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I am an applied microeconomic theorist with a focus on organizational economics and in-
dustrial organization. At a broad level, my research studies how incentives—predominately
financial ones—affect the behaviors of individuals and organizations. Most of my research be-
longs to one of two agendas. The first studies how firms can design effective incentive schemes
for their workforce. The second analyzes public good provision problems, and specifically ex-
plores ways to mitigate freeriding and other inefficiencies. I analyze these problems using
primarily game theoretic tools, and in some cases, also simulations and empirical methods.

1 Contract Theory

My recent research contributes to the agency literature under moral hazard that was spear-
headed in the 1970’s by Mirrlees (1976), Holmström (1979), and others. In the canonical
model, a principal offers a wage scheme to an agent that specifies the latter’s pay as a func-
tion of output. If the agent accepts the contract (wage scheme), then they privately choose
a costly action (effort), which determines the probability distribution of output. Finally,
output and payoffs are realized, and the game ends. Both players are expected payoff max-
imizers, and importantly, the agent’s action is not contractible. This model is very elegant,
and sheds light on the key trade-offs. Perhaps the most celebrated takeaway is that optimal
wage schemes are shaped by a trade-off between incentives and insurance, and reward the
agent for those output realizations which are informative about his effort.

Much of my work contributes to the literature that seeks to relax various assumptions of
the above framework. In particular, Georgiadis and Szentes (2020) endogenizes the perfor-
mance measure. Barron, Georgiadis and Swinkels (2020), as well as Georgiadis, Ravid and
Szentes (2022) enrich the agent’s action space. Garrett et al. (2022) varies the timing of the
contracting game. In Ely et al. (2022, WIP) we explore the role of feedback in incentive
design. Georgiadis and Powell (2022) and Antic and Georgiadis (WIP) are interested in
operationalizing contract theoretic model. That is, they ask and answer, in the context of
two different frameworks, what data does a firm need and how it should use it to improve an
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existing incentive contract. Ely et. al. (2022a, 2022b) study the combined use of monetary
and informational incentives in a dynamic moral hazard setting. Finally, Fudenberg et al.
(2021) studies apprenticeships: how to optimally compensate an agent using not only cash,
but also knowledge that raises their productivity.

1.1 Endogenous Performance Measures

Designing an incentive plan requires first to identify appropriate measures of performance,
and then to tie these measures to outcomes for the agent; e.g., via performance pay. Indeed,
firms devote substantial resources to identifying and designing effective performance mea-
sures. In Optimal Monitoring Design (Econometrica, 2020, with B. Szentes) we study a
principal-agent model in which both the performance measure and the pay-for-performance
relationship are endogenous.

In our framework, the principal commits to a strategy for sequentially acquiring costly
signals that are informative of the agent’s effort, and a wage scheme that specifies a payment
to the agent as a function of the acquired signals. The agent then privately chooses how much
effort to exert. Finally, the principal acquires signals according to the chosen strategy and
payoffs are realized. The principal’s objective is to minimize the cost of inducing a risk-averse
and liquidity-constrained agent to exert a particular level of effort.1

To conceptualize this model, you can think of a periodic employee evaluation: The prin-
cipal collects and reviews evaluation-relevant information, and remunerates the employee
according to the acquired information, but this process takes time and effort. For concrete-
ness, suppose that each piece of information is a Gaussian signal with mean equal to the
employee’s effort and some fixed variance, and it costs a fixed amount to acquire and review.
A signal acquisition strategy is a stopping time: it specifies at every moment and as a function
of the already acquired signals whether to stop, possibly probabilistically.

Attacking this problem head-on is challenging, because the space of signal acquisition
strategies is vast. Instead, we establish a series of lemmas that allow us to reduce the
problem to one that is equivalent yet tractable. For any given signal acquisition strategy,
the problem boils down to a canonical principal-agent problem. Our first lemma shows that
the cost-minimizing wage is a function of a Lagrange multiplier and the so-called (Fisher)
score, which is a zero-mean random variable and can loosely be interpreted as a log-likelihood
ratio.2

1The problem of finding a profit-maximizing contract is typically decomposed into two steps. As is common
in the literature, we focus on the first, which entails finding for each effort, the contract that minimizes the
principal’s expected cost. The second step, which solves for the profit-maximizing effort is generally omitted.

2A score close to +∞ implies that the agent almost certainly chose the target effort level, whereas a score
close to −∞ implies that he almost certainly did not.
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Next, we show that instead of choosing a stopping time, equivalently, the principal might
choose a probability distribution over scores at a cost that is proportional to the variance
of that distribution, and a wage scheme as a function of the realized score. Dualizing the
agent’s incentive compatibility constraint, this problem reduces to a min-max program, in
which the principal first maximizes a Lagrangian function with respect to the dual multiplier
(to obtain the optimal wage scheme given an arbitrary distribution over scores), and then
minimizes it with respect to the distribution over scores. Solving this problem is hard, but
the corresponding max-min problem is not.

Our main result establishes that under a condition on the agent’s utility function, the two
problems are equivalent, and moreover, the optimal contract features a binary distribution
over scores.3 The upshot is that the optimal wage scheme is also binary: it pays a wage plus
a fixed bonus if the acquired signals are sufficiently favorable. It can also be interpreted as
an efficiency wage, whereby the agent is paid a wage and is dismissed if the acquired signals
are not sufficiently favorable.

What signal acquisition strategy corresponds to the optimal distribution over scores? This
strategy is characterized by two parallel upward-sloping lines, one with a positive intercept
and one with a negative one. The principal continues to acquire information as long as the
sum of the acquired signals lies in-between the two lines. Intuitively, the principal stops
upon becoming sufficiently certain that the agent did or did not exert the target effort.
This strategy is reminiscent of (s, S) policies, familiar from inventory management and other
dynamic models of lumpy decision making.

Turning to empirical implications, our model predicts that if the agent is only moder-
ately risk-averse, then the bonus is large and is paid only if the acquired information is
overwhelmingly positive. As the agent becomes more risk-averse, the principal acquires more
information (in expected terms), the bonus decreases, but it is paid with higher probability—
all in line with insuring the agent more.

1.2 Flexible Actions

The optimal contract in the canonical model depends on the minutiae of the distributions
that map each action to output. This is a consequence of the agent choosing a typically
one-dimensional action that determines the entire distribution of output (Holmström and
Milgrom, 1987). Below I describe three articles that explore the consequences of enriching
the agent’s action space.

3This condition is always met if the agent has CARA utility, or CRRA utility with coefficient of relative risk
aversion greater than 1/2. If the coefficient is less than 1/2, then the first-best outcome can be approximated
by a single-bonus contract. More generally, if a solution exists, then the optimal distribution over scores is
either binary or trinary.
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InOptimal Contracts with a Risk-Taking Agent (Theoretical Economics, 2020, with
D. Barron and J. Swinkels) we study optimal contracts in settings where the agent can game
their incentives by engaging in risk-taking. Excessive risk-taking has been linked to poorly
designed incentives (Rajan, 2011), and has been documented in various settings, including
portfolio managers (Chevalier and Ellison, 1997), executives (Shue and Townsend, 2017), and
entrepreneurs (Vereshchagina and Hopenhayn, 2009).

In our principal-agent model, the agent privately chooses a costly effort that produces
a non-contractible intermediate output. The agent privately observes this output and can
manipulate it by costlessly adding mean-preserving noise to it, which determines the final,
contractible output. (In the context of a portfolio manager, you can think of intermediate
output as a portfolio’s mid-year performance. The manager can add risk to the portfolio to
determine end-of-year performance, which is the final output.)

The key twist of this model is that the agent can take on risk by adding noise to their
output. In equilibrium, the principal optimally designs the contract to deter such risk-taking.
Doing so adds a new constraint, which requires the agent’s utility to be concave in output.
We show that the problem of characterizing the optimal contract reduces to imposing this
no-gaming constraint on a classic moral hazard problem.

If the agent is risk-neutral, then the no-gaming constraint implies that linear contracts
are optimal. If we ignored the no-gaming constraint, the principal would offer a convex
contract to concentrate high pay on high output. The no-gaming constraint therefore binds
everywhere, so the principal offers the most convex contract that is also concave, which is a
linear contract.

If the agent is risk-averse, then we provide a characterization of the unique profit-maximizing
contract that implements any given effort. Analogous to the case with a risk- neutral agent,
the optimal contract “irons” the agent’s utility so that it is linear in output whenever the
no-gaming constraint binds. However, the no-gaming constraint does not necessarily bind
everywhere, leading to optimal incentives that are linear (in utility) over some outputs and
concave (in utility) over others.

Our framework is elemental enough to easily incorporate into richer models of optimal
incentives. We illustrate this point with three extensions: the first incorporates a cost of
engaging in risk-taking, the second alters the timing of the game so that risk-taking occurs
before the agent observes output, and the third reinterprets risk-taking as intertemporal
gaming, as documented in Oyer (1998). In each of these extensions, we derive a natural
analogue of the no-gaming constraint and characterize optimal incentives.

Earlier models in which the agent’s action space is rich imposed specific functional form
assumptions on the agent’s cost of choosing an output distribution. In Flexible Moral
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Hazard Problems (Working paper, with D. Ravid and B. Szentes) we consider a principal-
agent model, in which the principal first offers a wage scheme, and then the agent can choose
any output distribution with support in a given compact set. We assume only that the
agent’s cost function is smooth and increasing in first-order stochastic dominance. Then
output is drawn according to the chosen distribution, and the agent is paid according to the
wage scheme.

Our first result characterizes, for each output distribution, the lowest-cost wage scheme
that implements it. The key takeaway is that the cost-minimizing wage scheme reflects the
marginal cost of choosing a particular output distribution but not the information content
of the output, as is the case in one-dimensional effort models (Holmström, 2017). This
wage scheme is constructed so that the target distribution satisfies a generalized first-order
condition: the agent’s marginal cost of choosing a nearby distribution is approximately his
marginal benefit from doing so.

Our second result show that the wage scheme is always increasing in output as long as
the agent’s cost of choosing a distribution is monotone in first-order stochastic dominance.4

To see why this result is true, suppose that the wage is larger at a small output level than at
other higher outputs. Then the agent could profitably modify that distribution by moving
probability mass from those higher outputs to the low output. This modification increases the
expected wage, and moreover, because the modified distribution is first-order stochastically
dominated by the original one, it is less costly.

Finally, we consider the principal’s problem of finding the profit-maximizing distribution
and the corresponding optimal contract. Under a smoothness assumption (which is neces-
sary for tractability), we derive properties of the principal-optimal distribution, and provide
sufficient conditions such that it has one or two outputs in its support.

When analyzing agency problems, the determinants of agency frictions are typically taken
as given. In hidden-information models, for example, the distribution of types is typically
treated as exogenous, and in hidden-action models, the cost of each action is usually part of
the model description. However, if an agent’s payoff depends on agency frictions, then he is
likely to pursue to shape them in a way that enhances their payoff; for example, a worker
might make human capital investments that affect their subsequent productivity or influence
which tasks they work on. In Optimal Technology Design (Conditionally accepted at the
Journal of Economic Theory, with D. Garrett, A. Smolin, and B. Szentes), we reconsider the
standard limited-liability moral hazard problem and examine how an agent might maximize

4In one-dimensional models, because larger outputs are not necessarily more informative about the agent’s
effort than smaller ones, optimal wage schemes are monotone in output only under strong conditions on actions
available to the agent, such as the monotone likelihood ratio property.
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rents by optimally designing the production technology.
In our model, before interacting with the principal, the agent chooses a production tech-

nology, which specifies their cost of producing each output distribution with support on a
compact set. After observing the agent’s production technology, the principal offers a wage
scheme, which is a mapping from output realizations to nonnegative payments. Finally, the
agent privately chooses an output distribution at a cost determined by their first-stage choice.

Our model is one of a hold-up problem. The agent could choose a production technology
that makes it possible to costlessly produce the largest output with certainty. While doing
so would be socially efficient, the agent would then be unable to extract any rents. Instead,
the agent designs the production technology so that generating large outputs is artificially
costly. We show that there is an optimal production technology involving only binary dis-
tributions (i.e., the cost of any other distribution is prohibitively high), and we characterize
the equilibrium technology defined on the binary distributions. In equilibrium, the principal
offers a bonus which induces the agent to complete the project with probability one.

The assumption that the agent can choose any production technology—even ones that
generate large outputs with little to no cost—serves to deliver sharp results and highlight the
key trade-off. To shed light on the case in which not every production technology is feasible,
we characterize the payoff combinations that can arise in principal-agent models with limited
liability for some given production technology. The equilibrium payoff profile when the agent
instead chooses the technology corresponds to the point in this set where the agent’s payoff
is maximized.

1.4 Prescriptive Contract Theory

Agency models under moral hazard have generated invaluable insights into fundament trade-
offs. However, their use as prescriptive theories has been limited, as the optimal contracts
they prescribe in a given environment often depend in complicated and subtle ways on un-
observable characteristics of that environment.

With A/B Contracts (American Economic Review, 2022, with M. Powell) we aim to
improve the practical applicability of the classic theory of incentive contracts under moral
hazard. In particular, we establish modeling assumptions and a computationally tractable
estimation method that enable an experimental test between two incentive contracts to be
sufficient for determining the optimal contract and predicting performance of any counter-
factual contract. We then test our approach using data from DellaVigna and Pope’s 2018
experimental study of six different incentive treatments.

To introduce our main ideas, let us consider an example. Suppose you hire teenagers
each summer to sell kitchen knife sets door to door, and you pay them a simple piece rate for
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doing so. You have access to sales data for your workforce, and you are interested in knowing
whether, and how, you should change the piece rate. Suppose your gross profit margin for
selling a knife set is m, the piece rate is α, and your worker’s average sales are a. Your
expected profits are therefore Π = (m− α) a. If you were to marginally increase your piece
rate, the effect on your profits would be

dΠ

dα
= (m− α)

da

dα
− a.

You know your gross profit margin, the current piece rate, and the current average sales,
but you don’t know your workers’ behavioral response, da/dα, to an increase in the piece
rate. Given observational data alone, figuring out this behavioral response requires knowing
your workers’ preferences with respect to money and effort, as well as the effect of effort on
the distribution of their sales. These are questions you likely do not know the answer to, but
importantly, they are questions you do not need to know the answer to if you are willing to
run an experiment. Suppose you decide to run an A/B test on your workforce. You randomly
divide it into a treatment and a control group, you increase the piece rate by a small amount
in the treatment group, and you have access to the data on the distribution of output for
both the status quo contract and the test contract. You can use this data to estimate da/dα,
and you can use the above expression to determine whether you should marginally increase
or decrease your piece rate.

This example sidesteps two important issues. First, it restricts attention to linear con-
tracts. Second, it asks a local question—how best to marginally improve upon the status
quo contract—and for practical applications, we are interested in non-local adjustments. We
address each of these issues in turn.

Our principal–agent framework is as in Holmström (1979), but with a non-standard in-
formational assumption. We assume that the principal knows neither the agent’s effort costs,
nor the transition probability function that maps each effort into output. Instead, she has
output data corresponding to two contracts—a status quo and a test contract.

Our main conceptual contribution shows that given knowledge of the agent’s preferences
for money, a single A/B test of incentive contracts suffices to estimate the agent’s behavioral
response to any marginal adjustment to the status quo contract. We then show that the
problem of how best to locally adjust a status quo contract is equivalent to figuring out the
direction of steepest ascent in the principal’s objective, which can be determined by solving
a convex program.

The second important issue that the above example sidestepped was the question of how
to predict the effects of non-local adjustments to the status quo contract. We establish
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assumptions under which a single A/B test provides all the information needed to predict
how the principal’s profits will respond to any adjustment to the status quo contract. In
doing so, we provide a procedure for using this information to optimally adjust the status
quo contract.

We then explore the quantitative implications of our results using data from DellaVi-
gna and Pope’s (2018) large-scale experimental study of how a variety of incentive schemes
motivate subjects in a real-effort task. Our first exercise asks whether subjects’ average per-
formance varies in the way our model predicts with our measure of the subjects’ marginal
incentives. We take the data from two treatments supposing that in one of the treatments,
the subjects were on the status quo contract, and in the other, they were on the test con-
tract. For each such pair, we predict the mean performance in each of the remaining four
treatments and compare it to the actual average performance. The mean absolute percent-
age error across all such pairs is approximately 2%. Moreover, our predictions for a given
treatment are similar no matter which pairs we use to make our predictions. Taken together,
the correlation between our predictions and actual performance is 0.94.

Our second empirical exercise assesses the performance of the contract generated by our
procedure. We use the data from seven treatments to fit the parameters of the production
environment using nonlinear least squares estimation. Given those parameters, we compute,
as a benchmark, the optimal contract and the principal’s corresponding expected profit.
Then, we take data from each pair of treatments and use our procedure to construct the
optimally adjusted contract. Averaging across all A/B tests, the principal can attain just
over two-thirds of the profit gains that she could attain if she knew the entire production
environment and put the optimal contract in place.

To characterize an optimal contract given information contained in an A/B test of incen-
tive contracts, we imposed arguably strong assumptions about agent’s cost function and the
transition probability function that maps each effort into output. In Robust Contracts: A
Revealed Preference Approach (Work in progress, with N. Antic) we revisit this question
under minimal assumptions about the production environment. In this model, the agent’s
“action” is a probability distribution over output. The principal is oblivious to the full set
of actions available to the agent and their costs, but observes the agent-optimal action in
response to each of K “known” contracts, and aims to choose a contract with the maximum
possible profit guarantee. This is as if an adversarial third party picks the agent’s action
set and the cost of each action to minimize the principal’s profit subject to a set of revealed
preference constraints, and the principal maximizes this worst-case profit.5

5Conceptually, you can think that the principal has a large number of output of observations under each
of the K contracts, and is unwilling to make assumptions about the agent’s action set or the cost of each
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Our main result shows that the optimal contract is either the most profitable of the known
contracts, or a mixture of one of the known contracts and a linear contract; specifically the
one that makes the agent full residual claimant. If moreover there are two known contracts
both of which are linear, then a mixture contract is never optimal. Applying our methodology
to the data from DellaVigna and Pope’s 2018 real-effort experiment, we find that in virtually
every case, a mixture contract does not provide a larger profit guarantee than the most
profitable of the known contracts. This finding suggests that unless one is willing to make
additional assumptions about the production environment, it is typically best to stick to one
of the known contracts. It also provides a rationale for why firms are reluctant to experiment
with different incentive schemes when they have one that works reasonably well.

1.5 Paying with Information (and Money)

Another strand of my research studies the combined use of monetary and informational
incentives to motivate one or more workers. Conceptually, a firm can shape its workers’
informational incentives by curating the information their receive about their own or others’
performance.

In Optimal Feedback in Contests (Forthcoming at the Review of Economic Studies,
with J. Ely, S. Khorasani, and L. Rayo) we consider a game between a principal and N

agents. Each agent continuously chooses to work or shirk, and working generates a “Poisson
success”—a signal that arrives at a random date and is observed by the principal.6 The
principal has a fixed prize to award and designs a mechanism—in particular, a contest—to
maximize total effort. In particular, she chooses rules dictating when the mechanism will
end, how the prize is to be allocated, and a feedback policy that specifies a message to be
sent to each agent as a function of her past observations.

This framework can be applied, for instance, to a professional partnership seeking to
promote one of their associates to partner. Here a “success” represents an associate exceeding
an exogenous threshold for promotion and an associate’s effort is presumably valuable even
after they, or any of their peers, have cleared that bar for promotion.7

The key challenge when searching for an optimal contest is the vast range of potential
designs. We attack this problem by providing a sufficient condition for a contest to maximize
effort—namely, that it maximizes the probability that the prize is awarded while giving zero

action beyond those observations. Absent a prior over the various possibilities, we posit that this is a natural
objective.

6It turns out to be immaterial whether agents observe their own signal, but it is important that they don’t
observe others’ successes. In the baseline model, each agent can generate at most one such signal.

7In other applications, the designer’s objective might be to maximize, instead of effort, the number of
Poisson successes. As it turns out, the two objectives are equivalent.
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rents to the contestants—and then displaying contests that meet these criteria. One such
contest, which we term “cyclical egalitarian”, features a cyclical structure whereby the contest
is terminated at the end of each fixed-length cycle if at least one agent has succeeded by then,
and it is otherwise reset. The prize is shared equally among all successful agents irrespective
of when they succeeded, and the feedback policy keeps agents fully apprised of their own
success, but only periodically informs them about their rivals’ successes—at the end of each
cycle—so as to not discourage further effort.

Only a much smaller set of contests, however, is capable of converting all prize money
into effort in the shortest expected duration—a property that would be valuable to the
designer if for instance running the contest entailed a flow cost. These contests, which we
term “2nd chance”, all have in common that the contest continues until some pre-specified
number of successes arrive and, once that occurs, the contest enters a countdown phase where
contestants are given a final (potentially random) deadline to succeed (a “2nd chance”), with
the contest ending before that deadline if one more contestant succeeds. These contests
minimize duration because they guarantee that the number of agents working at a given
time is as similar as possible across different histories—which in turn prevents inefficient
scenarios where the contest continues with only a small number of agents are still working.

We also consider several extensions that suggest a degree of robustness to our results:
the possibility of multiple successes, heterogeneity of success rates across agents, and an
increasing hazard rate that captures a notion of progress or knowledge accumulation over
time. In all these cases, a 2nd chance contest attains maximum effort; and in several cases, it
does so in the minimum possible duration. We also relax the designer’s commitment power
and show that an egalitarian prize structure, which is implicitly present in all our other
designs, remains optimal.

This problem was made tractable by characterizing an upper bound for the principal’s
payoff, and then characterizing contests that achieve it. To do so, we assumed that the num-
ber of agents is sufficiently large. In Incentive Compatibility in Dynamic Information
Design (Work in progress, with J. Ely and L. Rayo) we consider a similar dynamic agency
model between a principal and one agent. The principal commits to a terminal date, a pay-
ment schedule as a function of the time that a random binary signal of effort is (privately)
observed, and a feedback policy that specifies, for each point in time, messages as a function
of past messages and the arrival date of the random signal, if any. The principal’s objective
is to maximize total effort net of monetary payments.

Because extracting all rents is not possible in this setting, we must optimize directly with
respect to the choice variables. By a revelation-principle-like argument, it suffices to consider
direct policies in which the principal recommends to the agent whether to work at every
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moment. We identify a key necessary condition for incentive compatibility and use it to pin
down, for any recommendation policy, the cost-minimizing payment schedule. Conceptually,
paying the agent with information (i.e., by being transparent about whether the random
signal has arrived) is a substitute for monetary payments, and the optimal contract must
balance the two means of motivation. Our main result shows that under the optimal policy,
the agent works continuously up to come time-cutoff. If the random signal has arrived by
that time, the agent is paid a fixed lump-sum and stops. Otherwise, the agent continues to
work right until the signal arrives, and is paid a smaller lump-sum if the signal arrives prior
to the terminal date.8

1.6 Paying with Knowledge (and Money)

Careers in a wide range of industries, such as medicine, academia, professional services,
and culinary arts, frequently begin with a lengthy “apprenticeship” stage where novices gain
knowledge from their masters while working hard and receiving relatively low wages. Work-
ing to Learn (Journal of Economic Theory, 2021, with D. Fudenberg and L. Rayo) studies
such a work-for-knowledge exchange. In our model, a principal offers to an agent an “appren-
ticeship” consisting of time paths of knowledge transfers, wages, and effort, subject to the
constraint that the agent can walk away at any time, and subject to a learning constraint
that bounds how quickly they can learn.

Our analysis solves for the whole family of Pareto-optimal contracts as parameterized by
the agent’s outside option. Every such contract has two phases. In the first one, the agent
learns as fast as their learning-by-doing constraint allows while earning rents in the sense that
they are more than compensated for the economic cost of working for the principal. Then in
the second phase, the principal only allows the agent to learn as quickly as is consistent with
the agent being willing to remain in the apprenticeship; here the principal keeps all rents.9

Throughout the apprenticeship, effort is distorted above the static first-best. This serves
two purposes: first, higher effort allows the agent to learn faster, and second, increased effort
transfers rents to the principal. To smooth the agent’s consumption, wages are constant in
the first phase. During phase 2, the principal offers an increasing wage path (i.e., backloads
wages) in order to relax the binding participation constraint.

Our model has novel implications for (optimal) regulation, of which apprenticeships are a
frequent target. In particular, a planner who is able to set upper bounds on effort and lower

8This recommendation policy can be implemented by staying silent until the cutoff, and thereafter, in-
forming the agent as soon as the signal arrives.

9Perhaps surprisingly, the second phase never disappears completely, even in the agent-optimal contract.
This is because when the agent’s outside option is high, phase 1 pays them more than they produce, thus
placing them in “debt.” Phase 2 then allows the principal to gradually collect on this debt.
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bounds on wages is able to implement any contract on the Pareto frontier, without needing
to regulate the path of knowledge transfers (which is presumably much harder to do).

2 Provision of Public Goods

A second research agenda studies public good provision problems; see Admati and Perry
(1991) and Marx and Matthews (2000) for early contributions. In the workhorse model, time
is continuous and at every moment, each of N agents makes a costly contribution (effort)
to a joint project. The project progresses—possibly stochastically—at a rate that depends
on the sum of the agents’ instantaneous efforts. As soon as the state of the project hits a
specific threshold, the project is completed and generates a lump-sum payoff for each agent.
Thus, this is a game with positive externalities, and will be prone to the freerider problem
(Holmström, 1982). For example, you might think of individuals collaborating to develop
a new product, or different nations contributing towards a discrete public good such as the
International Space Station. Agents are impatient, and choose their efforts as a function of
the current state of the project to maximize their payoff; that is, we focus on Markov Perfect
equilibria (hereafter MPE).

This agenda comprises five articles, which use variations of this model to explore how dif-
ferent incentive structures and different allocations of decision rights can improve equilibrium
outcomes.10

Projects and Team Dynamics (Review of Economic Studies, 2015) proposes the afore-
mentioned model and comprises two parts. The first focuses on the agents’ incentives and
establishes comparative statics. The second part introduces a profit-maximizing principal
who chooses the number of agents and an incentive contract for each agent.

This game has a unique MPE, wherein each agent’s effort is strictly lower that the first-
best level, and increases as the project progresses. This is because agents are impatient
and are rewarded only upon completion. This implies that efforts are strategic complements
across time: by frontloading his effort, an agent brings the project closer to completion, thus
inducing others to raise their future efforts.11

A key comparative static shows that given a fixed total reward, larger teams work harder
than smaller ones—both individually and on aggregate—if, but only if, the project is suf-
ficiently far from completion. Increasing the team size has two effects. First, agents have
stronger incentives to frontload their effort since they can influence the future efforts of more
agents. Second, the (positive) externality, and hence the incentives to freeride, becomes

10A lecture note covering this literature is available here.
11Thus equilibrium effort paths are shifted downwards and flatter (i.e., tilted clockwise) relative to the

first-best effort path.
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stronger. During the early stages of the project, the frontloading motive is strong since a lot
of progress remains, whereas the freeriding motive is muted as agents exert relatively little
effort (and hence their marginal cost of effort is low). Thus the first effect dominates the
latter and larger teams work harder than smaller ones. The opposite holds when the project
is close to completion.

Turning to the principal’s problem, if agents must be treated symmetrically, then it is
optimal to backload incentives so that each agent is rewarded only upon completion. In this
case, the problem reduces to choosing the number of agents and a budget for rewarding them.
The restriction to symmetric contracts, however, is not without loss of generality. With two
agents, the principal may prefer to have both working in the beginning, and retire one agent
once the project gets sufficiently close to completion.12

A key decision in any project involves its scope: Which features to include in a new
product before it is marketed? What results to pursue in a research project? In Project
Design with Limited Commitment and Teams (RAND Journal of Economics, 2014,
with S. Lippman and C. Tang) we embed the dynamic public good provision game described
above in an agency model, where the principal chooses the size of the project. A bigger
project requires more effort to complete but generates a larger payoff, to be split according
to pre-specified proportions among the principal and the agents. A central feature of the
model is that the principal is unable to commit to the size of the project until it is sufficiently
close to completion. In developing an innovative new product for example, it may be difficult
to specify its final characteristics until sufficient progress is made. The inability to commit
can also be due to an asymmetry in the bargaining power between the principal and the
agents. Formally, when the current state of the project is q, she can commit to any project
size Q ≤ q + y where y captures her commitment power.

Our main result shows that the principal has incentives to extend the project as it pro-
gresses, for example by introducing additional requirements. Intuitively, the principal trades
off the marginal benefit of a bigger project and the marginal cost associated with a longer
wait until the bigger project is completed, but not the effort cost needed to do so. So as
progress is made and past efforts are sunk, there is a motive to extend the project.

With sufficient commitment power, the principal commits to the optimal project size
at time zero. Otherwise, they can commit to a smaller than ideal project at time zero or
wait. However, once progress has been made, the optimal project size is larger than it was
originally, and so faces the same dilemma. It turns out that the principal always prefers to

12The intuition stems from the team-size comparative static discussed above. One way to implement this
scheme is by rewarding one agent upon reaching an intermediate milestone at which point he stops, and
rewarding the other agent (only) upon completion.
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wait, and eventually chooses a bigger project the smaller is their commitment power.
The agents of course anticipate this and decrease their effort to the principal’s detriment.

With too little commitment power, the principal is actually better off delegating the decision
rights over the project size to the agents. In that case, the agents will choose a smaller
project than is optimal for the principal but their preferences are time-consistent. Intuitively
this is because unlike the principal, they do internalize the effort cost needed to complete the
project.

Freeriding is a key impediment to collaboration. Since some of the benefits of my collab-
orative efforts accrue to you, I have a natural tendency to underprovide effort and so do you.
In a dynamic setting such as the one described above, there is a second, less well understood
inefficiency: collaborative efforts are frontloaded relative to the social optimum. I provide
too much effort early on to bring the completion date forward, and thereby motivate you
to provide more effort in the future. In Achieving Efficiency in Dynamic Contribu-
tion Games (American Economic Journal: Microeconomics, 2016, with J. Cvitanic) we
propose a mechanism that induces first-best efforts as the outcome of an MPE in a dynamic
contribution game.

The mechanism specifies for each agent flow payments that are a function of the progress
made to date, and a reward that is disbursed upon completion. Intuitively, this mechanism
must neutralize the two inefficiencies described above. To eradicate freeriding, each agent is
effectively made the residual claimant. To neutralize frontloading, the flow payments increase
with progress at a rate such that each agent’s benefit from frontloading effort is exactly offset
by the cost associated with having to make larger flow payments in the future. Assuming
that flow payments are placed in a savings account that accumulates interest, we show that
there exists a budget balanced mechanism that achieves efficiency—ex post if the project
progresses deterministically, and ex ante if it progresses stochastically.13

We also adapt our mechanism to a dynamic common-resource extraction problem such as
the one studied by Levhari and Mirman (1980), and a strategic experimentation problem as in
Keller, Rady and Cripps (2005). For the resource extraction problem, the efficiency-restoring
mechanism specifies that each agent receives a flow subsidy that decreases as the resource
becomes more scarce to neutralize his incentives to overharvest it. To ensure budget balance,
each agent pays a combination of an entry fee in exchange for access to the resource and a
penalty that becomes due as soon as it is depleted. For the experimentation problem, the
mechanism specifies that each agent pays an entry fee and receives a subsidy that depends

13Some features of incentive structures in startups resemble this mechanism. In particular, the flow pay-
ments in our model can be interpreted as the investments that entrepreneurs make until they raise capital,
plus the difference between their income and the (higher) market salary rate. Finally, equity ownership makes
them residual claimants.
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on the (public) belief about the risky project being lucrative.

A ubiquitous feature of projects is a deadline—a date by which the project must be
concluded (or abandoned). The article Deadlines and Infrequent Monitoring in the
Dynamic Provision of Public Goods (Journal of Public Economics, 2017) is one of few
in this literature to incorporate a deadline. The main challenge is that there are two state
variables to keep track of: the progress made to date on the project, and the time remaining
until the deadline. I overcome this challenge by exploiting that on the equilibrium path
(though not off it), there is a one-to-one mapping between the two state variables, so the
problem can be analyzed using standard optimal control techniques. The game has a unique
and symmetric MPE that can be characterized analytically. When the deadline is sufficiently
long, equilibrium efforts are inefficient (due to freeriding) and frontloaded. Shortening the
deadline forces the agents to work harder, but efforts continue to be frontloaded.

The source of frontloading is that agents observe the state of the project continuously, so
they have a motive to influence peers’ future efforts by modifying their present effort. In team
projects however, progress is often tallied only periodically; e.g., during group meetings. So
I assume that agents observe the state of the project only at discrete dates, and in-between,
they choose their efforts according to their beliefs about others’ strategies. If agents were to
observe progress only at the deadline, then frontloading would be eliminated, and with an
appropriate choice of deadline, equilibrium efforts would be efficient.

A problematic feature of deadlines, however, is that they are not renegotiation proof: if
the project is not completed by the deadline, agents will have an incentive to defer it ex
post, undermining its intended purpose. I show that given an exogenous deadline, agents can
maximize their ex ante payoffs by monitoring progress at some date prior to the deadline, and
then not monitoring it again until the deadline. If that date is chosen appropriately, it will
be in each agent’s interest to complete the project by then, and so it acts as a self-enforcing
deadline.

In many settings, agents with different preferences must collectively decide the scope
of a project. For example, entrepreneurs collaborating on a joint business venture must
choose whether to seek a blockbuster product or one with a quicker, if smaller, payoff. In
Collective Choice in Dynamic Public Good Provision (American Economic Journal:
Microeconomics, 2019, with R. Bowen and N. Lambert) we investigate the effect of the
collective choice institution (i.e., dictatorship and unanimity in two-member teams) on the
equilibrium size of the project and on total welfare. We use the workhorse model described
above with two agents who differ in their marginal cost of effort and their stake in the
project.14

14To simplify the exposition, here I focus on the case in which both agents receive the same reward upon
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We first characterize the project size that maximizes each agent’s payoff. In particular,
we show that the efficient agent prefers a smaller project than the inefficient agent, and
moreover, his ideal project size decreases with progress. This is because he increases his
effort at a faster rate than the inefficient agent, so his share of the remaining project cost
increases as the project gets closer to completion. In contrast, the inefficient agent’s ideal
size increases as the project progresses. The agents’ preferences over the project size are thus
time-inconsistent and divergent.

Next, we analyze the equilibrium project size under dictatorship and unanimity. For
brevity, I only discuss the case in which the parties cannot commit to an ex ante decision to
implement a particular project size. If the efficient agent is dictator, then the ideal project
size is implemented in the unique MPE. If instead the inefficient agent is dictator, then there
is a continuum of equilibrium project sizes, all of which are smaller than the inefficient agent’s
ideal but larger than the efficient agent’s. Last, because the inefficient agent prefers a larger
project scope than the efficient agent, the set of equilibria under unanimity are the same as
when the inefficient agent is dictator.

From a welfare perspective, it may be desirable to allocate decision rights to the inefficient
agent, because the efficient agent obtains real control since he carries out the majority of
the progress in equilibrium. This provides a rationale for unanimity as the collective choice
institution in various settings, and it resonates with Galbraith (1952), who argues that when
one party is strong and the other weak, it is preferable to give formal authority to the latter.

3 Other Research

In this section I briefly discuss other work beyond the above agendas.

InThe Absence of Attrition in a War of Attrition under Complete Information
(Games & Economic Behavior, 2022, with Y. Kim and D. Kwon) we study a canonical model
of war of attrition under complete information. We show that if the players’ payoffs whilst
in “war” vary stochastically and their exit payoffs are heterogeneous, then the game admits
Markov Perfect equilibria in pure strategies only. This is true irrespective of the degree of
randomness and heterogeneity, thus highlighting the fragility of mixed-strategy equilibria to
a natural perturbation of the canonical model.

Optimal Reservation Policies and Market Segmentation (International Journal
of Production Economics, 2014, with C. Tang) studies optimal reservation policies for a
capacity-constrained firm facing customers who are privately informed about their valuation

completion. I will refer to the agent with the smaller marginal cost as “efficient” and to the other agent as
“inefficient”.
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for the service on offer and their show-up probability, such as an airline or an airport. The
main takeaway is that when the firm’s capacity is small relative to demand, it optimally
screens customers mostly based on their show-up probability by requiring non-refundable
deposits. As its capacity grows however, it turns to screening customers predominantly
based on their valuation by overbooking in lieu of demanding a deposit.

In The Retail Planning Problem Under Demand Uncertainty (Production and
Operations Management, 2013, with K. Rajaram) we consider a supply chain planning prob-
lem where a firm selects suppliers, and makes decisions on production, distribution and
inventory at the retail locations for each of their (private label) products. Given that this
problem is strongly NP-hard, we develop heuristics to obtain feasible solutions. Compu-
tational analysis indicates that our best heuristic yields feasible solutions that are close to
optimal with an average suboptimality gap of 3.4%.
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