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Fixed Effects Models 

 Suppose you want to learn the effect of price on the demand for back massages.  You 

have the following data from four Midwest locations:   

Table 1:  A Single Cross-section of Data 

Location Year Price Per capita Quantity 

Chicago 2003 $75 2.0 

Peoria 2003 $50 1.0 

Milwaukee 2003 $60 1.5 

Madison 2003 $55 0.8 

 

This is cross-section data – data from several locations at a single point in time.   

 

If you eyeball this data, you will see that across the four cities, price and quantity are 

positively correlated.  In fact, if you regress per capita quantity on price, you will obtain a 

coefficient on price of 0.45, suggesting that each $1 increase in price is associated with a .45 

increase in per capita massages!   You highly doubt that the demand curve for massages is 

upward sloping so you think a bit more about the data.  You wonder if, perhaps, the quality of 

massages is higher in Chicago.  Or perhaps “sophisticated urbanites” have a higher demand for 

massages.  This could boost the demand for massages and simultaneously drive up the price.  In 

other words, the regression probably suffers from endogeneity bias in the form of omitted 

variable bias (because quality and “sophistication” are omitted.)    

You really can’t say very much about the role of price with this cross-section data.    
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Now suppose you had the following cross-section/time series data (data from multiple cities and 

multiple years): 

Table 2:  A Cross-section/Time Series 

Location Year Price Per capita Quantity 

Chicago 2003 $75 2.0 

Chicago 2004 $85 1.8 

Peoria 2003 $50 1.0 

Peoria 2004 $48 1.1 

Milwaukee 2003 $60 1.5 

Milwaukee 2004 $65 1.4 

Madison 2003 $55 0.8 

Madison 2004 $60 0.7 

 

If you eyeball this data, you will see that within each of the four cities, price and quantity are 

inversely correlated, as you would expect if demand is downward sloping.  By obtaining multiple 

observations about each city and looking at the effect of price within each city, we have removed 

the pernicious effect of omitted variable bias.  This is the intuition behind fixed effects 

regression. 

 If you examine the sales data (per capita quantity) in Table 2, you will observe that there 

is considerable variation (“action”) from one row to the next.   This variation/action comes in 

two “flavors”” 

- Intercity (across city) variation:  variation in the average quantity from one city to the 

next 

- Intracity (within city) variation:  variation within each city over time. 

The single cross-section of data (Table 1) offered only intercity (across) variation.   We now 

know that regressions relying on intercity variation are problematic due to potential omitted 

variable bias.  The solution is to focus on intracity (within) variation.   
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We must make one key assumption if we are to believe we have really removed omitted 

variable bias by focusing on within variation.  We must assume that there are no changes in 

quality or demand over time within each city that we cannot control for.  For example, suppose 

prices went up in Chicago between 2003 and 2004 because quality increased over that time 

period.  If we cannot adequately control for quality in our regression, then we have an omitted 

variable bias, because omitted quality is correlated with both price and quantity.
1
   

Using econometrics parlance, we must assume the following: 

 

Identifying assumption:  Unobservable factors that might simultaneously affect the LHS and RHS 

of the regression are time-invariant. 

 

If we accept this identifying assumption – and it is usually an innocuous assumption – then we 

have a powerful tool for removing omitted variable bias.  This tool is known as fixed effects 

regression, and it exploits within-group variation over time.  Across-group variation is not used 

to estimate the regression coefficients, because this variation might reflect omitted variable bias.   

 

The theory behind fixed effects regressions 

Examining the data in Table 2, it is as if there were four “before and after” experiments.  

In other words, there are sales and price data before and after prices change in each of four cities.  

This concept of “before and after” offers some insight into the estimation of fixed effects models.    

Suppose for now that we believe the demand curve has the same shape in each of the four 

cities.  This is a parsimonious assumption and requires that we estimate the average of the four 

“before-and-after” effects.  One way to do this is to compute the changes in prices and the 

                                                 
1
 Be sure you can confirm the direction of the bias and see me before class if you cannot. 



 4 

changes in quantities in each city (∆P and ∆Q) and then regress ∆Q on ∆P.  (The appropriate data 

from our massage example are shown in the last two columns of Table 3.)  Many research papers 

estimate such difference equations.   

Table 3:  Data for Difference Equation Estimation 

 

 

 

 

 

 

If we have lots of years of data, things get messier.  We could, in principle, compute all 

of the differences (i.e., 2004 versus 2003, 2005 versus 2004, etc.) and then run a single 

regression, but there is an easier way.  Instead of thinking of each year’s observation in terms of 

how much it differs from the prior year for the same city, let’s think about how much each 

observation differs from the average for that city.  With two key variables, price and quantity, we 

will be concerned with the following:   

∙ Variations in prices around the mean price for each city 

∙ Variations in quantities around the mean quantity for each city.   

We want to know whether variations in the quantities (around their means) are related to 

variations in prices (around their means).   With our relatively small massage data set, we can do 

this by hand. 

Location Year Price Per capita Quantity P Q 

Chicago 2003 $75 2.0   

Chicago 2004 $85 1.8 10 -0.2 

Peoria 2003 $50 1.0   

Peoria 2004 $48 1.1 -2 0.1 

Milwaukee 2003 $60 1.5   

Milwaukee 2004 $65 1.4 5 -0.1 

Madison 2003 $55 0.8   

Madison 2004 $60 0.7 5 -0.1 
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Table 4 reports the mean prices and quantities of massages in each of the four cities, 

where P
*
ct  and Q

*
ct denote these means.   

Table 4:  Cross-section/Time Series with Mean Within-Group Values 

Location Year Price P
*

ct Quantity Q
*

ct 

Chicago 2003 75 80 2.0 1.9 

Chicago 2004 85 80 1.8 1.9 

Peoria 2003 50 49 1.0 1.05 

Peoria 2004 48 49 1.1 1.05 

Milwaukee 2003 60 62.5 1.5 1.45 

Milwaukee 2004 65 62.5 1.4 1.45 

Madison 2003 55 57.5 0.8 0.75 

Madison 2004 60 57.5 0.7 0.75 

 

Table 5 reports the variation in prices and quantities around their means.   

Table 5:  Cross-section/Time Series with Variation around the Means 

Location Year Price P
*
ct Price - P

*
ct Quantity Q

*
ct Quantity - Q

*
ct  

Chicago 2003 75 80 -5.0 2.0 1.9 0.1 

Chicago 2004 85 80 5.0 1.8 1.9 -0.1 

Peoria 2003 50 49 -1.0 1.0 1.05 .05 

Peoria 2004 48 49 1.0 1.1 1.05 -.05 

Milwaukee 2003 60 62.5 -2.5 1.5 1.45 .05 

Milwaukee 2004 65 62.5 2.5 1.4 1.45 -.05 

Madison 2003 55 57.5 -2.5 0.8 0.75 .05 

Madison 2004 60 57.5 2.5 0.7 0.75 -.05 

 

The final step is to regress Quantity - Q
*
ct   on Price- P

*
ct .  Note that by subtracting the means, 

we have restricted all of the action in the regression to within-city action.  Thus, we have 

eliminated the key source of omitted variable bias, namely, unobservable across-city differences 

in quality, sophistication, or whatever!  
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Fixed effects regression in practice 

 It turns out that there is a simple way to do this in practice: 

1) Start with your original price and quantity data.    

2) Regress quantity on price, but include dummy variables for the cities (remembering to 

omit one city).    

3) Add a control for the time trend if you think such a trend might be important.   

In Stata, you could run:   

regress quantity price peoriadummy milwaukeedummy madisondummy 2004dummy 

I ran this regression and obtained the following results: 

Variable Coefficient What it signifies 

Intercept 3.91 This is the intercept of the demand curve 

in the omitted city (Chicago). 

price -.025 Each $1 increase in price causes per capita 

demand to fall by 0.025.   

peoriadummy -1.64 This is the Peoria intercept relative to the 

Chicago intercept. 

milwaukeedummy -1.72 This is the Milwaukee intercept relative to 

the Chicago intercept. 

madisondummy -0.89 This is the Madison intercept relative to 

the Chicago intercept. 

2004dum .039 Per capita sales are higher in 2004 than in 

2003 by .039 

 

This is known as a “fixed effects” regression because it holds constant (fixes) the average effects 

of each city.   

There is a shortcut in Stata that eliminates the need to create all the dummy variables.   

Suppose that our variable names are quantity, price, city and year.  If we type: 

xi: regress quantity price i.city i.year 

Stata will automatically create dummies for all but one of the city categories as well as for the 

year category and then run the fixed effects regression.  You can do this procedure with any 
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number of years of data, provided there are at least two observations per city.  (Cities with only 

one observation will drop out of the regression.) 

 

Behind the scenes of fixed effect regressions 

 By including fixed effects (group dummies), you are controlling for the average 

differences across cities in any observable or unobservable predictors, such as differences in 

quality, sophistication, etc.  The fixed effect coefficients soak up all the across-group action.  

What is left over is the within-group action, which is what you want.  You have greatly reduced 

the threat of omitted variable bias.   

Because fixed effects models rely on within-group action, you need repeated observations 

for each group, and a reasonable amount of variation of your key X variables within each group.  

The more action the better, of course.  (When you work with the full yogurt data set, be sure to 

examine the data to see if you have sufficient intra-group action.)    

 One potentially significant limitation of fixed effects models is that you cannot assess the 

effect of variables that have little within-group variation.  For example, if you want to know the 

effect of spectator sports attendance on the demand for massages, you might not be able to use a 

fixed effects model, because sports attendance within a city does not vary very much from one 

year to the next.  If it is crucial that you learn the effect of a variable that does not show much 

within-group variation, then you will have to forego fixed effects estimation.  But this exposes 

you to potential omitted variable bias.   Unfortunately, there is no easy solution to this dilemma. 
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The importance of fixed effects regression 

Fixed effects regressions are very important because data often fall into categories such 

as industries, states, families, etc.  When you have data that fall into such categories, you will 

normally want to control for characteristics of those categories that might affect the LHS 

variable.  Unfortunately, you can never be certain that you have all the relevant control variables, 

so if you estimate a plain vanilla OLS model, you will have to worry about unobservable factors 

that are correlated with the variables that you included in the regression.  Omitted variable bias 

would result.  If you believe that these unobservable factors are time-invariant, then fixed effects 

regression will eliminate omitted variable bias.   

In some cases, you might believe that your set of control variables is sufficiently rich that 

any unobservables are part of the regression noise, and therefore omitted variable bias is 

nonexistent.  But you can never be certain about unobservables because, well, they are 

unobservable!  So fixed effects models are a nice precaution even if you think you might not 

have a problem with omitted variable bias. 

Of course, if the unobservables are not time-invariant – if they move up and down over 

time within categories in a way that is correlated with the variables included in the regression – 

then you still have omitted variable bias.  You may never be able to fully rule out this possibility.  

There are other, more sophisticated solutions that we will discuss later in the quarter. 
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Advice on using fixed effects 

1) If you are concerned about omitted factors that may be correlated with key predictors 

at the group level, then you should try to estimate a fixed effects model.   

2) Include a dummy variable for each group, remembering to omit one of them.  (Use the 

xi: feature in Stata.) 

3)  The coefficient on each key predictor  tells you the average effect of that predictor; 

i.e., the common slope averaged across the groups. 

4)  You can use a partial-F (Chow) test to determine if the groups have different 

intercepts.   

 

Different slopes for different folks? 

In the basic fixed effects model, the effect of each predictor variable (i.e., the slope) is 

assumed to be identical across all the groups, and the regression merely reports the average 

within-group effect.   What if you believe the slopes differ across all groups?  In the extreme, 

you could estimate a different regression for each group.  This will generate a different slope for 

each predictor variable in each market, which can quickly get out of hand.  A more parsimonious 

solution is to estimate a single fixed effects regression but include slope dummies (i.e. 

interactions between the group dummies and the key predictor variables) for key predictors and 

use a Chow test to see if the slopes really are different.  We will do this for the yogurt project. 
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An application 

 I will walk you through many applications of fixed effect models.  Here is one to ponder.  

There have recently been high profile studies of the relationship between staffing in hospitals and 

patient outcomes.   These studies use traditional OLS regression where the unit of observation is 

the patient, the dependent variable is some outcome measure like mortality (a dummy variable 

that equals 1 if the patient died in the hospital) and the key predictor is staffing (e.g., nurses per 

patient).   These studies do not use fixed effects, and invariably show that hospitals with more 

staff have better patient outcomes.  These results have had enormous policy implications.   

Unfortunately, these studies may suffer from omitted variable bias.  For example, the key 

unobservable variable might be the severity of patients’ illnesses, which is notoriously difficult 

to control for with available data.  Severity is likely to be correlated with both mortality and 

staffing, so that the coefficient on staffing will be biased.  (What is the direction of the bias?)    

If you ran a hospital fixed-effects model, you would include hospital dummies in the 

regression that would control for observable and unobservable differences in severity (and all 

other factors) across hospitals.  This would greatly reduce potential omitted variable bias.  None 

of the current research in this field has done so, perhaps because there is not enough intra-

hospital variation in staffing to allow for fixed-effects estimation.   

Even a fixed effects model would not completely eliminate potential omitted variable 

bias.  You must also hope that any changes over time in unobservable patient severity within 

each hospital are uncorrelated with changes over time in staffing.  This might not be such a good 

assumption.  As hospitals experience increases in severity, they may increase staffing.  If so, then 

unobservable severity within a hospital is correlated with staffing and the omitted variable bias is 

still present.    


