Discussion of "Borrowing to Save and Investment Dynamics" by Jasmine Xiao

Nicolas Crouzet¹

¹Kellogg School of Management, Northwestern University

- During the Great Recession, investment by public firms fell ...
- ... but borrowing increased, and cash holdings even more.
- Hard to think about using standard firm models with financial frictions typically only **net** debt matters
- This paper extends standard models

borrowing first, investment/cash decision second credit supply + uncertainty shocks generate Great Recession patterns

Overview

1. The mechanism

- default, iff, $zk \leq B$
- deadweight loss $1 \chi > 0$ in default
- B = B(k, b, e), endogenous
- r = 0, $\mathbb{E}(z) > 1$.

$$W(k) = \text{equity value} = 1 + \underbrace{\mathbb{E}(z)k - k}_{\text{frictionless firm value}} - \underbrace{(1 - \chi) \int_{zk \le B(k)} zkdF(z)}_{\text{deadweight losses } L(k)}$$

Deadweight losses **convex** in *k*

$$\mathbb{E}[z] - 1 = \frac{\partial L}{\partial k} = (1 - \chi) \left(\underbrace{\int_{z \le \underline{z}(k)} z dF(z)}_{\text{infra-marginal effect}} + \underbrace{\underline{z}f(\underline{z}) \frac{\partial \underline{z}}{\partial k} k}_{\text{marginal effect}} \right)$$

Lower recovery rates in liquidation

$$W(k,a) = 1 + \underbrace{\mathbb{E}(z)k - k}_{\text{frictionless firm value}} - \underbrace{(1 - \chi) \int_{zk \le B(k) - a} zkdF(z)}_{\text{deadweight losses on } k} - \underbrace{(1 - \chi_a) \int_{zk \le B(k) - a} adF(z)}_{\text{deadweight losses on } a}$$

Solution: same *k* before ...

Cash holding policy?

- When $\chi_a = 1$: any (a, b) such that $b a + 1 = k^*$
- When $\chi_a < 1$: a = 0

$$\tilde{W}(B,N) = \max \int_{z_1 z_2 k \ge B-a} (z_1 z_2 k - (B-a)) dF(z_2)$$
 s.t. $k + a = N$

$$a = \begin{cases} 0 & \text{if } z_1 E(z_2) \ge 1 \\\\ 0 & \text{if } z_1 E(z_2) < 1 \quad \text{and} \quad \frac{B}{N} \ge d^* \\\\ N & \text{if } z_1 E(z_2) < 1 \quad \text{and} \quad \frac{B}{N} \le d^* \end{cases}$$

where:

$$\int_{z_1 z_2 N \ge d^* N} (z_1 z_2 N - d^* N) \, dF(z_2) = N - d^* N.$$

Who saves?

- negative NPV ($E(z_2)z_1 < 1$)
- low leverage $(B/N < d^*)$

If $B(N) \ge d^*N$ (high leverage) — same as baseline model

$$W(N) = 1 + \underbrace{\mathbb{E}(z_1 z_2)N - N}_{\text{frictionless firm value}} - \underbrace{(1 - \chi) \int_{z_1 z_2 N \le B(N)} z_1 z_2 N dF(z_1) dF(z_2)}_{\text{deadweight losses on } N}$$

If $B(N) < d^*N$ (low leverage)

$$W(N) = 1 + \mathbb{E} (\max(z_1 \mathbb{E}(z_2), 1))N - N$$
$$-(1 - \chi) \int_{z_1 \mathbb{E}(z_2) \ge 1} \int_{z_1 z_2 N \le B(N)} z_1 z_2 N dF(z_1) dF(z_2)$$

- Increase in borrowing and decline in investment?
 - high $\sigma \implies \text{more } N$

low $\chi \implies$ higher (?) leverage B/N

both might lead to more investment ... but I might be wrong!

- "Precautionary" mechanism?

avoid negative NPV investment transfer from **low** to **high** prod states

- suggestion :

- · "minimal working example", (more) tractable (CRS? or need DRS?)
- better comparison to corp financial precautionary models (Opler, Pinkowitz, Stulz, Williamson, 1998; Acharya, Almeida, Campello, 2007)

2. Empirics

1 Is the behavior of the *average* Compustat firm consistent with the model?

- · Jordà projection on indicator for recession starts
- · control for firm fixed effects (consistent w/ model)
- 2 How does the response of *cash holdings* depend on:
 - · interaction w/ proxies for default risk (distance to default)?
 - · interaction w/ proxies for idiosyncratic vol?
- 3 Do cash-rich firms grow more slowly during recoveries?
 - · interaction w/ lagged cash growth

- **Option value** of investing goes up when $\sigma \uparrow$
- More extreme "right-tail" realizations of *z*₁
- Does this square with the data?

The distribution of revenue growth

Compustat data (annual)

The skewness of revenue growth

- **Option value** of investing goes up when $\sigma \uparrow$
- More extreme "right-tail" realizations of *z*₁
- Does this square with the data?

Compustat revenue growth displays **procyclical** skewness see also Salgado, Guvenen and Bloom (2018)

- **Suggestion :** would the mechanism work if σ increase \implies more negatively skewed shocks?
 - \cdot static model?

- It would be nice if the mechanism could speak to cash holding trends
- Enormous increase in cash holdings of US firms over the past 30 years

From Graham and Leary (2018)

- It would be nice if the mechanism could speak to cash holding trends
- Enormous increase in cash holdings of US firms over the past 30 years
- Suprisingly, trends are not driven by within-firm increases in cash holdings!

	Dependent variable : cash to asset ratio					
	1980-2000	2000-2014	1980-2000	2000-2014	1980-2000	2000-2014
Time trend	0.404***	-0.039	-0.392***	-0.092***	-0.111***	0.046
Firm f.e. No first 4 yrs.	No No	No No	Yes No	Yes No	Yes Yes	Yes Yes

p < 0.10, **: p < 0.05, ***: p < 0.01

From Graham and Leary (2018)

Empirical remark 2: Trends in cash holding

- It would be nice if the mechanism could be related to cash holding trends, too
- Enormous increase in cash holdings of US firms over the past 30 years
- Suprisingly, trends are not driven by within-firm increases in cash holdings!
 within-firm trend in cash holdings seem to be mildly negative despite Davis, Haltiwanger, Jarmin and Miranda (2006)
- The model is primarily about a within-firm mechanism
 - **suggestion :** increase in cash if σ rises permanently in model?

3. Calibration

- paper targets excess bond premium of Gilchrist and Zakrajšek (2012) for AR process governing χ

GZ measure risk premia net of default risk

- paper targets credit spreads for σ_ψ

probably too much default (credit spread puzzle)

- important for quantifying precautionary channel
- suggestion :
 - match annual estimates of average loss given default from Moody's or match annual estimates of average distance to default or match default rates
 - · report model performance for credit spreads

Private and public firms

 Paper contrasts the cash management behavior of public and private firms comparing Flow of Funds with Compustat (not clear they can be compared ...)

Private vs. public manufacturing firms: QFR

Data from the Quarterly Financial Report public releases. Solid line: more than 1bn\$ in assets; dashed line: less than 25m\$ in assets.

Private and public firms

- The paper contrasts the cash management behavior of public and private firms

comparing Flow of Funds with Compustat

(not clear they can be compared ...)

- Not clear they behaved differently, but let's imagine that's true
- What could explain this difference? Why does the mechanism not apply?

tighter borrowing constraints?

different exposure to the vol and credit supply shock?

access to safe asset?

suggestion :

calibrations that could account for the behavior of private firms?

- A monetary policy contraction would

increase the return on the safe asset

increase borrowing costs even more (Gilchrist and Zakrajšzek, 2012)

- Transmission in the model?

Two effects:

- 1 more costly external finance depresses investment as in "baseline" model
- 2 higher return on safe asset encourages risk-taking \neq from "baseline" model

Which firms are most sensitive to the shock?

suggestion : Jordá projection, cond. on EF premium and liquidity

Jeenas (2018), Crouzet and Mehrotra (2018), Ottonello and Winberry (2018)

Conclusion

- Great paper on an important question
- Push more on explanation of the mechanism and data in support of it!