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W e consider the retail planning problem in which the retailer chooses suppliers and determines the production, dis-
tribution, and inventory planning for products with uncertain demand to minimize total expected costs. This prob-

lem is often faced by large retail chains that carry private-label products. We formulate this problem as a convex-mixed
integer program and show that it is strongly NP-hard. We determine a lower bound by applying a Lagrangian relaxation
and show that this bound outperforms the standard convex programming relaxation while being computationally effi-
cient. We also establish a worst-case error bound for the Lagrangian relaxation. We then develop heuristics to generate
feasible solutions. Our computational results indicate that our convex programming heuristic yields feasible solutions that
are close to optimal with an average suboptimality gap at 3.4%. We also develop managerial insights for practitioners
who choose suppliers and make production, distribution, and inventory decisions in the supply chain.
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1. Introduction

Retail store chains typically carry private-label mer-
chandise. For example, the department store chain
Macy’s carries several private-label brands such as
Alfani, Club Room, Hotel Collection, and others. Sim-
ilarly, Target, J. C. Penney, and others carry their own
private-label brands. Other retail store chains such as
GAP, H&M, and Zara carry private-label products
exclusively. Private labels allow firms to differentiate
their products from those of their competitors and
enhance customer loyalty, and they typically provide
higher profit margins. However, these benefits are
accompanied by additional challenges. The retailer
must plan the entire supply chain by selecting suppli-
ers and by making decisions on production, distribu-
tion, and inventory at the retail (and possibly other)
locations for each of these private-label products to
minimize total costs. This problem can be complicated
when there is a large number of products with uncer-
tain demand that can be sourced from various suppli-
ers, and they are distributed across various demand
zones. An example of such a supply chain is illus-
trated in Figure 1.
Private-label products can be produced in-house, or

production can be outsourced to third-party suppli-
ers. Without loss of generality, we refer to these
options as suppliers. Supplier choice entails fixed
costs such as building and staffing a plant when

producing in-house or negotiating, contracting, and
control costs when outsourcing it. Each production
facility can manufacture multiple products inter-
changeably, and there are economies of scale in manu-
facturing and distribution. Demand at each zone (i.e.,
store or city) is stochastic, and inventory is carried at
every demand zone. Here, demand zones can be inter-
preted either as retail stores or as distribution centers
(DCs).1 The retailer incurs overstock and understock
costs for leftover inventory and unmet demand,
respectively. In this context, there are three types of
decisions. First, the retailers need to decide which
suppliers to choose. Second, they need to conduct pro-
duction and logistics planning. Third, inventory man-
agement decisions on how much of each product to
stock at each demand zone need to be made.
We develop the retail planning problem (RPP)

under uncertainty to address these decisions. In this
problem, we model the selection of suppliers, produc-
tion, distribution, and inventory decisions faced by
the retailer as a nonlinear mixed-integer program that
minimizes total expected costs. We show that this
problem is convex and strongly NP-hard. An interest-
ing attribute of this problem is that it combines two
well-known subproblems: a generalized multi-com-
modity facility location problem and a newsvendor
problem. We exploit this structure to develop compu-
tationally efficient heuristics to generate feasible solu-
tions. In addition, we apply a Lagrangian relaxation
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to obtain a lower bound, which we use to assess the
quality of the feasible solutions provided by the heu-
ristics. We show that the feasible solutions of a convex
programming heuristic are close to optimal, on
average within 3.4% of optimal, while in the majority
of cases they are closer to optimal, as evidenced by
the 2.8% median suboptimality gap. Furthermore, the
performance gap of this heuristic improves with
larger problem sizes, and the computational time of
this heuristic scales up approximately linearly in the
problem size. We also conduct robustness checks and
find that the performance of this heuristic, as well as
its advantage relative to the benchmark practitioner’s
heuristic, is not sensitive to changes in the prob-
lem parameters. All these are desirable attributes
for potential implementation in large-sized, real
applications.
Our analysis enables us to draw several managerial

insights. First, the optimal inventory level when solv-
ing the joint supplier choice, production, distribution,
and inventory problem is smaller than when the
inventory subproblem is solved separately. This is
because when solving the joint problem, the solution
accounts for the fact that a larger downstream inven-
tory level raises production quantities, which
increases upstream production and distribution costs
as well as the costs associated with establishing pro-
duction capacity. In contrast, these costs are not con-
sidered when the inventory subproblem is solved
separately, and hence result in a larger inventory
level. Thus, to minimize total supply chain costs, one
needs to adopt an integrated approach to solve the
joint problem by considering the effect of downstream
inventory decisions on upstream production and dis-

tribution costs. Our model provides a framework to
analyze these decisions. Second, the two major costs
that influence total (expected) supply chain costs are
production costs and the understock costs associated
with the variance in demand. Therefore, retailers
should focus on reducing these costs first before
considering the effects of supplier capacity and con-
tracting costs. Third, it is important to consider estab-
lishment, production, distribution, and inventory
costs together when choosing suppliers, because a
supplier who is desirable in any one of these aspects
may in fact not be the best overall choice. Our analysis
provides a mechanism to integrate these aspects and
pick the best set of suppliers.
As one of the decisions considered in the RPP

under demand uncertainty is the establishment of
production capacity by the explicit choice of suppli-
ers, this problem can be placed in the broad category
of facility location problems under uncertain demand.
Aikens (1985), Drezner (1995), Melo et al. (2009),
Owen and Daskin (1998), and Snyder (2006) provide
extensive reviews. The problem with stochastic
demand was first studied by Balachandran and Jain
(1976) and Le Blanc (1977), who developed a branch
and bound procedure and a Lagrangian heuristic,
respectively. This study generalizes their models by
considering multiple products, as well as incorporat-
ing economies of scale in production and distribution.
This study can also be placed in the general area of

integrated supply chain models. Shen (2007) pro-
vided a comprehensive review of this area. In partic-
ular, this study is related to Daskin et al. (2002) and
Shen et al. (2003), who studied a location-inventory
problem in a supplier–DC–retailer network. Here,

Figure 1 The Retail Supply Chain for Private-label Products
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the planner’s problem is to determine which DCs to
establish, the inventory replenishment policy at each
DC, and logistics between DCs and retailers. Daskin
et al. (2002) and Shen et al. (2003) solved this
problem by using a Lagrangian relaxation and a col-
umn-generation approach, respectively. Shen (2005)
studied a multi-commodity extension of Daskin et al.
(2002) with economies of scale but without explicitly
modeling inventory decisions and without capacity
constraints. Relative to these papers, we incorporate
economies of scale in both production and distribu-
tion as well as capacity constraints at each supplier.
Moreover, we explicitly model the inventory prob-
lem. Here, by using the newsvendor instead of a
replenishment model to make inventory decisions,
we capture features of the retail fashion industry,
where lead times are long relative to product life
cycles so that inventory cannot be replenished mid-
season, and unmet demand is lost, resulting in
underage costs.2 A related problem was also studied
by Oszen et al. (2008), who studied a capacitated
extension of Shen et al. (2003). However, unlike these
papers, we focus on the joint supplier choice, logistics,
and inventory planning problem, as opposed to the
risk pooling effects from strategically locating DCs.
This is because manufacturing is often outsourced to
third-party suppliers and contracts are volume based,
and production, and inventory decisions are best
made simultaneously (Fisher and Rajaram 2000).3

Finally, in contrast to all these papers, we consider
an important problem faced by retail chains carrying
private-label products, propose an effective method-
ology to generate feasible solutions for this problem,
test it on realistic data to assess its performance, and
develop insights that practitioners can use for choos-
ing suppliers and making production, distribution,
and inventory decisions.
The article is organized as follows: In section 2,

we present the basic model formulation; in section 3,
we discuss the corresponding Lagrangian relaxation;
while in section 4, we propose heuristics. In section 5,
we present results from our numerical study. In
section 6, we summarize and provide future research
directions.

2. Model Formulation

We formulate the RPP under uncertainty as a nonlin-
ear mixed-integer program. To provide a precise
statement of this problem, we define:
Indices:

I,J,K: The set of possible suppliers, demand zones,
and products, respectively.
i,j,k: The subscripts for suppliers, demand zones,
and products, respectively.

Parameters:

fi: Fixed annualized cost associated with choosing
supplier i.
dik: Setup cost associated with producing product
k at supplier i.
eij: Setup cost associated with shipping from sup-
plier i to demand zone j.
cijk: Marginal cost to produce and ship product k
from supplier i to demand zone j.
Li;Ui: Minimum acceptable throughput and
capacity of supplier i, respectively.
aijk: Units of capacity consumed by a unit of
product k at supplier i that is shipped to demand
zone j.
hjk=pjk: Per unit overstock/understock cost associ-
ated with satisfying demand for product k at
demand zone j.
UjkðnÞ=/jkðnÞ: The cumulative/probability density
function of the demand distribution for product k
at demand zone j.

Decision variables:

zi: 0–1 variable that equals 1 if supplier i is cho-
sen to supply products and 0 otherwise.
wik: 0–1 variable that equals 1 if product k is pro-
duced in supplier i and 0 otherwise.
vij: 0–1 variable that equals 1 if supplier i ships to
demand zone j and 0 otherwise.
xijk: Quantity of product k shipped from supplier
i to demand zone j.
yjk: Inventory level of product k carried at
demand zone j.

To capture economies of scale so that per-unit pro-
duction and shipping costs decrease in quantity, we
approximate these costs by a setup cost dik that is
incurred to initiate production for each product k at
every supplier i, a setup cost eij that is incurred to ship
from each supplier i to every demand zone j, and a
constant marginal cost (cijk) that is incurred to pro-
duce and distribute each additional unit. While a
more complex cost structure could be desirable in
some applications, we employ this structure as it cap-
tures economies of scale and it permits structural
analysis of the problem.
To model the inventory problem faced by the

retailer, we employ the newsvendor model. In contrast
to Daskin et al. (2002) and Shen et al. (2003), who use a
(Q,r) replenishment model, this study is motivated by
the fashion retail industry, where merchandise is often
seasonal and lead times are long relative to the season
length. Consequently, the retailer cannot replenish
inventory mid-season, so unmet demand is lost, while
leftover demand needs to be salvaged via mark-downs
at the end of the season. Therefore, the standard
single-period newsvendor model would seem most
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appropriate here. Under this model, let SjkðyÞ denote
the expected overstock and understock cost associated
with carrying y units of inventory for product k at
demand zone j. This can be written as

SjkðyÞ ¼hjk

Z y

0

ðy� nÞ/jkðnÞdn

þ pjk

Z 1

y
ðn� yÞ/jkðnÞdn

¼) SjkðyÞ ¼ðhjk þ pjkÞ
Z y

0

UjkðnÞdnþ pjk½EðnÞ � y�:
ð1Þ

The problem of supplier selection, production, dis-
tribution, and inventory planning faced by the retailer
can be expressed by the following nonlinear mixed-
integer program, which we call the RPP:

ðRPPÞ
ZP ¼min

(X
i2I

fizi þ
X
i2I

X
k2K

dikwik þP
i2I

P
j2J

eijvij

þP
i2I

P
j2J

P
k2K

cijkxijk þ
P
j2J

P
k2K

Sjk yjk
� �)

subject to X
i2I

xijk ¼ yjk 8j 2 J; k 2 K ð2Þ

Lizi �
X
j

X
k

aijkxijk �Uizi 8i 2 I ð3Þ

X
j2J

aijkxijk �Uiwik 8i 2 I; k 2 K ð4Þ

X
k2K

aijkxijk �Uivij 8i 2 I; j 2 J ð5Þ

xijk � 0; yjk � 0 8i 2 I; j 2 J; k 2 K ð6Þ

wik 2 0; 1f g; vij 2 0; 1f g; zi 2 0; 1f g 8i 2 I; j 2 J; k 2 K:

ð7Þ
The objective function of the RPP consists of four

terms. The first term represents the annualized fixed
cost associated with securing capacity at supplier i.
The second term represents the setup cost associated
with production, while the third term represents the
setup cost associated with distribution. The fourth
term represents the corresponding (constant) mar-
ginal production and distribution costs. The fifth term
represents the total expected cost associated with car-
rying inventory at the demand zones.
Constraint (2) ensures that total inventory level for

each product at every demand zone equals the total
quantity produced and shipped to that zone. Note that

it is also a coupling constraint. Were it not for Equation
(2), the RPP would decompose by supplier i into a set
of mixed-integer linear problems, and by demand
zone j and product k into a set of newsvendor prob-
lems. This observation suggests that this may be a
good candidate constraint to use in any eventual
decomposition of the problem. The left-hand side
inequality of Equation (3) imposes a lower bound on
the minimum allowable throughput of a supplier, if
the supplier is selected. A lower bound on a supplier’s
throughput may be desirable to achieve sufficient
economies of scale. The right-hand side inequality of
Equation (3) imposes the capacity constraint (i.e., Ui)
for each supplier that is selected, and it enforces that
no production will take place with suppliers that are
not selected. Constraint (4) enforces the condition that
xijk [ 0 if and only if product k is produced at supplier
i (i.e., iff wik ¼ 1 for some j ∈ J), while Equation (5)
enforces the condition that xijk [ 0 if and only if some
quantity is shipped from supplier i to demand zone j
(i.e., iff vij ¼ 1 for some k ∈ K). Finally, Equation (6)
are nonnegativity constraints, while Equation (7) are
binary constraints.
Observe that the RPP is a convex mixed-integer

program, as it consists of a linear generalized facility
location subproblem and a convex inventory planning
subproblem. By noting that the capacitated plant loca-
tion problem (CPLP) is strongly NP-hard (Cornuejols
et al. 1991), it can be shown that the RPP is also
strongly NP-hard.4 Therefore, it is unlikely that real-
sized problems can be solved to optimality. We verify
this in our computational results. Consequently, it is
desirable to develop heuristics to address this prob-
lem. The quality of these heuristics can be assessed by
comparing them to a lower bound, which we estab-
lish in the next section.

3. Decomposition and Lower Bounds

To obtain a tight lower bound, we apply a Lagrangian
relaxation to the RPP (see Fisher 1981, Geoffrion
1974). An important issue when designing a Lagrang-
ian relaxation is deciding which constraints to relax.
In making this choice, it is important to strike a suit-
able compromise between solving the relaxed prob-
lem efficiently and yielding a relatively tight bound.
Observe that by relaxing (2), the problem can be
decomposed into a mixed-integer linear program
(MILP) containing the xijk, wik, vij, and zi variables,
and into a convex program containing the yjk vari-
ables. Moreover, this relaxation enables us to further
decompose the MILP by supplier (i.e., by i), and the
convex program by demand zone and product (i.e.,
by j and k) into multiple subproblems. A key attribute
of this decomposition is that all subproblems can be
solved analytically. On the other hand, a potential
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concern is that this decomposition generates a rela-
tively large number of dual multipliers: J 9 K of
them, which we denote by kjk. Relaxing (2) for a given
J 9 K � matrix k of multipliers, the Lagrangian func-
tion takes the following form:

LðkÞ ¼min
X
i2I

"
fizi þ

X
k2K

dikwik þ
X
j2J

ðcijk � kjkÞxijk
0
@

1
A

þ
X
j2J

eijvij

#
þ
X
j2J

X
k2K

½kjkyjk þ SjkðyjkÞ� ð8Þ

subject to Equations (3)–(7).
Note that (Lk) decomposes by i into I independent

production and distribution subproblems, and by j and
k into J 9 K independent inventory subproblems. More
specifically, Equation (8) can be rewritten as follows:

LðkÞ ¼
X
i2I

L
milp
i ðkÞ þ

X
j2J

X
k2K

Lcvxjk ðkÞ

where

L
milp
i ðkÞ ¼

min fizi þ
X
k2K

dikwik þ
X
j2J

ðcijk � kjkÞxijk
2
4

3
5þ

X
j2J

eijvij

8<
:

9=
;

and

Lcvxjk ðkÞ ¼ minfkjkyjk þ SjkðyjkÞg:
Note that the Lagrangian multipliers in the produc-
tion and distribution subproblems (i.e., L

milp
i ðkÞ) can

be interpreted as the cost saved (or cost incurred if
kjk \ 0) from producing and distributing an addi-
tional unit of product k to demand zone j. On the
other hand, the Lagrangian multipliers in the inven-
tory subproblems (i.e., Lcvxjk ðkÞ) can be interpreted as
the change in holding cost associated with carrying
an additional unit of inventory of product k at
demand zone j.
For any given set of multipliers k, Proposition 1

determines the optimal solution for ðLkÞ, thus provid-
ing a lower bound for the RPP.

PROPOSITION 1. For given set of multipliers k 2 RJ�K,
a lower bound for the RPP is given by

LðkÞ ¼
X
i2I

min

(
minj2J

(
eij

þmink2K

(
dik þ ðcijk � kjkÞ Ui

aijk

))
þ fi; 0

)

þ
X
j2J

X
k2K

pjkEjkðnÞ � ðpjk þ hjkÞ
Z yjkðkjkÞ

0

n/jkðnÞdn
" #

;

ð9Þ

where

yjkðkÞ ¼
U� 1

jk ð1Þ ifkjk � � hjk

U�1
jk

pjk�kjk
pjkþhjk

� �
if � hjk � kjk � pjk

U�1
jk ð0Þ ifkjk � pjk:

8>><
>>: ð10Þ

PROOF. To begin, fix k 2 RJ�K. Let us first consider
each production and distribution subproblem. To
solve each subproblem, we apply the integer lineari-
zation principle by Geoffrion (1974). First, observe
that if zi ¼ 0, then L

milp
i ¼ 0. Hence, the optimal

solution must satisfy L
milp
i ðkÞ � 0. As a result, we fix

zi ¼ 1 and solve

L
milp
i ðk; zi ¼ 1Þ,min

X
k2K

dikwik þ
X
j2J

ðcijk � kjkÞxijk
2
4

3
5

þ
X
j2J

eijvij þ fi

subject to Equations (3)–(7).
Because the problem is linear, using Equation (3) it

can easily be shown that xijkðkÞ 2 f0; Ui

aijk
g. Using that

L
milp
i ðkÞ � 0, Equations (4), (5), and (7), it follows

that

L
milp
i ðkÞ ¼min

(
min
j2J

(
eij þmin

k2K

(
dik

þ ðcijk � kjkÞ Ui

aijk

))
þ fi; 0

)
:

Next, consider each inventory subproblem. It is
easy to show that this problem is convex in yjk and
by solving the first-order condition with respect to
yjk, we obtain Equation (10), where U�1

jk ð�Þ denotes
the inverse of Ujkð�Þ. Finally, by using Equation (1)
and yjkðkjkÞ, it is easy to show that for each j ∈ J
and k ∈ K, Lcvxjk ðkjkÞ can be written as

Lcvxjk ðkjkÞ ¼ pjkEjkðnÞ � ðpjk þ hjkÞ
Z yjkðkjkÞ

0

n/jkðnÞdn:

By noting that a lower bound can be obtained by
LðkÞ ¼ P

i2I L
milp
i ðkÞ þ P

j2J
P

k2K L
cvx
jk ðkÞ, the proof is

complete. h

Note that the Lagrangian solution will chose a
supplier (i.e., set ziðkÞ ¼ 1) if and only if the cost sav-
ings associated with producing and distributing
an additional unit of product k to demand zone j
exceed the fixed cost associated with choosing this
supplier for at least some j and k (i.e., if and only
if �minj2J eij þ mink2K dik þ ðcijk � kjkÞ Ui

aijk

n on o
� fi.
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However, this solution may not be feasible. Thus, the
purpose of this solution is more to establish the value
of the objective function of (Lk), which is a lower
bound on the value of the optimal solution of the
RPP. This lower bound can then be used to evaluate
the quality of any feasible solution generated by heu-
ristics for this problem. In the unlikely event that the
corresponding solution is feasible for the original
problem, it then solves the RPP optimally.
In Lemma 1, we show that the Lagrangian problem

(Lk) does not possess the integrality property (see
Geoffrion 1974). Therefore, the Lagrangian bound is
likely to be strictly better than that of a convex pro-
gramming relaxation (i.e., the relaxation that is obtained
by replacing the binary constraints in Equation (7) by
the continuous interval [0,1] for the RPP). We confirm
this in our computational results in section 5.

LEMMA 1. The Lagrangian problem (Lk) does not possess
the integrality property.

PROOF. It suffices to show that a convex program-
ming relaxation of the RPP where Equation (7) is
replaced by

0�wik � 1; 0� vij � 1, and 0� zi � 1 8i 2 I; j 2 J; k 2 K

does not yield a solution such that the w, v,
and z variables are integral. We prove this by
constructing a counterexample as follows: Let |J| = |
K| = 1, ei1 ¼ di1 ¼ Li ¼ 0 8i 2 I; ai11 ¼ 1 8i 2 I, and
U11ðnÞ ¼ n. To simplify exposition, in the remain-
der of this proof we drop the subscripts j and k.
Observe that by cost minimization, ∀i we will have
that zi ¼ xi

Ui
. As a result, it suffices to show that

there exists an instance of the convex programming
relaxation of the RPP with optimal solution
x�i 62 f0;Uig for some i ∈ I (and hence z�i 62 f0; 1g.
To proceed, by noting that Slater’s condition is sat-
isfied for the primal problem, we dualize (2) and
write the Lagrangian

LðmÞ ¼min0� xi �Ui

(X
i2I

�
ci þ fi

Ui
þ m

�
xi

þ ðhþ pÞ
Z y

0

ndnþ p

2
� ðmþ pÞy

)
:

It is straightforward to check that for any given
dual multiplier m, the Lagrangian program assumes
the following optimal solution:

xiðmÞ ¼
Ui if ci þ fi

Ui
þ m\0

2 0;Ui½ � if ci þ fi
Ui
þ m ¼ 0; and yðmÞ ¼ mþp

hþp

0 otherwise :

8><
>:

Observe that a solution of the form xi 2 f0;Uig will
be optimal (and hence zi 2 f0; 1g) if and only if
there exists a dual multiplier m such that

X
i2I

Ui1
ciþ fi

Ui
þm� 0

n o ¼ mþ p

hþ p
:

By noting that the RHS is a smooth function strictly
increasing in m while the LHS is a step function
decreasing in m, it follows that there may exist at
most one m such that the above equality is satisfied.
We now construct an example in which there exists
no m such that the above equality is satisfied. Letting
h = p = 1, |I| = 2, Ui ¼ i

2, and ci þ fi
Ui

¼ i
3, observe

that if

� 1
3\m ðLHSÞ ¼ 0\ mþ1

2 ¼ ðRHSÞ
�1\m� � 1

3 then ðLHSÞ ¼ 1
2 [

mþ1
2 ¼ ðRHSÞ

m\� 1 ðLHSÞ ¼ 3
2 [

mþ1
2 ¼ ðRHSÞ:

We have thus constructed an instance for which the
convex programming relaxation does not yield an
optimal solution that is integral and hence proven
that the Integrality Property does not hold. h

We next consider the problem of choosing the
matrix of Lagrangian multipliers k to tighten the
bound L(k) as much as possible. Specifically, we are
interested in the tightest possible lower bound, which
can be obtained by solving

LBLR ¼ maxk2RJ�KLðkÞ:
One way to maximize L(k) is by using a traditional

subgradient algorithm (see Fisher 1985 for details).
However this technique may be computationally
intensive in our problem, as we have J 9 K Lagrang-
ian multipliers.
To overcome this difficulty, we exploit the structure

of the dual problem to demonstrate how the optimal
set of Lagrangian multipliers k can in some cases be
fully or partially determined analytically. In prepara-
tion, we establish Lemma 2.

LEMMA 2. The optimal set of Lagrangian multipliers
k� 2 J � K satisfy

min mini2I cijk þ
aijk
Ui

dik þ eij þ fi
� �� 	

; pjk

� 	
� k�jk � pjk

8j 2 J and k 2 K:

PROOF. First, it is easy to check from the first line of
Equation (9) that LmilpðkÞ decreases in k, and
LmilpðkÞ ¼ 0 if dik þ eij þ ðcijk � kjkÞ Ui

aijk
þ fi � 0 8i;

j; k. By rearranging terms, one can show that
LmilpðkÞ ¼ 0 if kjk � cijk þ aijk

Ui
ðdik þ eij þ fiÞ 8i; j; k.

It is also easy to verify from the second line of (8)
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that Lcvxjk ðkjkÞ increases in kjk, and Lcvxjk ðkjkÞ ¼ pjkEjkðnÞ
if kjk � pjk8j; k.
To show that min mini2I cijkþ aijk

Ui
ðdikþ eijþ fiÞ

n o
;

n
pjkg � k�jk � pjk, first suppose that the LHS inequality
is not satisfied for some j,k. Then, L

milp
i ðk�Þ ¼

L
milp
i ðk̂Þ and Lcvxjk ðk�jkÞ � Lcvxjk ðk̂jkÞ, where k̂ ¼

max k�;min mini2I cijk þ aijk
Ui
ðdik þ eij þ fiÞ

n o
; pjk

n on o
.

As a result, Lðk�Þ � Lðk̂Þ and hence k� cannot be

optimal. Now suppose that k�jk [ pjk for some j, k.

Then Lcvxjk ðk�jkÞ ¼ Lcvxjk ðpjkÞ and L
milp
i ðk�Þ � L

milp
i ðk�jkÞ,

where k�jk denotes the set of Lagrangian multipliers

k�, in which the j � kth element has been replaced

by pjk. As a result Lðk�Þ � Lðk�jkÞ, and hence k� can-

not be optimal. This completes the proof. h

Lemma 2 states that the optimal set of Lagrangian
multipliers k� lies in a well-defined compact set.
Observe from the left-hand side expression in Lemma
2 that k�jk [ 0 8j; k. From Equation (10), observe that
the optimal inventory level yjkðk�jkÞ is strictly smaller
than the optimal inventory level that would be deter-
mined from solving the inventory subproblem sepa-
rately from the supplier choice and production
planning subproblem. This is a direct consequence of
performing production, distribution, and inventory
planning in an integrated manner. The second
implication of Lemma 2 is that the optimal solution of
the Lagrangian relaxation will always satisfyP

i2I xijkðk�Þ � yjkðk�Þ, and if the set defined in Lemma
2 is a singleton for some j and k, then it is possible to
partially characterize the optimal set of Lagrangian
multipliers ex ante. When these sets are singletons for
all j and k, then it is possible to completely character-
ize k� ex ante. This is established by Proposition 2.

PROPOSITION 2. If mini2I cijk þ aijk
Ui
ðdik þ eij þ fiÞ

n o
�

pjk, then the optimal Lagrangian multiplier k�jk ¼ pjk. If
this inequality holds ∀j ∈ J and k ∈ K, then k� ¼ p
and ZP ¼ LBLR (i.e., the Lagrangian relaxation solves
the RPP).

PROOF. For any j and k, if mini2I cijk þ aijk
Ui
ðdik þ

n
eij þ fiÞg � pjk, then by Lemma 2 k�jk ¼ pjk. If this
condition holds for all j and k, then it follows that
k�jk ¼ pjk, and by substituting k�jk ¼ pjk into Equation
(8), it is easy to check that ðLkÞ is feasible for RPP.
This completes the proof. h

Observe that mini2I cijk þ aijk
Ui
ðdik þ eij þ fiÞ

n o
can

be interpreted as the lowest marginal cost associated
with establishing capacity at some supplier, produc-
ing product k, and distributing it to demand zone j.
As a result, when this marginal cost exceeds the
marginal underage cost, it is optimal not to produce
any quantity of product k for demand zone j and incur

the expected underage cost; that is, set kjk ¼ pjk,
which yields yjkðpjkÞ ¼ 0 by applying (10).
By using Lemma 2 and Proposition 2 we now estab-

lish a worst-case error bound for the Lagrangian
relaxation studied in this section.

COROLLARY 1. The worst-case error bound for this
Lagrangian relaxation satisfies

�LR�1þmax
�P

j;kðpjkþ hjkÞ
R yðk1jkÞ
0 n/jkðnÞdnP

j;k pjkEjkðnÞ

8<
: ;

P
imin minj2J eijþmink2K dikþðcijk� pjkÞ Ui

aijk

n on o
;0

n o
P

j;k pjkEjkðnÞ

9=
;

where �LR ¼ LBLR

ZP
and k1jk ¼ min mini2I cijk þ aijk

Ui
	

nn
ðdik þ eij þ fiÞg; pjkg 8j and k. Moreover, there exists a

problem instance of the RPP such that the bound is tight
(i.e., �LR ¼ 1).

PROOF. First note that the Lagrangian dual is a con-
cave maximization problem, and recall from Lemma
2 that k�jk � min mini2I cijk þ



 aijk
Ui
ðdik þ eij þ fiÞg;

pjkg ¼ k1jk. Moreover, it is easy to check that a trivial
feasible solution can be obtained by setting
zi ¼ wik ¼ xijk ¼ yjk ¼ 0 8i; j; k, in which case the
objective function is equal to

P
j;k pjkEjkðnÞ. As a

result, the following inequalities hold:

maxfLðk1Þ; LðpÞg� LBLR �ZP �
X
j;k

pjkEjkðnÞ:

Hence, �LP ¼ LBLR

ZP
� maxfLðk1Þ;LðpÞgP

j;k
pjkEjkðnÞ

, and the result

follows by substituting Lðk1Þ and L(p) from Equation
(9). To show that there exists an instance such that
this bound is tight, for every i ∈ I, pick fi such that

minj;k dik þ eij þ ðcijk � pjkÞ Ui

aijk

n o
þ fi � 0. Then, it is

easy to check that �LR � 1. Because �LR � 1 by defi-
nition, we conclude that �LR ¼ 1 in this instance.
This completes the proof. h

4. Heuristics and Upper Bounds

In this section, we develop heuristics, which can be
used to obtain feasible solutions for the RPP. These
heuristics can be used in conjunction with the lower
bound developed in section 3 to provide upper
bounds for a branch and bound algorithm or to gener-
ate a feasible solution for the RPP. We initially propose
two intuitive heuristics. The first is a practitioner’s
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heuristic developed based on observed practice at a
large retail chain. The second is a sequential heuristic,
which solves the inventory management subproblem
first, and then it solves the remaining standard facility
location problem by applying the well-known Drop
procedure (Klincewicz and Luss 1986).
These two heuristics can be used to benchmark the

performance of the analytically more rigorous heuris-
tics we develop. The first is a convex programming-
based heuristic, which generates a feasible solution by
solving a sequence of convex programs. We also pro-
pose a simpler LP-based heuristic, which is computa-
tionally more efficient. This heuristic uses the
inventory levels from the Lagrangian problem (i.e.,
yðk�Þ), and it generates a feasible solution by solving a
sequence of linear programs. We next present these
heuristics, and we evaluate their performance in
section 5.

4.1. Practitioner’s Heuristic
This heuristic first chooses the inventory level for
every product at each demand zone to equal the
respective expected demand; that is, yjk ¼ ljk
8j 2 J; k 2 K. Second, suppliers are sorted according
to the ratio Ri ¼ fi

Ui
, which captures the fixed cost per-

unit of capacity associated with choosing supplier i.
Third, the algorithm establishes sufficient capacity to
satisfy the total inventory by choosing suppliers that
have the lowest Ri. For example, if R1 � R2. . . � RI ,
then the algorithm will set zi ¼ 1 8i 2 f1; . . .; ng and
zi ¼ 0 otherwise, where n ¼ min n � I :

Pn
i¼1 Ui �


P
j2J

P
k2K yjkg. Finally, production and transporta-

tion decisions are made by solving a relaxed version
of the RPP, where the fixed cost variables wik and vij
are relaxed to lie in [0,1]. Here, a feasible solution is
obtained by rounding to 1 the fractional wik and vij
variables and by re-solving the linear program with
respect to xijk � 0. Note that this heuristic does not
take into account the underage and overage costs due
to the variation in demand as inventory levels are set
to simply equal the mean demand. We denote the
objective function of this heuristic by UBPr. This pro-
cedure is formalized in Algorithm 1.
A more sophisticated version of this heuristic can

be obtained by choosing the inventory levels
according to the newsvendor model, and then using

the same approach as described in Algorithm 1 to
choose suppliers and conduct logistics planning. We
call this the newsvendor-based practitioner’s heuris-
tic, and we denote its objective function by UBPr�NV.

4.2. Sequential Heuristic
This heuristic obtains a feasible solution for the RPP
in two stages: in the first stage, it fixes the inventory
level for each product at every demand zone by solv-
ing J 9 K newsvendor problems. This reduces the
problem to a standard capacitated facility location
problem with piece-wise linear costs. Then, in the sec-
ond stage, it uses a Drop heuristic–a well-known con-
struction heuristic for facility location problems to
determine which suppliers to choose. The general
idea of the Drop heuristic is to start with a solution in
which all candidate suppliers are chosen (i.e.,
zi ¼ 1 8i), iteratively deselect one supplier at a time,
and solve the remaining subproblem in which the
fixed cost variables wik and vij are relaxed to lie in
[0,1]. Then, any fractional wik and vij variables are
rounded to 1, and the problem is resolved with
respect to the xijk variables. In each loop, the heuristic
permanently deselects the supplier who provides the
greatest reduction in total expected costs, and it termi-
nates if no further cost reduction is possible. Since
exactly one zi is dropped in each loop, and at least one
supplier must be selected in any feasible solution, the
algorithm needs at most I(I � 1) iterations in total,
and two convex programs are solved in each iteration.
We denote the objective function of this heuristic by
UBSeq. This procedure is formalized in Algorithm 2.
For completeness, we also consider a variant of the

sequential heuristic that fixes the inventory level for
each product at every demand zone to equal the
respective expected demand. We call this the simpli-
fied sequential heuristic, and we denote its objective
function by UBSeq�Simple.

Algorithm 1. Practitioner’s Heuristic

1: Let Ri ¼ fi
Ui
, and sort candidate facilities such that R1 � R2 . . . � RI .

2: Fix yjk ¼ ljk 8j and k .
3: Let n ¼ min n � I :

Pn
i¼1 Ui �

P
j2J

P
k2K yjk

n o
.

4: Fix zi ¼ 18i ¼ 1; . . .; n and zi ¼ 0 otherwise.
5: Solve the RPP with relaxed variables vij ;wik 2 ½0; 1�.
6: Fix to 1 any vij [ 0 and wik [ 0, re-solve LP, and compute objective

function UBPr .

Algorithm 2. Sequential Heuristic

1: Fix yjk ¼ yðnewsvendorÞ 8j and k
2: Fix zi ¼ 1 8i and UBSeq ¼ þ1.
3: for n = 1 toIdo
4: for m = 1 toIdo
5: if zm ¼ 1do
6: Fix zmi ¼ zi 8i 6¼ m and zmm ¼ 0.
7: Solve the RPP with zmi and relaxed variables vij ;wik 2 ½0; 1�.
8: Fix to 1 any vij [ 0 and wik [ 0, and re-solve RPP to find

xijk variables.
9: Compute objective function UBm

Seq .
10: end if
11: end for
12: if minmUBm

Seq \UBSeq do
13: UBSeq ¼ minmUBm

Seq and zm� ¼ 0, where
m� ¼ arg minmUBm

Seq .
14: terminate
15: end if
16: end for
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4.3 Convex Programming-Based Heuristic
One disadvantage of the practitioner’s and the
sequential heuristics is that inventory decisions are
made independent of supplier selection and logistics
decisions. Moreover, the Drop approach used in the
sequential heuristic can be computationally intensive.
Therefore, we construct a convex programming-based
heuristic as an alternative way to obtain a feasible
solution for the RPP.
The heuristic begins by solving a relaxed RPP

where the fixed cost variables zi, wik, and vij have been
relaxed to lie in [0,1]. First, it temporarily fixes the
largest fractional zi to 1, solves the remaining
(relaxed) problem, and rounds to 1 any fractional wik

and vij variables. Second, it temporarily fixes the
smallest fractional zi to 0, and again it solves the
remaining (relaxed) problem and rounds to 1 any
fractional wik and vij variables. The algorithm then
permanently fixes the zi that yielded the lowest total
expected costs, and it continues to iterate until all zi
variables have been fixed to 0 or 1. The assumption
behind this approach is that the fractional value of zi
is a good indicator of the “worthiness” of choosing
supplier i. Since at least one zi is fixed in each loop,
the algorithm needs at most i iterations in total, and
two convex programs are solved in each iteration. We
denote the objective function of this heuristic by
UBCvx. This procedure is formalized in Algorithm 3.
To gauge the value of joint logistics and inventory

planning, we also consider a simplified version of the
convex programming heuristic in which inventory
levels are selected in advance using the solution cor-
responding to the lower bound from the Lagrangian
relaxation (i.e., yjkðk�Þ 8j and k). Then, the problem of
finding a feasible solution reduces to solving a
sequence of linear programs, which are easier to solve
than convex programs. We denote the objective func-
tion associated with this LP-based heuristic by UBLp.

5. Computational Results

In this section, we present a computational study to
evaluate the performance of the heuristics. In addi-
tion, we investigate the key factors that drive their
performance and also examine their robustness. In
addition, we investigate the key factors that drive
their performance and we examine their robustness.
To test our methods across a broad range of data,

we randomly generated the parameter values using a
realistic set of data made available to us by a large
retailer. We generated 500 random problem instances,
each comprising between 5 and 20 candidate
suppliers, 10 and 40 demand zones, and 1 and 25
products (i.e., I
U{5,…,20}, J
U{10,…,40} and
K
U{1,…,25}). The parameters we used in our com-

putational study are summarized in Table 1. To solve
the optimization problems associated with the bound-
ing techniques we propose, we used the CVX solver
for Matlab (CVX 2011) running on a computer with
an Intel Core i7-2670QM 2.2GHz processor and 6 GB
of RAMmemory.
To evaluate the performance of the Lagrangian

lower bound, we benchmark it against a standard
convex programming relaxation, in which the inte-
grality constraints are relaxed so that Equation (7) is
replaced by

0�wik � 1; 0� vij � 1; 0� zi � 1 8i 2 I; j 2 J; k 2 K:

In every one of the problem instances tested, the
Lagrangian relaxation generated a better lower
bound than the convex programming relaxation, on
average by 2.34%. This is consistent with Lemma 1,
which asserts that the Lagrangian problem Lk does
not possess the Integrality Property.
To test the performance of the heuristics developed

in section 4, we evaluate the suboptimality gaps rela-
tive to the Lagrangian lower bound. Let
Dx ¼ 100% UBx � LBLR

LBLR
, where x ∈ {Cvx,Lp,Seq,Seq�

Simple,Pr,Pr � NV} denote the convex programming
based, the LP-based, the sequential, the simplified
sequential, the practitioner’s, and the newsvendor-
based practitioner’s heuristics, respectively. The
average and median values, as well as the range of
these metrics, are illustrated in Figure 2.

Algorithm 3. Convex Programming-Based Heuristic

1: Initiate zmin
i ¼ 0 and zmax

i ¼ 1 8i
2: while zmax

i [ zmin
i for some i do

3: Solve the RPP with relaxed variables vij ;wik 2 ½0; 1� and
zmin
i � zi � zmax

i

4: if zi 2 f0; 1g do
5: Set zmin

i ¼ zmax
i ¼ zi

6: end if
7: Let imax ¼ arg maxfzi : zi 2 ð0; 1Þg and

imin ¼ arg minfzi : zi 2 ð0; 1Þg.
8: Solve the RPP with relaxed variables vþij ;w

þ
ik 2 ½0; 1�,

zmin
i � zþi � zmax

i , and zþimax
¼ 1.

9: Fix to 1 any vþij [ 0 and wþ
ik [ 0, and compute objective function

UBþ
CVX .

10: Solve the RPP with relaxed variables v�ij ;w
�
ik 2 ½0; 1�,

zmin
i � z�i � zmax

i , and z�imin
¼ 0.

11: Fix to 1 any v�ij [ 0 and w�
ik [ 0, and compute objective function

UB�
CVX .

12: if Zþ [ Z� do
13: zmin

imax
¼ 1

14: else
15: zmax

imin
¼ 0

16: end if
17: end while
18: Fix to 1 any vij [ 0 and wik [ 0, re-solve the convex program, and

compute UBCvx .
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In addition, to get an idea of the computational
complexity of these heuristics, Table 2 reports the
mean, median, and maximum computational times
for the problem instances tested.
First, observe from Figure 2 that the convex pro-

gramming-based heuristic unambiguously outper-
forms the other heuristics. In particular, it provides
feasible solutions that are on average within 3.44% of
optimal, and range from 0.41% to 18.76%. While the

gap of the LP-based heuristic is higher than the con-
vex programming-based heuristic on average, in the
majority of cases it generates a feasible solution that is
quite close to optimal as evidenced by the median
gap of 4.32%. The practitioner’s heuristics generate
feasible solutions that are on average 19.95% and
36.32% from optimal for the standard and the
newsvendor-based versions, respectively. On the
other hand, the suboptimality gap for the sequential
heuristics is on average 36.72% and 23.7% for the stan-
dard and the simplified versions, respectively.
Interestingly, with both the practitioner’s and the

sequential heuristics, the version in which inventory
levels are set equal to the mean demand outperforms
the version in which inventory levels are chosen
according to the newsvendor solution. This is because
the understock costs are generally larger than the
overstock costs, and, hence, the newsvendor model
leads to a larger stocking quantity than the average
demand. This in turn increases production and distri-
bution costs as well as the fixed costs associated with
establishing capacity in excess of the benefit of reduc-
ing underage costs.
In addition, the inventory levels corresponding to

the solution of the convex programming-based heu-
ristic are always lower than those determined by the
newsvendor solution, and they are often lower than
those chosen by the LP-based heuristic. This is
because the convex programming heuristic solves the
joint problem in contrast to the LP-based heuristic as

Table 1. Summary of Parameters Used in Our Computational Study

Parameters
Distribution of

values Parameters
Distribution of

values

Fixed cost of
choosing
a supplier

�f 
Nð50; 10Þ Overstock �h
Nð5; 1Þ
fi 
Nð2JK3I �f ; 3JK2I �f Þ cost hjk 
U 2

3
�h; 32

�h
� �

Setup cost
associated
with
production

�d 
Nð200; 40Þ Understock �p
Nð50; 10Þ
dik 
U ½0; �d � cost pjk 
U 2

3
�p; 32 �p

� �

Setup cost
associated
with
distribution

�e 
Nð200; 40Þ Mean �l
Nð20; 4Þ
eij 
U½0; �e� demand ljk 
U 2

3 �l;
3
2 �l

� �

Marginal
production
and
distribution
cost

�c
Nð10; 2Þ Demand �r
Nð5; 1Þ
cijk 
U 2

3
�c; 32 �c

� �
variance rjk 
U 2

3 �r;
3
2 �r

� �

Supplier
capacity

�U 
Nð100; 20Þ Weights aijk ¼ 1
Ui 
N 40JK

I
�U ; 90JKI

�U
� �

min.
throughput

Li ¼ 0

Table 2. Computational Times (sec)

UBPr UBPr�NV UBSeq UBSeq�Simple UBCvx UBLp

Mean 2.02 2.03 80.85 187.41 175.76 105.04
Median 1.68 1.72 59.48 91.00 96.78 52.48
Max 9.44 10.23 463.98 1974.96 1472.18 949.64

Figure 2 Suboptimality Gap
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well as other heuristics in which the inventory levels
are chosen separately from the joint problem. When
one solves for the joint problem, the solution accounts
for the fact that a larger downstream inventory
level raises production quantities, which increases
upstream production and distribution costs as well as
the costs associated with establishing production
capacity. In contrast, these costs are not considered
when the inventory subproblem is solved separately,
and hence result in a larger inventory level. The take-
away from this is that when planning the entire sup-
ply chain, it is important to consider the effect of
downstream inventory decisions to the upstream pro-
duction and distribution costs. Retailers often under-
estimate the impact of upstream costs in their urge to
have a higher market share associated with higher fill
rates. When such costs are adequately represented, a
lower fill rate may actually be preferable to lower total
costs. Finally, note that the cost reduction resulting
from the convex programming-based heuristic rela-
tive to the other heuristics is important, because retail-
ers operate in a highly competitive environment with
very low margins and even a small cost reduction can
lead to a large profit increase.
Next, consider the computation time for each heu-

ristic. Observe that both practitioner’s heuristics are
computationally very fast, while both sequential heu-
ristics are quite slow. Also note that the standard
sequential heuristic is computationally less intensive
than its simplified counterpart. Because the standard
sequential heuristic chooses the stocking quantities
according to the newsvendor model, which in general
are higher than the expected demand, the Drop
procedure needs fewer iterations in the standard
sequential heuristic. Finally, observe that the convex
programming-based heuristic is about as computa-
tionally intensive as the simplified sequential heuris-
tic, but leads to much lower average gaps. Thus, it
clearly dominates both versions of the sequential heu-
ristic. However, as expected, it is computationally
more intensive than the LP-based heuristic.
As the convex programming heuristic dominates

the other heuristics in terms of the gap from the lower
bound, we focus on this heuristic to examine (i) how
the computational time scales up with the size of the
problem, (ii) how the suboptimality gap and its per-
formance advantage relative to the practitioner’s heu-
ristic depend on the parameters of the problem, and
(iii) which parameters have the greatest impact on the
total expected costs.
To conduct this analysis, we regress the computa-

tional times, the suboptimality gap of the convex pro-
gramming heuristic (i.e., DCvx), the gap between the
convex programming and the practitioner’s heuristic
(i.e., 100% UBCvx �UBPr

UBPr
), and the total expected cost asso-

ciated with the convex programming heuristic (i.e.,

UBCvx) of the 500 problem instances tested earlier on
the size (i.e., I,J,K), and the parameters of the problem
(i.e., �l; �r; �h; �p;�c; �d;�e;�f ; �U). Table 3 summarizes the
results.
First note that the computational time of the convex

programming heuristic is strongly dependent on the
problem size (i.e., I, J, and K), while it is insensitive to
the other parameters of the problem. More interest-
ingly, the relatively large R2 ratio implies that the
computational time of the convex programming heu-
ristic is explained by a linear model well, which in
turn suggests that the computational time scales up
approximately linearly in the problem size.
From the second column, observe that the subopti-

mality gap decreases in the size of the problem (I, j,
and K), and this effect is significant at the 1% level.
This finding is encouraging: it predicts that the con-
vex programming heuristic will perform even better
in larger problem instances that could be expected in
some applications. The suboptimality gap increases in
the capacity of the candidate suppliers ( �U), while it
decreases in the mean demand (l) and the fixed costs
associated with choosing a supplier (�f). The subopti-
mality gap also increases in the demand variance (�r),
the underage and overage costs (�p and �h), and the pro-
duction costs (�c, �d, and �e), but this effect is not signifi-
cant at the 10% level. Finally, note that a 95%
confidence interval for each regression coefficient can
be obtained from (regression coeff.) ± 1.9648(SE).5

Therefore, as seen in Table 3, because the values of all
regression coefficients and their respective standard
errors are close to zero, |(regression coeff.) ± 1.9648(SE)|
is close to zero for all parameters. This shows that the
performance of the convex programming heuristic is
robust to changes in the parameters of the RPP.
The third column examines how the performance

advantage of the convex programming heuristic rela-
tive to the practitioner’s heuristic depends on the
parameters of the problem. Observe that the
performance advantage of the convex programming
heuristic becomes larger in the size of the problem,
while it is insensitive to the cost parameters, as evi-
denced by the small regression coefficients and the
small (respective) standard errors. This, together with
the finding that the value of the intercept is negative
at the 1% significance level, reinforces the benefits
from using the convex programming heuristic, as one
could expect even larger problems with different cost
parameters in certain applications.
The fourth column considers the relationship

between the total expected cost of the feasible solu-
tions generated by the convex programming heuristic
and the parameters of the problem. Predictably, the
expected cost increases in the size of the problem (I, J,
and K), in the mean demand (�l), in the production
costs (�c, �d, and �e), in the fixed costs associated with
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choosing a supplier (�f), as well as in the underage and
overage costs (�p and �h). On the other hand, the
expected cost decreases in the capacity of the candi-
date suppliers ( �U), while the effect of the demand var-
iance (�r) is insignificant. Therefore, our findings
suggest that besides the problem size (i.e., I, J, K, and
�l), the two most important factors that affect the
expected cost of a feasible solution are (i) the marginal
production cost and (ii) the inventory underage and
overage costs. The latter observation emphasizes the
value of an improved demand forecast. On the other
hand, the capacity of a supplier and the fixed con-
tracting costs appear to have a secondary effect. This
is consistent with the initiatives undertaken at several
retailers to reduce the impact of production, inven-
tory underage, and overage costs (Fisher and Raman
2010).
As the gaps of the convex programming-based heu-

ristic are the smallest, we analyze the solutions to
develop some insights about how it chooses suppli-
ers. This could be useful for practitioners who make
such decisions. We find that suppliers are chosen in
increasing order of the ratio ri, where

ri ¼ 1

Ui
fi þ 1

jJjjKj
X
j;k

dik þ vij þ cijk
aijk
Ui

� �2
4

3
5:

The term in brackets represents the sum of fixed
establishment costs and the average production and
distribution costs across products and demand zones
when a supplier is fully utilized. Therefore, the ratio
ri can be interpreted as the average total cost per unit
of capacity at supplier i. This suggests that it is impor-
tant to consider establishment, production and distri-
bution costs together when choosing suppliers, and it

is beneficial to choose suppliers with the lowest total
average cost per unit of capacity.

6. Conclusions

We analyze a multi-product RPP under demand
uncertainty in which the retailer jointly chooses sup-
pliers, plans production and distribution, and selects
inventory levels to minimize total expected costs. This
problem typically arises in retail store chains carrying
private-label products, who need to plan the entire
supply chain by making decisions with respect to (i)
supplier selection for their private-label products, (ii)
distribution of products from suppliers to demand
zones (i.e., stores or DCs), and (iii) the inventory
levels for every product at each demand zone. This
problem is formulated as a mixed-integer convex
program.
As the RPP is strongly NP-hard, we use a

Lagrangian relaxation to obtain a lower bound, and
we develop heuristics to generate feasible solutions.
First, we develop an analytic solution for the
Lagrangian problem (Proposition 1), and we estab-
lish conditions under which the Lagrangian dual
can be solved analytically (see Proposition 2).
We first develop a practitioner’s and a sequential
heuristic. We then propose two heuristics, which
reduce the problem of generating a feasible solution
to solving a sequence of convex or linear programs.
To test the performance and the robustness of our
methods, we conduct an extensive computational
study. The convex programming-based heuristic
and its LP-based counterpart yield feasible solutions
that are on average within 3.4% and 10.2% from
optimal, respectively. Sensitivity analysis suggests

Table 3. Suboptimality Gap vs. Problem Parameters (Convex Programming Heuristic)

Computational time Suboptimality gap Cvx. vs. Pract. H. Expected cost

I 23.93��� (1.301) �0:13��� (0.034) 0.32��� (0.089) 5247.77��� (1094.73)
J 7.66��� (0.651) �0:09��� (0.016) 0.06 (0.042) 9798.92��� (517.59)
K 18.33��� (0.803) �0:16��� (0.026) 0.15�� (0.067) 19,590.85��� (822.44)
�l �0.35 (0.893) �0:12��� (0.017) 0.25��� (0.044) 11,042.93��� (543.84)
�r 0.04 (3.732) 0.101 (0.071) �0.12 (0.185) 48.77 (2278.22)
�h 7.79 (5.706) 0.12 (0.109) 0.12 (0.287) 7702.49�� (3521.77)
�p 0.023 (0.548) 0.012 (0.0104) 0.25��� (0.027) 2048.43��� (334.45)
�c 6.13 (2.69) 0.055 (0.051) �0.038 (0.134) 8629.04��� (1647.61)
�d 0.02 (1.108) 0.026 (0.0204) �0.053 (0.054) 261.74 (657.6)
�e �1.59 (1.099) 0.011 (0.021) �0.007 (0.055) 1269.01� (672.77)
�f �1:40�� (0.551) �0:00003��� (0.000003) �0:00008��� (0.00001) 2:29��� (0.12)
�U 1.38��� (0.266) 0.0015��� (0.0001) 0:002��� (0.0003) �37:82��� (3.35)
Intercept �689:2��� (88.8) 8:52��� (1.469) �36:62��� (3.851) �830; 954:6��� (47,333.18)
R2 0.641 0.40 0.315 0.891

The values before the parentheses denote the regression coefficients corresponding to the parameter in the left column. The values in parentheses denote
standard errors.
*Significance at 10% level.
**Significance at 5% level.
***Significance at 1% level.
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that the computational time of the convex program-
ming heuristic scales up approximately linearly in
the problem size, while it is stable to changes
in problem parameters. Finally, these heuristics
outperform both the sequential and the practi-
tioner’s heuristics, and the performance advantage
of the convex programming-based heuristic relative
to the practitioner’s heuristic is robust to the param-
eters of the problem. All these are desirable features
for any eventual implementation in large-sized real
applications.
Several managerial insights can be drawn from

this work. First, solving the more complicated joint
supplier choice, production, distribution, and inven-
tory problem leads to a leaner supply chain with
lower inventory levels than solving the inventory
subproblem separately from the supplier choice and
logistics subproblem. This highlights the importance
of considering the effect of inventory decisions on
upstream production and distribution costs. Our
methodology provides an effective approach to solve
this joint problem. Second, the major costs that influ-
ence supply chain costs across the retailer are pro-
duction costs, as well as the understock and
overstock costs associated with carrying inventory at
the demand zones. Therefore, retailers should focus
on reducing these costs first before considering the
effects of supplier capacity and contracting costs.
Third, it is important to consider establishment, pro-
duction, distribution, and inventory costs together
when choosing suppliers, because a supplier who is
desirable in any one of these aspects may in fact not
be the best overall choice. Our analysis provides a
mechanism to integrate these aspects and pick the
best set of suppliers.
This study opens up several opportunities for

future research. First, this problem could be
extended to explicitly model nonlinear production
and shipping costs, which is of particular interest for
applications that exhibit significant economies of
scale. In that case, the problem formulation is a
mixed-integer nonlinear program that is neither con-
vex nor concave (see Caro et al. 2012 for details
about addressing a related problem in the process
industry with uncertain yields). Second, our model
could be extended to incorporate multiple echelons
in the supply chain (i.e., wholesalers and DCs) and
allow multiple echelons to carry inventory. Third, it
may be desirable to incorporate side constraints per-
taining to facilities, production, and distribution (i.e.,
v, x, w, and z variables) as in Geoffrion and McBride
(1978). Undoubtedly, all these extensions would
require significant, nontrivial modifications to our
model. Finally, further work could be done to
improve the heuristics to further reduce the subopti-
mality gap.

In conclusion, we believe the methods described in
this article provide an effective methodology to
address the RPP under demand uncertainty.
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Notes

1With the latter interpretation we implicitly assume (i) that
the locations of DCs and the assignment of stores to DCs
are predetermined and (ii) that stores maintain only a
minimal amount of inventory so that inventory costs at
individual stores are negligible. This latter assumption is
consistent with the existing literature (e.g., Shen et al.
2003). While it is plausible that management must also
determine the location of DCs and allocate stores to DCs,
we leave this important problem for future research.
2Specific lead times faced by manufacturers are reported
to be 7 months for Oxford shirts ordered by J. C. Penney,
and 5 months for Benetton apparel (Iyer and Bergen
1997).
3For example, leading retailers H&M and GAP outsource
100% of their manufacturing, while Zara outsources
approximately 40% of its manufacturing to the third-party
suppliers (Tokatli 2008). Anecdotal evidence suggests that
Macy’s outsources all of its manufacturing.
4This result can be shown by reducing an instance of the
RPP to the CPLP. Specifically, in this reduction, let (i)
demand assume a degenerate probability distribution, (ii)
the overage and underage costs to be arbitrarily large (i.e.,
hjk and pjk ! 18j; k), (iii) dik ¼ 0 and eij ¼ 0 8i; j; k, (iv)
Li ¼ 0 8i 2 I, and (v) Ui’s take values from the set {1,…,
p} for any fixed p � 3 ∀i ∈ I.
5±1.9648 corresponds to the 2.5 and 97.5 percentile of a
t-distribution with 500 � 13 degrees of freedom.
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