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This paper considers a moral hazard problem where the agent can choose any output
distribution with a support in a given compact set. The agent’s effort-cost is smooth
and increasing in first-order stochastic dominance. To analyze this model, we develop a
generalized notion of the first-order approach applicable to optimization problems over
measures. We demonstrate each output distribution can be implemented and identify
those contracts that implement that distribution. These contracts are characterized by
a simple first-order condition for each output that equates the agent’s marginal cost
of changing the implemented distribution around that output with its marginal benefit.
Furthermore, the agent’s wage is shown to be increasing in output. Finally, we consider
the problem of a profit-maximizing principal and provide a first-order characterization
of principal-optimal distributions.

KEYWORDS: Principal-agent, moral hazard, contract theory.

1. INTRODUCTION

PERHAPS THE MOST CELEBRATED CONCLUSION of the literature on moral hazard is that
optimal compensation schemes are designed to reward the agent for those output realiza-
tions that are informative about the target level of effort (see, e.g., Holmström (1979) and
(2017)). Because larger outputs are not necessarily more informative than smaller ones,
optimal wage schemes are often non-monotone in output.1 These results are typically de-
rived in models in which the action space of the agent is restricted to be either a binary
or a one-dimensional set. In this paper, we put forward a model where the agent can
flexibly choose any output distribution and re-examine the aforementioned conclusions of
the literature. We demonstrate that, in such flexible models, optimal wage schemes are
not motivated by the informativeness of the output. Instead, they simply compensate the
agent for his marginal cost of choosing the target distribution. More precisely, optimal
contracts are constructed so that the target distribution satisfies a generalized first-order
condition: the marginal cost and marginal benefit of changing the probability of any given
output must be equal. Moreover, wage schemes are always increasing in output as long
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as the agent’s cost of choosing a distribution is monotone in first-order stochastic domi-
nance.

In the specific model of this paper, there is a single agent. After receiving a wage con-
tract, the agent can choose any output distribution with support in a given compact subset
of R+. The agent’s payoff is additively separable in her utility from wage and the (effort-)
cost associated with the selected distribution. Moreover, the agent has limited liability, so
the wage must be weakly positive. We make two assumptions about the costs of output
distributions. First, the cost is monotone in first-order stochastic dominance. That is, if a
distribution first-order stochastically dominates another one, then it costs more. Second,
this cost is Gateaux differentiable. We explain the notion of Gateaux differentiability in
detail below. For most of our results, we do not need to specify the principal’s prefer-
ences. Indeed, our main objective is to derive predictions regarding the wage contracts
that incentivize the agent.

To illustrate our model and results, considering the following example is useful.

EXAMPLE 1: Suppose the agent can choose any distribution with support in {0�1}. The
cost of choosing the distribution that specifies probability p of the output realization one
is c(p), where c is an increasing and convex function. The agent’s utility from wage is
given by the increasing function u :R+ → R.

The cost function of this example satisfies our monotonicity and smoothness assump-
tions whenever c is increasing and differentiable. For each distribution p∗, we next de-
scribe those contracts that implement p∗. Fix a wage scheme w : {0�1} → R+ and let m
denote the agent’s utility from w(0), that is, m = u(w(0)). When presented with w, the
agent maximizes pu(w(1)) + (1 −p)m− c(p) with respect to p. The agent chooses p∗ if
it satisfies the corresponding first-order condition, that is,

u
(
w(1)

) = c′(p∗) +m� (1)

For each constant m, the previous equation characterizes a wage scheme that implements
p∗. The agent’s limited-liability constraint determines the smallest m for which such a
wage scheme is feasible. This observation suggests several implications. First, the princi-
pal can implement any distribution p by a wage contract satisfying equation (1). Second,
unlike in the classical Holmström model, the cost-minimizing wage scheme is not mo-
tivated by the information content of the output. Instead, it simply equates the agent’s
marginal cost of a distribution with his marginal benefit. Third, the wage scheme is always
weakly increasing on the support of the implemented distribution.2 Our paper demon-
strates that all these results generalize to any flexible moral hazard problem as long as the
aforementioned two assumptions, monotonicity and smoothness, are satisfied.

Our first main result is that any distribution can be implemented by an appropriate
wage schedule. The key to this result is to develop a notion of the first-order approach
based on Gateaux differentiability. Roughly speaking, Gateaux differentiability means
the difference between the cost of a given distribution, say, μ, and that of another nearby
distribution can be well approximated by the difference between the expectations of a
function, cμ, according to the two distributions. Moreover, the function cμ depends only
on the given distribution μ and it is called the Gateaux derivative of c at μ. We show

2If the wage is larger at 0 than at 1, the agent chooses p = 0, so the value 1 is not in the support of the
implemented distribution.
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a wage scheme, w, implements a distribution μ∗, if the agent’s utility from wage is the
sum of the Gateaux derivative at μ∗ and a constant at each output realization, x, on the
support of the distribution and less elsewhere. That is,

u
(
w(x)

) = cμ∗ (x) +m (2)

for each x ∈ supp(μ∗). Note this equation generalizes equation (1) of the example. Intu-
itively, this condition guarantees the agent has no incentive to modify the target distribu-
tion μ∗ by relocating the probability mass across different output levels. The derivation
of equation (2) relies neither on the agent’s full flexibility of choosing a distribution nor
on the monotonicity of the associated costs. Indeed, it is a necessary condition for imple-
mentation as long as the agent can arbitrarily modify the target distribution locally and
his cost function is smooth around the target distribution.

We make two remarks related to equation (2). First, this condition does not have a
counterpart in standard moral hazard models. If the agent cannot choose a distribution
flexibly, any change in effort has a global effect on the output distribution. Therefore, the
incentive constraint requires the agent’s expected utility gain from a different effort not
to exceed the associated marginal cost of effort (e.g., equation (6) in Holmström (1979)).
This, however, is an ex ante constraint that involves taking expectations according to the
target distribution. In sharp contrast, the agent in our model can modify the target distri-
bution around any given output without affecting it elsewhere. Consequently, there is an
incentive constraint for each output; see equation (2). Each such constraint requires the
agent’s marginal benefit from increasing the likelihood of a given output to be the same
as the marginal cost of doing so. Our second and related remark is that equation (2) im-
plies that for each distribution μ, the incentive compatibility requirement determines the
wage scheme that implements μ up to a constant. In a sense, this trivializes the principal’s
problem of identifying the optimal (cost-minimizing) wage contract among the incentive-
compatible ones: the principal can choose only the aforementioned constant which, in
turn, is pinned down by the limited-liability constraint.

We consider the main takeaway from our analysis to be the observation that if the agent
can choose distributions flexibly, optimal wage contacts are not motivated by the informa-
tion content of the output. To explain this, recall that in moral hazard models, incentive
compatibility typically follows from ensuring local deviations are not profitable. In stan-
dard problems, such deviations can change the relative likelihood of different outputs in
a limited way, and informativeness is defined with respect to these limitations. For exam-
ple, when effort is one-dimensional, there is only one local deviation, and informativeness
of an output can be measured by the relative likelihood of that output under the target
distribution and under that deviation. By contrast, when the agent can choose output dis-
tributions flexibly, he can use local deviations to manipulate the relative likelihood of any
collection of outputs in an arbitrary manner. Consequently, in flexible moral hazard prob-
lems, there is no useful notion of informativeness around which one can design the agent’s
contract.3 Instead, incentive-compatible wage schemes must eliminate the agent’s desire
to re-allocate probability mass across outputs. To do so, the optimal contract effectively
reimburses the agent for the marginal cost of producing each output.

Let us now turn our attention to the monotonicity of the wage schemes. Recall that in
standard principal-agent models with hidden action, cost-minimizing wages are monotone

3Of course, even in flexible models, observing output x indicates that the agent choice has x in its support.
The agent’s wage must be sufficiently low whenever the output is not in the support of the target distribution.
However, the information conveyed by observing x is not useful except in this very limited way.
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in output only under strong assumptions on the feasible output distributions, namely, they
must satisfy the monotone likelihood ratio property. By contrast, in our flexible moral
hazard model, the monotonicity of the wage scheme follows directly from the agent’s
incentives whenever the agent’s costs are monotone. More precisely, if a wage scheme
implements a certain distribution, this wage scheme is (weakly) increasing over the out-
puts generated by that distribution. This result is rather obvious and can be explained as
follows. Suppose the wage is larger at a small output level than at other higher outputs.
Then the agent would never choose a distribution that specifies positive probability on
those higher outputs. The reason is that the agent can modify the distribution by moving
the probability mass from those higher outputs to the low output. On the one hand, this
modification increases the agent’s expected wage, because the wage conditional on the
low output exceeds the wage conditional on any of those high output levels. On the other
hand, the modified distribution is first-order stochastically dominated by the original one,
so it is cheaper to the agent.

We conclude our analysis by considering the principal’s problem of finding the profit-
maximizing distribution and the corresponding optimal contract. To extend the afore-
mentioned first-order approach to the principal’s profit maximization problem, we need
to make a stronger smoothness assumption. Roughly speaking, this assumption requires
the agent’s cost function to be twice differentiable. We then characterize the first-order
condition corresponding to the principal’s problem. Finally, we illustrate how this first-
order condition can be used to derive properties of the principal-optimal distribution.
For example, we provide sufficient conditions under which this distribution is degenerate.

Related Literature. First and foremost, our paper is related to the literature on
principal-agent problems under moral hazard (Mirrlees (1976) and Holmström (1979)).
In the canonical model, the principal offers a wage contract, and then the agent chooses
a (typically) one-dimensional action that determines the distribution of output. The op-
timal contract is shaped by the information content of the output, as well as a trade-off
between incentives and insurance. See Holmström (2017) and Georgiadis (2022) for re-
views. Instead, the agent can choose any output distribution in our model.

As Example 1 highlights, more restrictive ways of enriching the standard moral hazard
model with flexible production have been studied before. An early instance is Holmstrom
and Milgrom (1987) who, among other things, considered a locally flexible model in which
both the principal and the agent have CARA utility functions and effort costs are mon-
etary.4 They showed that the set of contracts implementing any interior distribution can
be parameterized by the agent’s certainty equivalent. A few more recent studies have
additively-separable costs and more general preferences, but impose other restrictions,
such as a finite output space, mean-measurable costs, or requiring costs to come from the
f -divergence family (e.g., Diamond (1998), Mirrlees and Zhou (2006), Bonham (2021),
Bonham and Riggs-Cragun (2023), Mattsson and Weibull (2022)).5 All of these papers
derive a version of the first-order condition (2) for their setting. As mentioned above, this

4Hellwig (2007) extended Holmstrom and Milgrom’s (1987) analysis by allowing for boundary solutions. He
explicitly characterized the optimal wage scheme, and showed it is non-decreasing in output.

5Another related paper within this vein is Hébert (2018), who studied security design by an entrepreneur
who can flexible control output. That paper assumes risk neutrality and that costs belong to the f -divergence
family. A few other related papers consider models with partial flexibility. In particular, Barron, Georgiadis,
and Swinkels (2020) studied a version of the Holmström (1979) model where the agent can costlessly add risk
to the realized output, whereas Palomino and Prat (2003) allowed the agent to control the first two moments
of the output distribution.
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condition pins down the agent’s contract up to a constant. Hence, one could use these
studies to conclude that informativeness plays a diminished role in their specialized envi-
ronments. Our contribution to this literature is the general treatment of the flexible moral
hazard problem. Indeed, it is the generality of our model that allows us to conclude that
flexible production, rather than any specific restriction, is what results in the optimal con-
tract’s shape being determined by the agent’s incentives rather than the informativeness
of the output. Our generality also enables the analysis of various properties of interest,
which may be impeded by imposing particular structures on the underlying environment.
This is exemplified by the case of monotonicity, which can be studied in our model, but
not by models with cost functions that either require it (e.g., mean-measurable costs) or
exclude it (such as with f -divergence). And, indeed, none of the existing models explore
the implications of monotonicity on the set of incentive-compatible contracts.

Our paper is also related to the literature on robust contracting; see, for example, Car-
roll (2015), Carroll (2019) for a review, Antic (2022), and Antic and Georgiadis (2022).
Like our paper, this literature imposes only minimal restrictions on the technology avail-
able to the agent. Their premise, however, is that the principal has limited knowledge
regarding the technology and evaluates contracts according to the worst-case scenario. In
contrast, the agent’s cost of choosing any distribution is common knowledge in our model.

2. MODEL

There is an agent who can produce any output distribution with support in a compact
subset X of R+.6 Throughout, we let x := minX and x̄ := maxX denote the lowest and
highest possible outputs, respectively. Let M denote the set of Borel probability mea-
sures on X . The agent’s payoff is additively separable in the utility from wage and the
effort cost of producing. The utility function from money, u : R+ → R, is strictly increas-
ing, continuous, unbounded and it is normalized so that u(0) = 0. The agent’s cost of
producing μ ∈ M is C(μ), where C : M → R+ is a weak*-continuous and convex func-
tion. So, if the agent chooses μ ∈M and receives wage w, then his payoff is u(w) −C(μ).
Moreover, the agent is an expected-payoff maximizer.

Before the agent decides which distribution to produce, he receives a wage contract.
A wage contract is a measurable mapping from realized outputs to monetary com-
pensations. The agent has limited liability so every contract must specify weakly pos-
itive wages. To ensure the agent’s payoff is well-defined, we also require the agent’s
contract to be bounded from above. Let W denote the set of such contracts, that is,
W ={w|w :X → R+� supw(X) <∞}.

We next argue that assuming the convexity of C is without loss. Indeed, since the agent
may randomize, the cost of any distribution should be evaluated by the expected cost of
the cheapest randomization that generates it, resulting in a convex cost function.

We state two further assumptions on the cost of production. First, we assume that pro-
ducing more in the sense of first-order stochastic dominance costs more.7

ASSUMPTION 1—Monotonicity: If the distribution μ first-order stochastically dominates
μ′, then C(μ) ≥ C(μ′).

6The output is assumed to be positive only for the sake of economic interpretation of our model. All our
results hold as long as X ⊆R. As will become apparent, we can allow X to be unbounded if we instead impose
that the Gateaux derivative cμ is bounded for all μ.

7If the agent can dispose output freely and privately, his effective cost function satisfies this monotonicity
property; see Innes (1990) for a discussion.
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Our second assumption ensures that the cost function is smooth.

ASSUMPTION 2—Smoothness: The function C is Gateaux differentiable, which means
that every μ admits a continuous function cμ :X → R such that

lim
ε↘0

1
ε

[
C

(
μ+ ε

(
μ′ −μ

)) −C(μ)
] =

∫
cμ(x)

(
μ′ −μ

)
(dx)

for all μ′ ∈M. The function cμ is referred to as the (Gateaux) derivative of C.8

Let us make a few remarks regarding Assumption 2. First, if cμ is a derivative of C at μ,
then so is cμ+k for any constant k ∈ R. It is therefore without loss to normalize cμ(x) = 0.
Second, whenever Assumption 2 holds, Assumption 1 is equivalent to cμ being increas-
ing for all μ (see Cerreia-Vioglio, Maccheroni, and Marinacci (2017), for example). And
third, when there are only n outputs, X = {x1� � � � � xn}, C becomes a mapping from the
n-dimensional simplex to R+. In this case, Assumption 2 is equivalent to the usual notion
of differentiability, and one can express cμ in terms of the partial derivatives of C. More
specifically, let C ′

i(μ) denote the partial derivative of C with respect to the probability
of output i at the distribution μ, and suppose x1 = x is the lowest output. Then one can
express the Gateaux derivative of C as cμ(xi) = C ′

i(μ) −C ′
1(μ).9

Our goal is to analyze the set of those distributions which can be implemented and
characterize the wage contracts which implement them. More formally, for each w ∈ W ,
the measure μ ∈ M is called w-incentive compatible (w-IC) if the agent finds it optimal
to produce μ after he receives the contract w. Note that if the wage contract is w and the
agent chooses μ ∈M, then his payoff is

U (μ�w) =
∫

u ◦w(x)μ(dx) −C(μ)�

So, the measure μ is w-IC if U (μ�w) = supμ′∈MU (μ′�w). We say μ is implementable
whenever it is w-IC for some w ∈W .

We emphasize that for most of our results, we do not need both assumptions above.
For example, even if neither of these assumptions holds, the set of implementable distri-
butions is large.

THEOREM 1: The set of distributions that are implementable is dense.

PROOF: See the Appendix. Q.E.D.

To prove the above theorem, we identify each measure in M with its corresponding
CDF. By equipping the set of CDFs with the L2-norm, we recast C as a convex and lower-
semicontinuous function over a Banach space. To conclude the proof, we show one can

8Our definition of Gateaux differentiability comes from the decision-theory literature (e.g., Hong, Karni,
and Safra (1987), Cerreia-Vioglio, Maccheroni, and Marinacci (2017)). Our results continue to hold if we
require cμ only to be measurable and bounded. One only needs to modify the proof of Corollary 2, since the
cited result of Cerreia-Vioglio, Maccheroni, and Marinacci (2017) no longer applies. Instead, one needs to
appeal to Lemma 3 (see the Appendix), which obtains a similar result for the case where cμ is bounded and
measurable.

9Consequently, when X is finite, Assumption 2 holds Lebesgue almost everywhere for all cost functions (see
Rockafellar (1970), Theorem 25.4).
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implement every CDF at which the subdifferential of C is non-empty, a condition which
holds over a dense set of the cost function’s domain by the Brondsted–Rockafellar theo-
rem (Brøndsted and Tyrrell Rockafellar (1965)).

We conclude this section by providing an example for the agent’s cost function, C,
which satisfies our assumptions. We will use this example to illustrate many of our re-
sults throughout the paper.

EXAMPLE 2: Let c : X → R+ be an increasing and continuous function with c(x) = 0.
Furthermore, let K : R → R. be an increasing, convex, and differentiable function. If the
agent’s cost function is defined by

C(μ) = K

(∫
c(x)μ(dx)

)
� (3)

then it satisfies Assumptions 1 and 2. Indeed, by the Chain Rule, this function is Gateaux
differentiable, with the derivative given by

cμ(x) =K′
(∫

c(y)μ(dy)
)
c(x)� (4)

3. MAIN RESULTS

3.1. Monotone Wages

Our first result establishes that the monotonicity of C (Assumption 1) implies the
monotonicity of any wage scheme on the support of the distribution it implements.

DEFINITION 1: The contract w ∈W is μ-increasing if, for all x ∈ X ,

μ
({
x′ ∈ X : x < x′�w

(
x′)<w(x)

}) = 0.

That is, w is μ-increasing if, for every x, the probability that μ generates a higher output
that gives the agent a lower wage is zero. We are ready to state our first result.

PROPOSITION 1: If Assumption 1 holds and μ ∈M is w-IC, then w is μ-increasing.

The proof of the proposition is established along the same arguments described in the
Introduction. We show that if w is not μ-increasing, then the measure μ can be modified
by moving probability from high outputs at which the wage is low to a low output realiza-
tion at which the wage is high. This new measure is cheaper to the agent and generates
higher expected utility, that is, μ was not w-IC.

PROOF: Suppose, by contradiction, that w is not μ-almost increasing. Then there exists
x ∈ X such that μ(Sx) > 0, where

Sx = {
x′ ∈X : x′ > x�w

(
x′) <w(x)

}
.

Let μ′ ∈ M be a modification of μ so that all the mass from the set Sx is moved to x.
Formally, for each Borel set A,

μ′(A) =
{
μ(A\Sx) +μ(Sx) if x ∈A�

μ(A\Sx) otherwise�
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Since x < x′ for all x′ ∈ Sx and μ(Sx) > 0, it follows that μ strictly first-order stochastically
dominates μ′. Finally, note that

U (μ�w) ≤
∫

u ◦w(x)μ(dx) −C
(
μ′)< ∫

u ◦w(x)μ′(dx) −C
(
μ′) = U

(
μ′�w

)
�

where the weak inequality follows from Assumption 1 and the fact that μ first-
order stochastically dominates μ′ and the strict inequality follows because w(x) >
w(x′) for each x′ ∈ Sx and μ(Sx) > 0. This inequality chain implies that U (μ�w) <
supμ′∈MU (μ′�w), that is, μ is not w-IC, a contradiction. Q.E.D.

Note that Proposition 1 does not rule out that the agent’s wage is non-monotone over
outputs that never arise under the implemented distribution. Nevertheless, it turns out
that one can adjust the agent’s wage following those outputs so as to make it monotone
without impacting incentives. We refer the reader to the Appendix for the formal state-
ment and proof.

3.2. Implementability

Next, we explore the consequences of Assumption 2. The following lemma develops
a notion of the first-order approach based on Gateaux differentiability. In particular, it
proves necessity and sufficiency of a first-order condition for maximization. The first-
order approach is then applied to characterize the agent’s optimal distribution for a given
wage contract. In turn, this leads to our main result: each distribution can be implemented
and the corresponding wage scheme is determined by the aforementioned first-order con-
dition.10

To understand how the statement of the next lemma is related to the first-order
condition familiar from one-dimensional calculus, consider the problem of maximiz-
ing vx − c(x) on [0�1], where v ∈ R+, and c is a convex, differentiable function. Then
x∗ ∈ (0�1) solves this problem if and only if it satisfies the first-order condition v = c′(x∗).
An equivalent way of stating it is that x∗ ∈ (0�1) solves the problem if and only if x∗

also solves maxx∈[0�1][vx− c′(x∗)x]. In what follows, we generalize this latter condition for
Gateaux differentiable cost functions.

LEMMA 1: For a bounded and measureable v :X → R, and μ∗ ∈M,

μ∗ ∈ arg max
μ∈M

∫
v(x)μ(dx) −C(μ)

if, and only if,

μ∗ ∈ arg max
μ∈M

∫ (
v(x) − cμ∗ (x)

)
μ(dx)�

We note that the convexity of the function C plays a role only in the “if” part of the
proof. That is, the first-order condition would be necessary even if C was not convex.11

10Recall that Theorem 1 only states that, absent Assumption 2, the set of implementable distributions is
dense.

11 We also note that an identical proof shows the lemma continues to hold if one replaces M with any convex
subset, M̄ ⊆ M.
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PROOF: We first prove that the first-order condition is necessary. Fix any μ̃ ∈ M.
For all ε ∈ (0�1), define με := μ∗ + ε(μ̃ − μ∗), which is in the convex set M. If μ∗ ∈
arg maxμ∈M[

∫
v(x)μ(dx) −C(μ)], then

0 ≥ 1
ε

[∫
v(x)

(
με −μ∗)(dx)

]
− 1

ε

[
C(με) −C

(
μ∗)]

=
∫

v(x)
(
μ̃−μ∗)(dx) − 1

ε

[
C(με) −C

(
μ∗)]�

where the inequality follows from μ∗ being a maximizer and the equality is implied by the
definition of με. Observe that, since C is Gateaux differentiable at μ∗, the last expression
of the previous displayed inequality chain converges to∫ [

v(x) − cμ∗ (x)
](
μ̃−μ∗)(dx)�

as ε goes to zero.
We now show that the first-order condition is sufficient when C is convex. To that end,

we first claim that

C(μ) −C
(
μ∗) ≥

∫
cμ∗ (x)

(
μ−μ∗)(dx) (5)

holds for all μ. To prove this inequality, note that the convexity of C means that

1
ε

[
C

(
μ∗ + ε

(
μ−μ∗)) −C

(
μ∗)]

is decreasing in ε ∈ (0�1). Letting (εn)n∈N be a decreasing sequence in (0�1) converging
to zero, we have

C(μ) −C
(
μ∗) ≥ 1

εn

[
C

(
μ∗ + εn

(
μ−μ∗)) −C

(
μ∗)] n→∞−−→

∫
cμ∗ d

(
μ−μ∗)�

Therefore, if μ∗ satisfies the first-order condition, the following must hold for every μ:

0 ≥
∫

(v− cμ∗)(x)
(
μ−μ∗)(dx) ≥

∫
v(x)

(
μ−μ∗)(dx) − [

C(μ) −C
(
μ∗)]�

where the first inequality follows from the fact that μ∗ satisfies the first-order condi-
tion, that is, μ∗ ∈ arg maxμ∈M[

∫
(v(x) − cμ∗ (x))μ(dx)]. The second inequality is just (5).

Finally, the previous inequality chain implies μ∗ ∈ arg maxμ∈M[
∫
v(x)μ(dx) − C(μ)].

Q.E.D.

Next, we apply the previous lemma to the agent’s problem of choosing a distribution.
To this end, for each μ ∈ M, let m∗(μ) = inf{m : minx∈X cμ(x) + m ≥ 0}. and for each
m ≥m∗(μ), define

wμ�m(x) := u−1
(
cμ(x) +m

)
�

The next proposition states that the wage contract wμ�m implements μ for each m ≥m∗.
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PROPOSITION 2: Suppose that C satisfies Assumption 2. Then, the measure μ ∈ M is
w-IC if, and only if,

w(x)

{
= wμ�m(x) if x ∈ Y�

≤ wμ�m(x) otherwise,

holds for some m ≥m∗(μ) and some Y ⊆ X with μ(Y ) = 1.

PROOF: Observe that the agent’s objective,
∫
u ◦ w(x)μ(dx) − C(μ′), is concave and

Gateaux differentiable in μ′. Therefore, Lemma 1 implies that μ is w-IC if and only if μ
satisfies the agent’s first-order condition, that is, μ solves

max
μ′

∫ (
u ◦w(x) − cμ(x)

)
μ′(dx)�

which is equivalent to [u ◦ w(x) − cμ(x)] ≤ supx∈X[u ◦ w(x) − cμ(x)] =: m holding with
equality μ-almost surely. The proposition follows from rearranging this inequality and
noting that u−1 is strictly increasing. Finally, note that m ≥ m∗(μ) must hold because of
limited liability. Q.E.D.

We now show that the previous proposition implies that every μ ∈ M can be imple-
mented, and that the contract

w∗
μ :=wμ�m∗(μ)

is a cost-minimizing contract among those that implement μ.12

COROLLARY 1: Suppose C satisfies Assumption 2, and fix any μ ∈ M. Then μ is w∗
μ-IC.

Moreover, for any other w ∈W for which μ is w-IC, w ≥ w∗
μ holds μ-almost surely.

We point out that the cost-minimizing wage scheme implementing any μ is uniquely
determined μ-almost everywhere. For sets that arise with zero probability under μ, the
cost-minimizing contract can be defined arbitrarily as long as it is weakly smaller than w∗

μ.

PROOF: That μ is w∗
μ-IC follows immediately from Proposition 2. The same proposi-

tion also implies that for every w ∈ W for which μ is w-IC, there exists some m ≥ m∗(μ)
such that w = wμ�m μ-almost surely. Since wμ�m(x) = u−1(cμ(x) + m), m ≥ m∗(μ), and
u−1 is strictly increasing, it follows that wμ�m ≥wμ�m∗(μ) =w∗

μ. Q.E.D.

To conclude this section, we consider what happens when the cost function C satisfies
both Assumptions 1 and 2. We show that, in this case, w∗

μ is increasing, and so one can
obtain a more explicit characterization of a cost-minimizing contract.

COROLLARY 2: Suppose C satisfies Assumptions 1 and 2. Then,

w∗
μ(x) = u−1

(
cμ(x)

)
is a cost-minimizing contract among those that implement μ. Moreover, w∗

μ is increasing
everywhere.

12Note that w∗
μ is well-defined, because X is compact, cμ is continuous, and u is a continuous, unbounded,

and strictly increasing function satisfying u(0) = 0.
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PROOF: We first note that Assumption 1 implies that cμ is increasing (see, e.g., Cerreia-
Vioglio, Maccheroni, and Marinacci (2017)). Since u−1 is also increasing, u−1(cμ(x) +
m) ≥ 0 if and only if this inequality holds at x = 0. Therefore, the normalizations, u(0) = 0
and cμ(x) = 0, imply that m∗

μ = 0. Consequently, w∗
μ(x) = u−1(cμ(x)) and this function is

increasing. Q.E.D.

We now revisit the example of Section 2 and compute the cost-minimizing wage con-
tract for each distribution. We also show that in the special case where the agent’s
marginal cost is constant (i.e., cμ does not depend on μ), the cost-minimizing wage does
not depend on the implemented distribution.

EXAMPLE 2—continued: Recall that the agent’s cost function is defined by (3) and
its Gateaux derivative is given by (4). Moreover, this cost function is monotone. There-
fore, an immediate consequence of the previous corollary is that, for each μ, the cost-
minimizing wage is given by the following equation:

w∗
μ(x) = u−1

(
K′

(∫
c(y)μ(dy)

)
c(x)

)
� (6)

This equation has some interesting implications in the special case where the agent’s
marginal cost is constant and equal to 1, that is, the function K is the identity function,

K(x) = x�

In this case, K′ = 1, and so equation (6) simplifies to w∗
μ(x) = u−1(c(x)) for all output

distributions. In other words, this wage scheme is the cost-minimizing one for each distri-
bution. Notice this contract results in the agent getting a net utility of zero regardless of
the output, since

u
(
w∗

μ(x)
) − c(x) = u

(
u−1

(
c(x)

)) − c(x) = 0�

More generally, the above indifference holds whenever K is affine. For non-affine K, the
cost-minimizing contract w∗

μ depends on μ through equation (4), and gives the agent pos-
itive rents. To see why the agent’s rents are positive, suppose K(0) = 0, which is without
loss (one can always subtract K(0) from K without changing the analysis). For every dis-
tribution μ, let Iμ := ∫

cμ(x)μ(dx). Then the agent’s expected utility from distribution μ
under the contract w∗

μ defined in equation (4) can be written as

∫
u
(
w∗

μ(x)
)
μ(dx) −C(μ) =K′(Iμ)Iμ −K(Iμ) =

∫ Iμ

0

[
K′(Iμ) −K′(z)

]
dz�

which is strictly larger than zero whenever K is non-affine on the interval [0� Iμ].

4. PROFIT MAXIMIZATION

In this section, we turn our attention to the principal’s problem of finding the profit-
maximizing distribution and the corresponding contract. We assume the principal’s payoff
is x−w if output is x and she pays wage w to the agent, and that she is an expected payoff-
maximizer. We first make a further assumption on the cost function C which roughly re-
quires it to be twice differentiable. Then we show that a consequence of this assumption is
that the principal’s profit as a function of the implemented distribution μ is also Gateaux



398 G. GEORGIADIS, D. RAVID, AND B. SZENTES

differentiable, and characterize a first-order condition corresponding to the principal’s
problem. Finally, we illustrate how this first-order condition can be used to make mean-
ingful statements about the principal-optimal distribution and contract.

Let us now state the aforementioned assumption which essentially requires the Gateaux
derivative of C to be Gateaux differentiable.

ASSUMPTION 3: The cost function is Gateaux differentiable, with μ �→ cμ(·) being weak*-
to-supnorm continuous. Moreover, for every μ, a continuous function hμ :X ×X → R exists
such that for all μ̃ ∈M,

lim
ε↘0

1
ε

[
cμ+ε(μ̃−μ) (·) − cμ(·)] =

∫
hμ(·� y)(μ̃−μ)(dy)�

where convergence is according to the sup norm, ‖ · ‖∞.

We now describe the problem of a profit-maximizing principal. In order to maximize her
profit, the principal chooses an output distribution and a wage contract which implements
it. Formally, the principal’s program can be written as

max
μ∈M�w∈W

∫ [
x−w(x)

]
μ(dx)� subject to μ is w-IC�

Of course, if a pair (μ�w) solves this problem, then the wage scheme w is cost-minimizing
among those that implement μ. For each μ ∈ M, let W (μ) be the expected cost-
minimizing wage implementing μ.13 Then, the principal’s program can be rewritten as

max
μ∈M

[∫
xμ(dx) −W (μ)

]
� (7)

We call a distribution μ∗ principal-optimal if it solves this maximization problem.
We aim to provide a partial characterization of a principal-optimal distribution in two

steps. First, we compute the Gateaux derivative of the function W . And second, we appeal
to Lemma 1 to derive a necessary first-order condition for μ to be principal-optimal.

To this end, suppose u is a continuously differentiable function with a strictly positive
derivative, and define the function κ∗

μ :X →R as follows:

κ∗
μ(x) =

∫
hμ(y�x)
u′(w∗

μ(y)
)μ(dy)�

To interpret κ∗
μ, note that hμ(y�x) represents the change in the marginal cost of produc-

ing output y associated with a slight increase in the probability of output x. Multiplying
hμ(y�x) by the ratio 1/u′(w∗

μ(y)) converts the change in the agent’s marginal cost to a
change in the agent’s monetary wage. Thus, κμ(x) gives the marginal change in the agent’s
expected compensation associated with an increase in the probability of output x.

The next theorem describes the Gateaux derivative of the principal’s expected-wage
payments under the cost-minimizing contract as a function of the induced output distri-
bution.

13Recall that, by Corollary 2, W (μ) = ∫
[w∗

μ(x)]μ(dx).
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LEMMA 2: Suppose C satisfies Assumptions 1 and 3 and u is a continuously differentiable
function with a strictly positive derivative. Then the function W is continuous and Gateaux
differentiable with derivative

w∗
μ(x) + κ∗

μ(x)�

Each term in the Gateaux derivative, w∗
μ(x) + κ∗

μ(x), expresses a different force that
impacts the principal’s expected payments when she shifts the implemented output distri-
bution away from μ. The first term, w∗

μ(x), is the wage the agent receives when generat-
ing an output of x. The second term, κ∗

μ(x), expresses the impact on the agent’s expected
compensation due to the change in the cost-minimizing contract that arises from changing
the probability of output x.

We are now ready to characterize the first-order condition describing a principal-
optimal distribution. Recall that Lemma 1 developed a first-order approach for a class
of maximization problems. Substituting v(x) = x and C(μ) = W (μ) into the statement of
the lemma, and noting that W is Gateaux differentiable (by Lemma 2), it becomes clear
that the “if” part of the statement of Lemma 1 is applicable to the principal’s profit maxi-
mization problem (7). Since W may not be convex, the “only if” part is not applicable, so
the following theorem provides only a necessary condition for optimality.

THEOREM 2: Suppose C satisfies Assumptions 1 and 3, and that u is a continuously dif-
ferentiable function with a strictly positive derivative. Then, a principal-optimal μ∗ exists and

suppμ∗ ⊆ arg max
x∈X

[
πμ∗ (x)

]
� (8)

where πμ(x) := x−w∗
μ(x) − κ∗

μ(x).

PROOF: Note that, by Lemma 2, the principal’s objective function in (7) is continuous.
Since the domain M is compact, the existence of a principal-optimal distribution follows.
As mentioned above, equation (8) is implied by the “if” part of the statement by Lemma 1.

Q.E.D.

Let us return to Example 2 to illustrate how to compute the derivative of the principal’s
expected profit for each distribution.

EXAMPLE 2—continued: Recall that C is given by (3) and that we have already char-
acterized w∗

μ in equation (6). By the previous theorem, in order to derive the derivative
of the principal’s expected profit, it remains to compute κ∗

μ. To this end, assume that K is
twice continuously differentiable. Then C also satisfies Assumption 3, where

hμ(x� y) =K′′
(∫

c(z)μ(dz)
)
c(x)c(y)�

Furthermore, whenever u is continuously differentiable with a strictly positive derivative,

κ∗
μ(x) =K′′

(∫
c(z)μ(dz)

)[∫
c(y)

u′(w∗
μ(y)

)μ(dy)
]
c(x)� (9)
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Let us now return to the general analysis and demonstrate that the condition in (8)
can be used to deduce properties of the principal’s optimal distribution and the corre-
sponding wage contract. Observe that this condition depends on the function πμ, which
we characterized in terms of the agent’s utility function u and cost function C. The next
corollary establishes relationships between the shape of πμ and the support of the optimal
distribution.

COROLLARY 3: Suppose Assumptions 1 and 3 hold, X = [x�x], and that u is a continu-
ously differentiable function with a strictly positive derivative.

(i) If πμ is strictly quasiconcave for every μ with more than one output, the principal-
optimal distribution has at most one output in its support.

(ii) If πμ is strictly quasiconvex for every μ that includes some non-extreme output x ∈
(x� x̄) in its support, the principal-optimal distribution is supported on {x� x̄}.

(iii) If wμ + κμ is a non-affine analytic function whenever μ is not discrete, the principal-
optimal distribution is discrete.

PROOF: As explained above, if μ is principal-optimal, it must be supported on the set
of outputs that maximize πμ. Part (i) then follows from observing that this set can have at
most one output whenever πμ is strictly quasiconcave. Part (ii) follows from noting that
a strictly quasiconvex function over a compact interval is maximized at the interval’s end
points. For part (iii), observe that wμ +κμ being a non-affine analytic function means the
function x �→ [πμ(x) − maxπμ(X)] is a non-zero analytical function. Therefore, by the
identity theorem, the set

arg max
x∈X

[
πμ(x)

] = {
x ∈X : πμ − maxπμ(X) = 0

}
cannot have any accumulation points in (x� x̄). The conclusion follows. Q.E.D.

Let us illustrate each part of the previous corollary by considering various specifications
of Example 2.

EXAMPLE 2—continued: Note that Theorem 2 implies the derivative of the principal’s
expected profit is πμ(x) = x−w∗

μ(x) − κ∗
μ(x), where w∗

μ and κ∗
μ are given by (6) and (9),

respectively. Suppose X is an interval, the agent is risk neutral, and u(x) = x, so u′(·) = 1.
Then if c is strictly convex, πμ is strictly concave (hence strictly quasiconcave), and so part
(i) implies it is always optimal to induce a single output. If c is strictly concave instead,
part (ii) implies the principal-optimal distribution has at most two outputs, because πμ is
strictly (quasi-)convex. Finally, if we replace the convexity or concavity assumptions with
the postulate that c is a non-affine analytic function, the same holds for πμ, in which case
the principal-optimal distribution must be discrete by part (iii).

Corollary 3 is particularly useful when either part (i) or part (ii) holds. In these cases,
the principal’s program reduces to a one-dimensional optimization problem. To see this,
suppose first that Corollary 3’s assumptions hold and that πμ is strictly quasiconcave for
every μ. By Corollary 3, the principal-optimal distribution has only one output. Letting
δx be the distribution generating output x with probability 1, it follows that the principal-
optimal output distribution must solve

max
x∈X

[
x−wδx (x)

]
� (10)
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Suppose now instead that πμ is strictly quasiconvex for every μ. Applying Corollary 4, the
principal-optimal distribution takes the form μp := pδx̄ + (1 − p)δx for some p ∈ [0�1],
and so one can write the principal’s problem as

max
p∈[0�1]

[
(1 −p)x+px̄−pwμp (x̄)

]
�14 (11)

Hence, the principal’s problem reduces to finding the optimal probability p with which
to generate the highest output, just as in the binary output example.

Finally, we reconsider our running example with a risk-averse agent.

EXAMPLE 2—continued: Suppose X = [0� x̄], c(x) = xγ , K(a) = a1+λ/(1 + λ), and
u(y) = yρ for γ, λ, and ρ all strictly positive, and ρ < 1. In this case, simple algebra reveals
that w∗

μ(x) equals a positive constant times xγ/ρ, whereas κ∗
μ(x) is some positive constant

times xγ , with both constants being strictly positive whenever μ �= δ0. Hence, if γ ≤ ρ,
πμ(x) = x− (w∗

μ(x) + κ∗
μ(x)) is strictly convex for all μ �= δ0, and so (by Corollary 3, part

(ii)) the optimal distribution takes the form μp = pδx̄ + (1−p)δ0, where p solves the pro-
gram detailed in (11). If x̄ = 1, then wμp (0) = 0 and wμp (1) = pλ/ρ, and so the principal’s
program becomes

max
p∈[0�1]

[
p−p

λ+ρ
ρ

]
�

Clearly, the above objective is concave, and so one can solve for the optimal p using the
principal’s first-order condition, the solution to which is

p∗ =
[

ρ

λ+ ρ

] ρ
λ

�

If γ ≥ 1 > ρ, πμ is strictly concave, and so part (i) of Corollary 3 implies the optimal
distribution induces a single output x∗, which is determined by the program in (10). The
objective in this program is given by x − x

γ
ρ (1+λ) . Since γ > ρ and λ > 0, this objective is

strictly concave, and so the optimal x∗ is equal to the lower of x̄ and the solution to the
first-order condition; that is, x∗ = min{x̄� [ρ/γ(1 + λ)]ρ/[γ(1+λ)−ρ]}.

Finally, if ρ < γ < 1, πμ is neither always concave nor always convex. However, it is
apparent that the function w∗

μ + κ∗
μ is a non-affine analytical function whenever μ assigns

positive probability to any output strictly larger than 0. As such, one can apply part (iii) of
Corollary 3 to obtain that, in this case, the principal-optimal distribution must be discrete.

5. CONCLUSION

Our goal in this paper was to explore the consequences of the agent’s flexibility in gen-
erating output distributions in moral hazard problems. We emphasize that our model is
stylized and abstracts from many constraints agents may face in applications. We recog-
nize that, in practice, agents may have only limited flexibility of generating output. In fact,
some output distributions may not be feasible even if it is first-order stochastically domi-
nated by a feasible one. That is, such distributions would be infinitely costly, so even our
monotonicity assumption would not necessarily hold.

14Recall wμ(x) = u−1
(
cμ(x)

) = u−1(0) = 0.
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We now discuss the degree to which our analysis applies to models where the agent is
restricted to using a convex set M̄⊆M of distribution. As noted in footnote 11, replacing
M with M̄ does not alter the validity of Lemma 1. Therefore, one can still use the lemma
to characterize the wage-schemes that implement any given distribution μ. The applica-
bility of the rest of our logic, however, depends on M̄ and the target distribution μ. For
example, for the results of Section 3, we only need local flexibility.15 Our logic also applies
(with some minor modifications) to some cases without local flexibility. For a demonstra-
tion, suppose the agent faces a lower bound on the probability of each event.16 In this
case, one can apply our logic by reformulating the problem: instead of viewing the agent
as choosing from a constrained set of distributions, think of the agent as flexibly choosing
how to allocate the excess probability above the lower bound. With this formulation in
hand, one can replicate our analysis with the obvious modifications. Nevertheless, there
are many restrictions on which our analysis remains silent. For instance, one cannot use
our tools in most specifications of the Holmström (1979) model.

Throughout the paper, we assumed the agent has limited liability. Instead, the litera-
ture on moral hazard often considers an outside option. In what follows, we explain how
our results change if contracts are subject to a participation constraint but the agent has
deep pockets.17 Recall that the characterization of incentive-compatible contracts, Propo-
sition 2, does not depend on such constraints and it states that these contracts differ only
by a constant. The limited-liability constraint then pinned down the value of this constant
at the cost-minimizing wage scheme; see Corollary 2. If the agent has an outside option
but no limited liability, then the constant is determined by the binding participation con-
straint. Therefore, a key determinant of optimal contracts is still the Gateaux derivative
of the implemented distribution.

Our analysis is based on a generalized notion of the first-order approach. We demon-
strated that, unlike in the classical model, the cost-minimizing contract is not motivated by
the information content of the output regarding the target distribution. Instead, optimal
contracts are constructed so that the target distribution satisfies a simple first-order con-
dition which equates the agent’s marginal cost of changing the distribution locally with
its marginal benefit. We also showed that optimal wage contracts are monotone when-
ever the agent’s cost function is increasing in first-order stochastic dominance. Finally,
we applied our first-order approach to the principal’s profit maximization problem and
provided a partial characterization of principal-optimal output distributions.

APPENDIX: PROOFS APPENDIX

PROOF OF THEOREM 1: We begin with some notation. Let F̄ be the set of CDFs over
X̄ = coX = [x� x̄], endowed with the topology of convergence in distribution, and M̄ the
set of Borel measures over X̄ , endowed with its weak* topology. It is well known that the
mapping taking every F ∈ F to its induced measure μF—that is, the measure such that
μF [0�x] = F (x) for all x—is a linear homeomorphism between F̄ and M̄. By Theorem 1
of Wang (1993), F̄ can be viewed as a subspace of the Banach space L2(X̄�λ), where λ is

15That is, μ and M̄ must be such that, for every distribution μ′ ∈ M, some ε > 0 exists for which μ+ ε(μ′ −
μ) ∈ M̄ is feasible.

16Specifically, there is some μ ∈ M and some b ∈ (0�1) such that M̄ ={μ ∈ M : μ≥ bμ}.
17To formally accommodate this change, one must redefine the agent’s utility u to take negative wages, and

assume it is unbounded both from above and from below.
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the Lebesgue measure. Let F be the set of CDFs whose support is contained in X , and
define the function

Ĉ :L2(X̄�λ) →R∪{∞}�

φ �→
{
C(μφ) if φ ∈F�

∞ otherwise.

Given a CDF F ∈F , define the subdifferential of Ĉ at F as

∂Ĉ(F) =
{
φ ∈ L2(X̄�λ) : Ĉ(ϕ) ≥ Ĉ(F) +

∫
φ(x)(ϕ− F)(x)λ(dx)∀ϕ ∈L2(X̄�λ)

}
�

In general, ∂Ĉ might be empty. Let FI = {F ∈ F̄ : ∂Ĉ(F) �= ∅} be the set of all CDFs at
which ∂Ĉ is non-empty. Since F is convex, and C is convex and continuous, it follows Ĉ is
convex and lower semicontinuous. Noting Ĉ is also proper, it follows from the Brondsted–
Rockafellar theorem (Brøndsted and Tyrrell Rockafellar (1965)) that FI is dense in F .

Given μ ∈ M, define Fμ to be the CDF such that μFμ = μ. To conclude the proof, we
argue μ is implementable whenever Fμ ∈ FI (observe this set is dense due to F and M
being homeomorphic). Indeed, let φ ∈ ∂Ĉ(Fμ), and define �(x) := ∫ x

0 φ(x̃)dx̃, where the
integral is viewed as a Riemann–Stieltjes integral. Note

w(x) := u−1
(
max�(X) −�(x)

)
is well-defined because max�(X) −�(x) ∈ u(R+) for all x. Then, for every μ′ ∈M,

C
(
μ′) = Ĉ(Fμ′) ≥ Ĉ(Fμ) +

∫
φ(x)(Fμ′ − Fμ)(x) dx

= Ĉ(Fμ) −
∫

(Fμ′ − Fμ)(x)�(dx)

= Ĉ(Fμ) −
∫

�(x)(Fμ′ − Fμ)(dx)

= C(μ) +
∫

(−�)(x)
(
μ′ −μ

)
(dx)�

where the inequality follows from φ ∈ ∂Ĉ(Fμ), and the penultimate equality follows from
integration by parts. Thus, we have

μ ∈ arg max
μ′∈M

∫
(−�)(x)μ′(dx) −C

(
μ′)

= arg max
μ′∈M

∫ (
max�(X) −�

)
(x)μ′(dx) −C

(
μ′)

= arg max
μ′∈M

∫
u
(
w(x)

)
μ′(dx) −C

(
μ′)�

as required. Q.E.D.
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PROOF OF LEMMA 2: Observe first that, by Corollary 2, W (μ) = ∫
[w∗

μ(x)]μ(dx). We
begin by showing that

μ �→
∫

w∗
μ(x)μ(dx) =

∫
u−1 ◦ cμ(x)μ(dx)

is continuous. To this end, take any sequence (μn)n∈N that converges to some limit μ∞.
We first claim that

lim
n→∞

∥∥w∗
μn

−w∗
μ∞

∥∥
∞ = 0� (12)

To prove this claim, fix some ε > 0, take T := [min cμ∞ (X) − ε�max cμ∞ (X) + ε], and let
S := u−1(T ) = [u−1(min cμ∞ (X) − ε)�u−1(max cμ∞ (X) + ε)]. Note that because u has a
continuous and strictly positive derivative, b̄ := mins∈S[u′(s)] is well-defined and strictly
positive, and so one can apply the Inverse Function Theorem to obtain that, for all t ∈ T ,
du−1

dt (t) = 1
u′(u−1(t)) is well-defined, strictly positive, and bounded from above by b̄. There-

fore, the Mean Value Theorem implies that∣∣u−1(t) − u−1
(
t ′
)∣∣ ≤ b̄

∣∣t − t ′
∣∣ for all t� t ′ ∈ T� (13)

To conclude the proof of the claim, fix some η< min{ε� ε/b̄}. By Assumption 3, an N ∈N

exists such that ‖cμn − cμ∞‖∞ < η for all n > N . Therefore, all such n, cμn (x) must be in
T for all x ∈ X , and∥∥w∗

μn
−w∗

μ∞
∥∥

∞ = ∥∥u−1(cμn) − u1(cμ∞)
∥∥

∞ ≤ b̄‖cμn − cμ∞‖ ≤ b̄η < ε�

where the first inequality follows from (13), and the last from choice of η. Since ε was
arbitrary, we have proven the claim that (12) holds.

Armed with (12), one can prove
∫
w∗

μ(x)μn(dx)
n→∞−−→ ∫

w∗
μ∞ (x)μ∞(dx) using the fol-

lowing inequality chain:∣∣∣∣
∫

w∗
μn

(x)μn(dx) −
∫

w∗
μ∞ (x)μ∞(dx)

∣∣∣∣
≤

∣∣∣∣
∫ [

w∗
μn

(x) −w∗
μ∞ (x)

]
μ∞(dx)

∣∣∣∣ +
∣∣∣∣
∫

w∗
μ∞ (x)(μn −μ∞)(dx)

∣∣∣∣
+

∣∣∣∣
∫ [

w∗
μn

(x) −w∗
μ∞ (x)

]
(μn −μ∞)(dx)

∣∣∣∣
≤

∫ ∣∣w∗
μn

(x) −w∗
μ∞ (x)

∣∣μ∞(dx) +
∫ ∣∣w∗

μ∞ (x)
∣∣(μn −μ∞)(dx)

+
∫ ∣∣w∗

μn
(x) −w∗

μ∞ (x)
∣∣(μn −μ∞)(dx)

n→∞−−→ 0�

where convergence of the first and third term follows from (12), and convergence of the
middle term follows from μn → μ∞ and |w∗

μ∞ (·)| being continuous.
Next, we prove that μ �→ ∫

w∗
μ(x)μ(dx) is a Gateaux differentiable function admitting

w∗
μ + κ∗

μ(x) as its derivative. To this end, fix some μ̃ ∈ M, and let με = μ + ε(μ̃ − μ).
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Observe

1
ε

[∫
w∗

με
(x)με(dx) −

∫
w∗

μ(x)μ(dx)
]

=
∫

w∗
μ(x)(μ̃−μ)(dx) +

∫
1
ε

[
w∗

με
−w∗

μ

]
(x)μ(dx)

+
∫ [

w∗
με

−w∗
μ

]
(x)(μ̃−μ)(dx)�

Since the last term converges to zero as ε ↘ 0 by continuity of w∗
μ, it is enough to show

that

lim
ε↘0

∫
1
ε

[
w∗

με
−w∗

μ

]
(x)μ(dx) =

∫
κ∗
μ(y)(μ̃−μ)(dy)�

We now argue that, to show the above equality, it is sufficient to find a function φ :X → R

that is integrable with respect to (μ̃ − μ), and an ε̄ ∈ (0�1) such that |w∗
με

− w∗
μ| ≤ φ for

all ε ∈ (0� ε̄). To see why, note limε↘0 ‖cμε (x) − cμ(x)‖∞ = 0 holds by Assumption 3, and
so

lim
ε↘0

(
u−1

(
cμε (x)

) − u−1
(
cμ(x)

)
cμε (x) − cμ(x)

)
= 1

u′ ◦ u−1
(
cμ(x)

) = 1
u′(w∗

μ(x)
) �

It follows that, for every x,

lim
ε↘0

1
ε

(
w∗

με
(x) −w∗

μ(x)
) = lim

ε↘0

1
ε

(
cμε (x) − cμ(x)

)(u−1
(
cμε (x)

) − u−1
(
cμ(x)

)
cμε (x) − cμ(x)

)

=
∫

hμ(x� y)
u′(w∗

μ(x)
) (μ̃−μ)(dy)�

Therefore, if a function φ as described above exists, the Lebesgue Dominated Conver-
gence Theorem would imply that

lim
ε↘0

∫
1
ε

[
w∗

με
−w∗

μ

]
(x)μ(dx) =

∫
lim
ε↘0

1
ε

[
w∗

με
−w∗

μ

]
(x)μ(dx)

=
∫

hμ(x� y)
u′(w∗

μ(x)
) (μ̃−μ)(dy)μ(dx)

=
∫

hμ(x� y)
u′(w∗

μ(x)
)μ(dx)(μ̃−μ)(dy) =

∫
κ∗
μ(y)(μ̃−μ)(dy)�

as required.
We now find such a φ. Fix some η > 0, and note that Assumption 3 implies there is

some ε̄ ∈ (0�1) such that, for all ε ∈ (0� ε̄) and all x,

∣∣cμε (x) − cμ(x)
∣∣ ≤

∣∣∣∣
∫

hμ(x� y)(μ̃−μ)(dy)
∣∣∣∣ +η�
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Let

c̄ = max
x∈X

[
cμ(x) +

∣∣∣∣
∫

hμ(x� y)(μ̃−μ)(dy)
∣∣∣∣
]
�

and take

b= max
y∈[0�c̄+η]

(
u−1

)′
(y) = max

y∈[0�c̄+η]

1
u′ ◦ u−1(y)

�

which is finite and strictly positive, because u−1 is continuous and u′ is strictly positive and
continuous. Observe that, for every ε < ε̄, and every x, the Mean Value Theorem implies
there is some a ∈ co{cμ(x)� cμε (x)}⊆ [0� c̄ +η] such that

u−1
(
cμε (x)

) − u−1
(
cμ(x)

)
cμε (x) − cμ(x)

= (
u−1

)′
(a) ≤ b�

Therefore, for all ε < ε̄ and every x,

∣∣∣∣1
ε

(
w∗

με
(x) −w∗

μ(x)
)∣∣∣∣ =

∣∣∣∣1
ε

(
cμε (x) − cμ(x)

)(u−1
(
cμε (x)

) − u−1
(
cμ(x)

)
cμε (x) − cμ(x)

)∣∣∣∣
≤ 1

ε

∣∣cμε (x) − cμ(x)
∣∣∣∣∣∣u

−1
(
cμε (x)

) − u−1
(
cμ(x)

)
cμε (x) − cμ(x)

∣∣∣∣
≤ b

ε

∣∣cμε (x) − cμ(x)
∣∣ ≤ b

(∫
hμ(x� y)(μ̃−μ)(dy)

)
+η�

Thus, setting φ(x) = η + ∫
bhμ(x� y)(μ̃ − μ)(dy) gives the desired function. This con-

cludes the proof. Q.E.D.

Monotonicity of Gateaux Derivative. Next, we prove a result that is required for gener-
alizing Corollary 2 for the case in which Assumption 2 is relaxed to make cμ bounded and
measurable (see footnote 8 in the main text).

LEMMA 3: Suppose C : M → R is such that, for every μ, there is a bounded measurable
function cμ : [0�1] →R and

lim
ε↓0

1
ε

[
C

(
μ+ ε

(
μ′ −μ

)) −C(μ)
] =

∫
cμ(x)

(
μ′ −μ

)
(dx)

for all μ′ ∈M. If C also satisfies Assumption 1, then cμ is increasing.

PROOF: Fix any y� z ∈ X such that y > z. Observe that, for any ε ∈ [0�1], the distribu-
tion με�y := μ + ε(δy − μ) first-order dominates με�z := μ + ε(δz − μ), where δy and δz

are the distributions that respectively generate the outputs y and z for sure. We therefore
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obtain the following inequality chain:

0 ≤ 1
ε

[
C(με�y) −C(με�z)

]
= 1

ε

[
C(με�y) −C(μ)

] + 1
ε

[
C(μ) −C(με�z)

]
ε↘0−−→

∫
cμ(x)(δy −μ)(dx) −

∫
cμ(x)(δz −μ)(dx)

=
∫

cμ(x)(δy − δz)(dx) = cμ(y) − cμ(z)�

The result follows. Q.E.D.

Increasing Wages Without Differentiability. Proposition 1 shows that, under Assump-
tion 1, (w�μ) is IC only if the wage w is μ-increasing. This result leaves open the possibil-
ity that the wage is non-increasing in outputs that never arise under μ. Corollary 2 shows
one can close this gap if C also satisfies Assumption 2. This part of the Appendix closes
this gap without using Assumption 2. Specifically, we prove the following theorem.

THEOREM 3: Suppose (w�μ) is IC and C satisfies Assumption 1. Then a w̄ ∈ W exists
such that w̄ is increasing, w̄ =w μ-almost surely, and (w̄�μ) is IC.

Before proving the theorem, we present the following lemma, which generalizes Propo-
sition 1. In what follows, all measurability statements are made with respect to the Borel
σ-algebra.

LEMMA 4: Suppose Assumption 1 holds and (w�μ) is IC. Let f :X → X be a measurable
function such that f (x) ≤ x for all x. Then w(x) ≥w(f (x)) μ-almost surely.

PROOF: By way of contradiction, suppose μ{x :w(x) <w(f (x))}> 0. Define

g(x) =
{
x if w(x) ≥ w

(
f (x)

)
�

f (x) if w(x) <w
(
f (x)

)
�

Note that w and f are measurable, and so g is measurable as well. Let ν := μ ◦ g−1 be the
push-forward measure of g—that is, for every Borel Y ⊂ X , ν(Y ) = μ(g−1(Y )). Since μ
first-order stochastically dominates ν, C(ν) ≤ C(μ). Moreover,∫

w(x)(ν −μ)(dx) =
∫ (

w
(
g(x)

) −w(x)
)
μ(dx) > 0�

where the strict inequality follows from our contradiction assumption. Thus, we have that∫
w(x)ν(dx) −C(ν) >

∫
w(x)μ(dx) −C(μ)�

which contradicts (w�μ) being IC. Q.E.D.
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Define the function w̄ :X → R+ via

w̄(x) := supw
(
{y ∈ X : y ≤ x}

)
�

Note w̄ is increasing, and therefore measurable. Moreover, because w is bounded, w̄ is
bounded as well.

LEMMA 5: For every ν ∈M and every ε > 0, a measurable function f :X → X exists such
that f (x) ≤ x for all x, and w ◦ f (x) ≥ [w̄(x) − ε] ν-almost surely.

PROOF: Fix ε > 0. Define g1 : X ×X → R
2 via g1(x� y) = (w̄(x)�w(y)), and g2 : R2 →

R via g(a�b) = 1b≥(a−ε) . Note g1 and g2 are both (Borel) measurable, and so h(x� y) =
g2 ◦ g1(x� y) is a measurable function from X ×X to R.

Define the correspondence H :X ⇒X via

H(x) = {
y :w(y) ≥ w̄(x) − ε

} = {
y : (x� y) ∈ h−1(1)

}
�

Notice that graph(H) = h−1(1), which is a measurable subset of X × X . Therefore, H
has a measurable graph. By Aliprantis and Border (2006), Corollary 18.26, a measurable
function f : X → X exists such that f (x) ∈ H(x) on a ν-almost sure set X̃ ⊂ X . Editing
f (x) such that f (x) = x on the complement of X̃ delivers the result. Q.E.D.

PROOF OF THEOREM 3: Since w̄ is obviously increasing, we need only to show that w̄ =
w μ-almost surely, and that (w̄�μ) is IC. We first claim that w̄ =w μ-almost surely. Since
w̄ ≥ w by definition, to prove the claim it suffices to show that w̄ ≤ w μ-almost surely.
Suppose μ{x : w̄(x) > w(x)} > 0. Then some ε > 0 exists such that μ{x : w(x) + ε <
w̄(x)}> 0. Let f :X →X be the measurable function from Lemma 5 that satisfies f (x) ≤
x for all x, and w ◦ f (x) ≥ [w̄(x) − 0�5ε] μ-almost surely. Then,

0 <μ
{
x :w(x) + ε < w̄(x)

} = μ
{
x :w(x) < w̄(x) − ε < w ◦ f (x)

}
≤ μ

{
x :w(x) <w ◦ f (x)

} = 0�

where the first equality follows from w ◦ f (x) ≥ [w̄(x) − 0�5ε] μ-almost surely, and the
last equality from Lemma 4. It follows μ{x : w̄(x) >w(x)} = 0, meaning w̄ = w μ-almost
surely.

Next, we claim that (w̄�μ) is IC. Suppose by way of a contradiction some ν ∈ M and
ε > 0 exist such that∫

w̄(x)ν(dx) −C(ν) >
∫

w̄(x)μ(dx) −C(μ) + ε�

Let g : X → X be such that g(x) ≤ x for all x, and that w ◦ g ≥ [w̄ − ε] ν-almost surely
(such a g exists by Lemma 5). Define ν̃ = ν ◦ g−1 to be the push-forward measure defined
by ν and g—that is, ν̃(Y ) = ν ◦ g−1(Y ) for all Borel Y . We claim ν̃ delivers the agent
strictly higher utility under w than μ does, thereby contradicting that (w�μ) is IC. This
claim is implied by the following inequality chain:∫

w(x)ν̃(dx) −C(ν̃) ≥
∫ [

w̄(x) − ε
]
ν(dx) −C(ν̃) ≥

∫
w̄(x)ν(dx) −C(ν) − ε

>

∫
w̄(x)μ(dx) −C(μ) =

∫
w̄(x)μ(dx) −C(μ)�



FLEXIBLE MORAL HAZARD PROBLEMS 409

where the first inequality comes from w ◦ g ≥ w̄ − ε holding ν-almost surely, the second
inequality from ν first-order stochastically dominating ν̃, the third inequality from the
contradiction assumption, and the equality from w̄ = w μ-almost surely. Thus, we have
shown (w�μ) is IC. The proof is now complete. Q.E.D.
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