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A B S T R A C T

We consider a dynamic game of private provision of a discrete public good. In our model, a group of agents
contributes to a project over time, which is completed once the cumulative contributions reach a threshold.
Provided that this occurs prior to a prespecified deadline, each agent receives a lump-sum payoff. We show
that a shorter deadline can induce the agents to raise their efforts, but no matter the length of the deadline,
effort provision is inefficient due to the agents’ frontloading incentives. Only if the agents do not monitor
progress until the deadline are their frontloading incentives eliminated, so by committing to a deadline
equal to the first-best completion time, it is possible to restore efficiency. Recognizing that deadlines are not
renegotiation proof, we show that by committing to monitor progress to date at the first-best completion
time, and then again at a sufficiently later date, efficiency can be attained. In this case, that monitoring date
acts as a self-enforcing deadline.

© 2017 Published by Elsevier B.V.

1. Introduction

Collaboration is pervasive in markets and organizations, and often
takes place over extended periods of time. Entrepreneurs collaborate
on their ventures. Corporations and divisions collaborate on research
and development and even the production of new products. Citi-
zens collaborate on the provision of public goods, such as building
and supporting churches, library collections, public parks, and pro-
tecting the environment. In all these cases, collaboration is not a
once-off effort, but one that takes place repeatedly and sometimes
continuously over weeks, months, and even years.

It is well known that free riding is a key impediment to collabo-
ration (Olson, 1965). Since some of the benefits of my collaborative
efforts accrue to you, I have a natural tendency to underprovide
such effort, and so do you (Holmström, 1982). In a dynamic set-
ting, however, there is a second, less well understood inefficiency:
collaborative efforts are front-loaded relative to the social optimum
(Kessing, 2007). I provide too much collaborative effort early on to
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bring forward the completion date, and thereby motivate you to
provide more effort in the future.

The goal of this paper is to explore instruments agents can use
to mitigate both of these inefficiencies. Perhaps the most commonly
used instrument to combat free riding is the imposition of a dead-
line by which the project has to be completed (Lindkvist et al.,
1998). We first show that while deadlines do mitigate free riding as
collaborators are forced to work harder, they do not alleviate front-
loading. The source of these frontloading incentives is that the total
progress made to date is publicly observable: if I provide too much
effort today, then my partners will observe this tomorrow and will
be motivated to raise their efforts to my benefit. We thus explore
complementing deadlines with infrequent monitoring of progress to
date. We show that together deadlines and infrequent monitoring
can alleviate both inefficiencies, and may even restore efficiency.

To fix ideas, imagine a group of innovators collaborating towards
obtaining a patent. Each agent can exert effort to progress the
project, and she receives a prize once the patent is awarded. Echo-
ing this example, our model has three key ingredients. First, progress
towards a particular goal is made gradually over time at a rate that
depends on the agents’ costly efforts. Second, the agents discount
time. Finally, the project generates a payoff once the cumulative
efforts reach a pre-specified threshold, provided that this occurs by a
given deadline.

We begin our analysis by formulating the optimal control
problem, and considering the benchmark case in which a social plan-
ner chooses the agents’ effort levels to maximize the team’s total
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discounted payoff. Because effort costs are convex and the agents
discount time, efficiency requires that the agents perfectly smooth
their effort over time; i.e., choose it such that their discounted
marginal cost of effort is constant over time.

We proceed to characterize Markov Perfect equilibria (hereafter
MPE), wherein at every moment, each agent observes the cumula-
tive progress and the time remaining until the deadline, and chooses
her effort level to maximize her discounted payoff. We characterize
the unique symmetric MPE with differentiable strategies in closed
form, and we show that for any given deadline, equilibrium efforts
are inefficient. When the deadline is long or non-binding, efforts are
inefficiently low and frontloaded, and the project is completed at a
later date compared to the first-best outcome. Intuitively, each agent
has incentives to shirk, because she does not internalize the positive
externality associated with completing the project sooner. Moreover,
because effort is increasing over time, each agent has an incentive
to frontload her effort to induce others to raise their future efforts.
Shortening the deadline forces the agents to work harder, but effort
continues to be frontloaded. As a result, if the deadline is sufficiently
short, then equilibrium efforts are inefficiently high during the early
stages of the project, and inefficiently low during its later stages.

A source of the agents’ frontloading incentives is that they
observe the state of the project continuously, so each agent can influ-
ence the future efforts of her peers by raising or lowering her present
effort. This observation, together with the fact that in many settings,
the members of a project team observe how close they are to their
goal periodically (e.g., during group meetings where progress is tal-
lied), motivated us to explore the case in which the agents monitor
how close the project is to completion only at discrete, prespeci-
fied dates. Between those dates, they must choose their strategies
based on their beliefs about their peers’ strategies. Intuitively, the
key difference relative to the continuous-monitoring case is that each
agent’s actions can affect the future actions of the other team mem-
bers only following the next monitoring date, and as we show, the
agents’ incentives to frontload effort are eliminated.

If the agents observe the project state at some prespecified dead-
line for the first time, then they perfectly smooth their effort along
any equilibrium path. As a result, if they can commit to any deadline
at the outset of the game and they do not observe the project state at
any intermediate date, then it is possible to implement the first-best
outcome.

Noting that deadlines are not renegotiation-proof, we consider
the case of an exogenous deadline, and we show that the agents can
maximize their ex ante discounted payoff by choosing a single inter-
mediate monitoring date such that the project is completed at that
date in equilibrium. Moreover, if the deadline is sufficiently long,
then it is possible to implement the first-best outcome. Intuitively, by
monitoring the project state at some date and then not monitoring it
again for a sufficiently long period of time, makes it in every agent’s
interest to complete the project by that first monitoring date. In this
sense, the first monitoring date acts as a self-enforcing deadline.

First and foremost, our work contributes to the literature on
dynamic public good provision. Our model is based on the differ-
ential game framework of Kessing (2007), to which we incorporate
deadlines and we consider the case in which progress is observed
infrequently. Early contributions to this literature were made by
Admati and Perry (1991), who characterizes the MPE in a two-player
game and shows that contributions are inefficiently low due to the
free rider problem. Marx and Matthews (2000) generalizes this result
to games with n players and characterizes equilibria with Markovian,
as well as non-Markovian strategies. Yildirim (2006) and Kessing
(2007) show that if the project generates a payoff only upon comple-
tion, then in an MPE, efforts are strategic complements across time,
which implies that the agents have incentives to frontload effort. This
is in contrast to the case in which the project only generates flow
payoffs while in progress as in Fershtman and Nitzan (1991).

This paper is related to a literature that explores how deadlines
influence incentives in dynamic public good provision problems.
Bonatti and Hörner (2011) incorporates deadlines into a strategic
experimentation in teams problem, and shows that the first-best
outcome can be implemented in equilibrium if the deadline is cho-
sen appropriately. Campbell et al. (2013) analyzes a similar model
in which each player is privately informed about the outcome of her
past efforts, and she can verifiably disclose said outcome. They show
that short deadlines induce high effort but may disincentivize the
agents from disclosing their private information. While a number of
authors have considered finite-horizon dynamic contribution mod-
els (e.g., Marx and Matthews, 2000 and Rahmani et al., 2015), to the
best of our knowledge, this is the first paper to study how the length
of the deadline affects the agents’ incentives in such a setting.

This paper joins a recent literature that studies how the infor-
mational environment affects incentives in dynamic games with
externalities. For example, Campbell et al. (2013) shows that agents
may optimally not disclose a successful breakthrough to maintain
their partners’ motivation. Bimpikis and Drakopoulos (2014) shows
that in the context of a strategic experimentation problem, efficiency
can be restored if the agents commit to sharing no information until
a certain date, and disclosing all available information at that date.
Heidhues et al. (2015) considers a similar setting, and allowing for
cheap-talk communication, characterizes an equilibrium that imple-
ments the first-best outcome. Bonatti and Hörner (2011) shows that
in a “good news” strategic experimentation problem, public moni-
toring of experimentation levels leads to weaker incentives, whereas
Bonatti and Hörner (2017) shows that in the “bad news” counter-
part of this problem, monitoring leads to stronger experimentation
incentives. In contrast, the present paper focuses on the effect of
deadlines and the monitoring frequency of progress to date on the
agents’ incentives in a dynamic public good provision framework.

Finally, authors have considered other instruments to mitigate
the inefficiencies that arise in this framework. For instance, Cvitanic
and Georgiadis, G.´ (2016) constructs a mechanism that uses state-
dependent flow payments to induce the agents to always exert the
first-best effort level as the outcome of an MPE. Georgiadis (2015)
examines how a profit-maximizing principal would choose the team
size and the agents’ incentive contracts. Bowen et al. (2017) con-
siders a similar model with heterogeneous agents in which the
scope of the project is endogenous, and studies how different collec-
tive choice institutions (e.g., dictatorship and unanimity) affect the
project scope that is implemented in equilibrium.

2. Model

A group of n ≥ 2 agents collaborate on a project. Time t ∈ [0, ∞)
is continuous. Agents are risk neutral and credit constrained, they
discount time at rate r > 0, and the value of their outside option
is normalized to 0. The project starts at state q0 = 0, and at every
moment, each agent privately exerts costly effort to influence the
process

dqt =

(
n∑

i=1

ai,t

)
dt,

where qt denotes the state of the project and ai,t ≥ 0 denotes the
effort level of agent i at time t.1 Each agent’s flow cost of exerting

1 Consistent with the existing literature (e.g., Marx and Matthews, 2000, Compte
and Jehiel., 2004), the assumption that the project progresses deterministically is
made for tractability; that is because along an equilibrium path, there is a one-to-one
mapping between time t and the state qt .
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effort level a is a2

2 .2 The project is completed at the first t such that
the agents observe qt ≥ Q. If t ≤ T, where T ≤ ∞ is a given deadline,
then each agent receives a prespecified reward V upon comple-
tion, and receives no reward otherwise.3 Finally, we shall restrict
attention to symmetric equilibria.

3. Building blocks

In this section, we set up the building blocks for the analysis, and
we evaluate the first-best outcome of the game.

3.1. Foundations

For a given set of strategies
{
ai(t, q)

}n
i=1, at time t and given the

project state qt = q, the discounted payoff function of agent i satisfies

Ji(t, q) = e−r(t−t)V 1{t≤T}︸ ︷︷ ︸
discounted net payoff

−
∫ t

t
e−r(s−t) [ai(t, q)]2

2
ds︸ ︷︷ ︸

discounted effort costs

,

where t denotes the completion time of the project. The first term
captures agent i′s discounted net payoff from completing the project,
while the second term captures her discounted effort costs along the
evolution path of the project.

To analyze this game, it is convenient to modify the model by
assuming that the agents must complete the project by the deadline
T along the equilibrium path.4 Conditional on completing the project
at some t ≤ T, each agent minimizes her discounted effort costs,
while anticipating that the other agents behave in the same cost-
minimizing manner. The solution of this modified game will be an
equilibrium for the original game if each agent’s discounted payoff
at time 0 is weakly larger than her outside option (which has been
normalized to 0), and otherwise, there exists no project-completing
equilibrium.

We use the maximum principle of optimal control and write
strategies and payoffs as a function of time t.5 The Hamiltonian
corresponding to each agent i′s objective function is

Hi,t = −e−rt
a2

i,t

2
+ ki,t

⎛
⎝ n∑

j=1

aj,t

⎞
⎠ ,

where ki,t ≥ 0 is the co-state variable associated with agent i′s payoff
function, and it can be interpreted as agent i′s marginal value of an
additional unit of progress at time t.6 Her terminal value function is

2 All qualitative results continue to hold if the agents face a more general convex
effort cost function, and the production function is super- or sub-additive to capture
complementarities or coordination costs, respectively. Similarly, one might allow the
agents to be asymmetric, and while it is no longer possible to obtain closed-form
characterizations, the main results continue to be valid.

3 Our results continue to hold if, in addition to a lump-sum reward upon comple-
tion, each agent receives a constant flow payoff while the project is in progress. If the
flow payoff is increasing in the state qt , then the effort initially increases and then
decreases with progress (see Appendix A.1 in Georgiadis, 2015 for details). As a result,
in an MPE, agents frontload their effort in the early stages of the project, and backload
their effort in the later stages.

4 This is equivalent to assuming that if the project is not completed by the deadline,
then each agent incurs an arbitrarily large penalty.

5 Because the project progresses deterministically, in any equilibrium, there will be
a one-to-one correspondence between time t and the project state qt . As such, one
can equivalently use the Hamilton-Jacobi-Bellman approach to solve this problem.
However, it turns out that the optimal control approach is more tractable in this case.

6 Note that each agent i′s Hamiltonian is a function of t, q,
{
aj,t
}n

j=1, and ki,t . For
notational simplicity, we suppress the latter three arguments and simply write Hi,t .

0i,t = e−rtV, and the requirement that the project be completed by
the deadline imposes the constraint

∫ t

0

n∑
i=1

ai,tdt = Q , where t ≤ T . (1)

Using Pontryagin’s maximum principle (Kamien and Schwartz,
2012), the optimality and adjoint equation for each agent is

dHi,t

dai,t
= 0, and (2)

k̇i,t = − dHi,t

dqt
= −

n∑
j=1

dHi,t

daj,t

daj,t

dt
dt
dqt

, (3)

respectively. Eq. (2) specifies that at every moment, each agent
chooses effort to maximize her Hamiltonian, while Eq. (3) follows
from a variational argument that characterizes the law of motion of
ki,t along an optimal effort path. Noting that the agents’ strategies are
a function of both time t and the project state qt, the second equality
in Eq. (3) follows by totally differentiating each agent’s Hamiltonian
with respect to qt. The transversality condition for each agent is

Hi,t +
d0t

dt
≥ 0 (= 0 ift < T) . (4)

Conditions (1)–(4) are necessary for an optimal solution. Suf-
ficiency follows by noting that Hi,t is strictly concave in ai,t, and
applying the Mangasarian theorem (see Seierstad and Sydsaeter,
1987).

3.2. First-best outcome

As a benchmark, we characterize the first-best effort paths, where
at every moment t, each agent chooses her effort to maximize the
team’s (as opposed to her individual) discounted payoff. Because the
agents have identical and convex effort costs, their strategies will be
symmetric, so we can drop the subscript i. We denote each agent’s
first-best effort and discounted payoff function by afb

t and J fb
t , respec-

tively. The team Hamiltonian is Ht =
∑n

i=1 Hi,t , and the optimality
and adjoint equation can be rewritten as

e−rta fb
t = ktn and k̇t = 0 , (5)

respectively, where the second equality follows by noting that in
the first-best outcome, dHi,t/daj,t = 0 for all i and j. Note that the
optimality equation requires that at every moment, each agent’s dis-
counted marginal cost of effort is equal to the total marginal benefit
associated with moving the project closer to completion. Therefore,
the co-state variable kt = c is a constant to be determined, and from
the optimality equation, we obtain a fb

t = cnert . We can then deter-
mine the constant c as a function of the completion time t by solving
Eq. (1), and the first-best completion time is pinned down by the
transversality condition

∑n
i=1

(
Hi,t + d0t

dt

)
≥ 0 (= 0 ift < T).

The above analysis pins down the strategies that minimize the
agents’ joint discounted payoffs conditional on the project being
completed by the deadline. Therefore, efficiency stipulates that the
project is completed if and only if each agent’s corresponding ex
ante discounted payoff is nonnegative. The following proposition
characterizes the first-best outcome.
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Proposition 1. Suppose that the agents choose their strategies to max-
imize the team’s total discounted payoff. If rQ2

2Vn2 < 1 and T ≥
− 1

r ln
(

1 − rQ2

2Vn2

)
, then each agent’s effort and ex ante discounted payoff

satisfies

afb
t =

rQ
n

ert

ertfb − 1
and Jfb

0 = e−rtfb
V − rQ2

2n2

1

ertfb − 1
, (6)

respectively, and the project is completed at tfb = min
{

T, t̄fb
}

, where

t̄fb = − 1
r ln

(
1 −

√
rQ2

2Vn2

)
. Otherwise, each agent exerts no effort, and

receives zero payoff.

All proofs are provided in Appendix B.
Observe that in the first-best outcome, each agent’s effort level

increases exponentially in time at rate r (i.e., a fb
t ∝ ert). Given

a completion time t, each agent minimizes her effort costs sub-
ject to completing 1/n of the project by t = t. As effort costs
are convex, this is accomplished by the agent smoothing her effort
along the evolution path of the project; that is by ensuring that
her discounted marginal cost of effort e−rta fb

t is constant for all
t.

If the deadline T > t̄fb, then the project is completed at the first-
best completion time t̄fb, and each agent’s ex-ante discounted payoff
J fb
0 is maximized. On the other hand, if the deadline is shorter than
t̄fb (but not too short that it is efficient to abandon the project), then
the project is completed at T.

4. Continuous monitoring of progress

In this section, we consider the case in which each agent observes
the state of the project qt continuously. In Section 4.1, we charac-
terize the MPE of this game, wherein at every moment, each agent
forms a conjecture about the strategies of the other agents, and
chooses her effort conditional on time t and the project state q to
maximize her discounted payoff. In Section 4.2, we examine how
the agents’ strategies and payoffs depend on the parameters of the
problem.

Introducing a deadline implies that both the project state q
and time t are payoff-relevant state variables. Therefore, we can
define Markov strategies that punish the other agents following a
deviation from the equilibrium path, as in Abreu et al. (1986).7

In combination with the perfect-monitoring and continuous-time
assumptions, this implies that there exists an MPE in which each
agent exerts the first-best effort level along the equilibrium path.
A feature of this equilibrium is that it requires non-differentiable
strategies at the switching point from a cooperation to a punish-
ment regime. Therefore, we shall distinguish between MPE with
differentiable strategies, which are akin to MPE in the game with-
out a deadline, and MPE with non-differentiable strategies, which
allow for punishments following a deviation from the equilib-
rium path. The former is characterized in Section 4.1. Noting that
the latter is a knife-edge equilibrium, its analysis is deferred to
Appendix A.

7 Such strategies are typically referred to as non-Markov in the literature, and the
corresponding equilibria, Public or Subgame Perfect (Marx and Matthews, 2000).

4.1. Markov perfect equilibrium

For each agent, the optimality equation yields ai,t = ki,tert.8

Following Starr and Ho (1969), the adjoint equation can be rewritten
as

k̇i,t = −
∑
j�=i

dHi,t

daj,t

daj,t

dt
dt

dqt
= −

∑
j�=i

ki,t

(
rkj,t + k̇j,t

)
n∑

l=1
kl,t

⇒ k̇t = − n − 1
2n − 1

rkt ,

(7)

where the second equality follows by using that dHi,t
daj,t

= ki,t for all

j �= i,
daj,t
dt =

(
rkj,t + k̇j,t

)
ert , and dt

dqt
= e−rt∑n

l=1 kl,t
, and the last equal-

ity follows by rearranging terms and the restriction to symmetric
equilibria, after dropping the subscript i. A candidate MPE is char-
acterized by a trajectory of the co-state variable kt subject to Eqs.
(1) and (4), which pin down the completion time of the project. This
candidate is an MPE if and only if each agent obtains a nonnega-
tive ex ante discounted payoff. The following proposition provides a
characterization.

Proposition 2. There exists a unique candidate for a symmetric,
project-completing MPE with differentiable strategies, wherein each
agent’s effort and ex ante discounted payoff satisfies

ampe
t =

rQ
2n − 1

e
rnt

2n−1

e
rntmpe

2n−1 − 1
and Jmpe

0 = e−rtmpe
V − rQ2

2 (2n − 1)

e
rtmpe
2n−1 − 1(

e
rntmpe

2n−1 − 1
)2

,

(8)

respectively, tmpe = min
{
T, t̄mpe

}
and t̄mpe = − 2n−1

rn ln(
1 −

√
rQ2

2V
1

2n−1

)
. This candidate is an MPE if and only if Jmpe

0 ≥ 0 .

Proposition 2 shows that the agents increase their effort over time
(since ampe

t ∝ e
rnt

2n−1 ), but they do so at a slower rate than in the first-
best outcome (where afb

t ∝ ert and n
2n−1 < 1 for all n ≥ 2).9 In

particular, in the MPE, each agent’s discounted marginal cost of effort
(i.e., e−rtampe

t ) decreases over time, which implies that equilibrium
efforts are frontloaded. Notice that effort increases with progress
and this is a game with positive externalities. Therefore, each agent
has an incentive to distort her effort path so as to induce the other
agents to raise their future effort levels, which is accomplished by
raising her effort at the early stages of the project; i.e., by frontloading
effort.10

This frontloading effect can be interpreted as peer pressure, in the
sense that each agent works hard today to incentivize her peers to
work harder in the future. However, in contrast to Kandel and Lazear
(1992) where the incentives to exert peer pressure are ingrained

8 Recall from Section 3.2 that e−rta fb
t = ktn, and notice that in contrast to the first-

best outcome, in the MPE, each agent chooses her effort such that her marginal cost of
effort is equal to her own (as opposed to the group’s total) marginal benefit of progress.

9 Propositions 1 and 2 parallels Propositions 1 and 2 in Kessing (2007), which
characterizes the first-best outcome and MPE, respectively, in the game without a
deadline.
10 This is a consequence of this game exhibiting positive externalities (as can be

seen from dHi,t
daj,t

= ki,t ≥ 0), which together with
daj,t
dqt

= rkt +k̇t
nkt

= r
2n−1 > 0

implies that efforts are strategic complements across time. This strategic complemen-
tarity was first established by Bolton and Harris (1999) in the context of strategic
experimentation in teams, and Kessing (2007) in the context of dynamic public good
provision.



G. Georgiadis / Journal of Public Economics 152 (2017) 1–12 5

into the agents’ utility functions, in this model, peer pressure arises
endogenously.

The project will be completed (if at all) either at the deadline, or
at t̄mpe, whichever comes first. Note that the unconstrained equilib-
rium completion time t̄mpe does not maximize the agents’ ex-ante
discounted payoff Jmpe

0 , which, while intuitive, raises the question of
what deadline maximizes Jmpe

0 . While an analytic characterization is
not possible, numerical analysis indicates that for a wide range of
parameters, the optimal deadline is approximately the same as the
first-best completion time t̄fb. Note however that a problematic fea-
ture of deadlines is that they are not renegotiation proof. That is, if
the project is not completed by the deadline set ex ante, then the
agents will have an incentive to postpone it ex post, undermining its
intended purpose.

4.2. Comparative statics

In this section, we conduct comparative statics to understand
how the agents’ incentives depend on the parameters of the problem.

4.2.1. Effect of deadline (T)
To examine how the deadline T influences the agents’ strategies,

we begin with the first-best outcome characterized in Proposition 1.
Noting that t̄ fb denotes the efficient completion time of the project,
if T ≥ t̄fb, then each agent’s effort path coincides with that of the
infinite horizon problem, the project is completed at t̄fb, and the
deadline has no effect on the agents’ strategies. If instead T < t̄fb,
then by shortening the deadline, as one can see from Eq. (6), each
agent’s effort path is scaled up by a constant factor.

Let us now turn to the MPE characterized in Proposition 2. If the
deadline T ≥ t̄mpe, then in the MPE, the agents exert inefficiently low
effort at every state, and the project is completed inefficiently late;
i.e., a fb

t > ampe
t for all t, and t̄ fb < t̄mpe. This result is consistent with

the earlier literature on dynamic public good provision (e.g., Admati
and Perry, 1991; Yildirim, 2006 and Georgiadis, 2015), and is illus-
trated by the cyan dash-dot line in Fig. 1. As the deadline becomes
shorter, each agent’s equilibrium effort ampe

t is scaled up by a con-
stant factor as can be seen from Eq. (8) and the green dotted line
in Fig. 1. If the deadline is sufficiently short, then due to the agents’
frontloading incentives, equilibrium effort is inefficiently high during
the early stages of the project. This statement is formalized in the fol-
lowing remark, and it can be visualized by comparing the blue solid
line to the red dashed line in Fig. 1.

Fig. 1. First-best effort vs. equilibrium effort paths.

Remark 1. For any deadline T, there exists a threshold h > 0 such
that ampe

t ≥ a fb
t if and only if t ≤ h. This threshold is interior (i.e.,

h > 0) if the deadline is sufficiently short.11

Finally, if the deadline is too short, then the agents must exert too
high effort to meet the deadline, so they are better off abandoning
the project altogether.

4.2.2. Other comparative statics
Observe that as a function of time, each agent’s effort function is

defined on [0, t] where the completion time t depends on the cho-
sen parameters, whereas as a function of the state q, it is defined on
[0, Q], and the completion state Q is exogenous. Moreover, as there
is a one-to-one correspondence between t and q along the equilib-
rium path (and the first-best outcome), it will be more convenient to
characterize the following comparative statics in terms of q instead
of t.

Using Propositions 1 and 2, each agent’s effort level can be
rewritten as a function of the state qt as

afb (qt) =
r
n

(
qt +

Q

ertfb − 1

)
and ampe (qt) =

r
2n − 1

(
qt +

Q

e
rntmpe

2n−1 − 1

)
,

(9)

for the first-best outcome and the MPE, respectively. The follow-
ing remark characterizes how the agents’ incentives depend on the
completion state Q and payoff V.

Remark 2. Suppose that the game has a project-completing MPE
with differentiable strategies as characterized in Proposition 2.

(i) If the deadline is binding (i.e., T < t̄mpe), then ∂
∂Q ampe(q) > 0,

whereas otherwise, ∂
∂Q ampe(q) < 0 for all q.

(ii) If the deadline is binding, then ampe(q) is independent of V,
whereas otherwise, ∂

∂V ampe(q) > 0 for all q.

These comparative statics also apply to the first-best outcome.

If the deadline is binding, then all else equal, an increase in the
completion state Q induces the agents to raise their efforts, for other-
wise they would miss the deadline. On the other hand, if the deadline
is not binding, then as can be seen from Eq. (9), increasing Q has
two opposing effects: a direct effect, which incentivizes the agents
to raise their effort, and an indirect effect, which induces the agents
to complete the project later, thus weakening their incentives. It
turns out that the second effect always dominates, so increasing the
completion state Q induces the agents to decrease their efforts.

Turning to the second statement, note from Eq. (9) that the
reward V affects the unconstrained completion time t̄mpe, but does
not directly affect the agents’ equilibrium effort function. As a result,
if the deadline is binding, then increasing V does not influence the
agents’ strategies. If, however, the deadline is not binding, then
unsurprisingly, if the agents expect a larger reward upon completion,
then they work harder to complete the project sooner.

The comparative statics with respect to the discount rate r and
the group size n are similar to the case without a deadline, and
they are characterized in Proposition 1 and Theorem 2 of Georgiadis
(2015), respectively. For completeness, we state them below. First,
if the agents are less patient, then their effort path is steeper and

11 Formally, there exists a critical deadline Tcrit ∈
(
t̄fb , t̄mpe

)
such that the threshold

is interior (i.e., h > 0 if T < T crit).
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they frontload their efforts less. Formally, there exists an interior
threshold z such that ∂

∂r ampe(q) < 0 if and only if q ≤ z.
To examine how the group size n influences the agents’

incentives, assume that the project generates a fixed lump-sum
B upon completion, and each agent receives Vn = B

n ; i.e.,
each agent’s reward is inversely proportional to the size of her
group.

Remark 3. Suppose that the group size increases from n to m > n,
and a project-completing MPE exists in both cases.

(i) The unconstrained completion time may be t̄
mpe
n � t̄

mpe
m

depending on the parameters.
(ii) There exists a threshold h such that individual effort

ampe
m (q) ≥ ampe

n (q) if and only if q ≤ h.
(iii) There exists an interior threshold 0 such that aggregate effort

m ampe
m (q) ≥ n ampe

n (q) if and only if q ≤ 0.

In the first-best outcome, the unconstrained completion time
decreases (i.e., t̄fb

m < t̄
fb
n ), statement (ii) is the same as above, and the

total effort increases; i.e., m afb
m(q) ≥ n afb

n (q) for all q.

5. Infrequent monitoring of progress

In this section, we consider the case in which the agents learn
the state of the project qt at discrete dates t ∈ {t1, . . . , T} (which are
predetermined and common knowledge), but they do not obtain any
information about qt between those dates. For example, in corporate
team projects, the members of the team may learn how close they
are to their goal during group meetings where progress is accounted
for. As holding meetings is costly and time-consuming, they occur
infrequently.

In this case, the agents must choose their strategies based on
the project state observed at the discrete dates, and their expecta-
tions about their peers’ strategies. Because the project progresses
deterministically, along any equilibrium path, the agents have cor-
rect beliefs about the current state qt. The key difference relative
to the continuous-monitoring case analyzed in the previous section
is that now, an agent’s effort level at s ∈ (ti, ti+1) cannot influence
the effort levels of the other agents until ti+1, and therefore the
agents no longer have an incentive to frontload effort in between
monitoring dates. Note that even if the cumulative effort reaches
the completion threshold between two monitoring dates, the agents
cannot verify this and collect their payoffs before the next mon-
itoring date. As a result, the project can only be completed at a
monitoring date.

5.1. No monitoring

We begin by characterizing the equilibrium for the case in which
the agents obtain no information about the state qt until the dead-
line T.12 Together with the facts that effort costs are convex and
the agents cannot collect their reward before T, this implies that
they have no incentive to reach the completion threshold Q strictly
before the deadline. Therefore, in a project-completing equilibrium,
the state qt will reach Q exactly at t = T.

Proposition 3. (No monitoring) Suppose that T < ∞, and the agents
observe the state of the project qt only a t = T. There exists a unique

12 This is often referred to as an “open-loop equilibrium” in the literature; see for
instance Fershtman and Nitzan (1991). See also Kessing (2003) and Van Long (2010)
for a characterization of the open loop equilibria of this model without a deadline.
However, these authors did not relate their theoretical analyses to monitoring.

Fig. 2. Effort paths when the project state is monitored at 0, 1, and 2 intermediate
dates.

candidate for a symmetric project-completing equilibrium in which each
agent’s effort function satisfies

a{T;T}
t =

rQ
n

ert

erT − 1
, (10)

qT = Q, and each agent’s ex ante discounted payoff is equal to

J{T;T}
0 = e−rT V − rQ2

2n2

1
erT − 1

.

This candidate is an equilibrium if and only if J{T;T}
0 ≥ 0.13

Because the agents do not monitor the state of the project while in
progress, they cannot use their current action to influence the future
actions of their peers, and hence they have no incentive to frontload
their effort as in the MPE. Therefore, similar to what a social planner
would do, each agent optimally chooses her effort path at t = 0 such
that her discounted marginal cost of effort e−rta{T;T}

t is constant. An
example is illustrated by the blue solid line in Fig. 2.

This equilibrium need not be unique. If J{T;T}
0

∣∣∣
n=1

≤ 0 (i.e., if
an agent working alone does not find it optimal to complete the
project), then there also exists an equilibrium in which no agent
ever exerts any effort and the project is not completed. In addi-
tion, this game has a continuum of asymmetric equilibria, in which
the agents exert different portions of the total effort necessary to
complete the project. In all these equilibria, each agent smooths her
efforts perfectly along the equilibrium path, and because effort costs
are convex, the agents’ total discounted payoff is maximized when
the symmetric equilibrium is played.

5.2. One intermediate monitoring date

Next, we consider the case in which the agents observe the state
qt at an intermediate date t1, in addition to the deadline T. There
exist two project-completing equilibrium candidates: a candidate in
which the project is completed at t1 and a candidate in which it is

13 The superscript {T; T} denotes the dates at which the agents monitor the state of
the project and its completion time, respectively.
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completed at T. A candidate is an equilibrium if (a) it yields each
agent a nonnegative ex ante discounted payoff, and (b) no agent
has an incentive to unilaterally deviate, thus causing the project to
be completed at a different date, or to not be completed at all. The
following proposition provides a characterization.

Proposition 4. (Infrequent monitoring) Suppose that the agents
observe the state qt only at t = {t1, T}. There exist two symmetric
project-completing equilibrium candidates:

(i) A candidate in which each agent’s effort level satisfies

a{t1,T;t1}
t =

⎧⎨
⎩

rQ
n

ert

er t1 −1
if t ≤ t1

r(Q−qt1)
n

ert

erT −er t1
if t > t1 ,

(11)

the project is completed at t = t1, and her ex ante discounted
payoff is equal to

J{t1,T;t1}
0 = e−rt1 V − rQ2

2n2

1
ert1 − 1

. (12)

This is an equilibrium if and only if J{t1,T;t1}
0 ≥ 0 and

J{t1,T;t1}
0 ≥ e−rT V − rQ2

2n2

1
n2
(
erT − er t1

)
+ (er t1 − 1)

. (13)

(ii) A candidate in which each agent’s effort level satisfies

a{t1,T;T}
t =

⎧⎨
⎩

rQ
n

ert

n(erT −er t1)+(er t1 −1)
if t ≤ t1

r(Q−qt1)
n

ert

erT −er t1
if t > t1 ,

(14)

the project is completed at t = T, and her ex ante discounted
payoff is equal to

J{t1,T;T}
0 = e−rT V − rQ2

2n2

n2 (erT − er t1
)

+
(
er t1 − 1

)
[
n
(
erT − er t1

)
+ (er t1 − 1)

]2 .

This is an equilibrium if and only ifJ{t1,T;T}
0 ≥ 0 and

J{t1,T;T}
0 ≥ e−rt1 V − rQ2

2n2

1
er t1 − 1

[
n2 (erT − ert1

)
+
(
er t1 − 1

)]2[
n
(
erT − er t1

)
+ (er t1 − 1)

]2 .

(15)

In the first candidate, similar to the case analyzed in Section 5.1,
each agent perfectly smooths her effort over [0, t1].14 The only poten-
tially profitable deviation is one in which, expecting all other agents
to choose the strategy specified by Eq. (11), an agent chooses the
strategy with the smallest discounted cost such that the project is
completed at T instead of t1.15 This strategy gives the agent an ex ante
discounted payoff equal to the right-hand-side of Eq. (13), which for

14 Note that strategies must specify effort levels for all t ∈ [0, T] even if in equilib-
rium, the project is completed at t1 < T. If, off the equilibrium path, the project is not
completed at t1, then the agent’s effort path for t > tt will depend on qt1 .
15 Note that a deviation that causes the project to not be completed cannot be

profitable.

an agent to not have an incentive to deviate this way, must be no
greater than J{t1,T;t1}

0 ; i.e., the payoff corresponding to completing the
project at t1.

Turning to the second candidate, each agent smooths her efforts
perfectly during the intervals [0, t1] and (t1, T]. This is intuitive, since
she cannot influence the strategies of the other agents except at t1.
However, observe that if all agents choose their efforts according to
Eq. (14) on [0, t1], then immediately after monitoring the state at t1,
each agent’s effort level jumps upwards by a factor of n. Intuitively,
this occurs because by shirking prior to t1, an agent saves the cost of
effort that she “skipped”, but in equilibrium, she will only exert 1/n
of the skipped effort after the state is observed at t1. She cannot shirk
during [t1, T], for otherwise, the project will miss the deadline and
she will receive no reward. An example of each agent’s effort path is
illustrated by the red dashed line in Fig. 2.

Note that the only potentially profitable deviation is one in which,
anticipating that all other agents choose their effort levels according
to Eq. (14), an agent chooses her strategy to minimize her discounted
cost of effort while completing the project at t1. In this case, this
agent’s ex ante discounted payoff is given by the right-hand side of
Eq. (15), which for this candidate to be an equilibrium, must be no
greater than J{t1,T;T}

0 ; i.e., the payoff corresponding to completing the
project at T.

An implication of this result is that if the state is observed at an
intermediate date along the equilibrium path, then effort is back-
loaded (i.e., each agent’s marginal cost of effort e−rtat is increasing in
t), which is in contrast to the frontloading theme of Section 4. Recall
that frontloading stems from each agent’s incentive to motivate her
peers to raise their future efforts, and in turn collect the reward from
completing the project sooner. If the completion date is fixed, as is
the case in this candidate equilibrium, then there is no incentive to
frontload effort, and the agents backload effort instead.

In general, there may exist no, one, or two project-completing
equilibria.16 If both candidates constitute an equilibrium, then notice
that the right hand side of Eq. (13) is greater than J{t1,T;T}

0 , which

implies that J{t1,T;t1}
0 > J{t1,T;T}

0 . Therefore, in this case, the equilib-
rium in which the project is completed at t1 provides the agents with
a strictly higher ex ante discounted payoff.

5.3. Multiple intermediate monitoring dates

Using a similar approach, one can characterize equilibria in which
the agents observe the project state at potentially multiple interme-
diate dates.

Remark 4. Suppose that the agents observe the state qt only at
t ∈ {t1, . . . , tm−1, tm = T}, where m ≥ 2. For every k ∈ {1, . . . , m},
there exists a candidate symmetric equilibrium in which the project
is completed at tk, and along the equilibrium path, each agent’s effort
level satisfies

at =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kert if t ∈ [0, t1)

knert if t ∈ [t1, t2)

. . .

knk−1ert if t ∈ [tk−1, tk] ,

where k = rQ∑k
j=1 nj

(
e

rtj −e
rtj−1

) .17

16 Simulations over a wide range of parameters suggest that an equilibrium in which
the project is completed at T (t1) is more likely to exist if rQ2

2n2V
is larger (smaller), or t1

and T − t1 are smaller (larger).
17 To ensure that this candidate is an equilibrium, one needs to verify that no prof-

itable deviation exists. In the interest of brevity, this step, which involves tedious
algebra, is omitted.
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Observe that following every monitoring date, each agent’s effort
level jumps upwards by a factor of n. The intuition is the same as
for the first candidate characterized in Proposition 4. An example for
the case in which the state is monitored at two intermediate dates is
illustrated by the green dotted line in Fig. 2.

5.4. Endogenous monitoring dates

In this section, we are concerned with endogenizing the set of
monitoring dates. For example, consider the case in which moni-
toring is costly (e.g., group meetings are time-consuming and may
require members to travel), so the agents can monitor the project
state at most once before the deadline. When should they choose to
monitor their progress?18

Assuming that rQ2

2Vn2 < 1 so that the project is socially desirable,
if the agents can commit to any deadline ex ante, then they find
it optimal to set T = t̄fb and to not monitor the project state at
any intermediate date. In this case, the agents’ payoffs and strategies
coincide with the first-best outcome characterized in Proposition 1.
Recall however that deadlines are not renegotiation-proof, and if the
project is not completed by t̄fb, then it will be in their interest to
renegotiate the deadline. In the remainder of this section, we con-
sider the case in which the agents face some deadline T > t̄fb, and
they cannot commit to a shorter deadline. The following proposition
shows that the agents can maximize their ex ante discounted payoffs
by monitoring the state at some appropriately chosen intermediate
date t1 such that the project is completed at that date. Moreover, if
T is sufficiently long, then it is possible to implement the first-best
outcome.

Proposition 5. (Endogenous monitoring dates) Suppose that the agents
face some deadline T > t̄fb, they cannot commit to not renegotiating
a shorter deadline, but they can choose (ex ante) to observe the project
state at some intermediate date t1.

(i) The agents will optimally choose the smallest t1 ≥ t̄fb such that
Eq. (13) is satisfied; i.e., such that there exists an equilibrium in
which the project is completed at t1.

(ii) If T is sufficiently large, then t1 = t̄fb, and there exists a unique
symmetric project-completing equilibrium, which implements
the first-best outcome.

This result follows from two observations. First, conditional on
the project being completed at some date t, the agents are better
off not observing the project state at any t < t; i.e., J{t;t}

0 > J{t,t;t}
0

for all t ∈ (0, t). This is because without intermediate monitoring
the agents will perfectly smooth their effort over [0, t], which is
payoff-maximizing. Second, observe from Eq. (12) that if the project
is completed at t1, then each agent’s ex ante discounted payoff
decreases in t1 for all t1 ≥ t̄fb. Therefore, the agents will choose the
smallest t1 ≥ t̄fb such that Eq. (13) is satisfied; i.e., such that there
exists an equilibrium in which the project is completed at t1. The sec-
ond part of the proposition follows by noting that Eq. (13) is trivially
satisfied when T is sufficiently large.19

This result has two implications. First, even if the agents cannot
commit to not renegotiate a deadline, they can provide themselves
with stronger, possibly first-best incentives by choosing the inter-
mediate monitoring date t1 appropriately. As a result, t1 acts as
a self-enforcing deadline. Second, absent an exogenous deadline

18 We discuss the case in which the project state can be monitored at multiple
intermediate dates following Proposition 5.
19 If the deadline T ≤ t̄fb , then the agents find it optimal to not monitor the project

at any intermediate state and complete it at T.

(i.e., if T = ∞), then the agents can implement the first-best out-
come by committing to monitoring the project state at t1 = t̄fb,
and then to not monitoring it again until a much later date t2.
In this case, no agent has an incentive to deviate, as that would
delay completion until at least t2, and as a result, completing the
project at t̄fb is the unique symmetric project-completing equilib-
rium outcome.20

Last, we discuss the case in which the agents face an exogenous
deadline T and can choose multiple intermediate dates at which to
monitor the state of the project. Because J{t;t}

0 > J{t1,t;t}
0 for all t > 0

and t1 ∈ (0, t), the agents will choose these dates such that in equi-
librium, the project is completed at the first monitoring date t1.
We know from Proposition 5 that if T is sufficiently large such that
Eq. (13) is satisfied when t1 = t̄fb, then the agents will optimally
choose to monitor the project state only at t̄fb and at the deadline T,
and they will attain the first-best payoffs as a result. In general, the
right-hand-side of Eq. (13) is not monotone decreasing in T, so if T
is sufficiently small (but larger than t̄fb), then the agents may find
it optimal to monitor the project state at some t1, and at a second
intermediate state t2 < T.

6. Discussion

We use a tractable dynamic model to study the provision of
discrete public goods. At every moment, each member of a team
chooses her costly effort to make progress on a project, which is
completed once the cumulative efforts reach a certain threshold.
Provided that this occurs prior to a prespecified deadline, each agent
receives a lump-sum reward. We contribute to the extant literature
by studying how deadlines and infrequent monitoring of progress
affect equilibrium behavior.

We establish three key insights. First, a shorter deadline induces
the agents to raise their efforts (provided that a project-completing
MPE exists), but no matter the length of the deadline, effort provision
is inefficient due to the agents’ frontloading incentives. Second, not
monitoring the project state until the deadline eliminates the agents’
frontloading incentives, so by committing to a deadline equal to the
first-best completion time, it is possible to restore efficiency. Rec-
ognizing that deadlines are not renegotiation proof, our third main
result shows that by committing to monitor the state at the first-
best completion time, and then again at a sufficiently later date,
efficiency can be attained. In this case, that monitoring date acts as a
self-enforcing deadline.

Finally, it is valuable to discuss two assumptions that are impor-
tant for our results. In particular, that each agent has complete
information about the preferences and productivity of the other team
members, and the project progresses deterministically. As a result,
along the equilibrium path, there is a one-to-one correspondence
between time and the project state, so even if the agents cannot
monitor the state continuously, their beliefs are correct. While these
assumptions provide tractability, they imply that there is no positive
role for monitoring. For example, absent either assumption, monitor-
ing the state of the project would give each agent the opportunity to
learn about the preferences and productivity of her peers or shocks
to progress, and adapt her strategy to the new information. In such
a setting, to determine whether monitoring is desirable, one would
need to trade off the value of adaptation to the efficiency cost asso-
ciated with the agents’ frontloading incentives. See Campbell et al.
(2013) and Cetemen et al. (2016) for steps in that direction.

20 Intuitively, committing to not monitoring the state for a sufficiently large duration
of time is analogous to introducing a provision threshold in a static voluntary contri-
bution mechanism. If the provision threshold is chosen appropriately, then it may be
possible to induce efficient contributions in equilibrium; e.g., see Bagnoli and Lipman
(1989) and Andreoni (1998) for details.
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Appendix A. MPE with non-differentiable strategies

In this appendix, we expand the strategy space by also consid-
ering non-differentiable strategies that allow agents to punish their
peers following a deviation from the equilibrium path. We char-
acterize an MPE in which, along the equilibrium path, all agents
exert the first-best effort levels. In particular, consider the following
strategy. Given the current state of the project qt and time t, each
agent chooses the first-best effort level characterized in Proposition 1
as long as no deviation from this strategy by any agent has been
detected; i.e., as long as the state of the project at time t is con-
sistent with all agents having exerted first-best effort thus far. If
a deviation is detected, then all agents immediately revert to the
MPE characterized in Proposition 2 for the remaining duration of the
project.21

Proposition 6. There exists an MPE with non-differentiable strategies
in which at every moment along the equilibrium path, each agent exerts
the first-best effort level a fb

t and her ex ante discounted payoff is equal
to J fb

0 , both characterized in Proposition 1. After any deviation from
the equilibrium path, all agents revert to the MPE characterized in
Proposition 2 for the remaining duration of the project.

The result that efficiency can be sustained with non-differentiable
strategies should not come as a surprise. First, each agent is strictly
better off relative to the MPE characterized in Proposition 2 if all
agents exert first-best effort levels. Second, the threat to revert
to that MPE is credible, because such play constitutes a subgame-
perfect equilibrium in the continuation game. Lastly, because agents
can detect (and punish) a deviation arbitrarily quickly, the gain from
a deviation is arbitrarily small, and consequently, no agent ever has
an incentive to deviate.

Appendix B. Proofs

Proof of Proposition 1. The team Hamiltonian can be written as

Ht = −e−rt
n∑

i=1

a2
i,t

2
+ ktn

n∑
i=1

ai,t ,

where kt ≥ 0 is the co-state variable. Letting t ≤ T denote the
completion time of the project, we have the project-completion
condition

∫ t
0
∑n

i=1 ai,tdt = Q , and the terminal value function is
vt = e−rtnV. Applying Pontryagin’s maximum principle yields the
optimality and adjoint equations

dHt

dai,t
= 0 for all i and k̇t = − dHt

dq
,

respectively. It follows from the adjoint equation that kt is constant
(say kt = c), and from the optimality equation that ai,t = cnert. Note

21 There is a well-known challenge associated with defining trigger strategies in con-
tinuous time games. To see why, suppose that a deviation occurs at some t′ , and agents
revert to the MPE at t

′ ′
. Because there is no first time after t′ , there always exists some

t ∈ (t′ , t
′ ′

) such that the agents are better off reverting to the MPE at that t; i.e., subgame
perfection fails. To resolve this problem, we use the concept of inertia strategies pro-
posed by Bergin and MacLeod (1993). Also see Georgiadis et al. (2014), who consider
the infinite-horizon counterpart of this problem.

that the agents’ strategies are symmetric, so we can drop the sub-
script i. Substituting at = cnert into the project-completion condition∫ t

0 natdt = Q yields c = rQ
n2 (ert − 1)

−1, and therefore, for a given
completion time t, each agent’s effort and discounted payoff func-
tion satisfies the desired expression. By substituting c and at into Eq.
(4) it follows that

1 −
√

rQ2

2Vn2
≤ e−rt (= if t < T)

By noting that the right-hand-side in the last inequality decreases
in t and is ¡1, it follows that if the project is completed in the first-
best outcome, then its completion time t = min

{
T, t̄fb

}
, where

t̄fb = − 1
r ln

(
1 −

√
rQ2

2Vn2

)
. By noting that Ht is strictly concave in ai,t

for all i and it is independent of qt, it follows from the Mangasarian
Theorem (see Seierstad and Sydsaeter, 1987) that the above condi-
tions are sufficient for an optimal solution. Each agent’s discounted

payoff is equal to J fb
t = e−r(t−t)V − rQ2

2n2
ert(ert−ert)

(ert−1)2 . Finally, the project

is completed in the first-best outcome (i.e., it is socially desirable) if
and only if J fb

0 ≥ 0, or equivalently 1 − e−rt ≥ rQ2

2Vn2 . �

Proof of Proposition 2. The unique (non-trivial) solution to the
adjoint equation k̇t = −r n−1

2n−1kt is kt = c e−rt n−1
2n−1 , where c is a

constant to be determined.22 Substituting kt into Eq. (1) yields

cn
∫ t

0
ert(1− n−1

2n−1 )dt = Q ⇒ (2n − 1) c
r

(
e

rnt
2n−1 − 1

)
= Q ⇒ c =

rQ
2n − 1

(
e

rnt
2n−1 − 1

)−1
,

and Eq. (4) can be rewritten as

1 −
√

rQ2

2V
1

2n − 1
≤ e− rnt

2n−1 (= 0 if t < T) .

By noting that the right-hand-side in the last inequality decreases
in t and is ¡1, it follows that the project is completed at t =

min
{
T, t̄mpe

}
, where t̄mpe = − 2n−1

rn ln
(

1 −
√

rQ2

2V
1

2n−1

)
. Noting that

Hi,t is strictly concave in ai,t for all i and it is independent of qt, it fol-
lows from the Mangasarian Theorem (see Seierstad and Sydsaeter,
1987) that the above conditions are sufficient for an optimal solution.

For a given completion time t, at time t along the candidate
equilibrium path, each agent’s effort strategy is equal to ampe

t =
rQ

2n−1
e

rnt
2n−1

e
rnt

2n−1 −1
, and substituting this into each agent’s discounted pay-

off function, it follows that Jmpe
t = e−r(t−t)V − rQ2

2(2n−1)

ert
(

e
rt

2n−1 −e
rt

2n−1
)

(
e

rnt
2n−1 −1

)2 .

For a project-completing MPE to exist, it suffices to show that Jmpe
t ≥

0 at every t. By noting that Jmpe
t increases in t, it follows that a project-

completing MPE exists if Jmpe
0 ≥ 0, or equivalently if 1 − e− rnt

2n−1 ≥
rQ2

2V
1

2n−1 . Noting that the adjoint equation has a unique non-trivial
solution and that the necessary conditions are also sufficient, it fol-
lows that the candidate equilibrium described above is the unique
project-completing MPE if Jmpe

0 ≥ 0. �

22 The adjoint equation has a trivial solution kt = 0 for all t, which implies that
at = 0 for all t. However this solution cannot satisfy the project-completion condition
(1).
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Proof of Remark 1. Let

q(t) =
afb

t

ampe
t

=
2n − 1

n

⎛
⎝ e

rntmpe
2n−1 − 1

ertfb − 1

⎞
⎠ er( n−1

2n−1 )t ,

where tfb = min
{

T, t̄fb
}

and tmpe = min
{
T, t̄mpe

}
denotes the

completion time of the project in the first-best outcome and the MPE,
respectively. Observe that

q(0)
∣∣
tmpe=tfb=T =

2n−
n

⎛
⎝ e

rnT
2n− −

erT−

⎞
⎠< 1

for all T > 0. Therefore, if T ≤ t̄fb so that tfb = tmpe = T,
then ampe

0 > a fb
0 . Moreover, observe that q(0) is increasing in T and

2n−1
n

e
rnt̄mpe

2n−1 −1
ert̄fb −1

> 1, so there exists some threshold Tcrit ∈
(
t̄ fb, t̄mpe

)
such that ampe

0 ≥ a fb
0 if and only if T ≤ Tcrit. Finally, note that for any

deadline T, q(t) is strictly increasing in t, which implies the desired
result. �

Proof of Remark 2. If the deadline is binding (i.e., if the project is

completed at t = T), then ampe(q) = r
2n−1

(
q + Q

e
rnT

2n−1 −1

)
, whereas

if it is not (and so the project is completed at t = t̄mpe), then

ampe(q) = r
2n−1

⎛
⎝q + Q

1−
√

rQ2
2V

1
2n−1√

rQ2
2V

1
2n−1

⎞
⎠. The comparative statics follow

by inspecting how ampe(q) depends on Q and V in each case. �

Proof of Remark 3. For part (i), one can construct numerical exam-
ples such that by increasing the group size, the unconstrained

completion time of the project t̄mpe = − 2n−1
rn ln

(
1 −

√
rQ2

2B
n

2n−1

)
increases and others in which it decreases. To establish parts (ii)
and (iii), fix some n and m > n. Denote the completion time of the
project when the agents play the MPE by t(n) = min

{
T, t̄mpe(n)

}
,

and recall that along the path of the MPE, each agent’s effort

level satisfies ampe (q; n) = r
2n−1

(
q + Q

e
r nt(n)
2n−1 −1

)
. Consider the ratio

ampe(q;m)
ampe(q;n)

= 2n−1
2m−1

q+ Q

e
r mt(m)

2m−1 −1

q+ Q

e
r nt(n)
2n−1 −1

, and notice that it decreases in q if and

only if m t(m)
2m−1 < n t(n)

2n−1 . Observe that e
r nt̄mpe(n)

2n−1 = − ln
(

1 − rQ2

2B
n

2n−1

)
decreases in n, and so m t̄mpe(m)

2m−1 < n t̄mpe(n)
2n−1 . Noting that m

2m−1 <
n

2n−1 , the desired inequality holds if t̄mpe(m) ≤ t̄mpe(n). Suppose that
t̄mpe(m) > t̄mpe(n). If T ≤ t̄mpe(n) < t̄mpe(m), then t(n) = t(m) = T,
and so the desired inequality holds. If t̄mpe(n) < T < t̄mpe(m), then
t(n) = t̄mpe(n) and t(m) = T, and because m t̄mpe(m)

2m−1 < n t̄mpe(n)
2n−1 , we

have m t(m)
2m−1 < m t̄mpe(m)

2m−1 < n t(n)
2n−1 . Lastly, if t̄mpe(n) < t̄mpe(m) ≤ T,

then t(n) = t̄mpe(n) and t(m) = t̄mpe(m), and the desired inequal-
ity again holds. Therefore, there exists some threshold h such that
ampe(q; m) ≥ ampe(q; n) if and only if q ≤ h. Finally, by noting that
the ratio m ampe(q;m)

n ampe(q;n)
also decreases in q, it follows that there exists

another threshold 0 such that m ampe(q; m) ≥ n ampe(q; n) if and only
if q ≤ 0.

To establish the counterpart of the above results for the case
in which the MPE with non-differentiable strategies is played, first

notice that t̄fb(n) = − 1
r ln

([
1 −

√
rQ2

2Bn

]+
)

decreases in n. Turning to

part (ii), fix some n and m > n. Denoting the first-best completion

time of the project when the group size is n by t(n) = min
{

T, t̄fb(n)
}

, along the efficient path, each agent’s effort level satisfies afb (q; n) =
r
n

(
q + Q

ert(n)−1

)
. Noting that t(m) ≤ t(n) for any deadline, observe

that the ratio afb(q;m)
afb(q;n)

= n
m

q+ Q
ert(m)−1

q+ Q
ert(n)−1

decreases in q. Therefore, there

exists some threshold h such that afb(q; m) ≥ afb(q; n) if and only
if q ≤ h. Finally, consider the ratio of aggregate efforts m afb(q;m)

n afb(q;n)
=

q+ Q
ert(m)−1

q+ Q
ert(n)−1

. It decreases in q, and using that t(m) ≤ t(n), it is straight-

forward to verify that m afb(Q ;m)
n afb(Q ;n)

> 1. Therefore, m afb(q; m) >

n afb(q; n) for all q. �

Proof of Proposition 3. The optimality and the adjoint equation can
be written as at = ktert and k̇t = − dHt

dq = 0, respectively. The second
condition implies that kt is a constant (say equal to c), and using Eq.
(1) to determine this constant yields that c = rQ

n(ert−1)
. Because effort

costs are convex, the agents discount time, and they do not receive a
reward until t = T, if the project is completed in equilibrium, then it
will be completed at t = T. As in the continuous monitoring case, suf-
ficiency follows from the Mangasarian Theorem by noting that Hi,t is
strictly concave in ai,t and independent of qt for all i. Therefore, in any
project-completing equilibrium, t = T, each agent’s effort function
satisfies

a{T;T}
t =

rQ
n

ert

erT − 1
,

and her discounted payoff function

J{T;T}
t = e−r(t−t)V − rQ2

2n2

ert
(
erT − ert

)
(
erT − 1

)2 .

Finally, a project-completing equilibrium exists as long as J{T;T}
0 ≥

0. �

Proof of Proposition 4. Part (i). For candidate (i), it follows from
Proposition 4 that in an equilibrium in which the project is com-
pleted at t1, each agent’s strategy and ex ante discounted payoff must
be as given in Eq. (11) and J{t1,T;t1}

0 . Similar to the previous case, for
this to be an equilibrium, it is necessary that no agent has an incen-
tive to unilaterally deviate to a different strategy, and J{t1,T;t1}

0 ≥ 0.
Moreover, the only potentially optimal deviation is for an agent to
choose her effort path such that the project is not completed at t1,
and so it is completed at T instead. To analyze this case, suppose that
all agents but i choose their effort according to Eq. (11), and so they
exert total effort n−1

n Q by t1.
Suppose that the state of the project at t1 is q1 ≥ n−1

n Q . It fol-
lows from the analysis in part (i) of the proof for the game during
[t1, T] that agent i′s discounted payoff at t1 is Jdev

i,t1
(q1) = e−r(T−t1)V −

rert1

2n2
(Q−q1)2

erT −ert1
. Turning to the game during [0, t1], agent i′s effort path

has the form ai,t = mert, where m satisfies the transversality condi-
tion m = q

dq1
e−rt1 Jdev

t1
(q1) = r(Q−q1)

n2(erT −ert1)
, and feasibility requires that∫ t1

0 mertdt + n−1
n Q = q1. Together, these conditions pin down

q1 = Q
n (n − 1)

(
erT − ert1

)
+
(
ert1 − 1

)
n2
(
erT − ert1

)
+ (ert1 − 1)

.
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Therefore, m = rQ
n

1
n2(erT −ert1)+(ert1 −1)

, and agent i′s ex ante

discounted payoff is equal to

Jdev
i,0 =e−rt1 Jdev

i,t1
(q1) −

∫ t1

0
e−rt 1

2
m 2e2rtdt = e−rT V

− rQ2

2n2

n2 (erT − er t1
)

+
(
er t1 − 1

)
[
n2
(
erT − er t1

)
+ (er t1 − 1)

]2

For candidate (i) to be an equilibrium, it must be the case that
J{t1,T;t1}
0 ≥ max

{
0, Jdev

i,0

}
.

Part (ii). We begin by characterizing the second candidate (in
which the project is completed at T), and establish the conditions
under which it is an equilibrium. Fix the state q1 that the agents
observe at t1, and consider the game for t ∈ [t1, T]. The optimality
and the adjoint equation are at = ktert and k̇t = − dHt

dq = 0, respec-
tively. For the project to be completed at T, it must be the case that∫ T

t1
nk (q1) ertdt = Q − q1, or equivalently k (q1) = r(Q−q1)

n(erT −ert1)
, where

q1 denotes the project state at t1. Therefore, for t ≥ t1, each agent’s
effort level at = r(Q−q1)ert

n(erT −ert1)
. Next, compute each agent’s discounted

payoff at t1:

Jt1 (q1) =e−r(T−t1)V −
∫ T

t1

e−r(t−t1) 1
2

[k (q1)]2e2rtdt = e−r(T−t1)V

− rert1

2n2
(Q − q1)

2

erT − ert1
.

Next, consider the game for t ∈ [0, t1). Similar to the previ-
ous case, the optimality and the adjoint equation can be written as
at = lte

rt and l̇t = − dHt
dq = 0, respectively. Feasibility requires that∫ t1

0 nlertdt = q1, or equivalently l = rq1
n(ert1 −1)

. The transversality

condition is l = q
dq1

e−rt1 Jt1 (q1) = r(Q−q1)

n2(erT −ert1)
, which pins down

q1 = Q
ert1 − 1

n
(
erT − ert1

)
+ (ert1 − 1)

,

and subsequently, the parameters l and k(q1), as well as the effort
function given in Eq. (14). Each agent’s ex ante discounted payoff is
equal to

J{t1,T;T}
0 = e−rt1 Jt1 (q1) −

∫ t1

0
e−rt 1

2
l2e2rtdt

= e−rT V − rQ2

2n2
(Q − q1)

2

erT − ert1
− rq2

1
2n (er t1 − 1)

= e−rT V − rQ2

2n2

n2 (erT − er t1
)

+
(
er t1 − 1

)
[
n
(
erT − er t1

)
+ (er t1 − 1)

]2 .

For the strategies given in Eq. (14) to constitute an equilibrium,
it is necessary that no agent has an incentive to unilaterally deviate
from said strategies, and J{t1,T;T}

0 ≥ 0. Notice that the only poten-
tially optimal deviation is for an agent to choose her effort path
such that the project is completed at t1 instead of T. To analyze this
case, suppose that all agents but i choose their effort according to
Eq. (14), and so they exert total effort n−1

n q1 by t1. To complete the
project by t1, agent i must exert total effort Q − n−1

n q1 during [0, t1].
Her effort path has the form ai,t = mert, where m is pinned down
by the feasibility condition

∫ t1
0 mertdt = Q − n−1

n q1. It follows that

m = rQ
ert1 −1

n2(erT −ert1)+(ert1 −1)
n2(erT −ert1)+n(ert1 −1)

. In this case, agent i′s ex ante dis-

counted payoff is equal to

Jdev
i,0 =e−rt1 V −

∫ t1

0
e−rt 1

2
m2e2rtdt = e−rt1 V

− rQ2

2n2

1
er t1 − 1

[
n2 (erT − ert1

)
+
(
er t1 − 1

)]2[
n
(
erT − er t1

)
+ (er t1 − 1)

]2 .

For candidate (ii) to be an equilibrium, it must be the case that
J{t1,T;T}
0 ≥ max

{
0, Jdev

i,0

}
. �

Proof of Proposition 5. First observe that J{t1,T;T}
0 < J{T;T}

0 for all
t1 ∈ (0, T); that is, if the project is completed T, then the agents are
strictly better off not observing the project state at any intermediate
date t1 ∈ (0, T). This implies that if the agents choose to observe the
project state at some intermediate date t1, then there must exist an
equilibrium in which the project is completed at t1.

Next, note from Eq. (12) that J{t1,T;t1}
0 decreases in t1; i.e., con-

ditional on the project being completed at t1 in equilibrium, each
agent’s ex ante discounted payoff decreases in t1. Therefore, the
agents’ ex ante discounted payoff is maximized by choosing the
smallest t1 such that Eq. (13) is satisfied.

Finally, note that the right-hand-side of Eq. (13) diminishes to 0 as
T → ∞, which implies that for any t1, Eq. (13) is trivially satisfied if T
is sufficiently large. Therefore, in that case, the agents will optimally
choose t1 = t̄fb. �

Proof of Remark 4. Consider a candidate equilibrium in which the
project is completed at tk. For t ∈ [tj−1, tj], where j ∈ {2, . . . , m}, the
adjoint equation implies that the co-state variable kj is constant, and
the optimality and the feasibility condition is

at = kje
rt and

∫ tj

tj−1

nkje
rtdt = qtj − qtj−1 ,

respectively, where the latter can be rewritten as kj =
r
(

qtj
−qtj−1

)
n
(

e
rtj −e

rtj−1
) .

Each agent’s payoff at tj−1 can be written as a function of qj−1 as
follows:

Jtj−1 =e−r(tj−tj−1)Jtj −
∫ tj

tj−1

e−r(t−tj−1) 1
2
k2

j e2rtdt = e−r(tj−tj−1)Jtj

− rertj−1

2n2

(
qtj − qtj−1

)2

ertj − ertj−1
.

Now let us turn our attention to the interval [tj−2, tj−1], where
t0 = 0. As in the previous case, the co-state variable is constant,
and the optimality and the feasibility condition is at = kj−1ert and∫ tj−1

tj−2
nkj−1ertdt = qtj−1 − qtj−2 , respectively, where the latter can

be rewritten as kj−1 =
r
(

qtj−1
−qtj−2

)
n
(

e
rtj−1 −e

rtj−2
) . Note that the transversality

condition kj−1 = e−rtj−1
dJtj−1
dqtj−1

must be satisfied, which implies that

kj−1 = r
n2

qtj
−qtj−1

e
rtj −e

rtj−1
.

Observe that kj = nkj−1, and note that this relationship must
hold for all j ∈ {2, . . . , m}. Therefore, in a symmetric equilibrium
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candidate in which the project is completed at tk, each agent’s effort
level satisfies

at =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kert if t ∈ [0, t1)

knert if t ∈ [t1, t2)

. . .

knk−1ert if t ∈ [tk−1, tk] ,

where k = rQ∑k
j=1 nj

(
e

rtj −e
rtj−1

) follows from the feasibility condition;

i.e.,
∫ tk

0 natdt = Q . �
Proof of Proposition 6. To begin, suppose that the agents revert to
the MPE at some time t̄, and let q̄ = qt̄ denote the corresponding
state. Then observe that they face the same problem as if they were
starting a project of size Q − q̄ with deadline T − t̄, and they were
playing the corresponding MPE. Assuming that a project-completing
MPE exists, each agent’s discounted effort function on

[
t̄, T
]

and her
discounted payoff at t̄ satisfies

ampe
t

(
t̄, q̄
)

=
r (Q − q̄)

2n − 1
e

rn(t−t̄)
2n−1

e
rnt

2n−1 − 1
and Jmpe

t̄

(
t̄, q̄
)

= e−r(t−t̄)V

− r(Q − q̄)2

2 (2n − 1)

e
rt

2n−1 − 1(
e

rnt
2n−1 − 1

)2
,

respectively, where the completion time t = min
{
T, t̄ + t̄

}
, and

t̄ = − 2n−1
rn ln

⎛
⎝[1 −

√
r(Q−q̄)2

2V
1

2n−1

]+
⎞
⎠. If a project-completing MPE

does not exist, then each agent exerts no effort for all t ≥ t̄ and her
discounted payoff is equal to 0. Letting J fb

t̄

(
t̄, q̄
)

denote each agent’s
discounted payoff at t̄ if all agents exert the first-best effort levels for
all t ≥ t̄, it is straightforward to verify that J fb

t̄

(
t̄, q̄
)
> Jmpe

t̄

(
t̄, q̄
)

for all
t̄ and q̄ < Q .

The remainder of this proof follows the proof of Proposition 2 in
Georgiadis et al. (2014). Consider the following strategy:

at =

{
a fb

t if qt =
∫ t

0 na fb
s ds

ampe
t

(
t̄, q̄
)

otherwise,

where a fb
t is given in Eq. (6), t̄ = inft

{
qt �= ∫ t

0 na fb
s ds

}
, and q̄ = qt̄ .

This strategy specifies that at every moment t, each agent exerts the
first-best effort level as long as every other agent has insofar followed
this strategy, and she reverts to the MPE otherwise.

There is a well known problem associated with defining such trig-
ger strategy in continuous-time games. To see why, suppose that a
deviation occurs at some t′, and agents revert to the MPE at some
t

′ ′
> t. Because there is no first moment after t′, there always exists

some t ∈ (t′, t
′ ′
) such that the agents are better off reverting to the

MPE at that t; i.e., subgame perfection fails. To resolve this problem,
following Bergin and MacLeod (1993), consider the following inertia
strategy:

a4
t =

{
afb

t ifqt−4 =
∫ t−4

0 nafb
s ds

ampe
t

(
t̄, q̄
)

otherwise,

where qt = 0 for all t ≤ 0. First observe that at the limit as 4 → 0,
a4

t converges to at. Second, because a4
t < ∞ for all 4, t, and Q, for

any decreasing sequence
{
4m
}∞

m=1 converging to 0, the strategies a4
t

form a Cauchy sequence. Third, whereas the strategy a4
t cannot form

a PPE, it does form an 4-PPE. To see why, first observe that if at every
moment t, all agents choose effort level a4

t , then each agent’s dis-
counted payoff is strictly greater than if they play the MPE for all
s ≥ t. Second, observe that for sufficiently small 4, the optimal strat-
egy against a4

t is for an agent to choose a fb
t for all t < t̃, and deviate to

some a4,dev
t at t = t̃, where t̃ is chosen such that the project is com-

pleted at min
{
t̃ + 4, T

}
. In this case, project completion is delayed by

at most 4 units of time, and each agent’s discounted payoff at time t

is at least J fb
t − 4r e−rt − 4

2

[
a fb
tfb

]2
. Therefore, the strategy a4

t forms an
4-PPE, and by applying Theorem 3 of Bergin and MacLeod (1993), it
follows that the limit strategy as 4 → 0 forms a PPE. This competes
the proof. �
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