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Abstract

We study the joint design of dynamic incentives and performance feedback for an

environment with a coarse (all-or-nothing) measure of performance, and show that

hiding information from the agent can be an optimal way to motivate effort. Using a

novel approach to incentive compatibility, we derive a two-phase solution that begins

with a “silent phase” where the agent is given no feedback and is asked to work non-

stop, and ends with a ”full-transparency phase” where the agent stops working as

soon as a performance threshold is met. Hiding information leads to greater effort, but

an ignorant agent is also more expensive to motivate. The two-phase solution—where

the agent’s ignorance is fully frontloaded—stems from a “backward compounding

effect” that raises the cost of hiding information as time passes.
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1 Introduction

A key design component of many jobs, such as those in professional services firms, is

the performance feedback offered to employees, as it allows them to adjust their behav-

iors and learn what their future rewards might look like. While some experts argue that

a policy of full transparency is best—that is, keeping employees fully apprised of their

performance—such practice is far form uniform as employers may see a strategic gain

from hiding information or postponing its release; e.g., Maister (1993).

Here we study the optimal joint design of performance feedback and monetary re-

wards in a dynamic-agency environment where the underlying monitoring technology is

coarse. We argue that because of this coarseness, concealing information from the agent

about their performance can be a profitable way to increase their effort, despite the fact

that doing so requires paying them greater rewards.

In our baseline model, the principal wishes to maximize the agent’s aggregate effort

net of monetary rewards, and must discourage strategic pauses by the agent. The only

performance measure available to the principal is an all-or-nothing signal of effort. The

resulting problem is challenging because the (dynamic) feedback policy can in principle

be highly complex, and interact in complicated ways with the chosen monetary rewards.

To solve it, we show that it suffices to restrict attention to policies that discourage

instantaneous effort pauses by the agent—akin to a first-order approach. This allows us

to show that the optimal contract consists of two phases, with the agent first kept fully

in the dark and then kept fully apprised of their performance. This bang-bang solution

arises from a desire to keep the agent working beyond the time when the performance

measure records a success in combination with a “backward-compounding effect,” which

implies that hiding information is more costly if that hiding occurs farther in the future,

and hence it is optimal to frontload the agent’s ignorance.

Our finding that concealing information early on can be profitable for the principal

may speak to the early stages of professional services jobs, where the firm’s superiors
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sometimes keep performance information hidden from their associates to artificially ex-

tend the initial trial period of their careers. In tandem with that lack of transparency,

associates are granted a finite time to secure promotion and may earn larger rewards the

sooner they are promoted. These features have analogs in our model as well. (We expand

on this discussion in Section 4.)

We also consider various extensions where a two-stage contract remains optimal. These

concern, respectively, the possibility that players secure additional payoffs from a contin-

ued relationship, that the agent is able to directly learn about a success, and that the out-

put technology features a “learning-by-doing” component. In all these cases, backward

compounding again leads to a bang-bang solution that frontloads the agent’s ignorance.

Finally, we consider an extension where the agent is able to succeed an unlimited

number of times, rather than only once, but where the principal observes those successes

only if they engage in costly monitoring. Here we show that provided monitoring is

sufficiently costly, withholding information by means of repeated silent phases—while

monitoring the agent less—is better than full disclosure. This finding points to the po-

tential benefits of adopting a worse (but cheaper) effort signal, and coupling it with less

information for the agent.

Related literature. We contribute first and foremost to the literature on dynamic agency

models under moral hazard; see Sannikov (2008), and for an overview, Georgiadis (2022).

Canonical models assume that incremental output at each instant (or each period) can

take many values, whereas our work is closer to models where it is binary. In Mason

and Välimäki (2015), for example, a principal designs a contract to motivate a Poisson

“breakthrough” and in Green and Taylor (2016) two breakthroughs are required. Halac,

Kartik and Liu (2016) consider a setting where players learn about the feasibility of a

breakthrough—which, in our language, is equivalent to a declining hazard rate—and the

agent is privately informed about their ability.1 These models, in contrast to ours, do not

1Keller, Rady and Cripps (2005) and Bonatti and Horner (2011) analyze the equilibria of such good-news
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permit the principal to strategically provide feedback to the agent.

We also contribute to the literature on information design. Rayo and Segal (2010)

and Kamenica and Gentzkow (2011) study the optimal provision of information in static

environments, and Ely (2017) and Renault, Solan and Vieille (2017) extend these analyses

to dynamic settings. The latter two papers consider a game between a receiver (e.g., an

investor) and a sender (e.g., an advisor) where the sender observes a payoff-relevant state

variable that evolves exogenously, and chooses a message policy to entice the receiver to

take an action. Here the optimal policy is effectively a static one, treating the receiver as

if they were myopic.2

Ely and Szydlowski (2020), Orlov, Skrzypacz and Zryumov (2020), Ball (2022), Kaya

(2022), and Smolin (2021) consider games between a principal (sender) and an agent (re-

ceiver) in which the agent decides when to stop supplying an action, while the principal

monitors the evolution of a payoff-relevant state (which is independent of the action) and

transmits messages to entice the agent not to stop. In all of these papers the agent’s ac-

tion is observable (so there is no moral hazard) and the agent’s monetary rewards are

exogenously given or severely restricted.3 These papers therefore exclusively focus on

the design of feedback whereas we study the interaction between feedback and monetary

rewards and the optimal joint design of these, and do so in a moral-hazard environment

where the agent can secretly manipulate that feedback.4

In a career-concerns framework, Hörner and Lambert (2021) study the design of in-

formation provided to an external market to motivate the agent. Similarly, in Ostrizek

(2022) all information is public and the focus is on the tradeoff between precise informa-

tion, which enables higher-powered monetary incentives, and coarse information, which

Poisson experimentation models.
2Hörner and Skrzypacz (2016) discuss conditions under which the optimal policy is not static.
3In Smolin (2021) the reward is a function of the feedback provided but this function is exogenous and

not part of the design. In Kaya (2022) the principal pays a share of profit that is fixed and not responsive to
the agent’s actions.

4In a setting with multiple agents, Ely et al. (2022) also permits the principal to flexibly choose the agents’
reward schedule. However, characterizing the optimal contest hinges on having sufficiently many agents
so that full rent-extraction is possible.
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slows down learning and reduces future agency rents.5

2 Baseline Model

We begin with the simplest version of the model, which we then extend in various direc-

tions. At each instant t and up to an exogenous deadline T, an agent privately chooses

whether to spend effort toward producing a binary signal, which we call a “success.”

We take T to be large but finite. Success, which occurs at most once, is observed only

by a principal and arrives stochastically as a function of the agent’s accumulated effort.

The principal, who enjoys commitment power, designs monetary rewards together with

a real-time feedback policy on the basis of that signal, with the goal of maximizing the

agent’s total effort net of monetary payments. Both players are risk neutral and the agent

is cash-constrained.6

At each moment the agent either works or waits—that is, effort is binary—and when

working, incurs a flow cost c < 1. The agent’s probability of success at or prior to any

point in time is given by the function F : [0, T] → [0, 1] of the cumulative time e that the

agent has spent working. F(·) is weakly increasing and satisfies F(0) = 0 and F(T) ≤ 1.

A useful equivalent representation is to imagine that a hidden random effort requirement

z ∈ [0, T] is drawn according to the c.d.f. F and success occurs as soon as the agent’s

accumulated effort e reaches z.

We will assume that F has a differentiable density f and that both f (e) and the hazard

rate λ(e) := f (e)/(1 − F(e)) are weakly decreasing in e. Some of our results will also

5Also related is the contracting literature where the principal acquires costly information about the
agent’s effort(s); see, for example, Georgiadis and Szentes (2020) and Orlov (2022). In these models, in-
formation matters only indirectly via its impact on the players’ payments.

6While assuming a single success is stylized, our goal is to capture the notion that in reality performance
measures may be coarse owing to monitoring costs. More on this in Section 5.
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make use of the following function

Φ(t) := F(t)
d
dt

1
f (t)

, (1)

whose significance will soon be clear. The problem of maximizing expected effort minus

expected rewards will be well-behaved when Φ is weakly increasing, which we will as-

sume. These assumptions are satisfied if, for example, F arises from good-news Poisson

experimentation (as studied for instance by Halac, Kartik and Liu, 2016) where the project

can be “good” or “bad” (or the agent’s ability “high” or “low”), unknown to both players,

and a success arrives with constant hazard rate only if the project is good and the agent

is working. A special case is that of a constant hazard rate.

The principal offers the agent a monetary reward R(t) if success arrives at t, and no

reward (or punishment) when it never arrives.7 So that the reward does not reveal any

undesired information, we assume (without loss) that it is paid at T. In addition, the

principal designs a feedback policy that specifies, for each point in time, a probability

distribution over messages as a function of past messages and the time of past success,

if it happened. By standard arguments it is sufficient to consider direct feedback poli-

cies in which the principal recommends to the agent whether to work or wait at each

instant. We shall be sure to discuss how the resulting effort recommendation policies can

be implemented using a feedback policy about the agent’s success.

Because pauses in effort have no impact on the players’ payoffs and merely waste time,

it is without loss for the principal to recommend (possibly stochastically) that the agent

either continue working and await further recommendations or permanently quit, rather

than temporarily pause. Such a recommendation policy can be represented by a function

7Restricting to rewards that condition on time of success alone is without loss because, owing to the
agent’s risk-neutrality, a reward schedule R(t, x) that conditions on a second random variable x, such as
past feedback, can be replaced by a reward function equal to ExR(t, x) (where the expectation is taken at
time 0) without altering the ex-ante incentive constraint, and doing so prevents adding further incentive
constraints in the future. Furthermore, rewarding the agent in the absence of a success merely hinders
incentives to work, and imposing a punishment if a success never arrives is infeasible due to the agent
being cash constrained.

6



q(s|t) denoting the probability that the agent is still asked to work at date s conditional on

having succeeded at t ≤ s, together with a function r(s) denoting the probability that the

agent is still asked to work at date s conditional on not having succeeded before then. Note

that since a recommendation to quit is a permanent one, both recommendation functions

must be non-increasing in s (and so that the players’ expected payoffs are well defined,

we assume that they are integrable in all arguments).

To simplify notation, we will assume throughout the main text that r(s) = 1 up to

some (endogenous) deterministic time T, and equals zero thereafter; that is, an unsuc-

cessful agent is never asked to stop before T. (We still allow for a general r in all relevant

proofs in the appendix.) Doing so is without loss because the principal’s objective turns

out to be linear in r, and hence a bang-bang policy will indeed be optimal.

Especially useful for the analysis is the total (ex-ante) probability p(s) that the agent is

asked to work at least until date s. This is given by

p(s) = 1 −
∫ s

0
[1 − q(s|t)] f (t)dt, (2)

where the integral is the probability that the agent is asked to quit by s. Note that regard-

less of the recommendation policy, we have p(s) ≥ 1 − F(s). Also useful is the function

Q(t) :=
∫ T

t q(u|t)du, which measures the expected future work for an agent who succeeds

at t and obeys all recommendations. This future work occurs insofar as the agent is not

informed about their success at t.

The agent’s expected payoff from obeying the recommendations is

∫ T

0
R(s) f (s)ds︸ ︷︷ ︸

expected reward

− c ×
∫ T

0
p(s)ds︸ ︷︷ ︸

expected effort

,

where R(s) f (s) is the ex-ante expected reward at time s measured in flow terms. The

principal chooses a reward schedule, a recommendation policy, and a terminal date T to
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maximize ∫ T

0
p(s)ds −

∫ T

0
R(s) f (s)ds

subject to the incentive compatibility constraint that the agent always finds it optimal to

obey all recommendations. Here we have assumed that success is only a signal of effort

that delivers no direct benefits to the players, which we shall relax later on.8

3 Incentive Compatibility

There is a variety of ways the agent can deviate from recommendations, including paus-

ing and restarting at any time. Fortunately, as we will show, the optimal policy can be

derived by focusing on a family of “local” incentive constraints. Here we will derive nec-

essary conditions for a policy to dissuade the agent from brief (instantaneous) pauses,

which we can use to identify a candidate optimal policy. We will then verify that there

exist no profitable global deviations.

3.1 Instantaneous Pauses

Because we have assumed that the hazard rate of success (weakly) falls over time, the

principal would like to promise, other things equal, greater rewards as time goes by. But

this creates a challenge: the agent will be tempted to pause temporarily so they can suc-

ceed later, where rewards are greater, rather than now.9 This leads us to conjecture that

temporary pauses, rather than permanent ones, will be the hardest ones to deter. A nat-

ural place to start, then, is making sure that at least the shortest of such pauses—i.e.,

instantaneous ones—are deterred.

Fix a terminal date T. The expected payoff earned by the agent from t onward if they

8We have also assumed for simplicity that players don’t discount time; our results remain qualitatively
unchanged if they have a common discount rate.

9Such temptation to pause is known as the “dynamic agency” effect; see, for example, Halac, Kartik and
Liu (2016). What is novel about this effect in our model is that it is impacted by the principal’s feedback.
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obey all recommendations, computed from the standpoint of time 0, is

U(t) :=
∫ T

t
R(s) f (s)ds − c ×

∫ T

t
p(s)ds. (3)

Now suppose the agent obeys all recommendations before t and after t + ∆t, but shirks

during the interval in-between. Such a deviation changes the arrival rate of success and

therefore changes the distribution of recommendations after t + ∆t as well. The agent’s

continuation payoff at t, considering that pause, is

Ũ(t, ∆t) :=
∫ T

t+∆t
R(s) f (s − ∆t)ds − c ×

∫ T

t+∆t
p(s|ω∆t

t )ds,

where the integrals begin at t + ∆t because the agent’s flow payoff during the pause is

zero, and p(s|ω∆t
t ) denotes the total probability that the agent continues to spend effort

through s ≥ t + ∆t following this deviation (which is derived in the appendix). Incentive

compatibility requires that U(t) ≥ Ũ(t, ∆t), or equivalently, upon subtracting U(t + ∆t)

from both sides of this inequality,

U(t)− U(t + ∆t) ≥
∫ T

t+∆t
R(s)[ f (s − ∆t)− f (s)]ds − c ×

∫ T

t+∆t
[p(s|ω∆t

t )− p(s)]ds.

Dividing through by ∆t and taking the limit as it converges to zero allows us to estab-

lish a local incentive compatibility constraint for instantaneous pauses.

Proposition 1. The recommendation policy q(·|·) and reward schedule R(·) are locally incentive

compatible if, for all t,

R(t) f (t)− cp(t) ≥ cQ(t) f (t) +
∫ T

t
[R(s)− cQ(s)]| f ′(s)|ds − c[F(T)− F(t)], (IC)

where p(t) is given in (2), and Q(t) :=
∫ T

t q(u|t)du is the expected future work for an agent who

succeeds at t.
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The left-hand side of (IC) measures the agent’s on-path expected flow rents at t; that

is, their expected rewards minus instantaneous costs. These flow rents correspond to

−U′(t). The right-hand side is lim∆t→0[Ũ(t, ∆t) − U(t + ∆t)]/∆t, which represents the

marginal impact of a pause at t on future rents. This pause has three effects (correspond-

ing to each of the three terms on the right): First, it eliminates the agent’s expected future

effort cost cQ(t) in the event they succeed at t. Second, it lowers the agent’s accumulated

effort and therefore raises the density of success f (s) going forward, which in turn raises

the chance of earning each of the net future rewards R(s)− cQ(s). And, finally, it raises

the chance that at each future date the agent has not yet succeeded and must therefore

keep working.10

3.2 Minimal Rewards

Proposition 2 shows that for any given recommendation policy, there is a unique least-

expensive way to deter all instantaneous pauses. This is achieved by meeting (IC) with

equality at all times, starting at time T and working backwards.

Proposition 2. Given any recommendation policy q(·|·), there exists a unique reward schedule

R(·) that satisfies the local incentive constraint with equality at every t. It is given by

R(t) = c
[

p(t)
f (t)

−
∫ T

t

f ′(s)
f (s)2 p(s)ds −

∫ T

t
1 − q(s|t)ds

]
. (4)

Moreover, this reward schedule is pointwise smaller than any other implementing reward schedule.

Intuitively, because R(t) in the incentive constraint is affected only by future rewards

rather than past ones, it is possible by working backward from T to meet this constraint

with equality at all times. Furthermore, it is desirable to do so because raising the re-

ward schedule above that level over some interval of time would force the principal to

10The probability that the agent has not yet succeeded at s is 1 − F(s); a pause today (which lowers
accumulated effort from s to s − ∆s) raises that probability by f (s), which integrated over every future date
is F(T)− F(t).
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raise rewards at all past times, so the agent does not pause, which needlessly inflates the

principal’s costs.

The first term on the right-hand side of (4) is the reward level that would give the

agent zero flow rent at time t, measured from an ex-ante perspective. This terms grows

with p(t) because a higher work probability implies a larger ex-ante cost for the agent,

and falls with f (t) because a greater density of success means the reward R(t) is more

likely to materialize. If there were no future dates, this zero-rent reward is all the princi-

pal would need to offer. The second term represents a “backward compounding” effect

arising from the fact that a greater future reward requires a greater present reward, as

otherwise the agent would pause. This backward compounding is modulated by − f ′/ f 2

(the speed at which 1/ f grows) because the faster this ratio grows (i.e., the faster the

likelihood of success drops) the greater the future rewards have to be.11 The last term is

an “information rebate” that the principal gets if they inform the agent sometime in the

future about a success at t: the lower the q(s|t), the lower the effort the agent is asked to

exert in the future after succeeding at t, and hence the lower the promised reward R(t)

needs to be.

To illustrate, consider two polar opposite policies: keeping the agent completely in the

dark and keeping them fully informed. If the principal offers zero feedback, while asking

the agent to work with probability one until T, we have q(s|t) ≡ p(t) ≡ 1. As a result, the

minimal implementing reward schedule is

Rsilence =
c

f (T)
.

Intuitively, to minimize backward compounding, the principal wishes to grant zero rents

at the terminal time; hence, this flat schedule is the closest the principal can get to the

entire zero-rent schedule R(t) = c/ f (t) (which is weakly increasing) without provoking

11The novelty of this backward compounding effect is that it incorporates the feedback policy; that is, it
tells us how we need to adjust rewards so that the dynamic agency consideration (i.e., the temptation to
delay effort) does not lead the agent to pause given how information is being revealed.
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any pauses. Because the agent receives no feedback, there is no rebate for the principal.

If instead the principal keeps the agent fully apprised—in which case the agent stops

working as soon as they succeed—we have q(s|t) ≡ 0 and p(t) = 1 − F(t). We term this

design the pronto policy. The corresponding minimal reward schedule is

Rpronto =
c

λ(T)
,

which is flat for a similar reason as before: the ideal schedule (in this case the zero-rent

schedule net of the rebate) is also increasing; thus, given that the principal wishes to grant

zero rents at the terminal time, a flat schedule is the closest the principal can get to that

ideal without causing the agent to pause.

Embedded in both these policies is a dynamic version of the classic rent/efficiency

trade-off: the principal exactly internalizes the cost of effort at the margin (in this case,

at the terminal date) but because R(T) grows with T, they must also pay greater infra-

marginal rents if they seek to expand the overall gains from trade. What differs between

the two policies is, on the one hand, the information rebate and, on the other, the maxi-

mum expected effort that can be asked of the agent. Because the pronto policy maximizes

the rebate, it minimizes the principal’s expected cost per unit of effort; but since the agent

quits as soon as they succeed, it also creates an upper bound on the agent’s expected total

effort. Silence, in contrast, allows the agent to work for an unbounded length of time, but

since there is no rebate, the cost for the principal could be very large.

In between these two examples, there are vastly many ways for the principal to offer

less than immediate feedback. One example is a “delay mechanism” where the agent is

informed of a success after a constant delay d. Here q(s|t) = I{s≤t+d} while p(t) = 1 up

to time d and equal to 1 − F(t − d) thereafter. Thus, the minimal reward schedule takes a

more complex form. Namely, R(T) = c[1 − F(T − d)]/ f (t) (so that rents are zero at the

very end) and
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R′(t)/c =


1 if t ∈ [0, d)

1 − f (t − d)/ f (t) if t ∈ [d, T − d]

− f (t − d)/ f (t) if t ∈ (T − d, T],

which means that the reward schedule first increases, then decreases and finally decreases

at an even faster rate.

Such delay mechanisms have been found to be optimal in different settings (e.g., Ely,

2017), but as we shall see, are suboptimal in ours because they do not fully frontload

ignorance. The optimal policy will instead be a simpler combination of the two polar

opposites above.

4 Optimal policy

Here we find the optimal policy by making use of the minimal reward schedule in Propo-

sition 2. Our first step is to use that schedule to express the principal’s objective solely in

terms of the work probability p(t) and terminal date T.

Lemma 1. The principal’s payoff evaluated at the minimal implementing reward schedule is

∫ T

0
p(t) dt − c

∫ T

0
p(t)(1 + Φ(t))− (1 − p(t))︸ ︷︷ ︸

virtual effort

dt, (Obj)

where Φ ≡ F × (1/ f )′ satisfies Φ(0) = 0 and by assumption is weakly increasing.

The first term in (Obj) is total effort. The second term, whose integrand we term “vir-

tual effort,” is the total effort cost as experienced by the principal; that is, true cost plus

information rents for the agent due to the backward compounding of rewards. Observe

that at time zero, virtual effort is equal to true effort (with both equal to 1), as backward

compounding is not a factor then. The function Φ(t) captures the compounding effect: a
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greater (1/ f (t))′ calls for greater future rewards and hence greater past ones, whereas a

larger F(t) means these past rewards are paid more often. The term 1 − p(t) captures the

information rebate: when the principal pays the agent with information (which lowers

p(t) below 1) there is less need for monetary rewards.

We shall find the optimal policy by first solving a substantially relaxed problem where

in addition to ignoring non-local deviations, the principal selects p(t) directly, subject

only to an upper and lower bound, without worrying about the need to generate this

function with a suitable recommendation policy q. In particular, we consider the program

sup
T∈[0,T], p(·)

∫ T

0
p(t) [1 − 2c − cΦ(t)] dt + cT (P)

s.t. 1 − F(t) ≤ p(t) ≤ 1 for all t, (Feas)

where the objective is equal to (Obj) upon rearranging terms, the constraint 1 − F(t) ≤

p(t) captures the requirement that the agent does not quit before succeeding (or reaching

T), and the constraint p(t) ≤ 1 stems from the requirement that p(t) is a valid probability.

This problem is easy to solve because for any T the objective is linear in p, and since

the function Φ is weakly increasing, the expression in braces—whose sign determines

whether p(t) should be set as high or as low as is allowed— is either always negative

or once it becomes negative, it remains so throughout. The optimal terminal date T is

then obtained by substituting the optimal p in the objective and optimizing over a single

variable. Proposition 3 describes the solution.

Proposition 3. Let t∗ be the earliest time when 1− 2c− cΦ(t) ≤ 0. Provided T ≥ t∗, the relaxed

problem (P) is solved by setting

p(t) =


1 if t ∈ [0, t∗]

1 − F(t) if t ∈ (t∗, T],

14



for some T ∈ [t∗, T].

Note that t∗ > 0 if and only if c < 1/2. The above schedule p is uniquely implemented

by the recommendation policy that never tells the agent to stop before t∗, and after that,

tells them to stop as soon as they succeed. The corresponding reward schedule is then

obtained by substituting p and the corresponding q into (4).

This “bang bang” solution will constitute the backbone of every optimal policy, as we

show next.

Theorem 1. Suppose T > t∗. Every optimal policy consists of at most two phases:

1. Silent phase: t ≤ t∗. Here the principal asks the agent to work with probability one

regardless of their success, and remains silent throughout— that is, q(t|s) ≡ 1. If the agent

succeeds at any time during this phase, they earn reward

c/λ(T) + cF(t∗)/ f (t∗),

where λ(T) is the hazard rate at the terminal time.

2. Pronto phase: t ∈ (t∗, T]. Here the principal asks the agent to quit as soon as they succeed

while remaining otherwise silent—that is, q(t|s) ≡ 0. If the agent succeeds at any time

during this phase, they earn reward

c/λ(T).

Phase 2 always has positive length, whereas phase 1 has positive length if and only if c < 1/2.12

Intuitively, the pronto policy is always used for some duration because even though it

allows the agent to promptly quit upon success, it minimizes the principal’s cost per unit

of effort as the agent is cheapest to motivate when kept fully informed. If the principal

wishes greater effort than a pronto phase alone can achieve, the agent must at least some-

times be kept in the dark. Moreover, because ignorance necessitates greater rewards and

12If T < t∗, the optimal contract consists only of a silent phase that lasts until T and pays reward c/ f (T) .
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these get compounded backward, it is best that such ignorance is maximally frontloaded;

hence the initial silent phase. Provided effort is sufficiently valuable (specifically when

c < 1/2) this silent phase is worth having.13 Notice that this two-phase solution combines

two of our earlier examples (silence and pronto) with the modification that due to back-

ward compounding, the prize during the initial silent phase needs to grow to compensate

for any rents earned by the agent during the pronto phase, which would otherwise lead

the agent to pause during the initial phase.

As it turns out, the optimal policy need not be unique because the relaxed problem

(P) may admit more than one optimal cutoff between phases and more than one optimal

terminal date. Such multiplicity, however, is non-generic as it would not survive a slight

perturbation of the function F.

The only remaining loose end is the possibility that the agent benefits from a global

deviation; i.e., one involving pauses during more than one instant. Fortunately, the sim-

ple rewards in the theorem discourage all such deviations—and make it easy to check that

this is the case. Observe that these rewards are non-increasing, and because both f (t) and

λ(t) are weakly decreasing, they always grant the agent non-negative flow rents.14 This

makes a pause of any nature undesirable on two fronts: it causes the agent to miss out on

a portion of such rents and shifts their success probability from the present to the future,

where rewards are no greater.15

The optimal terminal date may be equal to T regardless of how large this exogenous

deadline is. This occurs, for instance, when the hazard rate is constant as this allows the

principal to extend phase 2 without giving up any rents. T would strictly smaller than the

deadline, in contrast, if that deadline was sufficiently large and the agent faced a Poisson

13The 1/2 appears because extending the length of the silent phase from dt to 2dt units of time means
that a higher reward must be promised over the second such interval (owing to the agent’s ignorance) and
because of backward compounding, this higher reward must be promised over the first interval as well.

14The agent’s expected flow rent is R(t) f (t)− c during phase 1 because they have no information, and
R(t)λ(t)− c during phase 2 (conditional on not having already succeeded) as they are fully informed.

15Note also that since there is no further reward forthcoming after the agent is advised to stop working,
it is always optimal to follow such a recommendation.
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good news experimentation technology. In this case, the hazard rate asymptotes to zero,

and hence expanding phase 2 requires expanding its reward without bound, which then

gets compounded backward.

While in our model F is exogenous, we can ask what type of distribution would be

most profitable for the principal. Note that if F was Poisson with an arbitrarily low hazard

rate, the principal would be able to achieve profits arbitrarily close to first-best (1 − c)T

simply by using an always-pronto policy with time-invariant reward c/λ, as this ensures

that the agent works until T with arbitrarily high probability while earning no rents. This

requires promising a very high reward, but paying it with very low probability.16

While we have assumed a non-increasing hazard rate, Theorem 1 would still hold if

the hazard rate λ(·) was hump-shaped provided that λ(0) ≥ λ(T).17 This inequality

ensures that the agent always earns non-negative rents throughout the pronto phase, and

hence they have a dominant strategy to work throughout that phase. That they always

find it optimal to work during the first phase as well follows from the assumption that f

is non-increasing as this ensures that a global deviation not only causes the agent to lose

flow rents, but also shifts their success probability from the present to the future, where

rewards are no greater.

It is also worth noting how the model would differ if, by assumption, all pauses were

permanent (i.e., the agent faced a stopping problem). In this simpler environment, the

backward-compounding force would vanish and the principal would need only to ensure

that the agent’s continuation payoff is non-negative. Hence, the principal would readily

achieve the first best by remaining silent throughout, asking the agent to always work

with probability one, and promising them the zero-rent schedule R(t) = c/ f (t).

16Observe that due to backward compounding, it does not suffice that the hazard rate is low during the
last part of the horizon and high early on, as in that case all rewards (not only later ones) would need to be
high, and hence the agent would be able to secure a high early reward with high probability.

17A hump shape would naturally arise if, for example, the agent’s productivity is either “high” or “low”,
players have a common prior, and the hazard rate of success conditional on high productivity increases
with cumulative effort, whereas conditional on low productivity it is zero. Such a shape can be achieved
while ensuring that the resulting distribution F is concave.
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In closing, the main practical implication of our baseline model is that in the presence

of a coarse performance signal, hiding performance information from the agent may be an

optimal way to motivate them. Consistent with this prescription, Maister (1993) observes

in his in-depth analysis of professional partnerships (where the prospect of promotion is

the key motivator at the beginning of a career) that partners often withhold performance

information from their associates in order to prolong their trial phase (see, pp. 170 and

173).18 A formal empirical test could rely on both the timing of feedback and the predic-

tion that promotion times will vary across associates—with bunching occurring for early

promotions (at the end of the silent phase), and with those promoted sooner earning a

greater prize, such as earning a larger raise or being assigned better opportunities post

promotion.19

5 Extensions

Here we consider a series of extensions showing, on the one hand, that a two-stage con-

tract remains optimal under several variations of the model, and, on the other hand, that

hiding information from the agent can be profitable even when they can succeed an un-

limited number of times.

5.1 Continuation Payoffs

A restrictive feature of our baseline model is that as soon as a success is announced, the

relationship between the principal and agent effectively ends. Here we generalize the

18Maister argues (informally) that this practice can discourage strong performers, and therefore advises
against it. Our model captures a version of that cost through the fact that hiding information requires
raising the prize—but as we have shown, this practice can actually be beneficial if paired with the right
rewards, and not abused.

19Other models can also account for a negative relationship between promotion time and reward, which
has in fact been documented in some large firms; see Gibbs (1995) for a model and empirical evidence,
and Ariga, Ohkusa and Brunello (1999) for evidence concerning a large Japanese manufacturer. What is
unique to our model is the combination of that prediction with the information policy and the variation in
promotion times.
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model by allowing each of them to gain an exogenous continuation payoff once that

announcement takes place, with the principal receiving π and the agent v (both time-

invariant), in addition to the endogenous reward R(t).20

These continuation payoffs could come from several places. For instance, the agent

may be able to use the news of their success to secure an outside opportunity. Alterna-

tively, the two parties may continue their relationship and each benefit from it, e.g., the

principal may switch the agent to a new set of tasks with their own monitoring technol-

ogy.21 The principal’s continuation payoff may also originate from success being intrinsi-

cally valuable.

This model is very similar to the baseline. To solve it, define the agent’s reward R(t)

as including both the monetary reward and the continuation payoff v. Because delivering

R(t) to the agent costs only R(t)− v, the principal’s payoff is now

∫ T

0
p(s)ds −

∫ T

0
[R(s)− v] f (s)ds + πF(T),

where we have included the principal’s payoff π conditional on the success arriving,

which occurs with probability F(T). Note that upon rearranging terms, this payoff is

equal to the baseline payoff plus a new term (v + π)F(T).

Since R(t) represents the agent’s total reward, Proposition 2 (which describes the least

costly incentive compatible reward schedule) still applies. Hence, the principal’s payoff

can be expressed as

∫ T

0
p(t)[1 − 2c − cΦ(t)]dT + cT + (v + π)F(T),

20Since there is no discounting, the principal could equivalently receive their continuation payoff as soon
as the success occurs. For the agent, however, it is important that they do not receive this payoff before the
announcement as that would interfere with the feedback policy.

21For this model to accurately capture the possibility of multiple successes we need to assume that the
agent is informed of a given success before they have a chance of attaining the next one. This could stem
from the agent having to switch tasks in order to attempt that next success.
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which resembles the original objective (P) but with the extra term (v + π)F(T). Since

a more distant terminal date T raises the probability that the continuation payoffs are

obtained, this term gives the principal an incentive to extend the deadline.

Given that the work probability p(t) affects only the first term in the objective—which

is the same as in the baseline model—the optimal policy has the same two-phase structure

as before, as characterized in Theorem 1; moreover, since that first term does not contain

v or π, the duration of the silent phase, t∗, is unchanged. The only thing that changes is

therefore that the principal stretches out the second phase.

Finally, notice that even though the total reward R(t) must be positive to induce the

agent to work, the monetary component of that reward could in principle be negative

when v is large. That possibility is ruled out whenever v ≤ c/λ(T) as this guarantees

that the reward for each of the two phases is at least v.

5.2 More informed agent

In our baseline model the agent does not learn about a success unless the principal chooses

to inform them. Here we instead allow the agent to learn about a success on their own,

with some positive probability, independently of what principal chooses to disclose. As

we shall see, the optimal contract will be a two phase policy that generalizes the baseline

one by allowing for greater information for the agent during the initial phase.

Suppose in particular that the agent learns immediately of a success with some exoge-

nous probability h even if the principal remains silent—or equivalently, that the principal

must immediately inform them of a success with probability no lower that h, which means

that q(s|t) ≤ 1− h. Because the minimum reward schedule for a given schedule q is iden-

tical to that in the baseline model, Lemma 1 (which characterizes the principal’s objective)

remains valid. Thus, we can obtain the optimal policy in similar way to before; namely,

solve a modified relaxed problem that includes the new minimum disclosure requirement

and then verify that the solution meets the remaining constraints.
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The relaxed problem is now

sup
T∈[0,T], p(·)

∫ T

0
p(t) [1 − 2c − cΦ(t)] dt + cT (P’)

s.t. 1 − F(t) ≤ p(t) ≤ 1 − hF(t) for all t, (Feas’)

where the new upper bound on p(t) captures the fact that the agent cannot be asked to

work at time t in the event that they have already succeeded by then and have learned

about it, which given the minimum disclosure requirement, occurs with probability no

smaller than hF(t).

Since the objective is identical to that in the baseline model, assuming again that T >

t∗, this relaxed problem has the following bang-bang solution:

p(t) =


1 − hF(t) if t ∈ [0, t∗]

1 − F(t) if t ∈ (t∗, T]

Note that the cutoff time t∗ is the same as in the baseline model. The only difference

relative to the baseline is therefore the lower work probability (i.e., greater information

for the agent) during the first phase.

Upon following the same steps in the proof of Theorem 1, and assuming T > t∗, we

obtain:

Proposition 4. In the extended model with a more informed agent, the optimal contract is similar

to the baseline one except that during the first phase (which as before lasts until t∗), the agent is

asked to work as long as they don’t learn on their own that they have succeeded, and is offered

a reward c/λ(T) + c(1 − h)F(t∗)/ f (t∗) for a success during that phase, which is lower than

before.

Here the principal stays as close as possible to the original bang-bang solution by

initially keeping the agent as uninformed as possible, and then proceeding to a pronto
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phase. Because the agent is now more informed during the first phase, the principal can

get away with a lower reward during that phase—but since the agent also quits sooner in

expectation, this is a worse outcome for the principal.

5.3 Upfront effort investment

Here we consider a simple learning-by-doing scenario where the agent must exert some

minimum amount S of cumulative effort before they are able to succeed, and after that

they succeed according to a non-increasing density f as in the baseline model. Thus,

the hazard rate starts at zero and jumps up as soon as the required effort investment is

complete. As we shall see, the optimal contract for this scenario will be very similar to

the baseline one, differing at most in the lengths of the two phases and their associated

rewards.

Let time run from −S to T, suppose S is small enough that the principal can induce

the agent to work while still earning positive profits, and focus on contracts where the

agent is asked to work continuously between −S and 0 (which is without loss because

any effort pauses before the investment is complete would merely waste time). So that

the agent is willing to make this investment, the principal must promise them an ex-ante

utility U(−S) no lower than 0, or, equivalently, a continuation utility U(0) no smaller

than the total investment cost −cS.22

The principal now maximizes the following weighted sum of profits and agent rents,

where µ ≥ 0 denotes the appropriate multiplier for the new effort-investment constraint:

∫ T

0
p(s)(1 − µc)ds −

∫ T

0
R(s)(1 − µ) f (s)ds.

22The principal must also ensure that the agent does not withdraw effort during some subset of time
before 0 and then makes up for the missing investment after that. But since the agent cannot earn any
rewards before the investment is complete, such a deviation is at least weekly dominated by one where the
agent works continuously until time zero and instead shirks, if they wish, after that, as this preserves the
option to try to succeed as early as time 0.
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Notice that µ < 1, as otherwise this objective would call for making arbitrarily large

transfers to the agent, which would in turn impose large losses on the principal. Thus, as

in the baseline model, the principal wishes to pay the smallest possible reward given the

desired effort schedule, and hence adopts the minimal reward schedule in Proposition 2.

Upon substituting for this minimal reward schedule, and manipulating terms, the

objective becomes

∫ T

0
p(t)[1 − (2 − µ)c − (1 − µ)cΦ(t)]dt + (1 − µ)cT,

which differs from the baseline objective in (P) only in the modified coefficients for the

effort cost c. It follows from the properties of Φ that the solution again begins with a silent

phase (of possibly zero length) and ends with a pronto phase. The silent phase, however,

will now have positive length for a greater range of effort costs (i.e. c < 1/(2 − µ) rather

than c < 1/2) and will grow with µ because keeping the agent in the dark longer has the

added benefit of giving them greater rents. The pronto phase, in contrast, may potentially

grow or shrink (or remain unaffected) depending on the details of F.

Notice that, beyond the current application, this same contract would be optimal any

time the principal wishes to maximize a weighted sum of profits and agent rents provided

the agent’s weight is smaller than the principal’s. Doing so would, for example, allow the

principal to satisfy a standard ex-ante participation constraint.

5.4 Multiple successes

In our baseline model, the imperfect effort signal (with only one success possible) was the

sole friction preventing the principal from achieving the first best.23 Here we eliminate

that friction by allowing the agent to succeed an unlimited number of times, and instead

introduce a monitoring cost. As we shall see, so long as that monitoring cost is high

23If effort was perfectly observable, the principal would be able to motivate the agent at flow cost c.
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enough, withholding information from the agent—similarly to how the principal did so

in the baseline model—is profitable.

Suppose, in particular, that each instant in which the agent works, a success arrives

with Poisson rate λ > 0, regardless of any past effort or successes; i.e., according to p.d.f.

f (t) = λe−λt. The principal, however, gets to observe that success only if at that instant

they are monitoring the agent, with that monitoring entailing a flow cost m ≥ 0. We

assume that m < 1− c, so that effort is efficient even if it has to monitored. This version of

the model echoes the baseline one in the sense that if the principal chooses not to pay the

monitoring cost, an additional success is, in effect, impossible. We assume the principal

can commit both to a reward and feedback policy, like in the baseline model, and also to

a monitoring policy specifying at each instant whether or not to monitor the agent as a

function of past messages and successes.24 The agent, in turn, does not directly observe

whether they are currently being monitored, but is aware of the monitoring policy the

principal has committed to.

Notice that when m = 0 the principal can achieve the first best by always monitoring

the agent, keeping them fully informed, and paying them a reward equal to c/λ each time

they succeed. This policy induces the agent to always work while granting them zero

rents, as it just barely compensates them for their effort cost c. Things are considerably

more complicated when m > 0, as now the principal may not always wish to monitor, and

yet the set of histories on which the principal can condition future monitoring (in addition

to future messages and rewards) is immense. We shall be able to show, nonetheless, that a

degree of silence will dominate full transparency provided m is large enough, specifically,

greater than c.

Consider first a policy of full transparency, which we call pronto, where the agent is

always informed of what the principal knows. Here the agent will work only if they are

24In practice, such commitment to a monitoring policy could be facilitated, for example, by the appoint-
ment of a committee whose specific task is to monitor employees and the fact that a firm that is monitoring
less than it should will also end up paying the agent, on average, less than it should, and hence its reputa-
tion is likely to suffer.
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being monitored, which given our assumptions the principal always finds it best to do.

Indeed, by promising reward c/λ per success, the principal induces the agent to always

work while granting them zero rents. Once we account for monitoring costs, this policy

gives the principal a total payoff (1 − c − m)T.25

Now consider an alternative contract with less transparency, which we call cycles, in-

volving repeated silent intervals. Select an integer N, and split the agent’s horizon T into

equal intervals of length T/N. During each such interval, monitor the agent only un-

til they succeed once during the interval (or until the interval ends, whichever happens

first) and remain silent until the end of the interval. At that time, inform the agent if

they succeeded during the interval and, if so, pay them a reward c/ f (T/N). As we have

learned from the baseline model (Section 3.2), this reward is the minimum needed for

the agent to work throughout a silent interval of the corresponding length, while know-

ing that effort is pointless after they have succeeded once, as any other success would be

unobserved.26

Proposition 5. In the extended model with unlimited successes, constant hazard rate, and flow

monitoring cost m > c, the cycles contract dominates pronto whenever each interval is sufficiently

short; i.e., N is sufficiently large.

Intuitively, the advantage of cycles is that it saves on monitoring costs; its disadvantage

is that due to the backward compounding of rewards caused by silence, it grants the agent

rents. Indeed, recall from the baseline model that, at the margin, silence grants the agent

c in rents, and these rents grow the longer the principal remains silent because rewards

get compounded further. Thus, whenever m is greater than the marginal rent c, at least

some amount of silence is desirable. When instead m ≤ c, the pronto contract remains the

25The principal could potentially benefit from a random monitoring policy whereby a success is detected
with probability less than one, but that is also less expensive. As long as there is a minimum probability
of monitoring that the principal can credibly commit to, and its flow cost exceeds c, our conclusions below
would be qualitatively unchanged.

26Because the process generating successes is stationary and the promised reward at the end of each
interval depends exclusively on what happened during that interval, the agent’s incentive constraint is met
so long as it is met within each interval considered in isolation.
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better of the two.

While we have not solved for the fully optimal contract, this result points to the po-

tential benefits of adopting a worse, but cheaper effort signal (in this case one that detects

only a subset of successes) and coupling it with less information for the agent—as this

can ensure that the agent keeps working despite the deteriorated signal.

6 Conclusion

We have argued that when a principal uses a coarse performance measure, hiding infor-

mation from the agent is expensive but may nonetheless be an optimal way to motivate

them. We have uncovered a novel factor, which we term “backward-compounding” of

rewards, that makes hiding information more costly if it happens farther in the future.

When a single success is possible, this results in an optimal two-phase contract, with all

ignorance frontloaded, that starts with a fully silent phase and ends with a phase of full

transparency.

The key challenge was to find an optimal feedback policy among the vast set of poten-

tial ones, which we have done by showing that it suffices, under certain general condi-

tions, to focus on deterring instantaneous effort pauses. In future work, we shall attempt

to apply the present methods to multi-agent (e.g., contest) settings, and to settings with

more general monitoring technologies.
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A Proofs

In Section 2, we cast the principal’s problem as choosing a recommendation policy q(·|·),

a reward schedule R(·), and a terminal date T, while remarking that restricting attention

to deterministic terminal dates is without loss. To establish this, we prove our results

here under the assumption that a recommendation policy consists of two objects: q(s|t)

which denotes the probability that the agent is asked to work through date s conditional

on having succeeded at t ≤ s, and r(t) which is a non-increasing function denoting the

probability that the agent is advised to work through date t conditional on not having

succeeded yet. In this case, it is without loss of generality to set T = T, and (2) becomes

p(s) = r(s)[1 − F(s)] +
∫ s

0
r(u) f (u)q(s|u)du, (5)

the agent’s expected payoff from obeying the recommendations is

∫ T

0
r(s)R(s) f (s)ds − c ×

∫ T

0
p(s)ds,

and the principal’s objective is

∫ T

0
p(s)ds −

∫ T

0
r(s)R(s) f (s)ds. (6)

Note that choosing a (deterministic) terminal date T is equivalent to r(·) jumping from 1

to 0 at t = T; i.e., r(t) ≡ It≤T.

A.1 Proof of Proposition 1

Suppose the agent obeys all recommendations before t and after t + ∆t, but shirks in

the interval in-between. Then the total probability that they continue to work through
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s ≥ t + ∆t equals

p(s|ω∆t
t ) = r(s) [1 − F(s − ∆t))] +

∫ t

0
r(u) f (u)q(s|u)du +

∫ s

t+∆t
r(u) f (u − ∆t)q(s|u)du.

Next, we characterize the following limit:

ṗ(s|t) = lim
∆t→0

p(s|ω∆t
t )− p(s)
∆t

= lim
∆t→0

{
r(s)

F(s)− F(s − ∆t)
∆t

− 1
∆t

∫ t+∆t

t
r(u) f (u)q(s|u)du

−
∫ s

t+∆t
r(u)

f (u)− f (u − ∆t)
∆t

q(s|u)du
}

,

which represents the marginal change in the work probability p(s) following an infinitesi-

mal deviation at t. Since F is differentiable, the first term is r(s) f (s). Applying L’Hopital’s

rule and the Lebesgue differentiation theorem, the limit of the second term (which exists

almost everywhere) is simply the integrand evaluated at t, namely, −r(t) f (t)q(s|t). As

for the third term note that

− lim
∆t→0

∫ s

t+∆t
r(u)

f (u)− f (u − ∆t)
∆t

q(s|u)du

=− lim
∆t→0

∫ s

t
r(u)

f (u)− f (u − ∆t)
∆t

q(s|u)du

=−
∫ s

t
r(u) lim

∆t→0

f (u)− f (u − ∆t)
∆t

q(s|u)du = −
∫ s

t
r(u) f ′(u)q(s|u)du,

where the third line follows from dominated convergence. Therefore, almost everywhere,

ṗ(s|t) = r(s) f (s)− r(t) f (t)q(s|t)−
∫ s

t
r(u) f ′(u)q(s|u)du. (7)
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Next, recall that incentive compatibility requires that

U(t + ∆t)− U(t) ≤
∫ T

t+∆t
r(s) [ f (s)− f (s − ∆t)] R(s)ds + c ×

∫ T

t+∆t

[
p(s|ω∆t

t )− p(s)
]

ds.

Dividing both sides by ∆t and taking the limit as ∆t → 0 we have

U′(t) ≤
∫ T

t
r(s) f ′(s)R(s)ds + c lim

∆t→0

∫ T

t+∆t

p(s|ω∆t
t )− p(s)
∆t

ds

⇒ cp(t)− r(t) f (t)R(t) ≤
∫ T

t
r(s) f ′(s)R(s)ds + c

∫ T

t
ṗ(s|t)ds. (8)

Finally, for any T, using the definition Q(t) :=
∫ T

t q(u|t)du, letting r(t) ≡ It≤T, and

rearranging terms yields (IC).

A.2 Proof of Proposition 2

Fix a recommendation policy {q(·|·), r(·)}, and hence p(·) and ṗ(·, ·), and let R be any

(locally) incentive compatible reward schedule. From (8), this implies that it satisfies

r(t)R(t) ≥ 1
f (t)

[
c · p(t)− c

∫ T

t
ṗ(s|t)ds −

∫ T

t
r(s) f ′(s)R(s)ds

]
.︸ ︷︷ ︸

=:Z1(t)

Notice that the function Z1(t) ≤ r(t)R(t) for all t. It follows from the fact that f ′(·) ≤ 0

and (7) that ṗ(s|t) ≤ f (s)−
∫ s

t f ′(u)du = f (t), and hence

Z1(t) ≥ c
f (t)

(
p(t)−

∫ T

t
f (t)ds

)
= c

(
p(t)
f (t)

− (T − t)
)
=: β(t)

for all t. Continuing in this manner, define for all k ≥ 2, the function Zk by

Zk(t) =
1

f (t)

[
c · p(t)− c

∫ T

t
ṗ(s|t)ds −

∫ T

t
Zk−1(s) f ′(s)ds

]
.
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Because f ′(·) ≤ 0 and Z1(t) ≤ r(t)R(t) we have that β(t) ≤ Z2(t) ≤ Z1(t) for all t. By

induction we have that β(t) ≤ Zk(t) ≤ Zk−1(t) for all t. We have thus constructed a

pointwise decreasing sequence of functions bounded below by the function β. Let Z be

the pointwise limit. By the dominated convergence theorem we have

Z(t) =
1

f (t)

[
c · p(t)− c

∫ T

t
ṗ(s|t)ds −

∫ T

t
Z(s) f ′(s)ds

]
.

Define a new reward schedule R∗ by r(t)R∗(t) = Z(t). Note that R∗ satisfies (8) with

equality, and moreover, it is weakly pointwise lower than the original R. We will next

show that there is a unique R∗ which satisfies the incentive constraint with equality and

therefore that R∗ is pointwise lower than any incentive compatible schedule (since R was

arbitrary.)

It is not difficult to verify that (4) satisfies (IC) with equality for all t. Here we provide

a detailed derivation. Let G(t) :=
∫ T

t r(s) f ′(s)R∗(s)ds and H(t) := c · p(t)− c
∫ T

t ṗ(s|t)ds.

Notice that G′(t) = −r(t) f ′(t)R∗(t) almost everywhere.27 We can then rewrite (8) as

G′(t) =
f ′(t)
f (t)

[G(t)− H(t)] .

This is a linear differential equation with boundary condition limT→T G(T) = 0, and

admits the following unique solution:

G(t) = f (t)
∫ T

t

f ′(s)H(s)
f (s)2 ds.

Note that

r(t)R(t) = −G′(t)
f ′(t)

=
H(t)
f (t)

−
∫ T

t

f ′(s)H(s)
f (s)2 ds. (9)

27We can apply the Fundamental Theorem of Calculus at almost every t. The reward schedule R∗(·) is
continuous almost everywhere because it satisfies the incentive constraint with equality and the right-hand
side of the incentive constraint is continuous almost everywhere.
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Letting

H1(t) =
∫ T

t
r(s) f (s)ds,

H2(t) = −r(t) f (t)
∫ T

t
q(s|t)ds, and

H3(t) = −
∫ T

t

∫ s

t
r(u) f ′(u)q(s|u)du ds,

and using (7) we have H(t) = cp(t) − c [H1(t) + H2(t) + H3(t)]. Notice that H′
3(t) =

− f ′(t)H2(t)/ f (t), and by integrating by parts we have

H3(t)
f (t)

−
∫ T

t

f ′(s)H3(s)
f (s)2 ds =

H3(t)
f (t)

+
∫ T

t

(
1

f (s)

)′
H3(s)ds =

∫ T

t

f ′(s)
f (s)2 H2(s)ds.

Using integration by parts again, we have

H1(t)
f (t)

−
∫ T

t

f ′(s)H1(s)
f (s)2 ds =

∫ T

t
r(s)ds.

Then (9) can be rewritten as

r(t)R∗(t) = c
p(t)− H1(t)− H2(t)− H3(t)

f (t)
− c

∫ T

t

f ′(s)
f (s)2 [p(s)− H1(s)− H2(s)− H3(s)] ds

= c

[
p(t)
f (t)

−
∫ T

t

f ′(s)
f (s)2 p(s)ds −

∫ T

t
r(s)ds + r(t)

∫ T

t
q(s|t)ds

]
. (10)

For any T, substituting r(t) ≡ It≤T and q(s|t) = 0 for all s ≥ T yields (4).

A.3 Proof of Lemma 1

By substituting the minimal implementing reward schedule characterized in (10), we can

rewrite the principal’s objective, defined in (6), as

∫ T

0
(1 − c)p(t) + c f (t)

∫ T

t

f ′(s)
f (s)2 p(s)ds + c f (t)

∫ T

t
r(s)ds − c r(t) f (t)

∫ T

t
q(s|t)ds dt.
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To simplify the double integrals, we use that
∫ T

0 a(t)
∫ T

t b(s)ds dt =
∫ T

0 b(t)
∫ t

0 a(s)ds dt for

any integrable functions a(t) and b(t). In particular, we have

∫ T

0
f (t)

∫ T

t

f ′(s)
f (s)2 p(s)ds =

∫ T

0

f ′(t)F(t)
f (t)2 p(t)dt = −

∫ T

0
p(t)Φ(t)dt,

∫ T

0
f (t)

∫ T

t
r(s)ds =

∫ T

0
r(t)F(t)dt, and∫ T

0
r(t) f (t)

∫ T

t
q(s|t)ds dt =

∫ T

0

∫ t

0
r(u) f (u)q(t|u) du dt =

∫ T

0
p(t)− r(t) + r(t)F(t) dt,

where the last equality follows from (5). Using these identities, we can simplify the prin-

cipal’s objective as

∫ T

0
p(t)dt − c

∫ T

0
p(t) (1 + Φ(t))− (r(t)− p(t)) dt,

and substituting r(t) ≡ It≤T for any T yields (Obj).

A.4 Proof of Proposition 3

When the principal chooses r(·) in lieu of a terminal date T, (P) can be rewritten as

max
p(·), r(·)

∫ T

0
p(t) [1 − 2c − cΦ(t)] dt + c

∫ T

0
r(t)dt

s.t. r(t)[1 − F(t)] ≤ p(t) ≤ 1 for all t

0 ≤ r(t) ≤ 1 for all t and non-increasing in t.

Fixing an r(·), we can maximize the objective pointwise for each t, and noting that Φ(t)

is weakly increasing by assumption, it follows that the bracketed expression, is either

always negative, or once it becomes negative, it remains so throughout, and therefore the
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optimal p is the non-increasing function

p(t) =


1 if t ≤ t∗

r(t)[1 − F(t))] if t > t∗,

where t∗ has been defined as the smallest t such that 1 − 2c − cΦ(t) ≤ 0.

Turning to the choice of r(·), substituting the above p(·) into the objective we have

max
0≤r(·)≤1

∫ t∗

0
[1 − 2c − cΦ(t) + cr(t)]dt +

∫ T

t∗
r(t) {[1 − F(t)][1 − 2c − cΦ(t)] + c} dt

with the additional constraint that r(·) is non-increasing. Observe that for all t ≤ t∗, the

objective increases in r(t) (at rate c). For t > t∗ the objective increases in r(t) if and only if

[1 − F(t)][1 − c − cΦ(t)] + c ≥ 0. Because the objective is linear in r(·), it is without loss

to set r(t) ∈ {0, 1}, and hence there exists an optimal r(t) with the following form:28

r(t) =


1 if t ≤ T

0 otherwise,

for some T ∈ (t∗, T]. This implies that p(t) = 1 for t ≤ t∗, p(t) = 1 − F(t) for t ∈ (t∗, T]

and p(t) = 0 for t > T, which is non-increasing as desired. Finally, note that the optimal

r(·) is equivalent to choosing a deterministic terminal date T after which the relationship

is dissolved.
28We can obtain this solution as follows. Begin by ignoring the monotonicity constraint and find a relaxed

optimal r with values contained in {0, 1}. Next, suppose that relaxed solution violates the monotonicity
constraint and select the earliest adjacent intervals such that r = 0 over the first one (denoted A) and r = 1
over the second (denoted B). Observe that there is a constrained solution such that r is constant over A ∪ B
(as otherwise we could weakly raise the objective by setting r constant and equal to whichever value the
alternative conjectured constrained optimal had taken at time sup A). Now set r equal to either 0 or 1 over
A ∪ B and whenever possible equal to 1 (which is again without loss). Finally, continue repeating the same
process until r is monotone throughout.
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A.5 Proof of Theorem 1

We establish this theorem in 3 steps.

First, we note from (2) that the optimal p(·) characterized in Proposition 3 is imple-

mented by the recommendation policy that sets q(s|t) = 1 for all s ≤ t∗ and any t, and

otherwise sets q(s|t) = 0. In other words, it comprises a silent phase [0, t∗], during which

the principal asks the agent to work with probability one regardless of their success, and

a pronto phase (t∗, T], during which the agent is advised to quit upon succeeding. Finally,

if they have not succeeded by T they are advised to stop without reward. Note that q(·|t)

is non-increasing for any t as required.

Second, we substitute the above recommendation policy into (4) to obtain the optimal

reward schedule. For t ∈ (t∗, T], we have

R(t) = c
[

1 − F(t)
f (t)

−
∫ T

t

f ′(s)
f (s)2 [1 − F(s)]ds − (T − t)

]
=

c
λ(T)

,

where the last equality follows by integrating by parts and λ(T) = f (T)/[1 − F(T)].

Next, for t ∈ [0, t∗] we have

R(t) = c
[

1
f (t)

−
∫ t∗

t

f ′(s)
f (s)2 ds −

∫ T

t∗

f ′(s)
f (s)2 [1 − F(s)]ds − (T − t∗)

]
= c

[
F(t∗)
f (t∗)

+
1

λ(T)

]

where the last equality again follows by integrating by parts and λ(T) = f (T)/[1− F(T)].

Finally, we verify that the above recommendation policy and reward schedule pair is

globally incentive compatible. Following the recommendations during the second phase,

when the agent is asked to work only if they have yet to succeed is a dominant strategy,

because the prize is time-invariant and the agent earns rents (owing to the non-increasing

hazard rate).29 Turning to the first phase, if the agent shirks for ∆ units of time and

29Note that this is the only place in the proof where we use that the hazard rate λ(t) is non-increasing. In
fact it suffices that λT ≤ λt for all t ∈ [t∗, T] as we explain in Remark I following Theorem 1.
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otherwise follows the recommendations, then their ex-ante payoff is

Ũ(0, ∆)
c

=

[
1

λ(T)
+

F(t∗)
f (t∗)

]
F(t∗−∆)+

F(T − ∆)− F(t∗ − ∆)
λ(T)

− (T−∆)+
∫ T

t∗
F(t−∆)dt.

Using the concavity of F it is straightforward to show that Ũ(0, ∆) decreases in ∆, and so

the agent prefers to follow the recommendations throughout the first phase as well.

A.6 Proof of Proposition 5

Recall that the pronto contract gives the principal a payoff of Πpronto = (1− c−m)T. Now

consider the cycles contract and dividing the horizon T into N equal-length intervals. The

expected monitoring cost is

N × m ×
(∫ T/N

0
λte−λtdt +

T
N

e−λT/N

)
=

N × m
λ

(1 − e−λT/N),

and the expected compensation cost is

N × c × F(T/N)

f (T/N)
= N × c × 1 − e−λT/N

λe−λT/N
=

N × c
λ

(eλT/N − 1).

Thus, the principal’s payoff is

Πcycles(N) = T − N × c
λ

(eλT/N − 1)− N × m
λ

(1 − e−λT/N),

and observe that limN→∞ Πcycles(N) = Πpronto. Treating N as real-valued, we can obtain

Π′
cycles(N) = − c

λ
(eλT/N − 1) +

cT
N

eλT/N − m
λ
(1 − e−λT/N)− mT

N
e−λT/N,

38



and it is straightforward to show that Π′
cycles(N) < 0 if and only if

m
c
>

1 − eλT/N + (λT/N)eλT/N

1 − e−λT/N − (λT/N)e−(λT/N)
.

The right-hand side is approaches infinity as N → 0, it decreases in N, and approaches 1

as N → ∞. So provided that m/c > 1, there exists an N∗ such that Πcycles(N) is decreasing

for all N ≥ N∗. Coupled with the fact that limN→∞ Πcycles(N) = Πpronto, it follows that

the cycles contract dominates the pronto one for all N ≥ N∗.
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