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Abstract
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monetary preferences. We assess the empirical relevance of this result using data from
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1 Introduction

Decades of research in agency theory and organizational economics theory has been occupied
with the positive question of why organizations look the way they do: Why do incentive
contracts have the features they do? Why are organizations dysfunctional in the ways they
are? As positive theories, they have been successful at delivering deep insights into funda-
mental trade-offs. But as prescriptive theories, they have been largely underwhelming. The
optimal organization in a given environment often depends in complicated and subtle ways
on unobservable characteristics of that environment. To bridge the gap between the positive
and prescriptive requires figuring out how to make the relevant aspects of the environment
observable to the relevant decision makers and to characterize optimal arrangements given
the information they plausibly might be able to access.

We aim to take a small and manageable step towards a prescriptive contract theory.
Instead of asking “what is the best incentive contract?”, we ask a narrower question, but
one that is relevant in any ongoing organization: “what is the best way to improve upon
an existing contract?” Answering the former question requires omniscience. Answering the
latter requires data. The goal of this paper is to described the kind of data that are useful
for answering this question, show how to use it, and provide an empirical proof of concept.

To introduce our main ideas and to illustrate two problems that our approach has to
overcome, let us consider an example. Suppose you are a manager at a company that sells
kitchen knife sets. You hire teenagers each summer to sell them door to door, and you pay
them a simple linear piece rate for doing so. You have access to the sales data for your
workforce, and you are interested in knowing whether, and how, you should change the piece
rate. Suppose your gross profit margin for selling a knife set is m, the piece rate is α, and
your worker’s average sales are a. Your profits are therefore Π = (m− α) a. If you were to
marginally increase your piece rate, the effect on your profits would be

dΠ

dα
= (m− α)

da

dα
− a, (1)

where the first term represents the effect on your net revenues, and the second term represents
the effect on your wage bill.

You know your gross profit margin, the current piece rate, and the current average sales,
but you do not know your workers’ behavioral response, da/dα, to an increase in the piece
rate. Given observational data alone, constructing this behavioral response requires knowing
a lot about the problem your workers face: How much do they like money? What are their
effort costs? If they work a little harder, what is going to happen to the distribution of their
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sales? These are questions you likely do not know the answer to, but importantly, they are
questions you do not need to know the answer to if you are willing to run an experiment.

Suppose you decide to run an A/B test on your workforce. You randomly divide it into a
treatment and a control group, you increase the piece rate by a small amount in the treatment
group, and you have access to the data on the distribution of output for both the status quo
contract and the test contract. You can use this data to estimate da/dα, and you can use
the above expression to determine whether you should marginally increase or decrease your
piece rate.

This example teaches us two lessons. The first is that observational data is not informative
enough to provide guidance for decision making in this context, just as a snapshot of price-
quantity data is not informative enough for telling a manager how to change prices. The
second lesson is that instead of having to know the details of the worker’s unobservable
characteristics, it suffices to estimate a simple behavioral response, a lesson that echoes that
of the growing literature on sufficient statistics for welfare analysis.

The example also sidesteps two important issues that we will have to address. First, it
restricts attention to linear contracts. This is a severe restriction, as the existing contract
may not be linear, and improving upon the existing contract may well entail putting in
place a nonlinear contract with features such as bonuses or accelerators with increasing piece
rates. Second, it asks a local question—how best to marginally improve upon the status quo
contract—and for practical applications, we are interested in non-local changes. We address
each of these issues in turn.

To do so, we consider the canonical principal-agent framework under moral hazard, as in
Holmström (1979). Facing a contract w, which is a mapping from output to payments re-
ceived, an agent chooses an unobservable and privately costly effort level a, which determines
the distribution over outputs f ( ·| a), which we normalize so that the mean output is a. As
in Holmström (1979), we assume that the agent’s first-order conditions characterize his effort
choice, and we assume that his preferences over money and his effort costs are additively
separable and given by v (w)− c (a).

Given any status quo contract w, let us consider the effects of an arbitrary nonlinear
change dw to the contract. This change directly affects the expected wage bill by E [dw],
and leads the agent to change his effort level by some amount, da. The total effect on the
principal’s profits is therefore

dΠ =

(
m−

∫
wfa

)
da− E [dw] ,

which is the appropriate generalization of (1) to nonlinear contracts. The main challenge to
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figuring out the best marginal change to the status quo contract is that the agent’s response da
depends on dw, and there is a continuum of ways in which the contract can be changed. Our
main lemma shows that, given knowledge of the agent’s marginal preferences for money, the
information provided by a single A/B test of incentive contracts (which allows the principal
to estimate da for a particular dw) is a sufficient statistic for the estimation of the agent’s
behavioral response to any marginal change to the contract.

The argument for this sufficient statistic result reveals how to use the data generated by
an A/B test, and so it is worth detailing informally here. Given a contract, an agent will
exert effort up to the point where his marginal costs of exerting additional effort equal his
marginal incentives, which are given by I = cov (v(w), fa/f). That is, he will work harder
if doing so increases the likelihood of well-compensated outputs and decreases the likelihood
of poorly compensated outputs. This condition implies that the agent’s behavioral response
to a change in his marginal incentives, da/dI, are independent of the change in the contract
that led to the change in marginal incentives. His behavioral response to a marginal change
in the contract, d̃w, therefore can be expressed as d̃a = (da/dI) d̃I. Predicting how he will
respond to a change in the contract therefore requires information about how the agent will
respond to a change in his marginal incentives, and it requires information about how a
change in the contract affects the agent’s marginal incentives. A single A/B test, together
with knowledge of the agent’s marginal preferences for money, provides all the information
needed to estimate these quantities.

To make use of the information from an A/B test, consider a test contract that increases
the agent’s mean output. Comparing the output distributions under the status quo contract
and the test contract allows us to estimate which output levels become more and less likely,
identifying fa. Given an estimate of fa and knowledge of the agent’s marginal preferences
for money, we can infer how the test contract changed the agent’s marginal incentives, dI,
which allows us to identify the agent’s behavioral response to a change in marginal incentives,
da/dI. It also provides the information required to estimate how any other marginal change
to the status quo contract affects the agent’s marginal incentives, d̃I, and therefore the
agent’s effort choice d̃a = da

dI
d̃I. A single A/B test, therefore, provides all the relevant

information for predicting how the principal’s expected profits will change in response to any
marginal change to the status quo contract and therefore serves as a sufficient statistic for
the question of how best to marginally improve upon the status quo contract. This sufficient-
statistic result is our main conceptual contribution. We then show that the problem of how
best to locally improve upon a status quo contract is equivalent to figuring out the direction
of steepest ascent in the principal’s objective, which can be determined by solving a tractable
constrained maximization problem.
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The second important issue that the above example sidestepped was the question of how
to predict the effects of non-local changes to the status quo contract. We show that if the
agent’s effort costs are isoelastic, and fa is independent of the agent’s effort choice, then the
information provided by a single A/B test provides all the information needed to predict how
the principal’s profits will respond to any change to the status quo contract. In doing so,
we provide an algorithm for figuring out how to use this information to optimally revise the
status quo contract.

We then explore the quantitative implications of our results using data from DellaVi-
gna and Pope’s (2017) large-scale experimental study of how a variety of different incentive
schemes motivate subjects in a real-effort task. We use the data from six treatments in which
subjects were motivated solely by financial incentives. In all of these treatments, subjects
received a fixed wage plus a contingent payment that depended on their performance in the
experiment. In four of these treatments, they received a constant piece rate for every unit of
performance, and the piece rate varied across the different treatments. In the remaining two
treatments, subjects received a bonus if their performance exceeded a target, and the bonus
varied between these treatments. We use these data to carry out two exercises.

Our first empirical exercise asks the question of whether subjects’ mean output varies in
the way our model predicts with our measure of the subjects’ marginal incentives. We take
the data from two treatments and suppose that in one of the treatments, the subjects were
on the status quo contract, and in the other, they were on the test contract. This gives us
fifteen status quo-test-contract pairs. For each such pair, we predict the mean output in each
of the remaining four treatments and compare it to the actual average output and compute
the average absolute percentage error (APE) across these four treatments. The average
APE across all fifteen contract pairs is 2.1%, and it is close to 1% for the vast majority of
them.1 Data from piece-rate contracts perform well in predicting average output in the bonus
contracts and vice versa.

Our second empirical exercise explores the performance of the predicted optimal contract
generated by our algorithm. We use data from all treatments to estimate the parameters of
the production environment using maximum likelihood estimation. Given those parameters,
we compute, as a benchmark, the optimal contract and the principal’s corresponding expected
profit. Then, we use data from each pair of contracts, supposing that one is the status
quo contract and the other is the test contract, and we use our algorithm to construct the
optimally revised contract.

Averaging across the different status quo-test-contract pairs, our optimally revised con-
tract is estimated to achieve 97.25% of the benchmark maximum profits and 48% of the

1As a benchmark, the average pairwise output differences across the six treatments is around 6.5%.
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potential gains over the status quo contract. In contrast, the contract that induces the agent
to choose the same effort level as the status quo contract at minimum cost achieves only
95.24% of the benchmark maximum profits and less than 10% of the potential gains over the
status quo contract. These results suggest that in our sample, improving upon the status
quo contract is better achieved by inducing the agent to change their effort level than by just
figuring out how to get them to choose the same effort at a lower cost.

Although our main results apply only to the canonical principal-agent framework of Holm-
ström (1979), we show how our main insights extend to several enrichments of the framework.
For example, we show how they extend to settings where the firm employs heterogeneous
agents, to settings where the agent’s effort is multidimensional, and to settings where he is
motivated by factors beyond direct financial incentives; e.g., the threat of firing, prestige,
and so on. Finally, we establish a sufficient-statistic result for settings where the principal
is constrained to choosing from a parametric class of contracts, such as linear contracts,
single-bonus contracts, or option contracts.

This paper straddles the theoretical and the empirical literatures on principal-agent prob-
lems under moral hazard. The canonical model (e.g., Mirrlees (1976) and Holmström (1979))
considers a principal who wants to motivate an agent to choose a particular unobservable ac-
tion hard. To do so, she offers a contract, which specifies a schedule of payments conditional
on the realization of a signal that is correlated with the agent’s action. Extensions of this
model include settings in which the signal is not contractible, the agent’s action is multidi-
mensional and some tasks are easier to measure than others, or the principal and the agent
interact repeatedly—see Bolton and Dewatripont (2005) for a comprehensive treatment. The
goal of the theoretical literature, typically, is to characterize an optimal contract under the
premise that the principal has perfect knowledge of all relevant parameters of the model.2

The empirical literature can be classified into (at least) two groups. The first examines
the degree to which workers respond to incentives as predicted by the theory. For example,
Lazear (2000) finds that the switch from hourly wages to piece-rate pay at Safelite Auto Glass
led to a 44% increase in productivity, approximately half of which is attributable to workers
exerting more effort, while the other half is due to selection, that is, more productive workers
joining the firm and less productive ones leaving. In similar vein, Shearer (2004) finds a
20% increase in productivity when tree planters in British Columbia were paid according to
piece rates, compared to hourly wages. See also Paarsch and Shearer (1999) for a related
study.3 Others study work on more complex tasks that are amenable to the multitasking

2One exception is Chade and Swinkels (2019), who studies a principal-agent problem under both moral
hazard and adverse selection, where the principal knows all but one payoff-relevant parameters of the model.

3Oettinger (2001) and Fehr and Goette (2007) finds a positive effect of commissions on sales for stadium
vendors and on productivity for bicycle messengers in Zürich, respectively. Bandiera et al. (2007) and
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problem; see, for example, Holmström and Milgrom (1991). For example, Gibbs et al. (2017)
exploits a field experiment at an Indian technology firm to estimate the impact of financial
incentives for submitting ideas for process improvements. They find that incentives led
employees to submit fewer but higher-quality ideas.4 On a broader scale, Prendergast (2014)
uses estimates for the elasticity of income to marginal tax rates (see, for example, Brewer,
Saez and Shephard (2010)) to establish an upper bound for the responsiveness of worker
productivity to incentives. The second category investigates the extent to which observed
contracts are consistent with theoretical models. See, for example, Prendergast (1999) and
Chiappori and Salanié (2003).

A limitation of the theoretical literature is that it often assumes omniscience on the
principal’s behalf (i.e., she is assumed to know the agent’s preferences, the actions at his
disposal and the associated cost, and how these actions map into the contractible signal). On
the other hand, the empirical literature usually focuses on estimating how different incentive
vehicles affect performance. The goal of this paper is to bridge these literatures by exploring
how an organization can combine lessons from the theoretical agency literature together with
estimates such as those described above to improve its incentive system.

Our work is conceptually related to papers that use a variational approach to characterize
optimal mechanisms in terms of the relevant elasticities. For example, the Lerner index relates
the optimal monopoly price to the price elasticity of demand (see, for example, Tirole (1988)),
and Wilson (1993) characterizes an optimal quantity-discount price-menu. Saez (2001) and
a growing literature derives optimal income tax formulas using elasticities of earnings with
respect to tax rates.

2 Model

Environment.— We consider the contractual relationship between a principal and one or
more homogeneous agents. The principal offers an output-contingent contract w(x) to each
agent, who, after observing the contract, chooses effort a ≥ 0, which is not contractible. His
output, x ∈ R, is realized according to some cumulative distribution function, F (x|a), with
probability density function (hereafter pdf) f(x|a), which we assume is twice differentiable in
a. Finally, payoffs are realized and the game ends. Without loss of generality, we normalize

Bandiera et al. (2009) measure the effect of introducing performance pay for managers on their subordinates’
productivity. Guiteras and Jack (2018) studies the incentive effect on productivity and selection for labor
workers in rural Malawi. Hill (2019) estimates the effect of an increase in the minimum wage on productivity
for strawberry pickers in California.

4Similarly, Balbuzanov et al. (2017) finds that the introduction of incentives led journalists in Kenya to
submit fewer, higher quality articles. Hong et al. (2018) estimates the impact of piece rates at a Chinese
manufacturing firm on the quantity and quality of output.
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a such that a = E[x|a], so that the agent’s effort can be interpreted as his expected output.

Actions.— The principal chooses a contract w : R→ R, which is an upper-semicontinuous
(hereafter, u.s.c) mapping from output to transfers made to the agent. We assume that, to
ensure participation, the principal restricts attention to contracts that leave each agent with
at least as much expected utility as some (generic) status quo contract, wA.5 After observing
the contract, each agent chooses an effort a ≥ 0.

Information.— Each agent knows all parameters that are pertinent to his decisions, that
is, he knows his utility function v(ω), his cost function c(a), and the pdf f(·|a) for every
feasible effort level. The principal knows her marginal profit m > 0, and the distribution
of output corresponding to two contracts, wA and wB. Put differently, letting a(w) denote
the effort induced by contract w, the principal knows the pdf’s f(·|a(wA)) and f(·|a(wB)).
Additionally, we assume that the principal knows fa(·|a(wA)) := df(·|a(wA))/da. In practice,
assuming that a(wA) and a(wB) are sufficiently close but distinct from each other, she would
approximate

fa(x|a(wA)) ' f(x|a(wB))− f(x|a(wA))

a(wB)− a(wA)
. (2)

For now, we abstain from specifying the principal’s knowledge about other parameters. When
convenient, we shall suppress the argument x in functions, and abbreviate â = a(wA), f̂ ≡
f(·|a(wA)) and f̂a ≡ fa(·|a(wA)).

Preferences.— If an agent is paid ω and exerts effort a, then he obtains utility v(ω)−c(a),
where v : R → R and c : R+ → R+ are twice continuously differentiable, and satisfy
v′′ < 0 < v′ and c′, c′′ > 0. The agent chooses his effort to maximize his expected utility. If
an agent generates output x and is paid w(x), then the principal’s profit is mx− w(x).

The principal’s objective, which we formalize in Section 3.2, is loosely speaking, to find a
contract that increases her profit (relative to wA and wB) by as much as possible given the
information at her disposal. The spirit of the exercise we consider is that the principal has
data corresponding to two different contracts (e.g., an A/B test), and is searching for a new
contract that increases her profit by as much as possible. By analyzing this problem, one
goal is to determine what (additional) information the principal must have in order to make
that determination.

5When firms revise their performance pay plans, workers are often suspicious about the principal’s inten-
tions, which can lead to opposition (e.g., in the form of unionization) and attrition; see, for example, Hall et
al. (2000). Restricting attention to contracts that make workers at least as well off as a status quo contract
may ease those tensions.
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2.1 Benchmark

In this section, we present a benchmark, due to Holmström (1979). The canonical principal-
agent model under moral hazard is formulated as a two-stage optimization problem (Gross-
man and Hart, 1983). In the first-stage, the principal solves for every feasible effort level, the
following constrained maximization program:

Π(a) := max
w(·)

∫
[mx− w(x)] f(x|a)dx (PH)

s.t.
∫
v(w(x))f(x|a)dx− c(a) ≥ u

a ∈ arg max
ã≥0

{∫
v(w(x))f(x|ã)dx− c(ã)

}
where u is the agent’s outside option, which in our setting, corresponds to the agent’s expected
payoff from the status quo contract, wA. The first constraint mandates that the contract
gives the agent no less than u utils in expectation, while the second ensures that effort a is
incentive compatible. To solve this program, one typically replaces the incentive constraint
with the corresponding first-order condition,

∫
v(w(x))fa(x|a)dx = c′(a)—see Jewitt (1988)

for conditions such that doing so is without loss of generality, and the principal’s choice
variable, w(·), with V (·) ≡ v(w(·)), thus transforming (PH) into a convex program. In the
second stage, the principal solves Π∗ = maxa {Π(a)} to find the profit-maximizing effort and
the corresponding optimal contract. The second-stage problem is notoriously ill-behaved,
and concave in a only under stringent conditions (Jewitt, Kadan, and Swinkels, 2008), so it
is typically solved using line search.

To solve this problem, the principal must know (or make assumptions for) all payoff-
relevant parameters; i.e., the agent’s utility function v(·) and his cost function c(·), his
outside option u, as well as the pdf f(·|a) and its derivative fa(·|a) for every feasible level
of effort. In many settings, it is unrealistic to expect that the principal has this information
at her disposal. Motivated by this observation, we pursue a more modest objective: Given
knowledge about the distribution of output corresponding to two contracts, how can the
principal best improve upon them, and what additional information is necessary to do so.

3 Optimal Perturbations

In this section, we propose a methodology for finding an optimal perturbation of the status
quo contract, wA. To do so, the principal must predict the agent’s response to any change
in the offered incentives. Our key observation is that if (but only if) the principal knows or
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equivalently, takes a stance on the agent’s marginal utility function, v′(·), then she can use
the data contained in her A/B test to make the needed inference. Knowledge of v′, together
with an envelope condition also enables the principal to restrict attention to perturbations
that make the agent at least as well of as wA.

3.1 Agent’s Problem

We assume that the first-order approach is valid, so that given some contract w, the agent’s
optimal choice of effort, a(w) satisfies the first-order condition∫

v(w(x))fa(x|a(w))dx = c′(a(w)) . (IC)

For any u.s.c function t : R → R, consider the family of contracts {wA + θt}θ≥0. We shall
call t a perturbation, and wA + θt a perturbation of the status quo contract, wA. Define
the Gateaux derivative Da(wA, t) := da(wA + θt)/dθ|θ=0, which exists, because wA and t

are u.s.c, and f(·|a) and c(·) are twice-differentiable with respect to a by assumption. This
derivative should be interpreted as the marginal change in the agent’s effort when wA is
perturbed in the direction of wA + t.6 Using (IC), it can be written in terms of primitives as

Da(wA, t) =

∫
tv′(wA)f̂adx

c′′(â)−
∫
v(wA(x))faa(x|â)dx

. (3)

Throughout the remainder of this section, we make the following assumption.

Assumption 1. The principal knows Da(wA, wB − wA).

In practice, the principal would approximate Da(wA, wB − wA) ' a(wB) − â, which is a
valid approximation as long as ‖wB − wA‖ is sufficiently close to zero.

3.2 Principal’s Problem

The principal’s expected profit from offering contract w,

π(w) := ma(w)−
∫
w(x)f(x|a(w))dx , (4)

where a(w) solves (IC).
6Notice that wA+θt = (1−θ)wA+θ(wA+t) and because the derivative is evaluated at θ = 0, it represents

the marginal change of effort in a neighborhood around wA.
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Suppose that wA is replaced by wA + θt, for some u.s.c t : R→ R. For θ sufficiently close
to zero, we have

π(wA + θt) ' π(wA) + θDπ(wA, t) , (5)

where the Gateaux derivative Dπ(wA, t) := dπ(wA + θt)/dθ|θ=0 represents the principal’s
marginal benefit from perturbing the contract wA in the direction of wA + t. It exists for the
same reasons as Da(wA, t), and using (4), it can be rewritten as

Dπ(wA, t) =

(
m−

∫
wAf̂adx

)
Da(wA, t)−

∫
tf̂dx . (6)

This expression has an analogous interpretation as (1): Perturbing the status quo contract
has two effects on the principal’s profit. First, it induces a change in the agent’s effort, as
captured by the first term, and holding effort fixed, it affects profits mechanically, as captured
by the second term.

Observe that for fixed θ, maximizing (5) is equivalent to maximizing (6). Thus, we take
the principal’s objective to be to choose a perturbation, t, that maximizes (6) subject to the
constraint that the perturbed contract, wA + θt, gives the agent at least as much expected
utility as wA. The set of feasible perturbations must satisfy

d

dθ

∫
v (wA + θt) f(x|a(wA + θt))dx− c(a(wA + θt))

∣∣∣∣
θ=0

≥ 0⇔
∫
tv′(wA)f̂dx ≥ 0 . (7)

That is, for any feasible perturbation t, each agent’s expected utility must be non-decreasing
as wA is perturbed in the direction of wA+t, and we used (IC) to obtain the second expression.

To find solve this problem, the principal must be able to evaluate Da(wA, t) for every
(feasible) perturbation t. Observe that t appears only in the numerator of (3), so if the
principal knows the agent’s marginal utility function, v′(·), then she can use her (assumed)
knowledge Da(wA, wB−wA) to compute the denominator of (3), which in turn, will allow her
to compute Da(wA, t) for any other t. Moreover, knowledge of v′ also allows the principal to
inspect whether t satisfies (7), and hence solve the problem at hand. The following remark
summarizes.

Remark 1. For any u.s.c t : R→ R, we have

Da(wA, t) =
Da(wA, wB − wA)∫

(wB − wA) v′(wA)f̂adx

∫
tv′(wA)f̂adx . (8)

If principal knows the agent’s marginal utility function, v′, and Assumption 1 holds, then she
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can evaluate (6) and (7) for every t.

Faced with wA, the agent chooses his effort by equating its marginal benefit, M(wA) :=∫
v(wA(x))f̂adx, to its marginal cost. When wA is perturbed in the direction of wA + t,

this marginal benefit changes at rate DM(wA, t) =
∫
tv′(wA)f̂adx, which in turn, induces

the agent to change his effort. Locally, this relationship is linear; that is, Da(wA, t) =

C ×DM(wA, t) for some constant C. Given v′ and f̂a, the principal can predict DM(wA, t)

for any t, pin down C = Da(wA, wB − wA)/DM(wA, wB − wA), and compute Da(wA, t) for
any t.

Insofar, we have shown that to evaluate (6) and (7), it suffices that the principal knows
v′. Is it also necessary? Strictly speaking, no: If, for example, the principal knows c′(â) and
assumes that v′ belongs to a one-parameter family of functions, then she can use (IC) to solve
for the unknown parameter. Alternatively, if she knows Da(wA, wC −wA) for some contract
wC , then she can use (8) to solve for the unknown parameter in v′. Notice, however, that in
both cases, the object of interest is v′.

Observe that both (6) and (7) are linear in t. Thus, the principal can increase her objective
without bound by making t(x) arbitrarily large for some x, and arbitrarily small for all other
x. When faced with this issue in optimization problems, a common approach is to normalize
the length of t by imposing the constraint ‖t‖ ≤ 1, where ‖·‖ is the Euclidean norm (see,
for example, Section 9.4 in Boyd and Vandenberghe (2004)).7 Imposing this constraint, and
using (8), the principal’s problem can be expressed as

max
t u.s.c

µ

∫
tv′(wA)f̂adx−

∫
tf̂dx (Plocal)

s.t.
∫
tv′(wA)f̂dx ≥ 0∫
t2dx ≤ 1

where

µ =

(
m−

∫
wAf̂adx

)
Da(wA, wB − wA)∫

(wB − wA)v′(wA)f̂adx
. (9)

8 This is a convex optimization program, and it can be solved using standard techniques.
7Alternatively, one can take ‖·‖ to be any Lp norm with p ≥ 2. We focus on the case p = 2 for expositional

convenience.
8Notice that the denominator of (3) is the negative of the second derivative of the agent’s expected utility

with respect to a. Therefore, one can inspect whether the first-order approach is locally valid at â, which is
necessary for the validity of this analysis, by verifying that Da(wA, wB − wA) and

∫
(wB − wA)v′(wA)f̂adx

have the same sign. In that case, µ has the same sign as m−
∫
wAf̂adx.
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The following proposition characterizes the uniquely optimal perturbation, t∗.

Proposition 1. The status quo contract, wA, is locally optimal if and only if

λ+ µ
f̂a

f̂
=

1

v′(wA)
(10)

for all x, where λ =
∫
f̂/v′(wA)dx and µ is given in (9).

Otherwise, the optimal perturbation

t∗ = K ×
[
λv′(wA)f̂ + µv′(wA)f̂a − f̂

]
, (11)

where µ is given in (9), and K > 0 and λ ≥ 0 are given in the proof of Proposition 1, in
Appendix B.

The first part of this result, equation (10), is familiar from the canonical principal-agent
model under moral hazard (Holmström, 1979), also presented in Section 2.1, and serves here
the role of a consistency check.9 Turning to (11), marginally increasing payments at x has
three effects on the principal’s profit: First, it relaxes the constraint (7), which has implicit
value λv′(wA)f̂ . Second, it affects the agent’s effort, which has implicit value µv′(wA)f̂a, and
third, holding effort constant, it reduces the principal’s profit at rate f̂ . Thus, the optimal
perturbation increases payments at every output in proportion to the principal’s net marginal
benefit of doing so.

Proposition 1 is useful in that it sheds light on the informational requirements for finding
an optimal perturbation. In particular, to solve (Plocal), the principal must know (or estimate,
or take a stance on) the following parameters: (i) the distribution of output corresponding
to some effort, f̂ ≡ f(·|a(wA)), (ii) the rate at which this distribution changes due to a
marginal change in effort, f̂a ≡ fa(·|a(wA)), (iii) the Gateaux derivative Da(wA, wB−wA) for
two contracts such that a(wA) 6= a(wB), and (iv) the agent’s marginal utility function, v′(·).
Moreover, it can be used to infer what assumptions can rationalize the status quo contract
being optimal. For instance, consider a principal who does not know Da(wA, wB−wA) or f̂a.10

9Note however, that the dual multipliers λ and µ in Proposition 1 are given in closed form and they contain
information not contained in the standard solutions. In particular, it is well-known that for any fixed effort
level, the profit-maximizing contract satisfies (10) for some dual multipliers λ and µ. These multipliers are
chosen such that there exists no perturbation that increases the principal’s profit, while holding the agent’s
utility and his optimal effort choice constant (Jewitt, Kadan, and Swinkels, 2008). In contrast, the multipliers
characterized in Proposition 1 also consider perturbations in which the agent changes his effort level.

10In practice, to estimate these quantities, a firm must experiment by offering a contract other than wA to
its workers. Lincoln Electric, for example, is infamous for its use of piece rates with factory workers, and the
fact that it does not experiment with its performance pay plans (in fear of ratchet effects) (Hall et al., 2000).
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Nevertheless, she can use (10) to reverse-engineer what effort responses or assumptions about
the agent’s marginal utility function are consistent with wA being optimal, and evaluate the
extent to which they are reasonable.

While Proposition 1 can be used to draw qualitative insights about profitable perturba-
tions, its value in quantifying the optimal perturbation is limited. Given t∗, the principal
should replace the status quo contract with w(·) ≡ wA(·)+θt∗(·) for some step size θ > 0 close
to zero. This is important, as t∗ is an optimal perturbation only for θ sufficiently small—in
computing (3), (5), and (7), we ignored terms of order θ2, and doing so is valid only if θ ' 0.
However, as the projected increase in profits is of order θ, and because practically changing
incentives involves discrete costs, it likely makes sense for the principal to replace wA only
if θ is bounded away from zero. Using the methodology developed in this section (and in
particular, leveraging Remark 1), we turn to this objective in the next section.

4 An Approximate Algorithm

In this section, we develop an algorithm for finding an optimal perturbation of wA without
the restriction that θ is small. Then in Section 5 we test its performance using a dataset from
DellaVigna and Pope (2017). Towards this goal, we make the following two assumptions:

Assumption 2. For all a in some interval that contains â, fa(·|a) ≡ f̂a(·).

This assumption allows the principal to predict the distribution of output corresponding
to effort levels other than â, and it implies that the marginal incentive of effort corresponding
to contract w,

M(w) =

∫
v(w(x))fa(x|a(w))dx =

∫
v(w)f̂a ,

does not depend on a itself.

Assumption 3. The agent’s cost function is of the form c′(a) = c0a
1/ε for some constants

c0 > 0 and ε ≥ 0; i.e., the agent faces isoelastic costs of effort.

The implication of this assumption is that for any contract w, effort a(w), and marginal
incentives, M(w), are related by

log a(w) = β + ε logM(w) , (12)

where β and ε are parameters to be determined. Using a(wi) and the estimated M(wi)
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(together with Assumption 2) for i ∈ {A,B}, we have

ε =
log (a(wA)/a(wB))

log
(∫

v(wA)f̂a/
∫
v(wB)f̂a

) and β = log a(wA)− ε log

∫
v(wA)f̂a . (13)

Notice that c0 = e−β/ε. This assumption enables the principal to predict the agent’s effort
corresponding to any contract w.11

Suppose that Assumptions 2 and 3 hold. Then the principal’s problem is expressed by
the following constrained maximization program:

max
w(·),∆a

m(â+ ∆a)−
∫
w(f̂ + ∆af̂a)dx (P̂ )

s.t.
∫
v(w)f̂adx =

(
â+ ∆a

â

)1/ε ∫
v(wA)f̂adx (ÎC)∫

v(w)(f̂ + ∆af̂a)dx ≥
∫
v(wA)f̂dx+

εe−β/ε

1 + ε

[
(â+ ∆a)

1+ε
ε − â

1+ε
ε

]
(ÎR)

where ε is given in (13), and ∆a represents the change in effort relative to â that the principal
aims to induce with the contract w. Let us explain (P̂ ), (ÎC), and (ÎR).

Suppose that the principal wants to choose a contract w that motivates the agent to
choose effort a(w) = â + ∆a. Then using (12) and (13), and re-arranging terms, it follows
that w must satisfy (ÎC).

Recall that by assumption, the principal restricts attention to contracts that give the
agent no less expected utility than the status quo contract. This constraint can be written
as ∫

v(w(x))f(x|â+ ∆a)dx− c(â+ ∆a) ≥
∫
v(wA)f̂ − c(â) ,

or equivalently, as (ÎR), using that f(·|â + ∆a) = f̂ + ∆af̂a by Assumption 2, and c(â +

∆a)− c(â) is equal to the right-hand side of (ÎR) by Assumption 3.
Finally, the principal’s profit, π(w) = m(â+∆a)−

∫
w(x)f(x|â+∆a)dx can be rewritten

as (P̂ ) using Assumption 2.

This program should be interpreted as an approximation to the optimal contracting prob-
lem given in Section 2.1. It can be solved using the standard two-step approach proposed by
Grossman and Hart (1983): In the first stage, one fixes a ∆a and solves (P̂ ) subject to (ÎC)

11Alternatively, (12) can be replaced by the linear relationship, a(w) = β0 + β1M(w), where β0 and β1 are
estimated using {a(wi),M(wi)} for i ∈ {A,B}. This model is equivalent to assuming that the agent’s cost
function has constant unit elasticity. If ‖w − wA‖ ' 0, then it is also equivalent to (12). Otherwise however,
the two models typically generate drastically different predictions for the agent’s effort. We evaluate both
models in Section 5.1, and find that (12) outperforms the linear model.
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and (ÎR) to find the profit-maximizing contract that is projected to lead to effort â + ∆a.
Let us denote the objective of this program by Π̂(â+ ∆a). In the second stage, one solves

Π̂∗ = max
∆a

Π̂(â+ ∆a) . (14)

We make three remarks: First, the informational requirements for solving this problem are the
same as those for finding an optimal perturbation, described in Remark 1: the principal must
know the pdf corresponding to a(wA), f̂ ≡ f(·|a(wA)) and its derivative f̂a ≡ fa(·|a(wA)),
and the agent’s marginal utility function, v′.12 Second, if ∆a = 0, the solution to the first-
stage problem is equivalent to solving (PH); i.e., Π̂(â) = Π(â). If ∆a = a(wB) − â, then
given Assumptions 2-3, we have Π̂(a(wB)) = Π(a(wB)).

Finally, notice that the first-stage problem can be transformed into a convex program
by changing the principal’s choice variable, w(·), to V (·) ≡ v(w(·)) only if f̂ + ∆af̂a ≥
0 for all x. This, therefore, imposes a constraint on the set of ∆a’s that the principal
can consider. Alternatively, one can linearize the constraints by using the approximation
v(w(x)) ' v(wA(x)) + (w(x) − wA(x))v′(wA(x)). Then it is convenient to use the transfor-
mation t ≡ w − wA, so that (P̂ ) can be expressed as

max
t(·),∆a

m(â+ ∆a)−
∫

(wA + t)(f̂ + ∆af̂a)dx (P̂ lin)

s.t.
∫
tv′(wA)f̂adx =

[(
â+ ∆a

â

)1/ε

− 1

]∫
v(wA)f̂adx∫

tv′(wA)
(
f̂ + ∆af̂a

)
dx ≥ εe−β/ε

1 + ε

[
(â+ ∆a)

1+ε
ε − â

1+ε
ε − 1 + ε

ε
â1/ε∆a

]
,

where we used
∫
v(wA)f̂a = c′(â) = e−β/εâ1/ε to obtain the expression for the second con-

straint. In this case, observe that the first-stage problem is linear in t, and so the objective
can be increased without bound by making t(x) arbitrarily large for some x’s, and arbitrarily
small otherwise. To ensure that a solution exists, one typically normalizes the length of t
by imposing the constraint ‖t‖ ≤ C for some constraint C. We denote the objective of the
first-stage problem corresponding to (P̂ lin) given some ∆a by Π̂lin(â+ ∆a), and the solution
of the corresponding second-stage problem, Π̂∗lin = max∆a Π̂lin(â+ ∆a).

12Notice that v (instead of v′) appears in (ÎC) and (ÎR). Nevertheless, because
∫
f̂a = 0 and

∫
vf̂ appears

on both sides of (ÎR), it follows that it suffices that the principal knows (or takes a stance on) v′.
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Contract (in ¢) Mean # of keystrokes Std. Errors N

w1(x) = 100 1521 31.23 540
w2(x) = 100 + 0.001x 1883 28.61 538
w3(x) = 100 + 0.01x 2029 27.47 558
w4(x) = 100 + 0.04x 2132 26.42 566
w5(x) = 100 + 0.10x 2175 24.28 538
w6(x) = 100 + 40 I{x≥2000} 2136 24.66 545
w7(x) = 100 + 80 I{x≥2000} 2188 22.99 532

Table 1: Monetary incentive treatments in the experiment of DellaVigna and Pope (2017)

5 Empirical Validation

The goal of this section is to test the predictions of our model and to illustrate how one
can apply the techniques developed in the previous section. To do so, we use a dataset from
DellaVigna and Pope (2017), who present the findings from a real-effort experiment conducted
on Amazon MTurk, in which subjects were tasked with alternating ’a’ and ’b’ keystrokes
during a ten-minute interval. Table 2 summarizes seven of the incentive treatments that the
authors implemented and are relevant for our purposes, where x denotes the number of ’a-b’
keystrokes (during the 10-minute interval) and N denotes the sample size corresponding to
each treatment. As an example, the third contract, w3(x) = 100 + 0.01x, specifies that a
subject receives $1 irrespective of his performance, plus 0.01¢ for each ’a-b’ keystroke. Each
subject was randomly assigned to a single treatment, and undertook the button-pressing
task once. During the course of a treatment, subjects could see the treatment characteristics
(i.e., the incentives offered), a count-down clock, as well as the number of keystrokes and the
accumulated earnings at every moment on their computer screen.13

We use this dataset to perform the following two exercises. A necessary condition for
finding the optimal perturbation is that the model can accurately predict how a change
in the contract affects effort, and consequently the principal’s profit. Exploiting the fact
that this dataset contains seven different treatments, in Section 5.1, we pick any pair of
treatments, consider them to be the principal’s A/B test, and use them to predict effort and
the principal’s profit for each of the other treatments (assuming a fictitious value for the
principal’s marginal profit per ’a-b’ keystroke, m). We also evaluate the accuracy of each
prediction as a function of our assumptions about the subjects’ (common) marginal utility
function.

13To be specific, each subject was awarded a point for every 100 ’a-b’ keystrokes, and the payment was
a function of the points accumulated. For example, under the third contract, a subject would receive $1
irrespective of his or her performance, plus a cent for every point accumulated. To simplify the exposition,
we take the performance measure to be the number of ’a-b’ keystrokes instead of the number of points
accumulated over the 10-minute interval.
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In Section 5.2, again taking any pair of treatments to constitute the principal’s A/B test,
we solve (P̂ ) and (P̂ lin) to find an optimal perturbation of wA. Then, using all seven treat-
ments, we estimate the parameters of the model, which we use, first, to find the optimal
contract by solving (PH), second, to counterfactually estimate the profitability of the opti-
mal perturbations corresponding to each A/B test, and third, to compare it to the optimal
contract.

We now discuss two aspects of this setting that differ from our model, and can adversely
affect its performance. The first is that in our model, the agent chooses effort once and
for all, whereas in the experiment, subjects can adjust the intensity of their effort over time.
Second, while it is likely that subjects differ in their ability to perform in this task, or in their
willingness to do so, or in other dimensions, because each subject participated once in a single
treatment, we cannot classify them into different types absent additional assumptions. As
such, we treat subjects as being homogeneous, and use our baseline model instead of the one
presented in Appendix A.1. To be specific, we assume that at the outset of the experiment,
each subject observes the offered contract, and chooses “effort” a. Then the number of ’a-b’
keystrokes that he or she accomplishes during the 10-minute interval, x, is drawn from some
probability distribution with expected value a. Thus, the effort chosen by each subject faced
with a given treatment is equal to the respective mean number of ’a-b’ keystrokes.

Let us begin by selecting an arbitrary pair of the treatments listed in Table 1, label them
wA and wB, and suppose that the principal has output data for these two treatments only.
(There are 21 such pairs.) Setting a(wA) and a(wB) equal to the respective mean number of
’a-b’ keystrokes, we can estimate (e.g., using the kernels) the corresponding pdf’s of output,
f̂ = f(·|a(wA)) and f(·|a(wB)), and approximate

f̂a(x) ' f(x|a(wB))− f(x|a(wA))

a(wB)− a(wA)

for every x. Next, we assume a particular marginal utility function v′. Let us assume that
each subject’s utility function exhibits constant relative risk aversion (CRRA) with (common)
coefficient ρ ∈ [0, 1), and so v′(ω) = ω−ρ. Finally, we assume a particular value for m, the
principal’s marginal profit per ’a-b’ keystroke.

5.1 Predicting Effort and Profits

The goal of this section is to evaluate the ability of the models presented in Section 4 to
predict each subject’s effort and the principal’s profit. For any available A/B test, we will
use our model to predict effort and profits for each of the other treatments, and then compare
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our predictions to the actual values.

Using Assumption 2, for any contract w, the corresponding marginal benefit of effort
M(w) =

∫
w1−ρf̂adx / (1− ρ).14 Then it follows from Assumption 3 and (12) that

a(w) =

[∫
w1−ρf̂adx∫
w1−ρf̂adx

]ε
a(wA) , where ε =

log (a(wA)/a(wB))

log
(∫

w1−ρ
A f̂adx/

∫
w1−ρ
B f̂adx

) (15)

and β = log (a(wA))− ε log
(∫

w1−ρ
A f̂adx/(1− ρ)

)
.15 In addition, to the “logarithmic model”

described above, we also present the predictions from the “linear model” described in footnote
15. In this case, for any contract w, the model predicts

a(w) = a(wA) + [a(wB)− a(wA)]

∫
(w1−ρ − w1−ρ

A )f̂adx∫
(w1−ρ

B − w1−ρ
A )f̂adx

. (16)

We denote the effort prediction corresponding to wi using (15) and (16) by âlin(wi) and
âlog(wi), respectively. (For expositional convenience, we suppress the dependence of âlin and
âlog on wA and wB.)

Figure 1 illustrates the predicted effort using the two models described above and contrasts
it to the actual effort, assuming that the principal’s A/B test comprises w2 and w4, and the
coefficient of RRA ρ = 0.3. The logarithmic model predicts the effort corresponding to all
treatments with good accuracy— the absolute percentage error (APE), defined as

APE(âk) :=
|âk(wi)− a(wi)|

a(wi)
,

where k ∈ {lin, log} and a(wi) denotes the actual effort, is less than 2.5% in all cases. (Except
for w1 for which it cannot make any prediction absent additional assumptions, as discussed
in footnote 15.) On the other hand, the linear model predicts only the effort corresponding
to w3, w6, and w7 with reasonable accuracy—the APE is less than 6% for these cases, but
the model grossly overestimates the effort corresponding to w1 and w5. By zooming in the
data used to generate this figure, we see that these two treatments involve the largest change

14Per our assumption in this section, v(ω) = v0+ω1−ρ/(1−ρ) for some constant v0. The desired expression
follows from the fact that

∫
fa(x|a)dx = 0 for any a.

15The first treatment in Table 2, w1, yields M(w1) = 0 (since
∫
f(x|a)dx = 0 for any a), so that ε, and

hence (15) is not defined. This observation, together with the fact that a(w1) = 1521 > 0, suggests that
subjects may also be motivated by factors other than direct monetary compensation, such as the prospect of
a good M-Turk rating, or they might be intrinsically motivated. A simple way to incorporate such indirect
incentives is to assume that each agent’s marginal benefit of effort is M(w) + I, where I is a parameter to
be estimated and is meant to capture such indirect incentives. See Appendix A.5 for details. In light of this
issue, we do not consider the logarithmic model for pairs that include w1.
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Figure 1: Predicted versus actual effort assuming that the principal has data for treatments
2 and 4, and the coefficient of RRA ρ = 0.3.

in the marginal incentives relative to the A/B test. Unsurprisingly, the linear model cannot
make accurate predictions far out-of-sample.

Let us define for each available A/B test, the mean and the worst-case APE as

Mean APE(âk) =
1

4

∑
i/∈{A,B}

∣∣∣∣ âk(wi)− a(wi)

a(wi)

∣∣∣∣ and Max. APE(âk) = max
i/∈{A,B}

∣∣∣∣ âk(wi)− a(wi)

a(wi)

∣∣∣∣ ,
respectively. Figure 3 presents the mean and the worst-case APE for every available A/B
test, which the principal uses to predict the effort corresponding to the other treatments.
(There are 15 A/B tests available. For the reason described above, we have ignored A/B
tests that involve w1 from this figure.) For example, treatment pair 3-6 refers to the case
in which the principal’s A/B test comprises w3 and w6. The average APE across all pairs
is 2.08% and 6.06% for the logarithmic and the linear model, respectively. The logarithmic
model outperforms the linear model in every case. This is not surprising, considering that we
are predicting out of sample, and the estimated ε < 0.05 (from (15)) in all A/B tests, while
the linear model implicitly assumes unit elasticity. In fact, in all but three cases, the mean
and worst-case APE for the logarithmic model is less than 2% and 3.4%, respectively. For

20



2-3 2-4 2-5 2-6 2-7 3-4 3-5 3-6 3-7 4-5 4-6 4-7 5-6 5-7 6-7

0

2

4

6

8

10

12

14

16

Figure 2: Effort prediction accuracy (coefficient of RRA ρ = 0.3).

the purpose of comparing these values to the dispersion in the data, the average (median)
absolute error across all predictions is 125.3 (93.2) and 42.3 (31.1) for the linear and the
logarithmic model, respectively, while the standard deviation of effort is 115.2.

Recall that the principal must take a stance on the agent’s marginal utility function, and
in this section, we have assumed that subjects’ utility exhibits constant RRA. To evaluate how
each model’s prediction accuracy depends on this assumption, first, we varied the coefficient
of RRA, ρ, from zero to one. Next, we considered the assumption that subjects have quadratic
utility, and so v′(ω) = A−2Bω, where we normalized A = 103 and we varied B ∈ [10−3, 1].16

Figure 3 illustrates the average APE (across the 15 treatment pairs). Observe that in both
cases, the logarithmic model outperforms the linear model. Interestingly, the prediction
accuracy of the former is essentially invariant to whether the principal assumes that the
agent has CRRA or quadratic utility, as well as to the assumed coefficient of risk aversion.

Throughout this paper, we take the A/B test that the principal has at her disposal as
exogenous, and seek how to best exploit it. In practice of course, what test to conduct is itself
a choice, and the principal may want to choose one that enables her to make more accurate
predictions. While analyzing this problem is beyond the scope of this paper, a deeper look

16We chose this range for B to ensure that the marginal utility v′(wi(x)) > 0 for all i and x.
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Figure 3: Effort prediction accuracy as a function of the principal’s assumption about the
agent’s marginal utility function v′

at the data behind Figure 2 can shed light on what distinguishes A/B tests that enable more
accurate predictions. Let us focus on the nonlinear model, and observe that the A/B tests
comprising {w4, w6}, {w5, w6}, and {w5, w7} generate poorer predictions compared to the
other tests. To see why, let us consider the test comprising {w4, w6}. Observe from Table
1 that w4 and w6 lead to nearly identical effort, and from Figure 5 that the corresponding
pdf’s are markedly different. This is because under w6, subjects receive a lump-sum bonus
if they exceed 2,000 keystrokes, and so they reduce the intensity of their efforts once they
exceed that threshold. Thus, in computing f̂a using (2), the denominator is close to zero,
while the numerator is not. The same problem arises when the A/B test comprises {w5, w6}
or {w5, w7}. This problem does not arise when the A/B test comprises any of the other
affine contracts and w6 or w7, because the difference between the corresponding efforts, and
hence the denominator of (2), is sufficiently far from zero. This problem also does not arise
when the A/B test comprises {w6, w7}. Because subjects slow down once they exceed 2,000
keystrokes under both contracts, the numerator of (2) is not too far away from zero.

Next, we turn to the principal’s profit. Using either the linear model, or the logarithmic
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model to predict effort, and using (P̂ ), we obtain the following prediction for the principal’s
profit if the status quo contract, wA, is replaced by w:

π̂k(w) = mâk(w)−
∫
w
(
f̂ + [âk(wj)− a(wA)] f̂a

)
dx , (17)

where k ∈ {lin, log}. Figure 4 illustrates the mean and the worst-case APE for every pair
of available A/B tests. A similar pattern to Figure 2 emerges: The logarithmic model
substantially outperforms the linear model, and its mean APE is below 2.1% except for the
A/B tests comprising treatments {4, 6}, {5, 6}, and {5, 7}. For the purpose of comparing
these values to the dispersion in the data, the average (median) absolute error across all
predictions is 13.2 (10.7) and 5.4 (3.7) for the linear and the logarithmic model, respectively,
while the standard deviation of profit is 68.8. We conclude this section with the following
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Figure 4: Profit prediction accuracy (m = 0.2 and coefficient of RRA ρ = 0.3).

remark: If one pursues to predict the profit corresponding to an affine contract (e.g., for
wj where j ∈ {1, .., 5}), then the prediction accuracy is equal to the prediction accuracy for
effort. For example, if wj has slope α and we evaluate prediction accuracy by the APE, then

APE(π̂k) =

∣∣∣∣ π̂k(wj)− π(wj)

π(wj)

∣∣∣∣ =

∣∣∣∣(m− α)âk(wj)− (m− α)a(wj)

(m− α)a(wj)

∣∣∣∣ = APE(âk) ,

23



where π(wj) denotes the “actual” profit, computed using the experimental data. However, to
predict the profit associated with a nonlinear contract such as w6 and w7, one must predict
not only the corresponding change in effort, but also the change in the entire distribution of
output. Thus, it is not surprising that the prediction accuracy for profits is not as good as
the prediction accuracy for effort (when evaluated by the worst case APE), as can be seen in
Figures 3 and 4.

5.2 Counterfactuals

The goal of this section is to illustrate an application of the methodology described in Section
4, and evaluate its performance. To do so, we first posit a model for the agent’s problem,
and we use the data corresponding to all seven treatments given in Table 1 to estimate its
parameters; i.e., the agent’s utility function, his cost function, and the family of pdf’s that
map effort into output.

Next, we pick an arbitrary pair of treatments, denoted wA and wB, to constitute our A/B
test. To obtain a benchmark, we use the estimated model to find the optimal contract that
gives the agent at least as much expected utility as wA; i.e., we solve the problem posed
in Section 2.1, where u is set equal to the agent’s expected utility when he is offered wA.
Then we characterize the optimally perturbed contract by first solving (P̂ ) for all ∆a, and
then solving (14) to find the profit-maximizing ∆a. Finally, we use the estimated model to
compute the corresponding projected profit, and we compare it to that of the benchmark
and the status quo contract, wA.

Step 1: Estimate the Model

We begin by estimating f(x|a) and fa(x|a) for all x and a in the relevant range. We will
assume that x is a continuous random variable and takes values in [0, 3500]. Letting ai

denote the effort corresponding to treatment i given in Table 1, we use the triweight kernel
to estimate f i(x) for each i ∈ {2, 3, 4, 5, 7} (Hansen, 2009).17 Then, we define for every x,

f ia(x) :=
f i(x)− f i−1(x)

ai − ai−1

.

17Because a4 ' a6, we ignore treatment 6 in this step. Thus, for i = 7, we abuse notation and write ai−1
to imply a5.
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Letting θi := (ai + ai−1)/2 for each i ∈ {2, 3, 4, 5, 7}, we assume that

fa(·|a) ≡ f 2
a (·) if a ≤ θ2 ,

fa(·|a) ≡ a− θi
θi+1 − θi

f i+1
a (·) +

θi+1 − a
θi+1 − θi

f ia(·) if a ∈ [θi, θi+1] , and

fa(·|a) ≡ f 7
a (·) if a ≥ θ7.

Now we define f(·|a1) ≡ f 1(·), and recursively, for all a ∈ (a1, 2200], f(·|a) ≡ f(·|a1) +∫ a
a1
fa(·|s)ds.18 Figure 5 illustrates the empirical cumulative distribution function and f(·|a)

for a ∈ {a2, a3, a4, a6} in the left and the right panel, respectively. Towards estimating the

0 500 1000 1500 2000 2500 3000 3500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

5

6

7

8

9
10

-4

Figure 5: Empirical CDF and estimated pdf (using the triweight kernel) corresponding to
treatments 2, 3, 4 and 6

agent’s model, we assume that he has utility function v(ω) = ω1−ρ/(1− ρ) and cost function
c(a) = c0a

p+1/(p + 1), for some parameters ρ ∈ [0, 1), c0 > 0 and p > 0. To rationalize the
fact that subjects exert strictly positive effort even in the first treatment (where they are
not offered any explicit monetary incentives), we assume that given contract w, the agent

18For a > 2200, the above algorithm yields f(x|a) < 0 for some x, which violates the definition of a pdf;
hence, we restrict attention to a ∈ [a1, 2200].
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ρ c0 p I
0.3 5.797× 10−97 28.286 6.163× 10−7

Table 2: Estimates for the unknown parameters of the agent’s problem

chooses a such that ∫
v(w(x))fa(x|a)dx+ I = c′(a) , (18)

where I is a parameter that captures indirect incentives or intrinsic motivation.19 Table 2
reports the estimates for unknown parameters using nonlinear least squares minimization.
Moreover, we assume that the principal’s marginal profit, m = 0.2.

Step 2(a): Optimal Contract (Benchmark)

We now pick an arbitrary pair of treatments (excluding treatment 1 for the reasons explained
in footnote 15) to form the principal’s A/B test, which we denote by wA and wB, respectively.
We denote the principal’s profit corresponding to wA by ΠA.

To obtain our benchmark, we compute Π(a) for every a ∈ [a1, 2200] by solving (PH), where
we use the estimated parameters given in Table 2 and we set u :=

∫
v(wA)f(·|a(wA))dx −

c(a(wA)). We incorporate two additional constraints into the problem: first, that w(x) ≥ 100

to capture that each subject must be paid a participation fee of 100 cents, and second, that
w(x) is weakly increasing in x. This assumption aims to make the contract more realistic,
as it is unlikely that a manager would implement a non-increasing contract. Then, using
line-search on a, we find the optimal contract that gives the agent at least as much utility as
wA, and the corresponding profit, denoted w∗ and Π∗, respectively.20

Step 2(b): Optimal Perturbation

Given an A/B test, we estimate f(·|a(wi)) for i ∈ {A,B}, denote f̂(·) ≡ f(·|a(wA)), and
define

f̂a(·) ≡
f(·|a(wB))− f(·|a(wA))

a(wB)− a(wA)
.

Next, we must make an assumption about the principal’s stance on the agent’s marginal
utility function. We assume that she (correctly) guesses that v′(ω) = ω−ρ with ρ = 0.3;
i.e., that the agent has isoelastic utility with coefficient of RRA equal to 0.3. (We consider
alternative assumptions at the end of this section.)

19See Appendix A.4 for a formal treatment of this case.
20Note that w∗ and Π∗ depend on the underlying A/B test. For expositional convenience, we suppress this

dependence.
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Given these parameters, we solve (P̂ ) subject to (ÎC), (ÎR), and the two additional
constraints (i.e., that w ≥ 100 and it is monotonically increasing) for every ∆a such that
f̂(x) + ∆af̂a(x) ≥ 0 for all x. Then we find the ∆a that is predicted to lead to the largest
profit, and we denote the corresponding by ŵ∗.21 To evaluate its profit, denoted Π̂∗, we use
the estimated model from Step 1.

We also solve for every ∆a, (P̂ lin) subject to the two additional constraints, and the
constraint that ‖t‖1 ≤ 100. Because that problem is linear, we bound the “length” of a
perturbation to ensure that an optimal solution exists. Then we find the ∆a that is predicted
to lead to the largest profit, and we denote the corresponding contract and profit by ŵ∗lin and
Π̂∗lin, respectively.

Step 3: Evaluation

We now evaluate the performance of our methodology. In particular, we are interested in de-
termining the extent to which the optimally perturbed contract, ŵ∗, increases the principal’s
profits relative to the status quo contract, wA, and how close it can get (profit-wise) to the
optimal contract, w∗.

Figure 6 illustrates, for the case in which the principal’s A/B test comprises treatments 4
(wA) and 7 (wB), the status quo contract, the benchmark contracts, as well as the optimally
perturbed contract, and reports the corresponding profits. The contract ŵicostmin, i ∈ {A,B}
is the solution of (P̂ ) for ∆a ∈ {0, a(wB)−a(wA)}. This corresponds to the profit-maximizing
contract (based on the data available by the A/B test) that gives the agent at least as much
utility as wA and induces him to choose a(wA) and a(wB), respectively. Naturally, the optimal
contract, w∗, generates the largest profit. The optimally perturbed contract, ŵ∗ generates
slightly smaller profit, but still, it achieves over 90% of the profit gap between wA and the
optimal contract. While ŵBcostmin achieves similar profit (and the contract itself is similar to
ŵ∗), perhaps surprisingly, ŵAcostmin performs poorly—worse than wA. This is not uncommon
in this dataset, and it appears to be due to the noise associated with the estimated f̂ and f̂a.

Figure 7 illustrates how much of the profit gap between the status quo contract and the
optimal contract, the optimally perturbed contract captures. To be specific, it illustrates, for
each available A/B test, as a percentage of the profit of the optimal contract, (I) the profit
corresponding to the status quo contract, (II) the profit of the best cost-minimizing contract
as estimated using the data contained in her A/B test, and (III) the profit corresponding
to the optimally perturbed contract that solves (P̂ ) and (P̂ lin), using blue upward-pointing

21We remark that we choose the profit-maximizing ∆a using the data contained in the A/B test (as opposed
to the estimated model from step 1).

27



0 500 1000 1500 2000 2500 3000 3500

100

120

140

160

180

200

220

240

Figure 6: Optimally perturbed contract and benchmarks for the case in which the A/B test
comprises treatments 4 and 7 (m = 0.2 and coefficient of RRA ρ = 0.3)

triangles and red pentagrams, respectively.22

Averaging across all A/B tests, the optimally perturbed contract that solves (P̂ ) and (P̂ lin)
achieves 97.04% and 97.25% of the profits of the corresponding optimal contract, respectively.
Meanwhile, the status quo contract and the best cost-minimizing contract achieves 94.72%

and 95.24% of the profits of the optimal contract, respectively.
Recall that our goal is to design a perturbed contract that increases the principal’s profits

and gives the agent at least as much expected utility as the status quo contract wA. Inspection
of the agent’s expected utility under the optimal perturbation that solves (P̂ ), ŵ∗, yields the
following observations: First, ŵ∗ gives, on average, 0.8% more utils to the agent compared
to the respective wA. Second, in all but four cases, ŵ∗ gives the agent at least 99% of the
utility that wA does. Those worst cases correspond to treatment pairs “3-4”, “4-6”, “4-7”, and
“5-7”, where ŵ∗ gives the agent 98.6%, 96.1%, 97.2%, and 97.8% of the utility that wA does,
respectively.

22As an example, treatment pair “4-7” refers to the case in which wA and wB corresponds to treatment 4
and 7, respectively. Note that pair “4-7” differs from “7-4” in that in the former (latter) case, the principal
is looking for contracts that give the agent at least as much utility as w4 (w7), respectively. Note that for
the treatment pairs “5-6” and “6-5”, our (logarithmic) model is unable to generate a prediction, because it
estimates ε < 0, which is problematic.
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Figure 7: Profits of optimally perturbed contract relative to optimal contract and other
benchmarks for every A/B test (m = 0.2 and coefficient of RRA ρ = 0.3)

The fact that the best cost-minimizing contract only marginally improves upon wA, while
the optimal perturbation brings a more substantial profit increase suggests that in perturbing
the status quo contract, the profit gains lie primarily in finding the profit-maximizing effort
rather than the contract that induces the agent to choose a particular effort level at minimum
cost.

6 Discussion

We consider the problem faced by a firm who wants to optimize the performance pay plan that
she offers to her employee(s). Using a canonical principal-agent framework a-la-Holmström
(1979), we begin with the premise that she has productivity data corresponding to two
different contracts (e.g., an A/B test), and seeks a new contract that increases profits by as
much as possible. We show that this data is a sufficient statistic for the question of how best
to locally improve a status quo incentive contract, given a priori knowledge of the agent’s
monetary preferences. We assess the empirical relevance of this result using a dataset from
DellaVigna and Pope (2017). Finally, we discuss how our framework can be extended to
incorporate additional considerations beyond those in the classic theory.
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A Extensions

In this section, we consider four extensions of the algorithm presented in Section 4. First,
we consider the case in which the principal offers a contract to a group of heterogeneous
agents. Second, we incorporate multitasking by considering multidimensional effort. Next,
we consider the case in which the principal restricts attention to a particular parametric class
of contracts. Finally, we consider the possibility that the agent is also motivated by things
besides direct financial incentives, such as the prospect of a promotion, prestige, the threat
of firing, or is intrinsically motivated.

A.1 Heterogeneous Abilities

So far, we have assumed that the principal contracts with one or more homogeneous workers.
In reality of course, a firm’s workforce comprises heterogeneous workers, and due to practical
considerations, firms often offer the same contract to all workers in a given job. The goal of
this section is to extend the algorithm developed in Section 4 to the case in which the firm
offers a common contract to a group of agents with heterogeneous effort costs.

Let θ ∈ N denote the type of each agent. We assume that agents with different types
have different costs of effort but are otherwise identical. If an type-θ agent, chooses effort a,
then output x ∼ f(·|a) and E[x|a] = a. To be consistent with the analysis in Section 4, we
maintain Assumptions 2-3, thus assuming that fa(·|a) does not depend on a, and the cost of
a type-θ agent choosing effort a is equal to cθ(a) = cθ0a

1/εθ for some constants cθ0 and εθ. Let
aθ(w) denote the effort chosen by a type-θ agent when offered contract w. We assume that
the principal has output data corresponding to two contracts, wA and wB, and she knows
f̂ θ := f(·|aθ(wA)) for every θ, and f̂a := fa(·). Finally, we denote the fraction of type-θ
agents by pθ.

Since f̂a is invariant in a and θ by assumption, the marginal incentive of effort corre-
sponding to any contract, M(w) =

∫
v(w)f̂adx, does not depend on a or θ. Therefore, for

each θ, the principal can estimate the constants cθ0 and εθ by solving the following system of
linear equations:

log aθ(wi) = βθ + εθ logM(wi) for i ∈ {A,B} . (19)

We will argue that under the assumptions described above, the principal’s problem is
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expressed by the following optimization program:

max
w(·),∆a1

∑
θ

pθ
[
m
(
âθ + ∆aθ

)
−
∫
w
(
f̂ θ + ∆aθf̂a

)
dx

]
(P̂ θ)

s.t.
∫
v(w)f̂adx =

(
â1 + ∆a1

â1

)1/εθ ∫
v(wA)f̂adx (ÎC

1
)

∆aθ = âθ

[(
1 +

∆a1

â1

)εθ/ε1
− 1

]
for all θ ≥ 2 (ÎC

θ
)∫

v(w)(f̂ θ + ∆aθf̂a)dx

≥
∫
v(wA)f̂ θdx+

εθe−β
θ/εθ

1 + εθ

[(
âθ + ∆aθ

) 1+εθ

εθ −
(
âθ
) 1+εθ

εθ

]
for all θ (ÎR

θ
)

where âθ := aθ(wA). This is the counterpart of (P̂ ), (ÎC), and (ÎR). Let us explain each
expression. First, for any given target effort level ∆a1, (ÎC

1
) follows from (19) for θ = 1.

BecauseM(w) does not depend on θ, (1 + ∆a1/â1)
1/εθ is equal to a constant (and independent

of θ), so for any ∆a1 and θ ≥ 2, (ÎC
θ
) must be satisfied. Finally, (ÎR

θ
) and (P̂ θ) follow the

same logic as (ÎR) and (P̂ ), after adding the appropriate θ-superscripts.
This program can be solved using the same two-stage approach as (P̂ ): First, for every

∆a1, one finds the contract that motivates each type-θ agent to choose effort âθ + ∆aθ at
maximum profit. Then, one finds the profit-maximizing ∆a1 and the corresponding contract
using line-search.

It is well-known that the design of performance pay may be used to induce selection,
that is, attract more productive workers and induce less productive workers to exit (Lazear,
2000). To do so in our setting, the principal may restrict attention to perturbations that give
at least as much utility as ŵ to only a subset of the more productive types. Formally, this
would imply that (ÎR

θ
) must hold only for the types that the principal wants to attract, and

must be violated for the types that she wants to repel from the firm or dissuade from joining.
A complete analysis of the selection effects associated with performance pay is beyond the
scope of this paper, and is left for future work.

A.2 Multi-dimensional Effort (Incomplete)

In this section, we extend our baseline model to the case in which the agent’s effort is multi-
dimensional. As an example, each agent might be a salesperson, who sells different products.
To be specific, suppose that for each product i ∈ {1, ..., N}, he chooses effort ai, which in turn
generates sales x ∼ f(·|a), where a and x is a (finite) vector of efforts and sales, respectively.
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The cost of choosing a is equal to c(a), and the function c satisfies the usual conditions. A
contract w is an u.s.c mapping from sales x to a monetary transfer to the agent. We continue
to assume that the principal’s performance measure, x, is sufficiently broad so that the agent
cannot distort it (Baker, 2000).

We assume that the principal has output data corresponding to a status quo contract ŵ,
and thus she can estimate the density f̂ := f(·|a(ŵ)), where a(w) denotes the (vector of)
efforts chosen by an agent when offered contract w. Given any perturbation t, which is an
u.s.c mapping from x to a real number, let us define for each i, the Gateaux derivative

Dai(ŵ, t) :=
dai(ŵ + θt)

dθ

∣∣∣∣
θ=0

= lim
θ→0

ai(ŵ + θt)− ai(ŵ)

θ
. (20)

The principal’s expected profit when she offers contract w,

π(w) =
∑
i

miai(w)−
∫
w(x)f(x|a(w))dx ,

where mi is the principal’s marginal profit associated with ai. As in Section 2, her objective
is to perturb the status quo contract in the direction that increases her profit at the fastest
rate; i.e., solve the following maximization program

max
t u.s.c

Dπ(ŵ, t) =
m∑
i=1

(
mi −

∫
ŵf̂idx

)
Dai(ŵ, t)−

∫
tf̂dx (21)

subject to the constraints that t gives the agent at least as much utility as ŵ, and ‖t‖p ≤ 1

for some p ∈ {2, 3, ..}. Note that fi denotes the derivative of f with respect to ai, and we
have dropped the dependence on x and on the agent’s effort for notational simplicity. We
will show that to solve this problem, the principal must be able to estimate Dai(ŵ, t̂k) for at
least K perturbations, t̂1, .., t̂K , where K ≥ d(N + 1)/2e.

Similar to Section 3.1, we assume that the first-order approach is valid, and so given
contract w, the agent’s effort satisfies for each i∫

v (w(x)) fi(x|a(w)) dx = ci(a(w)) , (22)

where ci denotes the derivative of c with respect to its ith argument. Using (22), the constraint
that any perturbation t must give the agent at least as much utility as the status quo contract
can be written as ∫

· · ·
∫
tv′(ŵ)f̂ dx ≥ 0 .
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Using (22), we can compute Dai(ŵ, t) for each i in terms of primitives as[
cii −

∫
v(ŵ)f̂iidx

]
︸ ︷︷ ︸

=:Bii

Dai(ŵ, t) +
∑
j 6=i

[
cij −

∫
v(ŵ)f̂ijdx

]
︸ ︷︷ ︸

=:Bij

Daj(ŵ, t) =

∫
tv′(ŵ)f̂idx︸ ︷︷ ︸

=:Ai

.

This is the counterpart of (3) if the agent’s effort is N -dimensional. To solve (21), it suffices
that the principal can evaluate Dai(ŵ, t) for every i and any perturbation t. To do so, she
must (i) take a stance on the agent’s marginal utility function, v′, which will allow her to
evaluate the vector A for any perturbation t, and (ii) estimate the matrix B. Observe that
the B is symmetric, and so it contains N(N + 1)/2 unknowns. Therefore, to be able to
estimate B, the principal must have output data corresponding to at least K ≥ d(N + 1)/2e
perturbations, which will then enable her to estimate Dai(ŵ, t̂k) for each i and k. In that
case, it is straightforward to verify that (21) can be solved using the same method as (Plocal).

A.3 Parametric Classes of Contracts

Firms sometimes restrict attention to a particular class of contracts. For instance, linear con-
tracts are very common, as are piece-wise linear and single-bonus contracts. Such contracts
may be chosen due to their simplicity, or because of considerations outside our model.23

In this section, we discuss how the methodology in Section 4 can be applied when the
principal only considers contracts which belong to a particular parametric class, denoted by
wα, where α ∈ Rn for some n ∈ N is a vector of parameters to be chosen. For example, if
she restricts attention to linear contracts, then wα(x) = α1 +α2x; if she restricts attention to
piece-wise linear contracts with a guaranteed minimum wage, then wα(x) = α1 +α2(x−α3)+;
if she restricts attention to bonus contracts, then wα(x) = α1 + α2I{x≥α3}.

It is straightforward to verify that the principal’s problem still solves (P̂ ) subject to (ÎC)
and (ÎR), except that w is replaced by wα, and the choice variable w is replaced by the vector
α. However, this problem is generically not convex, so standard optimization techniques are
not guaranteed to achieve the global maximum. When n is sufficiently small, to find the
profit-maximizing α and ∆a, an alternative approach is to use grid-search.

23For example, if gaming is a concern, then linear contracts may be optimal; see for example, Holmström
and Milgrom (1987) and Barron, Georgiadis, and Swinkels (2019). If the worker is expectation-loss averse
or the performance measure is endogenous, then single-bonus contracts may be optimal; see for example,
Herweg et al. (2010) and Georgiadis and Szentes (2019).
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A.4 Other Sources of Incentives

Workers are motivated not only by performance pay, but also by other factors, such as the
prospect of a promotion, the threat of firing, prestige, and so on. To capture such indirect
incentives, suppose that faced with a contract w, the agent chooses his effort a(w) by solving∫

v(w(x))fa(x|a(w))dx+ I = c′(a(w)) ,

where I is a parameter to be estimated, and captures his marginal benefit from exerting effort
due factors other than performance pay. To remain consistent with the analysis in Section
4, we maintain Assumptions 2-3, and additionally assume that I does not depend on effort.
Then, for any contract w, the model predicts that the following relationship is satisfied:

log a(w) = β + ε log [M(w) + I] ,

whereM(w) =
∫
v(w)f̂adx, and the parameters β, ε, I must be estimated from the principal’s

data. Notice that to pin down all three parameters, an A/B test no longer suffices—the
principal needs data corresponding to (at least) three contracts.

Turning to the principal’s problem, it is straightforward to verify that (P̂ ) and (ÎR) are
unchanged when we incorporate indirect incentives. Using the above display equation, it
follows that for given I, if the principal wants to induce some effort â+∆a, then the contract
must satisfy ∫

v(w)f̂adx+ I =

(
â+ ∆a

â

)1/ε [∫
v(wA)f̂adx+ I

]
. (23)

To find the optimally revised contract, given our assumptions, the principal solves (P̂ ) subject
to (ÎR) and (23).

B Proofs

Proof of Proposition 1. Let λ ≥ 0 and ν ≥ 0 denote the dual multipliers associated with the
first and second constraint in (Plocal), respectively. The Lagrangian

L(λ, ν) = max
t

{
ν +

∫ [
t
(
λv′(wA)f̂ + µv′(wA)f̂a − f̂

)
− νt2

]
dx

}
. (24)

For any ν > 0, we can optimize the integrand with respect to t pointwise. Noting that the
integrand is differentiable with respect to t except at t = 0, the corresponding first-order
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condition implies that

tλ,ν =

(
λf̂ + µf̂a

)
v′(wA)− f̂

2ν
,

where t, f̂ , f̂a, and wA are functions of x.24

Next, we pin down the optimal multipliers λ and ν, by turning to the dual problem, and
solving the following minimization program:

min
λ≥0 , ν≥0

L(λ, ν) .

This problem is convex, and using tλ,ν , the corresponding first-order conditions yield

λ∗ = max

0,

∫ (
f̂ − µv′(wA)f̂a

)
v′(wA)f̂dx∫ (

v′(wA)f̂
)2

dx

 (25)

and

ν∗ =
1

2

√∫ [(
λ∗f̂ + µf̂a

)
v′(wA)− f̂

]2

dx . (26)

Thus, the optimal perturbation,

t∗ = tλ∗,ν∗ =

(
λf̂ + µf̂a

)
v′(wA)− f̂√∫ [(

λ∗f̂ + µf̂a

)
v′(wA)− f̂

]2

dx

.

First, let us characterize the solution to (Plocal). Recall that the dual program is convex
(even if the primal is not convex), because it is the pointwise minimum of affine functions.
Therefore, the multipliers λ∗ and ν∗ obtained in (25) and (26) are necessary and sufficient
for an optimum in the dual program.

We will now show that strong duality holds. Towards this goal, let Π∗ denote the optimal
value of the primal program given in (Plocal). Weak duality implies that L(λ∗, ν∗) ≥ Π∗.
Moreover, it is straightforward to verify that t (λ∗, ν∗) is feasible for (Plocal), and λ∗ and ν∗

is strictly positive if and only if the respective (primal) constraint binds. This implies that
the objective of (Plocal) evaluated at t (λ∗, ν∗) is equal to L(λ∗, ν∗), and it must be the case
that L(λ∗, ν∗) ≤ Π∗. Therefore, we conclude that L(λ∗, ν∗) = Π∗, which proves that the
perturbation t (λ∗, ν∗) is optimal for (Plocal).

24If ν = 0, then the integrand of (24) is linear in t, and the first-order condition implies that(
λf̂ + µf̂a

)
v′(wA) = f̂ , and hence L(λ, 0) = 0.

39



To complete the proof, we show that wA is locally optimal if and only if (10) is satisfied
for all x. Clearly, wA is locally optimal if and only if the optimal perturbation t∗ = 0 for
all x, which is true only if for some λ′ ≥ 0, we have

(
λ′f̂ + µf̂a

)
v′(wA) = f̂ for every x.

Suppose this is the case (for some λ′ ≥ 0). Integrating both sides with respect to x and using
that

∫
f̂adx = 0 implies that λ′ =

∫
f̂/v′(wA)dx. It is straightforward to verify that t ≡ 0

solves (24) when λ = λ′, and L(λ′, ν) = ν for every ν. Therefore, minν≥0 L(λ′, ν) = 0, and
weak duality implies that the value of the primal program is bounded by 0 from above. As
t ≡ 0 is feasible for the primal, and the objective equals 0 when t ≡ 0, it follows that t ≡ 0

is indeed the optimal perturbation.
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