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I study a dynamic problem in which a group of agents collaborate over time to complete a project. The
project progresses at a rate that depends on the agents’ efforts, and it generates a pay-off upon completion.
I show that agents work harder the closer the project is to completion, and members of a larger team work
harder than members of a smaller team—both individually and on aggregate—if and only if the project
is sufficiently far from completion. I apply these results to determine the optimal size of a self-organized
partnership, and to study the manager’s problem who recruits agents to carry out a project, and must
determine the team size and its members’ incentive contracts. The main results are: (i) that the optimal
symmetric contract compensates the agents only upon completing the project; and (ii) the optimal team
size decreases in the expected length of the project.
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1. INTRODUCTION

Teamwork and projects are central in the organization of firms and partnerships. Most large
corporations engage a substantial proportion of their workforce in teamwork (Lawler et al., 2001),
and organizing workers into teams has been shown to increase productivity in both manufacturing
and service firms (Ichniowski and Shaw, 2003). Moreover, the use of teams is especially common
in situations in which the task at hand will result in a defined deliverable, and it will not be ongoing,
but will terminate (Harvard Business School Press, 2004). Motivated by these observations, I
analyse a dynamic problem in which a group of agents collaborate over time to complete a
project, and I address a number of questions that naturally arise in this environment. In particular,
what is the effect of the group size to the agents’ incentives? How should a manager determine the
team size and the agents’ incentive contracts? For example, should they be rewarded for reaching
intermediate milestones, and should rewards be equal across the agents?

I propose a continuous-time model, in which at every moment, each of n agents exerts costly
effort to bring the project closer to completion. The project progresses stochastically at a rate that
is equal to the sum of the agents’effort levels (i.e. efforts are substitutes), and it is completed when
its state hits a pre-specified threshold, at which point each agent receives a lump sum pay-off and
the game ends.

This model can be applied both within firms, for instance, to research teams in new product
development or consulting projects, and across firms, for instance, to R&D joint ventures. More
broadly, the model is applicable to settings in which a group of agents collaborate to complete a
project, which progresses gradually, its expected duration is sufficiently large such that the agents
discounting time matters, and it generates a pay-off upon completion. A natural example is the
Myerlin Repair Foundation (MRF): a collaborative effort among a group of leading scientists in
quest of a treatment for multiple sclerosis (Lakhani and Carlile, 2012). This is a long-term venture,
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progress is gradual, each principal investigator incurs an opportunity cost by allocating resources
to MRF activities (which gives rise to incentives to free-ride), and it will pay off predominantly
when an acceptable treatment is discovered.

In Section 3, I characterize the Markov perfect equilibrium (MPE) of this game, wherein at
every moment, each agent observes the state of the project (i.e. how close it is to completion),
and chooses his effort level to maximize his expected discounted pay-off, while anticipating
the strategies of the other agents. A key result is that each agent increases his effort as the
project progresses. Intuitively, because he discounts time and is compensated upon completion,
his incentives are stronger the closer the project is to completion. An implication of this result is
that efforts are strategic complements across time, in that a higher effort level by one agent at time
t brings the project (on expectation) closer to completion, which in turn incentivizes himself, as
well as the other agents to raise their future efforts.

In Section 4, I examine the effect of the team size to the agents’ incentives. I show that
members of a larger team work harder than members of a smaller team—both individually and
on aggregate—if and only if the project is sufficiently far from completion.1 Intuitively, by
increasing the size of the team, two forces influence the agents’ incentives. First, they obtain
stronger incentives to free-ride. However, because the total progress that needs to be carried out
is fixed, the agents benefit from the ability to complete the project quicker, which increases the
present discounted value of their reward, and consequently strengthens their incentives. I refer to
these forces as the free-riding and the encouragement effect, respectively. Because the marginal
cost of effort is increasing and agents work harder the closer the project is to completion, the
free-riding effect becomes stronger as the project progresses. On the other hand, the benefit of
being able to complete the project faster in a bigger team is smaller the less progress remains, and
hence the encouragement effect becomes weaker with progress. As a result, the encouragement
effect dominates the free-riding effect, and consequently members of a larger team work harder
than those of a smaller team if and only if the project is sufficiently far from completion.

I first apply this result to the problem faced by a group of agents organizing into a partnership.
If the project is a public good so that each agent’s reward is independent of the team size, then each
agent is better off expanding the partnership ad infinitum. However, if the project generates a fixed
pay-off upon completion that is shared among the team members, then the optimal partnership
size increases in the length of the project.2

Motivated by the fact that projects are often run by corporations (rather than self-organized
partnerships), in Section 5, I introduce a manager who is the residual claimant of the project,
and he/she recruits a group of agents to undertake it on his/her behalf. His/Her objective is to
determine the size of the team and each agent’s incentive contract to maximize his/her expected
discounted profit.

First, I show that the optimal symmetric contract compensates the agents only upon completion
of the project. The intuition is that by backloading payments (compared to rewarding the agents
for reaching intermediate milestones), the manager can provide the same incentives at the early
stages of the project (via continuation utility), while providing stronger incentives when the
project is close to completion. This result simplifies the manager’s problem to determining the
team size and his/her budget for compensating the agents. Given a fixed team size, I show that the
manager’s optimal budget increases in the length of the project. This is intuitive: to incentivize

1. This result holds both if the project is a public good so that each agent’s reward is independent of the team size,
and if the project generates a fixed pay-off that is shared among the team members so that doubling the team size halves
each agent’s reward.

2. The length of the project refers to the expected amount of progress necessary to complete it (given a fixed
pay-off).
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the agents, the manager should compensate them more, the longer the project. Moreover, the
optimal team size increases in the length of the project. Recall that a larger team works harder
than a smaller one if the project is sufficiently far from completion. Therefore, the benefit from
a larger team working harder while the project is far from completion outweighs the loss from
working less when it is close to completion only if the project is sufficiently long. Lastly, I show
that the manager can benefit from dynamically decreasing the size of the team as the project
nears completion. The intuition is that he/she prefers a larger team while the project is far from
completion since it works harder than a smaller one, while a smaller team becomes preferable
near completion.

The restriction to symmetric contracts in not without loss of generality. In particular, the
scheme wherein the size of the team decreases dynamically as the project progresses can
be implemented with an asymmetric contract that rewards the agents upon reaching different
milestones. Finally, with two (identical) agents, I show that the manager is better off compensating
them asymmetrically if the project is sufficiently short. Intuitively, the agent who receives the
larger reward will carry out the larger share of the work in equilibrium, and hence she/he cannot
free-ride on the other agent as much.

First and foremost, this article is related to the moral hazard in teams literature (Holmström,
1982; Ma et al., 1988; Bagnoli and Lipman, 1989; Legros and Matthews, 1993; Strausz, 1999,
and others). These papers focus on the free-rider problem that arises when each agent must share
the output of his/her effort with the other members of the team, and they explore ways to restore
efficiency. My article ties in with this literature in that it analyzes a dynamic game of moral hazard
in teams with stochastic output.

Closely related to this article is the literature on dynamic contribution games, and in
particular, the papers that study threshold or discrete public good games. Formalizing the
intuition of Schelling (1960),Admati and Perry (1991), and Marx and Matthews (2000) show that
contributing little by little over multiple periods, each conditional on the previous contributions
of the other agents, mitigates the free-rider problem. Lockwood and Thomas (2002) and
Compte and Jehiel (2004) show how gradualism can arise in dynamic contribution games,
while Battaglini, Nunnari and Palfrey (2013) compare the set of equilibrium outcomes when
contributions are reversible to the case in which they are not. Whereas these papers focus
on characterizing the equilibria of dynamic contribution games, my primary focus is on the
organizational questions that arise in the context of such games.

Yildirim (2006) studies a game in which the project comprises of multiple discrete stages, and
in every period, the current stage is completed if at least one agent exerts effort. Effort is binary,
and each agent’s effort cost is private information, and re-drawn from a common distribution
in each period. In contrast, in my model, following Kessing (2007), the project progresses
at a rate that depends smoothly on the team’s aggregate effort. Yildirim (2006) and Kessing
(2007) show that if the project generates a pay-off only upon completion, then contributions
are strategic complements across time even if there are no complementarities in the agents’
production function. This is in contrast to models in which the agents receive flow pay-offs
while the project is in progress (Fershtman and Nitzan, 1991), and models in which the project
can be completed instantaneously (Bonatti and Hörner, 2011), where contributions are strategic
substitutes. Yildirim also examines how the team size influences the agents’ incentives in a
dynamic environment, and he shows that members of a larger team work harder than those of
a smaller team at the early stages of the project, while the opposite is true at its later stages.3

This result is similar to Theorem 2(i) in this article. However, leveraging the tractability of my

3. It is worth pointing out, however, that in Yildirim’s model, this result hinges on the assumption that in every
period, each agent’s effort cost is re-drawn from a non-degenerate distribution. In contrast, if effort costs are deterministic,
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model, I also characterize the relationship between aggregate effort and the team size, which is
the crucial metric for determining the manager’s optimal team size.

In summary, my contributions to this literature are 2-fold. First, I propose a natural framework
to analyse the dynamic problem faced by a group of agents who collaborate over time to complete
a project. The model provides several testable implications, and the framework proposed in this
article can be useful for studying other dynamic moral hazard problems with multiple agents;
for example, the joint extraction of an exhaustible common resource, or a tug of war between
two teams (in the spirit of Cao, 2014), or a game of oligopolistic competition with demand that
is correlated across time (as in Section IV of Sannikov and Skrzypacz, 2007). Moreover, in an
earlier version of this article, I also analyse the cases in which the agents are asymmetric and the
project size is endogenous (Georgiadis, 2011). Secondly, I derive insights for the organization
of partnerships, and for team design where a manager must determine the size of his/her team
and the agents’ incentive contracts. To the best of my knowledge, this is one of the first papers to
study this problem; one notable exception being Rahmani et al. (2013), who study the contractual
relationship between the members of a two-person team.

This paper is also related to the literature on free-riding in groups. To explain why teamwork
often leads to increased productivity in organizations in spite of the theoretical predictions that
effort and group size should be inversely related (Olson, 1965; Andreoni, 1988), scholars have
argued that teams benefit from mutual monitoring (Alchian and Demsetz, 1972), peer pressure to
achieve a group norm (Kandel and Lazear, 1992), complementary skills (Lazear, 1998), warm-
glow (Andreoni, 1990), and non-pecuniary benefits such as more engaging work and social
interaction. While these forces are helpful for explaining the benefits of teamwork, this paper
shows that they are actually not necessary in settings in which the team’s efforts are geared
towards completing a project.

Lastly, the existence proofs of Theorems 1 and 3 are based on Hartman (1960), while the proof
techniques for the comparative statics draw from Cao (2014), who studies a continuous-time
version of the patent race of Harris and Vickers (1985).

The remainder of this paper is organized as follows. Section 2 introduces the model. Section 3
characterizes the MPE of the game, and establishes some basic results. Section 4 examines how
the size of the team influences the agents’ incentives, and characterizes the optimal partnership
size. Section 5 studies the manager’s problem, and Section 6 concludes. Appendix A contains a
discussion of non-Markovian strategies and four extensions of the base model. The major proofs
are provided in Appendix B, while the omitted proofs are available in the online Appendix.

2. THE MODEL

A team of n agents collaborate to complete a project. Time t ∈ [0,∞) is continuous. The project
starts at some initial state q0<0, its state qt evolves according to a stochastic process, and it is
completed at the first time τ such that qt hits the completion state which is normalized to 0. Agent
i∈{1,...,n} is risk neutral, discounts time at rate r>0, and receives a pre-specified reward Vi>0
upon completing the project.4 An incomplete project has zero value. At every moment t, each

then this comparative static is reversed: the game becomes a dynamic version of the “reporting a crime” game (ch. 4.8
in Osborne, 2003), and one can show that in the unique symmetric, mixed-strategy MPE, both the probability that each
agent exerts effort, and the probability that at least one agent exerts effort at any given stage of the project (which is the
metric for individual and aggregate effort, respectively) decreases in the team size.

4. In the base model, the project generates a pay-off only upon completion. The case in which the project also
generates a flow pay-off while it is in progress is examined in Appendix A.1, and it is shown that the main results continue
to hold.
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agent observes the state of the project qt , and privately chooses his/her effort level to influence
the drift of the stochastic process

dqt =
(

n∑
i=1

ai,t

)
dt+σdWt ,

where ai,t ≥0 denotes the effort level of agent i at time t, σ >0 captures the degree of uncertainty
associated with the evolution of the project, and Wt is a standard Brownian motion.5,6 As such, |q0|
can be interpreted as the expected length of the project.7 Finally, each agent is credit constrained,
his effort choices are not observable to the other agents, and his flow cost of exerting effort a is

given by c(a)= ap+1

p+1 , where p≥1.8

At every moment t, each agent i observes the state of the project qt , and chooses his/her effort
level ai,t to maximize his/her expected discounted pay-off while taking into account the effort
choices a−i,s of the other team members. As such, for a given set of strategies, his/her expected
discounted pay-off is given by

Ji (qt)=Eτ

[
e−r(τ−t)Vi −

∫ τ

t
e−r(s−t)c

(
ai,s
)
ds

]
, (1)

where the expectation is taken with respect to τ : the random variable that denotes the completion
time of the project.

Assuming that Ji (·) is twice differentiable for all i, and using standard arguments (Dixit,
1999), one can derive the Hamilton–Jacobi–Bellman (hereafter HJB) equation for the expected
discounted pay-off function of agent i:

rJi (q)=−c
(
ai,t
)+
⎛
⎝ n∑

j=1

aj,t

⎞
⎠J ′

i (q)+
σ 2

2
J ′′

i (q) (2)

defined on (−∞,0] subject to the boundary conditions

lim
q→−∞Ji (q)=0 and Ji (0)=Vi . (3)

Equation (2) asserts that agent i’s flow pay-off is equal to his/her flow cost of effort, plus his
marginal benefit from bringing the project closer to completion times the aggregate effort of the
team, plus a term that captures the sensitivity of his/her pay-off to the volatility of the project.

5. For simplicity, I assume that the variance of the stochastic process (i.e. σ ) does not depend on the agents’ effort
levels. While the case in which effort influences both the drift and the diffusion of the stochastic process is intractable,

numerical examples with dqt =
(∑n

i=1 ai,t
)
dt+σ (∑n

i=1 ai,t
)1/2

dWt suggest that the main results continue to hold. See
Appendix A.3 for details.

6. I assume that efforts are perfect substitutes. To capture the notion that when working in teams, agents may
be more (less) productive due to complementary skills (coordination costs), one can consider a super- (sub-) additive

production function such as dqt =
(∑n

i=1 a1/γ
i,t

)γ
dt+σdWt , where γ >1 (0<γ <1). The main results continue to hold.

7. Because the project progresses stochastically, the total amount of effort to complete it may be greater or smaller
than |q0|.

8. The case in which c(·) is an arbitrary, strictly increasing, and convex function is discussed in Remark 1, while
the case in which effort costs are linear is analysed in Appendix A.5 The restriction that p≥1 is necessary only for
establishing that a MPE exists. If the conditions in Remark 1 are satisfied, then all results continue to hold for any p>0.
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To interpret equation (3), observe that as q→−∞, the expected time until the project is completed
so that agent i collects his/her reward diverges to ∞, and because r>0, his/her expected
discounted pay-off asymptotes to 0. However, because he/she receives his/her reward and exerts
no further effort after the project is completed, Ji (0)=Vi.

3. MARKOV PERFECT EQUILIBRIUM

I assume that strategies are Markovian, so that at every moment, each agent chooses his/her effort
level as a function of the current state of the project.9 Therefore, given q, agent i chooses his/her
effort level ai (q) such that

ai (q)∈argmax
ai≥0

{
aiJ

′
i (q)−c(ai)

}
.

Each agent chooses his/her effort level by trading off marginal benefit of bringing the project
closer to completion and the marginal cost of effort. The former comprises of the direct benefit
associated with the project being completed sooner, and the indirect benefit associated with
influencing the other agents’ future effort choices.10 By noting that c′(0)=0 and c(·) is strictly
convex, it follows that for any given q, agent i’s optimal effort level ai (q)= f

(
J ′

i (q)
)
, where

f (·)=c′−1(max{0, ·}). By substituting this into equation (2), the expected discounted pay-off for
agent i satisfies

rJi (q)=−c
(
f
(
J ′

i (q)
))+

⎡
⎣ n∑

j=1

f
(

J ′
j (q)

)⎤⎦J ′
i (q)+

σ 2

2
J ′′

i (q) (4)

subject to the boundary conditions (3).
An MPE is characterized by the system of ordinary differential equations (ODE) defined by

equation (4) subject to the boundary conditions (3) for all i∈{1,...,n}. To establish existence of
a MPE, it suffices to show that a solution to this system exists. I then show that this system has a
unique solution if the agents are symmetric (i.e., Vi =Vj for all i �= j). Together with the facts that
every MPE must satisfy this system and the first-order condition is both necessary and sufficient,
it follows that the MPE is unique in this case.

Theorem 1. An MPE for the game defined by equation (1) exists. For each agent i, the expected
discounted pay-off function Ji (q) satisfies:

(i) 0<Ji (q)≤Vi for all q.
(ii) J ′

i (q)>0 for all q, and hence the equilibrium effort ai (q)>0 for all q.
(iii) J ′′

i (q)>0 for all q, and hence a′
i (q)>0 for all q.

(iv) If agents are symmetric (i.e. Vi =Vj for all i �= j), then the MPE is symmetric and unique.11

9. The possibility that the agents play non-Markovian strategies is discussed in Remark 5, in Section 3.2.
10. Because each agent’s effort level is a function of q, his/her current effort level will impact his/her and the other

agents’ future effort levels.
11. To simplify notation, if the agents are symmetric, then the subscript i is interchanged with the subscript n to

denote the team size throughout the remainder of this article.
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J ′
i (q)>0 implies that each agent is strictly better off, the closer the project is to completion.

Because c′(0)=0 (i.e. the marginal cost of little effort is negligible), each agent exerts a strictly
positive amount of effort at every state of the project: ai (q)>0 for all q.12

Because the agents incur the cost of effort at the time effort is exerted but are only compensated
upon completing the project, their incentives are stronger, the closer the project is to completion:
a′

i (q)>0 for all q. An implication of this result is that efforts are strategic complements across
time. That is because a higher effort by an agent at time t brings the project (on expectation)
closer to completion, which in turn incentivizes himself/herself, as well as the other agents to
raise their effort at times t′> t.

Note that Theorem 1 hinges on the assumption that r>0. If the agents are patient (i.e. r =0),
then in equilibrium, each agent will always exert effort 0.13 Therefore, this model is applicable
to projects whose expected duration is sufficiently large such that the agents discounting time
matters.

Remark 1. For an MPE to exist, it suffices that c(·) is strictly increasing and convex with c(0)=
0, it satisfies the INADA condition lima→∞c′(a)=∞, and σ 2

4

∫∞
0

sds
r
∑n

i=1 Vi+nsf (s)
>
∑n

i=1Vi. If

c(a)= ap+1

p+1 and p≥1, then the LHS equals ∞, so that the inequality is always satisfied. However,

if p∈(0,1), then the inequality is satisfied only if
∑n

i=1Vi, r and n are sufficiently small, or if σ
is sufficiently large. More generally, this inequality is satisfied if c(·) is sufficiently convex.

The existence proof requires that Ji (·) and J ′
i (·) are always bounded. It is easy to show that

Ji (q)∈ [0,Vi] and J ′
i (q)≥0 for all i and q. The inequality in Remark 1 ensures that the marginal

cost of effort c′(a) is sufficiently large for large values of a that no agent ever has an incentive
to exert an arbitrarily high effort, which by the first-order condition implies that J ′

i (·) is bounded
from above.

Remark 2. An important assumption of the model is that the agents are compensated only upon
completion of the project. In Appendix A.1, I consider the case in which during any interval
(t, t+dt) while the project is in progress, each agent receives a flow pay-off h(qt)dt, in addition
to the lump sum reward V upon completion. Assuming that h(·) is increasing and satisfies certain
regularity conditions, there exists a threshold ω (not necessarily interior) such that a′

n(q)≥0 if
and only if q≤ω; i.e. effort is hump-shaped in progress.

The intuition why effort can decrease in q follows by noting that as the project nears completion,
each agent’s flow pay-off becomes larger, which in turn decreases his/her marginal benefit from
bringing the project closer to completion. Numerical analysis indicates that this threshold is
interior as long as the magnitude of the flow pay-offs is sufficiently large relative to V .

Remark 3. The model assumes that the project is never “cancelled”. If there is an exogenous
cancellation state QC<q0<0 such that the project is cancelled (and the agents receive pay-off
0) at the first time that qt hits QC, then statements (i) and (ii) of Theorem 1 continue to hold,

12. If c′ (0)>0, then there exists a quitting threshold Qq, such that each agent exerts 0 effort on
(−∞,Qq

]
, while

he/she exerts strictly positive effort on
(
Qq,0

]
, and his/her effort increases in q.

13. If σ =0, because effort costs are convex and the agents do not discount time, in any equilibrium in which the
project is completed, each agent finds it optimal to exert an arbitrarily small amount of effort over an arbitrarily large time
horizon, and complete the project asymptotically. (A project-completing equilibrium exists only if c′ (0) is sufficiently
close to 0.)
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but effort needs no longer be increasing in q. Instead, there exists a threshold ω (not necessarily
interior) such that a′

n(q)≤0 if and only if q≤ω; i.e. effort is U-shaped in progress. See Appendix
A.2 for details.

Intuitively, the agents have incentives to exert effort (i) to complete the project, and (ii) to avoid
hitting the cancellation state QC . Because the incentives due to the former (latter) are stronger the
closer the project is to completion (to QC), depending on the choice of QC , the agent’s incentives
may be stronger near QC and near the completion state relative to the midpoint. Numerical
analysis indicates that ω=0 so that effort increases monotonically in q if QC is sufficiently small;
it is interior if QC is in some intermediate range, and ω=−∞ so that effort always decreases in
q if QC is sufficiently close to 0.

Remark 4. Agents have been assumed to have outside option 0. In a symmetric team, if each
agent has a positive outside option u>0, then there exists an optimal abandonment state QA>−∞
satisfying the smooth-pasting condition ∂

∂q Jn(q,QA)

∣∣∣
q=QA

=0 such that the agents find it optimal

to abandon the project at the first moment q hits QA, where Jn(·,QA) satisfies equation (4) subject
to Jn(QA,QA)=u and Ji (0,QA)=Vi. In this case, each agent’s effort increases monotonically
with progress.

3.1. Comparative statics

This section establishes some comparative statics, which are helpful to understand how the agents’
incentives depend on the parameters of the problem. To examine the effect of each parameter to
the agents’ incentives, I consider two symmetric teams that differ in exactly one attribute: their
members’ rewards V , patience levels r, or the volatility of the project σ .14

Proposition 1. Consider two teams comprising symmetric agents.

(i) If V1<V2, then all other parameters held constant, a1(q)<a2(q) for all q.
(ii) If r1>r2, then all other parameters held constant, there exists an interior threshold �r

such that a1(q)≤a2(q) if and only if q≤�r .
(iii) If σ1>σ2, then all other parameters held constant, there exist interior thresholds�σ,1 ≤

�σ,2 such that a1(q)≥a2(q) if q≤�σ,1 and a1(q)≤a2(q) if q≥�σ,2.15

The intuition behind statement (i) is straightforward. If the agents receive a bigger reward, then
they always work harder in equilibrium.

Statement (ii) asserts that less patient agents work harder than more patient agents if and
only if the project is sufficiently close to completion. Intuitively, less patient agents have more
to gain from an earlier completion (provided that the project is sufficiently close to completion).
However, bringing the completion time forward requires that they exert more effort, the cost of
which is incurred at the time that effort is exerted, whereas the reward is only collected upon
completion of the project. Therefore, the benefit from bringing the completion time forward (by
exerting more effort) outweighs its cost only when the project is sufficiently close to completion.

14. Since the teams are symmetric and differ in a single parameter (e.g. their reward Vi in statement (i)), abusing
notation, I let ai (·) denote each agent’s effort strategy corresponding to the parameter with subscript i.

15. Unable to show that J ′′′
i (q) is unimodal in q, this result does not guarantee that�σ,1 =�σ,2, which implies that

it does not provide any prediction about how the agents’ effort depends on σ when q∈[�σ,1,�σ,2]. However, numerical
analysis indicates that in fact �σ,1 =�σ,2.
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Finally, statement (iii) asserts that incentives become stronger in the volatility of the project
σ when it is far from completion, while the opposite is true when it gets close to completion. As
the volatility increases, it becomes more likely that the project will be completed either earlier
than expected (upside), or later than expected (downside). If the project is sufficiently far from
completion, then Ji (q) is close to 0 so that the downside is negligible, while J ′′

i (q)>0 implies that
the upside is not (negligible), and consequently a1(q)≥a2(q). However, because the completion
time of the project is non-negative, the upside diminishes as it approaches completion, which
implies that the downside is bigger than the upside, and consequently a1(q)≤a2(q).

3.2. Comparison with first-best outcome

To obtain a benchmark for the agents’ equilibrium effort levels, I compare them to the first-best
outcome, where at every moment, each agent chooses his effort level to maximize the team’s, as
opposed to his individual expected discounted pay-off. I focus on the symmetric case, and denote
by Ĵn(q) and ân(q) the first-best expected discounted pay-off and effort level of each member of an

n-person team, respectively. The first-best effort level satisfies ân(q)∈argmaxa

{
anĴ ′

n(q)−c(a)
}

,

and the first-order condition implies that ân(q)= f
(

nĴ ′
n(q)

)
. Substituting this into equation (2)

yields

rĴn(q)=−c
(

f
(

nĴ ′
n(q)

))
+nf

(
nĴ ′

n(q)
)

Ĵ ′
n(q)+

σ 2

2
Ĵ ′′

n (q)

subject to the boundary conditions (3). It is straightforward to show that the properties established
in Theorem 1 apply for Ĵn(q) and ân(q). In particular, the first-best ODE subject to equation (3)
has a unique solution, and â′

n(q)>0 for all q; i.e. similar to the MPE, the first-best effort level
increases with progress.

Proposition 2 compares each agent’s effort and his/her expected discounted pay-off in the
MPE to the first-best outcome.

Proposition 2. In a team of n≥2 agents, an(q)< ân(q) and Jn(q)< Ĵn(q) for all q.

This result is intuitive: because each agent’s reward is independent of his/her contribution to the
project, he/she has incentives to free-ride. As a result, in equilibrium, each agent exerts strictly
less effort and he/she is strictly worse off at every state of the project relative to the case in which
agents behave collectively by choosing their effort level at every moment to maximize the team’s
expected discounted pay-off.

Remark 5. A natural question is whether the agents can increase their expected discounted pay-
off by adopting non-Markovian strategies, so that their effort at t depends on the entire evolution
path of the project {qs}s≤t . While a formal analysis is beyond the scope of this article, the analysis
of Sannikov and Skrzypacz (2007), who study a related model, suggests that no, there does not
exist a symmetric public perfect equilibrium (PPE) in which agents can achieve a higher expected
discounted pay-off than the MPE at any state of the project. See Appendix A.4 for details.

It is important to emphasize, however, that this conjecture hinges upon the assumption
that the agents cannot observe each other’s effort choices. For example, if efforts are publicly
observable, then in addition to the MPE characterized in Theorem 1, using a similar approach
as in Georgiadis et al. (2014), who study a deterministic version of this model (i.e. with σ =0),
one can show that there exists a PPE in which the agents exert the first-best effort level along the
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equilibrium path. Such equilibrium is supported by trigger strategies, wherein at every moment
t, each agent exerts the first-best effort level if all agents have exerted the first-best effort level
for all s< t, while he/she reverts to the MPE otherwise.16

4. THE EFFECT OF TEAM SIZE

When examining the relationship between the agents’ incentives and the size of the team, it is
important to consider how each agent’s reward depends on the team size. I consider the following
(natural) cases: the public good allocation scheme, wherein each agent receives a reward V upon
completing the project irrespective of the team size, and the budget allocation scheme, wherein
each agent receives a reward V/n upon completing the project.

With n symmetric agents, each agent’s expected discounted pay-off function satisfies

rJn(q) = −c
(
f
(
J ′

n(q)
))+nf

(
J ′

n(q)
)
J ′

n(q)+
σ 2

2
J ′′

n (q)

subject to limq→−∞Jn(q)=0 and Jn(0)=Vn, where Vn =V or Vn =V/n under the public good
or the budget allocation scheme, respectively.

Theorem 2 below shows that under both allocation schemes, members of a larger team work
harder than members of a smaller team—both individually and on aggregate—if and only if the
project is sufficiently far from completion. Figure 1 illustrates an example.

Theorem 2. Consider two teams comprising n and m>n identical agents. Under both allocation
schemes, all other parameters held constant, there exist thresholds �n,m and �n,m such that

(i) am (q)≥an(q) if and only if q≤�n,m ; and
ii) mam (q)≥nan(q) if and only if q≤�n,m.

By increasing the size of the team, two opposing forces influence the agents’ incentives: First,
agents obtain stronger incentives to free-ride. To see why, consider an agent’s dilemma at time
t to (unilaterally) reduce his/her effort by a small amount ε for a short interval 
. By doing
so, he/she saves approximately εc′(a(qt))
 in effort costs, but at t+
, the project is ε

farther from completion. In equilibrium, this agent will carry out only 1/n of that lost progress,
which implies that the benefit from shirking increases in the team size. Secondly, recall that
each agent’s incentives are proportional to the marginal benefit of bringing the completion
time τ forward: −d/dτVnE

[
e−rτ

]=rVnE
[
e−rτ

]
, which implies that holding strategies fixed,

an increase in the team size decreases the completion time of the project, and hence strengthens
the agents’ incentives. Following the terminology of Bolton and Harris (1999), who study an
experimentation in teams problem, I refer to these forces as the free-riding and the encouragement
effect, respectively, and the intuition will follow from examining how the magnitude of these
effects changes as the project progresses.

It is convenient to consider the deterministic case in which σ =0. Because c′(0)=0 and
effort vanishes as q→−∞, and noting that each agent’s gain from free-riding is proportional
to c′(a(q)), it follows that the free-riding effect is negligible when the project is sufficiently far
from completion. As the project progresses, the agents raise their effort, and because effort costs
are convex, the free-riding effect becomes stronger. The magnitude of the encouragement effect

16. There is a well-known difficulty associated with defining trigger strategies in continuous-time games, which
Georgiadis et al. (2014) resolve using the concept of inertia strategies proposed by Bergin and MacLeod (1993).

 by guest on O
ctober 11, 2014

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


[18:23 30/9/2014 rdu031.tex] RESTUD: The Review of Economic Studies Page: 11 1–32

GEORGIADIS PROJECTS AND TEAM DYNAMICS 11

Figure 1

Illustration of Theorem 2.

The upper panels illustrate each agent’s expected discounted pay-off under public good (left) and budget (right)

allocation for two different team sizes: n=3 and 5. The lower panels illustrate each agent’s equilibrium effort.

can be measured by the ratio of the marginal benefits of bringing the completion time forward:
rV2ne− rτ

2

rVne−rτ = V2n
Vn

e
rτ
2 . Observe that this ratio increases in τ , which implies that the encouragement

effect becomes weaker as the project progresses (i.e. as τ becomes smaller), and it diminishes
under public good allocation (since V2n

Vn
=1) while it becomes negative under budget allocation

(since V2n
Vn
<1).

In summary, under both allocation schemes, the encouragement effect dominates the free-
riding effect if and only if the project is sufficiently far from completion. This implies that
by increasing the team size, the agents obtain stronger incentives when the project is far from
completion, while their incentives become weaker near completion.

Turning attention to the second statement, it follows from statement (i) that aggregate effort
in the larger team exceeds that in the smaller team if the project is far from completion. Perhaps
surprisingly, however, when the project is near completion, not only the individual effort, but also
the aggregate effort in the larger team is less than that in the smaller team. The intuition follows
by noting that when the project is very close to completion (e.g. qt =−ε), this game resembles
the (static) “reporting a crime” game (ch. 4.8 in Osborne, 2003), and it is well known that in the
unique symmetric mixed-strategy Nash equilibrium of this game, the probability that at least one
agent exerts effort (which is analogous to aggregate effort) decreases in the group size.

The same proof technique can be used to show that under both allocation schemes, the first-
best aggregate effort increases in the team size at every q. This difference is a consequence of the
free-riding effect being absent in this case, so that the encouragement effect alone leads a larger
team to always work on aggregate harder than a smaller team.

It is noteworthy that the thresholds of Theorem 2 need not always be interior. Under budget
allocation, it is possible that �n,m =−∞, which would imply that each member of the smaller
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Figure 2

An example with quartic effort costs (p=3).

The upper panels illustrate that under both allocation schemes, �n,m is interior, whereas the lower panels illustrate that

�n,m =0, in which case the aggregate effort in the larger team always exceeds that of the smaller team.

team always works harder than each member of the larger team. However, numerical analysis
indicates that�n,m is always interior under both allocation schemes. Turning to�n,m, the proof of
Theorem 2 ensures that it is interior only under budget allocation if effort costs are quadratic, while
one can find examples in which�n,m is interior as well as examples in which�n,m =0 otherwise.
Numerical analysis indicates that the most important parameter that determines whether�n,m is
interior is the convexity of the effort cost function, and it is interior as long as c(·) is not too convex
(i.e. p is sufficiently small). This is intuitive, as more convex effort costs favour the larger team
more.17 In addition, under public good allocation, for �n,m to be interior, it is also necessary
that n and m are sufficiently small. Intuitively, this is because the size of the pie increases in
the team size under this scheme, which (again) favours the larger team. Figure 2 illustrates an
example with quartic effort costs (i.e. p=3) in which case �n,m is interior but �n,m =0 under
both allocation schemes.

4.1. Partnership formation

In this section, I examine the problem faced by a group of agents who seek to organize into a
partnership. Proposition 3 characterizes the optimal partnership size.

17. This finding is consistent with the results of Esteban and Ray (2001), who show that in a static setting, the
aggregate effort increases in the team size if effort costs are sufficiently convex. In their setting, however, individual
effort always decreases in the team size irrespective of the convexity of the effort costs. To further examine the impact
of the convexity of the agents’ effort costs, in Appendix A.5, I consider the case in which effort costs are linear, and I
establish an analogous result to Theorem 2: members an (n+1)-person team have stronger incentives relative to those of
an n-person team as long as n is sufficiently small.
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Proposition 3. Suppose that the partnership composition is finalized before the agents begin to
work, so that the optimal partnership size satisfies argmaxn{Jn(q0)}.

(i) Under public good allocation, the optimal partnership size n=∞ independent of the
project length |q0|.

(ii) Under budget allocation, the optimal partnership size n increases in the project length
|q0|.

Increasing the size of the partnership has two effects. First, the expected completion time of
the project changes; from Theorem 2 it follows that it decreases, thus increasing each agent’s
expected discounted reward, if the project is sufficiently long. Secondly, in equilibrium, each agent
will exert less effort to complete the project, which implies that his total expected discounted
cost of effort decreases. Proposition 3 shows that if each agent’s reward does not depend on
the partnership size (i.e. under public good allocation), then the latter effect always dominates
the former, and hence agents are better off the bigger the partnership. Under budget allocation,
however, these effects outweigh the decrease in each agent’s reward caused by the increase in the
partnership size only if the project is sufficiently long, and consequently, the optimal partnership
size increases in the length of the project.

An important assumption underlying Proposition 3 is that the partnership composition is
finalized before the agents begin to work. Under public good allocation, this assumption is without
loss of generality, because the optimal partnership size is equal to ∞ irrespective of the length
of the project. However, it may not be innocuous under budget allocation, where the optimal
partnership size does depend on the project length. If the partnership size is allowed to vary with
progress, an important modelling assumption is how the rewards of new and exiting members
will be determined. While a formal analysis is beyond the scope of this article, abstracting from
the above modelling issue and based on Theorem 2, it is reasonable to conjecture that the agents
will have incentives to expand the partnership after setbacks, and to decrease its size as the project
nears completion.

5. MANAGER’S PROBLEM

Most projects require substantial capital to cover infrastructure and operating costs. For example,
the design of a new pharmaceutical drug, in addition to the scientists responsible for the drug
design (i.e. the project team), necessitates a laboratory, expensive and maintenance-intensive
machinery, as well as support staff. Because individuals are often unable to cover these costs,
projects are often run by corporations instead of the project team, which raises the questions of:
(i) how to determine the optimal team size; and (ii) how to best incentivize the agents. These
questions are addressed in this section, wherein I consider the case in which a third party (to be
referred to as a manager) is the residual claimant of the project, and he/she hires a group of agents
to undertake it on his/her behalf. Section 5.1 describes the model, Section 5.2 establishes some
of the properties of the manager’s problem, and Section 5.3 studies his/her contracting problem.

5.1. The model with a manager

The manager is the residual claimant of the project, he/she is risk neutral, and he/she discounts time
at the same rate r>0 as the agents. The project has (expected) length |q0|, and it generates a pay-off
U>0 upon completion. To incentivize the agents, at time 0, the manager commits to an incentive
contract that specifies the size of the team, denoted by n, a set of milestones q0<Q1<...<QK =0
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(where K ∈N), and for every k ∈{1,...,K}, allocates non-negative payments
{
Vi,k
}n

i=1 that are
due upon reaching milestone Qk for the first time.18

5.2. The manager’s profit function

I begin by considering the case in which the manager compensates the agents only upon
completing the project, and I show in Theorem 3 that his/her problem is well-defined and it
satisfies some desirable properties. Then I explain how this result extends to the case in which
the manager also rewards the agents for reaching intermediate milestones.

Given the team size n and the agents’ rewards {Vi}n
i=1 that are due upon completion of the

project (where I can assume without loss of generality that
∑n

i=1Vi ≤U), the manager’s expected
discounted profit function can be written as

F (q)=
(

U −
n∑

i=1

Vi

)
Eτ

[
e−rτ |q] ,

where the expectation is taken with respect to the project’s completion time τ , which depends
on the agents’ strategies and the stochastic evolution of the project.19 By using the first-order
condition for each agent’s equilibrium effort as determined in Section 3, the manager’s expected
discounted profit at any given state of the project satisfies

rF (q)=
[

n∑
i=1

f
(
J ′

i (q)
)]

F′(q)+ σ 2

2
F′′(q) (5)

defined on (−∞,0] subject to the boundary conditions

lim
q→−∞F (q)=0 and F (0)=U −

n∑
i=1

Vi , (6)

where Ji (q) satisfies equation (2) subject to equation (3). The interpretation of these conditions is
similar to equation (3). As the state of the project diverges to −∞, its expected completion time
diverges to ∞, and because r>0, the manager’s expected discounted profit diminishes to 0. The
second condition asserts that the manager’s profit is realized when the project is completed, and
it equals her pay-off U less the payments

∑n
i=1Vi disbursed to the agents.

Theorem 3. Given
(
n, {Vi}n

i=1

)
, a solution to the manager’s problem defined by equation (5)

subject to the boundary conditions (6) and the agents’ problem as defined in Theorem 1 exists,
and it has the following properties:

(i) F (q)>0 and F′(q)>0 for all q.
(ii) F (·) is unique if the agents’ rewards are symmetric (i.e. if Vi =Vj for i �= j).

18. The manager’s contracting space is restricted. In principle, the optimal contract should condition each agent’s
pay-off on the path of qt (and hence on the completion time of the project). Unfortunately, however, this problem is not
tractable; for example, the contracting approach developed in Sannikov (2008) boils down a partial differential equation
with n+1 variables (i.e. the state of the project q and the continuation value of each agent), which is intractable even for
the case with a single agent. As such, this analysis is left for future research.

19. The subscript k is dropped when K =1 (in which case Q1 =0).
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Now let us discuss how Theorems 1 and 3 extend to the case in which the manager rewards the
agents upon reaching intermediate milestones. Recall that he/she can designate a set of milestones,
and attach rewards to each milestone that are due as soon as the project reaches the respective
milestone for the first time. Let Ji,k (·) denote agent i’s expected discounted pay-off given that
the project has reached k−1 milestones, which is defined on (−∞,Qk], and note that it satisfies
equation (4) subject to limq→−∞Ji,k (q)=0 and Ji,k (Qk)=Vi,k +Ji,k+1(Qk), where Ji,K+1(0)=
0.The second boundary condition states that upon reaching milestone k, agent i receives the reward
attached to that milestone, plus the continuation value from future rewards. Starting with Ji,K (·),
it is straightforward that it satisfies the properties of Theorem 1, and in particular, that Ji,K

(
Qk−1

)
is unique (as long as rewards are symmetric) so that the boundary condition of Ji,K−1(·) at QK−1
is well defined. Proceeding backwards, it follows that for every k, Ji,k (·) satisfies the properties
of Theorem 1.

To examine the manager’s problem, let Fk (·) denote his/her expected discounted profit
given that the project has reached k−1 milestones, which is defined on (−∞,Qk], and note
that it satisfies equation (5) subject to limq→−∞Fk (q)=0 and Fk (Qk)=Fk+1(Qk)−

∑n
i=1Vi,k ,

where FK+1(Qk)=U. The second boundary condition states that upon reaching milestone k, the
manager receives the continuation value of the project, less the payments that he/she disburses
to the agents for reaching this milestone. Again starting with k =K and proceeding backwards, it
is straightforward that for all k, Fk (·) satisfies the properties established in Theorem 3.

5.3. Contracting problem

The manager’s problem entails choosing the team size and the agents’ incentive contracts to
maximize his/her ex ante expected discounted profit subject to the agents’ incentive compatibility
constraints.20 I begin by analysing symmetric contracts. Then I examine how the manager can
increase his/her expected discounted profit with asymmetric contracts.

5.3.1. Symmetric contracts. Theorem 4 shows that within the class of symmetric
contracts, one can without loss of generality restrict attention to those that compensate the agents
only upon completion of the project.

Theorem 4. The optimal symmetric contract compensates the agents only upon completion of
the project.

To prove this result, I consider an arbitrary set of milestones and arbitrary rewards attached to each
milestone, and I construct an alternative contract that rewards the agents only upon completing
the project and renders the manager better off. Intuitively, because rewards are sunk in terms of
incentivizing the agents after they are disbursed, and all parties are risk-neutral and they discount
time at the same rate, by backloading payments, the manager can provide the same incentives at
the early stages of the project, while providing stronger incentives when it is close to completion.21

20. While it is possible to choose the team size directly via the incentive contract (e.g. by setting the reward of n̄<n
agents to 0, the manager can effectively decrease the team size to n− n̄), it is analytically more convenient to analyse the
two “levers” (for controlling incentives) separately.

21. As shown in part II of the proof of Theorem 4, the agents are also better off if their rewards are backloaded.
In other words, each agent could strengthen his/her incentives and increase his/her expected discounted pay-off by
depositing any rewards from reaching intermediate milestones in an account with interest rate r, and closing the account
upon completion of the project.
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This result is consistent with practice, as evidenced for example by Lewis and Bajari (2014),
who study incentive contracts in highway construction projects. Moreover, it is valuable from
an analytical perspective, because it reduces the infinite-dimensional problem of determining
the team size, the number of milestones, the set of milestones, and the rewards attached to each
milestone into a two-dimensional problem, in which the manager only needs to determine his/her
budget B=∑n

i=1Vi for compensating the agents and the team size. Propositions 4–6 characterize
the manager’s optimal budget and his/her optimal team size.

Proposition 4. Suppose that the manager employs n agents whom she compensates symmetri-
cally. Then her optimal budget B increases in the length of the project |q0|.

Contemplating an increase in his/her budget, the manager trades off a decrease in her net profit
U −B and an increase in the project’s expected present discounted value Eτ

[
e−rτ |q0

]
. Because

a longer project takes (on average) a larger amount of time to be completed, a decrease in his/her
net profit has a smaller effect on his/her ex ante expected discounted profit the longer the project.
Therefore, the benefit from raising the agents’ rewards outweighs the decrease in his/her net profit
if and only if the project is sufficiently long, which in turn implies that the manager’s optimal
budget increases in the length of the project.

Lemma 1. Suppose that the manager has a fixed budget B and he/she compensates the agents
symmetrically. For any m>n, there exists a threshold Tn,m such that he/she prefers employing
an m-member team instead of an n-member team if and only if |q0|≥Tn,m.

Given a fixed budget, the manager’s objective is to choose the team size to minimize the expected
completion time of the project. This is equivalent to maximizing the aggregate effort of the team
along the evolution path of the project. Hence, the intuition behind this result follows from
statement (B) of Theorem 2. If the project is short, then on expectation, the aggregate effort
of the smaller team will be greater than that of the larger team due to the free-riding effect (on
average) dominating the encouragement effect. The opposite is true if the project is long. Figure 3
illustrates an example.

Applying the Monotonicity Theorem of Milgrom and Shannon (1994) leads one to the
following Proposition.

Proposition 5. Given a fixed budget to (symmetrically) compensate a group of agents, the
manager’s optimal team size n increases in the length of the project |q0|.

Proposition 5 suggests that a larger team is more desirable while the project is far from completion,
whereas a smaller team becomes preferable when the project gets close to completion. Therefore,
it seems desirable to construct a scheme that dynamically decreases the team size as the project
progresses. Suppose that the manager employs two identical agents on a fixed budget, and he/she
designates a retirement state R, such that one of the agents is permanently retired (i.e. he/she
stops exerting effort) at the first time that the state of the project hits R. From that point onwards,
the other agent continues to work alone. Both agents are compensated only upon completion of
the project, and the payments (say V1 and V2) are chosen such that the agents are indifferent with
respect to who will retire at R; i.e. their expected discounted pay-offs are equal at qt =R.22

22. Note that this is one of many possible retirement schemes. A complete characterization of the optimal dynamic
team size management scheme is beyond the scope of this article, and is left for future research.
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Figure 3

Illustration of Lemma 1.

Given a fixed budget, the manager’s expected discounted profit is higher if she recruits a 5-member team relative to a

3-member team if and only if the initial state of the project q0 is to the left of the threshold −T3,5; or equivalently, if and

only if |q0|≥T3,5.

Proposition 6. Suppose the manager employs two agents with quadratic effort costs. Consider
the retirement scheme described above, where the retirement state R>max

{
q0,−T1,2

}
and T1,2

is taken from Lemma 1. There exists a threshold �R> |R| such that the manager is better off
implementing this retirement scheme relative to allowing both agents to work together until the
project is completed if and only if its length |q0|<�R.

First, note that after one agent retires, the other will exert first-best effort until the project
is completed. Because the manager’s budget is fixed, this retirement scheme is preferable
only if it increases the aggregate effort of the team along the evolution path of the project.
A key part of the proof involves showing that agents have weaker incentives before one of
them is retired as compared to the case in which they always work together (i.e. when a
retirement scheme is not used). Therefore, the benefit from having one agent exert first-best
effort after one of them retires outweighs the loss from the two agents exerting less effort
before one of them retires (relative to the case in which they always work together) only
if the project is sufficiently short. Hence, this retirement scheme is preferable if and only if
|q0|<�R.

From an applied perspective, this result should be approached with caution. In this
environment, the agents are (effectively) restricted to playing the MPE, whereas in practice,
groups are often able to coordinate to a more efficient equilibrium, for example, by monitoring
each other’s efforts, thus mitigating the free-rider problem (and hence weakening this result).
Moreover, Weber (2006) shows that while efficient coordination does not occur in groups
that start off large, it is possible to create efficiently coordinated large groups by starting
with small groups that find it easier to coordinate, and adding new members gradually
who are aware of the group’s history. Therefore, one should be aware of the tension
between the free-riding effect becoming stronger with progress, and the force identified by
Weber.
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5.3.2. Asymmetric contracts. Insofar, I have restricted attention to contracts that
compensate the agents symmetrically. However, Proposition 6 suggests that an asymmetric
contract that rewards the agents upon reaching intermediate milestones can do better than the
best symmetric one if the project is sufficiently short. Indeed, the retirement scheme proposed
above can be implemented using the following asymmetric rewards-for-milestones contract.

Remark 6. Let Q1 =R, and suppose that agent 1 receives V as soon as the project is completed,
while he/she receives no intermediate rewards. However, agent 2 receives the equilibrium
present discounted value of B−V upon hitting R for the first time (i.e. (B−V)Eτ

[
e−rτ |R]),

and he/she receives no further compensation, so that he/she effectively retires at that point. From
Proposition 6 we know that there exists a V ∈(0,B) and a threshold�R such that this asymmetric
contract is preferable to a symmetric one if and only if |q0|<�R.

It is important to note that while the expected cost of compensating the agents in the above
asymmetric contract is equal to B, the actual cost is stochastic, and in fact, it can exceed the
project’s pay-off U. As a result, unless the manager is sufficiently solvent, there is a positive
probability that he/she will not be able to honour the contract, which will negatively impact the
agents’ incentives.

The following result shows that an asymmetric contract may be preferable even if the manager
compensates the (identical) agents upon reaching the same milestone; namely, upon completing
the project.

Proposition 7. Suppose that the manager has a fixed budget B>0, and he/she employs two
agents with quadratic effort costs whom he/she compensates upon completion of the project. Then

for all ε∈
(

0, B
2

]
, there exists a threshold Tε such that the manager is better off compensating the

two agents asymmetrically such that V1 = B
2 +ε and V2 = B

2 −ε instead of symmetrically, if and
only if the length of the project |q0|≤Tε .23

Intuitively, asymmetric compensation has two effects: first, it causes an efficiency gain in that
the agent who receives the smaller share of the payment has weak incentives to exert effort, and
hence the other agent cannot free-ride as much.At the same time however, because effort costs are
convex, it causes an efficiency loss, as the total costs to complete the project are minimized when
the agents work symmetrically; which occurs in equilibrium only when they are compensated
symmetrically. By noting that the efficiency loss is increasing in the length of the project, and
that the manager’s objective is to allocate his/her budget so as to maximize the agents’ expected
aggregate effort along the evolution path of the project, it follows that the manager prefers to
compensate the agents asymmetrically if the project is sufficiently short.

6. CONCLUDING REMARKS

To recap, I study a dynamic problem in which a group of agents collaborate over time to complete
a project, which progresses at a rate that depends on the agents’ efforts, and it generates a pay-
off upon completion. The analysis provides several testable implications. In the context of the
MRF, for example, one should expect that principal investigators will allocate more resources
to MRF activities as the goal comes closer into sight. Secondly, in a drug discovery venture for

23. Note that the solution to the agents’ problem need not be unique if the contract is asymmetric. However, this
comparative static holds for every solution to equation (5) subject to equations (6), (4), and (3) (if more than one exists).
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instance, the model predicts that the amount of time and resources (both individually and on
aggregate) that the scientists allocate to the project will be positively related to the group size at
the early stages of the project, and negatively related near completion. Moreover, this prediction
is consistent with empirical studies of voluntary contributions by programmers to open-source
software projects (Yildirim, 2006). These studies report an increase in the average contributions
with the number of programmers, especially in the early stages of the projects, and a decline in
the mature stages. Thirdly, the model prescribes that the members of a project team should be
compensated asymmetrically if the project is sufficiently short.

In a related paper, Georgiadis et al. (2014) consider the case in which the project size is
endogenous. Motivated by projects involving design or quality objectives that are often difficult
to define in advance, they examine how the manager’s optimal project size depends on his/her
ability to commit to a given project size in advance. In another related paper, Ederer et al. (2014)
examine how the team size affects incentives in a discrete public good contribution game using
laboratory experiments. Preliminary results support the predictions of Theorem 2.

This article opens several opportunities for future research. First, the optimal contracting
problem is an issue that deserves further exploration. As discussed in Section 5, I have considered
a restricted contracting space. Intuitively, the optimal contract will be asymmetric, and it will
backload payments (i.e. each agent will be compensated only at the end of his/her involvement
in the project). However, each agent’s reward should depend on the path of qt , and hence on the
completion time of the project. Secondly, the model assumes that efforts are unobservable, and
that at every moment, each agent chooses his/her effort level after observing the current state of
the project. An interesting extension might consider the case in which the agents can obtain a
noisy signal of each other’s effort (by incurring some cost) and the state of the project is observed
imperfectly. The former should allow the agents to coordinate to a more efficient equilibrium,
while the latter will force the agents to form beliefs about how close the project is to completion,
and to choose their strategies based on those beliefs. Finally, from an applied perspective, it may
be interesting to examine how a project can be split into subprojects that can be undertaken by
separate teams.

APPENDIX A

A. ADDITIONAL RESULTS

A.1. Flow payoffs while the project is in progress

An important assumption of the base model is that the agents are compensated only upon completion of the project. In
this section, I extend the model by considering the case in which during any small [t, t+dt) interval while the project is
in progress, each agent receives h(qt)dt, in addition to the lump sum reward V upon completion. To make the problem
tractable, I shall make the following assumptions about h(·):

Assumption 1. h(·) is thrice continuously differentiable on (−∞,0], it has positive first, second, and third derivatives,
and it satisfies limq→−∞h(q)=0 and h(0)≤rV.

Using a similar approach as in Section 3, it follows that in an MPE, the expected discounted pay-off function of agent i
satisfies

rJi (q)=max
ai

⎧⎨
⎩h(q)−c(ai)+

⎛
⎝ n∑

j=1

aj

⎞
⎠J ′

i (q)+
σ 2

2
J ′′

i (q)

⎫⎬
⎭

subject to equation (3), and his optimal effort level satisfies ai (q)= f
(
J ′

i (q)
)
, where f (·)=c′−1 (max{0, ·}).

Proposition 8 below characterizes the unique MPE of this game, and it shows: (i) that each agent’s effort level is
either increasing, or hump-shaped in q; and (ii) the team size comparative static established in Theorem 2 continues to
hold.
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Figure A1

An example in which agents receive flow pay-offs while the project is in progress with h(q)=10eq/2.

Observe that effort strategies are hump shaped in q, and the predictions of Theorem 2 continue to hold under both

allocation schemes.

Proposition 8. Suppose that each agent receives a flow pay-off h(q) while the project is in progress, , and h(·) satisfies
Assumption 1.

(i) A symmetric MPE for this game exists, it is unique, and it satisfies 0≤Jn (q)≤V and J ′
n (q)≥0 for all q.

(ii) There exists a threshold ω (not necessarily interior) such that each agent’s effort a′
n (q)≥0 if and only if q≤ω.

(iii) Under both allocation schemes and for any m>n, there exists a threshold �n,m (�n,m) such that am (q)≥an (q)
(mam (q)≥nan (q)) if and only if q≤�n,m (q≤�n,m).

The intuition why effort can be decreasing in q when the project is close to completion can be explained as follows: far
from completion, the agents are incentivized by the future flow pay-offs and the lump sum V upon completion. As the
project nears completion, the current flow pay-offs become larger, and hence the agents have less to gain by bringing the
project closer to completion, and consequently, they decrease their effort. While establishing conditions under which ω
is interior does not seem possible, numerical analysis indicates that this is the case if h(0)/r is sufficiently close to V .

Finally, statement (iii) follows by noting that J ′
n (q) being unimodal in q is sufficient for the proof of Theorem 2.

Figure A1 illustrates an example.

A.2. Cancellation states

In this section, I consider the case in which the project is cancelled at the first moment that qt hits some (exogenous)
cancellation state QC>−∞ and the game ends with the agents receiving 0 pay-off. The expected discounted pay-off for
each agent i satisfies equation (4) subject to the boundary conditions

Ji (QC)=0 and Ji (0)=V .

In contrast to the model analysed in Section 3, with a finite cancellation state, it need not be the case that J ′
i (QC)=0.

It follows that all statements of Theorem 1 hold except for (iii) (which asserts that effort increases with progresses).24

Instead, there exists some threshold ω (not necessarily interior), such that a′
n (q)≥0 if and only if q≥ω.

Similarly, by noting that J ′
n (q) being unimodal in q is sufficient for the proof of Theorem 2, it follows that even with

cancellation states, members of a larger team work harder than members of a smaller team, both individually and on
aggregate, if and only if the project is sufficiently far from completion. These results are summarized in the Proposition 9
below.

24. This result requires that limq→−∞J ′
i (q)=0.
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Figure A2

Illustration of the agents’ effort functions given three different cancellation states.

Observe that when QC is small (e.g. QC =−30), effort increases in q. When QC is in an intermediate range (e.g.

QC =−10), then effort is U-shaped in q, while it decreases in q if QC is sufficiently large (e.g. QC =−4.5).

Proposition 9. Suppose that the project is cancelled at the first moment such that qt hits a given cancellation state
QC>−∞ and the game ends with the agents receiving 0 pay-off.

(i) A symmetric MPE for this game exists, it is unique, and it satisfies 0≤Jn (q)≤V and J ′
n (q)≥0 for all q.

(ii) There exists a threshold ω (not necessarily interior) such that each agent’s effort a′
n (q)≥0 if and only if q≥ω.

(iii) Under both allocation schemes and for any m>n, there exists a threshold �n,m (�n,m) such that am (q)≥an (q)
(mam (q)≥nan (q)) if and only if q≤�n,m (q≤�n,m).

While a sharper characterization of the MPE is not possible, numerical analysis indicates that effort increases in q if QC

is sufficiently small (i.e. ω=−∞), it is U-shaped in q if QC is in some intermediate range (i.e. ω is interior), while it
decreases in q (i.e. ω=0) if QC is close to 0. An example is illustrated in Figure A2.

Intuitively, the agents have incentives to exert effort to: (i) complete the project; and (ii) avoid hitting the cancellation
state QC . Moreover, observe that the incentives due to the former (latter) are stronger the closer the project is to completion
(to QC ). Therefore, if QC is small, then the latter incentive is weak, so that the agents’ incentives are driven primarily by
(i), and effort increases with progress. As QC increases, (ii) becomes stronger, so that effort becomes U-shaped in q, and
if QC is sufficiently close to 0, then the incentives from (ii) dominate those from (i), and consequently, effort decreases
in q.

A.3. Effort affects drift and variance of stochastic process

A simplifying assumption in the base model is that the variance of the process that governs the evolution of the project
(i.e. σ ) does not depend on the agents’ effort levels. As a result, even if no agent ever exerts any effort, the project is
completed in finite time with probability 1. To understand the impact of this assumption, in this section, I consider the
case in which the project progresses according to

dqt =
n∑

i=1

ai,tdt+
√√√√ n∑

i=1

ai,tσdWt .

25 The expected discounted pay-off function of agent i satisfies the HJB equation

rJi (q)=−c
(
ai,t
)+
⎛
⎝ n∑

j=1

aj,t

⎞
⎠(J ′

i (q)+
σ 2

2
J ′′

i (q)

)

25. Note that the total effort of the team is instantly observable here. Therefore, there typically exist non-Markovian
equilibria that are sustained via trigger strategies that revert to the MPE after observing a deviation. Moreover, provided
that the state qt is verifiable, the team’s total effort becomes contractible.
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Figure A3

An example in which the agents’ effort influences both the drift and the variance of the stochastic process.

Observe that effort increases in q, and that the predictions of Theorem 2 continue to hold under both allocation schemes.

subject to equation (3). Restricting attention to symmetric MPE and guessing that each agent’s first order condition always

binds, it follows that his effort level satisfies a(q)= f
(

J ′ (q)+ σ 2

2 J ′′ (q)
)

. Using a similar approach to that used to prove

Theorem 1, one can show that a non-trivial solution to this ODE exists. However, the MPE need not be unique in this
case: unless a single agent is willing to undertake the project single handedly, then there exists another equilibrium in
which no agent ever exerts any effort, and the project is never completed.

Unfortunately, analysing how the agents’ effort levels change with progress and how individual and aggregate effort
depends on the team size is analytically intractable. However, as illustrated in Figure A3, numerical examples indicate
that the main results of the base model continue to hold: effort increases with progress (i.e. a′ (q)≥0 for all q) and the
predictions of Theorem 2 continues to hold: under both allocation schemes and for any m>n, there exists a threshold
�n,m (�n,m) such that am (q)≥an (q) (mam (q)≥nan (q)) if and only if q≤�n,m (q≤�n,m).

A.4. Equilibria with non-markovian strategies

Insofar, I have restricted attention to Markovian strategies, so that at every moment, each agent’s effort is a function of
only the current state of the project qt . This raises the question whether agents can increase their expected discounted
pay-off by adopting non-Markovian strategies that at time t depend on the entire evolution path of the project {qs}s≤t .
Sannikov and Skrzypacz (2007) study a related model in which the agents can change their actions only at times t =
0,
,2
,..., where
>0 (but small), and the information structure is similar; i.e. the state variable evolves according to
a diffusion process whose drift is influenced by the agents’ actions. They show that the pay-offs from the best symmetric
PPE converge to the pay-offs corresponding to the MPE as 
→0 (see their Proposition 5).

A natural, discrete-time analogue of the model considered in this article is one in which at t ∈{0,
,2
,...}
each agent chooses his effort level ai,t at cost c

(
ai,t
)

, and at t+
 the state of the project is equal to qt+
=

qt +
(∑n

i=1 ai,t
)

+εt+
, where εt+
∼N

(
0,σ 2


)
. In light of the similarities between this model and the model in

Section VI of Sannikov and Skrzypacz (2007), it is reasonable to conjecture that in the continuous-time limit (i.e. as

→0), there does not exist a PPE in which agents can achieve a higher expected discounted pay-off than the MPE at
any state of the project. However, because a rigorous proof is difficult for the continuous-time game and the focus of this
article is on team formation and contracting, a formal analysis of non-Markovian PPE of this game is left for future work.

Nevertheless, it is useful to present some intuition. FollowingAbreu et al. (1986), an optimal PPE involves a collusive
regime and a punishment regime, and in every period, the decision whether to remain in the collusive regime or to switch
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is guided by the outcome in that period alone. In the context of this model, at t+
, each agent will base his decision
on qt+
−qt



. As 
 decreases, two forces influence the scope of cooperation. First, the gain from a deviation in a single

period decreases, which helps cooperation. On the other hand, because V

(
qt+
−qt




)
= σ 2



, the agents must decide whether

to switch to the punishment regime by observing noisier information, which increases the probability of type I errors
(i.e. triggering a punishment when no deviation has occurred), thus hurting cooperation. As Sannikov and Skrzypacz
(2007) show, the latter force becomes overwhelmingly stronger than the former as 
→0, thus eradicating any gains
from cooperation.

A.5. Linear effort costs

The assumption that effort costs are convex affords tractability as it allows for comparative statics despite the fact that
the underlying system of HJB equations does not admit a closed-form solution. However, convex effort costs also favour
larger teams. Therefore, it is useful to examine how the comparative statics with respect to the team size extend to the
case in which effort costs are linear; i.e. c(a)=a. In this case, the marginal value of effort is equal to J ′

i (q)−1, so agent
i finds it optimal to exert the largest possible effort level if J ′

i (q)>1, he is indifferent across any effort level if J ′
i (q)=1,

and he exerts no effort if J ′
i (q)<1. As a result, I shall impose a bound on the maximum effort that each agent can exert:

a∈ [0,u]. Moreover, suppose that agents are symmetric, and σ =0 so that the project evolves deterministically.26 This
game has multiple MPE: (i) a symmetric MPE with bang-bang strategies; (ii) a symmetric MPE with interior strategies;
and (iii) asymmetric MPE. The reader is referred to Section 5.2 of Georgiadis et al. (2014) for details. Because (ii) is
sensitive to the assumption that σ =0, I shall focus on the symmetric MPE with bang-bang strategies.27

By using equation (2) subject to equation (3) and the corresponding first-order condition, it follows that there exists
a symmetric MPE in which each agent’s discounted pay-off and effort strategy satisfies

Jn (q)=
[
− u

r
+
(

Vn + u

r

)
e

rq
nu

]
1{q≥ψn} and an (q)=u1{q≥ψn} ,

where ψn = nu
r ln

(
nu

rVn+u

)
. In this equilibrium, the project is completed only if q0 ≥ψn.28 Observe that agents have

stronger incentives the closer the project is to completion, as evidenced by the facts that J ′′
n (q)≥0 for all q, and an (q)=1

if and only if q≥ψn. To investigate how the agents’ incentives depend on the team size, one needs to examine how ψn

depends on n. This threshold decreases in the team size n under both allocation schemes (i.e. both if Vn =V and Vn =V/n
for some V>0) if and only if n is sufficiently small. This implies that members of an (n+1)-member team have stronger
incentives relative to those of an n-member team as long as n is sufficiently small.

If agents maximize the team’s rather than their individual discounted pay-off, then the first-best threshold ψ̂n =
nu
r ln

(
u

rVn+u

)
, and it is straightforward to show that it decreases in n under both allocation schemes. Therefore, similar

to the case in which effort costs are convex, members of a larger team always have stronger incentives than those of a
smaller one.

B. PROOFS

This proof is organized in seven parts. I first show that an MPE for the game defined by equation (1) exists. Next I show
that properties (i) through (iii) hold, and that the value functions are infinitely differentiable. Finally, I show that with
symmetric agents, the equilibrium is symmetric and unique.

Part I: Existence of an MPE.
To show that an MPE exists, it suffices to show that a solution satisfying the system of ordinary nonlinear differential

equations defined by equation (4) subject to the boundary conditions (3) for all i=1,...,n exists.

26. While the corresponding HJB equation can be solved analytically if effort costs are linear, the solution is too
complex to obtain the desired comparative statics if σ >0.

27. In the MPE with interior strategies, J ′
n (q)=1 for all q, and the equilibrium effort is chosen so as to satisfy this

indifference condition. Together with the boundary condition Jn (0)=Vn, this implies that Jn (q)=0 and an (q)=0 for all
q≤−Vn. However, such an equilibrium cannot exist if σ >0, because in this case, Jn (q)>0 for all q even if an (q)=0.

28. If q0 ∈ [ψn,ψ1) so that each agent is not willing to undertake the project single handedly, then there exists
another equilibrium in which no agent exerts any effort and the project is never completed.
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To begin, fix some arbitrary N ∈N and rewrite equations (4) and (3) as

J ′′
i,N (q) = 2

σ 2

⎡
⎣rJi,N (q)+c

(
f
(
J ′

i,N (q)
))−

⎛
⎝ n∑

j=1

f
(

J ′
j,N (q)

)⎞⎠J ′
i,N (q)

⎤
⎦ (B.1)

subject to Ji,N (−N)=0 and Ji,N (0)=Vi

for all i. Let gi
(
JN ,J ′

N

)
denote the the RHS of equation (B.1), where JN and J ′

N are vectors whose i-th row corresponds
to Ji,N (q) and J ′

i,N (q), respectively , and note that gi (·,·) is continuous. Now fix some arbitrary K>0, and define a new
function

gi,K
(
JN ,J

′
N

)=max
{
min

{
gi
(
JN ,J

′
N

)
,K
}
,−K

}
.

Note that gi,K (·,·) is continuous and bounded. Therefore, by Lemma 4 in Hartman (1960), there exists a solution to
J ′′

i,N,K =gi,K
(
JN,K ,J ′

N,K

)
on [−N,0] subject to Ji,N,K (−N)=0 and Ji,N,K (0)=Vi for all i. This Lemma, which is due to

Scorza-Dragoni (1935), states:

Let g
(
q,J,J ′) be a continuous and bounded (vector-valued) function for α≤q≤β and arbitrary

(
J,J ′).

Then, for arbitrary qα and qβ , the system of differential equations J ′′ =g
(
q,J,J ′) has at least one

solution J =J (q) satisfying J (α)=qα and J (β)=qβ .

The next part of the proof involves showing that there exists a K̄ such that gi,K
(
Ji,N,K (q),J ′

i,N,K (q)
)∈(−K̄,K̄

)
for all

i, K , and q, which will imply that the solution Ji,N,K̄ (·) satisfies equation (B.1) for all i. The final step involves showing that
a solution exists when N →∞, so that the first boundary condition in equation (B.1) is replaced by limq→−∞Ji (q)=0.

First, I show that 0≤Ji,N,K (q)≤Vi and J ′
i,N,K (q)≥0 for all i and q. Because Ji,N,K (0)>Ji,N,K (−N)=0, either

Ji,N,K (q)∈ [0,Vi] for all q, or it has an interior extreme point z∗ such that Ji,N,K (z∗) /∈ [0,Vi]. If the former is true, then the
desired inequality holds. Suppose the latter is true. By noting that Ji,N,K (·) is at least twice differentiable, J ′

i,N,K (z
∗)=0,

and hence J ′′
i,N,K (z

∗)=max
{

min
{

2r
σ 2 Ji,N,K (z∗),K

}
,−K

}
. Suppose z∗ is a global maximum. Then J ′′

i,N,K (z
∗)≤0�⇒

Ji,N,K (z∗)≤0, which contradicts the fact that Ji,N,K (0)>0. Now suppose that z∗ is a global minimum. Then, J ′′
i,N,K (z

∗)≥
0�⇒Ji,N,K (z∗)≥0. Therefore, 0≤Ji,N,K (q)≤Vi for all i and q.

Next, let us focus on J ′
i,N,K (·). Suppose that there exists a z∗∗ such that J ′

i,N,K (z
∗∗)<0. Because Ji,N,K (−N)=0, either

Ji,N,K (·) is decreasing on [−N,z∗∗], or it has a local maximum z̄∈(−N,z∗∗). If the former is true, then J ′
i,N,K (z

∗∗)<0
implies that Ji,N,K (q)<0 for some q∈(−N,z∗∗], which is a contradiction because Ji,N,K (q)≥0 for all q. So the latter

must be true. Then, J ′
i,N,K (z̄)=0 implies that J ′′

i,N,K (z̄)=max
{

min
{

2r
σ 2 Ji,N,K (z̄),K

}
,−K

}
. However, because z̄ is a

maximum, J ′′
i,N,K (z̄)≤0, and together with the fact that Ji,N,K (q)≥0 for all q, this implies that Ji,N,K (q)=0 for all

q∈ [−N,z∗∗). But since J ′
i,N,K (z

∗∗)<0, it follows that Ji,N,K (q)<0 for some q in the neighbourhood of z∗∗, which is a
contradiction. Therefore, it must be the case that J ′

i,N,K (q)≥0 for all i and q.

The next step involves establishing that there exists an Ā, independent of N and K , such that J ′
i,N,K (q)< Ā for all

i and q. First, let SN,K (q)=∑n
i=1

∣∣Ji,N,K (q)
∣∣. By summing J ′′

i,N,K =gi,K
(
Ji,N,K ,J ′

i,N,K

)
over i, using that (i) 0≤Ji,N,K (q)≤

Vi and 0≤J ′
i,N,K (q)≤S′

N,K (q) for all i and q, (ii) f (x)=x1/p, and (iii) c(x)≤xc′ (x) for all x≥0, and letting�=r
∑n

i=1 Vi,
we have that for all q

∣∣S′′
N,K (q)

∣∣ ≤ 2

σ 2

n∑
i=1

⎡
⎣rJi,N,K (q)+c

(
f
(
J ′

i,N,K (q)
))+

⎡
⎣ n∑

j=1

f
(

J ′
j,N,K (q)

)⎤⎦J ′
i,N,K (q)

⎤
⎦

≤ 2

σ 2

⎡
⎣�+

n∑
i=1

c′(c′−1(J ′
i,N,K (q)

))
c′−1(J ′

i,N,K (q)
)+S′

N,K (q)
n∑

j=1

f
(

J ′
j,N,K (q)

)⎤⎦

≤ 4

σ 2

[
�+nS′

N,K (q)f
(
S′

N,K (q)
)]= 4

σ 2

[
�+n

(
S′

N,K (q)
) p+1

p

]
.

By noting that SN,K (0)=∑n
i=1 Vi, SN,K (−N)=0, and applying the mean value theorem, it follows that there exists a

z∗ ∈ [−N,0] such that S′
N,K (z

∗)=
∑n

i=1 Vi
N . It follows that for all z∈ [−N,0]

n∑
i=1

Vi>

∫ z

z∗
S′

N,K (q)dq≥ σ 2

4

∫ z

z∗
S′

N,K (q)
S′′

N,K (q)

�+n
(
S′

N,K (q)
) p+1

p

dq≥ σ 2

4

∫ S′
N (z)

0

s

�+ns
p+1

p

ds,

where I let s=S′
N,K (q) and used that S′

N,K (q)S
′′
N,K (q)dq=S′

N,K (q)dS′
N,K (q). It suffices to show that there exists a

Ā<∞ such that σ 2

4

∫ Ā
0

s

�+ns
p+1

p
ds=∑n

i=1 Vi. This will imply that S′
N,K (q)< Ā, and consequently J ′

i,N,K (q)≤ Ā for all

 by guest on O
ctober 11, 2014

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


[18:23 30/9/2014 rdu031.tex] RESTUD: The Review of Economic Studies Page: 25 1–32

GEORGIADIS PROJECTS AND TEAM DYNAMICS 25

q∈ [−N,0]. To show that such Ā exists, it suffices to show that
∫∞

0
s

�+ns
p+1

p
ds=∞. First, observe that if p=1, then∫∞

0
s

�+ns2 ds= 1
2n ln

(
�+ns2

)∣∣∞
0 =∞. By noting that s

�+ns2 is bounded for all s∈ [0,1], s

�+ns
p+1

p
> s
�+ns2 for all s>1

and p>1, and
∫∞

0
s

�+ns2 ds=∞, integrating both sides over [0,∞] yields the desired inequality.

Because Ā is independent of both N and K , this implies that J ′
i,N,K (q)∈

[
0,Ā
]

for all q∈ [−N,0], N ∈N and K>0. In

addition, we know that Ji,N,K (q)∈ [0,Vi] for all q∈ [−N,0], N ∈N and K>0. Now let K̄ =maxi

{
2
σ 2

[
rVi +c

(
f
(
Ā
))]}

,

and observe that a solution to J ′′
i,N,K̄

=gi,K̄

(
JN,K̄ ,J

′
N,K̄

)
subject to Ji,N,K̄ (−N)=0 and Ji,N,K̄ (0)=Vi for all i exists, and

gi,K̄

(
JN,K̄ (q),J

′
N,K̄

(q)
)
=gi

(
JN,K̄ (q),J

′
N,K̄

(q)
)

for all i and q∈ [−N,0]. Therefore, Ji,N,K̄ (·) solves equation (B.1) for

all i.
To show that a solution for equation (B.1) exists at the limit as N →∞, I use the Arzela–Ascoli theorem, which

states that:

Consider a sequence of real-valued continuous functions (fn)n∈N defined on a closed and bounded
interval [a,b] of the real line. If this sequence is uniformly bounded and equicontinuous, then there
exists a subsequence

(
fnk

)
that converges uniformly.

Recall that 0≤Ji,N (q)≤Vi and that there exists a constant Ā such that 0≤J ′
i,N (q)≤ Ā on [−N,0] for all i and N>0.

Hence the sequences
{
Ji,N (·)

}
and

{
J ′

i,N (·)
}

are uniformly bounded and equicontinuous on [−N,0]. By applying the
Arzela–Ascoli theorem to a sequence of intervals [−N,0] and letting N →∞, it follows that the system of ODE defined
by equation (4) has at least one solution satisfying the boundary conditions (3) for all i.

Finally, note that (i) the RHS of (2) is strictly concave in ai so that the first-order condition is necessary and sufficient
for a maximum and (ii) Ji (q)∈ [0,Vi] for all q and i so that the transversality condition limt→∞E

[
e−rtJi (qt)

]=0 is
satisfied. Therefore, the verification theorem is satisfied (p. 123 in Chang, 2004), thus ensuring that a solution to the
system given by equation (4) subject to equation (3) is indeed optimal for equation (1).

Part II: Ji (q)>0 for all q and i.
By the boundary conditions we have that limq→−∞Ji (q)=0 and Ji (0)=Vi>0. Suppose that there exists an interior

z∗ that minimizes Ji (·) on (−∞,0]. Clearly z∗<0. Then J ′
i (z

∗)=0 and J ′′
i (z

∗)≥0, which by applying equation (4) imply
that

rJi
(
z∗)= σ 2

2
J ′′

i

(
z∗)≥0.

Because limq→−∞Ji (q)=0, it follows that Ji (z∗)=0. Next, let z∗∗ =argmaxq≤z∗ {Ji (q)}. If z∗∗ is on the boundary of
the desired domain, then Ji (q)=0 for all q≤z∗. Suppose that z∗∗ is interior. Then J ′

i (z
∗∗)=0 and J ′′

i (z
∗∗)≤0 imply that

Ji (z∗∗)≤0, so that Ji (q)=J ′
i (q)=0 for all q<z∗. Using equation (4) we have that∣∣J ′′

i (q)
∣∣ ≤ 2r

σ 2
|Ji (q)|+ 2

σ 2 (n+1)f
(
Ā
)∣∣J ′

i (q)
∣∣ ,

where this bound follows from part I of the proof. Now let hi (q)=|Ji (q)|+
∣∣J ′

i (q)
∣∣, and observe that hi (q)=0 for all

q<z∗, hi (q)≥0 for all q, and

h′
i (q)≤

∣∣J ′
i (q)

∣∣+∣∣J ′′
i (q)

∣∣≤ 2r

σ 2
|Ji (q)|+ 2

σ 2

[
(n+1)f

(
Ā
)+ σ 2

2

]∣∣J ′
i (q)

∣∣≤Chi (q) ,

where C = 2
σ 2 max

{
r, (n+1)f

(
Ā
)+ σ 2

2

}
. Fix some ẑ<z∗, and applying the differential form of Grönwall’s inequality

yields hi (q)≤hi
(
ẑ
)
exp
(∫ q

ẑ Cdx
)

for all q. Because (i) hi
(
ẑ
)=0, (ii) exp

(∫ q
z∗ Cdx

)
<∞ for all q, and (iii) hi (q)≥0 for all

q, this inequality implies that Ji (q)=0 for all q. However this contradicts the fact that Ji (0)=Vi>0. As a result, Ji (·)
cannot have an interior minimum, and there cannot exist a z∗>−∞ such that Ji (q)=0 for all q≤z∗. Hence Ji (q)>0 for
all q.

Part III: J ′
i (q)>0 for all q and i.

Pick a K such that Ji (0)<Ji (K)<Vi. Such K is guaranteed to exist, because Ji (·) is continuous and Ji (0)>0=
limq→−∞Ji (q). Then by the mean-value theorem there exists a z∗ ∈(K,0) such that J ′

i (z
∗)= Ji(0)−Ji(K)−K = Vi−Ji(K)−K >0.

Suppose that there exists a z∗∗ ≤0 such that J ′
i (z

∗∗)≤0. Then by the intermediate value theorem, there exists a z̄ between

z∗ and z∗∗ such that J ′
i (z̄)=0, which using equation (4) and part II implies that rJi (z̄)= σ 2

2 J ′′
i (z̄)>0 (i.e. z̄ is a local

minimum). Consider the interval (−∞,z̄]. Because limq→−∞Ji (q)=0, Ji (z̄)>0 and J ′′
i (z̄)>0, there exists an interior

local maximum ẑ< z̄. Since ẑ is interior, it must be the case that J ′
i

(
ẑ
)=0 and J ′′

i

(
ẑ
)≤0, which using equation (4) implies

that Ji
(
ẑ
)≤0. However, this contradicts the fact that Ji (q)>0 for all q. As a result, there cannot exist a z̄≤0 such that

J ′
i (z̄)≤0. Together with part II, this proves properties (i) and (ii).
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Part IV: Ji (q) is infinitely differentiable on (−∞,0] for all i.
By noting that limq→−∞Ji (q)= limq→−∞J ′

i (q)=0 for all i, and by twice integrating both sides of equation (B.1)
over the interval (−∞,q], we have that

Ji (q)=
∫ q

−∞

∫ y

−∞
2r

σ 2
Ji (z)+ 2

σ 2

⎡
⎣c
(
f
(
J ′

i (z)
))−

⎛
⎝ n∑

j=1

f
(

J ′
j (z)
)⎞⎠J ′

i (z)

⎤
⎦dzdy.

Recall that c(a)= ap+1

p+1 , f (x)=x1/p, and J ′
i (q)>0 for all q. Since Ji (q) and J ′

i (q) satisfy equation (4) subject to the

boundary conditions (3) for all i, Ji (q) and J ′
i (q) are continuous for all i. As a result, the function under the integral is

continuous and infinitely differentiable in Ji (z) and J ′
i (z) for all i. Because Ji (q) is differentiable twice more than the

function under the integral, the desired result follows by induction.

Part V: J ′′
i (q)>0 and a′

i (q)>0 for all q and i.
I have thus far established that for all q, Ji (q)>0 and J ′

i (q)>0. By applying the envelope theorem to equation (4)
we have that

rJ ′
i (q)=

[
f
(
J ′

i (q)
)+A−i (q)

]
J ′′

i (q)+
σ 2

2
J ′′′

i (q) , (B.2)

where A−i (q)=∑n
j �=i f

(
J ′

j (q)
)

. Choose some finite z≤0, and let z∗∗ =argmax
{
J ′

i (q) : q≤z
}
. By part III, J ′

i (z
∗∗)>0 and

because limq→−∞J ′
i (q)=0, either z∗∗ =z, or z∗∗ is interior. Suppose z∗∗ is interior. Then J ′′

i (z
∗∗)=0 and J ′′′

i (z
∗∗)≤0,

which using equation (B.2) implies that J ′
i (z

∗∗)≤0. However, this contradicts the fact that J ′
i (z

∗∗)>0, and therefore J ′
i (·)

does not have an interior maximum on (−∞,z] for any z≤0. Therefore, z∗∗ =z, and since z was chosen arbitrarily, J ′
i (·)

is strictly increasing; i.e. J ′′
i (q)>0 for all q. By differentiating ai (q) and using that J ′

i (q)>0 for all q, we have that

d

dq
ai (q)= d

dq
c′−1(J ′

i (q)
)= J ′′

i (q)

c′′(c′−1
(
J ′

i (q)
)) >0.

Part VI: When the agents are symmetric, the MPE is also symmetric.
Suppose agents are symmetric; i.e. Vi =Vj for all i �= j. In any MPE, {Ji (·)}n

i=1 must satisfy equation (4) subject
to equation (3). Pick two arbitrary agents i and j, and let 
(q)=Ji (q)−Jj (q). Observe that 
(·) is smooth, and
limq→−∞
(q)=
(0)=0. Therefore, either
(·)≡0 on (−∞,0], which implies that Ji (·)≡Jj (·) on (−∞,0] and hence
the equilibrium is symmetric, or
(·) has at least one interior global extreme point. Suppose the latter is true, and denote

this extreme point by z∗. By using equation (4) and the fact that 
′ (z∗)=0, we have r
(z∗)= σ 2

2 

′′ (z∗). Suppose that

z∗ is a global maximum. Then 
′′ (z∗)≤0, which implies that 
(z∗)≤0. However, because 
(0)=0 and z∗ is assumed
to be a maximum,
(z∗)=0. Next, suppose that z∗ is a global minimum. Then
′′ (z∗)≥0, which implies that
(z∗)≥0.
However, because 
(0)=0 and z∗ is assumed to be a minimum, 
(z∗)=0. Therefore, it must be the case that 
(·)≡0
on (−∞,0]. Since i and j were chosen arbitrarily, Ji (·)≡Jj (·) on (−∞,0] for all i �= j, which implies that the equilibrium
is symmetric.

Part VII: Suppose that Vi =Vj for all i �= j. Then the system of ordinary nonlinear differential equations defined by
equation (4) subject to equation (3) has at most one solution.

From part VI of the proof, we know that if agents are symmetric, then the MPE is symmetric. Therefore to facilitate
exposition, I drop the notation for the i-th agent. Any solution J (·) must satisfy

rJ (q)=−c
(
f
(
J ′ (q)

))+nf
(
J ′ (q)

)
J ′ (q)+ σ 2

2
J ′′ (q) subject to lim

q→−∞J (q)=0 and J (0)=V .

Suppose that there exist two functions JA (q) ,JB (q) that satisfy the above boundary value problem. Then define D(q)=
JA (q)−JB (q), and note that D(·) is smooth and limq→−∞D(q)=D(0)=0. Hence, either D(·)≡0 in which case the proof
is complete, or D(·) has an interior global extreme point z∗. Suppose the latter is true. Then D′(z∗)=0, which implies

that rD(z∗)= σ 2

2 D′′ (z∗). Suppose that z∗ is a global maximum. Then D′′ (z∗)≤0⇒D(z∗)≤0, and D(0)=0 implies that
D(z∗)=0. Next, suppose that z∗ is a global minimum. Then D′′ (z∗)≥0⇒D(z∗)≥0, and D(0)=0 implies that D(z∗)=0
. Therefore, it must be the case that D(·)≡0 and the proof is complete.

In light of the fact that J ′
i (q)>0 for all q, it follows that the first-order condition for each agent’s best response always

binds. As a result, any MPE must satisfy the system of ODE defined by equation (4) subject to equation (3). Since this
system of ODE has a unique solution with n symmetric, it follows that in this case, the dynamic game defined by equation
(1) has a unique MPE. ‖
Proof of Proposition 1. See online Appendix. ‖
Proof of Proposition 2. See online Appendix. ‖
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Proof of Theorem 2. This proof is organized in four parts.

Proof for (i) under public good allocation
To begin, let us define Dn,m (q)=Jm (q)−Jn (q), and note that Dn,m (q) is smooth, and Dn,m (0)= limq→−∞Dn,m (q)=

0. Therefore, either Dn,m (·)≡0, or it has an interior extreme point. Suppose the former is true. Then Dn,m (·)≡D′
n,m (·)≡

D′′
n,m (·)≡0 together with equation (4) implies that f

(
J ′

n (q)
)
J ′

n (q)=0 for all q. However, this contradicts Theorem 1 (ii),
so that Dn,m (·) must have an interior extreme point, which I denote by z∗. Then D′

n,m (z
∗)=0⇒J ′

m (z
∗)=J ′

n (z
∗), and

using equation (4) yields

rDn,m
(
z∗) = σ 2

2
D′′

n,m

(
z∗)+(m−n)f

(
J ′

n

(
z∗))J ′

n

(
z∗) .

By noting that any local interior minimum must satisfy D′′
n,m (z

∗)≥0 and hence Dn,m (z∗)>0, it follows that z∗ must
satisfy Dn,m (z∗)≥0. Therefore, Jm (q)≥Jn (q) (i.e. Dn,m (q)≥0) for all q.

I now show that Dn,m (q) is single peaked. Suppose it is not. Then there must exist a local maximum z∗ followed by
a local minimum z̄>z∗. Clearly, Dn,m (z̄)<Dn,m (z∗), D′

n,m (z̄)=D′
n,m (z

∗)=0, D′′
n,m (z̄)≥0≥D′′

n,m (z
∗), and by Theorem

1 (iii), J ′
n (z̄)>J ′

n (z
∗). By using equation (4), at z̄ we have

rDn,m (z̄) = σ 2

2
D′′

n,m (z̄)+(m−n)f
(
J ′

m (z̄)
)
J ′

m (z̄)

>
σ 2

2
D′′

n,m

(
z∗)+(m−n)f

(
J ′

m

(
z∗))J ′

m

(
z∗)=rDn,m

(
z∗) ,

which contradicts the assumption that z∗ is a local maximum and z̄ is a local minimum. Therefore, there exists a�n,m ≤0
such that J ′

m (q)≥J ′
n (q) (because D′

n,m (q)≥0), and consequently am (q)>an (q), if and only if q≤�n,m.

Proof for (i) under budget allocation
Recall that under the public good allocation scheme, we had the boundary condition Dn,m (0)=0. This condition

is now replaced by Dn,m (0)= V
m − V

n <0. Therefore, Dn,m (·) is either decreasing, or it has at least one extreme point.
Using similar arguments as above, it follows that any extreme point z∗ is a global maximum and Dn,m (·) may be at most
single peaked. Hence either Dn,m (·) is decreasing in which case �n,m =−∞, or there exists an interior �n,m such that
am (q)≥an (q) if and only if q≤�n,m. The details are omitted.

Proof for (ii) under public good allocation

Note that c(a)= ap+1

p+1 implies that f (x)=x1/p and c(f (x))= x
p+1

p

p+1 . As a result, equation (4) can be written for an
n-member team as

rJn (q)=
(

n− 1

p+1

)(
J ′

n (q)
) p+1

p + σ 2

2
J ′′

n (q) . (B.3)

To compare the total effort of the teams at every state of the project, we need to compare mf
(
J ′

m (q)
)=(mpJ ′

m (q)
)1/p

and nf
(
J ′

n (q)
)=(npJ ′

n (q)
)1/p

. Define D̄n,m (q)=mpJm (q)−npJn (q), and observe that D̄′
n,m (q)≥0⇐⇒mam (q)≥nan (q).

Note that D̄n,m (0)=(mp −np)V>0 and limq→−∞ D̄n,m (q)=0. As a result, either D̄n,m (q) is increasing for all q, which
implies that mam (q)≥nan (q) for all q and hence�n,m =0, or D̄n,m (q) has an interior extreme point z∗. Suppose the latter
is true. Then D̄′

n,m (z
∗)=0 implies that J ′

m (z
∗)=( n

m

)p
J ′

n (z
∗). Multiplying both sides of equation (B.3) by mp and np for

Jm (·) and Jn (·), respectively, and subtracting the two quantities yields

rD̄n,m
(
z∗) = np

p+1

(
m−n

m

)(
J ′

n

(
z∗)) p+1

p + σ 2

2
D̄′′

n,m

(
z∗) ,

and observe that the first term in the RHS is strictly positive. Now suppose z∗ is a global minimum. Then D̄′′
n,m (z

∗)≥0,
which implies that D̄n,m (z∗)>0, but this contradicts the facts that limq→−∞ D̄n,m (q)=0 and z∗ is interior. Hence, z∗ must
be a global maximum or a local extreme point satisfying D̄n,m (z∗)≥0.

To complete the proof for this case, I now show that D̄n,m (·) can be at most single peaked. Suppose that the contrary
is true. Then there exists a local maximum z∗ followed by a local minimum z̄>z∗. Because D̄′

n,m (z
∗)= D̄′

n,m (z̄)=
0, D̄′′

n,m (z̄)≥0≥ D̄′′
n,m (z

∗), and by Theorem 1 (iii) J ′
n (z

∗)<J ′
n (z̄), it follows that D̄n,m (z∗)< D̄n,m (z̄). However, this

contradicts the facts that z∗ is a local maximum and z̄ is a local minimum, which implies that D̄n,m (·) is either strictly
increasing in which case �n,m =0, or it has a global interior maximum and no other local extreme points, in which case
there exists an interior �n,m such that mam (q)≥nan (q) if and only if q≤�n,m.

Proof for (ii) under budget allocation
The only difference compared to the proof under public good allocation is the boundary condition at 0; i.e. D̄n,m (0)=

mpJm (0)−npJn (0)=
(
mp−1 −np−1

)
V>0 (recall p≥1). As a result, the same proof applies. Note that if p=1 (i.e. effort
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costs are quadratic), then D̄n,m (0)=0 and hence �n,m must be interior (whereas otherwise D̄n,m (0)>0 and hence
�n,m ≤0). ‖
Proof of Proposition 3. Let us first consider the statement under public good allocation. In the proof of Theorem 2 (i), I
showed that Dn,n+1 (q)=Jn+1 (q)−Jn (q)≥0 for all q. This implies that Jn+1 (q0)≥Jn (q0) for all n and q0, and hence the
optimal partnership size n=∞ for any project length |q0|.

Now consider the statement under budget allocation. In the proof of Theorem 2 (i), I showed that Dn,m (·)=Jm (·)−
Jn (·) is either decreasing, or it has exactly one extreme point which must be a maximum. Because limq→−∞Dn,n+1 (q)=0
and Dn,m (0)<0, there exists a threshold Tn,m (may be −∞) such that Jm (q0)≥Jn (q0) if and only if q0 ≤−Tn,m, or
equivalently if and only if |q0|≥Tn,m. By noting that the necessary conditions for the Monotonicity Theorem (i.e.
Theorem 4) of Milgrom and Shannon (1994) to hold are satisfied, it follows that the optimal partnership size increases in
the length of the project |q0|. ‖
Proof of Theorem 3. See online Appendix. ‖
Proof of Theorem 4. To prove this result, first fix a set of arbitrary milestones Q1<...<QK =0 where K is arbitrary but
finite, and assume that the manager allocates budget wk>0 for compensating the agents upon reaching milestone k for
the first time. Now consider the following two compensation schemes. Let B=∑K

k=1 wk . Under scheme (a), each agent
is paid B/n upon completion of the project and receives no intermediate compensation while the project is in progress.
Under scheme (b), each agent is paid wk/nEτk [erτk |Qk] when qt hits Qk for the first time, where τk denotes the random
time to completion given that the current state of the project is Qk . I shall show that the manager is always better off using
scheme (a) relative to scheme (b). Note that scheme (b) ensures that the expected total cost for compensating each agent
equals B/n to facilitate comparison between the two schemes.

This proof is organized in three parts. In part I, I introduce the necessary functions (i.e. ODEs) that will be necessary
for the proof. In part II, I show that each agent exerts higher effort under scheme (a) relative to scheme (b). Finally, in
part III, I show that the manager’s expected discounted profit is higher under scheme (a) relative to scheme (b) for any
choice of Qk’s and wk’s.

Part I: To begin, I introduce the expected discounted pay-off and discount rate functions that will be necessary for
the proof. Under scheme (a), given the current state q, each agent’s expected discounted pay-off satisfies

rJ (q)=−c
(
f
(
J ′ (q)

))+nf
(
J ′ (q)

)
J ′ (q)+ σ 2

2
J ′′ (q) subject to lim

q→−∞J (q)=0 and J (0)= B

n
.

However, under scheme (b), given the current state q and that k−1 milestones have been reached, each agent’s expected
discounted pay-off, which is denoted by Jk (q), satisfies

rJk (q)=−c
(
f
(
J ′

k (q)
))+nf

(
J ′

k (q)
)
J ′

k (q)+
σ 2

2
J ′′

k (q) on (−∞,Qk]

subject to

lim
q→−∞Jk (q)=0 and Jk (Qk)= wk

nEτk [erτk |Qk]
+Jk+1 (Qk) ,

where JK+1 (QK )=0.29 The second boundary condition states that upon reaching milestone Qk for the first time, each
agent is paid wk/nEτk [erτk |Qk], and he receives the continuation value Jk+1 (Qk) from future progress. Eventually upon
reaching the K-th milestone, the project is completed so that each agent is paid wK/n, and receives no continuation value.
Note that due to the stochastic evolution of the project, even after the k-th milestone has been reached for the fist time,
the state of the project may drift below Qk . Therefore, the first boundary condition ensures that as q→−∞, the expected
time until the project is completed so that each agent collects his/her reward diverges to ∞, which together with the fact
that r>0, implies that his/her expected discounted pay-off asymptotes to 0. It follows from Theorem 1 that for each k,
Jk (·) exists, it is unique, smooth, strictly positive, strictly increasing, and strictly convex on its domain.

Next, let us denote the expected present discounted value function under scheme (a), given the current state q, by
T (q)=Eτ

[
e−rτ |q]. Using the same approach as used to derive the manager’s HJB equation, it follows that

rT (q)=nf
(
J ′ (q)

)
T ′ (q)+ σ 2

2
T ′′ (q) subject to lim

q→−∞T (q)=0 and T (0)=1.

The first boundary condition states that as q→−∞, the expected time until the project is completed diverges to ∞,
so that limq→−∞T (q)=0. However, when the project is completed so that q=0, then τ=0 with probability 1, which
implies that T (0)=1.

29. Since this proof considers a fixed team size n, we use to subscript k to denote that k−1 milestones have been
reached.
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Next, let us consider scheme (b). Similarly, we denote the expected present discounted value function, given the
current state q and that k−1 milestones have been reached, by Tk (q)=Eτk

[
e−rτk |q]. Then, it follows that

rTk (q)=nf
(
J ′

k (q)
)
T ′

k (q)+
σ 2

2
T ′′

k (q) on (−∞,Qk]

subject to
lim

q→−∞Tk (q)=0 , Tk (Qk)=Tk+1 (Qk) for all k ≤n,

where TK+1 (QK )=1. The first boundary condition has the same interpretation as above. The second boundary condition
ensures value matching; i.e. that upon reaching milestone k for the first time, Tk (Qk)=Tk+1 (Qk). Using the same approach
as used in Theorem 3, it is straightforward to show that T (·) and for each k, Tk (·) exists, it is unique, smooth, strictly
positive, and strictly increasing on its domain.

Note that by Jensen’s inequality, 1
Eτk [erτk ] ≤Eτk

[
e−rτk

]
. Therefore, using this inequality, and the second boundary

condition for Jk (·), it follows that Jk (Qk)≤ wk
n Tk (Qk)+Jk+1 (Qk).

Part II: The next step of the proof is to show that for any k, J (Qk)≥Jk (Qk), and as a consequence of Proposition
1 (i), J ′ (q)≥J ′

k (q) for all q≤Qk . This will imply that agents exert higher effort under scheme (a) at every state of

the project. To proceed, let us define 
k (q)=J (q)−Jk (q)− 1
n

(∑k−1
i=1 wi

)
Tk (q) on (−∞,Qk] for all k, and note that

limq→−∞
k (q)=0 and 
k (·) is smooth.
First, I consider the case in which k =K , and then I proceed by backward induction. Noting that
K (QK )=0 (where

QK =0), either 
K (·)≡0 on (−∞,QK ], or 
K (·) has some interior global extreme point z. If the former is true, then

K (q)=0 for all q≤QK , so that J (QK )≥JK (QK ). Now suppose that the latter is true. Then 
′

K (z)=0 so that

r
K (z) = −c
(
f
(
J ′ (z)

))+nf
(
J ′ (z)

)
J ′ (z)+c

(
f
(
J ′

K (z)
))−nf

(
J ′

K (z)
)
J ′

K (z)

−
(

m−1∑
i=1

wi

)
f
(
J ′

K (z)
)
T ′

K (z)+
σ 2

2

′′

K (z) .

Because 
′
K (z)=0 implies that

(∑k−1
i=1 wi

)
T ′

K (z)=n
[
J ′ (z)−J ′

K (z)
]
, the above equation can be re-written as

r
K (z) = c
(
f
(
J ′

K (z)
))−c

(
f
(
J ′ (z)

))+nf
(
J ′ (z)

)
J ′ (z)−nf

(
J ′

K (z)
)
J ′ (z)+ σ 2

2

′′

K (z)

=
⎧⎨
⎩
[
J ′

K (z)
] p+1

p −[J ′ (z)
] p+1

p

p+1
+n
[
J ′ (z)

] p+1
p −n

[
J ′

K (z)
] 1

p J ′ (z)

⎫⎬
⎭+ σ 2

2

′′

K (z) .

To show that the term in brackets is strictly positive, note that J (QK )>JK (QK ) so that J ′ (z)>J ′
K (z) by Proposition 1 (i),

and J ′
K (z)>0. Therefore, let x= J ′

K (z)
J ′(z) , where x<1, and observe that the term in brackets is non-negative if and only if

n(p+1)
[
J ′ (z)

] p+1
p −[J ′ (z)

] p+1
p ≥ n(p+1)

[
J ′

K (z)
] 1

p J ′ (z)−[J ′
K (z)

] p+1
p

�⇒n(p+1)−1 ≥ n(p+1)x
1
p −x

p+1
p .

Because the RHS is strictly increasing in x, and it converges to the LHS as x→1, it follows that the above inequality
holds.

Suppose that z is a global minimum. Then, 
′′
K (z)≥0 together with the fact that the term in brackets is strictly

positive implies that 
K (z)>0. Therefore, any interior global minimum must satisfy 
K (z)≥0, which in turn implies

that 
K (q)≥0 for all q. As a result, 
K (QK−1)≥0 or equivalently J (QK−1)≥JK (QK−1)+ 1
n

(∑K−1
i=1 wi

)
TK (QK−1).

Now consider 
K−1 (·), and note that limq→−∞
K−1 (q)=0. By using the last inequality, that JK−1 (QK−1)≤
wK−1

n TK−1 (QK−1)+JK (QK−1), and TK−1 (QK−1)=TK (QK−1), it follows that


K−1 (QK−1)=J (QK−1)−JK−1 (QK−1)− 1

n

(
K−2∑
i=1

wi

)
TK−1 (QK−1)≥0.

Therefore, either 
K−1 (·) is increasing on (−∞,QK−1], or it has some interior global extreme point z<QK−1 such that

′

K−1 (z)=0. If the former is true, then 
K−1 (QK−2)≥0. If the latter is true, then by applying the same technique as
above we can again conclude that 
K−1 (QK−2)≥0.

Proceeding inductively, it follows that for all k ∈{2,...,K}, 
k (Qk−1)≥0 or equivalently J (Qk−1)≥Jk (Qk−1)+
1
n

(∑k−1
i=1 wi

)
Tk (Qk−1) and using that Jk−1 (Qk−1)≤ wk−1

n Tk (Qk−1)+Jk (Qk−1), it follows that J (Qk−1)≥Jk−1 (Qk−1).
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Finally, by using Proposition 1 (i), it follows that for all k, J ′ (q)≥J ′
k (q) for all q≤Qk . In addition, it follows that for all

k, J (q)≥Jk (q) for all q≤Qk , which implies that given a fixed expected budget, the agents are better off if their rewards
are backloaded.

Part III: Given a fixed expected budget B, the manager’s objective is to maximize Eτ

[
e−rτ |q0

]
or equivalently T (q0),

where τ denotes the completion time of the project, and it depends on the agents’ strategies, which themselves depend on
the set of milestones {Qk}K

k=1 and payments {wk}K
k=1. Since q0<Q1<...<QK , it suffices to show that T (q0)≥T1 (q0)

to conclude that given any arbitrary choice of {Qk,wk}K
k=1, the manager is better off compensating the agents only upon

completing the project relative to also rewarding them for reaching intermediate milestones.
Define Dk (q)=T (q)−Tk (q)on (−∞,Qk] for all k ∈{1,...,K}, and note that Dk (·) is smooth and limq→−∞Dk (q)=0.

Let us begin with the case in which k =K . Note that DK (QK )=0 (where QK =0). So either DK (·)≡0 on (−∞,QK ], or
DK (·) has an interior global extreme point z̄<QK . Suppose that z̄ is a global minimum. Then D′

K (z̄)=0 so that

rDK (z̄)=n
[
J ′ (z̄)−J ′

K (z̄)
]
T ′ (z̄)+ σ 2

2
D′′

K (z̄) .

Recall that J ′ (q)≥J ′
k (q) for all q≤Qk from part II. Since z̄ is assumed to be a minimum, it must be true that D′′

K (z̄)≥
0, which implies that DK (z̄)≥0. Therefore, any interior global minimum must satisfy DK (z̄)≥0, which implies that
DK (q)≥0 for all q≤QK . As a result, T (QK−1)≥TK (QK−1)=TK−1 (QK−1).

Next, consider DK−1 (·), recall that limq→−∞DK−1 (q)=0, and note that the above inequality implies that
DK−1 (QK−1)≥0. By using the same technique as above, it follows that T (QK−2)≥TK−1 (QK−2)=TK−2 (QK−2), and
proceeding inductively we obtain that D1 (q)≥0 for all q≤Q1 so that T (q0)≥T1 (q0). ‖
Proof of Proposition 4. See online Appendix. ‖
Proof of Lemma 1. Let us denote the manager’s expected discounted profit when he/she employs n (symmetric) agents
by Fn (·), and note that limq→−∞Fn (q)=0 and Fn (0)=U −V>0 for all n. Now let us define
n,m (·)=Fm (·)−Fn (·) and
note that
n,m (·) is smooth and limq→−∞
n,m (q)=
n,m (0)=0. Note that either
n,m (·)≡0, or
n,m (·) has at least one
global extreme point. Suppose that the former is true. Then, 
n,m (q)=
′

n,m (q)=
′′
n,m (q)=0 for all q, which together

with equation (5) implies that [Am (q)−An (q)]F ′
n (q)=0 for all q, where An (·)≡nan (·). However, this is a contradiction,

because Am (q)>An (q) for at least some q by Theorem 2 (ii), and F ′
n (q)>0 for all q by Theorem 3 (i). Therefore,
n,m (·)

has at least one global extreme point, which I denote by z̄. By using that 
′
n,m (z̄)=0 and (5), we have that

r
n,m (z̄)= [Am (z̄)−An (z̄)]F ′
n (z̄)+

σ 2

2

′′

n,m (z̄) .

Recall that F ′
n (z̄)>0, and from Theorem 2 (ii) that for each n and m there exists an (interior) threshold �n,m such that

Am (q)≥An (q) if and only if q≤�n,m. It follows that z̄ is a global maximum if z̄≤�n,m, while it is a global minimum
if z̄≥�n,m. Next observe that if z̄≤�n,m then any local minimum must satisfy 
n,m (z̄)≥0, while if z̄≥�n,m then any
local maximum must satisfy 
n,m (z̄)≤0. Therefore, either one of the following three cases must be true: (i) 
n,m (·)≥0
on (−∞,0], or (ii) 
n,m (·)≤0 on (−∞,0], or (iii) 
n,m (·) crosses 0 exactly once from above. Therefore, there exists a
Tn,m such that 
n,m (q0)≥0 if and only if q0 ≤−Tn,m, or equivalently the manager is better off employing m>n rather
than n agents if and only if |q0|≥Tn,m. By noting that Tn,m =0 under case (i), and Tn,m =∞ under case (ii), the proof is
complete. ‖
Proof of Proposition 5. All other parameters held constant, the manager chooses the team size n∈N to maximize his/her
expected discounted profit at q0; i.e. he/she chooses n(|q0|)=argmaxn∈N {Fn (q0)}. By noting that the necessary conditions
for the Monotonicity Theorem (i.e. Theorem 4) of Milgrom and Shannon (1994) to hold are satisfied, it follows that the
optimal team size n(|q0|) is (weakly) increasing in the project length |q0|. ‖
Proof of Propositions 6–9. See online Appendix. ‖
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