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A/B Contracts†

By George Georgiadis and Michael Powell*

This paper aims to improve the practical applicability of the classic 
theory of incentive contracts under moral hazard. We establish con-
ditions under which the information provided by an A/B test of incen-
tive contracts is sufficient for answering the question of how best to 
improve a status quo incentive contract, given a priori knowledge 
of the agent’s monetary preferences. We assess the empirical rele-
vance of this result using data from DellaVigna and Pope’s (2018) 
study of a variety of incentive contracts. Finally, we discuss how our 
framework can be extended to incorporate additional considerations 
beyond those in the classic theory. (JEL D82, D86, D91)

Firms and organizations throughout the economy now understand that there is a 
lot to learn from experimentation—they regularly use it to inform product design, 
pricing, advertising, and many other facets of their product-market strategies. 
Equally critical to the survival of any organization, however, is the management of 
compensation and reward structures: how should people be rewarded for outcomes? 
This can be a challenging question to answer—even in theory—and it has largely 
evaded recent trends in data-driven decision-making. This paper shows that under 
some standard assumptions about the way people respond to incentives and value 
monetary rewards, simple experimentation coupled with a few basic theoretical 
insights can lead us a long way toward answering it.

To introduce our main ideas and to illustrate two problems that the approach we 
develop has to overcome, let us consider an example. Suppose you are a manager at 
a company that sells kitchen knife sets. You hire teenagers each summer to sell them 
door to door, and you pay them a simple piece rate for doing so. You have access 
to sales data for your workforce, and you are interested in knowing whether, and 
how, you should change the piece rate. Suppose your gross profit margin for sell-
ing a knife set is ​m​, the piece rate is ​α​, and your worker’s average sales are ​a​. Your 
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expected profits are therefore ​Π  = ​ (m − α)​a​. If you were to marginally increase 
your piece rate, the effect on your profits would be

(1)	​ ​ dΠ _ 
dα ​  = ​ (m − α)​ ​ da _ 

dα ​ − a,​

where the first term represents the effect on your net revenues, and the second term 
represents the effect on your wage bill.

You know your gross profit margin, the current piece rate, and the current average 
sales. You do not, however, know your workers’ behavioral response, ​da / dα​, to an 
increase in the piece rate. Given observational data alone, figuring out this behav-
ioral response requires knowing a lot about the problem your workers face: What 
are their effort costs? If they work a little harder, what is going to happen to the 
distribution of their sales? These are questions you likely do not know the answer 
to, but importantly, they are questions you do not need to know the answer to if you 
are willing to run an experiment.

Suppose you decide to run an A/B test on your workforce. You randomly divide 
it into a treatment group and a control group, you increase the piece rate by a small 
amount in the treatment group, and you have access to the data on the distribution of 
output for both the status quo contract and the test contract. You can use these data 
to estimate ​da / dα​, and you can use the expression above to determine whether you 
should marginally increase or decrease your piece rate.

This example illustrates two lessons. The first is that observational data is not 
informative enough to provide guidance for decision making in this context, just as a 
snapshot of price-quantity data is not informative enough for telling a manager how 
to change prices. The second lesson is that instead of having to know the details of 
the worker’s unobservable characteristics, it suffices to estimate a simple behavioral 
response, a lesson that echoes that of the growing literature on sufficient statistics 
for welfare analysis (see, for example, Chetty 2009).

The example also sidesteps two important issues that we will have to address. 
First, it restricts attention to linear contracts. This is a severe restriction, as the 
existing contract may not be linear, and improving upon the existing contract may 
well entail putting in place a nonlinear contract with features such as bonuses or 
accelerators with increasing piece rates. Second, it asks a local question—how 
best to marginally improve upon the status quo contract—and for practical appli-
cations, we are interested in non-local adjustments. We address each of these 
issues in turn.

To do so, we consider the canonical principal-agent framework under moral haz-
ard, as in Holmström (1979). Facing a contract ​w​, which is a mapping from out-
put to payments received, an agent chooses an unobservable and privately costly 
effort level ​a​, which determines the distribution over output ​f​( · | a)​​, which we nor-
malize so that the mean output is ​a​. As in Holmström (1979), we assume that the 
agent’s first-order condition characterizes his effort choice, and we assume that his 
preferences over money and his effort costs are additively separable and given by  
​v​(w)​ − c​(a)​​.

Given any status quo contract ​w​, let us consider the effects of an arbitrary non-
linear adjustment ​dw​ to the contract. This adjustment directly affects the expected 
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wage bill by ​E​[dw]​​ and leads the agent to change his effort level by some amount, ​
da​. The total effect on the principal’s profits is therefore

	​ dΠ  = ​ (m − ​∫ 
 
​ 
 
​​w ​f​a​​)​ da − E​[dw]​,​

which is the appropriate generalization of (1) to nonlinear contracts.1 The main 
challenge to figuring out the best marginal adjustment to the status quo contract is 
that the agent’s response ​da​ depends on ​dw​, and there is a continuum of ways in 
which the contract can be adjusted. Our main lemma shows that, given knowledge 
of the agent’s preferences for money, the information provided by a single A/B test 
of incentive contracts, which allows the principal to estimate ​da​ for a particular ​dw​,  
is a sufficient statistic for the estimation of the agent’s behavioral response to any 
marginal adjustment to the contract.

The argument for this sufficient-statistic result reveals how to use the data gener-
ated by an A/B test, and so it is worth detailing informally here. Given a contract, 
an agent will exert effort up to the point where his marginal effort costs equal his 
marginal incentives, which are given by ​I  =  cov​(v​(w)​, ​f​a​​ / f)​​. That is, he will work 
harder if doing so increases the likelihood of well-compensated outputs and decreases 
the likelihood of poorly compensated outputs. The agent’s behavioral response to a 
change in his marginal incentives, ​da / dI​, is therefore independent of the adjustment 
to the contract that led to the change in marginal incentives. Predicting how the 
agent will respond to an adjustment to the contract therefore requires information 
about how he will respond to a change in his marginal incentives, ​da / dI​, and how 
the adjustment affects his marginal incentives, ​dI​.

To make use of the information from an A/B test, consider a test contract that 
increases the agent’s mean output. Comparing the output distributions under the 
status quo contract and the test contract allows us to estimate which output levels 
become more and less likely, identifying ​​f​a​​​. Given an estimate of ​​f​a​​​ and knowledge 
of the agent’s preferences for money, we can infer how the test contract changed the 
agent’s marginal incentives, ​dI​, which allows us to identify the agent’s behavioral 
response to a change in marginal incentives, ​da/dI​. The A/B test also provides the 
information required to estimate how any other marginal adjustment to the status 
quo contract affects the agent’s marginal incentives, ​​ ~ dI​​, and therefore the agent’s 
effort choice ​​̃  da​  = ​ (da / dI)​​ ~ dI​​. A single A/B test, therefore, provides all the rel-
evant information for predicting how the principal’s expected profits will change 
in response to any marginal adjustment to the status quo contract and serves as a 
sufficient statistic for the question of how best to marginally adjust the status quo 
contract. This sufficient-statistic result is our main conceptual contribution. We then 
show that the problem of how best to locally adjust a status quo contract is equiva-
lent to figuring out the direction of steepest ascent in the principal’s objective, which 
can be determined by solving a convex program.

The second important issue that the above example sidestepped was the question 
of how to predict the effects of non-local adjustments to the status quo contract. 
We show that if the agent’s effort costs are isoelastic, and ​​f​a​​​ is independent of the 

1 We write ​​f​a​​​ to denote the derivative of ​f​(x | a)​​ with respect to ​a​, and we suppress the dependence on output ​x​ 
and effort ​a​ to simplify the notation.
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agent’s effort choice, then the information provided by a single A/B test provides 
all the information needed to predict how the principal’s profits will respond to any 
adjustment to the status quo contract. In doing so, we provide a procedure for using 
this information to optimally adjust the status quo contract.

We then explore the quantitative implications of our results using data from 
DellaVigna and Pope’s (2018) large-scale experimental study of how a variety 
of different incentive schemes motivate subjects in a real-effort task. We use the 
data from several treatments in which subjects were motivated solely by financial 
incentives. In all of these treatments, subjects received a fixed wage plus a con-
tingent payment that depended on their performance in the experiment. In four 
of these treatments, they received a constant piece rate for every unit of perfor-
mance, and the piece rate varied across the different treatments. In the remaining 
two treatments, subjects received a bonus if their performance exceeded a target, 
and the bonus varied between these treatments. We use these data to carry out two 
exercises.

Our first exercise asks the question of whether subjects’ average performance 
varies in the way our model predicts with our measure of the subjects’ marginal 
incentives. We take the data from two treatments within the same class, that is, data 
from two piece-rate treatments or two bonus treatments. We suppose that in one of 
the treatments, the subjects were on the status quo contract, and in the other, they 
were on the test contract. For each such pair, we predict the mean performance in 
each of the remaining four treatments and compare it to the actual average perfor-
mance. A/B tests using piece-rate contracts predict the performance in the other 
piece-rate-contract treatments well: the mean absolute percentage error (APE) for 
such predictions is 0.66 percent. A/B tests using piece-rate contracts also predict the 
performance in bonus contracts well, and vice versa: The mean APE for such predic-
tions is 2.28 percent. As a comparison, the mean absolute percentage performance 
differences across treatments is 6.40 percent. Moreover, our predictions for a given 
treatment are similar no matter which A/B test we use to make our predictions. 
Taken together, the correlation between our predictions and actual performance is ​
0.94​.

Our second empirical exercise assesses the performance of the contract gener-
ated by our procedure. We use data from seven treatments to fit the parameters of 
the production environment using nonlinear least squares estimation. Given those 
parameters and an assumption about the principal’s marginal revenue per unit of 
performance, we compute, as a benchmark, the optimal contract and the principal’s 
corresponding expected profit. Then, we take data from each pair of treatments, and 
we use our procedure to construct the optimally adjusted contract. We define the 
realized gains of an adjustment to be the difference in profits between the adjusted 
and the status quo contract, and we define the maximum gains available to be the 
difference in profits between the optimal and the status quo contract. Averaging 
across all A/B tests, the realized gains are equal to approximately 68 percent of the 
maximum gains. Put differently, our results suggest that with a single A/B test, the 
principal can attain just over two-thirds of the profit gains that she could attain if she 
knew the entire production environment and put the optimal contract in place. We 
also demonstrate that this finding is robust to the principal’s assumption about the 
agent’s preferences for money.
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Although our main results apply only to the canonical principal-agent framework 
of Holmström (1979), we show how our main insights extend to several enrich-
ments of the framework. For example, we show how they extend to settings where 
the firm employs heterogeneous agents and to settings where the agent’s effort is 
multidimensional.

Finally, we carry out both our empirical exercises in another experimental setting 
studied in DellaVigna and Pope (2021), where subjects perform a data-entry task 
under several different incentive schemes. First, we use each pair of incentive treat-
ments to predict mean performance in each of the remaining treatments. Averaging 
across all pairs, the mean APE for such predictions is 5.14 percent, while the mean 
absolute percentage performance difference across treatments is 31.93 percent. In 
our second empirical exercise, we again construct a benchmark model and mea-
sure what fraction of the maximum gains available are realized by the test-optimal 
contract. Averaging across all A/B tests, the realized gains are approximately 75 
percent of the maximum gains.

This paper contributes to both the theoretical and empirical literatures on princi-
pal-agent problems under moral hazard. Over the past four decades, theoretical work 
has extended the canonical principal-agent framework (Mirrlees 1976, Holmström 
1979) to incorporate a host of additional real-world considerations: team produc-
tion (Holmström 1982), dynamic incentives (Holmström and Milgrom 1987), lim-
ited liability (Innes 1990), multitask problems (Holmström and Milgrom 1991), 
behavioral agents (Bénabou and Tirole 2002, 2003, 2006), private information 
(Carroll 2015, Gottlieb and Moreira 2017, Chade and Swinkels 2019, Foarta and 
Sugaya 2021), and commitment problems (Laffont and Tirole 1988, MacLeod and 
Malcomson 1988). These papers characterize optimal contracts in their enriched 
settings and deliver deep insights into fundamental trade-offs. Their use as prescrip-
tive theories has been limited, however, as the optimal contracts they prescribe in a 
given environment often depend in complicated and subtle ways on unobservable 
characteristics of that environment.

In order to take a step toward a prescriptive contract theory, we depart from much 
of the theoretical literature in two ways. First, we drop the strong assumption that 
the principal knows the production environment—the agent’s effort-cost function 
and the joint distribution of effort and output. Second, instead of asking, “What is 
the best incentive contract?” we ask a narrower question, but one that is relevant 
in any ongoing organization: “What is the best way to improve upon an existing 
contract?” Our focus is on developing an understanding of what the principal needs 
to know—and equally important, what she might plausibly be able to know—to 
answer this question.2 Carroll (2015) and Gottlieb and Moreira (2017) also assume 
the principal does not know the production environment. In contrast to these two 
papers, our focus is on how the principal can learn the relevant aspects of the envi-
ronment, rather than their complementary approaches of describing optimal con-
tracts when she cannot learn this information.

2 Ortner and Chassang (2018) address a similar question in the context of designing policies to fight corruption: 
using a variational approach similar to ours, they show how a designer can use naturally occurring data to evaluate 
local policy changes.
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Empirical work on incentive contracts has focused largely on testing key predic-
tions of the theory. Several papers use quasi-experimental or experimental variation 
and show that higher-powered incentives cause workers to work harder, at least 
on the dimensions that are highly rewarded. These effects have been found in a 
variety of settings, ranging from windshield repairers (Lazear 2000), tree planters 
(Shearer 2004), and bicycle messengers (Fehr and Goette 2007) in high-income 
countries; to day laborers (Guiteras and Jack 2018), factory workers (Hong et al. 
2018), and journalists (Balbuzanov, Gars, and Tjernström 2017) in low-income 
countries. Our results show that one could potentially use the data in each of these 
settings to improve upon the contracts being offered in that setting, subject to the 
caveat that any important discrepancies between the applied setting and the canoni-
cal moral-hazard setting we analyze would need to be accounted for in the analysis.3

This paper is related to the literature on sufficient statistics, which exploit enve-
lope conditions from agents’ optimization problems to characterize optimal policies 
in terms of simple elasticities and a small set of other model parameters; see Chetty 
(2009) for an overview and a unified framework, and Kleven (2020) for a generaliza-
tion. In a seminal contribution, Harberger (1964) proposes a simple elasticity-based 
formula to measure the deadweight loss of a commodity tax. This approach has been 
used to study trade-offs in the design of monopoly pricing schemes (Wilson 1993), 
unemployment insurance (Baily 1978 and Chetty 2006), income-tax schedules 
(Feldstein 1999 and Saez 2001), welfare programs (Finkelstein and Notowidigdo 
2019), and stimulus programs (Michaillat and Saez 2019).4 Our paper extends the 
sufficient-statistics approach to analyze settings of pure moral hazard, where an 
agent’s incentives depend on the entire contract he faces, and a change in his action 
affects the entire output distribution.

Finally, there are three papers that merit particular attention because they ask 
questions that are related to ours. Ke (2008) develops an approach for testing whether 
a contract is optimal using observational data on pay and performance under that 
contract. Our approach shows how experimental data can be used not only to test 
whether a given contract is optimal but how to improve upon it when it is not opti-
mal. Prendergast (2015) shows how to bound the elasticity of workers’ performance 
with respect to the output sensitivity of their pay by using information on their elas-
ticity of taxable income. This information can inform whether a worker’s pay should 
optimally be more sensitive to their performance, but it does not provide guidance 
for how best to adjust a worker’s contract to achieve that goal. D’Haultfoeuille and 
Février (2020) use variation in contracts to estimate the losses associated with using 
linear contracts when workers are risk neutral. We show how such variation can be 
used to improve upon any suboptimal contract in more general pure-moral-hazard 
settings.

3 For example, if learning by doing is an important source of productivity gains, the framework should be 
enriched to include an experience-dependent term to the agent’s cost function.

4 This approach can also be adapted to settings where envelope conditions are not applicable because, for exam-
ple, agents are imperfect optimizers. See DellaVigna (2009) for a survey of evidence where individuals’ behavior 
deviates systematically from the predictions of neoclassical optimization models; and Chetty, Looney, and Kroft 
(2009) for an application of the “sufficient statistics” approach to commodity taxation.
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I.  Model

We consider a standard contractual relationship between a principal and an agent 
as in Holmström (1979) but with a nonstandard informational assumption and prin-
cipal objective.

The agent faces a contract, ​w​( · )​​, which is an upper-semicontinuous mapping 
from output to payments made from the principal to the agent. The agent chooses a 
privately costly, non-contractible effort level ​a  ≥  0​ that determines the distribution 
over his output, which accrues to the principal. In particular, his output, ​x  ∈  ℝ​,  
is realized according to some probability density function (hereafter pdf) ​f​(x | a)​​, 
which we assume is twice continuously differentiable in ​a​. Without loss of general-
ity, we normalize ​a​ so that ​a  =  E​[x | a]​​, and the agent’s effort can be interpreted as 
his expected output.

If the agent is paid ​ω​ and chooses effort level ​a​, he obtains utility ​v​(ω)​ − c​(a)​​,  
where ​v : ℝ  →  ℝ​ and ​c : ​ℝ​+​​  → ​ ℝ​+​​​ are twice continuously differentiable and 
satisfy ​v″  <  0  <  v′​ and ​c′, c″  >  0​. If the agent generates output ​x​ and is paid  
​w​(x)​​, the principal’s profit is ​mx − w​(x)​​. We assume that ​v​ and ​m​ are common 
knowledge.

We refer to the pair of functions ​P  ≡ ​ ( f, c)​​ as the production environment. The 
agent observes ​P​ and chooses his effort level to maximize his expected utility. We 
assume that the first-order approach is valid so that the agent’s optimal effort choice 
is fully characterized by the first-order condition of his problem. We denote by  
​a​(w)​​ the agent’s optimal effort choice under contract ​w​, and we assume that ​a​(w)​​ is 
unique for all ​w​.

The principal does not observe ​P​ but does observe outcome data from two con-
tracts: a status quo contract, which we will denote ​​w​​ A​​, and a test contract, which 
we will denote ​​w​​ B​​. The outcome data for a contract ​w​ is the distribution of output 
generated by an agent facing that contract, that is, ​f​( · ​|​​ a​(w)​)​​. We will say that a 
contract ​​w ̃ ​​ Pareto improves ​w​ if the expected utility of the principal and the agent 
are at least as high under ​​w ̃ ​​ as under ​w​ given the production environment ​P​.

The principal’s objective is to choose a profit-maximizing contract that Pareto 
improves the status quo contract. The set of contracts we allow the principal to 
choose from will depend on the exercise we carry out. In Section II, it will be the set 
of local adjustments to the status quo contract, and in Section III, it will be the full 
set of contracts.

Discussion: Our model aims to capture a setting where a firm employs a group of 
agents and has outcome data for the group of agents under two incentive contracts. 
This “many-agents” interpretation is fully consistent with our model as long as the 
agents are identical. In Section VA we establish conditions under which our results 
extend to settings with unobserved agent heterogeneity.

The assumption that the principal has outcome data from only two incentive con-
tracts reflects the fact that experimenting with different incentive contracts can be 
very costly for firms. As we will show, outcome data from two incentive contracts 
provides all the information necessary to solve for the optimal local adjustment 
to the status quo contract in the classic moral-hazard setting. We also show that 
outcome data from additional test contracts may be useful if the agent’s action is 
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multidimensional (see Section VB) or for relaxing extrapolation conditions when 
solving for optimal non-local adjustments (see online Appendix A.B and A.C).

Throughout the paper, we take this outcome data as given and assume it has not 
been manipulated by agents either strategically to influence the principal’s learning 
or nonstrategically, for example, if the unequal assignment to the test contract vio-
lates agents’ fairness norms. In Section VI, we briefly discuss these and other issues 
that can arise when experimenting with agents’ compensation and how they may be 
partially addressed through the appropriate design of high-level test-contract fea-
tures that are outside the model.

Our focus on Pareto-improving contracts implicitly assumes that the agent’s par-
ticipation constraint binds under the status quo contract. An alternative rationale 
for this assumption is that when firms revise their performance-pay plans, work-
ers are often suspicious about the firm’s intentions, which can lead to opposition 
to the change or sabotage to its implementation; see, for example, Lazear (2000). 
Restricting attention to contracts that make workers at least as well off as the status 
quo contract may prevent these problems.

Finally, while our assumption that the principal knows the agent’s utility function 
is restrictive, it is standard in both the contracting under moral hazard literature and 
the taxation literature; see, for example, Holmström (2017), the review of Chung, 
Kim, and Syam (2020); and Saez (2001). In each of our empirical exercises, we 
will assess the sensitivity of our results to the specific utility function we assume. 
We interpret this assumption as being consistent with the idea that managers can 
use information about the agent’s decisions in other domains to learn about their 
risk preferences (see, for example, Einav et al. 2012 for evidence that individuals’ 
risk preferences have a domain-general component). Moreover, the principal can 
also learn about the agent’s utility function if she has outcome data from additional 
contracts.

II.  Optimal Local Adjustments

We first ask the question of how the principal should locally adjust a status quo 
contract. We will show that the information revealed by a single A/B test of con-
tracts is sufficient for solving this problem. In Section  III, we will show how to 
extrapolate the local conditions we identify here to answer the more practical ques-
tion of how best to adjust the contract non-locally.

To carry out this exercise, we will need to be able to describe how the principal’s 
payoff changes as we locally adjust the status quo contract ​​w​​ A​​, and this requires 
an important piece of terminology and notation. Given a contract ​w​ and a function  
​q​(w)​​, define the Gateaux differential of ​q​ in the direction ​t​ by ​q​(w, t)​  
≡  ​lim​θ→0​​ ​[q​(w + θt)​ − q​(w)​]​ / θ​.

We will first show how the agent’s effort and utility change as we locally adjust 
the contract. The agent’s problem, given contract ​w​, is

	​ u​(w)​  = ​ max​ a​ ​ ​ ∫ 
 
​ 
 
​​v​(w​(x)​)​f​(x | a)​ dx − c​(a)​.​

We have assumed that the first-order approach is valid, so we can characterize the 
agent’s optimal effort choice ​a​(w)​​ under contract ​w​ by his first-order condition. To 
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this end, define the agent’s marginal incentives as ​I​(w, a)​  ≡ ​ ∫  ​ 
 
​​v​(w​(x)​)​ ​f​a​​​(x | a)​ dx​,  

where ​​f​a​​​(x | a)​​ is the derivative of ​f  ​(x | a)​​ with respect to ​a​. Optimal effort equates 
marginal costs to marginal incentives and is therefore implicitly defined by the equa-
tion ​c′​(a​(w)​)​  =  I​(w, a​(w)​)​​.

The following lemma shows how the agent’s utility and effort change in response 
to a local adjustment to ​w​ in the direction ​t​.

LEMMA 1: Locally adjusting a contract ​w​ in the direction ​t​ changes the agent’s 
utility by

	​ u​(w, t)​  = ​ ∫ 
 
​ 
 
​​t​(x)​v′​(w​(x)​)​f​(x ​|​​ a​(w)​)​ dx​

and his effort by

(2)	​ a​(w, t)​  = ​ 
I​(w, t)​
  ________________________    

c″​(a​(w)​)​ − ∫ v​(w​(x)​)​ ​f​aa​​​(x ​|​​ a​(w)​)​ dx
 ​ ,​

where ​I​(w, t)​  ≡ ​ ∫  ​ 
 
​​t​(x)​v′​(w​(x)​)​ ​f​a​​​(x​|​​a​(w)​)​ dx​.

The first part of the lemma shows that how the agent’s utility changes does not 
depend directly on his cost function. This result follows from the envelope theorem. 
The second part shows that the agent’s behavioral response depends on how the 
adjustment affects his marginal incentives, ​I​(w, t)​​, as well as on the local curvature 
of his problem. It also implies that ​a​(w, t)​/I​(w, t)​​ is independent of ​t​: how the 
agent responds to an adjustment to the contract depends only on how that adjustment 
impacts his marginal incentives. This property will be important in what follows.

We will now describe the principal’s problem under the assumption that she 
knows the production environment.5 Her expected profit under contract ​w​ is

	​ π​(w)​  =  ma​(w)​ − ​∫ 
 
​ 
 
​​w​(x)​f​(x ​|​​ a​(w)​)​ dx.​

As she adjusts the contract in the direction ​t​, her profits change according to the 
profit differential

	​ π​(w, t)​  = ​ [m − ​∫ 
 
​ 
 
​​w​(x)​ ​f​a​​​(x ​|​​ a​(w)​)​ dx]​a​(w, t)​ − ​∫ 

 
​ 
 
​​t​(x)​f​(x ​|​​ a​(w)​)​ dx.​

The first term describes the change in the principal’s gross profits per unit of expected 
output times the change in the expected output, and the second term captures the 
change in the expected payments she will make to the agent, holding expected out-
put fixed.

We can now state the principal’s problem of how best to locally Pareto improve 
a status quo contract ​​w​​ A​​. Given production environment ​P​, she wants to choose 

5 We assume that the principal is an expected profit maximizer, but it is straightforward to extend the results to 
any objective function that depends on the distribution of output.
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the direction ​t​ that maximizes her profit differential subject to the constraint that it 
weakly improves the agent’s utility. That is, she solves

(​​Adj​local​​​)	​​  max​ 
t:​‖t‖​≤1

​​ π​(​w​​ A​, t)​  subject to  u​(​w​​ A​, t)​  ≥  0,​

where || · || is the ​​ℓ​​ 2​​ norm. Adjustments have both direction and magnitude. We con-
strain the magnitude of the adjustment to isolate the choice of the optimal direction.

In describing this problem, we temporarily assumed the principal knows the pro-
duction environment. We now show she only needs to know certain local aspects 
of the production environment to solve (Adj​​​​local​​​). To do so, we will compare her 
problem across different production environments, and so it will be helpful to intro-
duce the notation (Adj​​​​local​​​​− P​) to refer to the principal’s problem (Adj​​​​local​​​) when the 
production environment is ​P​. Denote the agent’s effort choice, the output density 
function, and its derivative with respect to effort under the status quo contract by ​​
a​​ A​  =  a​(​w​​ A​)​​, ​​f​​ A​  =  f​( · ​|​​ ​a​​ A​)​​, and ​​f​ a​ A​  = ​ f​a​​​( · ​|​​ ​a​​ A​)​​, respectively, and, in an abuse of 
notation, denote the agent’s effort differential under production environment ​P​ by ​
a​(w, ​t ​|​​P​)​​. The following lemma shows which aspects of the production environ-
ment are relevant for solving (Adj​​​​local​​​).

LEMMA 2: Take any two production environments ​P  = ​ ( f, c)​​ and ​​P ̃ ​  = ​ ( ​f ̃ ​, ​c ̃ ​)​​  
satisfying ​​f​​   A​  = ​​ f ̃ ​​​ A​​, ​​f​ a​   A​  = ​​ f ̃ ​​  a​ A​​, and ​a​(​w​​ A​, ​t | P​)​  =  a​(​w​​ A​, ​t ​|​​ ​P ̃ ​​)​​ for all ​t​. Then ​​t​​ ∗​​ 
solves (Adj​​​​local​​​​− P​) if and only if it solves (Adj​​​​local​​​​− ​P ̃ ​​).

Lemma 2 shows that for the problem of locally Pareto improving a status quo 
contract, three pieces of local information are required: the output distribution under 
the status quo contract, how the output distribution changes locally in effort, and 
how the agent responds to every local change to the contract.

Before we show how a local A/B test provides this information, we need to intro-
duce a couple definitions and pieces of notation. Take the production environment as 
given. An A/B test for contracts ​​w​​ A​​ and ​​w​​ B​​ is a pair ​AB​(​w​​ A​, ​w​​ B​)​  ≡ ​ (  ​f​​    A​, ​f​​    B​)​​, where ​​
f​​    A​​ is the pdf for ​​w​​   A​​ and ​​f​​    B​​ is the pdf for ​​w​​ B​​. A local A/B test for contracts ​​w​​ A​​ and ​​
w​​ B​​ is a triple ​LAB​(​w​​ A​, ​w​​ B​)​  ≡ ​ (​  f​​   A​, ​f​ a​   A​, a​(​w​​ A​, ​w​​ B​)​)​​ consisting of outcome data for ​​
w​​ A​​, information about how the output distribution changes locally in effort, and the 
agent’s effort response to a change in the direction ​​w​​ B​​. We will say that the test con-
tract is informative if ​a​(​w​​ A​, ​w​​ B​)​  ≠  0​. One way of interpreting a local A/B test 
is that it consists of the local properties of the output distribution that the principal 
can construct with outcome data for ​​w​​ A​​ and outcome data for ​​w​​ A​ + θ ​w​​ B​​ as ​θ  →  0​.

The following proposition shows that the information provided by a local A/B 
test suffices for solving (Adj​​​​local​​​).

PROPOSITION 1: Take any two production environments ​P  = ​ (f, c)​​ and  
​​P ̃ ​  = ​ (​f ̃ ​, ​c ̃ ​)​​, a status quo contract ​​w​​ A​​, and an informative test contract ​​w​​ B​​. The fol-
lowing are equivalent:

	 (i)	 ​​f​​ A​  = ​​ f ̃ ​​​ A​​, ​​f​ a​ A​  = ​​ f ̃ ​​ a​ A​​  and ​ a​(​w​​ A​, t | P)​  =  a​(​w​​ A​, t | ​P ̃ ​)​​  for all ​ t​.

	 (ii)	 ​LAB​(​w​​ A​, ​w​​ B​ | P)​  =  LAB​(​w​​ A​, ​w​​ B​ | ​P ̃ ​)​​.
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The proof of Proposition 1 shows how the information from a local A/B test 
can be used to construct the necessary information for solving (Adj​​​​local​​​). In partic-
ular, knowledge of ​​f​ a​ A​​ enables the principal to compute how the agent’s marginal 
incentives change in response to adjusting the status quo contract in any direction, 
that is, ​I​(​w​​ A​, t)​​ for any ​t​. Then, using the insight from Lemma 1 that the agent’s 
behavioral response to a change in his marginal incentives is independent of the 
adjustment that led to that change, we have for any ​t​,

	​ a​(​w​​ A​, t)​  = ​ 
a​(​w​​ A​, ​w​​ B​)​

  _  
I​(​w​​ A​, ​w​​ B​)​ ​ I​(​w​​ A​, t)​.​

Knowledge of ​a​(​w​​ A​, ​w​​ B​)​​, therefore, allows the principal to evaluate the agent’s 
effort differential as the status quo contract is adjusted in any direction ​t​ and ulti-
mately solve (Adj​​​​local​​​).

We now return to the principal’s problem, (Adj​​​​local​​​). This is a convex-optimization 
problem and can be solved using standard methods. Define the following function, 
which we call the Holmström-Mirrlees adjustment function:

	​ T​(x, λ, μ)​  = ​ [λ​v ′ ​​(​w​​ A​​(x)​)​ − 1]​f​(x ​|​​ ​a​​ A​)​ + μv′​(​w​​ A​​(x)​)​ ​f​a​​​(x ​|​​ ​a​​ A​)​.​

Proposition 2 characterizes the optimal local adjustment.

PROPOSITION 2: Let ​​w​​ A​​ be the status quo contract. There exist ​​λ​​ ∗​, ​μ​​ ∗​  ≥  0​ such 
that ​​t​​ ∗​​(x)​  ∝  T​(x, ​λ​​ ∗​, ​μ​​ ∗​)​​ solves (Adj​​​​local​​​). If ​​w​​ A​​ is locally optimal, then ​T​(x, ​λ​​ ∗​, ​μ​​ ∗​)​  
=  0​ for all ​x​.

The first part of this proposition shows that the optimal local adjustment is in 
the direction of a Holmström-Mirrlees-type contract; that is, it locally balances risk 
allocation and incentive provision: It shifts payments from outputs where the agent 
has a low marginal utility of money to those where his marginal utility of money 
is higher. And it shifts payments toward outputs that change the agent’s marginal 
incentives in the profit-maximizing direction. The optimal way to balance these two 
considerations is determined by the coefficients ​​λ​​ ∗​, ​μ​​ ∗​​, the exact expressions for 
which are given in the proof of Proposition 2 in the online Appendix.

The second part of this proposition echoes the optimality conditions of Holmström 
(1979) and serves as a consistency check. When the status quo contract is already 
optimal, the coefficients ​​λ​​ ∗​​ and ​​μ​​ ∗​​ coincide with those in Holmström (1979). The 
primary contribution of Proposition 2 is to show how ​​λ​​ ∗​​ and ​​μ​​ ∗​​ change as we con-
sider status quo contracts that are not locally optimal. In particular, ​​μ​​ ∗​​, the weight 
that is optimally put on how marginal incentives are adjusted, is higher when the 
principal’s expected gains from a higher effort level are higher and when the agent’s 
response to an increase in marginal incentives is higher. The weight that is put on the 
risk-allocation component, ​​λ​​ ∗​​, is smaller when ​​μ​​ ∗​​ is higher.

III.  Non-local Adjustments

The analysis in Section II illustrates how local information suffices for character-
izing optimal local adjustments. This section provides a method for extrapolating to 
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assess non-local adjustments. It shows in particular how to use non-local informa-
tion from an A/B test to inform this question, which is important in practice.

Figuring out how to optimally locally adjust ​​w​​ A​​ requires knowledge of ​​f​a​​​(x ​|​​ ​a​​ A​)​​ 
and ​a​(​w​​ A​, t)​​, which as we showed can be acquired with a local A/B test. To figure 
out how to best non-locally adjust ​​w​​ A​​ requires knowing ​f​(x | a)​​ for all ​a​ and ​a​(w)​​ 
for all ​w​. This section provides a pair of conditions under which this information 
can be extrapolated from a single A/B test. Throughout, we focus on a specific set 
of extrapolation conditions, which are the ones we use in our empirical exercises in 
Section IV. At the end of this section, we discuss more general conditions that suf-
fice for extrapolation from a single A/B test.

CONDITION 1: The output distribution ​f ​(x | a)​​ is affine in ​a​, that is,  
​f ​(x | a)​  =  g​(x)​ + ah​(x)​​ for some ​g​(x)​​ and ​h​(x)​​ satisfying ​​∫  ​ 

 
​​g​(x)​ dx  =  1​ and  

​​∫  ​ 
 
​​h​(x)​ dx  =  0​.

This condition is common in the moral-hazard literature because it guarantees 
the first-order approach is valid. It also implies several further properties that are 
useful for our exercise. First, it ensures that knowledge of the pdf, ​f​( · | a)​​, at two 
effort levels, say ​​a​​ A​​ and ​​a​​ B​​, is sufficient to estimate the pdf corresponding to any 
other effort level. Second, it implies that this information also suffices to compute  
​​f​a​​​(x | a)​  ≡  h​(x)​​ and the agent’s marginal incentives, ​I​(w, a)​  = ​ ∫  ​ 

 
​​v​(w​(x)​)​h​(x)​ dx​, 

which are independent of ​a​. When this condition holds, we will drop dependence 
of ​I​ on ​a​ in our notation. Additionally, it ensures that ​f​(x | a)​​ does not have a mov-
ing support, which could lead to optimal contracts that depend critically on this 
property. One limitation of imposing this extrapolation condition is that the output 
distribution can be computed only for efforts such that ​g​(x)​ + ah​(x)​  ≥  0​ for all ​x​.

We will now revisit the agent’s problem, under the assumption that Condition 1 
is satisfied. Given a contract ​w​, he solves

	​ u​(w)​  = ​ ∫ 
 
​ 
 
​​v​(w​(x)​)​g​(x)​ dx + ​max​ a​ ​​ {aI​(w)​ − c​(a)​}​.​

The agent’s optimal effort level, given marginal incentives ​I​, which we denote by ​​
a ̃ ​​(I)​​, satisfies the implicit equation ​c′​(​a ̃ ​​(I)​)​  =  I​. The following lemma parallels 
Lemma 1 and characterizes the agent’s utility and effort when contract ​w​ is replaced 
with contract ​​ ~ w​​.

LEMMA 3: Suppose Condition 1 is satisfied, and the contract ​w​ is replaced with  
​​w ̃ ​​. Then the agent’s utility satisfies

	​ u​(​ ~ w​)​  =  u​(w)​ + ​∫ 
 
​ 
 
​​​[v​(​ ~ w​​(x)​)​ − v​(w​(x)​)​]​g​(x)​ dx + ​∫ I​(w)​​ 

I​(​ ~ w​)​​​​a ̃ ​​(i)​ di​

and his effort satisfies

	​ a​(​ ~ w​)​  =  a​(w)​ + ​∫ I​(w)​​ 
I​(​ ~ w​)​​​​ 

d​a ̃ ​​(i)​
 _ 

di
  ​ di,​

where ​d​a ̃ ​​(I)​ / dI  =  1 / c″​(​a ̃ ​​(I)​)​​.
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Lemma 3 characterizes the relevant aspects of the agent’s problem and shows 
that, under Condition 1, the principal needs two pieces of information. She needs 
information on how the agent values the contractual adjustment, as well as how his 
effort changes in response to the contractual adjustment. The main observation of 
Lemma 3 is that this latter object does not depend directly on the adjustment being 
considered but instead depends only on how that adjustment affects the agent’s mar-
ginal incentives. The first part of the lemma follows from the integral form of the 
envelope theorem, and the second part of the lemma follows directly from the fun-
damental theorem of calculus.

The next condition ensures that an A/B test provides all the information required 
to assess how the agent will respond to adjusting the contract.

CONDITION 2: The agent has isoelastic effort costs: ​c′​(a)​  = ​ e​​ −β/ε​ ​a​​ 1/ε​​ for some 
parameters ​β, ε  ≥  0​.

Condition 2 implies that for any contract ​w​, the agent’s effort choice satisfies

(3)	​ ln a​(w)​  =  β + εln I​(w)​.​

An A/B test provides the information required to determine ​β​ and ​ε​. It provides 
information on ​​I​​ A​  =  I​(​w​​ A​)​​ and ​​I​​ B​  =  I​(​w​​ B​)​​, and the agent’s elasticity of effort with 
respect to marginal incentives is constant and so equals the arc elasticity implied by 
the A/B test,

	​ ε  = ​  ln ​a​​ A​ − ln ​a​​ B​  _  
ln ​I​​ A​ − ln ​I​​ B​

 ​ .​

The coefficient ​β​ can be constructed using this information as well:  
​β  =  ln ​a​​ A​ − εln ​I​​ A​​. This condition ensures, therefore, that the agent’s effort choice 
can be extrapolated given information on a single behavioral elasticity, which is 
consistent with the standard approach taken in the sufficient statistics literature for 
optimal taxation; see, for example, Brewer, Saez, and Shephard (2010).6

Let us now define the principal’s profit when she offers contract ​​ ~ w​​,

	​ π​(​ ~ w​)​  =  ma​(​ ~ w​)​ − ​∫ 
 
​ 
 
​​ ​ ~ w​​(x)​​[g​(x)​ + a​(​ ~ w​)​h​(x)​]​ dx.​

The principal’s problem given the status quo contract ​​w​​ A​​ is therefore

(Adj)	​ ​max​ 
​ ~ w​
​ ​ π​(​ ~ w​)​  subject to  u​(​ ~ w​)​  ≥  u​(​w​​ A​)​.​

6 We implicitly assume that both the status quo and test contracts generate strictly positive marginal incentives, 
precluding, for instance a constant-wage contract. Moreover, Condition 2 implies that ​c′​(0)​  =  0​ and therefore such 
a contract would motivate zero effort, which is at odds with evidence from many settings, including the one we 
will study in the next section. To accommodate positive effort choices under constant-wage contracts, we can add 
a parameter to the agent’s cost function that captures incentives that are external to the model, such as those arising 
from intrinsic motivation or long-term career incentives. These external incentives can be identified with outcome 
data from an additional test contract. See online Appendix B for details.
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In practice, the program (Adj) is solved using the Grossman and Hart (1983) 
two-step approach. In the first step, we fix a target effort level ​a​ and solve for the 
cost-minimizing contract that satisfies ​a​(​ ~ w​)​  =  a​ and ​u​(​ ~ w​)​  ≥  u​(​w​​ A​)​​. In the sec-
ond step, we choose the optimal target effort level. The first-stage problem can be 
transformed into a convex program by transforming the principal’s choice from the 
function ​​ ~ w​​ to the function ​V  =  v​(​ ~ w​)​​. In general, the second-stage problem need 
not be a convex program. In practice, it is a one-dimensional problem that can be 
quickly solved numerically.

Under Conditions 1 and 2, the principal can learn all the relevant parameters of 
the production environment with an A/B test, allowing her to solve (Adj). We now 
formally state this result, which is the sufficient-statistic analogue of Proposition 1 
for non-local adjustments. Similar to Section II, we will write (Adj​− P​) to refer to 
the principal’s problem (Adj) when the production environment is ​P​.

PROPOSITION 3: Suppose Conditions 1 and 2 hold. Take any two production envi-
ronments ​P  = ​ ( f, c)​​ and ​​P ̃ ​  = ​ ( ​f ̃ ​, ​c ̃ ​)​​, a status quo contract ​​w​​ A​​, and a test contract ​​
w​​ B​​ for which ​a​(​w​​ A​)​  ≠  a​(​w​​ B​)​​. The following are equivalent:

	 (i)	​ g  = ​ g ̃ ​​, ​h  = ​ h ̃ ​​, ​ε  = ​ ε ̃ ​​, and ​β  = ​ β ̃ ​​.

	 (ii)	​ AB​(​w​​ A​, ​​w​​ B​ ​|​​ P​)​  =  AB​(​w​​ A​, ​​w​​ B​ ​|​​ ​P ̃ ​​)​​.

Moreover, if these statements hold, then ​​w​​ ∗​​ solves (Adj​− P​) if and only if it solves 
(Adj​− ​P ̃ ​​).

This proposition shows that when Conditions 1 and 2 hold, an A/B test pro-
vides the necessary information to solve the principal’s problem (Adj). We also 
note that this sufficient-statistic result continues to hold if the problem (Adj) is 
augmented with additional constraints that depend only on the contract ​​ ~ w​​, such as 
limited-liability or monotonicity constraints. We use this observation in our second 
empirical exercise.

We conclude with a brief discussion of the extrapolation conditions. As Proposition 
3 shows, these conditions are sufficient to ensure that the information from a single 
A/B test allows the principal to calculate an optimal contract. Condition 1 amounts 
to linearly extrapolating, for every ​x​, the points ​​(​a​​ A​, ​f​​    A​​(x)​)​​ and ​​(​a​​ B​, ​f​​   B​​(x)​)​​ to com-
pute ​f  ​(x  | a)​​ for a range of ​a​’s.7 Condition 2 amounts to an isoelastic extrapolation 
of the pair of effort levels and marginal incentives in an A/B test. Analogous results 
hold under the following more general extrapolation condition that makes use of 
data from two contracts.

CONDITION 2’: The agent’s marginal cost function ​c′​(a; ​θ​1​​, ​θ​2​​)​​ is such that there 
is a unique pair of parameters ​​θ​1​​​ and ​​θ​2​​​ satisfying ​c′​(​a​​ A​; ​θ​1​​, ​θ​2​​)​  =  I​(​w​​ A​, ​a​​ A​)​​ and  
​c′​(​a​​ B​; ​θ​1​​, ​θ​2​​)​  =  I​(​w​​ B​, ​a​​ B​)​​ for any pair of contracts ​​w​​ A​​ and ​​w​​ B​​.

7 In principle, this condition can be replaced by any extrapolation method that makes use of the data from only 
two contracts. For example, one might instead assume that ​f​(x | a)​  =  ​ ~ g​​(x)​ + a​ ~ h​​(x)​ + k​(a)​i​(x)​​ for some known func-
tions ​k​(a)​​ and ​i​(x)​​. Using data from two contracts, it is possible to recover ​​ ~ g​​(x)​​ and ​​ ~ h​​(x)​​ and analogous results hold.
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Condition 2 is a special case of Condition 2’ with ​c′​(a; ​θ​1​​, ​θ​2​​)​  = ​ e​​ −​θ​2​​/​θ​1​​​ ​a​​ 1/​θ​1​​​​. 
As an example, one might instead assume a cost function of the form ​c′​(a; ​θ​1​​, ​θ​2​​)​  
= ​θ​1​​ ​e​​ ​θ​2​​a​​, which satisfies Condition 2’ but not Condition 2 (DellaVigna and Pope 2018).

IV.  An Empirical Exploration

We will now assess the quantitative implications of our model. To do so, we 
use data from DellaVigna and Pope’s 2018 real-effort experiment conducted on 
Amazon’s Mechanical Turk. In the experiment, subjects were tasked with repeat-
edly pressing the “a” and “b” keys in alternating order. They received one point for 
every a/b keystroke pair they managed to complete in a ten-minute period, and they 
were paid according to how many points they accumulated during that time. Each 
subject was randomly assigned to a single treatment and performed this task once.

In the treatments we focus on, subjects in different treatments were paid accord-
ing to different incentive contracts. During the course of the treatment, subjects 
could see the incentive contract they were on, a countdown clock, a running tally 
of the number of keystroke pairs they had completed, as well as their accumulated 
earnings. We observe, for each subject, the treatment they were assigned and the 
number of points they accumulated.

Table 1 summarizes seven treatments. In each treatment, subjects received a 
$1 participation fee regardless of how many points they accumulated. In the first 
treatment, subjects were told only that “Your score will not affect your payment.” 
This corresponds to a contract ​​w​​ 1​​(x)​  =  100​, where we denominate the payments 
in cents. We will refer to treatment 1 as the no-incentives treatment. In treatment 2, 
they were paid a constant amount for every thousand points, and in treatments 3 to 
5, they were paid a constant amount for every hundred points. In treatment 3, for 
example, they were told, “You will be paid an extra 1 cent for every 100 points.” This 
corresponds to a contract ​​w​​ 3​​(x)​  =  100 + 0.01x​, where ​x​ is the number of points 
achieved. We will refer to treatments 2 to 5 as the piece-rate treatments. For con-
sistency with our model, we treat ​x​ as a continuous variable. Therefore, the implied 
incentive contracts for these treatments are an approximation. In treatments 6 and 
7, subjects received a payment if they achieved ​2, 000​ or more points. In treatment 
6, for example, subjects were told, “You will be paid an extra 40 cents if you score 
at least 2,000 points.” This corresponds to the contract ​​w​​ 6​​(x)​  =  100 + 40 ​핀​​{x≥2000}​​​​, 
where ​​핀​​{x≥2000}​​​​ is the indicator function for ​x  ≥  2000​. We will refer to treatments 6 
and 7 as the bonus treatments.

We use these data to carry out two exercises. Our first exercise asks whether sub-
jects’ average performance varies in the way our model predicts with our measure 
of the subjects’ marginal incentives. We use data from two treatments to predict the 
performance in the remaining treatments. The second exercise assesses the perfor-
mance of the optimal adjustment generated by our procedure relative to a bench-
mark that we construct from the data using the treatments in Table 1.

A. Predicting Out-of-Sample Experimental Results

Our results in Section III show how to use outcome data from two contracts to 
predict agents’ effort under an arbitrary contract. We will assess the accuracy and 
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precision of such predictions by taking outcome data from two treatments, suppos-
ing one is the status quo contract, one is the test contract, and using our model to 
predict average performance in the remaining treatments.

We are implicitly assuming that at the outset of the experiment, each subject 
observes the contract he or she is offered and chooses “effort” ​a​. Then the number of 
points he or she accumulates over the ten-minute period, ​x​, is drawn from some prob-
ability distribution with mean ​a​. We therefore interpret effort as being the average 
number of points accumulated in a particular treatment. Throughout, we will assume 
that Conditions 1 and 2 hold. That is, ​f​(x | a)​  =  g​(x)​ + ah​(x)​​ for some ​g​(x)​​ and  
​h​(x)​​ satisfying ​​∫  ​ 

 
​​g​(x)​ dx  =  1​ and ​​∫  ​ 

 
​​h​(x)​ dx  =  0​, and ​c′​(a)​  = ​ e​​ −β/ε​ ​a​​ 1/ε​​ 

for some parameters ​ε​ and ​β​.8 We will also assume that the agent has 
constant-relative-risk-aversion (CRRA) preferences over money, so that ​v′​(ω)​  = ​
ω​​ −ρ​​. We will assume that ​ρ  =  0.3​ and assess the sensitivity of our predictions to 
this assumption.9

Let us now outline the exercise, and then we will get into the specifics. We are 
going to use outcome data from two treatments—let us call them ​A​ and ​B​—to pre-
dict average output in the remaining treatments. To do so, we will use the data from 
these two treatments to construct an estimate of the function ​​f​a​​​( · | a)​​ and the two 
parameters of the agent’s cost function. We will then look at a third treatment, ​C​, 
and predict the agent’s marginal incentives under that treatment. This exercise will 
give us a prediction for average output in treatment ​C​. We will then compare these 
predictions to the actual average output in that treatment.

Specifically, we use the outcome data from treatments 2 through 7.10 The outcome 
data for treatment ​j​ are a cumulative distribution function ​​F​​ j​​. For each treatment ​j​, 

8 While it is likely that subjects differ in various dimensions such as their ability or willingness to perform 
repetitive tasks, we are unable to estimate any subject-specific heterogeneity, because each subject participated only 
once. As such, we treat subjects as being homogeneous, and we use our baseline model to make our predictions. 
Section A provides conditions under which doing so is without loss of generality.

9 We assume narrow framing, that is, that subjects do not integrate the experimental earnings with any other 
part of the their portfolio. Otherwise, even if they are risk averse, their marginal utility would, in effect, be constant 
over such small payoffs.

10 For this exercise, we will not use data from treatment 1, the no-incentives treatment. Our baseline model 
predicts that under the contract ​​w​​ 1​​(x)​  =  100​, subjects would exert zero effort. They do not. We discuss how to 

Table 1—Experimental Treatments from DellaVigna and Pope (2018)

Contract
Average number 

of points
Standard 
deviation

Number 
of subjects

No incentives ​​w​​ 1​​(x)​ = 100​ ​1,521​ ​726​ ​540​

Piece rate ​​w​​ 2​​(x)​ = 100 + 0.001x​ ​1,883​ ​664​ ​538​

​​w​​ 3​​(x)​ = 100 + 0.01x​ ​2,029​ ​649​ ​558​

​​w​​ 4​​(x)​ = 100 + 0.04x​ ​2,132​ ​626​ ​562​

​​w​​ 5​​(x)​ = 100 + 0.10x​ ​2,175​ ​578​ ​566​

Bonus ​​w​​ 6​​(x)​ = 100 + 40 ​핀​​{x≥2,000}​​​​ ​2,136​ ​576​ ​545​

​​w​​ 7​​(x)​ = 100 + 80 ​핀​​{x≥2,000}​​​​ ​2,188​ ​530​ ​532​

Notes: This table describes seven experimental treatments from DellaVigna and Pope (2018) that differed in the 
monetary incentives offered to the subjects. The second column describes the implied incentive contract, denomi-
nated in cents. The remaining columns describe, for each treatment, the average number of points accumulated, the 
standard deviation, and the number of subjects.
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we use a kernel density estimator to construct the pdf ​​​ f ˆ ​​​  j​​.11 Then, for each pair ​​(A, B)​​,  
we use these pdfs to construct the function

(4)	​ ​​h ˆ ​​​ 
AB

​​(x)​  = ​ 
​​ f ˆ ​​​ A​​(x)​ − ​​ f ˆ ​​​ B​​(x)​

  _________ 
​a​​ A​ − ​a​​ B​

 ​ .​

For each triple ​​(A, B, C)​​, we then construct the predicted marginal incentives under 
contract ​C​ using data from contracts ​A​ and ​B​ according to

	​​ ​I ˆ ​​ C​ AB​  = ​ ∫ 
 
​ 
 
​​v​(​w​​ C​​(x)​)​ ​​h ˆ ​​​ AB​​(x)​ dx.​

Using the estimates of the agent’s marginal incentives under contracts ​A​ and ​B​, we 
can then estimate the relevant parameters of the agent’s cost function:

	​ ​​ε ˆ ​​​ AB​  = ​  ln ​a​​ A​ − ln ​a​​ B​  __________  
ln ​​I ˆ ​​ A​ AB​ − ln ​​I ˆ ​​ B​ AB​

 ​​

and ​​​β ˆ ​​​ AB​  =  ln ​a​​ A​ − ​​ε ˆ ​​​ AB​ ln ​​I ˆ ​​ A​ AB​​. For this exercise, it does not matter which of the two 
contracts we suppose to be the status quo and test contracts.12 Finally, our prediction 
for average points accumulated in treatment ​C​ is ​ln ​​a ˆ ​​ C​ AB​  = ​​ β ˆ ​​​ AB​ + ​​ε ˆ ​​​ AB​ ln ​​I ˆ ​​ C​ AB​​.

We focus first on what we refer to as homogeneous A/B tests, A/B tests in which 
treatments ​A​ and ​B​ are in the same class; that is, they are both piece-rate treatments 
or both bonus treatments. We discuss hybrid A/B tests, where treatments ​A​ and ​B​ 
are not in the same class, at the end of this section. For homogeneous A/B tests, 
we will say that a prediction is a within-class prediction if treatments ​A​, ​B​, and ​C​ 
are in the same class. We will say that a prediction is an across-class prediction if 
treatments ​A​ and ​B​ are in the same class, but treatment ​C​ is in a different class.

The following result summarizes our main findings for homogeneous A/B tests.

RESULT 1: For homogeneous A/B tests,

	 (i)	 predicted out-of-sample performance is highly correlated with actual 
performance,

	 (ii)	 predictions are close to actual performance for both within-class and 
across-class predictions, and

	 (iii)	 predictions for a given treatment are similar no matter which pair of con-
tracts is used to construct the prediction.

incorporate external incentives such as intrinsic motivation or boredom avoidance into our model, which is import-
ant for accounting for these types of results in Section IVB and online Appendix B.

11 We use the triweight kernel with the bandwidth determined by the Silverman rule of thumb. See Hansen 
(2009) for details. We ignore observations with ​x  >  3500​ following DellaVigna and Pope’s observation that it 
is physically impossible to achieve more than 3500 points during the ten-minute interval, and it is likely that 
these individuals are using bots. The results are similar if we use a different kernel estimator or we incorporate all 
observations.

12 That is because these objects are symmetric in ​​(A, B)​​: ​​​g ˆ ​​​ AB​  =  ​​g ˆ ​​​ BA​​, ​​​ε ˆ ​​​ AB​  =  ​​ε ˆ ​​​ BA​​, and ​​​β ˆ ​​​ AB​  =  ​​β ˆ ​​​ BA​​.
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For all homogeneous A/B tests, Figure 1 plots our predictions against the actual 
average performance for each treatment. The horizontal axis depicts the actual aver-
age performance, ​​a​C​​​, for treatments ​C  ∈ ​ {2,  …, 7}​​, while the vertical axis plots 
our prediction, ​​​a ˆ ​​ C​ AB​​. Across all our predictions, the correlation between ​​​a ˆ ​​ C​ AB​​ and ​​a​C​​​ 
is ​0.94​, which is Result 1(i).

We also compute, for each triple ​​(A, B, C)​​, the absolute percentage error (APE) 
of our prediction:

	​ APE​(​​a ˆ ​​ C​ AB​)​  = ​ |​ ​​a ˆ ​​ C​ AB​ − ​a​C​​ _ ​a​C​​ ​ |​.​
The mean APE across all our predictions is ​1.59​ percent. As a comparison, average 
performance in treatment ​7​ is ​20​ percent higher than in treatment ​2​. We can break 
down these predictions by whether they are within class or across class. Across all 
within-class predictions in which treatments ​A​, ​B​, and ​C​ are all piece-rate treat-
ments, the mean APE is only ​0.66​ percent; that is, A/B tests using piece-rate treat-
ments accurately predict out-of-sample performance in piece-rate treatments.

Next, we can look at across-class predictions. For those predictions where ​A​ and ​B​ 
are bonus treatments, and ​C​ is a piece-rate treatment, the mean APE is ​0.99​ percent. 
The predictions are slightly worse when ​A​ and ​B​ are piece-rate treatments, and ​C​ is 
a bonus treatment. There, the mean APE is ​2.71​ percent, and as Figure 1 shows, they 
systematically underestimate performance. We discuss our interpretation of this pat-
tern at the end of this section. Notice, however, that all predictions are close to the 
45-degree line, depicted by the dashed line, illustrating Result 1(ii).

Finally, Figure 1 also shows that the estimates of each treatment’s performance are 
tightly clustered, illustrating Result 1(iii). To quantify this result, we can compute, 

Figure 1

Notes: This figure plots our predictions against the actual performance for each treatment for all homogeneous A/B 
tests. The horizontal axis depicts the actual average performance, ​​a​C​​​, for treatments ​C  ∈ ​ {2, 3,  …, 7}​​, while the 
vertical axis plots predicted performance, ​​​a ˆ ​​ C​ AB​​. The red stars represent predictions of piece-rate treatments using 
A/B tests from other piece-rate treatments. The blue triangles represent predictions of bonus treatments using A/B 
tests from piece-rate treatments. The green circles represent predictions of piece-rate treatments using the A/B test 
from the bonus treatments.
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for each treatment ​C​, the coefficient of variation of the predictions ​​​a ˆ ​​ C​ AB​​. The average 
coefficient of variation across the six treatments is 0.7 percent and ranges between 
0.21 percent for treatment ​3​ and 2 percent for treatment ​2​.

These results are summarized in Table 2, panel A, column 4. This panel also 
shows two additional results. First, the worst-case APE, defined as ​max APE​(​​a ˆ ​​ C​ AB​)​​, 
is also small. This is true for both within-class predictions and across-class predic-
tions. Second, the quality of predictions described in Result 1 is not sensitive to our 
assumptions about the agent’s coefficient of relative risk aversion (hereafter RRA). 
The prediction accuracy is also similar if the agent’s utility is assumed to belong to 
a different class of functions.13 Figures 8 and 9 in online Appendix A.A compare 
the predicted and the empirical output distribution for each treatment and every 
homogeneous A/B test.

Result 1 and Table 2, panel A focus on homogeneous A/B tests. We now discuss 
our predictions using hybrid A/B tests, which are summarized in Table 2, panel B. 
Across all predictions involving hybrid A/B tests, the correlation between ​​​a ˆ ​​ C​ AB​​ and ​​
a​C​​​ is ​0.84​, and the mean APE is ​2.16​ percent. On average, hybrid A/B tests tend to 
perform almost as well as homogeneous A/B tests, but for some of the ​​(A, B)​​ pairs, 
they do much worse. The hybrid ​​(A, B)​​ pairs that perform particularly poorly are ​​
(4, 6)​, ​(5, 6)​​, and ​​(5, 7)​​.

13 If, for example, ​v​(ω)​  =  1000ω − b ​ω​​ 2​​, and we vary ​b​ from zero to one (thus ensuring that marginal utility is 
always nonnegative), the mean APE varies between 1.44 percent and 1.76 percent for homogeneous A/B tests, and 
between 2.04 percent and 2.19 percent for hybrid A/B tests.

Table 2—Out-of-Sample Effort Predictions

Coefficient of RRA (​ρ​) 0 0.1 0.2 0.3 0.4 0.5 1a

(1) (2) (3) (4) (5) (6) (7)

Panel A. Homogeneous A/B tests
​Corr​(​​a ˆ ​​ C​ AB​, ​a​C​​)​​ 0.92 0.93 0.94 0.94 0.95 0.96 0.97
Mean APE (percent) 1.76 1.69 1.62 1.59 1.56 1.54 1.64
Within class 0.84 0.76 0.67 0.66 0.67 0.67 1.06
Across class: piece-rate predictions 1.01 0.99 0.97 0.99 1.05 1.11 2.15
Across class: bonus predictions 2.93 2.86 2.79 2.71 2.63 2.55 2.04
Worst-case APE (percent) 3.65 3.56 3.45 3.34 3.21 3.08 4.30
Within class 3.43 3.10 2.74 2.35 1.92 1.45 2.56
Across class: piece-rate predictions 1.76 1.90 2.14 2.39 2.64 2.90 4.30
Across class: bonus predictions 3.65 3.56 3.45 3.34 3.21 3.08 3.03
Average CV of estimates (percent) 0.82 0.78 0.74 0.70 0.68 0.68 0.83

Panel B. Hybrid A/B tests
​Corr​(​​a ˆ ​​ C​ AB​, ​a​C​​)​​ 0.86 0.86 0.85 0.84 0.84 0.83 0.78
Mean APE (percent) 2.19 2.18 2.17 2.16 2.15 2.14 2.18
Worst-case APE (percent) 10.60 10.63 10.66 10.70 11.07 11.40 12.69
Average CV of estimates (percent) 2.03 2.03 2.04 2.05 2.05 2.06 2.09

Notes: This table reports summary statistics for predicted performance under different assumptions for the agent’s 
coefficient of RRA. Column 4 represents our baseline assumption that ​ρ = 0.3​, and the remaining columns vary ​ρ.​ 
Panel A reports, for homogeneous A/B tests, the correlation between predicted and actual performance, the mean 
and worst-case absolute percentage error (APE), and the coefficient of variation (CV) of the estimates. Panel B 
reports these quantifies for the hybrid A/B tests.

a 	Unit coefficient of RRA corresponds to the logarithmic utility function; i.e., ​v​(ω)​ = ln ω​.
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To see why, let us focus on the ​​(5, 7)​​ pair—the lessons are similar when we look 
at ​​(4, 6)​​ and ​​(5, 6)​​. The output distributions under these two treatments have dis-
tinctly different patterns, as illustrated in the left panel of Figure 11. In particular, for 
treatment 5, which is a piece-rate treatment, performance is roughly symmetrically 
distributed around the average. For the bonus treatment 7, however, performance 
spikes just over ​x  =  2000​, the threshold for receiving the bonus. This is because in 
contrast to our model where effort is chosen once and for all, in the experiment, sub-
jects can adjust their effort over time.14 The estimated function ​​​h ˆ ​​​ AB​​ magnifies these 
differences, because the average performance in these two treatments is quite simi-
lar, with ​​a​5​​  =  2175​ and ​​a​7​​  =  2187​, and this difference appears in the denominator 
of (4). For, say, the ​​(2, 7)​​ pair, we see similarly distinct patterns. Since the average 
performance in treatment 2, ​​a​2​​  =  1883​, is significantly lower than in treatment 7, 
however, our out-of-sample predictions are less influenced by these patterns.

The reason why A/B tests comprising piece-rate treatments underpredict the per-
formance of the bonus treatments is related. The function ​​​h ˆ ​​​ AB​​ constructed using 
bonus treatments tends to take large positive values for ​x​ just over ​2000​, which 
is the threshold for receiving the bonus and small or negative values for other 
values of ​x​. As a result, the implied marginal incentives generated by a contract 
that pays a lump-sum bonus if ​x  ≥  2000​ are large. In contrast, the ​​​h ˆ ​​​ AB​​ estimated 
using piece-rate treatments takes more moderate values for ​x​ values just over ​2000​.  
Predictions of bonus-treatment performance constructed using output data from 
piece-rate treatments systematically underpredict the marginal incentives, and hence 
the effort, generated by bonus contracts, although only by about two percent.

B. Performance of Optimal Adjustments

For our second exercise, we will assess the empirical performance of our solution 
to the principal’s problem (Adj). To do so, we must first develop a benchmark to 
compare it against. For this, we will again use DellaVigna and Pope’s (2018) data 
and will proceed in two steps. First, we will build a benchmark model using the 
data from several of the treatments. Then for each treatment ​C​, we will compute the 
benchmark-optimal contract that solves the principal’s problem using the parame-
ters from this benchmark model and gives the agent at least as much expected utility 
as ​​w​​ C​​.

Second, for each pair of contracts ​​(A, B)​​ belonging to the same class, we will 
take the information from the A/B test involving these two contracts, and we will 
compute the test-optimal contract that solves (Adj) and gives the agent at least as 
much expected utility as ​​w​​ C​​. We will then compare its performance to that of the 
corresponding benchmark-optimal contract. In light of our results in Section IVA, 
we focus on ​​(A, B)​​ pairs from the same class in this section, and report results for 
hybrid A/B tests in online Appendix A.A.

The Benchmark Model and Optimal Adjustments.—We now describe how we 
construct our benchmark model. Throughout, we will use tildes to denote compo-

14 Online Appendix A.C considers an extension in which subjects are allowed to choose the entire output 
distribution.
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nents of the benchmark model. First, we construct the benchmark pdf ​​f ̃ ​​(x | a)​​ for all ​
x  ∈ ​ [0, 3500]​​ and for all ​a​ within a particular interval, which we will describe below. 
Next, we construct the parameters of the agent’s cost function. As in the previous 
section, we will assume that the agent has CRRA preferences over money, so that  
​​v′ ̃ ​​(ω)​  = ​ ω​​ −​ρ ̃ ​​​, and we will assume that ​​ρ ̃ ​  =  0.3​ and assess the sensitivity of our 
results to this assumption. Finally, we will also need to make an assumption about 
the principal’s gross profit margin ​​m ̃ ​​. In particular, we will assume that ​​m ̃ ​  =  0.2​. 
We discuss this choice below.

Benchmark Output Distribution: To construct the benchmark pdf ​​f ̃ ​​(x | a)​​, we pro-
ceed in two steps. First, we use outcome data for treatments 1 to 5—the no-incentives 
treatment and the piece-rate treatments. We discuss this choice in footnote 17. 
These outcome data are a set of cumulative distribution functions ​F​(x ​|​​ ​a​​ C​)​​, one for 
each of the five treatments ​C  ∈ ​ {1,  …, 5}​​. As discussed in the previous section, 
we use a kernel density estimator to construct the pdf ​​ f ˆ ​​(x ​|​​ ​a​​ C​)​​ for each treatment ​
C  ∈ ​ {1,  …, 5}​​.15 We assume that ​​f ̃ ​​(x | a)​  = ​  f ˆ ​​(x | a)​​ for all ​a  ∈ ​ {​a​​ 1​,  …, ​a​​ 5​}​​,  
and for each ​x​, we use a spline interpolation to construct ​​f ̃ ​​(x | a)​​ for other values of ​a​ 
between ​​a​​ 1​​ and an upper bound, ​​a –​​. The spline interpolation is not guaranteed to sat-
isfy ​​f ̃ ​​(x | a)​  ≥  0​ for all ​x​ for choices of ​a​ outside the bounds of our data. We chose 
our upper bound ​​a –​​ to be ​2187​, which is the largest value ​​a –​​ such that ​​f ̃ ​​(x | a)​  ≥  0​ for 
all ​a  ∈ ​ [​a​​ 1​, ​a –​]​​ for all ​x​. Finally, given the benchmark pdf ​​f ̃ ​​(x | a)​​, we approximate 
its derivative as ​​​f ̃ ​​a​​​(x | a)​  = ​ f ̃ ​​(x ​|​​ a + 1)​ − ​f ̃ ​​(x | a)​​.

Agent’s Benchmark Cost Function: We first return to an issue that came up in 
the previous section. The contract associated with treatment 1 provides no marginal 
incentives: it is given by ​​w​​ 1​​(x)​  =  100​ for all ​x​. The baseline model would therefore 
predict zero effort. Yet subjects in treatment 1 scored ​1521​ points on average. To 
rationalize the fact that subjects chose strictly positive effort levels in this treatment, 
we modify Condition 2 and assume that the agent’s cost function is given by ​​​c ̃ ​ ′ ​​(a)​  = ​
e​​ −​β ̃ ​/​ε ̃ ​​ ​a​​ 1/​ε ̃ ​​ − ​​I ̃ ​​0​​​ for some ​​​I ̃ ​​0​​  ≥  0​. This parameter can be interpreted as the agent’s 
external incentives: They may come from intrinsic motivation, longer-term career 
incentives, or in the case of this experiment, the fact that it may be fun to challenge 
yourself to see how many points you can score. Constructing the agent’s benchmark 
cost function therefore requires fitting three parameters to the data: ​​ε ̃ ​, ​β ̃ ​​, and ​​​I ̃ ​​0​​​. 
Table 3 reports the fitted values for these parameters using nonlinear least squares 
estimation.16

Benchmark-Optimal Contract: We then solve for the principal’s 
benchmark-optimal contract. Recall that the benchmark-optimal contract depends 
on what the status quo contract is because it determines the utility that the principal 

15 Again, we use the triweight kernel estimator with the bandwidth determined by the Silverman rule of thumb, 
and have excluded observations with ​x  >  3500​.

16 For each treatment ​C​, we compute ​​​I ̃ ​​​ C​  =  ∫ v​(​w​i​​​(x)​)​ ​​f ̃ ​​a​​​(x | ​a​​ C​)​ dx​ and minimize ​​
∑ C=1​ 7

  ​​​​[log​(​a​i​​)​ − β − ϵlog​(​​I ̃ ​​​ C​ + ​I​0​​)​]​​​ 
2
​​ to obtain ​​ε ̃ ​, ​β ̃ ​​, and ​​​I ̃ ​​0​​​. Constructing ​​f ̃ ​​(x | a)​​ using outcome data from only 

treatments 1 to 5 leads to a lower value for the minimized objective than constructing it with data from any other 
subset of the seven treatments.
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must provide to the agent. We therefore compute an optimal contract for each treat-
ment ​C  ∈ ​ {2,  …, 7}​​. We take ​​w​​ C​​ to be the status quo contract, and we solve for 
the principal’s benchmark-optimal contract, ​​w​​ ∗​​(​w​​ C​)​​, by solving the following 
two-step problem.

First, for each integer ​a  ∈ ​ [​a​​ 1​, ​a –​]​​, we find the cost-minimizing contract that 
solves

	​ K​(a; ​w​​ C​)​  = ​ min​ 
w​( · )​

​ ​ ​∫ 
 
​ 
 
​​w​(x)​​f ̃ ​​(x | a​(w)​)​ dx​,

subject to the constraint that effort level ​a​ is incentive compatible,

	​​ ∫ 
 
​ 
 
​​​v ̃ ​​(w​(x)​)​​f ̃ ​​(x | a)​ dx − ​c ̃ ​​(a)​  ≥ ​ ∫ 

 
​ 
 
​​​v ̃ ​​(w​(x)​)​​f ̃ ​​(x | a′)​ dx − ​c ̃ ​​(a′)​    for all    a′,​

the constraint that the agent is at least as well off as under the status quo contract

	​​ ∫ 
 
​ 
 
​​​v ̃ ​​(w​(x)​)​​f ̃ ​​(x | a)​ dx − ​c ̃ ​​(a)​  ≥ ​ ∫ 

 
​ 
 
​​​v ̃ ​​(​w​​ C​​(x)​)​​f ̃ ​​(x | a​(​w​​ C​)​)​ dx − ​c ̃ ​​(a​(​w​​ C​)​)​,​

and two additional constraints. First, we impose the constraint that ​w​(x)​  ≥  100​ for 
all ​x​ to capture the fact that each subject was paid a ​$1​ participation fee. Second, we 
impose the constraint that ​w​(x)​​ is weakly increasing in ​x​.17,18,19

For the second step, we do a line search to solve for the principal’s optimal choice 
of ​a​:

	​ ​π​​ ∗​​(​w​​ C​)​  = ​  max​ 
a∈​[​a​​ 1​,​a –​]​

​​ ​m ̃ ​a − K​(a; ​w​​ C​)​.​

Solving this problem gives us three objects that we use as our benchmark. It gives us 
the principal’s benchmark-optimal expected profits ​​π​​ ∗​​(​w​​ C​)​​, the benchmark-optimal 
effort level she implements, ​​a​​ ∗​​(​w​​ C​)​​, and the benchmark-optimal contract she puts 
in place to implement that effort level, ​​w​​ ∗​​(​w​​ C​)​​.

17 Since we are not imposing Condition 1 in the benchmark model, the first-order approach is not always valid. 
We therefore impose a global incentive compatibility constraint, requiring that the target effort level gives the agent 
a larger expected utility than any other (integer) effort level.

18 We impose the monotonicity constraint for two reasons. First, without it, the benchmark-optimal effort is 
always equal to the upper bound, ​​a – ​​, which implies that any test-optimal contract will mechanically implement an 
effort that is weakly smaller than is benchmark-optimal, limiting what we can learn from this exercise. Second, 
nonmonotonic contracts can motivate gaming and other undesirable behaviors (see, for example, Innes 1990 and 
Oyer 2000), and presumably for this reason, are hardly ever used in practice.

19 We solve this problem with the CVX software for Matlab (Grant and Boyd 2013) after using the transforma-
tion ​V​(x)​  ≡  ​v ̃ ​​(w​(x)​)​​ to convert it into a convex optimization program.

Table 3—Fitted Parameters for the Benchmark Model

​​ε ̃ ​​ ​​β ̃ ​​ ​​​I ̃ ​​0​​​
​0.0322​ ​7.8184​ ​6.528 × ​10​​ −7​​

Notes: This table displays the fitted parameters for the benchmark model. 
They are computed using a nonlinear least squares estimation procedure.
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We conclude this section with a brief discussion of our choice of ​​m ̃ ​​. Our goal was 
twofold. We wanted to choose a value of ​​m ̃ ​​ that is high enough so that none of the 
status quo contracts yield negative profits. And we wanted to choose a value that is 
low enough so that the benchmark-optimal effort choice ​​a​​ ∗​​(​w​​ C​)​​ is below ​​a –​​ for most 
treatments. Our choice of ​​m ̃ ​  =  0.2​ satisfies these two conditions. We also show in 
Table 4 how the main pattern of results varies with ​​m ̃ ​  ∈ ​ [0.15, 0.25]​​.

Test-Optimal Contracts: We then solve for the principal’s test-optimal contract 
given information from an A/B test. Again, for each treatment ​C  ∈ ​ {2,  …, 7}​​, we 
take ​​w​​ C​​ to be the status quo contract. For each pair ​​(A, B)​​, we construct a pdf and an 
agent cost function using the outcome data from contracts ​​w​​ A​​ and ​​w​​ B​​. In particular, 
we construct ​​​g ˆ ​​​ AB​​ and ​​​h ˆ ​​​ AB​​ as in the previous section. From these two functions, we 
construct a pdf ​​​ f ˆ ​​​ AB​​ that satisfies ​​​ f ˆ ​​​ AB​​(x | a)​  = ​​ g ˆ ​​​ AB​​(x)​ + a ​​h ˆ ​​​ AB​​(x)​​ for all ​x​ and for all ​
a  ∈ ​ [​​ a ¯ ​​​ AB​, ​​a –​​​ AB​]​​, where ​​​ a ¯ ​​​ AB​​ and ​​​a –​​​ AB​​ are chosen so that ​​​ f ˆ ​​​ AB​​(x | a)​  ≥  0​ for all ​x​ and for 
all ​a​ in that interval. The cost-function parameters ​​​ε ˆ ​​​ AB​​ and ​​​β ˆ ​​​ AB​​ are constructed as in 
the previous section, assuming the agent’s cost function satisfies ​​​c ˆ ​​​ AB⁣′​​(x)​  = ​ e​​ −​​β ˆ ​​​ AB​/​​ε ˆ ​​​ AB​​ ​
a​​ 1/​ε​​ AB​​​. We again assume that the agent has CRRA preferences over money ​​v ˆ ​′​(ω)​  = ​
ω​​ −​ρ ˆ ​​​ with ​​ρ ˆ ​  =  0.3​.

We then solve for the principal’s test-optimal contract by solving the following 
two-step problem. First, for each integer ​a  ∈ ​ [​​ a ¯ ​​​ AB​, ​​a –​​​ AB​]​​, we find the cost-minimizing 
contract that solves

	​ ​​K ˆ ​​​ 
AB

​​(a; ​w​​ C​)​  = ​ min​ 
w​( · )​

​ ​ ​∫ 
 
​ 
 
​​w​(x)​ ​​ f ˆ ​​​ AB​​(x | a​(w)​)​ dx​,

subject to the agent’s first-order condition for effort

	​ ​​c ˆ ​​​ AB⁣′​​(a)​  = ​ ∫ 
 
​ 
 
​​​v ˆ ​​(w​(x)​)​ ​​h ˆ ​​​ AB​​(x)​ dx,​

the constraint that the principal predicts the agent will be at least as well off as under 
the status quo contract

	​​ ∫ 
 
​ 
 
​​​v ˆ ​​(w​(x)​)​ ​​ f ˆ ​​​ AB​​(x | a)​ dx − ​​c ˆ ​​​ AB​​(a)​  ≥ ​ ∫ 

 
​ 
 
​​​v ˆ ​​(​w​​ C​​(x)​)​ ​​ f ˆ ​​​ AB​​(x | ​​a ˆ ​​ C​ AB​)​ dx − ​​c ˆ ​​​ AB​​(​​a ˆ ​​ C​ AB​)​,​

Table 4—Performance of Optimal Adjustments and Sensitivity Analysis

(1) (2) (3) (4) (5) (6) (7)

Model coefficient of RRA (​​ ~ ρ​​) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Test coefficient of RRA (​​  ρ​​) 0.3 0.3 0.3 0.3 0.3 0.1 0.5
Profit margin (​​ ~ m​​) 0.2 0.15 0.25 0.2 0.2 0.2 0.2
Average gains ($) 7.17 5.21 9.26 7.25 7.15 6.85 7.31
Maximum gains ($) 10.55 7.62 13.52 10.74 10.59 10.55 10.55
Gains ratio (percent) 68.01 68.44 68.51 67.47 67.53 64.98 69.32
Average effort deviation −6.74 −7.45 −6.31 −7.76 −6.55 −8.43 −6.57
Average overpayment ($) 1.82 1.32 2.25 1.78 2.02 2.13 1.64

Notes: This table reports for different values of the parameters ​​ρ ̃ ​​, ​​ρ ˆ ​​, and ​​ ~ m​​, the average and maximum gains, the 
gains ratio, the average effort deviation, and the average overpayment, averaged across ​C  ∈ ​ {2,  …, 7}​​. Column 1 
represents our baseline parameters. In columns 2 and 3 we vary the profit margin, ​​ ~ m​​. In columns 4 and 5 we vary 
the coefficient of RRA used in the benchmark model, ​​ ~ ρ​​. Finally, in columns 6 and 7 we vary the coefficient of RRA 
that the principal assumed to solve for the test-optimal contract given an A/B test, ​​̂  ρ​​.
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as well as the two additional constraints we imposed when we solved for the 
benchmark-optimal contract: ​w​(x)​  ≥  100​ for all ​x​ and ​w​(x)​​ is weakly increasing 
in ​x​.20,21

For the second step, we do a line search to solve for the principal’s optimal choice 
of ​a​:

	​​   max​ 
a∈​[​a​​ 1​,​​a –​​​ AB​]​

​​ ​m ̃ ​a − ​​K ˆ ​​​ 
AB

​​(a; ​w​​ C​)​.​

Solving this problem gives us the test-optimal contract ​​w​​ AB​​(​w​​ C​)​​. We then use 
the benchmark model to evaluate the agent’s effort choice and the principal’s 
expected profits under this contract. We refer to the resulting effort level, ​​a​​ AB​​(​w​​ C​)​​, 
as the test-optimal effort level and the resulting profits, ​​π​​ AB​​(​w​​ C​)​​, as the principal’s 
test-optimal profits.

Performance.—We will now discuss the performance of test-optimal contracts. 
To do so, we first have to define what it means for test-optimal contracts to perform 
well. In particular, we will start with a status quo contract and compare how much 
the principal’s expected profits increase when she puts in place the test-optimal con-
tract to how much they increase when she puts in place the benchmark-optimal 
contract. We will take the status quo contracts to be the contracts associated with 
treatments ​2​ through ​7​. The performance comparison is therefore going to depend 
on which treatment we are looking at, as well as which pair of contracts we use for 
our A/B test.

Formally, let us define two quantities for each treatment ​C​. First, we will define 
the maximum available gains for treatment ​C​ to be the difference between the 
benchmark-optimal profits and the status quo profits, that is,

	​ ​MaxGains​​ C​  = ​ π​​ ∗​​(​w​​ C​)​ − π​(​w​​ C​)​,​

where ​π​(​w​​ C​)​​ is the expected profits in the benchmark model under status quo con-
tract ​​w​​ C​​. Second, we will define the average realized gains for treatment ​C​ to be 
the average difference between the test-optimal profits under status quo contract ​​w​​ C​​ 
across all homogeneous A/B tests and the status quo profits, that is,

	​ ​AvgGains​​ C​  = ​   1 _ |Hom| ​ ​  ∑ 
A,B∈Hom

​ 
 
  ​​​π​​ AB​​(​w​​ C​)​ − π​(​w​​ C​)​,​

where ​Hom  ≡ ​ {​(A, B)​ | ​(A, B)​ is a homogeneous pair}​​ and ​|Hom|  =  7​ because 
there are seven homogeneous A/B tests. Finally, we will define the gains ratio to be 
the sum over ​C​ of the average realized gains for treatment ​C​ divided by the sum over ​

20 An implication of Condition 2 is that the first-order approach is valid. It is therefore without loss of generality 
to replace the agent’s incentive compatibility constraint with the corresponding first-order condition.

21 In principle, the agent’s effort under the contract ​​w​​ C​​ should appear in the right-hand side of the agent’s par-
ticipation constraint. Of course, this quantity is not directly observed by the principal unless the A/B test contains 
treatment ​C​. Therefore, we use the predicted effort under treatment ​C​ given the A/B test at hand, ​​​a ˆ ​​ C​ AB​​, as described 
in Section IVA. The predicted effort is equal to the true effort if ​C  ∈  ​{A, B}​​.
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C​ of the maximum available gains for treatment ​C​. The following result summarizes 
our main findings for the performance of test-optimal contracts.

RESULT 2: For homogeneous A/B tests,

	 (i)	 the average gains ratio across treatments is about 68 percent,

	 (ii)	 approximately two-fifths of the gap between realized and maximum gains 
is due to the test-optimal contract implementing suboptimal effort, with the 
remainder attributable to implementing this effort at too high a cost.

The first part of Result 2, which is illustrated in Figure 2, shows that test-optimal 
contracts perform well. The quantity ​​(1 / 6)​​∑ C=2​ 7  ​​​AvgGains​​ C​​ is ​$7.14​, about 68 per-
cent of the quantity ​​(1 / 6)​​∑ C=2​ 7  ​​​MaxGains​​ C​​, which is ​$10.55​. In other words, the 
information from a single A/B test allows the principal to realize about 68 percent 
of the profit gains that she could achieve if she knew the production environment and 
could therefore compute the benchmark-optimal contract. The gap between the aver-
age realized gains and maximum available gains, ​​MaxGains​​ C​ − ​AvgGains​​ C​​, is about  
​$3​, and it exhibits little variation across treatments ​C​. This is illustrated by the ordi-
nary least squares fitted line in Figure 2, which has a slope and intercept close to ​1​ 
and ​− 3​, respectively, and is close to each of the points.

The second part of Result 2 sheds light on the sources of this gap. First, test-optimal 
effort levels tend to be close to but slightly smaller than benchmark-optimal effort 
levels. Second, test-optimal contracts tend not to be the cost-minimizing contracts 
for the effort levels they induce. Figure 3 below compares the test-optimal 
effort levels to the benchmark-optimal ones. On the horizontal axis, it plots the 
benchmark-optimal effort change, ​​a​​ ∗​​(​w​​ C​)​ − ​a​​ C​​, for each treatment. On the ver-
tical axis, it plots the average test-optimal effort change across all homogeneous 
A/B tests, that is, ​​(1 / |Hom|)​​∑ A,B∈Hom​    ​​​a​​ AB​​(​w​​ C​)​ − ​a​​ C​​, for each treatment.

This figure illustrates several points. First, the benchmark-optimal effort change 
varies widely across treatments. For treatments 5 and 7, the benchmark-optimal 
effort change is negative, and for treatment 2, it is almost ​200​ points. Second, the 
average test-optimal effort change is close to the benchmark-optimal effort change; 
that is, ​​(1 / |Hom|)​​∑ A,B∈Hom​    ​​​a​​ AB​​(​w​​ C​)​ − ​a​​ C​​ is close to the 45-degree line for each ​
C​. Averaging across all six treatments, the average effort deviation, which we 
define to be the difference between the benchmark-optimal effort change and the 
test-optimal effort change is ​− 6.74​: On average, test-optimal effort levels are ​6.74​ 
below the benchmark-optimal effort levels. Given that each unit of effort yields ​​
m ̃ ​  =  0.2​ dollars in profits for the principal, on average, the principal is losing about ​
$1.35​ in revenues from implementing too low of an effort level, or approximately 
two-fifths of the gap between the average and maximum gains.

Next, we compare two quantities for each treatment ​C​. For each pair ​​(A, B)​​, the 
test-optimal contract ​​w​​ AB​​(​w​​ C​)​​ induces effort level ​​a​​ AB​​(​w​​ C​)​​ and therefore costs the 
principal

	​ ​WageBill​​ AB​​(​w​​ C​)​  ≡ ​ ∫ 
 
​ 
 
​​ ​w​​ AB​​(​w​​ C​)​​(x)​​f ̃ ​​(x ​|​​ ​a​​ AB​​(​w​​ C​)​)​ dx.​
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We want to compare this wage bill to the cost of the cheapest contract that imple-
ments the same effort level, which is given by ​K​(​a​​ AB​​(​w​​ C​)​; ​w​​ C​)​​. For each treatment  
​C​, let us define the average overpayment to be ​​(1 / |Hom|)​​∑ A,B∈Hom​   ​​​ WageBill​​ AB​​(​w​​ C​)​  

Figure 3

Notes: This figure compares, for each treatment ​C​, the benchmark-optimal effort change and the 
test-optimal effort change. Each star represents the point with x-coordinate ​​a​​ ∗​​(​w​​ C​)​ − ​a​​ C​​ and y-coordinate  
​​(1 / |Hom|)​​∑ A,B∈Hom​    ​​​a​​ AB​​(​w​​ C​)​ − ​a​​ C​​, for some treatment ​C​. The dashed red line is the 45-degree line.
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− K​(​a​​ AB​​(​w​​ C​)​; ​w​​ C​)​​. Across the six treatments, the average overpayment is about ​
$1.82​.

Table 4 reports these summary statistics for different values of the coefficient of 
RRA we used in the benchmark model, ​​ ~ ρ​​, the coefficient of RRA that the principal 
assumed to solve for the test-optimal contract given an A/B test, ​​̂  ρ​​, and the princi-
pal’s profit margin, ​​ ~ m​​. Both average and maximum gains increase with ​​ ~ m​​, but the 
gains ratio exhibits little variation. Moreover, all summary statistics are relatively 
insensitive to the values of ​​ ~ ρ​​ and ​​̂  ρ​​.22

Online Appendix A.A reports additional results on the optimal adjustments. 
In particular, it presents disaggregated data for the optimal adjustment from each 
homogeneous A/B test, it illustrates some benchmark-optimal and test-optimal con-
tracts, it reports summary statistics for the performance of optimal adjustments using 
hybrid A/B tests, and it carries out a robustness exercise when stakes are magnified.

V.  Beyond the Classic Model

Our main analysis was carried out in the context of the classic setting of Holmström 
(1979). We showed in our second empirical exercise how the framework we devel-
oped could accommodate several additional considerations that were relevant to 
the experimental setting we analyzed, such as external incentives, limited-liability 
constraints, and monotonicity constraints.

In this section, we show how to extend our analysis in two additional directions. 
First, we show how to incorporate unobserved worker heterogeneity. We provide 
conditions under which the aggregate data contained in an A/B test suffices to pre-
dict workers’ heterogeneous behavioral responses, and we quantitatively explore the 
discrepancies that arise when these conditions are not satisfied. Second, we consider 
settings in which the agent’s effort and output are multidimensional. Effort substitu-
tion patterns become important for optimal adjustments, and we show that they can 
be identified with additional test contracts.

A. Heterogeneous Workers

Up to this point, we assumed that the principal faces a mass of identical agents, 
and we showed how she can use aggregate data on their performance to improve 
upon a status quo contract. In this section, we continue to assume that the principal 
has access to aggregate data generated by agents under a pair of contracts, but we 
now assume that these agents are heterogeneous. In particular, suppose there is a 
finite set of types, ​Φ​, and agents with different types have different effort-cost func-
tions but are otherwise identical.

There are two challenges that arise in general when using aggregate data from an 
A/B test to predict how a mass of heterogeneous agents will respond to a change 
in the contract. First, a given contract may induce different marginal incentives for 

22 The average loss due to implementing a suboptimal effort, ​​ ~ m​ × ​(average effort deviation)​​, and the aver-
age overpayment do not add up to the difference between the maximum and average gains. This is because the 
overpayment is defined as the difference between the wage bill of the test-optimal contract given an A/B test 
and the cost-minimizing contract that implements the same effort level, which of course, need not equal the 
benchmark-optimal effort level.
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different agents. Second, different agents may respond differently to a change in 
their marginal incentives. Using data from an aggregate A/B test to infer agents’ 
heterogeneous behavioral responses therefore requires imposing more structure on 
the problem. In this section, we show how to extend the conditions from Section III 
in a way that ensures that aggregate data from an A/B test is sufficient for solving 
the principal’s problem, and we quantitatively explore the errors that arise when 
these extended conditions are not satisfied.

To this end, suppose that a share ​​p​ϕ​​​ of agents has cost type ​ϕ  ∈  Φ​, where ​​
p​ϕ​​  ≥  0​ and ​​∑ ϕ​ 

  ​​​p​ϕ​​  =  1​.23 Suppose further that the principal has access to 
what we refer to as an aggregate A/B test, ​​   AB ​​(​w​​ A​, ​w​​ B​)​  = ​ ( ​​f –​​​ A​, ​​f –​​​ B​)​​, where  
​​​f 
–
​​​ A​​(x)​  = ​ ∑ ϕ​   ​​​p​ϕ​​ f​(x | ​a​ϕ​​​(​w​​ A​)​)​​, and, abusing notation slightly, ​​a​ϕ​​​(w)​​ is the effort choice 

for a type-​ϕ​ agent under contract ​w​. The density ​​​f 
–
​​​ B​​(x)​​ is defined similarly. Define  

​​a –​​(w)​  = ​ ∑ ϕ​   ​​​p​ϕ​​ ​a​ϕ​​​(w)​​to be the mean effort under contract ​w​.
Throughout this section, we assume that the output distribution satisfies Condition 

1, that is, ​f​(x | a)​  =  g​(x)​ + ah​(x)​​ for all ​a​ and for some ​g​(x)​​ and ​h​(x)​​ satisfying ​​
∫  ​ 

 
​​g​(x)​ dx  =  1​ and ​​∫  ​ 

 
​​h​(x)​ dx  =  0​. We also assume that for each type ​ϕ  ∈  Φ​, the 

agent’s effort-cost function ​​c​ϕ​​​ satisfies Condition 2 for some ​​ε​ϕ​​, ​β​ϕ​​  ≥  0​; that is,  
​​c​ ϕ​ ′ ​​(a)​  = ​ e​​ −​β​ϕ​​/​ε​ϕ​​​ ​a​​ 1/​ϵ​ϕ​​​​. Finally, we modify the principal’s problem so that the opti-
mal adjustment only has to make agents better off on average than the status quo 
contract.24 That is, if we denote the principal’s profit under contract ​w​ as

	​ π​(w)​  = ​  ∑ 
ϕ∈Φ

​ 
 
  ​​​p​ϕ​​ m ​a​ϕ​​​(w)​ − ​ ∑ 

ϕ∈Φ
​ 

 
  ​​​p​ϕ​​ ​∫ 

 
​ 
 
​​w​(x)​​[g​(x)​ + ​a​ϕ​​​(w)​h​(x)​]​ dx,​

the principal’s problem is to

	​ ​maximize​w​​π​(w)​  subject to ​ ∑ 
ϕ
​ 

 
  ​​​p​ϕ​​ ​u​ϕ​​​(w)​  ≥ ​ ∑ 

ϕ
​ 

 
  ​​​p​ϕ​​ ​u​ϕ​​​(​w​​ A​)​,​

where

	​ ​u​ϕ​​​(w)​  = ​ ∫ 
 
​ 
 
​​v​(w​(x)​)​​[g​(x)​ + ​a​ϕ​​​(w)​h​(x)​]​ dx − ​c​ϕ​​​(​a​ϕ​​​(w)​)​.​

We will first show how Condition 1 allows us to compute agents’ marginal incen-
tives using an aggregate A/B test, even if agents are heterogeneous. By Condition 
1, we have ​f​(x | ​a​ϕ​​​(w)​)​  =  g​(x)​ + ​a​ϕ​​​(w)​h​(x)​​ for each ​ϕ​ and therefore, if we average 
over ​ϕ​, we have ​​​f 

–
​​​ k​​(x)​  =  g​(x)​ + ​a –​​(​w​​ k​)​h​(x)​​ for ​k  ∈ ​ {A, B}​​. The function ​h​(x)​​ there-

fore satisfies ​h​(x)​  = ​ (​​f 
–
​​​ B​​(x)​ − ​​f –​​​ A​​(x)​)​ / ​(​a –​​(​w​​ B​)​ − ​a –​​(​w​​ A​)​)​​ for all ​x​ and can be com-

puted using only information from an aggregate A/B test. Condition 1 also ensures 
that marginal incentives are independent of the agent’s effort choice and therefore 
are common across agents for a given contract ​w​; that is, ​I​(w)​  = ​ ∫  ​ 

 
​​v​(w​(x)​)​h​(x)​ dx​.

23 The results in this section are prior free, so it is immaterial whether the principal knows ​​p​ϕ​​​.
24 As in the main model, this constraint is motivated by the fact that contract changes are often viewed by 

employees with skepticism. So if it makes them better off on average, it is less likely that a critical mass will oppose 
it. Additionally, given aggregate data alone, the principal cannot evaluate how a contract change affects the expected 
payoff of each individual type.
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Next, consider the procedure we outlined in Section III for how to use an A/B 
test to predict effort under contract ​w​ when agents are homogeneous, and denote this 
prediction by ​​a ˆ ​​(w)​​; that is, using an aggregate A/B test, compute the arc elasticity

	​​ ε – ​  = ​ 
ln​a –​​(​w​​ A​)​ − ln​a –​​(​w​​ B​)​

  ______________  
ln I​(​w​​ A​)​ − ln I​(​w​​ B​)​ ​ ,​

and construct the prediction

	​ ​a ˆ ​​(w)​  = ​ a –​​(​w​​ A​)​ ​​[I​(w)​ / I​(​w​​ A​)​]​​​ 
​ε – ​
​ .​

In other words, this procedure predicts that a contract that scales marginal incentives 
over the status quo contract by ​I​(w)​ / I​(​w​​ A​)​​ will scale mean output by ​​​[I​(w)​ / I​(​w​​ A​)​]​​​ ​ε – ​​​.

The following result focuses on the case when all agents have the same elasticity; 
i.e., ​​ε​ϕ​​  =  ε​ for all ​ϕ​.25

PROPOSITION 4: Suppose Conditions 1 and 2 are satisfied, and agents have the 
same elasticity of effort with respect to marginal incentives; that is, ​​ε​ϕ​​  =  ε​ for all ​ϕ​.  
Then this procedure produces the correct prediction (i.e., ​​a ˆ ​​(w)​  = ​ a –​​(w)​​ for all ​w​), 
and an aggregate A/B test suffices for solving the principal’s problem.

The first part of Proposition 4 shows that aggregate information can be used 
to construct correct predictions about how a heterogeneous workforce responds 
to a change in the contract. There are two key steps in the argument. First, as we 
described above, when Condition 1 holds, the agents’ marginal incentives depend 
only on the contract they face and not directly on their effort. Given this property, 
different types all face exactly the same marginal incentives, and a given adjustment 
changes their marginal incentives in exactly the same way. Second, when Condition 
2 holds and agents have the same elasticity of effort with respect to their marginal 
incentives, a given change in marginal incentives leads all agents to scale their effort 
by the same proportion. To establish the second result that an aggregate A/B test 
suffices to solve the principal’s problem, the proof of Proposition 4 shows that cal-
culating the principal’s objective and the agents’ mean utility depends only on hav-
ing a correct prediction of the function ​​a –​​( · )​​.

We now discuss the case when agents differ in ​​ε​ϕ​​​. Given an aggregate 
A/B test, the principal’s prediction for how mean output changes with ​w​,  
​​a ˆ ​​(w)​  = ​ a –​​(​w​​ A​)​ ​​[I​(w)​ / I​(​w​​ A​)​]​​​ ​ε – ​​​, will be incorrect. Different agent types will have 
different proportional responses to the change in marginal incentives, and so the 
actual mean output under contract ​w​ will be ​​a –​​(w)​  = ​ ∑ ϕ​   ​​​ p​ϕ​​ ​a​ϕ​​​(​w​​ A​)​ ​​[I​(w)​ / I​(​w​​ A​)​]​​​ ​ε​ϕ​​​​.

Figure 4 quantifies the resulting discrepancy. The left panel plots probability mass 
functions for three distributions over ​​ε​ϕ​​​. The distribution depicted by blue squares 
second-order-stochastically dominates the distribution depicted by green triangles, 
which in turn second-order-stochastically dominates the distribution depicted by red 
circles. The panel on the right plots the systematic prediction error that arises under 
each of these three distributions when the principal uses the A/B test comprising 

25 This form of heterogeneity has been assumed elsewhere, for example, by Brewer, Saez and Shephard (2010); 
DellaVigna and Pope (2018); and others.
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treatments ​​w​​ 4​​(x)​​ and ​​w​​ 5​​(x)​​ from Table 1 and assumes coefficient of RRA ​ρ  =  0.3​.  
On the vertical axis, it plots ​100% × ​(​a ˆ ​​(w)​ − ​a –​​(w)​)​ / ​a –​​(w)​​, and on the horizontal 
axis, it varies the slope ​α​ of a piece-rate contract between 0.001 and 1.26

The right panel of Figure 4 highlights several patterns. First, the prediction error 
is zero for contracts that induce the same marginal incentives as either the status quo 
contract or the test contract. Second, this error is positive (but small) for contracts 
that induce marginal incentives in between those induced by the status quo and test 
contracts, and it is negative for contracts with marginal incentives outside this range. 
Third, this error is larger in magnitude the more agents vary in ​​ε​ϕ​​​. Fourth, it is also 
larger in magnitude when we predict effort under contracts that are farther away 
from the status quo and test contracts (in the sense that they induce much higher or 
much lower marginal incentives). And finally, this error is relatively small in magni-
tude: it is less than 0.2 percent for the most disperse distribution.

We conclude this section by discussing the consequences of ignoring heteroge-
neity in the agents’ preferences over money. Toward this goal, suppose Conditions 
1 and 2 are satisfied, and agents have CRRA preferences over money, but different 
types have different coefficients of RRA. Because the marginal incentives generated 
by any given contract depend on the agent’s utility function, the principal will mis-
calculate them if she ignores any underlying heterogeneity. Her effort predictions 
will therefore be biased.

26 We construct these probability mass functions as follows: First, we assume ​​ϵ​ϕ​​  ∼  Gamma​(κ, θ)​​, where ​κ  ∈ ​
{3, 10, 20}​​ corresponds to the probability mass function depicted by red circles, green triangles, and blue squares, 
respectively; and for each ​κ​, the scale parameter ​θ​ is determined below. To compute the probability weights ​​p​ϕ​​​, we 
discretize the gamma distribution on the grid ​​ϵ​ϕ​​  ∈  ​{0, Δ, 2Δ,  …}​​ for ​Δ  =  ​10​​ −3​​. Second, we compute ​​ϵ –​​ using the 
(aggregate) data from the A/B test, and we assume, first, that ​​a​ϕ​​​(​w​​ B​)​  =  ​a –​​(​w​​ B​)​​ for all ​ϕ​, and second, that agents 
have CRRA preferences over money with coefficient ​0.3​. Next we compute as a function of ​θ​, the effort of each 

type under the status quo contract ​​a​ϕ​​​(​w​​ A​)​  =  ​a​ϕ​​​(​w​​ B​)​ ​​[I​(​w​​ A​)​ / I​(​w​​ B​)​]​​​ 
​ϵ​ϕ​​
​​. Then, we pick the parameter ​θ​ such that  

​ln​a –​​(​w​​ A​)​  =  ​ϵ –​ln​(I​(​w​​ A​)​ / I​(​w​​ B​)​)​​, thus ensuring that ​​ϵ –​​ is consistent with the distribution over elasticities. Finally, we 
note that in light of Proposition 4, any heterogeneity in ​​β​ϕ​​​ can be ignored without loss of generality, and that the 
other A/B tests yield no larger prediction errors.

Figure 4

Notes: This figure illustrates for three different distributions over ​​ϵ​ϕ​​​, the prediction errors when the principal uses 
aggregate data from the A/B test comprising treatments ​​w​​ 4​​(x)​​ and ​​w​​ 5​​(x)​​ from Table 1 to make out-of-sample pre-
dictions for contracts of the form ​w​(x)​  =  100 + αx​, where we vary ​α​ from 0.001 to 1. The left panel plots the prob-
ability mass functions for three distributions over ​​ε​ϕ​​​, and the right panel plots the prediction error that arises under 
each of these three distributions as a function of ​α​.
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Figure 5 quantifies this bias. The left panel plots probability mass functions for 
three distributions over the coefficient of RRA. The panel on the right plots the 
systematic prediction error that arises under each of these three distributions when 
the principal uses the A/B test comprising treatments ​​w​​ 4​​(x)​​ and ​​w​​ 5​​(x)​​ from Table 1 
and assumes agents have homogeneous elasticities and common coefficient of RRA ​
ρ  =  0.3​. On the vertical axis, it plots the prediction error, and on the horizontal 
axis, it varies the slope ​α​ of a piece-rate contract between 0.001 and 1. Observe that 
in all cases, the prediction error is negligible.27

B. Multidimensional Effort

We now extend our main model to the case where the agent’s action is multidi-
mensional. For example, the agent might be selling different products; he might 
exert effort toward both quantity and the quality of his output; or he might be 
able to influence several aspects of his output distribution, for example, its mean 
and its variance. Two additional challenges arise when extending our methodol-
ogy to accommodate multidimensional effort. First, effort along one dimension 
might affect the marginal costs of effort along other dimensions. Identifying these 
effort-substitution patterns requires additional test contracts in the local A/B test. 
Constructing the local A/B test from a set of test contracts presents a second chal-
lenge. In contrast to the one-dimensional case where effort could be normalized to 
be mean output, identifying the agent’s effort vector from data on the output distri-
bution requires additional a priori information about the nature of effort and may 
necessitate additional test contracts.

27 We have assumed that the principal’s estimate, ​ρ  =  0.3​, is unbiased; i.e., it is equal to the expectation over 
the agents’ coefficients of RRA. If this is not the case, the prediction error will be larger. In this example, if the 
principal assumes a common coefficient of RRA ​ρ  =  0.1​ or ​ρ  =  0.5​ instead, the prediction error will remain 
below 1 percent.

Figure 5

Notes: This figure illustrates for three different distributions over the agents’ coefficient of RRA, the prediction 
errors when the principal uses the A/B test comprising treatments ​​w​​ 4​​(x)​​ and ​​w​​ 5​​(x)​​ from Table 1 and assumes agents 
have homogeneous elasticities and a common coefficient of RRA ​ρ  =  0.3​ to make out-of-sample predictions for 
contracts of the form ​w​(x)​  =  100 + αx​, where we vary ​α​ from 0.001 to 1.
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To examine these issues, suppose the agent chooses a vector of actions ​𝐚  ∈ ​ ℝ​​ M​​,  
and a vector of performance measures ​𝐱  ∈ ​ ℝ​​ N​​ is realized according to the pdf  
​f  ​( · | 𝐚)​​. The agent is paid according to a contract ​w​(𝐱)​​, and the cost of choosing 
effort vector ​𝐚​ is ​c​(𝐚)​​, where ​c​ is increasing and convex. Given a contract ​w​, the 
agent’s utility is

	​ u​(w)​  = ​ max​ 𝐚​ ​ ​ ∫ 
 
​ 
 
​​v​(w​(𝐱)​)​f  ​(𝐱 | 𝐚)​ d𝐱 − c​(𝐚)​,​

where the integral is taken with respect to the entire vector ​𝐱​. Assuming the first-order 
approach is valid, we can use the same approach as in Section II to derive how the 
agent’s utility and effort respond to a local adjustment of the contract ​w​ in the direc-
tion ​t​. In particular,

	​ u​(w, t)​  = ​ ∫ 
 
​ 
 
​​tv′​(w)​f d𝐱,​

and, for each ​i  ∈ ​ {1,  …, M}​​,

	​​  ∑ 
k=1

​ 
M

 ​​​[​c​i,k​​ − ​∫ 
 
​ 
 
​​v​(w)​ ​f​i,k​​ d𝐱]​​a​k​​​(w, t)​  = ​ ∫ 

 
​ 
 
​​tv​(w)​ ​f​i​​  d𝐱,​

where ​​c​i,k​​​(𝐚)​  ≡ ​ ∂​​ 2​ c​(𝐚)​ / ∂ ​a​i​​∂ ​a​k​​​ and similarly for ​​f​i,k​​​ and ​​f​i​​​. We have dropped the 
dependence of these functions on ​𝐱​ and ​𝐚​ to simplify the expressions.

Given contract ​w​ and an adjustment ​t​, let us define the Hessian matrix ​𝐀​ to be 
an ​M × M​ symmetric matrix with elements ​​A​i,k​​  = ​ c​i,k​​ − ​∫  ​ 

 
​​v​(w)​ ​f​i,k​​ d𝐱​. Note that this 

matrix does not depend on the adjustment ​t​. Let us also define the marginal-incentives 
matrix under adjustment ​t​ to be the ​M × 1​ matrix ​𝐁​(t)​​ with elements  
​​B​i​​​(t)​  = ​ ∫  ​ 

 
​​tv​(w)​ ​f​i​​ 𝑑𝐱​. We can then write the multidimensional analog of (2) as  

​𝐚​(w, t)​  = ​ 𝐀​​ −1​ 𝐁​(t)​​, where ​𝐚​(w, t)​​ denotes the ​M × 1​ matrix with kth element ​
 ​a​k​​​(w, t)​​.

Next, we turn to the principal’s profits. Again, using the same approach as in 
Section II, adjusting a contract ​w​ in the direction ​t​ changes her profit according to 
the differential

	​ π​(w, t)​  = ​  ∑ 
i=1

​ 
M

 ​​​[​m​i​​ − ​∫ 
 
​ 
 
​​w​(𝐱)​ ​f​i​​​(𝐱 | 𝐚​(w)​)​ d𝐱]​ ​a​i​​​(w, t)​ − ​∫ 

 
​ 
 
​​t​(𝐱)​f ​(𝐱 | 𝐚​(w)​)​ d𝐱,​

where notice that we are allowing the principal to place different values ​​m​i​​​ on differ-
ent dimensions of effort. Given a status quo contract ​​w​​ A​​, the principal solves

	​​  max​ 
t:||t||≤1

​​ π​(​w​​ A​, t)​  subject to  u​(​w​​ A​, t)​  ≥  0.​

Turning to the information required for solving the principal’s problem, let us 
denote a local A/B test with ​K​ test contracts ​​w​​ ​B​1​​​,  …, ​w​​ ​B​K​​​​ by ​LAB​(​w​​ A​, ​w​​ ​B​1​​​,  …, ​
w​​ ​B​K​​​)​  = ​ (​f​​   A​, ∇ ​f​​   A​, 𝐚​(​w​​ A​, ​w​​ ​B​1​​​)​,  …, 𝐚​(​w​​ A​, ​w​​ ​B​K​​​)​)​​, where ​∇ ​f​​   A​​ is an ​M × 1​ matrix 
with ith element ​​f​i​​​(𝐱 | 𝐚​(​w​​ A​)​)​​. We will say that test contracts ​​w​​ ​B​1​​​,  …, ​w​​ ​B​K​​​​ are infor-
mative and independent if ​𝐚​(​w​​ A​, ​w​​ ​B​k​​​)​  ≠  0​ for all ​k​, and ​𝐚​(​w​​ A​, ​w​​ ​B​1​​​)​,  …,  
𝐚​(​w​​ A​, ​w​​ ​B​K​​​)​​ are linearly independent.
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Recall that Proposition 1 shows that, for the unidimensional effort case, a local 
A/B test reveals ​​f​​  A​, ​f​ a​  A​​, and enables the principal to compute how the agent’s mar-
ginal incentives and utility change for any adjustment ​t​. By the same logic, when ​
M  ≥  2​, knowledge of ​​f​​  A​​ and ​∇ ​f​​  A​​ suffices for constructing the agent’s marginal 
incentives matrix ​𝐁​(t)​​ and computing ​u​(​w​​ A​, t)​​ for any ​t​.

When ​M  =  1​, the agent’s Hessian matrix ​𝐀​ is a singleton, and Proposition 
1 shows that it can be identified with a single test contract. When ​M  ≥  2​, the 
agent’s Hessian matrix contains ​M​(M + 1)​ / 2​ distinct elements, as it is symmetric. 
These elements cannot all be inferred from a local A/B test with one test contract, 
but knowledge of ​𝐚​(w, t)​​ for a particular adjustment ​t​, together with ​​f​​  A​​ and ​∇ ​f​​  A​​  
generates ​M​ equations of the form ​𝐚​(w, t)​  = ​ 𝐀​​ −1​ 𝐁​(t)​​. The matrix ​𝐀​ can 
therefore be identified as long as the principal knows ​𝐚​(w, t)​​ for at least 
​​​⌈​​​(M + 1)​ / 2​⌉​​​​ informative and independent test contracts. Given an estimate 
for ​𝐀​, one can then compute ​𝐚​(​w​​ A​, t)​​ and therefore ​π​(​w​​ A​, t)​​ for every ​t​.  
Therefore, a local A/B test with ​K  = ​​ ⌈​​​(M + 1)​ / 2​⌉​​​​ informative and indepen-
dent test contracts provides all the information needed to solve the principal’s  
problem.

We now address the second challenge that arises when effort is multidimen-
sional: constructing a local A/B test. In the unidimensional effort case, constructing 
a local A/B test from output data is straightforward. There, it is without loss of 
generality to normalize effort so that ​E​[x | a]​  =  a​, so that by observing the output 
distribution for a given contract, the principal can infer the chosen effort. Then, 
given contracts ​​w​​ A​​ and ​​w​​ B​​, the principal can construct ​a​(​w​​ A​, ​w​​ B​)​  ≈ ​ a​​ B​ − ​a​​ A​​, and  
​​f​ a​ A​​(x)​  ≈ ​ [  ​f​​ B​​(x)​ − ​f​​ A​​(x)​]​ / ​(​a​​ B​ − ​a​​ A​)​​.

When effort is multidimensional, using output data from ​K​ test contracts to con-
struct a local A/B test requires a priori information on the nature of effort, and it 
may also put a lower bound on how many test contracts are required. To illustrate 
the first point, define the function ​G : ​ℝ​​ M​  → ​ ℝ​​ N​​ such that ​​G​i​​​(𝐚)​  =  E​[​x​i​​ | 𝐚]​​ for each ​
i​. If ​G​ is invertible and known by the principal, then observing ​E​[𝐱 | 𝐚​(w)​]​​ for some 
contract ​w​ suffices to infer ​𝐚​(w)​​, and therefore the principal can use output data to 
construct ​𝐚​(​w​​ A​, ​w​​ ​B​k​​​)​​ for each ​k​.

The assumptions that ​G​ is invertible and known by the principal are restrictive 
but capture many potential settings of interest. For example, suppose the agent is a 
salesperson selling ​M​ different products, and his effort ​​a​i​​​ affects only the distribu-
tion of his sales ​​x​i​​​ of product ​i​. Then we can let ​M  =  N​, and ​​G​i​​​(𝐚)​  = ​ a​i​​​ is once 
again a normalization. As another example, suppose output ​y​ is one-dimensional, 
but ​​a​1​​​ influences mean output and ​​a​2​​​ the variance of output. This setting can be 
captured by setting ​N  =  2​ and letting ​​x​1​​  =  y​, ​​x​2​​  = ​ y​​ 2​​, ​​m​1​​  =  m​, ​​m​2​​  =  0​,  
​​G​1​​​(𝐚)​  = ​ a​1​​​, and ​​G​2​​​(𝐚)​  = ​ a​2​​ + ​a​ 1​ 2​​. This example highlights that even when output 
is low-dimensional, the output distribution contains a lot of information that may be 
informative about the agent’s choices.

Finally, to illustrate why constructing a local A/B test from output data may 
require additional test contracts, note that, given contracts ​​w​​ A​​ and ​​w​​ ​B​k​​​​, we have for 
every ​𝐱​,

	​ f​(𝐱 | ​𝐚​​ ​B​k​​​)​ − f​(𝐱 |  ​𝐚​​ A​)​  ≈  ∇ f​(𝐱 | ​𝐚​​ A​)​ · 𝐚​(​w​​ A​, ​w​​ ​B​k​​​)​.​
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Knowing ​𝐚​(​w​​ A​, ​w​​ ​B​k​​​)​​ does not generally suffice to infer ​∇ f​(𝐱 | ​𝐚​​ A​)​​. To infer  
​∇ f​(𝐱 | ​𝐚​​ A​)​​, one must solve a linear system with ​M​ unknowns, which means that up 
to ​M​ informative and independent test contracts may be required. Oftentimes, how-
ever, ​∇ f​(𝐱 | ​𝐚​​ A​)​​ can be identified with a single test contract: for example, if ​M  =  N​ 
and ​f​ is separable so that each ​​a​i​​​ determines only the distribution of ​​x​i​​​, then ​∂ ​f​​ A​/∂ ​a​i​​​ 
can be determined using the same identity as in the unidimensional case.

We conclude this section with a discussion of how these ideas can be applied 
non-locally. Recall from Section A that the treatment pairs (4,6), (5,6), and (5,7) 
generate similar mean output but starkly different output distributions. This is 
because subjects can adjust their efforts over time, suggesting their actions are mul-
tidimensional. In online Appendix A.C, we show how to extend the analysis to a 
setting in which subjects are allowed to choose the entire output distribution. As we 
shall see, however, it is important for the principal to take a stance on the nature and 
the dimensions of effort a priori, and moreover, the right kind of contract variation 
may be needed to learn about different dimensions of effort.

Finally, multiple test contracts are likely to prove useful in empirical settings such 
as those of Gibbs, Neckermann, and Siemroth (2017) and Hong et al. (2018), where 
agents exert effort toward both quantity and quality. To use multiple test contracts 
to derive optimal non-local adjustments in these settings, one would have to impose 
assumptions analogous to Conditions 1 and 2. For example, one might assume that 
output is separable and affine in each dimension; and the cost function has scale, 
elasticity, and cross-elasticity parameters. Each test contract provides two first-order 
conditions, and so to recover the unknown parameters, outcome data from three 
contracts would be needed.

VI.  Discussion and Avenues for Future Research

What does a manager need to know to improve upon an existing contractual 
arrangement? We asked and answered this question in the context of the Holmström 
(1979) model of principal-agent relationships subject to pure moral hazard prob-
lems, we showed how A/B contracts can provide the relevant information, and we 
carried out an empirical proof of concept.

In the last forty years, contract theory has greatly extended its domain, but it 
has largely strayed away from the kinds of measurement issues that are important 
in practice. This paper just scratches the surface of what we hope can be a fruitful 
research agenda that combines theoretical insights with data to answer practical 
incentive-design questions. There are still important hurdles to overcome and many 
important directions to extend the analysis.

Our framework sidesteps both statistical error and approximation error. First, we 
assumed the principal has access to an infinitely large sample of output draws under 
each contract she has outcome data for. Understanding the limitations of smaller 
sample sizes is important for applications, especially in smaller firms.

Second, when we considered non-local adjustments, the conditions we imposed 
can be interpreted as an approximation to the true model, which may become worse 
when considering contracts farther away from the status quo contract. When this 
is the case, not all A/B contracts are equally informative, and questions of opti-
mal A/B test design become more central (see, for example, Azevedo et. al. 2020). 
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Optimal A/B test design should be informed both by theories of approximation 
error and by empirical findings. In our empirical context, we found that homoge-
neous A/B contracts tend to lead to better performance than hybrid A/B contracts. 
And A/B contracts that themselves lead to large performance changes tend to lead 
to better performance than those that induce similar performance. We discussed the 
reasons for these differences at the end of Section A. Our analysis also sheds light 
on cases in which data from additional test contracts is needed—namely, if external 
incentives are important (or relatedly, one of the test contracts generates zero mar-
ginal incentives), or if effort is multidimensional.

Our framework also implicitly assumes that the outcome data given by an A/B 
test are generated by nonstrategic agents who are best responding to the contract 
they face. If agents know they are part of an experiment that will inform their future 
compensation, ratchet effects may reduce the informativeness of the A/B test. 
Similarly, if agents have other-regarding preferences (see, for example, Bandiera, 
Barankay, and Rasul 2011), then agents under one contract might react negatively to 
the knowledge that their coworkers face a different contract. In some settings, these 
distortions can be avoided altogether by appropriately choosing high-level features 
of the test contract. For example, ratchet effects can be ameliorated by using aggre-
gate output data from many agents, since the resulting free-rider problem among 
agents during the test phase will tend to push each of them toward choosing an 
effort level that is a static response to the contract (Cardella and Depew 2018). Or, 
if agents’ other-regarding preferences are determined at the team level, then assign-
ing treatments at the team level, rather than the individual, can prevent negative 
reactions. In other settings, these kinds of considerations may be unavoidable and 
will therefore inform the design and informativeness of the experiment itself (see, 
for example, Liang and Madsen 2020 in the presence of strategic manipulation and 
Fehr, Powell, and Wilkening 2021 in the presence of negative reciprocity).

We showed how to extend our framework to accommodate several additional 
considerations that are not present in the canonical model, but there are many other 
important considerations that we did not incorporate. For example, in many envi-
ronments, team production makes it hard to distinguish individual performance, and 
one agent’s marginal incentives may depend on the effort choices of other agents. 
When this is the case, there may be value in putting different agents in the same 
team on different test contracts.

The last consideration that we will close with is that many workers are motivated 
through the use of long-term incentives arising from promotion systems or deferred 
compensation policies. In many models of dynamic incentives, an agent’s marginal 
incentives are summarized by the sensitivity of their continuation payoffs to their 
current performance. A/B contracts can still be used to assess how agents respond 
to a change in today’s marginal incentives, but to understand how best to adjust 
dynamic contracts, the principal would need additional information on how agents 
trade off today’s compensation with their future career prospects in the firm.
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