(y|a) \, dy + \mu \int_{S_i} \delta(y) f_a(y|a) \, dy,
\]

or equivalently,

\[
\int_{S_i} n(y) \delta(y) f(y|a) \, dy < 0.
\]

Fix such an \(i \), and consider \(\delta_1 \), the restriction of \(\delta \) to \(S_i = [y_L, y_H] \). Since \(v \) is linear on \(S_i \), and \(v^* \) is concave, \(\delta_1 \) is concave. For any given \(K \), let \(\Delta = (y_H - y_L)/2^K \), and consider the function \(\delta_K \) on \([y_L, y_H] \) that agrees with \(\delta_1 \) on the set of points \(\{y_L, y_L + \Delta, \ldots, y_H\} \), and is linear between these points. Note that \(\delta_K \) is concave and continuous on \([y_L, y_H] \), and that for each \(y \), \(\delta_K(y) \) is monotonically increasing in \(K \) with limit \(\delta(y) \). Hence, we can choose \(K \) large enough that

\[
\int_{S_i} n(y) \delta_K(y) f(y|a) \, dy < 0.
\]

Finally, define \(\tilde{\delta} \) on \([y, \tilde{y}] \) by

\[
\tilde{\delta}(y) = \begin{cases}
0 & y \leq y_L \\
\delta_K(y) & y \in [y_L, y_H] \\
\delta_K(y_H) & y > y_H
\end{cases}.
\]

Note that \(y_H \) and \(\tilde{y} \) are free. Note also that as in the proof of Lemma 3, \(v(y_H) > u \).
It follows from Definition 2.1 that since \(\tilde{\delta} \) is constant on \([y_H, \tilde{y}] \),
\[
\int_{y_H}^{\tilde{y}} n(y) \tilde{\delta}(y) f(y|a) \, dy = 0,
\]
and hence,
\[
\int n(y) \tilde{\delta}(y) f(y|a) \, dy < 0.
\]

Let us next argue that \(\tilde{\delta} \) can be expressed as a sum of raises and tilts. For \(k \in \{0, \ldots, 2^\hat{k}\} \), let \(y_k = y_L + k\Delta \), and let \(s_k \) be the slope of \(\tilde{\delta} \) on \((y_{k-1}, y_k) \). Then, we claim that for all \(y \) in \([y_L, y_H] \),
\[
\tilde{\delta}(y) = \delta(y_0) r_{y_0,\tilde{y}}(y) + \sum_{k=1}^{2^\hat{k}-1} (s_k - s_{k+1}) t_{y_0,y_k}(y) + s_{2^\hat{k}} t_{y_0,y_{2^\hat{k}}}(y). \tag{10}
\]

To see (10) note first that for \(y < y_0 = y_L \), both sides of the equation are 0. At \(y_0 \), each side is \(\delta(y_0) \), since \(r_{y_0,\tilde{y}}(y_0) = 1 \), and since \(t_{y_0,y_k}(y_0) = 0 \) for all \(k \). Thus, since both sides are continuous and piecewise linear on \([y_0, \tilde{y}] \), it is enough that the two sides have that same derivative where defined. So, fix \(\hat{k} \in \{1, \ldots, 2^\hat{k}\} \), and let \(y \in (y_{\hat{k}-1}, y_{\hat{k}}) \). Note that for \(k < \hat{k} \), \(t'_{y_0,y_k}(y) = 0 \), and for \(k \geq \hat{k} \), \(t'_{y_0,y_k}(y) = 1 \). Hence, the derivative of the right-hand side is
\[
\sum_{k=\hat{k}}^{2^\hat{k}-1} (s_k - s_{k+1}) + s_{2^\hat{k}} = s_{\hat{k}},
\]
as desired, and so, noting that \(\tilde{\delta}'(y) = 0 \) for \(y > y_K = y_H \), we have established (10).

Since \(\int n(y) \tilde{\delta}(y) f(y|a) \, dy < 0 \), we must thus have at least one of
1. \(\delta(y_0) \int n(y) r_{y_0,\tilde{y}}(y) f(y|a) \, dy < 0 \),
2. for some \(k < 2^\hat{k} \), \((s_k - s_{k+1}) \int n(y) t_{y_0,y_k}(y) f(y|a) \, dy < 0 \), or
3. \(s_{2^\hat{k}} \int n(y) t_{y_0,y_{2^\hat{k}}}(y) f(y|a) \, dy < 0 \).

By Definition 2.1, and since \(y_0 \) is free, \(\int n(y) r_{y_0,\tilde{y}}(y) f(y|a) \, dy = \int_{y_0}^{\tilde{y}} n(y) f(y|a) \, dy \geq 0 \), and so 1 cannot hold. Since \(\tilde{\delta} \) is concave on \([y_L, y_H] \), it follows that \(s_k - s_{k+1} \geq 0 \), and so, since \(y_0 \) is free, it follows by Definition 2.2 that 2 cannot hold either. Finally, since \(y_0 \) and \(y_{2^\hat{k}} \) are both free, the integral in 3 is in fact 0 by Definition 2.2 and Definition 2.3. We thus have the required contradiction, and \(v \) is in fact optimal. \(\blacksquare \)
B.4 Proof of Corollary 2

This result follows immediately from Proposition 3 and Lemma 4 ■
C For Online Publication: Proofs for Section 6

C.1 Proof of Proposition 6

Since $s(\cdot) \geq -M$, $V_s(x) = \int s(y)f(y|x)dy \geq -M$ and so $V_s^c(\cdot) \geq -M$. Consider relaxing (7) so that the principal can choose any $V_s(\cdot)$ that is concave and satisfies $V_s(\cdot) \geq -M$. In this relaxed problem, the principal solves

$$\max_{a, V_s(\cdot)} a - V_s(a)$$

s.t. $a \in \arg \max \{V_s(\tilde{a}) - c(\tilde{a})\}$

$$V_s(a) - c(a) \geq u_0$$

$$V_s(y) \geq -M \text{ for all } y \in \mathcal{Y}$$

$V_s(\cdot)$ is weakly concave.

This problem is identical to $\text{(Obj)} \cdot \text{(NG)}$ with a degenerate distribution over intermediate output.

Suppose $(a^*, V_s(\cdot))$ is optimal in this relaxed program. Note that $s^L_{a^*}(\cdot)$ is feasible in this relaxed problem, so $V_s(a^*) \leq s^L_{a^*}(a^*)$. Suppose $s^L_{a^*}(\cdot)$ is not optimal, so $V_s(a^*) < s^L_{a^*}(a^*)$. Then $s^L_{a^*}(a^*) - c(a^*) > u_0$, and so $s^L_{a^*}(y) = -M$. Define $s^L(\cdot)$ as the linear function that intersects $V_s(\cdot)$ at y and a^*, so

$$s^L(y) = V_s(y) + \frac{V_s(a^*) - V_s(y)}{a^* - y}(y - y).$$

Since $V_s(a^*)$ is concave, $s^L(y) \leq V_s(y)$ for all $y \in [y, a^*]$.

For the agent to be willing to choose a^* under $V_s(\cdot)$, it must be that $\partial^- V_s(a^*) \geq c'(a^*)$, where $\partial^- V_s(y)$ is the left derivative of $V_s(\cdot)$ at y. Since V_s is concave,

$$\frac{V_s(a^*) - V_s(y)}{a^* - y} \geq \partial^- V_s(y) \geq c'(a^*).$$

Since $V_s(y) \geq M$, we conclude that $s^L(y) \geq s^L_{a^*}(y)$ for all $y \in \mathcal{Y}$. But then $V_s(a^*) = s^L(a^*) \geq s^L_{a^*}(a^*)$, which gives a contradiction. So $(a^*, s^L_{a^*}(\cdot))$ is also optimal. Note that for any $a^* > a^{FB}$, $(a^*, s^L_{a^*}(\cdot))$ is strictly dominated by $(a^{FB}, s^L_{a^{FB}}(\cdot))$, which generates higher total surplus and gives a (weakly) lower payment to the agent. So $a^* \leq a^{FB}$.
and \(s^L_{\alpha}(\cdot) \) is optimal in this relaxed problem.

Finally, note that for any \(\alpha \geq 0 \) and \(x \in \mathcal{Y} \), \(V_{s_{\alpha}^L}(x) = \mathbb{E}_{F_{\{\cdot|x\}}} \left[s_{\alpha}^L(y) \right] = s_{\alpha}^L(x) \) because \(\mathbb{E}_{F_{\{\cdot|x\}}} [y] = x \). But then \(V_{s_{\alpha}^L}(a) = V_{s_{\alpha}^L}(a) = s_{\alpha}^L(a) \), and so the optimal linear \(V_{\alpha}(\cdot) \) in the relaxed problem can be implemented in the full problem by \(s_{\alpha}^L(\cdot) \). ■

C.2 Proof of Proposition 7

Given the definition of \(\tilde{v}(\cdot), \bar{c}, \) and \(\bar{\pi} \), the optimal \(\alpha \) and \(\tilde{v}(\cdot) \) solve

\[
\max_{\alpha, G \in \bar{\mathcal{G}}, \tilde{v}(\cdot)} \mathbb{E}_{F_{\{\cdot|a\}}} \left[\mathbb{E}_{G_x} \left[\tilde{\pi}(y) - \tilde{v}(y) \right] \right] \tag{11}
\]

\[
\text{s.t. } \alpha, G \in \arg \max_{\bar{a}, G \in \bar{\mathcal{G}}} \left\{ \mathbb{E}_{F_{\{\cdot|\bar{a}\}}} \left[\mathbb{E}_{G_x} \left[\bar{v}(y) \right] \right] - \bar{c}(\bar{a}) \right\}
\]

\[
\mathbb{E}_{F_{\{\cdot|\alpha\}}} \left[\mathbb{E}_{G_x} \left[\tilde{v}(y) \right] \right] - \bar{c}(\alpha) \geq u_0
\]

\[
\tilde{v}(y) \geq -M - d(y) \quad \forall y \in \mathcal{Y}.
\]

As in Proposition 7 following any intermediate output \(x \), the agent optimally chooses \(G_x \) so that \(\mathbb{E}_{G_x} [\tilde{v}(x)] = \tilde{v}^e(x) \), where \(\tilde{v}^e(\cdot) \) is the concave closure of \(\tilde{v}(\cdot) \). Therefore, the principal’s payoff following \(x \) equals \(\mathbb{E}_{G_x} [\tilde{\pi}(y) - \tilde{v}(y)] \leq \tilde{\pi}(x) - \tilde{v}^e(x) \). Since \(\tilde{\pi}(\cdot) \) is strictly concave, this inequality holds with equality only if \(G_x \) is degenerate. Consequently, we can restrict attention to contracts in which \(\tilde{v}(\cdot) \) is concave, and hence for every \(x \), the agent will optimally choose \(G_x(y) = \mathbb{I}_{\{y \geq x\}} \).

Relax the limited liability constraint so that it must be satisfied only at \(y = y \).

Then (11) can be written as

\[
\max_{\alpha, \tilde{v}(\cdot)} \mathbb{E}_{F_{\{\cdot|\alpha\}}} \left[\tilde{\pi}(y) - \tilde{v}(y) \right]
\]

\[
\text{s.t. } \alpha \in \arg \max_{\bar{a}} \left\{ \mathbb{E}_{F_{\{\cdot|\bar{a}\}}} \left[\bar{v}(y) \right] - \bar{c}(\bar{a}) \right\}
\]

\[
\mathbb{E}_{F_{\{\cdot|\alpha\}}} \left[\bar{v}(y) \right] - \bar{c}(\alpha) \geq u_0
\]

\[
\tilde{v}(y) \geq -M
\]

\[
\tilde{v}(\cdot) \text{ is concave.}
\]

Fix any effort \(\alpha \geq 0 \) and any concave incentive scheme \(\tilde{v}(\cdot) \) that implements \(\alpha \). As in the proof of Proposition 7 let \(\tilde{v}^L(\cdot) \) be the unique linear incentive scheme that satisfies \(\tilde{v}^L(y) = \tilde{v}(y) \) and \(\mathbb{E}_{F_{\{\cdot|\alpha\}}} \left[\tilde{v}^L(y) \right] = \mathbb{E}_{F_{\{\cdot|\alpha\}}} \left[\tilde{v}(y) \right] \). Then \(\tilde{v}^L(\cdot) - \tilde{v}(\cdot) \) single-
crosses 0 from below and hence Beesack’s inequality implies

$$\int (\tilde{v}^L(y) - \tilde{v}(y)) \frac{f_a(y|a)}{f(y|a)} f(y|a) dx \geq 0$$

with strict inequality if \(\tilde{v}^L(y) \neq \tilde{v}(y) \) for some \(y \). Consequently, \(\tilde{v}(\cdot) \) implements some \(\tilde{a} \geq a \), with \(\tilde{a} > a \) if \(\tilde{v}^L(y) \neq \tilde{v}(y) \) for some \(y \).

Define \(\tilde{v}^\ast(y) = \tilde{c}'(a)(y - y) - \tilde{w} \), where \(\tilde{w} = \min \{ M, \tilde{c}'(a)(a - y) - \tilde{c}(a) - u_0 \} \), and suppose that \(\tilde{v}^\ast(y) = -M \). Then \(\tilde{v}^\ast(y) \leq \tilde{v}^L(y) \) for all \(y \geq y \) and strictly so if \(\tilde{a} > a \). Therefore, \(\tilde{v}^\ast(\cdot) \) uniquely implements \(a \geq 0 \) at maximum profit in the relaxed problem. But \(\tilde{v}^\ast(y) \geq -M \geq -M - d(y) \) for all \(y \in \mathcal{Y} \), so \(\tilde{v}^\ast(\cdot) \) satisfies the limited liability constraint, and hence implements \(a \) in the original problem.

Next, suppose that \(\tilde{v}^\ast(y) > -M \). Then by construction, \(\mathbb{E}_{F(\cdot)|a}[\tilde{v}^\ast(y)] = u_0 + \tilde{c}(a) \leq \mathbb{E}_{F(\cdot)|a}[\tilde{v}(y)] \), which implies that \(\mathbb{E}_{F(\cdot)|a}[\tilde{\pi}(y) - \tilde{v}^\ast(y)] \geq \mathbb{E}_{F(\cdot)|a}[\tilde{\pi}(y) - \tilde{v}(y)] \); i.e., \(\tilde{v}^\ast(\cdot) \) implements \(a \) at maximum profit.

Finally, note that the preceding holds for any \(a \geq 0 \), proving that \(\tilde{v}^\ast(\cdot) \), or equivalently, \(\tilde{s}^\ast(y) = \tilde{c}'(a)(y - y) - d(y) - \tilde{w} \) is optimal. ■

C.3 Proof of Proposition 8

It suffices to prove that for any total output \(x \),

$$\max_{y_x: [0,1] \rightarrow [y,\bar{y}]} \left\{ \int_0^1 s(y_x(t)) dt \quad \text{s.t.} \quad \int_0^1 y_x(t) dt = x \right\} = s^c(x).$$

Consider the following \(y_x \): if \(s(x) = s^c(x) \), then \(y_x(t) = x \) for all \(t \). If \(s(x) < s^c(x) \), then there exist \(w, z, \) and \(\alpha \in [0,1] \) such that \(\alpha w + (1 - \alpha)z = x \) and \(\alpha s(w) + (1 - \alpha)s(z) = s^c(x) \). For \(t \leq \alpha \), \(y_x(t) = w \), with \(y_x(t) = z \) for \(t > \alpha \). This function \(y_x \) guarantees that the agent earns \(s^c(x) \).

Now, \(s(y_x(t)) \leq s^c(y_x(t)) \) for all \(y_x(t) \). Since \(s^c \) is weakly concave and \(\int_0^1 y_x(t) dt = x \), we conclude that \(\int_0^1 s(y_x(t)) dt \leq \int_0^1 s^c(y_x(t)) dt \leq \int_0^1 s^c(x) dt = s^c(x) \). So the agent earns (and the principal pays) \(s^c(x) \) following intermediate output \(x \), which proves the claim. ■
For Online Publication: Existence, Uniqueness, and Continuity

The first part of this section proves existence and some properties of the optimal contract for the case of a finite limited liability constraint. The second part gives conditions under which an optimal contract exists and is unique if there is no limited liability constraint. While the statement of the latter case requires only some mild extra structure on the convexity of the utility function, the proof is embarrassingly complex.

D.1 Proof of existence, uniqueness, and continuity for finite

Proposition 9. Let U and Π be the set of increasing concave utility functions for the agent and principal satisfying our assumptions and let V be the set of concave (but not necessarily increasing) functions from $[y, \bar{y}]$ to \mathbb{R}, where each of $U, \Pi, \text{ and } V$ has the topology of almost everywhere pointwise convergence. Fix a. Then, (i) for each $z = (M, u_0, \pi, u)$, there exists an optimal contract v that implements a given z and (ii) at any point z where at least one of π or u is strictly concave, the optimal contract implementing a is unique and continuous in z.

Proof. The proof relies on Berge’s Theorem. Fix a. For any given $z = (M, u_0, \pi, u)$, let $v^L(\cdot|z)$ be given by $v^L(y|z) = c'(a)(y - y) + \beta$, where $\beta = \min\left(u(-M), c'(a) + u_0 - c'(a)(a - y)\right)$, be the maximum-profit linear (in utils) contract that implements a. In particular $v^L(\cdot|z)$ satisfies IC, since, under our assumptions, the agent’s utility from income given $v^L(\cdot|z)$ is linear in effort while $-c(\cdot)$ is concave and so the first order condition implies [C]

Let $B : \mathbb{R} \times \mathbb{R} \times \Pi \times U \rightarrow V$ be the correspondence which for each $M \in \mathbb{R}$, $u_0 \in \mathbb{R}$, $\pi \in \Pi$, and $u \in U$ gives the set of contracts v such that

$$E_{F(a)} \left[\pi \left(y - u^{-1} \left(v(y) \right) \right) \right] \geq E_{F(a)} \left[\pi \left(y - u^{-1} \left(v^L(y|z) \right) \right) \right] - 1,$$

$$a \in \arg \max_{a} \left\{ E_{F(a)} \left[v(y) - c(a) \right] \right\},$$

$$E_{F(a)} \left[v(y) - c(a) \right] \geq u_0,$$

$$v(y) \geq u(-M), \text{ and } v \in V,$$
where the second through fifth constraints are simply the translations of \([1C]-[NG]\) when \(z\) is a parameter, and the first constraint restricts attention to contracts that come within 1 util for the principal of \(v^L (\cdot|z)\). Since \(v^L (\cdot|z) \in B(z)\), this constraint is innocuous, and it also follows that \(B\) is non-empty valued.

For any given \(v \in V\), define \(v_{\text{max}} = \max_{y \in [\bar{y}, \bar{\bar{y}}]} v(y)\). We begin by proving

\((*)\) For each compact subset \(Z \subseteq \mathbb{R} \times \mathbb{R} \times \Pi \times U\), there is \(\bar{u}\) such that \(v_{\text{max}} \leq \bar{u}\) for all \(z \in Z\) and \(v \in B(z)\).

To see \((*)\), begin by noting that \(v^L (\cdot|\cdot)\) is continuous on the compact set \([\bar{y}, \bar{\bar{y}}] \times Z\), and so \(-\infty < m = \min_{y \in [\bar{y}, \bar{\bar{y}}] \times Z} \left\{ \pi(y - u^{-1}(v^L(y|z))) \right\}\). Using that \(Z\) is compact, let \(u^* < \infty\) satisfy that for all \(z \in Z\), \(\pi(y - u^{-1}(u^*)) \leq m - 2\), so that anytime the principal gives the agent utility \(u^*\) or above, the principal is at least two utils worse off than under \(v^L (\cdot|z)\).

Fix \(z \in Z\), and \(v \in B(z)\). Choose \(y_{\text{max}}\) so that \(v(y_{\text{max}}) = v_{\text{max}}\). Let \(u_{\text{min}} = \min_{z \in Z} u(-M)\), and define \(\hat{\nu}\) as the function that equals \(u_{\text{min}}\) at \(\bar{y}\) and \(\bar{\bar{y}}\), equals \(v_{\text{max}}\) at \(y_{\text{max}}\), and is linear to the left and right of \(y_{\text{max}}\). That is, \(\hat{\nu}(y_{\text{max}}) = y_{\text{max}}\), and

\[
\hat{\nu}(y) = \begin{cases}
 u_{\text{min}} + \frac{v_{\text{max}} - u_{\text{min}}}{y_{\text{max}} - \bar{y}} (y - \bar{y}) & y \in [\bar{y}, y_{\text{max}}) \\
 u_{\text{min}} + \frac{v_{\text{max}} - u_{\text{min}}}{\bar{\bar{y}} - y_{\text{max}}} (\bar{\bar{y}} - y) & y \in (y_{\text{max}}, \bar{\bar{y}}]
\end{cases}
\]

Note that

\[
E_{F(\cdot|a)} \left[\pi(y - u^{-1}(\hat{\nu}(y))) \right] \geq E_{F(\cdot|a)} \left[\pi(y - u^{-1}(v^L(y|z))) \right] - 1, \quad (13)
\]

using that the concave function \(v\) is everywhere at or above \(\hat{\nu}\), and the first constraint in \((12)\).

We will show that \((13)\) implies a uniform bound on \(v_{\text{max}}\). Intuitively, when \(v_{\text{max}}\) is large, the piece-wise linear function \(\hat{\nu}(y)\) is above \(u^*\) for nearly all of \([\bar{y}, \bar{\bar{y}}]\), implying losses compared to \(v^L (\cdot|z)\) that contradict \((13)\).

A uniform bound on \(v_{\text{max}}\) is of course trivial for \(v\) such that \(v_{\text{max}} \leq u^*\). So, assume \(v_{\text{max}} > u^*\). Let \(y_L \in [\bar{y}, y_{\text{max}}]\) solve \(\hat{\nu}(y_L) = u^*\), where if \(y_{\text{max}} = \bar{y}\), we let \(y_L = \bar{y}\), and similarly, define \(y_H \in (y_{\text{max}}, \bar{\bar{y}}]\) by \(\hat{\nu}(y_H) = u^*\), where if \(y_{\text{max}} = \bar{\bar{y}}\), \(y_H = \bar{\bar{y}}\).

Since \(\hat{\nu}(\cdot)\) is concave, \(\hat{\nu}(y) \geq u^*\) for all \(y \in [y_L, y_H]\), and hence,

\[
\pi(y - u^{-1}(\hat{\nu}(y))) - \pi(y - u^{-1}(v^L(y|z))) \leq -2.
\]

53
while for any y,
\[
\pi(y - u^{-1}(\hat{v}(y))) - \pi(y - u^{-1}(v^L(y|z))) \leq b,
\]
where $b \equiv \pi(\bar{y} + \max_{z \in Z} M) - m$. So from (13) we must have
\[
(F(y_H|a) - F(y_L|a))(-2) + (1 - (F(y_H|a) - F(y_L|a))) b \geq -1,
\]
or equivalently,
\[
F(y_H|a) - F(y_L|a) \leq \frac{1 + b}{2 + b}, \tag{14}
\]
where the RHS is strictly less than one because $\infty > b > 0$. But, if $y_L \neq \bar{y}$, then
\[
y_L = y + \frac{u^* - u_{\min}}{v_{\max} - u_{\min}}(y_{\max} - y)
\leq y + \frac{u^* - u_{\min}}{v_{\max} - u_{\min}}(\bar{y} - y),
\]
and so as $v_{\max} \to \infty$, $y_L \to \bar{y}$. Similarly, if $y_H \neq \bar{y}$, then
\[
y_H = \bar{y} - \frac{u^* - u_{\min}}{v_{\max} - u_{\min}}(\bar{y} - y_{\max})
\geq \bar{y} - \frac{u^* - u_{\min}}{v_{\max} - u_{\min}}(\bar{y} - y),
\]
and so as $v_{\max} \to \infty$, $y_H \to \bar{y}$. But then by (14), v_{\max} is bounded, establishing (\ast).

From (\ast) and the dominated convergence theorem, each expectation in (12) is continuous in z, and hence, noting that each of [IC] and [NG] can be expressed as a collection of weak inequalities, $B(\cdot)$ is upper hemicontinuous.

Let us next show that $B(\cdot)$ is lower hemicontinuous. To see this, fix z, let $v \in B(z)$, and let $z_k \to z$. For $\varepsilon \in (0,1)$ and $\delta > 0$, define $\tilde{v}(\cdot|\varepsilon, \delta)$ by $\tilde{v}(y|\varepsilon, \delta) = (1 - \varepsilon) v(y) + \varepsilon v^L(y|M - \delta, u_0 + \delta, u, \pi)$.

By Jensen’s inequality, for each y,
\[
y - u^{-1}\left((1 - \varepsilon) v(y) + \varepsilon v^L(y|z)\right) \geq (1 - \varepsilon)\left(y - u^{-1}(v(y))\right) + \varepsilon\left(y - u^{-1}(v^L(y|z))\right),
\]

54
since $-u^{-1}$ is concave. Hence, since π is increasing and concave,

$$
\pi \left(y - u^{-1} \left((1 - \varepsilon) v(y) + \varepsilon v^L(y|z) \right) \right) \geq \pi \left((1 - \varepsilon) \left(y - u^{-1} v(y) \right) + \varepsilon \left(y - u^{-1} v^L(y|z) \right) \right) \\
\geq \pi \left((1 - \varepsilon) \left(y - u^{-1} v(y) \right) \right) + \varepsilon \pi \left(y - u^{-1} \left(v^L(y|z) \right) \right).
$$

and so the same is true in expectation. Since the first constraint in (12) holds weakly for $v(\cdot)$ and strictly for $v^L(\cdot|z)$, we have that for each $\varepsilon \in (0,1)$,

$$
E_{F(\cdot|a)} \left[\pi \left(y - u^{-1} \left((1 - \varepsilon) v(y) + \varepsilon v^L(y|z) \right) \right) \right] > E_{F(\cdot|a)} \left[\pi \left(y - u^{-1} \left(v^L(y|z) \right) \right) \right] - 1.
$$

It follows from continuity that for each $n \in \{1, 2, \cdots \}$ there exists $\delta_n > 0$ sufficiently small that the first constraint in (12) is slack for $v_n = \bar{v} \cdot (\cdot | \frac{1}{n}, \delta_n)$.

It is immediate that the third and fourth constraints in (12) hold strictly at v_n, while the second and fifth constraints (which do not depend on z) continue to hold, since v_n is a convex combination of concave contracts satisfying IC. Hence, for each n, there is K_n such that for all $k \geq K_n$, $v_n \in B(z_k)$. Let $k_n = \max \{ n, \max_{n' \leq n} K_{n'} \}$. Then, for each n, $v_{k_n} \in B(z_{k_n})$, and, since $k_n \to \infty$ and $\delta_n \to 0$, $v_{k_n} \to v$. Hence, $B(\cdot)$ is lower hemiconcave, and thus continuous.

Fix z, and let $\{v_k\}$ be a sequence in $B(\cdot)$. Since each v_k is concave, and thus has variation at most $2(\bar{u} - u(-M))$, it follows from Helly’s Selection Theorem that $\{v_k\}$ has a convergent subsequence. Thus, B is compact-valued, and from Berge’s theorem the set of maximizers of $E_{F(\cdot|a)} \left[\pi \left(y - u^{-1} (v(y)) \right) \right]$ on $B(\cdot)$ is non-empty valued and upper hemiconcave.

Finally, consider any z where at least one of π and u is strictly concave. Then, if $v_1, v_2 \in B(z)$, it is direct that $(v_1 + v_2)/2 \in B(z)$ is strictly more profitable that either v_1 or v_2. Thus the maximum is unique, and hence continuous in z.

\[\square \]

D.2 Proof of existence for $u = -\infty$

Suppose that $u = -\infty$, which corresponds to the agent having no limited liability constraint. This section gives conditions under which a unique solution to (P) exists and satisfies certain properties. Say that $u(\cdot)$ is regular if $w = -\infty$ and $\frac{u'(w)u''(w)}{[u'(w)]^2} < 3$ for all $w \in \mathbb{R}$. These conditions are quite mild; in particular, the second condition means that $u'(\cdot)$ is not excessively convex, in the sense that it has local concavity
everywhere greater than -2. See Prekopa (1973) and Borell (1975) for details.

Proposition 10. Suppose $\pi(y) \equiv y$, $u(\cdot)$ is strictly concave and regular, and $u = -\infty$. Then for any $a \geq 0$, there exists a unique contract $v(\cdot)$ that implements a at maximum profit. Furthermore, there exists $\bar{u} < \infty$ independent of u such that $v(\bar{y}) < \bar{u}$ and $v(y) > -\bar{u}$.

We begin this argument with a lemma that shows that if $v_u(\cdot)$ is an optimal contract for some limited liability constraint u and $v_u(y) > u$, then $v_u(\cdot)$ remains optimal in the problem with any less binding limited liability constraint u', including $u' = -\infty$.

Lemma 5. Assume that for some $u > -\infty$, $v_u(y) > u$. Let $u' < u$. Then, $v_u = v_{u'}$.

Proof. Assume v_u has $v_u(y) > u$, but that when the limited liability constraint is some $u' < u$ there exists a superior concave contract \hat{v} that implements a. We will show that this leads to a contradiction.

Assume first that $\hat{v}(y) > -\infty$ (as is automatic if u' is finite). Then, for small enough ε, the contract $(1 - \varepsilon) v_u(\cdot) + \varepsilon \hat{v}(\cdot)$ is both strictly cheaper than v_u (since u is strictly concave), and implements a subject to limited liability constraint u, yielding the desired contradiction.

Assume instead that $\hat{v}(y) = -\infty$. Begin by picking any point $x' > y$ where $x' \in C_{\hat{v}}$ (since $\hat{v}(y) = -\infty$, such points exist), and construct \hat{v} by applying a sufficiently small positive amount of $t_{x',y}$ such that \hat{v} remains strictly cheaper than v_u. Since this adds a positive increasing function to \hat{v}, both $[\text{IC-FOC}]$ and $[\text{IR}]$ are strictly slack at \hat{v}.

For each $y \in [y, \bar{y}]$, let $h_y(\cdot)$ be a supporting plane to \hat{v} at y. Let the concave contract $v_y(\cdot)$ be given by $v_y(x) = \hat{v}(x)$ for $x > y$, and $v_y(x) = h_y(x)$ for $x \leq y$. For each x, $v_y(x)$ is weakly decreasing in y, with $\lim_{y \to y^-} v_y(x) = \hat{v}(x)$. Thus, by the monotone convergence theorem, as $y \to y$, $\int v_y(x) f(x|a) dx \to \int \hat{v}(x) f(x|a) dx$, $\int v_y(x) f_a(x|a) dx \to \int \hat{v}(x) f_a(x|a) dx$, and $\int u^{-1}(v_y(x)) f(x|a) dx \to \int u^{-1}(\hat{v}(x)) f(x|a) dx$. Hence, for y close enough to y, v_y implements a and is cheaper than v_u. For any such y, $v_y(y)$ is finite, and we are back to the previous case.

Proof. Given Lemma 5, it is enough to show that for some u, $v_u(y) > u$. Assume not, so that in particular, for all u, $v_u(y) = u$. We will show that this leads to a contradiction. We will henceforth restrict attention to $u \leq 0$. For u sufficiently
negative, it cannot be the case that \(v_u \) is linear. In particular, if \(v_u \) is linear, then since \(v_u(y) > u_0 + c(a) \), we have that

\[
\int v_u(x) f_a(x|a) \, dx = \int v'_u(x) (-F_a(x|a)) \, dx \geq \frac{u_0 + c(a) - u}{\bar{y} - y}
\]

which diverges in \(u \), contradicting that \(v_u \) must satisfy [IC-FOC] with equality. Hence, for each \(u \), we can take a point \(x_u \in C_{v_u} \), and derive \(\lambda_u \) and \(\mu_u \) as in the proof of Proposition 5.

Let \(z_u(\cdot) = \rho(\lambda_u + \mu_u l(\cdot|a)) \), where we follow the convention that \(\rho(s) = -\infty \) for \(s \leq 0 \). The contract \(v_u \) will in general differ from \(z_u \) since \(z_u \) need be neither concave nor satisfy the limited liability constraint. Note that \(n_u(\cdot) = \rho^{-1}(v_u(\cdot)) - (\lambda_u + \mu_u l(\cdot|a)) = s v_u(\cdot) - z_u(\cdot) \).

Step 1 There is \(\bar{\mu} < \infty \) such that \(\mu_u \leq \bar{\mu} \) for all \(u \).

Proof of Step 1 Applying a small positive amount of \(t_{x_u,y} \) adds cost at rate at most \(\rho^{-1}(\bar{u}) \int_{x_u}^{y} (x - x_u) f(x|a) \, dx \), adds incentives at rate \(\int_{x_u}^{y} (x - x_u) f_a(x|a) \, dx \), and relaxes [IR]. It follows that

\[
\mu_u \leq \rho^{-1}(\bar{u}) \int_{x_u}^{y} (x - x_u) f(x|a) \, dx \int_{x_u}^{y} (x - x_u) f_a(x|a) \, dx.
\]

But, as in the proof that \(|Q(0)| > 0 \),

\[
\frac{\partial}{\partial x_u} \frac{\int_{x_u}^{y} (x - x_u) f(x|a) \, dx}{\int_{x_u}^{y} (x - x_u) f_a(x|a) \, dx} = \frac{\int_{x_u}^{y} (x - x_u) f_a(x|a) \, dx}{s \int_{x_u}^{y} (x - x_u) f(x|a) \, dx} + \frac{\int_{x_u}^{y} f_a(x|a) \, dx}{\int_{x_u}^{y} f(x|a) \, dx} \leq 0,
\]

and so we can take

\[
\bar{\mu} = \rho^{-1}(\bar{u}) \int (x - y) f(x|a) \, dx \int (x - y) f_a(x|a) \, dx < \infty.
\]
Step 2 There is $\mu > 0$ and $u^* > -\infty$ such that $\mu_u \geq \mu$ for all $u < u^*$.

Proof of Step 2 Choose $-\infty < u^* \leq 0$ such that

$$\rho^{-1}(u^*) < \frac{1}{2} \rho^{-1}(u_0 + c(a)),$$

and

$$c'(a) < \frac{u_0 + c(a) - u^*}{\bar{y} - y},$$

where such a u^* exists since by assumption $\lim_{w \to -\infty} \frac{1}{u'(w)} = 0$. Let

$$r \equiv \sup_{\tau \in \left[\frac{1}{2} \rho^{-1}(u_0 + c(a)), \infty\right]} \rho' (\tau).$$

Since $\rho \left(\frac{1}{u'(w)} \right) = u(w)$, we have that

$$\rho' \left(\frac{1}{u'(w)} \right) = \frac{(u')^3}{-u''(w)},$$

from which

$$\rho'' \left(\frac{1}{u'(w)} \right) = u'(w) \left(\frac{u''(w) u'(w)}{(u''(w))^2} - 3 \right).$$

Since u is regular, it follows that $\rho'' < 0$, and so $r < \infty$. Let $\bar{l}_x = \max x \bar{l}_x (x | a)$, and choose $\mu > 0$ such that

$$\mu < \frac{1}{2} \rho^{-1} \left(u_0 + c(a) \right),$$

and

$$\mu < \frac{1}{r \bar{l}_x} \frac{u_0 + c(a)}{\bar{y} - y}.$$

Assume that for some $u < u^*$, $\mu_u < \mu$. We will show that this leads to a contradiction, establishing the result.

Using Corollary 2 (which depends only on the necessity part of the proof of Proposition 3, which is proven in Appendix B), and the fact that \bar{y} is free, $n(\bar{y}) \leq 0$, and

58
so \(\lambda_u + \mu_u l(\bar{y}|a) \geq \rho^{-1}(v_u(\bar{y})) \geq \rho^{-1}(u_0 + c(a)) \). Thus,

\[\lambda_u + \mu_u l(y|a) = \lambda_u + \mu_u l(\bar{y}|a) - \mu_u (l(\bar{y}|a) - l(y|a)) \geq \rho^{-1}(u_0 + c(a)) - \frac{1}{2} \rho^{-1}(u_0 + c(a)) \left(l(\bar{y}|a) - l(y|a) \right) = \frac{1}{2} \rho^{-1}(u_0 + c(a)) , \]

where the inequality follows from \(\mu_u < \mu \) and (18).

Since \(u < u^* \), and by (15), \(\rho^{-1}(v_u(y)) = \rho^{-1}(u) < \frac{1}{2} \rho^{-1}(u_0 + c(a)) \). Thus, using (20), \(n(y) \) is strictly positive, and it follows by Corollary 2 that \(v_u \) begins with a linear segment, the slope of which (by concavity) is at least

\[\frac{u_0 + c(a) - u}{\bar{y} - y} \geq \frac{u_0 + c(a)}{\bar{y} - y} . \]

But, using (20) and the definition of \(r \), we have that for all \(x \),

\[z'_u(x) = \rho' \left(\lambda_u + \mu_u l(x|a) \right) \mu_u l_x(x|a) \leq r \mu_u l_x < \frac{u_0 + c(a)}{\bar{y} - y} , \]

where the strict inequality follows from (19). Hence, the initial linear segment of \(v_u \) crosses \(z_u \) at most once (from below). This implies that the entire contract is in fact linear with slope at least \((u_0 + c(a) - u)/(\bar{y} - y) \). In particular, let \(x_H \) be the right end of the linear segment. If \(x_H \) is at or before the crossing point, then \(v_u \) violates (3) and so cannot be optimal by part 1 of Proposition 5. If \(x_H < \bar{y} \) is after the crossing, then we violate Corollary 2. It follows that \(v_u \) generates incentives at least

\[\frac{u_0 + c(a) - u^*}{\bar{y} - y} > c'(a) \]

using (16). But we have shown that (IC-FOC) binds at \(v_u \), leading to the desired contradiction.
Step 3 There is $u_0 + c(a) > u_\ast > -\infty$ such that if $u < u_\ast$ and $\rho (\lambda_x + \mu_x (l(x|a))) < u_\ast$, then $z_u (\cdot)$ is concave at x.

Proof of Step 3 Note first that ρ is trivially concave anywhere that it is equal to $-\infty$, and that by assumption, $\lim_{s \to 0} \rho (s) = -\infty$. Hence, it is enough to prove concavity where $\rho (\lambda_x + \mu_x (l(x|a)))$ is finite. But, it follows from (17) and the fact that u is regular that $\lim_{t \to u} \rho'' (t) / \rho' (t) = -\infty$, and so $\rho'' (t) / \rho' (t)$ is negative for t below some t'. Assume $\lambda_x + \mu_x (l(x|a)) < t'$. Then,

$$\frac{\partial^2}{\partial x^2} \rho (\lambda_x + \mu_x (l(x|a))) = \frac{\partial}{\partial x} \left(\rho' (\lambda_x + \mu_x (l(x|a))) \mu_x l_x (x|a) \right)$$

$$= \rho'' (\lambda_x + \mu_x (l(x|a))) (\mu_x l_x (x|a))^2 + \rho' (\lambda_x + \mu_x (l(x|a))) \mu_x l_{xx} (x|a)$$

$$= \frac{\rho''}{s} (\lambda_x + \mu_x (l(x|a))) \mu_x + \frac{l_{xx}}{l_x^2} (x|a)$$

$$\leq \frac{\rho''}{s} (\lambda_x + \mu_x (l(x|a))) \mu_x + \frac{l_{xx}}{l_x^2} (x|a).$$

The second term is bounded by assumption. The first term diverges to $-\infty$ as $\lambda_x + \mu_x (l(x|a)) \to 0$. Hence, since ρ is monotone, and since $\lim_{u \to -\infty} u' (w) = \infty$, the result follows.

Step 4 As in the derivation of r in Step 2, let \hat{r} be such that for all $t \geq \rho^{-1} (u_\ast)$, $\rho' (t) \leq \hat{r}$. Let $-\infty < \hat{u} \leq u_\ast$ satisfy

$$\hat{s} \equiv \frac{u_0 + c(a) - \hat{u}}{\hat{y} - \hat{y}} \geq \max \{ c' (a), \hat{\mu} \hat{r} \hat{x} \},$$

and assume that $u < \hat{u}$. Then, $z_u (\hat{y}) \leq u$.

Proof of Step 4 Assume that $z_u (y) > u$. Then, since $v_u (y) = u$, v_u begins with a linear segment of positive length of slope at least \hat{s}, and so by Proposition 5 and Part 1 of Definition 2, crosses z_u from below, and is strictly above z_u for an interval of positive length as well. Let $x_{u,c}$ be defined by $z_u (x_{u,c}) = u_c$. If v_u has its initial crossing of z_u at or before $x_{u,c}$, then since z_u is concave until $x_{u,c}$, v_u remains above z_u until $x_{u,c}$. But then, since for $x > x_{u,c}$, $\hat{s} \geq z_u'$, v_u in fact never recrosses z_u. On
the other hand, if the initial crossing of \(z_u \) by \(v_u \) is after \(x_{u,c} \), then again, since \(v_u \) has slope greater than \(z_u' \) for \(x > x_{u,c} \), \(v_u \) never recrosses \(z_u \). In either case, by Corollary \(2 \) \(v_u \) is thus linear on all of \([\bar{y}, \bar{y}]\), a contradiction.

Step 5 Let \(u_{y_0} = u_0 + c(a) - c'(a)(\bar{y} - y_0) > -\infty \). Then, \(v_u(y_0) \geq u_{y_0} \).

Proof of Step 5 Since \(v_u(y) \geq u_0 + c(a) \), it follows that everywhere on \([\bar{y}, y_0] \), \(v_u(\cdot) \) is below the line \(L(\cdot) \) that goes through \((y_0, v_u(y_0))\) and \((\bar{y}, u_0 + c(a))\), and everywhere on \((y_0, \bar{y})\), \(v_u(\cdot) \) is above \(L(\cdot) \). Hence, since \(f_a < 0 \) on \([\bar{y}, y_0] \) and \(f_a > 0 \) on \((y_0, \bar{y})\),

\[
c'(a) = \int v_u(x) f_a(x | a) \, dx \\
\geq \int L(x) f_a(x | a) \, dx \\
= \frac{u_0 + c(a) - v_u(y_0)}{\bar{y} - y_0}.
\]

Rearranging yields the desired result.

Step 6 Choose \(\infty < u_s < \min \{ u_{y_0}, u_c, \rho(-\bar{\mu}l(y|a)), \hat{u} \} \) small enough that for all \(t \leq u_s \),

\[
\rho' \left(\frac{1}{u'(u^{-1}(t))} \right) \bar{\mu}l_x \geq \bar{s}, \tag{22}
\]

where \(l_x = \min_x l(x | a) > 0 \). Since \(\rho' (\tau) \) diverges to \(\infty \) as \(\tau \downarrow 0 \), and since \(1/u'(u^{-1}(t)) \) goes to \(0 \) as \(t \downarrow -\infty \), such a \(u_s \) is guaranteed to exist.

Step 7 Choose \(u < u_s \). Let \(z_u(\cdot) = \rho(\bar{\lambda}_u + \bar{\mu}l(y|a)) \), where \(\bar{\lambda}_u \) solves \(\rho(\bar{\lambda}_u + \bar{\mu}l(y|a)) = u \). By Step 4, \(z_u(y) \leq u \), and so, since \(\mu_u \leq \bar{\mu} \), \(z_u(\cdot) \leq \bar{z}_u(\cdot) \). Let \(x_u,s \) be defined by \(z_u(x_u,s) = u_s \). Since \(\bar{\lambda}_u + \bar{\mu}l(y|a) = 1/u'(u^{-1}(u)) > 0 \), it follows that \(\bar{\lambda}_u + \bar{\mu}l(y_0|a) \geq -\bar{\mu}l(y|a) \), and hence

\[
\rho(\bar{\lambda}_u + \bar{\mu}l(y_0|a)) > \rho(-\bar{\mu}l(y|a)) > u_s,
\]

where the last inequality is by definition of \(u_s \) in Step 6. Thus, \(x_u,s < y_0 \).
Step 8 For all $x < x_{u,s}$, $v_u(x) \leq \bar{z}_u(x)$.

Proof of Step 8 Let $x_{u,c}$ be defined by $z_u(x_{u,c}) = u_c$. By construction, $\bar{z}_u(\cdot)$ is concave where $x \leq x_{u,c}$. Using (22), $z_u'(\cdot) > \hat{s}$ for $x < x_{u,s}$, and $z_u'(\cdot) < \hat{s}$ for $x \geq x_{u,c}$. Assume that for some $\bar{x} < x_{u,s}$, $v_u(\bar{x}) > \bar{z}_u(\bar{x}) \geq z_u(\bar{x})$. By Corollary 2, v_u is linear at \bar{x}. If $v_u'(\bar{x}) \leq z_u'(\bar{x})$, then, since \bar{z}_u is concave on $[y, x_{u,s}]$, and again using Corollary 2, v_u is also above \bar{z}_u, and hence linear, for all x in $[y, \bar{x}]$. But then,

$$v_u(y) - \bar{z}_u(y) \geq v_u(\bar{x}) - \bar{z}_u(\bar{x}) > 0,$$

contradicting that $v_u(y) = u$. Thus, $v_u'(\bar{x}) > \bar{z}_u'(\bar{x}) > \hat{s}$. But then, v_u remains linear, and hence strictly above the concave function z_u at least until $x_{u,c}$. For $x \geq x_{u,c}$, $z_u'(\bar{x}) \leq \hat{s}$, and so as before v can never re-cross \bar{z}_u, and so a fortiori can never re-cross z_u. Hence v_u is linear on $[\bar{x}, y]$; with slope at least \hat{s}. Let L be the line that agrees with v_u on $[\bar{x}, y]$. To the left of \bar{x}, v_u, being concave, lies below L. But, $\bar{x} < x_{u,s} < y_0$, and so, since $f_a(\cdot|a)$ is negative on $[y, \bar{x}]$,

$$\int v_u(x) f_a(x|a) \, dx \geq \int L(x) f_a(x|a) \, dx \geq \hat{s} > c'(a),$$

again a contradiction.

Step 9 We show that $\lim_{u \to -\infty} \int v_u(x) f_a(x|a) \, dx = \infty$. For u sufficiently negative, this provides the necessary contradiction to the original supposition that $v_u(y) = u$ for all u, proving the result.

Proof of Step 9 By Step 8, for u sufficiently negative, $v_u(x) \leq \bar{z}_u(x)$ for all $x \leq x_{u,s}$. Let v_u^T truncate v_u to never pay more than u_s. Since $\max(0, v_u(x) - u_s)$ is an increasing function, $\int \max(0, v_u(x) - u_s) f_a(x|a) \, dx \geq 0$, and hence, $\int v_u(x) f_a(x|a) \, dx \geq \int v_u^T(x) f_a(x|a) \, dx$. Note also that since $v_u(y_0) > u_s$, $v_u^T(x) = u_s$ for all $x \geq y_0$. Let \bar{z}_u^T similarly truncate \bar{z}_u to pay u_s to the right of $x_{u,s}$. Then, \bar{z}_u^T is everywhere at least as large as v_u^T, but equal to v_u^T everywhere to right of y_0. Hence, since f_a is negative to the left of y_0, we have

$$\int v_u(x) f_a(x|a) \, dx \geq \int v_u^T(x) f_a(x|a) \, dx \geq \int \bar{z}_u^T(x) f_a(x|a) \, dx.$$
To arrive at a contradiction, it would thus be enough to show that \(\int \tilde{z}_u(x) f_a(x|a) \, dx \) diverges as \(u \to -\infty \). But, by Moroni and Swinkels (2014, Lemma 4), under our regularity conditions, \(\int \tilde{z}_u(x) f_a(x|a) \, dx \) does diverge as \(u \to -\infty \).

Let

\[
 u^{**} = \rho \left(1 + \bar{\mu} \left(l(\bar{y}|a) - l(y|a) \right) \right) < \infty.
\]

Then, for all \(u \) sufficiently negative that \(\frac{1}{\bar{\mu}(u^{-1}(u))} \leq 1 \), \(\tilde{z}_u(\bar{y}) \leq u^{**} \). Hence,

\[
 \int \tilde{z}_u(x) f_a(x|a) \, dx - \int \tilde{z}_u^T(x) f_a(x|a) \, dx = \int \left(\tilde{z}_u(x) - \tilde{z}_u^T(x) \right) f_a(x|a) \, dx.
\]

\[
\leq \int_{y_0}^{\bar{y}} \left(\tilde{z}_u(x) - \tilde{z}_u^T(x) \right) f_a(x|a) \, dx
\]

\[
\leq (u^{**} - u_s) \int_{y_0}^{\bar{y}} f_a(x|a) \, dx
\]

\[
< \infty,
\]

where the first inequality follows because \(\tilde{z}_u(x) - \tilde{z}_u^T \) is weakly positive, and the second because it is bounded above by \(u^{**} - u_s \).

\[\square\]

E For Online Publication: Additional Results

E.1 Agent reports \(x \)

In this section, we allow the agent to send a contractible message \(\tilde{x} \) after he observes \(x \) but before \(y \) is realized. Payments can therefore depend on both \(\tilde{x} \) and \(y \), which allows the principal to discipline the agent from engaging in risk-taking. Restricting attention to the case where both parties are risk-neutral, we show that a linear contract is optimal in this setting.

Since the principal does not benefit from risk-taking, it is without loss to restrict attention to mechanisms that punish the agent as much as possible whenever his report does not match the final output: \(s(y) \mathbb{I}_{\{y=\tilde{x}\}} - M \mathbb{I}_{\{y\neq \tilde{x}\}} \) for some upper
semicontinuous function \(s(\cdot) \). Then the principal’s problem is

\[
\max_{a, s(\cdot)} \mathbb{E}_{F(\cdot|a), G} \left[y - s(y) \mathbb{I}_{\{y = \hat{x}\}} + M \mathbb{I}_{\{y \neq \hat{x}\}} \right]
\]

s.t. \(a, G, \hat{x} \in \arg \max_{\hat{a}, G \in G, \tilde{x}} \left\{ \mathbb{E}_{F(\cdot|\hat{a}), \tilde{G}} \left[s(y) \mathbb{I}_{\{y = \tilde{x}\}} - M \mathbb{I}_{\{y \neq \tilde{x}\}} \right] - c(\hat{a}) \right\} \)

\[
\mathbb{E}_{F(\cdot|a), G} \left[s(y) \mathbb{I}_{\{y = \tilde{x}\}} - M \mathbb{I}_{\{y \neq \tilde{x}\}} \right] - c(a) \geq u_0
\]

where \(\tilde{x} \) maps \(x \) to a report made to the principal.

Fix \(s(\cdot) \), and consider the agent’s choice of \(G_x \) and \(\tilde{x} \) following any intermediate output \(x > y \). Define

\[
\lambda_s(x) = \max \left\{ \lambda : \lambda(y - y) - M = s(y) \text{ for some } y \geq x \right\}.
\]

Intuitively, \(\lambda_s(x) \) is the smallest slope such that \(\lambda_s(x)(y - y) - M \geq s(y) \) for all \(y \geq x \).

We show that following intermediate output \(x > y \), the agent optimally chooses \(G_x \) and \(\tilde{x} \) so that his expected payoff is \(\lambda_s(x)(x - y) - M \).

Lemma 6. For any \(s(\cdot) \) and \(x \in \mathcal{Y} \), the principal’s expected payment to the agent equals:

\[
\sigma_s(x) \equiv \max_{G_x, \tilde{x}} \left\{ \mathbb{E}_{G_x} \left[s(y) \mathbb{I}_{\{y = \tilde{x}\}} - M \mathbb{I}_{\{y \neq \tilde{x}\}} \right] \right\} = \begin{cases} s(y) \quad & \text{if } x = y \\ \lambda_s(x)(x - y) - M \quad & \text{if } x > y \end{cases}.
\]

Proof. Fix \(s(\cdot) \) and \(x > y \). First, we show that there exists some \(G_x \) and \(\tilde{x} \) such that \(\mathbb{E}_{G_x} \left[s(y) \mathbb{I}_{\{y = \hat{x}\}} - M \mathbb{I}_{\{y \neq \hat{x}\}} \right] = \lambda_s(x)(x - y) - M \). By definition of \(\lambda_s(\cdot) \), there exists a \(\hat{y} \geq x \) such that \(\lambda_s(x)(\hat{y} - y) - M = s(\hat{y}) \). Let \(\hat{x} = \hat{y} \) and \(G_x(y) = (1 - p_{\hat{y}}) + p_{\hat{y}} \mathbb{I}_{\{y \geq \hat{y}\}} \), where \(p_{\hat{y}} = \frac{x - y}{\hat{y} - y} \); i.e., \(y = \hat{y} \) with probability \(1 - p_{\hat{y}} \), and \(y = \hat{y} \) with probability \(p_{\hat{y}} \).

\footnote{If \(x = y \), then the agent is compelled to choose \(G_y(y) = 1 \), so his expected payoff is equal to \(s(y) \).}
Then the agent’s expected payoff is

\[
p_y s(\hat{y}) - (1 - p_y)M = \frac{x - y}{\hat{y} - y} s(\hat{y}) - \frac{\hat{y} - x}{\hat{y} - y} M
\]

\[
= \frac{x - y}{\hat{y} - y} \left[\lambda_s(x)(\hat{y} - y) - M \right] - \frac{\hat{y} - x}{\hat{y} - y} M
\]

\[
= \lambda_s(x)(x - y) - M.
\]

Next, we show that the agent cannot earn more than \(\lambda_s(x)(x - y) - M\) following intermediate output \(x\). For any report \(\hat{x}\), the agent earns more than \(-M\) only if \(y = \hat{x}\), so his optimal distribution \(G_x\) maximizes the probability that \(y = \hat{x}\) subject to the constraint that \(\mathbb{E}_{G_x}[y] = x\). This is accomplished by choosing \(G_x(\cdot)\) such that \(y = \hat{x}\) with some probability \(p_{\hat{x}}\) and \(y = y\) with probability \(1 - p_{\hat{x}}\), where \(p_{\hat{x}} \hat{x} + (1 - p_{\hat{x}}) y = x\). It suffices to show that the agent’s expected payoff under this distribution is maximized if \(\hat{x} = \hat{y}\).

Suppose that there exists some \(\hat{x} \neq \hat{y}\) such that \(p_{\hat{x}} s(\hat{x}) - (1 - p_{\hat{x}}) M > p_y s(\hat{y}) - (1 - p_y) M = \lambda_s(x)(x - y) - M\). Then there must exist some \(\hat{\lambda} > \lambda_s(x)\) such that \(\hat{\lambda}(\hat{x} - y) - M = s(\hat{x})\), which contradicts the definition of \(\lambda_s(x)\). Therefore, for all \(x\), the agent’s expected payoff equals \(\lambda_s(x)(x - y) - M\).

To see this result, recall that the agent earns \(-M\) whenever his report does not equal the realized output. Therefore, if he misreports \(\hat{x} \neq x\), then he chooses \(G_x\) to maximize the probability that \(y = \hat{x}\). In particular, it is optimal for \(G_x\) to put weight on only two points, \(\hat{x}\) and \(y\). Given this \(\hat{x}\), the agent’s payoff can be written as \(p_{\hat{x}} s(\hat{x}) - (1 - p_{\hat{x}}) M\), where \(p_{\hat{x}} \hat{x} + (1 - p_{\hat{x}}) y = x\). It can be shown that the agent’s payoff can be rewritten as \(\lambda(x - y) - M\), where \(\lambda \leq \lambda_s(x)\). There exists some report \(\hat{x}\) that sets \(\lambda = \lambda_s(x)\), proving the result.

Using Lemma 6, we can rewrite the principal’s problem as

\[
\max_{a, s(\cdot)} \mathbb{E}_{F(\cdot|a)} \left[x - \sigma_s(x) \right]
\]

subject to

\[
a \in \arg \max \left\{ \mathbb{E}_{F(\cdot|a)} \left[\sigma_s(x) \right] - c(\hat{a}) \right\}
\]

\[
\mathbb{E}_{F(\cdot|a)} \left[\sigma_s(x) \right] - c(a) \geq u_0
\]

\[
s(\cdot) \geq -M
\]

where for any contract \(s(\cdot)\), \(\sigma_s(\cdot)\) is given by \(25\).
Recall the definition of \(s^L_a(\cdot) \) from Section 4. We show that if \(a \geq 0 \) is such that \([LL]\) holds with equality after \(y \) under \(s^L_a(\cdot) \), then \(s^L_a(\cdot) \) implements \(a \) at maximum profit in this setting. Consequently, if \([LL]\) binds for the optimal \(a \geq 0 \), then a linear contract is optimal as in Proposition 2.

Proposition 11. Fix any effort \(a \geq 0 \). If \(s^L_a(y) = -M \), then \(s^L_a(\cdot) \) implements \(a \) at maximum profit.

Proof. Note that \(\lambda_\hat{s}(\cdot) \) is decreasing for any \(s(\cdot) \), and moreover is constant for all \(x \in Y \) if \(s(\cdot) \) is affine. Let \(\hat{s}(\cdot) \) implement \(a \) at maximum profit, and suppose there exists \(x_L < x_H \) such that \(\lambda_{\hat{s}}(x_L) > \lambda_{\hat{s}}(x_H) \).

Define \(s_L(y) = \beta(y-y) - M \), where \(\beta \) is chosen such that \(\mathbb{E}_{F(\cdot|a)}[s_L(y) - \lambda_{\hat{s}}(y)(y-y) + M] = 0 \). Such a \(\beta \) exists by the intermediate value theorem because \(\lambda_{\hat{s}}(y) \geq 0 \) is finite. Since \(\lambda_{\hat{s}}(\cdot) \) is strictly decreasing over some interval, there exists some \(y^* \in (y, \hat{y}) \) such that \(\lambda_{\hat{s}}(y) \geq \beta \) if and only if \(y \leq y^* \). Then \(\beta - \lambda_{\hat{s}}(y) \) is first negative and then positive, \(\int [\beta - \lambda_{\hat{s}}(y)](y-y) f(y|a) dy = 0 \) by construction, and \(\frac{f(y^*|a)}{f(\cdot|a)} \) is strictly increasing, so Beesack’s inequality implies that

\[
\int [\beta - \lambda_{\hat{s}}(y)](y-y) f(y|a) dy > 0.
\]

Therefore, \(s_L(\cdot) \) implements some effort level \(a' > a \), which implies that \(\beta > c'(a) \).

Observe that \(s^L_a(y) < s_L(y) \) for all \(y > \hat{y} \), because \(s^L_a(y) = -M \) by assumption and \(c'(a) < \beta \). Moreover, \(s^L_a(\cdot) \) implements \(a \) and satisfies both the individual rationality and limited liability constraints. Therefore, \(s^L_a(\cdot) \) implements effort \(a \) at strictly higher profit than \(\hat{s}(\cdot) \). So \(\lambda_{\hat{s}}(\cdot) \) must be constant and \(\sigma_{\hat{s}}(y) = -M \), in which case \(s^L_a(\cdot) \) is also optimal. \(\square \)

E.2 Mild Sufficient Conditions for Proposition 3

This Appendix gives sufficient conditions under which \(\rho(\lambda + \mu l(\cdot|a)) \) is first convex and then concave. We show that this case obtains if \(\text{con} \ (p') + \text{con} \ (l_y) > -1 \), where for an interval \(X \subseteq \mathbb{R} \) and analytic function \(h : X \rightarrow \mathbb{R}_+ \), \(\text{con}(h) = \inf_X \left\{ 1 - (hh'')/(h')^2 \right\} \).

For any analytic function \(q \) with domain a subset of the reals, let \(q^{(k)} \) be the \(k \)-th derivative of \(q \).
Lemma 7. Assume \(q > 0 \) is not everywhere a constant, is analytic, and has \(\text{con}(q) = \omega > -\infty \). Assume also that for some \(\hat{y} \) on the interior of its domain, \(q'(\hat{y}) = 0 \). Let \(\hat{k} = \min \{ k | q^{(k)}(\hat{y}) \neq 0 \} \). Then, \(q^{(\hat{k})}(\hat{y}) < 0 \).

Proof. Note that \(\hat{k} \geq 2 \). Recall that \(q \) has concavity \(\omega \) if \(q^\omega/\omega \) is concave, or, equivalently (cancelling the strictly positive term \(q^{\omega-2} \)), if for all \(y \) in the domain of \(q \),

\[
\xi(y) \equiv (\omega - 1)(q'(y))^2 + q(y)q''(y) \leq 0.
\]

So, in particular, if \(\hat{k} = 2 \), then we must have \(q''(\hat{y}) < 0 \), since \(\xi(\hat{y}) \leq 0 \). Note that for \(k \in \{0, 1, 2, \cdots\} \)

\[
\xi^{(k)}(\hat{y}) = d(\hat{y}) + q(\hat{y})q^{(k+2)}(\hat{y}),
\]

where \(d \) is an expression involving derivatives of \(q \) of order less than \(k+2 \). So, the first non-zero term of the Taylor expansion of \(\xi \) is \(\xi^{(k-2)}(\hat{y})(y-\hat{y})^{k-2} \), where \(\xi^{(k-2)}(\hat{y}) = q(\hat{y})q^{(k)}(\hat{y}) \). Hence, since \((y-\hat{y})^{k-2} > 0 \) for \(y > \hat{y} \), while \(\xi(y) \leq 0 \), \(q^{(k)}(\hat{y}) \), which is non-zero by assumption, must be strictly negative.

Using this lemma, we can prove the following claim, from which our sufficient condition is immediate.

Claim 2. Let \(g \) and \(h \) be strictly positive analytic functions with \(\text{con}(g') + \text{con}(h') > -1 \), and \(g' \) and \(h' \) everywhere strictly positive. Then, \((g(h(\cdot))) \) is never first strictly concave and then weakly convex.

Proof. Let

\[
\theta(\cdot) = (g(h(\cdot)))'' = g''(h')^2 + g'h''.
\]

(26)

If both \(g \) and \(h \) are linear, then \(\theta \equiv 0 \), and we are done. Assume \(g \) and \(h \) are not both linear, and consider any point \(\hat{y} \) at which \(\theta = 0 \). We will show that immediately to the right of \(\hat{y} \), \(\theta < 0 \). This rules out that \(\theta \) is ever first strictly negative and then weakly positive over any interval of non-zero length.

To see this, note that

\[
\theta' = g'''(h')^3 + 3g''h'h'' + g'h'''.
\]

(27)

Consider any point \(\hat{y} \) at which \(\theta = 0 \). Consider first the case that \(g''(\hat{y})h''(\hat{y}) \neq 0 \).
Then, since $g' > 0$, it follows by (26) that $g''(\hat{y})$ and $h''(\hat{y})$ have opposite sign. Hence, $g''(\hat{y}) h''(\hat{y}) h'(\hat{y}) < 0$, and so, evaluated at \hat{y},

$$
\theta' = -\frac{g'''(h')^2}{g''h''} - 3 - \frac{g'h''}{g''h'h'}
\leq - \text{con}(g') - \text{con}(h') - 1 < 0
$$

where in the second line we substitute for $(h')^2$ in the first term using (26) and that $\theta'(\hat{y}) = 0$, and similarly for g' in the third term. Hence, θ is negative on an interval to the right of \hat{y}.

Assume instead that $g''(\hat{y}) h''(\hat{y}) = 0$, where, since $\theta'(\hat{y}) = 0$, it follows that $g''(\hat{y}) = h''(\hat{y}) = 0$. Thus, since $\text{con}(g') > -\infty$, it follows from Lemma 7 applied to $q = g'$ that the first non-zero derivative of g' is strictly negative, and similarly for h'. But then, the first non-zero derivative of θ will be of the form $g^{(k)}(h')^k + g'h^{(k)}$ with $k \geq 3$, and at least one term strictly negative, and so, taking a Taylor expansion, θ is strictly negative on an interval to the right of \hat{y}, and we are done.

\[\square\]
Proposition 2 implies that the principal’s expected payment from inducing \(a^* \geq 0 \) equals \(E_{F(\cdot | a^*)}[\pi(y - c'(a^*)(y - \bar{y}) + w)] \). For small enough \(\bar{y} \), \(s_{a^*}^L(\bar{y}) = -M \). But then implementing \(a^* > 0 \) becomes arbitrarily costly as \(\bar{y} \to -\infty \), in which case the principal is better off not motivating the agent at all. If the principal is risk-neutral, then we can show that the principal’s profit under \(s_{a^*}^L(\cdot) \) is supermodular in \(a^* \) and \(y \), so that \(a^* \) is increasing in \(y \).

Proof. Fix \(\hat{a} > 0 \). Define

\[
y_1 \equiv \min_{a \in [\hat{a}, a^{FB}]} \left\{ a - \frac{c(a) + u_0 + M}{c'(a)} \right\},
\]

and

\[
y_2 \equiv \min_{a \in [\hat{a}, a^{FB}]} \left\{ \frac{u^{-1}(u_0) - (1 - c'(a)\hat{a}) - M}{c'(\hat{a})} \right\},
\]

and note that since \(c'(a) \geq c'(\hat{a}) > 0 \) for all \(a \geq \hat{a} \), \(y_{min} \equiv \min\{0, y_1, y_2\} > -\infty \).

Let \(y < y_{min} \), and suppose towards a contradiction that there exists a distribution \(F(\cdot | a) \) on \([\bar{y}, \hat{y}] \) such that effort \(a^* \geq \hat{a} \) is optimal under \(F(\cdot | a) \). Note first that Proposition 2 implies that the principal’s expected payoff equals

\[
E_{F(\cdot | a^*)}[\pi(y - s_{a^*}^L(y))] = E_{F(\cdot | a^*)}[\pi(y - c'(a^*)(y - \bar{y}) + \min \{ M, c'(a^*)(a^* - \bar{y}) - c(a^*) - u_0 \})].
\]

Since \(\bar{y} < y_1 \), \(c'(a^*)(a^* - \bar{y}) - c(a^*) - u_0 > M \). Furthermore, the principal’s payoff is bounded above by

\[
\pi \left((1 - c'(a^*))a^* + c'(a^*)\bar{y} + M \right)
\]

by Jensen’s inequality. Since \(y < \min\{0, y_2\} \), \((1 - c'(a))a + c'(a)y + M < u^{-1}(u_0) \) for any \(a \in [\hat{a}, a^{FB}] \). But then \(a^* \geq \hat{a} \) cannot be optimal because it is strictly dominated by \(a^* = 0 \) and \(s(\cdot) \equiv u^{-1}(u_0) \), a contradiction. Hence, for \(y < y_{min} \), any distribution \(F(\cdot | a) \), and any optimal \(a^* \), it must be that \(a^* < \hat{a} \). Since \(\hat{a} > 0 \) is arbitrary, \(\lim_{\bar{y} \to -\infty} a^* = 0 \).

Suppose \(\pi(y) \equiv y \). To prove that \(a^* \) is increasing in \(y \), it suffices to show that the principal’s payoff from implementing \(a \) in an optimal contract, \(\Pi(a, y) = a - c'(a)(a - y) + w \), is supermodular in \(a \) and \(y \).

Recall that \(w = \min\{ M, c'(a)(a - \bar{y}) - c(a) - u_0 \} \) is a function of \((a, y) \). Therefore,

\[
\frac{\partial \Pi}{\partial a} = 1 - c''(a)(a - y) - c'(a) + \frac{\partial w}{\partial a}
\]
and so
\[\frac{\partial^2 \Pi}{\partial y \partial a} = c''(a) + \frac{\partial^2 w}{\partial y \partial a}. \]

But \(\frac{\partial^2 w}{\partial y \partial a} = 0 \) if \(M < c'(a)(a - y) - c(a) - u_0 \) and \(\frac{\partial^2 w}{\partial y \partial a} = -c''(a) \) otherwise. In either case, \(\frac{\partial^2 \Pi}{\partial y \partial a} \geq 0 \) and so optimal effort \(a^* \) is increasing in \(y \), as desired. \(\square \)