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This paper considers a Principal–Agent model with hidden action in which the Prin-
cipal can monitor the Agent by acquiring independent signals conditional on effort at a
constant marginal cost. The Principal aims to implement a target effort level at minimal
cost. The main result of the paper is that the optimal information-acquisition strategy
is a two-threshold policy and, consequently, the equilibrium contract specifies two pos-
sible wages for the Agent. This result provides a rationale for the frequently observed
single-bonus wage contracts.
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1. INTRODUCTION

A GENERAL LESSON FROM CONTRACT THEORY is that in order to induce a worker to
exert effort, he should be rewarded for those output realizations that indicate high ef-
fort. Designing such incentive schemes in practice can be challenging for various reasons.
For example, if a firm has many employees, profit reflects aggregate performance and
it is hard to disentangle an individual worker’s contribution from that of her coworkers.
Moreover, some aspects of performance (e.g., quality of customer service) are difficult to
quantify and measure. In such cases, to monitor their workers, firms must identify vari-
ables that are informative about their effort. Then, by constructing performance measures
based on these variables and offering wage plans contingent on these measures, firms can
reduce agency costs. Indeed, firms devote significant resources to searching for effective
ways to evaluate their employees; see, for example, Mauboussin (2012), WorldatWork
and Consulting LLP (2014), and Buckingham and Goodall (2015). The goal of this paper
is a theoretical investigation of the optimal monitoring structure in the absence of freely
available information about the Agent’s effort.

In our specific setup, there is a single Agent who chooses one of continuum many effort
levels. The Principal can acquire arbitrarily many signals that are independent from one
another conditional on the Agent’s effort at a constant marginal cost. This is modeled
by assuming that the Principal can observe a diffusion process with the drift being the
Agent’s effort at a cost proportional to the time at which the Principal stops observing
this process. A contract specifies a stopping time with respect to this process and a wage
scheme that is contingent on the Principal’s observation. The Agent is risk-averse and has
limited liability. Our goal is to characterize the contract that induces the Agent to choose
a target effort level at minimal cost while respecting limited liability.
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We emphasize that our model is static in the sense that neither party discounts the fu-
ture and the Agent chooses an effort level once and for all. Time is introduced to the
information acquisition process only to provide the Principal with a flexible monitoring
technology. Indeed, the Principal can acquire arbitrarily precise information about the
Agent’s effort irrespective of the signal she already acquired. Our model is meant to cap-
ture a cycle of an employer-worker relationship where the worker is evaluated periodically
and the evaluation phase is short compared to the employment cycle.1

Our main result shows that, under certain conditions on the Agent’s utility function, the
optimal contract features a binary wage scheme; that is, the Agent is paid a base wage, plus
a fixed bonus if his performance is deemed sufficiently good. This provides a new rationale
for single-bonus contracts, which abound in practice (Murphy (1999) and Holmström
(2016)). These single-bonus contracts are particularly common for consulting and banking
jobs; see Aris (2019) and PageExecutive (2019) for recent surveys.2  Prendergast (1999)
noted that perhaps the most common occurrence of binary wage-contracts involves the
threat of being fired; wages vary little with performance but poor performance is punished
by dismissal.

Our result also addresses the criticism that canonical Principal–Agent models generate
optimal contracts that are sensitive to minutiae of the Principal’s exogenously given in-
formation (often assumed to be the output). Indeed, in these models, the Agent’s wage
depends on the likelihood ratios and only very particular distributions yield wage con-
tracts that have any resemblance to the contracts observed in practice (Hart and Holm-
ström (1986)). For example, single-bonus contracts are optimal only if there are exactly
two possible values of the likelihood ratio, which is an unlikely feature of a typical output
distribution. In contrast, we show that the optimal signal structure has this property if it
is endogenously determined by the Principal’s information-acquisition strategy.

Our analysis has two main building blocks. First, through a sequence of steps, we re-
formulate the problem of identifying an optimal contract to a flexible information design
problem. In this new problem, the Principal’s choice set is a set of distributions instead of
a set of stopping rules. Second, we show that finding a solution to the information design
problem is equivalent to characterizing an equilibrium in a zero-sum game played by the
Principal and Nature. At the end, our main result is stated as an equilibrium characteriza-
tion of this game. Below, we explain both of these ideas in detail.

Information Design. The Principal’s problem can be decomposed into two parts: a stop-
ping rule defining the information-acquisition strategy and a wage-function mapping from
the Principal’s observations to the Agent’s monetary compensation. This wage can de-
pend on the whole path of the diffusion. However, we argue that, in a relaxed problem
where only local incentive compatibility is required, the optimal wage depends only on a
one-dimensional variable, henceforth referred to as the score.3 More precisely, we show
that, for any given stopping rule, the cost-minimizing wage depends only on the value and
the time of the Principal’s last observation.4 Since the optimal contract is incentive com-
patible and the drift of the diffusion is the target effort level, the optimal wage can be
expressed as a function of the (driftless) Brownian motion part of the stochastic process.

1An employment cycle often coincides with a calendar year; see, for example, Payscale (2019).
2The variation of the size of the bonus is typically small.
3We later verify that such a first-order approach is valid under some conditions on the Agent’s effort-cost

function.
4The score is the counterpart of the derivative of the log-density function with respect to the Agent’s effort

in the canonical Principal–Agent model of Holmström (1979), which is a sufficient statistic for the optimal
wage scheme.
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We will argue that each stopping rule generates a distribution over the scores with zero
mean. Results from Skorokhod embedding theory imply that the converse is also true: for
any zero-mean distribution over the scores, there is a stopping time that generates this
distribution. Recall that the Principal’s information-acquisition cost is the expectation of
the stopping time. It turns out that the expectation of the stopping time generating a cer-
tain distribution is the variance of the distribution. Therefore, the Principal’s contracting
problem can be rewritten as an information design problem where she chooses a distri-
bution over scores at a cost equal to its variance (instead of a stopping time) and a wage
function defined on scores.

The Zero-Sum Game. For any given distribution over scores F , the standard approach
to solve for the optimal wage is to pointwise minimize the corresponding Lagrangian
function; see, for example, Bolton and Dewatripont (2005). Let λ denote the Lagrange
multiplier corresponding to the incentive constraint and L(λ�F) denote the value of the
Lagrangian function evaluated at the cost-minimizing wage function. We show that strong
duality holds, that is, the Principal’s value for a given F is supλ L(λ�F). Since the Principal
chooses F to minimize her overall cost, her problem can be written as infF supλ L(λ�F).
Instead of solving this inf sup problem, we characterize the solution of the corresponding
sup inf problem. The key to this characterization is to observe that for each dual multiplier
λ, the problem infF L(λ�F) is an unconstrained information design problem.5 Using the
concavification arguments developed in Aumann and Perles (1965) and Kamenica and
Gentzkow (2011), we show that there exists a solution among the binary distributions,
that is, a distribution supported only on two points.

It remains to argue that the inf sup and sup inf problems are equivalent. This follows
from von Neumann’s minimax theorem (see von Neumann (1928)), if the following zero-
sum game has a Nash equilibrium. The game is played by Nature, who chooses a dual
multiplier to maximize the Lagrange function, L, and the Principal, who chooses a proba-
bility distribution over scores to minimize L. We prove that, under some conditions on the
Agent’s utility function, this game indeed has a unique equilibrium.6 The aforementioned
concavification argument implies that the Principal always has a best response that is bi-
nary. We argue that the Principal’s equilibrium distribution also has this feature, that is,
there are only two values of the score that arise with positive probability. Consequently,
the Agent’s wage is also binary, and hence, a single-bonus wage scheme is optimal.

We believe that considering such a zero-sum game might turn out to be useful to an-
alyze a class of problems where the Principal not only designs the information structure
but also determines other policy variables subject to certain constraints. In our model,
this policy variable is the wage, and the constraint guarantees incentive compatibility. In
such environments, it is unclear how one can use the concavification arguments devel-
oped to solve unconstrained problems. However, analyzing the Principal’s best responses
in the zero-sum game is just an unconstrained information design problem. These best
responses might have some robust features, as demonstrated in this paper, which then
will be the features of the equilibrium as well as the solution for the original optimization
problem.

What is the Principal’s stopping rule that induces the optimal binary distribution over
scores? This rule is characterized by two lines with intercepts equal to the two scores and

5This problem is similar to a Bayesian persuasion problem with a binary state space (see Kamenica and
Gentzkow (2011)). If the state space is binary, the space of posteriors is one-dimensional, just like the set of
scores in our model.

6These conditions are satisfied if, for example, the Agent’s utility exhibits constant absolute risk aversion or
constant relative risk aversion with coefficient greater than one-half.
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slopes equal to the target effort level. The Principal stops observing the diffusion when
it hits one of these lines. This rule appears to be similar to an (s� S) policy familiar from
dynamic models of lumpy decisions; see, for example, Clark and Scarf (1960). Indeed,
for a given wage scheme, which is a mapping from scores to monetary compensations,
the Principal’s optimal stopping problem is similar to a standard dynamic optimization
problem where the state variable is the score except that it is subject to the Agent’s in-
centive constraint. Unfortunately, this is an ex ante constraint and depends on the entire
distribution over scores resulting from the implemented stopping rule. Let us explain how
the economic reasoning behind the derivation of the (s� S) policy can be applied despite
this ex ante constraint. One can Lagrangianize the constraint and replace the Principal’s
objective function with the integrand of the corresponding Lagrangian function. For each
Lagrange multiplier, this new problem becomes a standard stochastic dynamic optimiza-
tion problem which can be solved using the Bellman approach. Of course, the solution
to this problem is binary: the Principal continues to acquire information as long as his
value from doing so exceeds the value of his objective function, and stops otherwise. The
problem is that the Lagrange multiplier corresponding to the Agent’s incentive constraint
depends on the solution and, typically, it is different from the one used in the Principal’s
redefined objective function. In other words, solving the optimization problem with a
given multiplier leads to a new multiplier. So, in order to argue that this approach de-
livers a solution to the Principal’s original problem, one must show that this procedure
has a fixed point, that is, the two multipliers coincide. This last result follows from the
equilibrium existence of our zero-sum game.

We establish an additional result, which holds under different conditions on the Agent’s
utility function. We show that there exists a sequence of binary distributions and single-
bonus wage schemes, which approximates the first-best outcome arbitrarily closely. In
other words, the Principal’s payoff in the limit is the same as it would be if effort was
contractible. A contract in the sequence pays the Agent a base wage, plus a large bonus
with a small probability. Intuitively, the condition on the Agent’s utility function is satis-
fied if the Agent is not too risk-averse, and so it is not too expensive to motivate him with
a large wage that he receives with a small probability. As an example, this condition is
satisfied if the Agent’s utility exhibits constant relative risk aversion with coefficient less
than one-half.

How general is our main result regarding single-bonus contracts? As mentioned above,
our assumption that the marginal cost of information is constant enables us to transform
the Principal’s problem to an information design problem where the cost of a distribution
is its variance. Alternatively, we could have started with the information design problem
where the Principal chooses a distribution over scores. We will argue that as long as the
cost of a distribution is a general convex moment of the distribution, our main theorem
holds, that is, the optimal wage scheme is binary.7 From this viewpoint, modeling the Prin-
cipal’s information acquisition with a diffusion can be considered as a micro-foundation
for specifying the cost of a distribution as a moment.

We emphasize that our main result regarding single-bonus contracts is, at least partially,
due to the Principal’s ability to design the monitoring structure in a flexible way. In our
setup, this is achieved by allowing the stopping time to depend on the already observed
path. If, instead, one considers a less flexible, parametric class of monitoring structures,

7Note that the information design problem corresponds to the relaxed incentive-compatibility constraint.
Therefore, to validate the first-order approach, one must make assumptions on the cost of effort as well as on
the probabilities of the optimal scores conditional on each effort.
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the optimal contract is unlikely to feature a binary wage scheme. For example, assume
that the Principal can observe a normal signal around the Agent’s effort at a cost equal
to its variance. This would be the case in our model if the stopping rule was restricted
to be deterministic and independent of the path of the diffusion. Then, no matter what
variance the Principal chooses, the range of her signal will be a continuum and each signal
will determine a different wage.

Related Literature. First and foremost, this paper is related to the literature on
Principal–Agent problems under moral hazard. In the seminal work of Mirrlees (1976)
and Holmström (1979), a Principal contracts with a risk-averse Agent. The Principal has
access to a contractible signal that is informative about the Agent’s effort. The authors
characterize the wage contract that maximizes the Principal’s profit subject to the Agent’s
incentive compatibility and participation constraints. Extensions of this model include
settings in which the performance measure is not contractible, the Agent’s effort is mul-
tidimensional and some tasks are easier to measure than others, or the Principal and the
Agent interact repeatedly; see Holmström (2017) for a comprehensive treatment. Unlike
our paper, this literature typically treats the Principal’s signal as free and exogenous.

Dye (1986) analyzed a Principal–Agent model in which, after observing a (costless)
signal that is informative of the Agent’s effort, the Principal can acquire an additional
costly signal. It was shown that, under certain conditions, the Principal acquires the addi-
tional signal only if the value of the first signal is sufficiently low.8

 Feltham and Xie (1994)
and Datar, Kulp, and Lambert (2001) examined how a set of available performance mea-
sures should be weighed in an optimal linear wage scheme. It was shown, for example,
that it may be optimal to ignore informative signals of effort.9  Hoffmann, Inderst, and
Opp (2019) studied a model in which the Principal observes signals over time that are
informative of the Agent’s one-shot effort, and designs a deferred compensation scheme.
Deferring compensation enables the Principal to obtain more accurate information and
thus reduce agency costs, but because the Agent is less patient than the Principal, doing
so entails a cost. Their model is meant to capture a situation in which information about
the Agent’s effort unfolds over time. In contrast, ours is static and aims to capture a cy-
cle of an employer-worker relationship in which the latter exerts effort during the cycle,
followed by a performance evaluation, the outcome of which determines his pay. Li and
Yang (forthcoming) considered a game in which the Agent’s hidden action generates a
signal, and the Principal chooses a partition of the state-space (at a cost that increases
in the fineness of the partition) and a wage scheme that specifies the Agent’s wage con-
ditional on the cell of the partition in which the signal lies. Their main result shows that
the optimal partition comprises convex cells in the space of likelihood ratios. Khalil and
Lawarrée (1995) considered a model with moral hazard and adverse selection in which
payments to the Agent can be conditioned either on his effort, or on his output. It was
shown that the Principal prefers the former if and only if she is the residual claimant of
output.

8See also Townsend (1979), Baiman and Demski (1980), and Kim and Suh (1992).
9Note that Holmström’s informativeness principle, which asserts that any signal that is informative of the

Agent’s action should be incorporated into the optimal contract, does not apply if the Principal is restricted to
linear contracts. Relatedly, Kim (1995) showed that if, for a given level of effort, one distribution over scores is
a mean-preserving spread of another, then the former implements this level of effort at a lower expected cost
than the latter.
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There are some papers that attempt to rationalize single-bonus contracts.10 For in-
stance, Oyer (2000) analyzed a static Principal–Agent model where the Agent is risk-
neutral and the wage is restricted to be increasing in output. The author showed that the
optimal wage scheme is binary if the score is a hump-shaped function of output. The rea-
son is that, due to the restriction to monotone wages, the Agent receives the minimum
wage, plus a fixed bonus if the output is larger than the one that maximizes the score.
Palomino and Prat (2003), Levin (2003), and Herweg, Muller, and Weinschenk (2010)
also considered various settings where the Agent has linear preferences for money. As a
consequence, the Principal’s optimal contract solves a linear programming problem, so it
is a corner solution. Then, imposing bounds on the minimum and maximum wages deliv-
ers the optimality of single-bonus contracts. In contrast, we consider a risk-averse Agent
and impose only the limited liability constraint.

Like our paper, Boleslavsky and Kim (2018) also employed information design tech-
niques to solve a model with hidden actions. The authors considered a Bayesian per-
suasion problem (without transfers) where the sender determines the distribution over
states by taking a costly action. Using techniques similar to Doval and Skreta (2018), they
showed that there is an equilibrium where the support of the receiver’s signal is either
binary or trinary. Similarly, we show that, even if the Agent’s utility function violates the
hypothesis of our main theorem, there is an optimal contract which induces either binary
or trinary distribution over scores.11

Finally, the way we model information acquisition is reminiscent of Bolton and Harris
(1999) and Morris and Strack (2017) in that the Principal decides when to stop observing a
diffusion process. In these models, the Principal uses her observations and Bayes’s rule to
learn about the drift of the process. In contrast, owing to the Agent’s incentive constraint,
in equilibrium, the Principal knows the Agent’s effort and hence the drift of the process.
However, she must commit to acquire information to provide the Agent with incentives
to exert the target level of effort.

2. MODEL

There is a Principal (she) and an Agent (he). The Agent exerts effort a ∈ R+ at cost
c(a). The Agent’s choice of effort is unobservable, but it generates a diffusion Xt with
drift a, that is, dXt = adt + dBt , where Bt is a standard Brownian motion with the cor-
responding canonical probability space (Ω�B�P) and B0 = 0.12 The Principal acquires
information about the Agent’s effort by observing this process. Information acquisition
is costly and the Principal’s cost is t if she chooses to observe this process until time t.
The Agent’s payoff is u(w)− c(a), and the Principal’s cost is w + t if she pays the Agent
wage w. The function u is strictly increasing, strictly concave, and limw→∞ u′(w) = 0. The
function c is strictly increasing and strictly convex. Both u and c are twice differentiable.

The Principal can commit to a path-contingent stopping rule and a path-contingent
wage scheme. To be more precise, a contract is a pair (τ�W ), where τ is a stopping time
and W is a mapping from paths to wages. Formally, τ : Ω → R+ is a stopping time of the

10Other papers provide conditions under which linear contracts are optimal; see, for example, Holmström
and Milgrom (1987), Carroll (2015), and Barron, Georgiadis, and Swinkels (2020).

11A related but distinct literature studies information design problems under asymmetric information; see,
for example, Bergemann and Pesendorfer (2007), Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018),
and Brooks and Du (2018).

12In particular, Ω= C([0�∞)).
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filtration generated by Bt , and W : Ω × R+ → R is a measurable function. If the Princi-
pal stops information acquisition at time t and observes the path ωt = {ωi}i≤t , then the
Agent receives wage W (ωt).13 We assume that the Agent has limited liability, that is, the
Principal faces a minimum wage constraint, W ≥w, where w> −∞ and u′(w) <∞.14

The game played by the Principal and the Agent proceeds as follows. First, the Principal
offers a contract. After observing this contract, the Agent chooses an effort level.15 Then
the Principal acquires information and pays the wage according to the offered contract.
The Principal’s objective is to induce the Agent to exert a target level of effort, a∗. Our
goal is to characterize the contract that achieves this objective at the lowest expected cost.
Formally, we analyze the following constrained optimization problem:

inf
τ�W

Ea∗
[
W (ωτ)+ τ

]
(1)

s.t. a∗ ∈ arg max
a

Ea

[
u
(
W (ωτ)

)] − c(a)� (2)

W (ωτ) ≥w� (3)

If a∗ = 0, then the contract (τ�W ) ≡ (0�w) solves this problem, so we assume that a∗ > 0.
If this problem has a solution and its value is finite, then each optimal stopping rule has
finite expectation. In what follows, we restrict attention to stopping rules, τ, such that
Ea∗ [τ]<∞. Our main theorem implies that the value of this problem is indeed finite and
hence, this restriction is made without loss of generality.

3. REFORMULATING THE PRINCIPAL’S PROBLEM

This section accomplishes the following three goals:
First, we consider a relaxed version of the Principal’s problem in which we replace the

incentive constraint with the first-order condition corresponding to the Agent’s optimal
choice of effort. Then we show that the only determinant of the wage, the so-called score,
is the value of the Brownian motion at the stopping time of the Principal. In other words,
if the Principal stops acquiring information at time τ and observes the path ωτ, then she
pays a wage that depends only on ωτ − a∗τ. Note that, since the Agent exerts effort a∗ in
equilibrium, this quantity is just the realization of Bτ(=Xτ − a∗τ).

As will be explained, each stopping rule of the Principal results in a different distribu-
tion of the score with mean zero. Our second objective is to argue that the reverse is also
true: the Principal can induce any zero-mean distribution over the scores by appropri-
ately choosing her stopping rule. In addition, the Principal’s expected cost is the variance
of the distribution. This observation allows us to rewrite the Principal’s problem as a flexi-
ble information design problem, where the Principal can choose a distribution over scores
(instead of determining the stopping rule).

Finally, we analyze the optimal wage scheme for any distribution over scores. In par-
ticular, we consider the Lagrangian corresponding to the Principal’s information design
problem, characterize the optimal wage as a function of the dual multiplier, and show that
strong duality holds.

13Note that ωt is a realization of the path of X until t.
14This assumption rules out the possibility that the Principal can approximate the first-best outcome by

observing the process Xt for an arbitrarily short duration and offering a Mirrlees “shoot the Agent” contract
(Bolton and Dewatripont (2005)).

15All results continue to hold if the contract must also satisfy a participation constraint. We omit it for
simplicity.
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3.1. The Score

Our first objective is to show that, despite the Principal observing the path of the dif-
fusion, the wage of the Agent depends only on the last value of the path. To this end,
first observe that the Principal’s problem can be decomposed into two parts: finding an
optimal stopping rule and determining the wage scheme given the stopping time. In other
words, the optimal wage structure minimizes the Principal’s cost (subject to incentive
compatibility and limited liability) for the optimal stopping rule. In this section, we take
the Principal’s information acquisition as given and describe some properties of the opti-
mal wage.

In order to better explain the derivation of the score in our setting, let us briefly re-
call how this object is derived in standard Principal–Agent models with continuous effort.
Consider a model where the Agent’s effort a generates an observable output distribution
defined by the cumulative distribution function (hereafter CDF) Ga and the correspond-
ing probability distribution function (hereafter pdf) ga. A standard approach in the liter-
ature is to solve the doubly-relaxed problem where the incentive-compatibility constraint
is replaced by the weaker condition,∫

u
(
w(z)

)∂ga(z)

∂a

⌋
a=a∗

dz ≥ c′(a∗);
see, for example, Rogerson (1985). This condition guarantees that the Agent prefers to
exert a∗ to a local downward deviation. The Principal’s Lagrangian with this weaker con-
straint becomes ∫ [

w(z)− λu
(
w(z)

)∂ga(z)/∂a
a=a∗

ga∗(z)

]
dGa∗(z)+ λc′(a∗)�

Note that, in addition to the endogenously determined w(z), the integrand only depends
on (∂ga(z)/∂a
a=a∗)/ga∗(z). Therefore, pointwise maximization of the Lagrangian yields
that the optimal wage only depends on the derivative of the log-density. This quantity is
often referred to as the (Fisher) score.

To see, intuitively, why the score is the value of the Brownian motion at the stopping
time in our setting, assume for simplicity that the Principal observes the diffusion up
to time t, that is, τ ≡ t. If the Agent exerts effort a, then the density corresponding to
the last observation, z, is ga(z) = e−(z−at)2/2t/

√
2πt. Note that ∂ga(z)/∂a = (z − at)ga(z).

So, if the Principal is restricted to making the wage dependent only on the last observa-
tion, the score becomes z − a∗t. Can the Principal benefit from additional observations?
Suppose that the Principal makes the wage dependent on the last observation, as well
as the observation at t/2, x. Then ga(x� z) = [e−(x−at/2)2/t/

√
πt][e−(z−x−at/2)2/t/

√
πt] and

∂ga(x� z)/∂a = (z − at)ga(x� z). Therefore, the score is still z − a∗t. In other words, even
if the Principal could make the wage depend on her observation at t/2 in addition to her
last observation, she chooses not to do so.

In our model, given a stopping time, the Principal’s observation about the Agent’s ef-
fort is not a finite-dimensional object and cannot be described by a pdf. Nevertheless,
Girsanov’s theorem characterizes a Radon–Nikodym derivative of the measure gener-
ated by a∗ over the Principal’s observations with respect to the measure generated by any
other a. This enables us to express the Agent’s deviation payoff for each effort a in terms
of the measure generated by a∗. More precisely, Girsanov’s theorem implies that if the
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Agent exerts effort a, then her payoff is

Ea∗
[
u
(
W (ωτ)

)
e(a−a∗)Bτ− 1

2 (a−a∗)2τ
] − c(a)� (4)

where the expectation is taken according to the measure over Ω generated by a∗. Dif-
ferentiating this expression with respect to a, and evaluating it at a = a∗, we obtain the
following relaxed incentive-compatibility constraint:

Ea∗
[
u
(
W (ωτ)

)
Bτ(ωτ)

] ≥ c′(a∗)� (5)

Using arguments similar to the ones explained in the previous paragraph, we show that
for any stopping rule τ, it is without loss of generality to condition wages only on Bτ, or
equivalently, on the score sτ := Xτ − a∗τ.

LEMMA 1: Fix a stopping rule τ, and consider the relaxed constrained optimization prob-
lem given by (1), (3), and (5). In an optimal contract, the Agent’s wage only depends on
sτ.

PROOF: See the Supplemental Material (Georgiadis and Szentes (2020)). Q.E.D.

In what follows, we characterize the solution to the relaxed problem, where the
incentive-compatibility constraint is replaced by (5). In Section 7, we provide conditions
under which the solution to the original problem coincides with this relaxed one.

3.2. Flexible Information Design

Each stopping rule generates a probability distribution over scores. We aim to rewrite
the Principal’s problem so that her choice set is a class of distributions over scores instead
of the set of stopping rules. To this end, we next characterize the set of distributions which
can be generated by a stopping time.

Let Fτ denote the CDF over scores generated by the stopping time τ. The following
lemma shows that if the stopping time, τ, has finite expectation, then Fτ has zero mean
and finite variance.

LEMMA 2: Let τ be a stopping rule such that Ea∗ [τ]<∞. Then

Fτ ∈F = {
F ∈ 
(R) : EF [s] = 0�EF

[
s2

]
< ∞}

�

PROOF: See the Supplemental Material. Q.E.D.

A question that arises now is which distributions can be generated by some stopping
rule and what is the corresponding cost. This is known as the Skorokhod embedding
problem. The following lemma asserts that the Principal can generate any distribution
over scores in F by choosing an appropriate stopping time. Furthermore, the Principal’s
expected cost is the variance of the distribution. The following lemma is due to Root
(1969) (Theorem 2.1) and Rost (1976) (Theorem 2).

LEMMA 3: For all F ∈F ,
(i) there exists a stopping time τ such that Fτ = F and Ea∗ [τ] = EF [s2], and

(ii) if Fτ′ = F for stopping time τ′, then Ea∗ [τ] ≤ Ea∗ [τ′].
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The previous two lemmas allow us to reformulate the Principal’s problem as an infor-
mation design problem. Formally,

inf
F∈F�W̃

EF

[
W̃ (s)+ s2

]
(Obj)

s.t. EF

[
su

(
W̃ (s)

)] ≥ c′(a∗)� (IC)

W̃ (s) ≥ w for all s ∈R� (LL)

If W̃ was set to be an optimal wage scheme, then finding the optimal F in the previous
problem becomes a pure information design problem. Of course, the optimal distribu-
tion must still satisfy the two constraints, (IC) and (LL). We intend to use standard tech-
niques in information design developed to analyze unconstrained optimization problems.
Therefore, our next goal is to eliminate the constraints by considering the corresponding
Lagrangian function.

3.3. Optimal Wages and Strong Duality

As mentioned above, the Principal’s problem can be decomposed into two parts: finding
an optimal distribution over scores and determining the wage scheme given this distribu-
tion. This section focuses on the second part: for each F , we characterize the wage scheme
that minimizes the Principal’s cost subject to (local) incentive compatibility. Formally, for
all F ∈F , we consider

inf
W̃

EF

[
W̃ (s)+ s2

]
s.t. (IC) and (LL).

(6)

Note that this is a standard Principal–Agent problem as in Holmström (1979), except that
above, we have a limited-liability constraint instead of an individual-rationality constraint,
and F is a probability distribution over scores instead of outputs. Let Π(F) denote the
value of this problem.

The Lagrangian function corresponding to this problem can be written as

L(λ�F) = inf
W̃ (·)≥w

∫ [
W̃ (s)− λsu

(
W̃ (s)

) + s2
]
dF(s)+ λc′(a∗)� (7)

where λ ≥ 0 is the dual multiplier associated with (IC). To solve this problem, note that
the first-order condition corresponding to the pointwise minimization of the integrand
is λsu′(w) = 1. If the solution of this equation, w, is larger than w, then this w is the
optimal wage at s. Otherwise, the optimal wage is w. To summarize, the wage scheme that
minimizes the value of the integral on the right-hand side of (7) is defined by the following
equation:

w(λ� s)=
⎧⎨⎩w if s ≤ s∗(λ)�

u′−1

(
1
λs

)
if s > s∗(λ)�

(8)

where s∗(λ) is the critical score at which the solution of the first-order condition is ex-
actly w, that is, s∗(λ) = 1/[λu′(w)]. The following lemma shows that strong duality always
holds. Moreover, if the incentive constraint, (IC), binds at w(λ� ·) for some λ ≥ 0, then
this wage scheme is uniquely optimal.
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LEMMA 4: For all F ∈F ,
(i) strong duality holds; that is, supλ∈R+ L(λ�F) =Π(F), and

(ii) the problem in (6) has a solution if and only if there exists a unique λ̂ ∈ R+ such that
L(̂λ�F) =Π(F). Furthermore, λ̂ satisfies∫

su
(
w(̂λ� s)

)
dF(s)= c′(a∗)�

where w(̂λ� s) is given in (8). This wage scheme uniquely solves (6).

PROOF: See the Supplemental Material. Q.E.D.

The proof of the uniqueness of the solution to (6) in part (ii) follows the logic of that
of Proposition 1 in Jewitt, Kadan, and Swinkels (2008). The difference is that wages are
specified as a function of output in their setting, whereas in our model, they depend on
the realized score.

Recall that throughout this section, we fixed the distribution over the scores, F , and
characterized the corresponding optimal wage scheme. Of course, the Principal also
chooses this distribution to minimize her cost, that is, she solves infF∈F Π(F). Part (i)
of this lemma enables us to rewrite this problem as

inf
F∈F

sup
λ∈R+

L(λ�F)� (9)

It turns out to be difficult to characterize the F that solves this problem. The reason is that
there is a different λ corresponding to each possible F , and hence, it is hard to identify the
change in supλ∈R+ L(λ�F) due to a change in F . In the next section, we show that solving
the corresponding sup inf problem is simpler, and we investigate the circumstances under
which the two problems are equivalent.

4. THE ZERO-SUM GAME

Our next objective is to define a zero-sum game and show that, if there exists an equi-
librium in this game, then the inf sup problem in (9) is equivalent to

sup
λ∈R+

inf
F∈F

L(λ�F)� (10)

We are able to characterize the solution to this sup inf problem. Indeed, for any λ,
infF∈F L(λ�F) is an information design problem akin to that in Kamenica and Gentzkow
(2011). We show that for any λ, if infF∈F L(λ�F) has a solution, then there is an opti-
mal F that is either a two-point distribution (i.e., its support has two elements), or F is
degenerate, specifying an atom of size 1 at zero.

In what follows, we first formally define the zero-sum game. Then, using arguments
from the theory of zero-sum games, we prove that equilibrium existence implies the
equivalence of (9) and (10). Finally, we explain how two-point distributions arise as best-
responses in this game. This last observation is crucial to our main result according to
which the optimal wage scheme is binary.

The Game.—There are two players, the Principal and Nature. The action space of
the Principal is F , and the action space of Nature is R+. Furthermore, Nature’s payoff
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is L(λ�F). That is, the Principal chooses a probability distribution F ∈ F to minimize
L(λ�F), whereas Nature chooses the dual multiplier λ ∈ R+ to maximize L(λ�F).

The following lemma shows that a Nash equilibrium of this game corresponds to a
solution to both (9) and (10).

LEMMA 5: Suppose that {λ∗�F∗} is a Nash equilibrium in the zero-sum game defined
above. Then

sup
λ≥0

inf
F∈F

L(λ�F) = inf
F∈F

sup
λ≥0

L(λ�F)�

and w(λ∗� ·) and F∗ solve the problem in (Obj).

The equality in the lemma follows from von Neumann’s minimax theorem; see von
Neumann (1928). This theorem also implies that both sides of the equality are L(λ∗�F∗).
To explain the last part of the statement, note that part (ii) of Lemma 4 implies that
w(λ∗� ·) solves (6) with F = F∗ and, since L(λ∗�F∗) = infF∈F supλ≥0 L(λ�F), it follows
that w(λ∗� ·) and F∗ solve (Obj).

PROOF: See the Supplemental Material. Q.E.D.

One may ponder if it is easier to establish the equivalence between (9) and (10) by
applying a minimax theorem such as von Neumann’s or Sion’s. This does not appear to be
the case, because minimax theorems require that at least one of the choice sets satisfies
some notion of compactness (see, e.g., Simons (1995)). In our setting, these choice sets are
R+ and F , violating compactness. Moreover, as will be demonstrated, both the support of
F∗ and λ∗ can be arbitrarily large. Consequently, neither of these objects can be restricted
to be in a compact set.

Two-Point Distribution.—Next, we argue that the Principal’s best response is either a
two-point distribution or the degenerate distribution placing an atom of size 1 at zero.
Furthermore, we argue that the latter case cannot arise in equilibrium. To this end, recall
from (7) that the payoffs can be expressed as an expectation, that is,

L(λ�F) = EF

[
Z(λ� s)

]
� where Z(λ� s) = w(λ� s)− λ

[
su

(
w(λ� s)

) − c′(a∗)] + s2� (11)

and w(λ� s) is defined by (8). Then the problem of finding the Principal’s best response
against λ can be written as

inf
F∈F

EF

[
Z(λ� s)

]
�

The solution to this problem can be characterized as follows by using standard arguments
in information design (see Aumann and Perles (1965), and Kamenica and Gentzkow
(2011)). First, let Zc(λ� ·) denote the convexification of Z(λ� ·) in s; that is,

Zc(λ� s) = inf
s�s∈R�α∈[0�1] s.t. αs+(1−α)s=s

{
αZ(λ� s)+ (1 − α)Z(λ� s)

}
� (12)

Note that for any F ∈F ,

EF

[
Z(λ� s)

] ≥ EF

[
Zc(λ� s)

] ≥Zc(λ�0)�

where the first inequality follows because Z(λ� s) ≥ Zc(λ� s), and the second one follows
from Jensen’s inequality and EF [s] = 0. This inequality implies that Zc(λ�0) is a lower
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FIGURE 1.—Illustration of the Principal’s best response.

bound on the Principal’s payoff. Next, we explain that the Principal can achieve this bound
by considering the following two cases.

If Z(λ�0) > Zc(λ�0), then the point (0�Zc(λ�0)) lies on the line segment defining Zc

on the non-convex region around 0, as illustrated in Figure 1(a).16 The point (0�Zc(λ�0))
is a convex combination of (s�Z(λ� s)) and (s�Z(λ� s)) for some s < 0 < s, that is, there
exists α ∈ (0�1) such that

α
(
s�Z(λ� s)

) + (1 − α)
(
s�Z(λ� s)

) = (
0�Zc(λ�0)

)
� (13)

Consider now the probability distribution, F̂ , defined by the weights in this convex combi-
nation over {s� s}, that is, an atom of size α at s and an atom of size (1 −α) at s. Equation
(13) implies that αs + (1 − α)s = 0, which means that F̂ is feasible for the Principal, that
is, F̂ ∈F . Equation (13) also implies that

αZ(λ� s)+ (1 − α)Z(λ� s) = EF̂

[
Z(λ� s)

] = Zc(λ�0)�

which means that the lower bound, Zc(λ�0), is attained by the distribution F̂ . Therefore,
F̂ is a best response of the Principal.

If Zc(λ�0) = Z(λ�0), then the lower bound can be trivially attained by the degenerate
distribution that places probability only on zero, as illustrated in Figure 1(b). However,
this latter case cannot arise in equilibrium. To see this, suppose that the distribution F
is degenerate and specifies an atom of size 1 at zero. Then, by (8), w(λ�0) = w, and
hence, Nature’s payoff becomes w + λc′(a∗) by (11). Since c′(a∗) > 0, this quantity is
strictly increasing in λ, and therefore, Nature does not have a best response. This, in turn,
implies that the degenerate distribution cannot arise in an equilibrium.

The observation that the Principal has a two-point distribution best response against
Nature’s equilibrium multiplier is the key observation for our main result. Indeed, any

16To be precise, the infimum need not be attained by any distribution. In this case, the Principal achieves
Zc(λ�0) only as a limit of two-point distributions.
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two-point distribution corresponds to an information-acquisition strategy of the Princi-
pal that generates only two possible values of the score. As a consequence, the Agent
receives only two possible wages. Note, however, that the argument in the previous para-
graphs by no means implies that the Principal does not have a best response that is sup-
ported on more than two points. Of course, it is possible that the line connecting the
points (s�Z(λ� s)) and (s�Z(λ� s)) contains other points (s�Z(λ� s)). In such a scenario,
the point (0�Zc(λ�0)) is also a convex combination of (weakly) more than three such
points on the line, and each of these convex combinations defines a best response of the
Principal. We shall provide conditions on the Agent’s utility function under which best
responses supported on more than two points do not exist.

To summarize, in order to show that the Principal’s optimal contract specifies two pos-
sible wages, we need to prove that (i) both the Principal’s and Nature’s best responses are
unique, and (ii) an equilibrium in our zero-sum game exists.

5. THE MAIN THEOREM

Our main theorem provides sufficient conditions on the Agent’s utility function for
the existence of a unique equilibrium in the zero-sum game described in the previous
section. In order to state these conditions, let ρ(z) = u(u′−1(1/z)) for all z. This function
is familiar from the literature on moral hazard problems with continuous effort. Indeed,
one of the sufficient conditions guaranteeing that the first-order approach is valid (i.e.,
that the global incentive constraint can be replaced by a local one) is that the function ρ
is concave (see Jewitt (1988)). This assumption ensures that the Agent’s indirect utility
function is concave in the score. To see this, note that, by (8), the Agent’s indirect utility
from s, u(w(λ� s)), is ρ(λs) if s > s∗(λ) and it is ρ(1/u′(w)) otherwise. Therefore, the
Agent’s indirect utility is concave on [1/u′(w)�∞) if and only if ρ is concave on the same
interval. We make slightly stronger assumptions by requiring the function ρ to be strictly
concave and to satisfy the Inada condition at infinity. Formally, we state the following:

ASSUMPTION 1:
(i) ρ is strictly concave on [1/u′(w)�∞), and
(ii) limz→∞ ρ′(z) = 0.

Finally, we are ready to state the main theorem of the paper.

THEOREM 1: Suppose that the Agent’s utility function, u, satisfies Assumption 1. Then
there exists a unique equilibrium (λ∗�F∗) ∈ R+ ×F in the zero-sum game, and F∗ is a two-
point distribution.

Let us explain the implication of this theorem to the original contracting problem. By
Lemma 5, the equilibrium (λ∗�F∗) defines the solution for the constrained information
design problem in (Obj). That is, the optimal distribution over scores is F∗, and the wage
scheme is w(λ∗� ·). By Lemma 3, this wage scheme and the optimal stopping rule gener-
ating F∗ over the scores solve the Principal’s relaxed problem (1) subject to (3) and (5).
According to this theorem, F∗ is a two-point distribution. Let {s� s} denote its support
such that s < 0 < s. Then the Principal’s optimal information-acquisition strategy can be
defined by the stopping rule in which she observes the diffusion process Xt = at+Bt until
the first time it hits a∗t + s or a∗t + s. Thus, the value of the Brownian motion is either s
or s at the stopping time, and the Principal observes two possible scores. Finally, the Prin-
cipal pays the Agent w if she observes s, and pays him w(λ∗� s) if she observes s. In other
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words, the Agent receives a base wage of w and bonus of w(λ∗� s)−w if the information
gathered is favorable, which is just a single-bonus contract.17 We state this result formally
in the following:

COROLLARY 1: Suppose that u satisfies Assumption 1. Then there is a unique contract,
(τ∗�W ∗), which solves the problem in (1) subject to (3) and (5). The stopping rule τ∗ is
defined by

τ∗ = min
t

{
Xt = a∗t + s or Xt = a∗t + s

}
�

where {s� s} = supp(F∗). The wage scheme W ∗ is defined by

W ∗(ωτ∗) =
{
w if ωτ∗ = a∗τ∗ + s�

w
(
λ∗� s

)
if ωτ∗ = a∗τ∗ + s�

The formal proof of Theorem 1 is presented in Section 5.1. Here, we only provide a
sketch of the proof. Before doing so, we discuss how restrictive Assumption 1 is by exam-
ining whether it is satisfied by familiar parametric classes of utility functions. To this end,
we first observe that part (i) of Assumption 1 is equivalent to [u′]3/u′′ being strictly in-
creasing.18 Similarly, part (ii) of Assumption 1 is equivalent to limw→∞[u′3(w)/u′′(w)] = 0.

Commonly Used Utility Function.—Consider first utility functions exhibiting constant
absolute risk aversion (CARA), that is,

u(w) = −e−αw� (14)

where α(> 0) is the coefficient of absolute risk aversion. In this case, [u′(w)]3/u′′(w) =
−αe−αw, so Assumption 1 is satisfied for all α.

Suppose now that the Agent’s utility function exhibits constant relative risk aversion
(CRRA), that is,

u(w) = w1−γ

1 − γ
� (15)

where γ ∈ (0�1) is the coefficient of relative risk aversion. In this case, [u′(w)]3/u′′(w) =
−[w1−2γ]/γ. Therefore, Assumption 1 is satisfied if and only if γ > 1/2. What happens if
γ < 1/2? Observe that the Principal’s cost is bounded from below by w. In Section 6.2, we
show that the Principal can induce the Agent to exert a∗ at the minimum cost of w. To be
more precise, for any ε > 0, we construct an incentive-compatible single-bonus contract
such that the Principal’s payoff from this contract is less than w + ε.

If the Agent has a logarithmic utility function, u(w) = logw, then [u′(w)]3/u′′(w) =
−1/w, so Assumption 1 is satisfied. More generally, if the Agent’s utility function exhibits
hyperbolic absolute risk aversion (HARA), and so is of the form

u(w) = γ

1 − γ

(
αw

γ
+β

)1−γ

� (HARA)

then Assumption 1 is satisfied if α> 0, γ > 1/2, and β> −αw/γ.

17Note that, in equilibrium, the Agent always exerts the target effort level, a∗. Nevertheless, both his wage
and the Principal’s information acquisition cost are random variables.

18To see this, note that, denoting u′−1(1/z) by f (z), ρ′(z) can be expressed as −[u′(f (z))]3/u′′(f (z)). Since
f is strictly increasing, ρ′ is strictly decreasing if and only if [u′]3/u′′ is strictly increasing.
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Proof-Sketch.—Let us first explain the last statement of the theorem, that is, provided
that an equilibrium exists, the Principal’s equilibrium distribution is a two-point distribu-
tion. Applying the convexification argument described in the previous section, we show
that the Principal’s best response is either a two-point distribution or the degenerate one.
This is the part of the proof where we use Assumption 1. As we will show, a consequence
of this assumption is that the function Z(λ� ·) looks like either the one depicted in Fig-
ure 1(a) or the one in Figure 1(b). More precisely, if λ is large, then the function Z(λ� ·)
is convex-concave-convex, whereas otherwise, this function is convex. This observation
implies that the Principal’s best response is essentially unique, and there are no best-
response distributions of the Principal that are supported on at least three points. Since
the equilibrium distribution cannot be degenerate, this implies that if an equilibrium ex-
ists, then it is a two-point distribution.

Let us now explain the two main steps of the equilibrium-existence result in Theorem 1.
The first step is to characterize some properties of Nature’s best responses. Using stan-
dard arguments from Lagrangian optimization, we show that, unless F is the degenerate
distribution, the best response λ against F is defined by the incentive constraint (IC), that
is, Nature chooses the multiplier so that the incentive constraint binds. The second step
is to show that if λ is small, then the incentive constraint evaluated at the Principal’s best
response is violated. In contrast, if λ is large, then the incentive constraint evaluated at
the Principal’s best response is slack. Then we use the intermediate value theorem to con-
clude that there exists a unique λ∗ at which the incentive constraint at the Principal’s best
response, say F∗, binds. As mentioned above, Nature’s best response is characterized pre-
cisely by this binding incentive constraint. Therefore, λ∗ is also the best response against
F∗.

5.1. Proof of Theorem 1

Towards proving Theorem 1, we establish a series of lemmas, which enable us to con-
struct a unique equilibrium in the zero-sum game described in Section 4.

5.1.1. Nature’s Best Response

First, we show that Nature best-responds to a distribution F by choosing λ so that the
Agent’s incentive constraint (IC) binds, that is,∫

su
(
w(λ� s)

)
dF(s)= c′(a∗)� (16)

Formally, we state the following:

LEMMA 6:
(i) If (16) has a solution, then it is unique and defines Nature’s best response, λF .
(ii) If (16) does not have a solution, then Nature does not have a best response.

Regarding part (ii), we point out that Nature has no best response if her objective
function is strictly increasing in λ, so she can improve on any λ by choosing a larger one.
This is the case, for example, if the Principal’s distribution is degenerate; that is, F(s) =
I{s≥0}. It can be shown that if F is not the degenerate distribution and limw→∞ u(w) = ∞,
then (16) always has a solution.
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PROOF: Recall that if the Principal chooses F , then Nature’s problem is

sup
λ≥0

EF

[
Z(λ� s)

]
� (17)

where Z(λ� s) is defined in (11). Since the wage scheme w(λ� ·) is optimally chosen for λ
(see (8)), the Envelope Condition implies that

∂EF

[
Z(λ� s)

]
∂λ

= −
∫

su
(
w(λ� s)

)
dF(s)+ c′(a∗)� (18)

Note that the first-order condition corresponding to this derivative is just (16).
The second-order condition corresponding to (17) is

∂2
EF

[
Z(λ� s)

]
∂λ2 =

∫ ∞

s∗(λ)
s2

[
u′(w(λ� s)

)]3

u′′(w(λ� s)
) dF(s)≤ 0�

where the inequality follows from u being strictly increasing and strictly concave. Notice
that the inequality is strict whenever F(s∗(λ)) < 1, that is, s > s∗(λ) with positive proba-
bility.

The previous displayed inequality implies that Nature’s objective function, EF [Z(λ� s)],
is concave in λ. Therefore, if (17) has an interior solution, then it is defined by the first-
order condition (16). This completes the proof of part (i).

To see part (ii), note that

lim
λ→0

∂EF

[
Z(λ� s)

]
∂λ

= − lim
λ→0

∫
su

(
w(λ� s)

)
dF(s)+ c′(a∗)

= u(w)

∫
s dF(s)+ c′(a∗) = c′(a∗)�

where the second equality follows from the facts that w(λ� s) is increasing in λ and
limλ→0 w(λ� s) = w for all s and from Lebesgue’s monotone convergence theorem. The
last equality follows from F ∈ F , that is, F has zero expectation. The previous equation
implies that Nature’s objective function, EF [Z(λ� s)], is strictly increasing in λ at zero.
This means that if (16) does not have a solution, Nature’s objective function is strictly
increasing for all λ ≥ 0, and hence, Nature has no best response. Q.E.D.

5.1.2. The Principal’s Best Response

This section is devoted to the characterization of the Principal’s best response. Recall
that for a given λ, the Principal’s problem is infF∈F EF [Z(λ� s)]. As mentioned above,
this is an information design problem, and we solve it by using standard convexification
arguments. Of course, the solution depends on the shape of the function Z(λ� ·). The
next lemma shows that if Assumption 1 is satisfied, then this function is strictly convex
for small values of λ, whereas it is convex-concave-convex for larger values of λ. Then we
show that, in the former case, the Principal’s best response is degenerate, placing all the
probability mass at zero, and in the latter case, the best response is a binary distribution.

In this section, we maintain Assumption 1.

LEMMA 7: There exists a λc > 0 such that
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(i) if λ≤ λc , then Z(λ� s) is strictly convex in s, and
(ii) if λ > λc , then there exists a s̃ > s∗(λ) such that19

Z22(λ� s) =

⎧⎪⎨⎪⎩
> 0 if s < s∗(λ)�
< 0 if s∗(λ) < s < s̃� and
> 0 if s > s̃�

(19)

Let us explain the proof of this lemma and the role Assumption 1 plays in it. From
(11), note that the sum of the first two terms of Z(λ� s), w(λ� s)−λ[su(w(λ� s))− c′(a∗)],
reflects the cost of compensating the Agent (given a realization of s), while the third
term, s2, reflects the cost of information acquisition. Using the Envelope Condition, it is
not hard to show that the sum of the first two terms is concave and the last term is convex
in s. If λ is small, then the last term dominates and Z is convex in s. If λ is large and |s|
is small, the concavity of the sum of the first two terms also implies the concavity of Z
in s. As will be shown, Assumption 1 ensures that as |s| becomes larger, the s2 term will
dominate and Z becomes convex in s.

PROOF: Suppose first that s < s∗(λ). Then Z2(λ� s) = −λu(w)+ 2s, and

Z22(λ� s) = 2 > 0�

yielding the convexity of Z(λ� s) for s ≤ s∗(λ) and, in particular, the first line of (19). If
s ≥ s∗(λ), then Z2(λ� s) = −λu(w(λ� s))+ 2s and

Z22(λ� s) = λ2

[
u′(w(λ� s)

)]3

u′′(w(λ� s)
) + 2� (20)

We argue that Z22(λ� s) is strictly increasing in s. To see this, recall that part (i) of As-
sumption 1 is equivalent to [u′]3/u′′ being strictly increasing. Furthermore, w(λ� s) is also
strictly increasing in s.

Observe that at s = s∗(λ), this second derivative is

Z22(λ� s∗)= λ2

[
u′(w)

]3

u′′(w)
+ 2�

Let us define λc by

λc =
√√√√−2u′′(w)[

u′(w)
]3 �

and note that Z22(λc� s∗(λc)) = 0.
If λ≤ λc , then Z22(λ� s∗(λ)) ≥ 0. Since Z22(λ� s) is increasing in s if s ≥ s∗(λ), the state-

ment of the lemma follows.
If λ > λc , then Z22(λ� s∗(λ)) < 0. As we mentioned before, Z22(λ� s) is strictly increas-

ing in s. Recall that part (ii) of Assumption 1 is equivalent to limw→∞[u′3(w)/u′′(w)] = 0.

19We use Zi(λ� s) and Zii(λ� s) to denote the first and second derivative of Z(λ� s) with respect to its ith
argument, respectively.
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Since w(λ� s) goes to infinity as s goes to infinity, we conclude that Z22(λ� s) is positive if
s is large; see (20). Since Z22(λ� s) is strictly increasing and continuous in s at s > s∗(λ),
there exists a unique s̃ at which Z22(λ� s̃) = 0. Q.E.D.

We will argue that the value of the Principal’s problem, infF∈F EF [Z(λ� s)], is just the
convexified Z(λ� ·) evaluated at s = 0 (see Figure 1). Recall that this convexification,
Zc(λ� ·), is defined by (12). If λ ≤ λc , then, by part (i) of Lemma 7, Z(λ� ·) is convex,
so Zc(λ� s) = Z(λ� s) for all s. If λ > λc , then, by part (ii) of Lemma 7, Z is convex-
concave-convex. The function Zc(λ� ·) is linear on an interval around the concave region
of Z(λ� ·), and otherwise, it coincides with Z(λ� ·), as illustrated in the left panel of Fig-
ure 1. Formally, there exist s(λ) and s(λ)≥ s(λ) such that

Zc(λ� s) =
{
Z(λ� s) if s /∈ [

s(λ)� s(λ)
]
�

Z
(
λ� s(λ)

) + (
s − s(λ)

)
Z2

(
λ� s(λ)

)
if s ∈ [

s(λ)� s(λ)
]
�

(21)

Next, we show that the Principal’s best response is degenerate if either λ ≤ λc or if Z
is not affected by the convexification around zero; that is, 0 /∈ [s(λ)� s(λ)]. Otherwise, the
Principal’s best response is a binary distribution.

LEMMA 8: For any λ(≥ 0), minF∈F EF [Z(λ� s)] = Zc(λ�0). In addition, the Principal’s
best response, Fλ, is unique, and:

(i) If Zc(λ�0)=Z(λ�0), then Fλ(s) = I{s≥0}.
(ii) If Zc(λ�0) < Z(λ�0), then supp(Fλ) = {s(λ)� s(λ)}.

Observe that in part (ii), the Principal’s best response can be explicitly expressed in
terms of its support as follows:

Fλ(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < s(λ)�

s(λ)

s(λ)− s(λ)
if s ∈ [s(λ)� s(λ))�

1 if s ≥ s(λ)�

(22)

This CDF has two jumps, at s(λ) and at s(λ), so only these two points occur with positive
probabilities. The size of each jump is determined by the requirement that Fλ has zero
expectation. Observe that since Zc(λ�0) < Z(λ�0) in this case, it must be that s(λ) < 0 <
s(λ).

PROOF: Fix some λ ≥ 0. By construction, Z(λ� s) ≥ Zc(λ� s), so for all F ∈F , we have
EF [Z(λ� s)] ≥ EF [Zc(λ� s)] ≥ Zc(λ�EF [s]) = Zc(λ�0), where the last inequality follows
from the fact that Zc(λ� ·) is convex and from Jensen’s inequality. Therefore, Zc(λ�0)
poses a lower bound on EF [Z(λ� s)] for any F ∈F .

Part (i) follows trivially by noting that if Zc(λ�0) = Z(λ�0), then EF [Z(λ� s)] =
Zc(λ�0) for F(s) = I{s≥0}. If Zc(λ�0) < Z(λ�0), then it follows from Lemma 7 and the
definition of Zc(λ� ·) that there exist sL� sH and p ∈ (0�1) such that (1 − p)sL + psH = 0
and Zc(λ�0)= (1−p)Z(λ� sL)+pZ(λ� sH)= EFλ[Z(λ� s)], where Fλ is of the form given
in (22) with s(λ) = sH and s(λ) = sL. Thus, we have shown that minF∈F EF [Z(λ� s)] =
Zc(λ�0) and established part (ii). Q.E.D.
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The following lemma shows that s(λ) and s(λ) are continuous in λ, and both s(λ) and
s(λ) converge to s∗(λc) as λ goes to λc . These results will be useful for establishing the
existence of an equilibrium.

LEMMA 9: Assume that λ > λc . Then:
(i) The functions s(λ)� s(λ) are continuous in λ.

(ii) Consider a sequence {λn}n∈N > λc such that limn→∞ λn = λc . Then limn→∞ s(λn) =
limn→∞ s(λn)= s∗(λc).

PROOF: See the Supplemental Material. Q.E.D.

5.1.3. Equilibrium Existence and Uniqueness

This section proves Theorem 1. First, we show that if λ is large enough, then the Princi-
pal best-responds by choosing a distribution, Fλ, such that the Agent’s incentive constraint
is slack at (λ�Fλ). Then we consider the infimum of such λ’s, λ∗, and we show that the
incentive constraint binds at (λ∗�Fλ∗). Therefore, we can use Lemma 6 to conclude that
λ∗ is a best response to Fλ∗ . Since Fλ∗ is a best response to λ∗, the action profile (λ∗�Fλ∗)
is an equilibrium. To prove uniqueness, we show that the incentive constraint cannot bind
at (λ�Fλ) unless λ = λ∗. Then uniqueness follows from Lemma 6.

To this end, note that for any given λ, the constraint (IC) evaluated at the optimal wage
scheme defined by (8) and the Principal’s best-response, Fλ, can be written as∫

su
(
w(λ� s)

)
dFλ(s) ≥ c′(a∗)� (23)

The following lemma shows that (23) is slack if λ is sufficiently large.

LEMMA 10: There exists a Λ> 0 such that the constraint (23) at (λ�Fλ) is slack whenever
λ >Λ.

The proof of this lemma is based on considering binary distributions supported on
{−s� s} for some s ∈ R+. We show that if both λ and s are sufficiently large, then the
Principal’s payoff generated by such a distribution is less than −w. Consequently, the
Principal’s best response to such a λ must also induce a payoff of less than −w. Then
the statement follows from the observation that the Principal’s payoff is bounded by −w
whenever the constraint (23) is not slack.

PROOF: See the Supplemental Material. Q.E.D.

Next, we define a threshold value of λ above which the incentive-compatibility con-
straint is slack at the Principal’s best-response:

λ∗ = inf
{
λ : (23) is slack

}
� (24)

The following lemma shows that (23) binds at λ∗.

LEMMA 11: If Nature chooses λ∗, then the constraint (23) binds at (λ∗�Fλ∗).
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The logic is as follows: Recall that Z(λ� ·) is strictly convex if λ ≤ λc , and so the con-
straint (23) at (λ�Fλ) is violated, whereas it is slack for λ > Λ (see Lemmas 7 and 10).
Moreover, for λ > λc , the left-hand side of (23) is continuous in λ by Lemma 9. We show
that by continuity, the constraint (23) binds at λ∗.

PROOF: See the Supplemental Material. Q.E.D.

Recall from Lemma 8 that whenever Zc(λ�0) < Z(λ�0), the Principal’s best response,
Fλ, is binary and is supported on {s(λ)� s(λ)}. So, we can rewrite (23) as

p(λ)s(λ)u(w)+p(λ)s(λ)u
(
w

(
λ� s(λ)

)) ≥ c′(a∗)� (IC’)

where p(λ) and p(λ) denote the probability that s(λ) and s(λ) are realized, respectively,
according to Fλ. By, (22), p(λ) = s(λ)/(s(λ) − s(λ)) and p(λ) = 1 − p(λ). Again by
Lemma 8, if Zc(λ�0) = Z(λ�0), then Fλ is degenerate and the left-hand side of (23) is
zero. So, by setting p(λ) = p(λ) = 0, (IC’) coincides with (23).

Finally, we are in a position to prove Theorem 1.

PROOF OF THEOREM 1: If Nature chooses λ∗, then by Lemmas 7 and 8, the Principal’s
unique best response Fλ∗ is the two-point distribution as given in (22). It remains to show
that Nature’s best response to Fλ∗ (or equivalently {s(λ∗)� s(λ∗)}) is to choose λ∗. If the
Principal chooses {s(λ∗)� s(λ∗)}, then Nature’s problem is

max
λ∈R+

{
p

(
λ∗)Z(

λ� s
(
λ∗)) +p

(
λ∗)Z(

λ� s
(
λ∗))}�

This problem is concave in λ, and the corresponding first-order condition is

p
(
λ∗)s(λ∗)u(

w
(
λ� s

(
λ∗))) +p

(
λ∗)s(λ∗)u(w)= c′(a∗)�

which is satisfied at λ = λ∗ by Lemma 11. Therefore, {λ∗�Fλ∗} is an equilibrium for the
zero-sum game described in Section 4, where λ∗ is given in (24) and Fλ is given in (22).

Towards showing that this equilibrium is unique, first, recall that by Lemma 8, for any
λ, the Principal’s best response Fλ is unique. Therefore, in any equilibrium, say {λ′�Fλ′ },
(IC’) must bind. Moreover, by the definition of λ∗ in (24), it must be the case that λ′ < λ∗.
We will show that there does not exist any λ′ < λ∗ such that (IC’) binds.

First, we show that the Principal’s payoff is strictly increasing in λ on [λc�λ
∗]. Pick any

λ and λ′ such that λc < λ < λ′ ≤ λ∗. Then

p(λ)
[
w

(
λ� s(λ)

) − λ
[
su

(
w

(
λ� s(λ)

)) − c′(a∗)] + s2(λ)
]

+p(λ)
[
w − λ

[
su(w)− c′(a∗)] + s2(λ)

]
<p

(
λ′)[w(

λ′� s
(
λ′)) − λ

[
su

(
w

(
λ′� s

(
λ′))) − c′(a∗)] + s2(λ′)]

+p
(
λ′)[w− λ

[
su(w)− c′(a∗)] + s2

(
λ′)]

≤ p
(
λ′)[w(

λ′� s
(
λ′)) − λ′[su(

w
(
λ′� s

(
λ′))) − c′(a∗)] + s2(λ′)]

+p
(
λ′)[w− λ′[su(w)− c′(a∗)] + s2

(
λ′)]� (25)
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where the first inequality follows from the fact that the second expression corre-
sponds to the Principal’s payoff if Nature chooses λ but the Principal uses the sub-
optimal information-acquisition policy {s(λ′)� s(λ′)} instead of {(s(λ)� s(λ))} and pays
the suboptimal wage w(λ′� s(λ′)) instead of w(λ� s(λ)). This inequality is strict because
w(λ′� s(λ′)) �= w(λ� s(λ)). The second inequality follows from λ < λ′ and the fact that
(IC’) is not slack if λ′ ≤ λ∗ (see 24).

Suppose, by contradiction, that there exists a λ < λ∗ such that (IC’) binds at λ, and let
λ′ ∈ (λ�λ∗]. It must be that λ > λc , for otherwise (IC’) would have been violated. Then

p
(
λ′)[w(

λ′� s
(
λ′)) − λ′[su(

w
(
λ′� s

(
λ′))) − c′(a∗)] + s2(λ′)]

+p
(
λ′)[w− λ′[su(w)− c′(a∗)] + s2

(
λ′)]

≤ p(λ)
[
w

(
λ� s(λ)

) − λ′[su(
w

(
λ� s(λ)

)) − c′(a∗)] + s2(λ)
]

+p(λ)
[
w − λ′[su(w)− c′(a∗)] + s2(λ)

]
= p(λ)

[
w

(
λ� s(λ)

) − λ
[
su

(
w

(
λ� s(λ)

)) − c′(a∗)] + s2(λ)
]

+p(λ)
[
w − λ′[su(w)− c′(a∗)] + s2(λ)

]
�

where the inequality follows from the fact that the second expression corresponds to the
Principal’s payoff if Nature chooses λ′ but the Principal uses the suboptimal information-
acquisition policy {s(λ)� s(λ)} instead of {(s(λ′)� s(λ′))} and pays the suboptimal wage
w(λ� s(λ)) instead of w(λ′� s(λ′)) and the equality follows from the hypothesis that (IC’)
binds at λ. Finally, note that this inequality chain contradicts (25). Therefore, we conclude
that there does not exist any λ′ < λ∗ such that (IC’) binds, which completes the proof.

Q.E.D.

6. FURTHER EXTENSIONS

Assumption 1 played an important role in proving that an equilibrium exists in the zero-
sum game defined in Section 4 and the support of the Principal’s equilibrium distribution
is binary. A natural question to ask is: What happens if the Agent’s utility function does
not satisfy Assumption 1? To provide a partial answer to this question, this section ac-
complishes the following two goals. First, we show that, as long as an equilibrium exists
and hence, an optimal contract also exists, there must be an equilibrium which features a
distribution with either binary or trinary support. Second, we provide a different assump-
tion under which equilibria in the zero-sum game do not exist. However, we construct a
sequence of binary wage-contracts which achieves the first-best outcome in the limit, that
is, satisfying the Agent’s incentive constraint, (5), comes for free. We will also argue that
this alternative assumption is satisfied if the Agent has CRRA utility with coefficient less
than 1/2.

6.1. Binary or Trinary Wages

In this section, we do not make any assumption on the Agent’s utility function in addi-
tion to those stated in Section 2.

THEOREM 2: Suppose that (λ∗�F∗
1 ) is an equilibrium of the zero-sum game. Then there

exists an F∗
2 ∈F such that
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(i) (λ∗�F∗
2 ) is also an equilibrium in the zero-sum game, and

(ii) | supp(F∗
2 )| ∈ {2�3}.

PROOF: See the Supplemental Material. Q.E.D.

Let us provide an explanation for this result. The convexification argument implies that,
since the distribution F∗

1 is a best response to λ∗, the function Z(λ∗� ·) must coincide with
the line defining its convexification around zero at each point in supp(F∗

1 ). In fact, any
distribution in F whose support is a subset of supp(F∗

1 ) is also a best response to λ∗.
Therefore, we only need to argue that there is such a distribution with either binary or
trinary support such that λ∗ is a best response to it. In order to do so, we first show that
the function Z(λ∗� ·) is convex when s is negative and hence, there is exactly one negative
score at which Z(λ∗� ·) coincides with the line defining the convexification of Z(λ∗� ·)
around zero. Consequently, the support of F∗

1 contains a single negative score.
It remains to argue that λ∗ is a best response to a distribution whose support con-

tains this negative score and either one or two positive scores from supp(F∗
1 ). Recall from

Lemma 6 that Nature’s best response is characterized by the binding incentive constraint,
(16), and, in particular, it must be satisfied at (λ∗�F∗

1 ). We show that this binding con-
straint can be written as the average of incentive constraints corresponding to binary dis-
tributions whose support consists of the negative score and a positive score in the support
of F∗

1 . If there is such a binary distribution at which the incentive constraint binds, then
λ∗ is a best response to it and the proof is complete. Otherwise, there must be a binary
distribution at which the constraint is violated and another one at which the constraint is
slack. Then there is a convex combination of these two binary distributions at which the
incentive constraint binds. Furthermore, since the smaller scores in the supports of these
distributions are the same, the support of this convex combination is trinary.

6.2. A First-Best Result

If effort was contractible, then the optimal contract would require the Agent to exert
effort a∗ in exchange for a wage w. Of course, the Agent exerts a∗ and the Principal does
not acquire any information. The Principal’s cost and the Agent’s payoff would be w and
u(w)− c(a∗), respectively. We refer to this outcome as first-best.

The following theorem describes a condition on the Agent’s utility function under which
a single-bonus contract can approximate the first-best outcome arbitrarily well.

THEOREM 3: Suppose that there exists a ζ > 1 such that

lim
w→∞

[
u′(w)

]3

u′′(w)

[
u(w)

]− ζ−1
ζ = −∞� (26)

Then for every ε > 0, there exists a single-bonus wage scheme and a two-point distribution
that satisfy (IC) and (LL), and the Principal’s expected cost is no greater than w+ ε.

PROOF: See the Supplemental Material. Q.E.D.

We point out that Assumption 1 and condition (26) are mutually exclusive. As men-
tioned before, part (ii) of Assumption 1 is equivalent to limw→∞[u′(w)]3/u′′(w) = 0,
whereas condition (26) implies that this limit is minus infinity.
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In the proof of this theorem, we show that the binary distribution in the contract that
approximates the first-best outcome is defined by a score close to zero, s and a very large
score, s. This implies that the Agent is paid the minimum wage w with near certainty,
whereas with a small probability, the Agent is generously rewarded. More precisely, we
construct a sequence of distributions and contracts so that the Principal’s information-
acquisition cost goes to zero and the expected wage goes to w. Such contracts can be
incentive compatible as long as the Agent is not too risk-averse, so it is not too expensive
to motivate him with a large wage that he receives with a small probability. In a sense,
this contract is the reverse of the “Mirrlees shoot the Agent” contract which prescribes a
harsh punishment with a small probability and provides the Agent with a small reward
with probability close to 1.

The condition of the theorem, (26), is satisfied if the Agent’s utility function is of the
form of (HARA) with parameters α > 0, γ < 1/2, and β > −αw/γ. In particular, it is
satisfied if the Agent has CRRA utility with coefficient less than 1/2, that is, u(w) =
w1−γ/(1 − γ) with γ < 1/2.

7. VALIDATING THE FIRST-ORDER APPROACH

Throughout the analysis, we have considered a relaxed problem, in which the Principal
restricts attention to discouraging local downward deviations from the target effort a∗. In
this section, assuming that the Agent’s utility function satisfies Assumption 1, we consider
the optimal binary distribution over scores and the corresponding optimal wage scheme
that satisfies the relaxed incentive-compatibility constraint given in (5), and we provide
sufficient conditions such that this contract also satisfies the global incentive-compatibility
constraint given in (2).20

First, we express the global incentive constraint of the Agent for the optimal binary
distribution. We note that given u and w, the optimal binary distribution character-
ized based on the first-order approach depends only on c′(a∗). In what follows, we de-
fine δ∗ = c′(a∗), and we let {s(δ∗)� s(δ∗)} denote the support of the optimal distribu-
tion such that s(δ∗) < s(δ∗).21 Next, we compute the probability of each score condi-
tional on any deviation, a(�= a∗). This distribution is implemented by the stopping time
τ = inf{t : st /∈ (s(δ∗)� s(δ∗))}, where dst = (a−a∗)dt+dBt . Let p(a�δ∗) denote the prob-
ability that s(δ∗) is realized given the Agent’s effort a. Using Ito’s lemma, it is not hard to
show that22

p
(
a�δ∗) = e−2(a−a∗)s(δ∗) − 1

e−2(a−a∗)s(δ∗) − e−2(a−a∗)s(δ∗) � (27)

20In the canonical Principal–Agent model (e.g., Holmström (1979)), to ensure that the first-order approach
is valid, it is typically assumed that either the transition probability function that maps each effort level into
contractible output is convex in effort, or conditions are imposed on that transition probability function and
the Agent’s utility function; see Bolton and Dewatripont (2005) and Jewitt (1988) for details. In our setting,
this distribution is endogenous, and hence we must impose conditions on the Agent’s effort-cost function.

21In Section 5.1, {s(λ)� s(λ)} denoted the support of the Principal’s best response to λ. The equilib-
rium value of the multiplier can be written as a function of δ∗, λ∗(δ∗). Then the equilibrium support is
{s(λ∗(δ∗))� s(λ∗(δ∗))}. Our somewhat abusive notation suppresses the indirect dependency of λ∗.

22To derive (27), fix an effort level a �= a∗, and let q(s) denote the probability that sτ = s given the current
score s. Applying Ito’s lemma on dst = (a − a∗)dt + dBt , it follows that q satisfies 0 = 2(a − a∗)q′(s)+ q′′(s)
subject to the boundary conditions q(s) = 1 and q(s) = 0. This boundary value problem can be solved an-
alytically, and evaluating its solution at s0 = 0 yields (27). Moreover, it follows from L’Hospital’s rule that
(1 − e−2(a−a∗)s)/(e−2(a−a∗)s − e−2(a−a∗)s)→ s/(s − s) as a→ a∗, and so (27) corresponds to (22) when a= a∗.
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Let {w�W̃ (s(δ∗))} denote the optimal wage scheme. Then the Agent’s problem is

max
a

u(w)+p
(
a�δ∗)[u(

W̃
(
s
(
δ∗))) − u(w)

] − c(a)� (28)

The first-order condition at a∗ is

p1

(
a∗� δ∗)[u(

W̃
(
s
(
δ∗))) − u(w)

] = c′(a∗)(= δ∗)�
that is, wages must satisfy u(W̃ (s(δ∗))) − u(w)) = c′(a∗)/p1(a

∗� δ∗). Plugging this into
(28), the Agent’s global incentive-compatibility constraint can be expressed as

a∗ ∈ arg max
a≥0

{
u(w)+p

(
a�δ∗) c′(a∗)

p1

(
a∗� δ∗) − c(a)

}
�

This constraint is satisfied if the maximand is single-peaked at a∗. Note that the maxi-
mand’s derivative is p1(a�δ

∗)[c′(a∗)/p1(a
∗� δ∗)] − c′(a). So, the first-order approach is

valid if

p1

(
a�δ∗)

p1

(
a∗� δ∗) ≥ c′(a)

c′(a∗) if and only if a ≤ a∗� (29)

In what follows, we consider a parametric family of effort-cost functions, {cκ}κ∈R+ , and
show that, if this sequence satisfies certain properties, then cκ satisfies (29) whenever κ
is large enough. We assume that cκ satisfies our assumptions on the effort-cost function
c for each κ and c′

κ(a) is twice-differentiable in both a and κ. Next, we state the two key
properties.

CONDITION 1: For each a > 0, c′′
κ(a)/c

′
κ(a) is increasing in κ and limk→∞[c′′

κ(a)/
c′
κ(a)] = ∞.

Since cκ is convex, its derivative is increasing and the fraction c′′
κ(a)/c

′
κ(a) measures the

rate of increase. Condition 1 requires this rate to be increasing in κ and to be converging
to infinity; that is, that the ck’s are progressively more convex in the same sense that a
utility function with a larger coefficient of absolute risk aversion is more concave.

CONDITION 2: There exist an a, d, d ∈ R++ such that c′
κ(a) ∈ [d�d] for all κ.

To illustrate a consequence of this condition, suppose that the target effort level is a,
that is, a∗ = a. Since the marginal cost of effort, δ∗

κ = c′
κ(a), depends on κ, the Principal’s

optimal contract also varies with κ. So, in order to show that a is implementable for
any large enough κ, one has to check the incentive compatibility of continuum many
contracts. However, the condition requires δ∗

κ ∈ [d�d], so this set of contracts is contained
in a compact space.

Finally, we are ready to state the main result of this section.

PROPOSITION 1: Suppose that the sequence of convex effort-cost functions, {cκ}κ∈R+ , sat-
isfies Conditions 1 and 2. Then, for each a ∈ (0� a), there exists a K ∈ R++ such that the
first-order approach is valid for any target level of effort a∗ ∈ [a�a] and cost function cκ when-
ever κ >K.
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PROOF: See the Supplemental Material. Q.E.D.

To see how this proposition can be applied, consider the family of cost functions given
by c′

κ(a) = aκ for each κ ∈ R+. In this case, c′′
κ(a)/c

′
κ(a) = κ/a so this family satisfies

Condition 1. Moreover, c′
κ(1) = 1 for all κ, and hence, Condition 2 is also satisfied with

a = d = d = 1. Therefore, the proposition implies that the first-order approach is valid
for any a∗ ∈ (0�1] and cκ if κ is sufficiently large.23 Similarly, the family of cost functions,
c′
κ(a)= eκ(a−1), also satisfies the hypothesis of Proposition 1 for a= 1. To see this, observe

that c′′
κ(a)/c

′
κ(a) = κ so Condition 1 holds. Moreover, c′

κ(1) = 1 so Condition 2 is also
satisfied with d = d = 1.24

Let us explain the main steps of the proof of the proposition. In order to guarantee
that a contract implements a target effort level, the global incentive constraint must be
satisfied for all possible deviations in R+. The first step of the proof is to show that one
can restrict attention to a compact set of deviations. More precisely, suppose that the
effort-cost function is given by cκ and the Principal wants to implement a∗ ∈ (0� a], so
offers the contract defined by the scores {s(δ∗

κ)� s(δ
∗
κ)} and wages {w�W̃ (s(δ∗

κ))}, where
δ∗
κ = c′

κ(a
∗). We argue that Condition 2 implies the existence of an effort level â(> a) such

that the Agent is better off exerting effort zero than any a > â and, importantly, â depends
neither on κ nor on a∗. In other words, if the incentive constraint is satisfied at zero, then
it is also satisfied at any effort level above â. Observe first that the Agent’s wage is at
most W̃ (s(δ∗

κ)) if he exerts a and it is at least w when his effort level is zero. Hence, the
utility gain from exerting a positive effort instead of zero is less than u(W̃ (s(δ∗

κ)))−u(w),
which is bounded since δ∗ ∈ (0� d]. In contrast, the cost of exerting a converges to infinity
uniformly in κ as a goes to infinity. The reason is that Condition 2 and the convexity of cκ
imply that c′

κ(a)≥ d for all a≥ a, and hence, the cost of exerting a is at least d(a− a). As
a consequence, there is indeed an â above which the effort cost is larger than the utility
gain relative to zero, irrespective of κ and a∗(∈ (0� a]).

The second step is to show that, for a large enough κ, the condition in (29) with the
additional restriction a ≤ â is satisfied for any a∗ ∈ [a�a], with c ≡ cκ and δ∗ = c′

κ(a
∗).

Instead of showing this, we argue that, for a large enough κ, for each a∗ ∈ [a�a],

inf
δ∈(0�d]

p1(a�δ)

p1

(
a∗� δ

) ≥ c′
κ(a)

c′
κ

(
a∗) if a≤ a∗ and

sup
δ∈(0�d]

p1(a�δ)

p1

(
a∗� δ

) ≤ c′
κ(a)

c′
κ

(
a∗) if a∗ ≤ a≤ â�

(30)

Since a∗ ∈ [a�a] and c′
κ(a) ≤ d for all κ, the convexity of cκ implies that c′

κ(a
∗) ∈ (0� d].

Therefore, the conditions in (30) imply the one in (29) with c = cκ and δ∗ = c′
κ(a

∗).
Towards proving (30), we intend to appeal to the theorem of the maximum and argue

that the left-hand sides of the two inequalities are continuous functions of a. Unfortu-
nately, the variable δ does not lie in a compact set because the fraction p1(a�δ)/p1(a

∗� δ)
is not defined for δ = 0. However, we demonstrate that this function can be continuously
extended to the compact interval [0�d] by showing that the limit of this fraction exists and

23For example, simulations indicate that if the Agent’s utility exhibits CRRA with coefficient γ = 0�7, w =
0�1, and c′

κ(a) = aκ, then the first-order approach is valid for any a∗ ∈ (0�1] as long as κ≥ 5.
24More generally, Proposition 1 is applicable if the sequence of cost functions is either given by c′

κ(a) =
d(a/a)κ or c′

κ(a) = deκ(a−a), where d�a ∈R++.
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it is not zero as δ converges to zero. From this observation, it follows that the left-hand
sides of the two inequalities in (30) are continuous in a and bounded away from zero. In
order to establish that these inequalities are satisfied for a sufficiently large κ, we next
explore a consequence of Condition 1.

LEMMA 12: Condition 1 implies that for all a > ã, c′
κ(a)/c

′
κ(̃a) is increasing in κ and

limκ→∞[c′
κ(a)/c

′
κ(̃a)] = ∞.

This lemma implies that the right-hand side of the inequalities in (30), c′
κ(a)/c

′
κ(a

∗),
converges to zero if a < a∗ and to infinity if a > a∗ as κ goes to infinity. Therefore, for all
a∗ and a, there is a critical value of κ at which (30) holds. Moreover, the monotonicity
property in the statement of Lemma 12 implies that the (30) is also satisfied for any κ
above this critical value.

The last step of the proof is to show that the aforementioned critical value of κ can be
chosen independently of a∗ and a. To guarantee the existence of a uniform threshold, we
first show that Lemma 12 implies that, for each a �= a∗, there is an open neighborhood of
the point (a∗� a) ∈ R

2
+, Na

a∗ , and Ka
a∗ ∈ R+ such that (30) is satisfied for all (a∗� a) ∈ Na

a∗
whenever κ ≥ Ka

a∗ . Second, we argue that it follows from Condition 1 that there also
exists such a neighborhood of (a∗� a∗), Na∗

a∗ . Recall that the set of points, (a∗� a), at which
(30) must hold is [a × a] × [0� â], which is compact. Moreover, we have constructed a
covering of it consisting of open sets, {Na

a∗}a∗�a, and hence, there is also a finite covering,
say N

a1
a∗

1
� � � � �Nan

a∗
n
. Finally, we show that (30) holds whenever κ> max{Ka1

a∗
1
� � � � �Kan

a∗
n
�}.

8. COMPARATIVE STATICS

In this section, we use simulations to investigate how the optimal contract depends on
the parameters of the problem.

Figure 2 provides comparative statics when the Agent’s utility function exhibits CRRA,
and so it is of the form

u(w) = w1−γ

1 − γ
�

and we vary the coefficient of relative risk aversion γ from 1/2 to 1, while setting w = 0�1
and c′(a∗) = 1. The left panel illustrates the scores in the support of the equilibrium dis-
tribution, s and s, while the right panels illustrate the size of the bonus, w(λ∗� s)−w, and
the probability that it is paid, p(λ∗), as a function of γ. As this figure illustrates, if γ is
close to one-half so the Agent is moderately risk-averse, then the optimal contract speci-
fies an s close to zero and a large s. This implies that the Agent only receives the bonus if
the acquired information is overwhelmingly favorable. Of course, this event occurs with
only a small probability as shown on the top-right panel of Figure 2. Therefore, in order to
motivate the Agent, the bonus must be large, confirmed by the bottom-right panel. Note
that the equilibrium contract in this case is similar to the ones used in the proof of The-
orem 3: the Agent receives a large bonus with a small probability if he exerts the target
effort. Recall that this theorem implies that if γ < 1/2, then it is possible to approximate
the first-best outcome arbitrarily closely using such single-bonus wage schemes.

In contrast, if γ is close to 1 so the Agent is very risk-averse, then both s and s are
relatively small (see the left panel of Figure 2). This implies that the Agent receives a
bonus with high probability, as shown on the top-right panel. Since the Agent receives
the bonus frequently, its size is small. The fact that the optimal contract specifies small
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FIGURE 2.—Comparative statics of the optimal contract as the (constant) coefficient of relative risk aversion
γ varies.

rewards with large probability if γ is large is not surprising given that a very risk-averse
Agent values income-smoothing more. Note that between the two extreme values of γ,
all the functions are monotone: s, s, and the bonus are decreasing, and the probability of
the bonus increases. Simulations indicate that these comparative statics are similar when
the Agent’s utility function exhibits CARA, and we vary the coefficient of absolute risk
aversion.

Figure 3 illustrates how the scores in the support of the equilibrium distribution, s and
s, the size of the bonus, and the probability that it is paid vary with the minimum wage w,
when the Agent’s utility exhibits CRRA or CARA. In the former case, we set γ = 0�9 and
c′(a∗) = 1, and vary w from 0 to 5. In the latter case, we set the coefficient of absolute
risk aversion to 1 and c′(a∗) = 1, and vary w from −5 to 0. In both cases, the size of the
bonus increases in the minimum wage. The reason is that, as w increases, the marginal
utility of the Agent for a given bonus decreases. Therefore, in order to incentivize the
Agent to exert the target effort, the Principal must increase the size of the bonus. The
comparative statics pertaining to the optimal information-acquisition strategies appear to
be quite different in the two cases examined. In particular, if the Agent’s utility exhibits
CRRA, then the probability of paying the bonus is decreasing in w, whereas this prob-
ability is increasing in the case of CARA utility. The reason is that in the former case,
as w increases, the Agent becomes less and less risk-averse regarding gambles involving
transfers above w. As a consequence, the optimal contract specifies the familiar small-
probability, large-bonus wage scheme. In the case of CARA, such an effect is not present.
Recall that EF∗ [s2] = −ss. In the case of CARA utility, both s and −s increase in w, so
we can conclude that the Principal’s expected information-acquisition cost increases in w.
Simulations indicate that this is also the case if the Agent’s utility exhibits CRRA.
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FIGURE 3.—Comparative statics of the optimal contract as the minimum wage w varies. The left (right)
panel illustrates the case in which the Agent’s utility exhibits CRRA (CARA).

It follows immediately from Lemma S1 (given in the Supplemental Material) and the
convexity of c that s, the size of the bonus, and the expected information-acquisition cost
are increasing in a∗, while s is decreasing in a∗. This implies that monitoring and monetary
incentives are complements: to motivate a larger effort level, the Principal both acquires
more information and uses higher powered incentives (in the form of a bigger bonus in
case s is realized).

How does the optimal contract depend on the cost of information acquisition? Recall
that, throughout the paper, we have normalized the Principal’s marginal cost of infor-
mation acquisition to be 1. Suppose instead, that if the Principal monitors the process X
until t, then she incurs cost μt. Figure 4 provides comparative statics when we vary μ from
0�1 to 5, the Agent’s utility function exhibits CRRA with coefficient γ = 0�9, and we set
w = 0�1 and c′(a∗)= 1. As information becomes more expensive (i.e., as μ increases), the
Principal acquires less of it, as reflected by the decreasing s and |s| in the left panel, and
instead of monitoring the Agent, she provides incentives by paying a bigger bonus with
larger probability as illustrated in the right panels. Finally, simulations also indicate that
the Principal’s expected information acquisition cost, μEF∗ [s2] = −μss, increases in μ.

9. DISCUSSION

We analyze a contracting problem under moral hazard in which the Principal designs
both the Agent’s wage scheme and the underlying performance measure. In our model, a
performance measure is a strategy for sequentially acquiring signals that are informative
of the Agent’s costly effort, and a wage scheme specifies the Agent’s remuneration condi-
tional on the acquired signals. Under a pair of conditions on the Agent’s utility function,
and provided that the first-order approach is valid, we show that a single-bonus contract
is optimal; that is, the Principal chooses a two-point distribution over scores and a binary
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FIGURE 4.—Comparative statics of the optimal contract as the marginal cost of information acquisition, μ,
varies.

wage scheme. These conditions are satisfied if, for example, the Agent’s utility exhibits
CARA or CRRA with coefficient greater than one-half. Under an alternative condition
on the Agent’s utility, which is satisfied if, for instance, it exhibits CRRA with coefficient
less than one-half, we show that the Principal can approximate the first-best outcome ar-
bitrarily closely with a single-bonus contract. More generally, we show that for any utility
function, if the zero-sum game has an equilibrium, then there exists an optimal contract
which features either a binary or a trinary wage scheme.

Throughout the paper, we have assumed that the Agent has limited liability but does
not make a participation decision. It is not hard to incorporate a participation constraint
into the Principal’s optimization problem and show that the optimal contract still involves
binary wages. In this case, even the lower wage might be strictly larger than the minimum
wage w. We chose not to add this constraint because it has little to do with the main
arguments of our analysis and involves heavy notational burden. Our results are also valid
if the Agent’s effort is binary. In this case, there is only a single incentive constraint and
the optimality of a single-bonus contract does not require those conditions on the Agent’s
effort cost that we imposed to validate the first-order approach.

We have considered a particular information-acquisition mechanism, which is equiva-
lent to the Principal choosing any zero-mean distribution over scores at a cost equal to
its variance. Alternatively, we could have started with an information design problem in
which the Principal chooses a distribution over scores F ∈F at some cost. Our main the-
orem holds as long as this cost is a general convex moment, that is, it can be expressed as
EF [ϕ(s)] for some strictly convex function ϕ with ϕ′′′(s) ≥ 0 for all s ≥ 0.25 Recall that in

25In our model, ϕ(s) = s2. The shape of ϕ is only used in the proof of Lemma 7, which requires that ϕ be
strictly convex and ϕ′′′(s)≥ 0 if s ≥ 0, so that the threshold λc is unique and well-defined.
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our model, by choosing a distribution corresponding to the target effort level, the Prin-
cipal is implicitly choosing a distribution corresponding to every other effort level. This
alternative approach starts with a relaxed incentive constraint and does not require to
specify how the distributions corresponding to different effort levels are linked. However,
in order to validate the first-order approach, one must make assumptions not only on the
agent’s cost of effort but also on probabilities of reaching the two optimal scores condi-
tional on each effort level.

In our model, prior to acquiring costly information, the Principal is completely oblivious
to the Agent’s effort. Our results can be generalized for the case where, prior to acquiring
information, the Principal observes a costless signal about the Agent’s effort. For exam-
ple, public firms are obligated to report various accounting measures such as revenue and
operating profits, which are likely to be informative of some employees’ actions and not
acquired during a monitoring process. Provided that the first-order approach is valid, the
Principal’s problem can be expressed as choosing a family of distributions over scores,
one for each realization of the (costless) signal, and a wage scheme conditional on the
realized score. Using the same techniques as in Sections 3–4, one can show that an op-
timal contract corresponds to an equilibrium of a zero-sum game played by Nature and
the Principal. Under the conditions of Theorem 1, if an equilibrium exists, the optimal
contract is characterized by an interval. If the score corresponding to the costless signal
lies in this interval, the Principal chooses a two-point distribution over scores with mean
equal to the score of the costless signal, and pays the Agent according to the realization
of the score. If the value of the costless signal is outside of this interval, the Principal
does not acquire further information, that is, she chooses a degenerate distribution over
scores. In this case, the Agent’s wage is based on the costless signal.26 Interestingly, this
wage scheme resembles what Murphy (1999) (Figure 5) and Jensen (2001) argued is a
typical executive incentive plan.
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