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We study the interaction between a group of agents who exert effort to complete a project and a
manager who chooses its objectives. The manager has limited commitment power so that she can
commit to the objectives only when the project is sufficiently close to completion. We show that the
manager has incentives to extend the project as it progresses. This result has two implications.
First, the manager will choose a larger project if she has less commitment power. Second, the
manager should delegate the decision rights over the project size to the agents unless she has
sufficient commitment power.

1. Introduction

� A key component of a project, such as the development of a new product, is choosing the
features that must be included before the decision maker deems the product ready to market.
Naturally, which features should be included must be communicated to the relevant stakeholders.
When choosing these features, the decision maker must balance the added value derived from
a bigger or a more complex project (i.e., one that contains more features) against the additional
cost associated with designing and implementing the additional features. Such costs include not
only engineering inputs but also the implicit cost associated with delayed cash flow.

An intrinsic challenge involved in choosing the requirements of a project is that the manager
may not be able to commit to them in advance. This can be due to the fact that the requirements are
difficult to describe; for example, if the project involves significant novelty in quality or design.
What we have in mind about the incontractibility of the project requirements was eloquently
posed by Tirole (1999):
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In practice, the parties are unlikely to be able to describe precisely the specifics of an
innovation in an ex ante contract, given that the research process is precisely concerned
with finding out these specifics, although they are able to describe it ex post.

In addition, committing to specific requirements may be difficult due to an asymmetry in the
bargaining power of the parties involved. For example, if the project is undertaken in-house
where the manager can significantly influence the team members’ career paths and contracts are
typically implicit, then the manager will tend to be less able to commit relative to the case in
which the project is outsourced and contracts are explicit.

A fitting example stems from the development of Apple’s first generation iPod. Anecdotal
evidence indicates that Steve Jobs kept changing the requirements of the iPod as the project
progressed. In particular, the development team would get orders such as, “Steve doesn’t think it
is loud enough,” or “the sharps are not sharp enough,” or “the menu is not coming up fast enough”
(Wired Magazine, 2004). This suggests that committing to a set of features and requirements early
on was not desirable in the development of an innovative new product such as the iPod back in
2001.

Similarly, consider a design project, such as the process of designing a new automobile. If
the decision maker were able to provide a precise description of the design for it to be approved
at the outset of the process, then there would be no need to undertake it in the first place. In
practice, the decision maker must guide the design team as the final product takes shape to fulfill
her objectives.

Finally, changing the requirements of a project (often referred to as moving the goal post) is
common in project management (Brenner, 2001). One prominent example is Boeing’s 787 Dream-
liner project. The original set of project goals was to develop a lightweight, fuel-efficient aircraft
that would meet the customers’ needs for lower operating costs. On top of these original project
goals, Boeing’s senior management then decided to outsource parts of the design, engineering,
and manufacturing processes to some 50 external “strategic partners” to reduce development
costs and time. From the perspective of Boeing’s engineers, a new goal was appended to the
original set of project goals: restructure the design and manufacturing processes by overseeing
and coordinating the work performed by internal engineers and those external strategic partners
(Brenner, 2013). In addition, Boeing sought to maximize the usage of composite materials to
reduce the weight of the 787 aircraft. However, due to unproven technology, Boeing’s engineers
were unable to provide accurate specifications at the outset of the project without the risk of
compromising the intended performance and safety standards. Indeed, it was only in 2009, after
examining the results of a series of fatigue and stress tests, that Boeing finally committed to the
amount of composite materials to be used on the 787 aircraft (Tang and Zimmerman, 2009).

In this article, we propose a parsimonious model to analyze a dynamic contribution game in
which a group of agents collaborate to complete a project. The project progresses at a rate that
depends on the agents’ costly effort, and it generates a payoff upon completion. Formally, the state
of the project qt starts at 0, and it progresses according to dqt = ∑n

i=1 ai,t dt , where ai,t denotes
the effort level of agent i at time t . The project generates a payoff at the first stopping time τ such
that qτ = Q, where Q is a one-dimensional parameter that captures the project requirements,
or equivalently, the project size. The manager is the residual claimant of the project, and she
possesses the decision rights over its size. It is noteworthy that the model is very tractable, and
payoffs and strategies are derived in closed-form.

In Section 3 we analyze the agents’ problem given a fixed project size. We characterize
the (essentially) unique Markov Perfect Equilibrium (MPE), wherein at every moment, each
agent’s strategy depends solely on the current state of the project. In addition, we characterize a
continuum of (non-Markovian) Public Perfect Equilibria (PPE), in which along the equilibrium
path, the agents choose their effort by maximizing a convex combination of their individual and
the team’s discounted payoff. Motivated by the concepts of insiders and outsiders (who act in the
best interest of the team and in their own best interest, respectively) introduced by Akerlof and

C© RAND 2014.



GEORGIADIS, LIPPMAN, AND TANG / 3

Kranton (2000), the weight that agents place on maximizing the team’s payoff can be interpreted
as a measure of the team’s cooperativeness. A key result is that the agents exert greater effort
the closer the project is to completion. Intuitively, this is because they discount time and are
compensated upon completion, so that their incentives become stronger as the project progresses.

In Section 4 we analyze the manager’s problem and determine her optimal project size.
Her fundamental trade-off is that a larger project generates a bigger payoff upon completion but
requires more effort (and hence takes longer) to be completed. To model the manager’s limited
ability to commit, we assume that given the current state of the project qt , she can commit to
any Q ∈ [qt , qt + y], where y ≥ 0 captures the commitment power. Therefore, the manager can
commit to a project size Q > y only after the agents have made sufficient progress such that
qt ≥ Q − y.

For example, y will tend to be larger in a construction project, where the requirements are
typically standardized and easy to define, than in a project that involves a significant innovation
or quality component, where the requirements of the final output cannot be contracted on until
the project is at a sufficiently advanced stage. Similarly, y will typically be small in design-related
projects such as automotive design, as the requirements are difficult to describe. If the project
is outsourced and contracts are explicit, then y will tend to be larger than the case in which it
is undertaken in-house, where the manager can influence the team members’ career paths and
contracts are typically implicit.

The main result is that the manager’s incentives propel her to extend the project as it
progresses; for example, by introducing additional requirements. The manager chooses the project
size by trading off the marginal benefit of a larger project against the marginal cost associated
with a longer wait until the larger project is completed. However, as the project progresses,
the agents increase their effort, so that this marginal cost decreases, whereas the respective
marginal benefit does not change. As the project size will be chosen such that the two marginal
values are equal, it follows that the manager’s optimal project size increases as the project
progresses.

An implication of this result is that the manager’s optimal project size decreases in her
commitment power. If the manager has sufficiently large commitment power, then she will
commit to her optimal project size at time 0. Otherwise, she can commit to a smaller than
ideal project at time 0, or she must wait until the project is at a sufficiently advanced stage so
that she can commit to her optimal project size then. However, once such an advanced stage
has been reached, her optimal project size is larger than it was originally, and the manager
faces the same dilemma as at time 0. Nevertheless, we show that the manager always prefers
to wait, and as a consequence, she will choose a bigger project the smaller her commitment
power.

Anticipating that the manager will choose a larger project if she has less commitment power,
the agents decrease their effort, which renders the manager worse off. To mitigate her commitment
problem, assuming that the agents receive a share of the project’s worth upon completion (i.e.,
an equity contract), the manager might delegate the decision rights over the project size to them.
In this case, the agents will choose a smaller project than is optimal for the manager, but their
preferences are time-consistent. Intuitively, because (unlike the manager) they also trade off
the cost of effort when choosing the project size, their marginal cost associated with a larger
project does not decrease as the project progresses. As a result, the manager’s discounted profit is
independent of the commitment power under delegation, whereas it increases in her commitment
power when she retains the decision rights over the project size. We show that there exists an
interior threshold such that delegation is optimal unless the manager has sufficient commitment
power.

� Related literature. First and foremost, this article is related to the literature on dynamic
contribution games. The general theme of these games is that a group of agents interact repeatedly,
and in every period (or moment), each agent chooses his contribution (or effort) to a joint project
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at a private cost. Contributions accumulate until they reach a certain threshold, at which point
the game ends. Agents receive flow payoffs while the game is in progress, a lump-sum payoff
at the end, or a combination thereof. Admati and Perry (1991) and Marx and Matthews (2000)
show that contributing little by little over multiple periods, each conditional on the previous
contributions of the other agents, helps mitigate the free-rider problem. More recently, Yildirim
(2006) and Kessing (2007) show that in contrast to the case in which the project generates flow
payments while it is in progress, as studied by Fershtman and Nitzan (1991), efforts are strategic
complements when the agents receive a payoff only upon completion. Georgiadis (2013) studies
how the incentives to contribute to a public good project depend on the team composition and
examines how a manager should choose the team composition and the agents’ compensation
scheme. A feature common to most articles in this literature is that the size of the project is
given exogenously. However, in applications (e.g., new product development), the choice of the
objectives of any given project is typically a central decision that must be made. Our contribution
to this literature is to propose a tractable model to study this family of dynamic contribution
games, to endogenize the size of the project, and to examine how the optimal project size depends
on who has the decision rights and on the magnitude of the decision maker’s commitment
power.

A second strand of related literature is that on incomplete contracting. In particular, our
article is closely related to the articles that study how ex ante contracting limitations generate
incentives to renegotiate the initial contract ex post (Grossman and Hart, 1986; Hart and Moore,
1990; Aghion and Tirole, 1994; Tirole, 1999; Al-Najjar, Anderlini, and Felli, 2006; and others).
A subset of this literature focuses on situations wherein the involved parties have asymmetric
information. Here, ratchet effects have been shown to arise in principal-agent models in which the
principal learns about the agent’s ability over time, and the agent reduces his effort to manipulate
the principal’s beliefs about his ability (Freixas, Guesnerie, and Tirole, 1985; Laffont and Tirole,
1988). Another thread of this strand includes articles that consider the case in which the agent is
better informed than the principal, or he has better access to valuable information. A common
result is that delegating the decision rights to the agent is beneficial as long as he is sufficiently
better informed and the incentive conflict is not too large (Aghion and Tirole, 1997; Dessein,
2002). In our model, however, all parties have full and symmetric information, so that ratchet
effects and the incentives to delegate the decision rights to the agents arise purely out of moral
hazard.

The article is organized as follows. We introduce the model in Section 2 and in Section 3,
we analyze the agents’ problem given a fixed project size. In Section 4, we study the manager’s
problem, her optimal choice of the project size, as well as her option to delegate the decision rights
over the project size to the agents. Section 5 extends the model by incorporating deadlines, and
by considering the case in which the agents’ effort costs are linear. Finally, Section 6 concludes.
In Appendix A, we extend our model to test the robustness of our results. All proofs are provided
in Appendix 2.

2. The model

� A group of n identical agents contracts with a manager to undertake a project. The agents
exert (costly) effort over time to complete the project, they receive a lump sum compensation
upon completing the project, and they are protected by limited liability.1 The manager is the
residual claimant of the project, and she possesses the decision rights over its size. A project of
size Q ≥ 0 generates a payoff equal to Q upon completion. This payoff is split between the parties

1 We assume (for tractability) that the agents are compensated only by a lump sum upon completion of the project. In
the third subsection of Appendix A, we consider the case in which the agents also receive a per unit of time compensation
while the project is ongoing. The main results continue to hold.
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as follows: each agent receives βQ
n

, and the manager receives (1 − β)Q.2,3 Time t ∈ [0,∞) is
continuous; all parties are risk neutral and they discount time at rate r > 0. The project starts at
state q0 = 0. At every moment t , each agent observes the state of the project denoted by qt , and
exerts costly effort to influence the process

dqt =
(

n∑
i=1

ai,t

)
dt ,

where ai,t denotes the (unverifiable) effort level of agent i at time t .4 Each agent’s flow cost of
exerting effort level a is a2

2
, and his outside option is equal to 0. The project is completed at the

first stopping time τ such that qτ = Q.5

3. Agents’ problem

� In this section, we study the agents’ problem, and we characterize the unique project-
completing Markov Perfect Equilibrium (hereafter, MPE) wherein each agent conditions his
strategy at t only on the current state of the project qt , as well as a continuum of Public Perfect
Equilibria (hereafter, PPE) wherein each agent’s strategy at t is conditioned on the entire evolution
path of the project {qs}s≤t . Throughout this section, we take the project size Q as given, and we
endogenize it in Section 4.

� Preliminaries. Given a project of size Q, the current state of the project qt , and others’
strategies, agent i’s discounted payoff function is given by

�i,t (q ; Q) = max
{ai,s }s≥t

[
e−r (τ−t) βQ

n
−
∫ τ

t

e−r (s−t)
a2

i,s

2
ds | {a−i,s}s≥t

]
(1)

where τ denotes the completion time of the project and it depends on the agents’ strategies. The
first term captures the agent’s net discounted payoff upon completion of the project, whereas
the second term captures his discounted cost of effort for the remaining duration of the project.
Because payoffs depend solely on the state of the project (i.e., q) and not on the time t , this
problem is stationary, and hence the subscript t can be dropped. Using standard arguments (Dixit,
1999), one can derive the Hamilton-Jacobi-Bellman (HJB) equation for the expected discounted
payoff function for agent i ,

r�i (q ; Q) = max
ai

{
−a2

i

2
+
(

n∑
j=1

a j

)
�′

i (q ; Q)

}
, (2)

subject to the boundary conditions

�i (q ; Q) ≥ 0 for all q and �i (Q ; Q) = βQ

n
. (3)

2 This is essentially an equity contract. In the second subsection of Appendix A, we consider the case in which each
agent receives a flat payment upon completion of the project that is independent of the project size Q. The main results
continue to hold, and such contract is shown to aggravate the manager’s commitment problem.

3 We assume that β is independent of Q; otherwise, the assumption that the manager has limited ability to commit
to a project size would be violated. However, we defer a detailed justification until after we have formalized the notion of
limited commitment in Section 4.

4 The assumptions that efforts are perfect substitutes and the project progresses deterministically are made for
tractability. However, we consider the cases in which efforts are complementary and the project progresses stochastically
in the first subsection of Appendix A and the fifth subsection of Appendix A, respectively, and we show that all results
continue to hold.

5 In the base model, the agents’ reward upon completing the project does not depend on its completion time. In the
first subsection of Section 6, we extend our model to incorporate deadlines.
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The first boundary condition captures the fact that each agent’s discounted payoff must be non-
negative as he can guarantee himself a payoff of 0 by exerting no effort, and hence, incurring no
effort cost. The second boundary condition states that upon completing the project, each agent
receives his reward and exerts no further effort.

� Markov Perfect Equilibrium (MPE). In a MPE, at every moment, each agent i observes
the state of the project q, and chooses his effort ai to maximize his discounted payoff while
accounting for the effort strategies of the other team members. It follows from (2) that the
first-order condition for agent i’s problem yields that ai (q ; Q) = �′

i (q ; Q): at every moment, he
chooses his effort such that the marginal cost of effort is equal to the marginal benefit associated
with bringing the project closer to completion. By noting that the second-order condition is
satisfied and that the first-order condition is necessary and sufficient, it follows that in any
differentiable, project-completing MPE, the discounted payoff for agent i satisfies

r�i (q ; Q) = −1

2
[�′

i (q ; Q)]2 +
[

n∑
j=1

�′
j (q ; Q)

]
�′

i (q ; Q), (4)

subject to the boundary conditions (3). The following proposition characterizes the MPE, and
establishes conditions under which it is unique.

Proposition 1. For any given project size Q, there exists a MPE for the game defined by (1). This
equilibrium is symmetric, each agent’s effort strategy satisfies

a(q ; Q) = r

2n − 1
[q − C(Q)]+, where C(Q) = Q −

√
2βQ

r

2n − 1

n
,

and the project is completed at τ (Q) = 2n−1
rn

ln[1 − Q
C(Q)

].6 In equilibrium, each agent’s discounted
payoff is given by

�(q ; Q) = r

2

([q − C(Q)]+)2

2n − 1
.

If Q < 2β
r

, then this equilibrium is unique, and the project is completed in finite time. Otherwise,
there also exists an equilibrium in which no agent ever exerts any effort and the project is never
completed.

First note that if the project is too far from completion (i.e., q < C(Q)), then the discounted
cost to complete it exceeds its discounted net payoff, and hence the agents are better off not exerting
any effort, in which case the project is never completed. Because the project starts at q0 = 0, this
implies that the project is never completed if C(Q) ≥ 0, or equivalently, if Q ≥ 2β

r
2n−1

n
. On the

other hand, if Q < 2β
r

2n−1
n

, then each agent’s effort level increases in the state of the project q.
This is due to the facts that agents are impatient and they incur the cost of effort at the time the
effort is exerted, whereas they are compensated only when the project is completed. As a result,
their incentives are stronger, the closer the project is to completion.

Second, it is worth emphasizing that the MPE is always symmetric. This is due to the
convexity of the agents’ effort costs. In contrast, if effort costs are linear, then the corresponding
game has both symmetric and asymmetric MPE (see the second subsection of Section 5 for
details). Finally, whereas the MPE need not be unique, it turns out that when the project size
Q is endogenous, the manager will always choose it such that the equilibrium is unique (see
Remark 1 in Section 4). As such, we shall restrict attention to the project-completing equilibrium
characterized in Proposition 1.

6 To simplify notation, because the equilibrium is symmetric and unique, the subscript i is dropped throughout the
remainder of this article. Moreover, [·]+ = max{·, 0}.
C© RAND 2014.
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� Public Perfect Equilibria (PPE). Although the restriction to MPE is reasonable when
teams are large and members cannot monitor each other, there typically exist other PPE with
history-dependent strategies; that is, strategies that at time t depend on the entire evolution path
of the project {qs}s≤t . In this section, we characterize a continuum of such equilibria in which at
every moment, each agent chooses his effort to maximize a convex combination of his individual
and the entire team’s discounted payoff along the equilibrium path.

Building upon the concepts introduced in the seminal article on social identity by Tajfel
and Turner (1979), Akerlof and Kranton (2000) argue that depending on the work environment,
employees may behave as insiders, who act in the best interest of the organization or as outsiders,
who act in their individual best interest. Therefore, the weight that an agent places on maximizing
the team’s discounted payoff can be interpreted as the degree to which he feels an insider, and
we shall refer to an equilibrium as more cooperative the more weight each agent places on
maximizing the team’s discounted payoff.

We model this by assuming that given the current state of the project q, each agent chooses
his effort to maximize the expected discounted payoff of k ∈ [1, n] agents; that is, he solves

a(q ; Q, k) ∈ arg max
a

{
a k�′(q ; Q, k) − a2

2

}
. (5)

Note that k = 1 (k = n) corresponds to the case in which each agent places all the weight on
maximizing his individual (the team’s) discounted payoff, whereas k ∈ (1, n) corresponds to
intermediate cooperation levels. The following proposition establishes that for all k ∈ [1, n],
there exists a PPE in which at every moment along the equilibrium path, each agent chooses his
effort level by solving (5).7

Proposition 2. For any given k ∈ [1, n] and project size Q, there exists a PPE in which each
agent’s effort strategy satisfies

a(q ; Q, k) = r

2n − k
[q − C(Q, k)]+ (6)

along the equilibrium path, where C(Q, k) = Q −
√

2βQ
r

(2n−k)k
n

, and the project is completed at

τ (Q, k) = 2n−k
rn

ln[1 − Q
C(Q, k)

]. After any deviation from the equilibrium path, all agents revert
to the MPE (i.e., k = 1) for the remaining duration of the project. In equilibrium, each agent’s
discounted payoff is given by

�(q ; Q, k) = r

2k

([q − C(Q, k)]+)2

2n − k
,

and it increases in k for all q and Q.

The intuition behind the existence of such PPE is as follows. First, if all agents choose their
effort by solving (5) for some k > 1, then each agent is strictly better off relative to the case in
which k = 1. Second, k = 1 corresponds to the MPE, so that the threat of punishment is credible.
Third, by examining the progress made until time t , each agent can infer whether all agents
followed the equilibrium strategy; that is, if qt corresponds to the progress that should occur if all
agents follow (6). Because a deviation from the equilibrium path is detectable (and punishable)
arbitrarily quickly, the gain from a deviation is infinitesimally small. As a result, no agent has an
incentive to deviate from the strategy dictated by (6), so that it constitutes a PPE.8

7 There also exist PPE in which each agent’s cooperation level depends on q and varies across team members.
However, we assume that it is constant throughout the duration of the project and identical across agents for tractability,
and because we interpret k as part of the team’s cohesiveness that is persistent over time.

8 There is a well-known difficulty associated with defining a trigger strategy in continuous-time games, which we
resolve by using the concept of inertia strategies proposed by Bergin and MacLeod (1993). For details, the reader is
referred to the proof of Proposition 2 in Appendix 2.
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The following result establishes some comparative statics about how each agent’s effort level
depends on the parameters of the problem.

Result 1. All other parameters held constant, each agent’s effort level a(q ; Q, k):

(i) increases in k (and β);
(ii) there exists a threshold �r such that it increases in r if and only if q ≥ �r ; and

(iii) there exists a threshold �n such that it increases in n if and only if q ≥ �n .

To see the intuition behind statement (i), note that the free-rider problem is mitigated as the agents’
cooperation level k increases (and it is eliminated when k = n). As a result, the agents work harder,
the larger k is. The intuition behind the second part of statement (i) is straightforward: if the agents
receive a larger reward upon completion, then their incentives are stronger. The threshold results
in statements (ii) and (iii) are similar to Georgiadis (2013) who studies a stochastic version of
this model with a fixed project size.9

Before we proceed to analyze the manager’s problem, it is instructive to characterize the first
best outcome of this game.

Result 2. Consider a social planner whose objective is to maximize the total surplus of the team.
For any given project size Q, the discounted payoff and the socially efficient strategy for each
agent is given by

�sp(q ; Q) = r

2n

([
q − Q +

√
2Qn

r

]+)2

and asp(q ; Q) = r

n

[
q − Q +

√
2Qn

r

]+

,

respectively, and the project is completed at τ sp(Q) = 1
r

ln(
√

2βn√
2βn−√

r Q
).10

4. Project design and the commitment problem

� In this section, we analyze the manager’s problem and we endogenize the project size Q.
The manager has the decision rights over the choice of the project size, but she may not be able
to commit to a specific Q until the project is sufficiently close to that Q. Formally, we assume
that given the current state of the project q, the manager can only commit to a project size in
the interval [q, q + y], where y ≥ 0 is common knowledge, and it can be interpreted as the
manager’s commitment power.

� Manager’s problem. Recall from Propositions 1 and 2 that the agents’ strategies depend
on Q. Therefore, until the manager commits to a particular project size, the agents must form
beliefs about the project size that she will choose, and condition their strategies on those beliefs.
We assume (for tractability) that the manager uses pure strategies to determine her optimal project
size, and we denote the agents’ beliefs about her choice of the project size by Q̃.11 Finally, the
solution concept of the game between the manager and the agents is Subgame Perfect Equilibrium
(hereafter, SPE).

Given a project of size Q, the agents’ beliefs Q̃, and their cooperation level k, the manager’s
discounted profit can be written as W (q ; Q, Q̃, k) = [e−rτ ((1 − β)Q) | Q, Q̃], where the project’s
completion time τ depends on the current state q and the agents’ strategies, which in turn depend

9 Note that when examining how each agent’s effort level depends on the team size, one must first consider how the
agents’ cooperation level k depends on n. Statement (iii) holds for any fixed k as well as for k = n.

10 The socially efficient payoff and effort functions are obtained by substituting β = 1 and k = n into the respective
functions obtained in Proposition 2.

11 Because the equilibrium is symmetric for any Q, all agents will share the same belief Q̃.
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on Q̃ and k. Of course, in equilibrium beliefs must be correct; that is, Q = Q̃. Using standard
arguments, one can write the manager’s discounted profit in differential form as

r W (q ; Q, Q̃, k) = n a(q ; Q̃, k) W ′(q ; Q, Q̃, k),

subject to the boundary conditions

W (q ; Q, Q̃, k) ≥ 0 for all q and W (Q ; Q, Q̃, k) = (1 − β)Q ,

where a(q ; Q̃, k) is given in (6). To interpret these conditions, note that the manager’s discounted
profit is non-negative at every state of the project, because she does not incur any cost or disburse
any payments to the agents while the project is in progress. On the other hand, she receives her
net profit (1 − β)Q, and the game ends as soon as the state of the project hits Q for the first time.
After substituting (6) and solving the above ODE, it follows that

W (q ; Q, Q̃, k) = (1 − β)Q

(
[q − C(Q̃, k)]+

Q − C(Q̃, k)

) 2n−k
n

. (7)

Note that (1 − β)Q represents the manager’s net profit upon completion of the project, whereas
the next term can be interpreted as the present discounted value of the project, which depends on
the current state q, the agents’ beliefs about the project size and their cooperation level k, which
in turn influence their strategies characterized in Proposition 2.

� Optimal project size. To examine the manager’s optimal project size, we first consider the
case in which she has full commitment power (i.e., y = ∞), so that she can commit to any project
size before the agents begin to work. Second, we consider the opposite extreme case in which she
has no commitment power (i.e., y = 0), so that she knows only that the project is complete when
she sees it. In this case, at every moment the manager observes the current state of the project q,
and decides whether it is good enough (in which case, its size will be Q = q), or whether to let
the agents continue to work and reevaluate the completion decision an instant later. Finally, we
consider the case in which she has intermediate levels of commitment power (i.e., 0 < y < ∞),
and we examine how her optimal project size depends on y. Throughout the remainder of this
section, we take the agents’ cooperation level k ∈ [1, n] as given. As such, we suppress k for
notational convenience.

Full commitment power (y = ∞). If the manager has full commitment power, then she can
commit to a project size before the agents begin to work. Therefore, at q0 = 0, the manager leads
a Stackelberg game in which she chooses the project size that maximizes her discounted profit
and the agents follow by adopting the equilibrium strategy characterized in Proposition 2. As a
result, her optimal project size with full commitment (FC) satisfies QM

FC ∈ arg maxQ W (0 ; Q, Q).
Noting from (7) that W (0 ; Q, Q) is concave in Q, taking the first-order condition with respect to
Q yields

QM
FC = β

r

k(2n − k)

2n

(
4n

4n − k

)2

.

Moreover, the concavity of her discounted profit function implies that she commits to QM
FC at

q = 0 for any commitment power y ≥ QM
FC.

No commitment power (y = 0). If the manager has no commitment power, then at every moment
she observes the current state of the project q, and she decides whether to stop work and collect the
net profit (1 − β)q or to let the agents continue working and reevaluate her decision to complete
the project a moment later. In this case, the manager and the agents engage in a simultaneous-
action game, where the manager chooses Q to maximize her discounted profit given the agents’
beliefs Q̃ and the corresponding strategies, and the agents form their beliefs by anticipating
the manager’s choice Q. Therefore, her optimal project size with no commitment (NC) satisfies
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QM
NC ∈ arg maxQ{W (q ; Q, Q̃)}, where in equilibrium beliefs must be correct; that is, Q = Q̃. By

solving ∂W (q ;Q,Q̃)
∂Q

|q=Q̃=Q = 0, we have

QM
NC = β

r

2kn

2n − k
.

Observe that if y = 0, then the manager will choose a strictly larger project relative to the case
in which she has full commitment power: QM

NC > QM
FC. We shall discuss the intuition behind this

result in the third section of subsection 2 in Section 4 after we determine the manager’s optimal
project size for intermediate levels of commitment power.

This case raises the question of what happens to the agents’ beliefs off the equilibrium path
if the manager does not complete the project at QM

NC. Suppose that the manager did not complete
the project at QM

NC so that q > QM
NC. Clearly, Q and Q̃ > QM

NC, and it is straightforward to verify
that ∂W (q ;Q,Q̃)

∂Q
< 0 for all q, Q and Q̃ > QM

NC, which implies that the manager would be better off
had she completed the project at QM

NC irrespective of the agents’ beliefs.
Conceptually, this commitment problem could be resolved by allowing β to be contingent

on the project size. In particular, suppose that the manager can fix β, and let β̂(Q) equal β if
Q = QM

FC, and 1 otherwise. Then, her optimal project size is equal to QM
FC regardless of her

commitment power because any other project size will yield her a net profit of 0. However, this
implicitly assumes that QM

FC is contractible at q = 0, which is clearly not true for any y < QM
FC.

Therefore, we rule out this possibility by assuming that β is independent of Q.

Partial commitment power (0 < y < ∞). Recall that for any given cooperation level k, the
manager’s optimal project size is equal to QM

FC for all y ≥ QM
FC, and it is equal to QM

NC if y = 0.
To determine her optimal project size when y ∈ (0, QM

FC), we solve an auxiliary problem, and we
show that there is a one-to-one correspondence between this (auxiliary) problem and the original
problem.

Suppose that the manager can credibly commit to her optimal project size as soon as the
state of the project hits (some exogenously given) x . In this case, the manager chooses QM

x to
maximize her discounted profit at x , so that QM

x ∈ arg maxQ≥x{W (x ; Q, Q)}, and anticipating
the manager’s choice, the agents pick their strategies based on QM

x . We then show that for all
y ∈ (0, QM

FC), there exists a unique x(y) ∈ (0, QM
NC), such that the manager will commit to the

project size QM
x(y) as soon as the project hits x(y). The following Proposition characterizes this

SPE.

Proposition 3. Suppose that given the current state qt , the manager can commit to any project
size Q ∈ [qt , qt + y]. There exists a Subgame Perfect Equilibrium in which at qt = x(y), the
manager commits to project size QM

x(y), where

QM
x(y) =

(
2n

4n − k

)2
(√

β

r

k(2n − k)

2n
+
√
β

r

k(2n − k)

2n
+ k (4n − k)

4n2
x(y)

)2

, (8)

x(y) is the unique solution to max{QM
x(y) − y, 0} = x(y), and each agent chooses his strategy

according to (6). Moreover, QM
x(y) and x(y) decrease in y.

This proposition asserts that the manager has incentives to extend the project as it progresses:
QM

x increases in x . The intuition is as follows: the manager trades off a larger project that yields
a bigger net profit upon completion against having to wait longer until that profit is realized.
However, she ignores the additional effort cost associated with a larger project. Moreover, recall
that the agents raise their effort, and hence the manager’s marginal cost associated with choosing
a larger project decreases as the project progresses. On the other hand, her marginal benefit
from choosing a larger project is independent of the progress made. Because the project size is
chosen such that the two marginal values are equal, it follows that the manager’s optimal project
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FIGURE 1

OPTIMAL PROJECT SIZE WHEN β = 0.5, r = 0.1, k = 1, AND n = 4
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Notes: The left panel illustrates the manager’s incentives to extend the project as it progresses: her optimal project size
increases in the state of the project q, and there exists a state at which the manager is better off completing the project
without further delay. The right panel illustrates that her optimal project size (solid line) decreases in her commitment
power, whereas the agents’ optimal project size (dashed line) is independent of their commitment power.

size increases as the project progresses. By noting that the extreme cases in which the manager
has full (no) commitment power correspond to y = 0 (y = ∞), this intuition also explains why
QM

NC > QM
FC. This is illustrated in the left panel of Figure 1.

Noting that ∂

∂x
QM

x < 1 for all x , this proposition can be interpreted as follows: for any
y < QM

FC, the manager finds it optimal to commit to her optimal project size when the project is
at a sufficiently advanced stage such that the height of the wedge between QM

x and the 45◦-line
(as shown in the left panel of Figure 1) is equal to y.

After rearranging terms in (8), it is possible to write the manager’s optimal project size
explicitly as a function of her commitment power y as

QM (y) = 1

2

(√
β

r

kn

2n − k
+
√
β

r

kn

2n − k
− k

2n − k
min{y, QM

FC}
)2

.

Observe that QM (y) decreases in y, which implies that if the manager has less commitment power,
then she will commit at a later state and to a larger project. In addition, Proposition 3 together
with the expression for the completion time of the project computed in Proposition 2 implies that
the duration of the project will be larger if the manager has less commitment power.

Remark 1. Recall that (i) the MPE is unique if Q < 2β
r

, (ii) QM
NC <

2β
r

for all n ≥ 2, and (iii)
QM (y) ≤ QM

NC for all y. Therefore, the game has a unique MPE for any level of commitment
power when the project size is chosen by the manager.

It is important to emphasize that the agents internalize the manager’s limited ability to
commit when choosing their effort strategy. In particular, one can verify from (6) that each
agent’s effort increases in the manager’s commitment power (i.e., a(q ; QM (y)) increases in y for
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all q), which implies that the manager’s inability to commit early on induces a ratchet effect:
anticipating that she will choose a larger project, the agents scale down their effort. Although
ratchet effects have been shown to arise in settings with asymmetric information (e.g., Freixas,
Guesnerie, and Tirole, 1985; Laffont and Tirole, 1988), in our model they arise under moral
hazard with full information.

The following result examines how the manager’s optimal project size depends on the
parameters of the problem.

Result 3. Other things equal, the manager’s optimal project size QM (y):

(i) increases in k (and β) for all y;
(ii) decreases in r for all y; and

(iii) if k = 1, then there exists a threshold �n such that it increases in n if and only if y ≥ �n .
On the other hand, if k = n, then it increases in n.

Statements (i) and (ii) are not surprising. Because each agent’s effort increases in k, the team can
achieve more progress during any given time interval by playing a more cooperative equilibrium,
and hence the manager has incentives to choose a larger project. If the agents receive a larger
share of the project’s value upon completion, then they will work harder along the equilibrium
path, and as a result, the manager will (again) choose a bigger project. For the intuition behind
(ii), recall that the manager trades off the higher payoff of a larger project against the longer delay
until that payoff is collected. As the parties become more patient (i.e., as r decreases), the cost
associated with the delay decreases, and hence the optimal project size increases.

To examine how the manager’s optimal project size depends on the team size, one must first
consider how the agents’ cooperation level k depends on n. To obtain sharp results, we consider
the cases k = 1 (which corresponds to the MPE) and k = n (which corresponds to the efficient
PPE). In the first case, observe from Proposition 1 that ∂

∂q
a(q ; Q) = r

2n−1
decreases in n. Because

the manager’s incentive to extend the project is driven by the agents raising their effort as the
project progresses, it follows that this incentive becomes weaker as the team size n increases.
As a result, if the manager has sufficiently large commitment power so that she can commit at
the early stages of the project, then her optimal project size increases in n, whereas otherwise it
decreases in n. On the other hand, if k = n, then the result follows from the fact that the aggregate
effort of the team increases in n at every state of the project.

This analysis also raises the question about the manager’s optimal team size. Considering the
cases k = 1 and k = n as above, by substituting (8) into (7) and taking the first-order condition
with respect to n, it is straightforward to show that with no commitment power (i.e., y = 0), the
manager’s optimal team size is n∗ = 2 when k = 1, whereas the project is never completed and
the manager’s discounted profit equals 0 for any team size if k = n. On the other hand, with full
commitment power (i.e., y = ∞), it is n∗ = 1 and n∗ = ∞ when k = 1 and k = n, respectively.
With intermediate levels of commitment power, the expression for the manager’s discounted profit
is not sufficiently tractable to optimize with respect to n, but numerical analysis for the cases with
k = 1 and k = n indicates that the manager’s optimal project size decreases in her commitment
power.

� Optimal delegation. The manager’s limited ability to commit, in addition to disincen-
tivizing the agents from exerting effort, is detrimental to her ex ante discounted profit; that is,
W (0 ; QM (y), QM (y)) increases in y.12 Thus, unable to commit sufficiently early, the manager
might consider delegating the decision rights over the project size to the agents.

12 This follows from the facts that W (0 ; Q, Q) is concave in Q, the manager’s ex ante discounted profit is maximized
at QM

FC , QM (y) ≥ QM
FC for all y, and QM (y) decreases in y.
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We begin by examining how the agents would select the project size. Let Q A ∈
arg maxQ{�(x ; Q)} denote the agents’ optimal project size given the current state x . Solving
this maximization problem yields

Q A = β

r

k(2n − k)

2n
.

First, observe that the agents’ optimal project size is independent of the current state x . This
is also illustrated in the right panel of Figure 1. Intuitively, this is because the agents incur the
cost of their effort, so that their effort cost increases together with their effort level as the project
progresses. As a result, unlike the manager, their marginal cost associated with choosing a larger
project does not decrease as the project evolves, and consequently they do not have incentives to
extend the project as it progresses.

Second, observe that the agents always prefer a smaller project than the manager; i.e.,
Q A < QM (y) for all y. This is because they incur the cost of their effort, so that their marginal
cost associated with a larger project is greater than that of the manager’s.

The following proposition establishes conditions under which the manager finds it optimal
to delegate the decision rights over the project size to the agents.

Proposition 4. Suppose that given the current state qt , the manager can commit to any
project size Q ∈ [qt , qt + y]. There exists an interior threshold � such that W (0 ; Q A, Q A) >
W (0 ; QM (y), QM (y)) if and only if y < �; that is, the manager should delegate the choice of the
project size to the agents unless she has sufficient commitment power.

Recall that the agents’ optimal project size is time-consistent, which implies that if the man-
ager delegates the decision rights to the agents, then her ex ante discounted profit is independent
of when the project size is chosen. The key part of this result is that if the manager has no
commitment power (i.e., y = 0), then delegation is always optimal. By noting that the manager’s
ex ante discounted profit increases in her commitment power, the proposition follows.

Finally, one might also envision an intermediate decision rule, wherein all parties need
to unanimously agree on a project size. If the status quo is to continue until all parties agree
to complete the project, then, noting that the manager prefers a larger project than the agents
regardless of her commitment power, the project will be completed at the manager’s optimal
project size. In contrast, if the status quo is to complete the project unless all parties agree to
continue, then the project will be completed at the agents’ optimal project size.

� Other equilibria. In addition to the SPE characterized in the second subsection of Section
4 this game also admits other SPE in which the agents induce the manager to choose a smaller
project that is closer to their optimal size (i.e., Q A). The following proposition characterizes a
family of SPE in which the agents revert to the MPE when the project reaches a certain threshold,
thus inducing the manager to complete the project instantaneously. In establishing this result, it
is convenient to assume that even if the manager has committed to a particular project size, she
can renegotiate it to a smaller project size if such renegotiation is advantageous for both parties.

Proposition 5. Suppose that the agents play a PPE with cooperation level k > 1. For every
x ∈ [max{Q A, QM (y)|k=1}, QM (y)), there exists a Subgame Perfect Equilibrium (SPE) in which
the agents revert to the MPE at qt = x , and the manager best-responds by completing the project
instantaneously.

To see the intuition, fix some x ∈ [max{Q A, QM (y)|k=1}, QM (y)), and observe that the agents
are better off if the project is completed at x instead of QM (y). Recall that by Proposition 2, there
exists a PPE in which the agents choose their effort by maximizing the discounted payoff of k
agents while qt < x , and they revert to the MPE at qt = x , in which case the manager’s best—
response is to complete the project instantaneously. Moreover, it is useful to note that the agents’
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discounted payoff is maximized if x = max{Q A, QM (y)|k=1}, and if Q A ≥ QM (y)|k=1 (which is
true if the agents’ cooperation level k is sufficiently large or the manager’s commitment power y
is sufficiently small), then the project size is effectively chosen by the agents.

Furthermore, there exist SPE in which all agents halt effort, thus inducing the manager
to complete the project instantaneously. In particular, fix some x ∈ [Q A, QM (y)), and consider
the following strategy: each agent chooses his effort by maximizing the discounted payoff of k
agents while qt < x , and he exerts 0 effort for all qt ≥ x . After any deviation from this strategy,
he reverts to the MPE. We shall argue that this strategy constitutes a SPE. First observe that
absent any effort, the project will not progress, and hence the manager’s best—response is to
complete it instantaneously, so that Q = x . To see why no agent can profitably deviate from
this strategy, observe that any deviation must involve the agent exerting positive effort and the
manager completing the project at some Q > x . However, recall that each agent’s discounted
payoff decreases in the project size for all Q > Q A, which together with the fact that x ≥ Q A

implies that no agent can increase his discounted payoff by deviating. Finally, reverting to the
MPE after any deviation is subgame perfect. This leads us to the following result.

Result 4. For any x ∈ [Q A, QM (y)), there exists a SPE in which all agents stop exerting effort
when qt = x , and the manager best-responds by completing the project instantaneously.

It is useful to highlight a refinement that eliminates this family of SPE. Suppose that given
qt , the manager is able to commit that Q ≥ qt + δ, where δ > 0 (e.g., by announcing that at least
certain additional features will be included in the product, which is costly to retract). Then she
effectively renders herself unable to best-respond to the agents halting effort, and hence such SPE
do not exist.

� Socially optimal project size. In this section, we characterize the optimal project size of
a social planner who seeks to maximize the team’s total discounted payoff.

Result 5. Consider a social planner who maximizes the sum of the agents’ and the manager’s
discounted payoffs (but cannot control the agents’ effort strategies). Moreover, suppose that given
the current state q, he can commit to any project size Q ∈ [q, q + y]; and

(i) His optimal project size Qsp(y) satisfies Q A < Qsp
x(y) < QM (y) for all y.

(ii) With 1 agent, his optimal project size decreases in his commitment power y.13

The social planner seeks to maximize the sum of the manager’s and the agents’ discounted
payoff. As such, it is intuitive that his optimal project size will lie between the agents’ and
the manager’s optimal project size for all y. In addition, because the agents’ (manager’s) optimal
project size is independent of (decreases in) y, it is intuitive that the social planner’s optimal project
size decreases in his commitment power y. With n ≥ 2 agents, this problem becomes intractable.
However, numerical analysis indicates that his optimal project size continues to decrease in his
commitment power y. Appealing to Result 4 in the fourth subsection of Section 4 it is useful to
note that the socially optimal project size can be implemented as an outcome of a SPE.

Finally, if the social planner can also control the agents’ strategies, then it is straightforward
to verify from the social planner’s discounted payoff function characterized in Result 2 that his
optimal project size equals n

2r
and it is independent of his commitment power.

13 Given y, the social planner commits to Qsp
x(y) = arg maxQ{n�(q ; Q) + W (q ; Q, Q)} at q = x(y), where

x(y) satisfies max{Qsp
x(y) − y, 0} = x(y). The result follows from the facts that this problem is strictly concave and

d
d Q

[n�(q ; Q) + W (q ; Q, Q)] increases in q for all Q ≤ Qsp
x(0), which in turn implies that Qsp

x(y) decreases in y.
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5. Extensions

� In this section, we present two extensions of our model. First, we allow the manager to
impose a deadline by which the project must be completed, and second, we consider the case in
which the agents’ effort costs are linear. In the interest of brevity, we restrict attention to the MPE
of the game in both extensions.

� Contracting on the duration of the project (deadlines). Insofar, we have assumed that
the manager can either contract on the size of the project (subject to her limited commitment
constraint), or she can delegate the decision rights over the project size to the agents. It is plausible,
however, that even if the manager has limited ability to commit to a particular project size at
the outset of the project, she can commit to its duration. In this section, we consider the case in
which she imposes a deadline (denoted by T ), while delegating the choice of the project size (to
be reached by T ) to the agents.

Clearly, it is optimal for the manager to commit to the duration of the project (denoted by
T ) at time 0 rather than wait and commit at a later time. Therefore, the parties play a Stackelberg
Equilibrium in which the manager announces T , and the agents begin to exert effort. At time T ,
the project is completed with a payoff equal to qT , which is split as before; that is, the manager
receives (1 − β)qT , whereas each agent receives β

n
qT . The following proposition characterizes

the MPE corresponding to this game with duration T .14 Unlike the earlier results where payoffs
and strategies are characterized as a function of q, here it will be more convenient to characterize
them as a function of t .

Proposition 6. Given a fixed deadline T > 0, there exists a MPE in which at every moment t ,
each agent’s effort strategy satisfies

at = β

n
e

rn(t − T )

2n − 1

and the project size at time T is equal to qT = β

r
2n−1

n
(1 − e− r n T

2n−1 ).

Given a fixed project duration T , the manager’s ex ante discounted profit satisfies

W (0 ; T ) = (1 − β) qT e−rT .

The following result characterizes the manager’s optimal project duration T ∗, and it shows that if
she delegates the decision rights over the project size to the agents, then she can increase her ex
ante discounted profit by fixing the duration of the project.

Result 6. The manager’s optimal project duration and the corresponding project size in the MPE
characterized in Proposition 6 is equal to

T ∗ = −2n − 1

rn
ln

(
2n − 1

3n − 1

)
and qT ∗ = β

r

2n − 1

3n − 1
,

respectively, and her ex ante discounted profit W (0 ; T ∗) ≥ W (0 ; Q A, Q A)|k=1, with strict inequal-
ity holding for all n ≥ 2.

An implication of this result is that similar to Proposition 4 the manager finds it optimal to
contract on the duration of the project instead of contracting on its size (while effectively delegating
its duration) if and only if her commitment power is below a certain threshold. Moreover, one
can show that contracting on the duration of the project is optimal even if the manager has full

14 The agents might be allowed to complete the project and collect their rewards at some τ < T . However, it turns
out that when the project duration is chosen optimally, the agents find it optimal to complete the project at τ = T .
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commitment power (i.e., y = ∞) as long as the group size n is sufficiently large. Intuitively,
this is because larger groups have stronger incentives to procrastinate, and as we know from the
existing literature, deadlines are an effective tool to mitigate procrastination (Bonatti and Hörner,
2011; Campbell, Ederer, and Spinnewijn, forthcoming).

Remark 2. Another possibility is for the manager to contract on both the size and the duration
of the project. This is essentially a “forcing contract” in that the manager can choose a {Q, T }
pair to extract all surplus from the agents. An implicit assumption of such a contract is that the
manager commits to destroy any surplus if the project size has not reached Q by time T . We
believe that this case is neither interesting, nor realistic. Indeed, the manager would always prefer
to renegotiate rather than destroy surplus, and anticipating this, the agents will behave as if there
is no deadline or as if they have the decision rights over the project size.

� Linear effort costs. In this section, we consider the case in which the agents have linear
costs of effort. We assume that each agent’s marginal cost of effort is constant and equal to
λ > 0, and each agent’s effort level ai ∈ [0, u], where u ≤ ∞. For given Q, the discounted payoff
function of each agent i satisfies the HJB equation

r�i (q ; Q) = max
ai ∈[0, u]

{
−λai +

(
n∑

j=1

a j

)
�′

i (q ; Q)

}
, (9)

subject to the boundary conditions (3). We first characterize the symmetric MPE with bang-bang
strategies.

Result 7. There exists a symmetric MPE in which each agent’s discounted payoff and effort
strategy satisfies

�(q ; Q) =
[
−λu

r
+
(
βQ

n
+ λu

r

)
e

r (q−Q)
nu

]
1{ψ≤0} and a(q ; Q) = u 1{ψ≤0} ,

respectively, where ψ = Q + nu
r

ln( λn2u
rβQ+λnu

).

The project is completed in this MPE only if ψ ≤ 0, and this condition holds as long as
β ≥ λ and the project size Q is in some medium range. Moreover, unless ψ |n=1 ≤ 0 (i.e., a single
agent is willing to undertake the entire project single-handedly), there exists another symmetric
MPE in which no agent exerts any effort and the project is never completed. At the limit as
u → ∞ (i.e., without an upper bound on each agent’s maximal effort), ψ ≤ 0 for all Q only if
β ≥ λ and n = 1, in which case the project is completed instantaneously.

Turning to the manager’s problem, using a similar approach as in the third section of
subsection two of Section 4, one can show that her optimal project size given the current state
of the project x , is QM

x = min{ nu
r
, Q̄x}, where Q̄x denotes the largest project size such that

x = Q + nu
r

ln( λn2u
rβQ+λnu

). It is now necessary to distinguish between two cases:

(i) If nu
r

≤ Q̄0,which is true if and only if λ ≤ β

ne−1
, then the manager’s optimal project size

is equal to nu
r

and it is independent of her commitment power y. An implication of this
result is that she cannot benefit by delegating the decision rights over the project size to the
agents.

(ii) Otherwise, because Q̄x increases in x , anticipating that the manager will choose a project
larger than Q̄0, the agents will not exert effort until she commits to a project size. As such,
her optimal project size is equal to min{Q̄0, y}. In this case, the manager finds it optimal
to delegate the decision rights over the project size to the agents if her commitment power
is below a certain threshold.
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A natural question is whether this game has other MPE. We answer this question affirmatively
by characterizing, first, an asymmetric MPE with bang-bang strategies, and second, a symmetric
MPE in which the agents are indifferent across any effort level along the equilibrium path.

Example 1. Let r = 0.1, u = 10, β = 0.5, Q = 10, n = 4, and λ = 0.1. This game has an
asymmetric MPE in which only one agent exerts the maximal effort u at every moment, whereas
the other agents never exert any effort.

More generally, one can construct MPE with bang-bang strategies in which initially, only
few agents exert effort, and others join in as the project progresses. This is in contrast to the
uniqueness result established in Proposition 1, indicating that the convexity of the effort costs
plays a key role in the uniqueness of a (project-completing) MPE.

In addition to equilibria with bang-bang strategies, if the group comprises n ≥ 2 agents,
then one can construct equilibria with interior strategies as shown in the following result.

Result 8. Suppose that β

n
> λ, n ≥ 2, and u is sufficiently large. Then for any Q, there exists a

symmetric project-completing MPE in which each agent’s discounted payoff and effort strategy
satisfies

�(q ; Q) =
(
β

n
− λ

)
Q + λq and a(q ; Q) = r

[(
β

n
− λ

)
Q + λq

]
(n − 1)λ

,

respectively. In contrast, if β

n
≤ λ or n = 1, then there exists no symmetric project-completing

MPE with interior strategies.15

This MPE has a flavor of a mixed strategy equilibrium; observe that �′(q ; Q) = λ for all
q, so that at every moment, the agents are indifferent across any effort level. Observe that each
agent’s ex ante discounted payoff increases in the project size, which implies that the agents’
(and it turns out also the manager’s) optimal project size is equal to ∞. This is intuitive as β

n
> λ

implies that each agent’s marginal benefit from a unit of progress exceeds its marginal cost, and
the agents are risk neutral. Finally, it is useful to note that one can construct MPE in which some
of the agents use bang-bang strategies, with the others using interior strategies, akin to those
characterized in Results 7 and 8, respectively.

6. Concluding remarks

� We propose a tractable model to study the interaction between a group of agents who
collaborate over time to complete a project and a manager who chooses its size. A central feature
of the model is that the manager has limited commitment power, in that she can only commit to
the project size when the project is sufficiently close to completion. This is common in projects
that involve a significant innovation or quality or design component that is difficult to contract on
in advance.

In a setting in which both the manager and the agents are rational and they do not obtain
new information about the difficulty or the value of the project, we show that the manager has
incentives to extend the project as it progresses. As a result, if the manager has lower commitment
power, then she will eventually commit to a bigger project. To mitigate her commitment problem,
the manager might consider delegating the decision rights over the project size to the agents,
who will choose a smaller project than is optimal for the manager, but their preferences are time-
consistent. We show that delegation is optimal unless the manager has sufficient commitment
power.

15 If u < a(Q ; Q) = r β Q
n(n−1)λ

then there exists a symmetric MPE in which the agents’ effort levels are interior up to
some threshold �, while they are equal to u thereafter.
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In our model, agents are compensated upon completion of the project and their compensation
is independent of the completion time of the project. Although Georgiadis (2013) shows that
backloading all rewards is optimal when the project size is given exogenously, it is unclear
that this continues to be the case when the project size is endogenous and the manager has
limited commitment power. It would be interesting to explore whether a more elaborate scheme
in which the manager provides agents with flow payments while the project is in progress
(e.g., Sannikov, 2008) or uses time-dependent contracts (e.g., milestones with deadlines) can
improve her discounted profit. Second, Schelling (1960) made an important observation that
free-riding is both a commitment problem and an information problem, and although significant
advances have been made to analyze the former, little is known about the latter. Therefore,
incorporating asymmetric or incomplete information to this class of games may provide valuable
insights.

Appendix A

In this Appendix, we consider six extensions to our model to test the robustness of the main results.

� Production synergies and team coordination costs. First, we consider the case in which at every moment, the
total effort of the team is greater (due to production synergies) or smaller (due to coordination costs among the team
members) than the sum of the agents’ individual efforts. We show that all three main results continue to hold for any
degree of complementarity.

To obtain tractable results, we consider the production function proposed by Bonatti and Hörner (2011), so that the
project evolves according to dq = (

∑n
i=1 a1/γ

i )γ dt , where γ > 0. Note that γ ∈ (0, 1) (γ > 1) captures the case in which
the total effort of the team is smaller (greater) than the sum of the agents’ individual efforts, and a larger γ indicates
smaller coordination costs or a stronger degree of complementarity. By assuming symmetric strategies, it follows that
given the current state of the project q, cooperation level k, and the completion state Q, each agent’s discounted payoff
and effort strategy are given by

�(q ; Q, k) = rn2−2γ

2k

([q − C(Q, k)]+)2

2n − k
and a(q ; Q, k) = rn1−γ

2n − k
[q − C(Q, k)]+ ,

respectively, where C(Q, k) = Q −
√

2βQ
r

n2γ−2(2n−k)k
n

.16 Because (with other things equal) �(q ; Q, k) increases in k for
all γ , it follows that for all k ∈ [1, n], there exists a PPE such that each agent follows the strategy dictated by a(q ; Q, k),
and after any deviation from the equilibrium path, all agents revert to the MPE; that is, k = 1. Furthermore, each agent’s
discounted payoff, his equilibrium effort, as well as the aggregate effort of the entire team, increase in the degree of
complementarity γ .

By using the agents’ strategies, it follows that the manager’s discounted profit satisfies

W (q ; Q, Q̃, k) = (1 − β)Q

(
[q − C(Q̃, k)]+

Q − C(Q̃, k)

) 2n−k
n

.

To streamline the exposition, we focus on the extreme cases in which the manager has either full or no commitment
power. It follows that

QM
FC = β

r

k(2n − k)

2n

(
4n

4n − k

)2

n2γ−2 and QM
NC = 2β

r

kn

2n − k
n2γ−2 .

Observe that the manager’s optimal project size increases in the degree of complementarity, and similar to the case
analyzed in Section 4QM

NC > QM
FC . Moreover, the counterpart of Proposition 3 continues to hold; that is, if the manager

has less commitment power, then she will choose a bigger project.
We now examine the manager’s option to delegate the choice of Q to the agents. To begin, note that the agents’

optimal project size satisfies Q A = β

2r
k(2n−k)

n
n2γ−2. By following a similar approach as in the third subsection of Section 4,

it follows that there exists a threshold� such that the manager is better off delegating the choice of the project size to the
agents if and only if her commitment power y < �.

� Fixed compensation. In the base model, we have assumed that the agents’ net payoff upon completion of the
project is proportional to its value. Whereas a more valuable project will typically yield a larger net payoff to the agents–for

16 As the algebra is straightforward and similar to that used to derive Propositions 1 and 2, it is omitted here in order
to streamline the exposition.
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example, a bigger bonus, a salary increase, greater job security, or a larger outside option, this assumption can be thought
of as an extreme case, as any incentive scheme will likely consist of a fixed component that is independent of the project
size, and a performance-based component. In this section, we consider the opposite extreme where each agent’s net payoff
is fixed and independent of the project size, while efforts are perfect substitutes; that is, dqt = (∑n

i=1 ai,t

)
dt .

The main results continue to hold. In fact, the manager’s commitment problem becomes so aggravated in this case,
that the project may never be completed in equilibrium. Moreover, because the agents’ net reward is independent of Q,
their optimal project size is always 0. As such, the manager can no longer use delegation to mitigate her commitment
problem.

To begin, suppose that each agent receives a lump sum V
n

as soon as the project is completed regardless of its size.
Then given the current state of the project q, the cooperation level k, and the completion state Q, each agent’s equilibrium
effort is given by

ā (q ; Q, k) = r

2n − k

[
q − C̄(Q, k)

]+
where C̄(Q, k) = Q −

√
2V

r

(2n − k)k

n
,

whereas the manager’s discounted profit satisfies

W̄
(
q ; Q, Q̃, k

) = (Q − V )

(
[q − C̄(Q̃, k)]+

Q − C̄
(
Q̃, k

)
) 2n−k

n

.

Using the same approach as in Section 3, one can show that for all k ∈ (1, n], there exists a PPE such that each agent
follows the strategy dictated by ā (q ; Q, k) contingent on all other agents following the same strategy, and reverts to the
MPE (i.e., k = 1) after observing a deviation.

By examining the manager’s optimal project size, it follows that with full and with no commitment power, we have

Q̄M
FC = 2n − k

3n − k
V + n

3n − k

√
2V

r

(2n − k)k

n
and Q̄M

NC = V +
√

2V

r

kn

2n − k
,

respectively. Observe that Q̄M
NC > Q̄M

FC , and by solving for Q̄M
x ∈ arg maxQ W̄ (q ; Q, Q, k), it follows that Q̄M

x increases
in x . Therefore, similar to the base model, the manager has incentives to extend the project as it progresses. In fact, these
incentives can be so strong that there exists an equilibrium in which the project is not completed. To see why, note that
the project is completed only if C̄ (Q ; k) < 0, and this inequality is true at Q = Q̄M

NC (k) if and only if r V <
2k(n−k)2

n(2n−k)
.17

Moreover, if each agent’s net payoff is independent of the project size, then delegating the choice of the project size to
the agents is not beneficial, because they will choose a project of size 0.

� Flow payments while the project is in progress. Throughout the analysis, we have maintained the assumption that
the agents receive a lump-sum payment upon completion of the project, but they do not receive any flow payments while
the project is in progress. Therefore, to extend the project, the manager must only incur the cost associated with having to
wait longer until the project is completed. In this section, we consider the case in which the manager compensates each
agent with a flow payment w

n
> 0 per unit of time while the project is in progress, in addition to a lump-sum payment

upon completing it, where w is not too large.
For a given project size Q, each agent’s discounted payoff, and the manager’s discounted profit satisfy

r�̄(q ; Q) = w

n
+ k(2n − k)

2

[
�̄′(q ; Q)

]2
s.t. �̄ (Q ; Q) = βQ

r W̄
(
q ; Q, Q̃

) = −w + [
na
(
q ; Q̃, k

)]
W̄ ′ (q ; Q, Q̃

)
s.t. W̄

(
Q ; Q, Q̃

) = (1 − β)Q ,

respectively, where ā(q ; Q̃, k) = k�̄′(q ; Q). As this model is analytically not tractable, to examine how the main results
extend to this case, we present a numeric illustration (see Figure A1). The takeaway from this analysis is that the main
results continue to hold when the agents receive flow payments while the project is in progress.

� Variable incentive power. A key assumption of the model is that upon completion of the project, its value is
split among the parties according to a fixed fraction: the manager receives 1 − β of its value, whereas each agent
receives β

n
. We have argued that this assumption is important to capture the manager’s limited commitment power

(see the last paragraph in the second section of subsection two of Section 4). Nevertheless, one might still wonder
what is the impact on the overall dynamics of choosing some alternative class of reward functions. In this section, we
consider the case in which β(q) = β0 + β1q, where β0 ∈ (0, 1), and β1 is either positive or negative, but sufficiently
small.

For a given Q, the equilibrium characterization is identical to that developed in Section 3. Moreover, it is straight-
forward to show that similar to the base model, the agents’ optimal project size is independent of when they commit
to it. However, determining the manager’s optimal project size is not tractable due to the second term in β(q). As

17 In this case, the manager finds it optimal to commit to a project size equal to y at time 0.
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FIGURE A1

AN EXAMPLE IN WHICH THE MANAGER COMPENSATES THE AGENTS PER UNIT OF TIME WHILE
THE PROJECT IS IN PROGRESS WHEN β = 0.5, r = 0.1, n = 4, AND w = 0.001
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Notes: The left panel illustrates that her optimal project size decreases in her commitment power, whereas the agents’
optimal project size is independent of their commitment power. The right panel illustrates that delegating the decision
rights over the project size to the agents is beneficial if and only if the manager doesn’t have sufficient commitment power.

such, we examine how the main results of the article extend to this case numerically. Figure A2 illustrates an exam-
ple, which indicates that the main results hold if the agents’ share of the payoff is a (linear) function of the project
size.

� Sequential projects. Insofar, we have assumed that the manager interacts with the agents for the duration of a
single project. However, because in practice, relationships between a manager and work teams are often persistent, it is
important to verify that the main results of this article are robust to repeated interactions. In this section, we consider the
case in which as soon as a project is completed, the manager and the agents interact for the duration of another project
with probability α < 1, whereas the relationship is terminated with probability 1 − α and each party receives its outside
option, which is normalized to 0.18

Indeed, we find that when the manager and the agents engage in sequential projects, all the main results continue
to hold. Moreover, we observe that if the relationship is more persistent (i.e., α is larger), then the manager has stronger
incentives to delegate the choice of the project size to the agents.

Because the problem is stationary, the manager will choose the same project size every time. Both the agents’
and the manager’s problem remain unchanged, except for the boundary conditions, which become �̄ (Q ; Q) = βQ

n
+

α�̄ (0 ; Q) and W̄
(
Q ; Q, Q̃

) = (1 − β)Q + αW̄
(
0 ; Q, Q̃

)
, respectively. The interpretation of these conditions is that

upon completion of each project, each party receives its net payoff from this project, plus the expected continuation value
from future projects.

Unfortunately, it is not possible to derive the desired results analytically. As such, we use a numerical example to
illustrate how the main results of the article extend to this case. Figure A3 illustrates that the main results continue to
hold. In particular, (i) the manager’s optimal project size decreases in her commitment power, whereas the agents’ optimal
project size is independent of their commitment power, and (ii) the manager should delegate the decision rights over Q
unless she has sufficient commitment power.

18 Because the value of the project has been assumed to be linear in its size and it generates a payoff only upon
completion, as α → 1, both the manager and the agents choose an arbitrarily small project, which is completed arbitrarily
quickly. Therefore, we restrict attention to the cases in which α < 1.
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FIGURE A2

AN EXAMPLE IN WHICH THE AGENTS’ SHARE OF THE PROJECT’S PAYOFF INCREASES WITH THE
PROJECT SIZE WHEN r = 0.2, n = 4, k = 1, AND β(q) = 0.5 + 0.005 q
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Notes: The left panel illustrates that the manager’s optimal project size decreases in her commitment power. From the
right panel, observe the manager cannot benefit by delegating the decision rights over the project size to the agents. More
generally, numerical examples indicate that this is true for sufficiently large values of β1.

� Stochastic evolution of the project. A key assumption that provides tractability to our model is that the project
progresses deterministically. To obtain some insights as to how the results in this article depend on this assumption,
consider the case in which the project progresses stochastically according to

dqt =
(

n∑
i=1

ai,t

)
dt + σdWt ,

where σ > 0 captures the degree of uncertainty associated with the evolution of the project, and Wt is a standard Brownian
motion. It is straightforward to show that for a given project size Q, in any MPE, each agent’s expected discounted payoff
and the manager’s expected discounted profit satisfy

r�̄(q ; Q) = (2n − 1)

2

[
�̄′(q ; Q)

]2 + σ 2

2
�̄′′(q ; Q) and

r W̄
(
q ; Q, Q̃

) = [
nā
(
q ; Q̃

)]
W̄ ′ (q ; Q, Q̃

)+ σ 2

2
W̄ ′′ (q ; Q, Q̃

)
,

subject to �̄ (Q ; Q) = βQ
n

, W̄
(
Q ; Q, Q̃

) = (1 − β)Q, limq→−∞ �̄(q ; Q) = 0, and limq→−∞ W̄ (q ; Q) = 0, respectively,
where ā

(
q ; Q̃

) = �̄′(q ; Q). This problem is studied by Georgiadis (2013) for a fixed project size, who shows that similar
to Proposition 1, a unique solution to this system of ODE exists, and �̄′(q ; Q) > 0 and increasing in q, which in turn
implies that the MPE is unique. It is worth noting that the non-Markovian strategies characterized in this article no longer
constitute a PPE if the project progresses according to the above stochastic process. Intuitively, this is because a deviation
from the equilibrium path cannot be detected instantaneously with probability 1.

Georgiadis (2011) shows that the agents are time-consistent with respect to their optimal project size, which implies
that similar to the deterministic case, their optimal project size is independent of the commitment power y. Unfortunately
however, the analysis of the manager’s choice of Q is not tractable. Therefore, in Figure A4, we use a numerical example
to illustrate that the main results continue to hold when the project progresses stochastically: the manager’s optimal project
size decreases in her commitment power, whereas the agents’ optimal project size is independent of their commitment
power, and delegation is optimal unless the manager has sufficient commitment power.
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FIGURE A3

AN EXAMPLE IN WHICH THE MANAGER INTERACTS WITH THE AGENTS REPEATEDLY WHEN β = 0.5,
r = 0.1, n = 4, and α = 0.25. SIMILAR TO FIGURE A1, IT ILLUSTRATES THAT THE MAIN RESULTS
CONTINUE TO HOLD IN THIS CASE
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FIGURE A4

AN EXAMPLE IN WHICH THE PROJECT PROGRESSES STOCHASTICALLY WHEN β = 0.5, r = 0.1,
n = 3, AND σ = 1. SIMILAR TO FIGURE A1, IT ILLUSTRATES THAT THE MAIN RESULTS CONTINUE TO
HOLD IN THIS CASE
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Appendix B

This Appendix contains all the proofs.

Proof of Proposition 1. To show that a MPE with differentiable strategies exists for this game, it suffices to show that
a solution to (4) exists. To show this, we derive a symmetric solution analytically. In particular, for symmetric strategies
(i.e., �i (q ; Q) = � j (q ; Q) for all i and j), (4) can be rewritten as

r�(q ; Q) = 2n − 1

2

[
�′(q ; Q)

]2
, (B1)

and the solution to this ODE satisfies

�(q ; Q) = r

2

([q − C(Q)]+)2

2n − 1
, where C(Q) = Q −

√
2βQ

r

2n − 1

n

is determined by the value matching condition. By using the first-order condition, it follows that each agent’s effort
strategy is given by

a(q ; Q) = r

2n − 1
[q − C(Q)]1{q≥C(Q)} .

To show that there do not exist any asymmetric solutions to (4), we proceed by contradiction. Fix Q > 0, and
suppose there exists at least two agents a and b whose discounted payoff functions �a(q ; Q) and �b(q ; Q) satisfy (4),
but�a(q ; Q) �= �b(q ; Q) for at least some q < Q. Then let D(q) = �a(q ; Q) −�b(q ; Q), and note that D(Q) = 0 and
D(·) is differentiable. Then using (4), we can write 2r D(q) = [2

∑
i �i (q ; Q) −�a(q ; Q) −�b(q ; Q)]D′(q). Moreover,

because agents are impatient (r > 0) and the amount of effort that needs to be exerted until the project is completed
diverges to infinity as q → −∞, it must be true that �i (q ; Q) → 0 as q → −∞. Therefore, limq→−∞ D(q) = 0, so if
D(q) �= 0 for at least some q < Q, then it must be the case that there exists some interior z < Q such that D(z) �= 0 and
D′(z) = 0, which yields a contradiction. Hence, we conclude that (4) cannot admit an asymmetric solution.

To show that (B1) has a unique symmetric solution, we use a similar approach. Fix Q > 0, and suppose that there
exists �A(q ; Q) and �B (q ; Q) that both satisfy (B1). Then let �(q) = �A(q ; Q) −�B (q ; Q), and note that �(Q) = 0
and �(·) is differentiable. Therefore, (B1) can be rewritten as 2r�(q) = (2n − 1)[�′

A(q ; Q) +�′
B (q ; Q)]�′(q). More-

over, limq→−∞ �(q) = 0 by the same argument as above, so if�(q) �= 0 for at least some q < Q, then it must be the case
that there exists some interior z < Q such that �(z) �= 0 and �′(z) = 0, which yields a contradiction. Therefore, there
exists a unique symmetric solution to (4).

We have insofar shown that there exists a unique solution to (4), and that this solution is symmetric. Moreover, note
that if C(Q) ≥ 0 (or equivalently, Q ≥ 2β

r
2n−1

n
), then the equilibrium strategy dictates that no agent ever exerts any effort,

in which case the project is never completed. On the other hand, as long as C(Q) < 0, the strategy a(q ; Q) constitutes
the unique project-completing MPE. Next, suppose that C(Q) < 0 ≤ C(Q)|n=1 (or equivalently, 2β

r
≤ Q < 2β

r
2n−1

n
), and

fix all effort strategies except that of agent i to 0. Then agent i’s best–response is to also exert 0 effort, as C(Q)|n=1 ≥ 0;
that is, he is not willing to undertake the entire project by himself. As a result, if Q ≥ 2β

r
, then in addition to the

project-completing MPE, there also exists an equilibrium in which no agent exerts any effort, and the project is never
completed.

Finally, to compute the completion time of the project, we substitute the agents’ effort function a(q; Q) into
dqt = nat dt , we solve the resulting ODE q ′(t) = r n

2n−1
[q(t) − C(Q)]+ subject to q(0) = 0, and we obtain the completion

time of the project τ by solving for q(τ ) = Q. Q.E.D.

Proof of Proposition 2. This proof is organized as follows. First, we show that each agent’s discounted payoff function
is given by �(q ; Q, k) if at every moment, all agents choose their effort level according to (5), and that (6) is the
corresponding effort level. Then we show that there exists a PPE in which each agent’s effort level and discounted payoff
satisfies (6) and �(q ; Q, k) along the equilibrium path, respectively.

From (5), given the current state of the project q, the first-order condition yields a(q ; Q, k) = k�′(q ; Q, k), and
the second-order condition is always satisfied. Substituting the first-order condition into each agent’s HJB equation yields

�(q ; Q k) = (2n − k)k

2r

[
�′(q ; Q, k)

]2
,

subject to �(Q ; Q, k) ≥ 0 for all q and �(Q ; Q, k) = βQ
n

.

A solution to the above HJB equation is given by �(q ; Q, k) = r
2k

([q−C(Q, k)]+ )2

2n−k
, and by using the first-order

condition, it follows that each agent’s effort strategy satisfies (6). If k = 1, then (6) corresponds to the Markov equilibrium.
To compute the completion time of the project, we substitute (6) into dqt = nat dt , solving the resulting differential
equation q ′(t) = r n

2n−k
[q(t) − C(Q, k)]+ subject to q(0) = 0 yields that q(t) = −C(Q, k)(e

r n t
2n−k − 1). By solving for

q(τ ) = Q, we obtain the completion time of the project τ (Q, k) = 2n−k
rn

ln[1 − Q
C(Q, k)

].
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We now show that for any k ∈ (1, n], there exists a PPE in which along the equilibrium path, each agent’s effort
level is given by (6). It follows that in equilibrium, each agent’s discounted payoff satisfies �(q ; Q, k). Because the
project progresses deterministically, there is a one-to-one mapping between t and qt , and it will be convenient to rewrite
(6) as a function of time, so that (abusing notation) a(t ; Q, k) = − −rC(Q, k)

2n−k
e

r n t
2n−k . Fix some Q and k ∈ (1, n], and consider

the following strategy:

at =
{

a(t ; Q, k) if qt = −C(Q, k)
[
e

r n t
2n−k − 1

]
a(qt ; Q, 1) otherwise,

where a(qt ; Q, k) is given in (6) and qt = ∫ t

0 n a(s ; Q, k)ds. This strategy designates that at every moment t , each agent
chooses his effort level by maximizing the discounted payoff of k agents as long as every other agent has insofar followed
this strategy, and he reverts to the MPE otherwise. There is a well-known problem associated with defining such trigger
strategy in continuous-time games. To see why, suppose that a deviation occurs at some t ′, and agents revert to the MPE
at some t ′′ > t . Because there is no first moment after t ′, there always exists some t ∈ (t ′, t ′′) such that the agents are
better off reverting to the MPE at that t ; that is, subgame perfection fails. To resolve this problem, following Bergin and
MacLeod (1993), we define the following inertia strategies:

aεt =
{

a(t ; Q, k) if qt−ε = −C(Q, k)
[
e

r n (t−ε)
2n−k − 1

]
a(qt ; Q, 1) otherwise,

(B2)

where ε > 0 and sufficiently small, and qt = 0 for all t ≤ 0. First, observe that at the limit as ε → 0, aεt converges to at .
Second, because aεt < ∞ for all ε, t , Q, and k ∈ (1, n], for any decreasing sequence {εm}∞

m=1 converging to 0, the strategies
aεt form a Cauchy sequence. Third, whereas the strategy in (B2) cannot form a PPE, we shall show that it forms an ε−PPE.
To see why, first note that if at every moment all agents choose their effort level according to (5), then given the current
state of the project q, each agent’s discounted payoff is equal to�(q ; Q, k). Moreover,�(q ; Q, k) > �(q ; Q, 1) for all
q ≥ C(Q, k) and k > 1. Second, observe that for sufficiently small ε, the optimal strategy against (B2) is for an agent to
choose a(t ; Q, k) at every t < τ̃ , and deviate to the MPE (so that he maximizes his discounted payoff given the current
state of the project) at t = τ̃ , where τ̃ is chosen such that the project is completed at τ̃ + ε when the agents follow (B2).
In this case, project completion is delayed by at most ε units of time, and each agent’s discounted payoff when the state of
the project is equal to q is at least �(q ; Q, k) − εr e−rτ (Q, k) − ε

2
[a(Q ; Q, k)]2. Therefore, the strategy in (B2) forms an

ε−PPE, and by applying Theorem 3 of Bergin and MacLeod (1993), it follows that the limit strategy as ε → 0 forms a
PPE. Consequently, there exists a PPE such that along the equilibrium path, each agent’s effort level is given by (6), and
his discounted payoff satisfies �(q ; Q, k). Q.E.D.

Proof of Proposition 3. To begin, fix k ∈ [1, n], and note that for any x , W (x ; Q, Q, k) is strictly concave in Q. Applying
the first-order condition yields (8). It is straightforward to verify that ∂

∂x
QM

x ∈ (0, 1) and ∂2

∂x2 QM
x < 0 for all q > 0. Finally,

solving the fixed point QM
Q = Q yields QM

Q = β

r
2kn

2n−k
.

Next, let g(x) = QM
x − x , and observe that g(0) = QM

0 > 0 and g(QM
Q ) = 0. Moreover, it is easy to check that

g′(x) < 0 on [0, QM
Q ], which implies that given any y ≤ QM

0 , there exists a unique x(y) such that g(x(y)) = y.
Clearly, if y ≥ QM

0 , then the manager finds it optimal to commit to QM
0 at x = 0. Therefore, for all y ≥ 0, there

exists a unique x(y) that solves max{QM
x(y) − y, 0} = x(y). Furthermore, noting that ∂

∂x
QM

x ∈ (0, 1), it follows that x(y)
and QM

x(y) both decrease in y.
To proceed, suppose that y < QM

0 , and note that W (q ; Q, Q) is strictly concave in Q for all Q ≥ q. Given the
current state of the project q, the manager can either commit to a completion state in the interval [q, q + y], in which case
her discounted payoff is equal to maxq≤Q≤q+y W (q , Q, Q), or she can delay committing, anticipating that she will be able
to commit to some completion state q ′ > q + y later, which will yield her a discounted payoff W (q , q ′, q ′). Therefore, the
manager will choose to commit to a completion state at q if and only if maxq≤Q≤q+y W (q , Q) ≥ W (q , q ′, q ′) for all q ′ >
q + y, or equivalently if and only if arg maxQ≥q W (q , Q, Q) ≤ q + y. By noting that QM

q ∈ arg maxQ≥q{W (q ; Q, Q)},
it follows that the manager finds it optimal to commit to project size QM

x(y) at q = x(y), where x(y) is the unique solution
to the equation max{QM

x(y) − y, 0} = x(y), and QM
x(y) is given by (8). Q.E.D.

Proof of Proposition 4. To begin, fix n ≥ 1 and k ∈ [1, n]. If the project size is chosen by the agents, then they will
choose Q A = β

r
k(2n−k)

2n
, and by substituting this into the manager’s expected discounted profit, yields W (0 ; Q A, Q A) =

(1−β)β
r

k(2n−k)
2n

( 1
2
)

2n−k
n .

Next, consider the case in which the completion state is chosen by the manager, and she has no commitment power
(i.e., y = 0) so that she eventually completes the project at QM

NC = β

r
2kn

2n−k
. By substituting this, the manager’s expected

discounted profit we have that W (0 ; QM
NC, QM

NC) = (1−β)β
r

2kn
2n−k

( n−k
2n−k

)
2n−k

n .

Now consider the ratio
W (0 ;QM

NC ,Q
M
NC )

W (0 ;Q A ,Q A )
= ( 2n

2n−k
)2( 2n−2k

2n−k
)

2n−k
n , and for the purpose of this proof, let h(n, k) =

( 2n
2n−k

)2( 2n−2k
2n−k

)
2n−k

n . Observe that h(k, k) = 0 and limn→∞ h(n, k) = 1. Differentiating with respect to n yields d
dn

h(n, k) =
4[(2n−k)(n−k) ln( 2n−2k

2n−k )+nk]

(2n−k)3(n−k)
( 2n−2k

2n−k
)

2n−1
n > 0 if and only if (2n − k)(n − k) ln( 2n−2k

2n−k
) + nk > 0 or equivalently if ln ( 2n−2k

2n−k
) +

nk
(2n−k)(n−k)

> 0. Now observe that limn→∞ [ln ( 2n−2k
2n−k

) + nk
(2n−k)(n−k)

] = 0, and ∂

∂n
[ln ( 2n−2k

2n−k
) + nk

(2n−k)(n−k)
] < 0 for all n ≥ k.
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This implies that ln ( 2n−2k
2n−k

) + nk
(2n−k)(n−k)

> 0, and hence d
dn

h(n, k) > 0. By noting that h(k, k) = 0 and limn→∞ h(n, k) = 1,

it follows that h(n, k) < 1 for all n ≥ k, which implies that W (0 ; Q A, Q A) > W (0 ; QM
NC, QM

NC) for all n ≥ k.
We have thus far established that W (0 ; Q A, Q A) > W (0 ; QM

NC, QM
NC). Moreover, it is straightforward to verify that

W (0 ; QM
FC, QM

FC) > W (0 ; Q A, Q A); that is, the manager should not delegate the choice of Q to the agents if she has full
commitment power. Because QM (y) is strictly decreasing in y for all y < QM

FC , W (0 ; Q, Q) is strictly concave in Q, and
QM

FC < QM
NC , it follows that W (0 ; QM (y), QM (y)) is strictly increasing in y on [0, QM

FC). By noting that W (0 ; Q A, Q A) is
independent of y, it follows that there exists some threshold � < QM

FC such that W (0 ; Q A, Q A) > W (0 ; QM (y), QM (y))
if and only if y < �. Q.E.D.

Proof of Proposition 5. Fix some x ∈ [max{Q A, QM (y)|k=1}, QM (y)). By Proposition 2, there exists a PPE in which the
agents choose their effort to maximize the discounted payoff of k agents at every t such that qt < x , and they revert to the
MPE at qt = x . Now observe that by reverting to the MPE, the agents cannot induce the manager to choose a project size
smaller than QM (y)|k=1. Moreover, if the state of the project is qt and the agents are playing the MPE, then the manager’s
best–response is to complete the project at Q = max{qt , QM (y)|k=1}. Therefore, there exists a SPE in which the agents
switch to the MPE at qt = x , and the manager best-responds by completing the project instantaneously. Q.E.D.

Proof of Proposition 6. We use Pontryagin’s maximum principle to characterize a MPE. The Hamiltonian associated with
each agent i’s objective function can be written as

Hi,t = −e−r t
a2

i,t

2
+ λi,t

(
n∑

j=1

a j,t

)
,

where λi,t ≥ 0 is the costate variable associated with agent i’s Hamiltonian, and his bequest function is φi,T = βQ
n

e−rT .
By Pontryagin’s principle, for each agent i , there exists a continuous function λi,t that satisfies the following conditions for
all t ≥ 0: (i) the optimality equation d Hi,t

dai,t
= 0; (ii) the adjoint equation λ̇i,t = − d Hi,t

dq
; and (iii) the transversality condition

λi,T = dφi,T

d Q
. The optimality equation implies that ai,t = λi,t ert , and the adjoint equation can be rewritten as

λ̇i,t = −
∑
j �=i

d Hi,t

da j,t

da j,t

dt

dt

dq
= −

∑
j �=i

λi,t

(
rλ j,t + λ̇ j,t

)
∑n

l=1 λl,t

⇒ λ̇t = −r
n − 1

2n − 1
λt ,

where the last equality follows from the restriction to symmetric equilibria (and hence, we drop the subscript i). A solution
to the adjoint equation is λt = c e−r t n−1

2n−1 , and by using the transversality condition to determine the constant c, it follows
that c = β

n
e

r n T
2n−1 . Therefore, each agent’s effort function satisfies the desired expression, and the state of the project at

the deadline is equal to qT = ∫ T

0 nat dt = β

r
2n−1

n
(1 − e− r n T

2n−1 ). Finally, it is straightforward to verify that the maximized
Hamiltonian in concave is q, which implies that this solution does indeed constitute a MPE. Q.E.D.

Proof of Result 6. The manager’s optimal project duration T ∗ follows by taking the first-order condition of W (0 ; T ) with
respect to T , and noting that the second-order condition is satisfied. The project size at t = T ∗ follows by substituting T ∗

into the expression for qT derived in Proposition 6. By substituting T ∗ and qT ∗ into W (0 ; T ), it follows that

W (0 ; T ∗) = (1 − β)β

r

(
2n − 1

3n − 1

) 3n−1
n

,

and it is straightforward to verify that W (0 ; T ∗) ≥ W (0 ; Q A, Q A) = (1−β)β
r

2n−1
2n

( 1
2
)

2n−1
n for all n, with strict inequality

holding for all n ≥ 2. Q.E.D.

Proof of Result 7. Taking the first-order condition in (9) with respect to ai yields that agent i finds it optimal to exert
effort u if �′

i (q ; Q) ≥ λ, whereas he exerts no effort otherwise. By substituting this into (9), assuming symmetry and
solving the resulting ODE yields the desired discounted payoff function. Differentiating this with respect to q yields that
�′

i (q ; Q) ≥ λ if and only if q ≥ Q + nu
r

ln( λn2u
rβQ+λnu

) = ψ , and by noting that q0 = 0 and �′
i (q ; Q) increases in q, it

follows that each agent always exerts the maximal effort u if and only if ψ ≤ 0. Q.E.D.

Proof of Example 1. Suppose that one agent (say, i = 1) exerts the maximal effort u at every moment, whereas the other
agents (i.e., i = 2, . . . , n) never exert any effort. Then it follows from (9) that

�1(q ; Q) = −λu

r
+
(
βQ

n
+ λu

r

)
e

r(q−Q)
u , and

for all i = 2, . . . , n, �i (q ; Q) = βQ

n
e

r(q−Q)
u .
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Noting that �′
i (q ; Q) increases in q, for this set of strategies to constitute a MPE, it must be the case that �′

1(0 ; Q) ≥
λ > �′

i (Q ; Q) for all i = 2, . . . , n, or equivalently, that

r

u

(
βQ

n
+ λu

r

)
e− r Q

u ≥ λ >
r

u

βQ

n
.

It is straightforward to verify that these inequalities are satisfied when r = 0.1, u = 10, β = 0.5, Q = 10, n = 4, and
λ = 0.1. Q.E.D.

Proof of Result 8. Let us guess that there exists a symmetric MPE in which for given Q, �′(q ; Q) = λ for all q.
Integrating with respect to q and solving for the boundary condition yields that�(q ; Q) = ( β

n
− λ)Q + λq. Substituting

this into (9) and solving for each agent’s effort level yields that a(q ; Q) = r [( βn −λ)Q+λq]

(n−1)λ
. By noting that the second-order

condition is satisfied, it follows that this strategy does indeed constitute a MPE. Q.E.D.
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