“Firm-bank linkages and optimal monetary policy in a lockdown”
by Anatoli Segura and Alonso Villacorta

Nicolas Crouzet
Kellogg School of Management, Northwestern University

FIRS 2021
Government interventions in corporate credit markets

<table>
<thead>
<tr>
<th></th>
<th>Why?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylized models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunnermeier & Krishnamurthy (2020)</td>
<td>Bankruptcy externalities (?)</td>
<td>Subsidized loans</td>
</tr>
<tr>
<td>Hanson, Stein & Sunderam (2020)</td>
<td>Bankruptcy externalities</td>
<td>Subsidized + staged loans</td>
</tr>
<tr>
<td>Segura & Villacorta (2021)</td>
<td>Bank risk constraints</td>
<td>Deposit insurance + firm transfers</td>
</tr>
<tr>
<td>Quantitative models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elenev & al. (2021)</td>
<td>Bank risk constraints (?)</td>
<td>Firms transfers</td>
</tr>
<tr>
<td>Crouzet & Tourre (2021)</td>
<td>Sudden stop + deadweight losses</td>
<td>Targeted loans w/ “strings attached”</td>
</tr>
</tbody>
</table>
The world in 2019

- θ: aggregate shock; $E(\theta) = 1, \theta \geq \theta$

- $\hat{p}(.), \hat{e}(.): "moral\ hazard"/"debt\ overhang"$
The world in 2020 (without government intervention)

- **b_L:** repayment promised to bank in exchange for ρ
Option 1: bank finances extra loans with equity

\[\hat{p}(b_0 + b_1^L) \cdot (b_0 + b_1^L) - \hat{p}(b_0) \cdot b_0 = \rho \]

value of newly issued loans

Constrained optimum s.t.

- moral hazard
- external financing = loans (not equity)
- old/new loans pari-passu
Option 1: bank finances extra loans with equity

\[
\hat{p}(b_0 + b^1_L) \cdot (b_0 + b^1_L) - \hat{p}(b_0) \cdot b_0 = \rho
\]

value of newly issued loans

\[
W_0 = \hat{p}(b_0)A - \hat{e}(b_0)
\]
Option 1: bank finances extra loans with equity

\[
\hat{p}(b_0 + b^1_L) \cdot (b_0 + b^1_L) - \hat{p}(b_0) \cdot b_0 = \rho
\]

value of newly issued loans

\[
W_0 = \hat{p}(b_0)A - \hat{e}(b_0)
\]

\[
W_1 = \hat{p}(b_0 + b^1_L)A - \hat{e}(b_0 + b^1_L) - \rho
\]
Option 1: bank finances extra loans with equity

\[
\hat{p}(b_0 + b^1_L) \cdot (b_0 + b^1_L) - \hat{p}(b_0) \cdot b_0 = \rho
\]

value of newly issued loans

\[
W_0 = \hat{p}(b_0)A - \hat{e}(b_0)
\]

\[
W_1 = \hat{p}(b_0 + b^1_L)A - \hat{e}(b_0 + b^1_L) - \rho
\]

\[
W_0 > W_1
\]
Option 1: bank finances extra loans with equity

\[
\hat{p}(b_0 + b^1_L) \cdot (b_0 + b^1_L) - \hat{p}(b_0) \cdot b_0 = \rho
\]

value of newly issued loans

\[
W_0 = \hat{p}(b_0)A - \hat{e}(b_0)
\]

\[
W_1 = \hat{p}(b_0 + b^1_L)A - \hat{e}(b_0 + b^1_L) - \rho
\]

\[
W_0 > W_1
\]

Constrained optimum s.t.

- "moral hazard"
- external financing = loans (not equity)
- old/new loans pari-passu
Option 2: bank finances extra loans using safe deposits

\[\theta (\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0) \geq \rho \]
Option 2: bank finances extra loans using safe deposits

\[\theta (\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0) \geq \rho \]

\[\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \]
Option 2: bank finances extra loans using safe deposits

\[
\theta \left(\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho \\
\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \\
> \rho = \hat{p}(b_0 + b_L^1) \cdot (b_0 + b_L^1) - \hat{p}(b_0) \cdot b_0
\]
Option 2: bank finances extra loans using safe deposits

\[\theta (\hat{p}(b_0 + b^2_L) \cdot (b_0 + b^2_L) - \hat{p}(b_0) \cdot b_0) \geq \rho \]

\[\hat{p}(b_0 + b^2_L) \cdot (b_0 + b^2_L) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \]

\[> \rho = \hat{p}(b_0 + b^1_L) \cdot (b_0 + b^1_L) - \hat{p}(b_0) \cdot b_0 \]

\[b^2_L > b^1_L, \]
Option 2: bank finances extra loans using safe deposits

\[\theta \left(\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho \]

\[\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \]

\[\rho = \hat{p}(b_0 + b_L^1) \cdot (b_0 + b_L^1) - \hat{p}(b_0) \cdot b_0 \]

\[b_L^2 > b_L^1 \quad , \quad W_1 > W_2 \]
Option 2: bank finances extra loans using safe deposits

\[\theta \left(\hat{p}(b_0 + b^2) \cdot (b_0 + b^2) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho \]

\[\hat{p}(b_0 + b^2) \cdot (b_0 + b^2) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \]

\[> \rho = \hat{p}(b_0 + b^1) \cdot (b_0 + b^1) - \hat{p}(b_0) \cdot b_0 \]

\[b^2 > b^1, \quad W_1 > W_2 \]

- banking sector must provide complete insurance against aggregate risk
- "tax" projects that are successful even in the lowest aggregate state
- distortion gets worse when "unexpected" lending is required \(\implies \) bank lending
Option 2: bank finances extra loans using safe deposits

\[\theta (\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0) \geq \rho \]

\[\hat{p}(b_0 + b_L^2) \cdot (b_0 + b_L^2) - \hat{p}(b_0) \cdot b_0 \geq \frac{\rho}{\theta} \]

\[> \rho = \hat{p}(b_0 + b_L^1) \cdot (b_0 + b_L^1) - \hat{p}(b_0) \cdot b_0 \]

\[b_L^2 > b_L^1, \quad W_1 > W_2 \]

- banking sector must provide complete insurance against aggregate risk
- “tax” projects that are successful even in the lowest aggregate state
- distortion gets worse when “unexpected” lending is required \(\implies \) bank lending
Enterprise value in an estimated model

\[\Delta W \approx -2\% \]

\[\Delta W \approx -5\% \]
Credit interventions: why?
Credit interventions: why?

because bank need to keep their liabilities safe
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b^3_L))^+ \]

\[P = E(I(\theta) | \theta < \kappa) \]

[deposit insurance]

[fairly priced premium]
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b^3_L))^+ \]
[deposit insurance]

\[P = E(I(\theta)|\theta < \kappa) \]
[fairly priced premium]

\[\theta (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) - \hat{p}(b_0) \cdot b_0) \geq \rho \]
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b_3^3))^+ \]

\[P = E(I(\theta)|\theta < \kappa) \]

\[\theta (\hat{p}(b_0 + b_3^3) \cdot (b_0 + b_3^3) - \hat{p}(b_0) \cdot b_0) + (\kappa - \theta) (\hat{p}(b_0 + b_3^3) \cdot (b_0 + b_3^3) \geq \rho \]

can issue more safe deposits
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b^3_L))^+ \]
\[P = E(I(\theta)|\theta < \kappa) \]

\[\theta (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) - \hat{p}(b_0) \cdot b_0) + (\kappa - \theta) (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) \geq \rho \]

\[b^2_L > b^3_L , \]
can issue more safe deposits
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b^3_L))^+ \] \[[\text{deposit insurance}]\]

\[P = E(I(\theta) | \theta < \kappa) \] \[[\text{fairly priced premium}]\]

\[\theta (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) - \hat{p}(b_0) \cdot b_0) + (\kappa - \theta) (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) \geq \rho \]

\[b^2_L > b^3_L, \quad W_3 > W_2 \]

\text{can issue more safe deposits}
Government intervention 1: deposit insurance

\[I(\theta) = (d_0 + \rho - \theta \hat{p}(b_0 + b^3_L))^+ \]

\[P = E(I(\theta) | \theta < \kappa) \]

\[\theta (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) - \hat{p}(b_0) \cdot b_0) + (\kappa - \theta) (\hat{p}(b_0 + b^3_L) \cdot (b_0 + b^3_L) \geq \rho \]

\[b^2_L > b^3_L, \quad W_3 > W_2 \]

\[\cdot \text{ zero fiscal cost in expectation, but gov't losses state by state (} \theta < \kappa) \]
Government intervention 2: transfers

Government transfers to firms $X \leq \rho$ at $t = 0$
Government intervention 2: transfers

Government transfers to firms \(X \leq \rho \) at \(t = 0 \)

\[
\theta \left(\hat{p}(b_0 + b_L^4) \cdot (b_0 + b_L^4) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho - X
\]

(lower funding needs)
Government intervention 2: transfers

Government transfers to firms $X \leq \rho$ at $t = 0$

$$\theta \left(\hat{p}(b_0 + b_L^4) \cdot (b_0 + b_L^4) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho - X$$

lower funding needs
Government intervention 2: transfers

Government transfers to firms \(X \leq \rho \) at \(t = 0 \)

\[
\theta \left(\hat{p}(b_0 + b^4_L) \cdot (b_0 + b^4_L) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho - X
\]

(lower funding needs)

\[b^2_L > b^4_L, \]
Government intervention 2: transfers

Government transfers to firms \(X \leq \rho \) at \(t = 0 \)

\[
\theta (\hat{p}(b_0 + b^4_L) \cdot (b_0 + b^4_L) - \hat{p}(b_0) \cdot b_0) \geq \rho - X
\]

lower funding needs

\(b^2_L > b^4_L, \quad W_4 > W_2 \)
Government intervention 2: transfers

Government transfers to firms \(X \leq \rho \) at \(t = 0 \)

\[
\theta \left(\hat{p}(b_0 + b_L^4) \cdot (b_0 + b_L^4) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho - X
\]

\(b_L^2 > b_L^4 \), \(W_4 > W_2 \)

\cdot fiscal cost \(X \)
Government intervention 2: transfers

Government transfers to firms \(X \leq \rho \) at \(t = 0 \)

\[
\theta \left(\hat{p}(b_0 + b^4_L) \cdot (b_0 + b^4_L) - \hat{p}(b_0) \cdot b_0 \right) \geq \rho - X
\]

lower funding needs

\[
b^2_L > b^4_L, \quad W_4 > W_2
\]

· fiscal cost \(X \)

· in combination with deposit insurance: can restore constrained efficiency \((W_4 = W_1)\)
Comments

1. Isolate the effect of deposit insurance
2. What is special about the government?
3. Ex-ante bank regulation vs. ex-post intervention?
 presumably, \(\theta \) = some ex-ante motive for gov't to put risk limits on banks
4. Does the optimal policy map to real-world credit guarantees?
Comments

1. Isolate the effect of deposit insurance
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?
 - budget?
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?

 budget?

 risk-neutrality? but: negative "consumption" in bad states? equity injections?
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?

 budget?

 risk-neutrality? but: negative "consumption" in bad states? equity injections?

3. Ex-ante bank regulation vs. ex-post intervention?
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?
 - budget?
 - risk-neutrality? but: negative "consumption" in bad states? equity injections?

3. Ex-ante bank regulation vs. ex-post intervention?
 - presumably, θ = some ex-ante motive for gov’t to put risk limits on banks
Comments

1. Isolate the effect of deposit insurance

2. What is special about the government?
 - budget?
 - risk-neutrality? but: negative "consumption" in bad states? equity injections?

3. Ex-ante bank regulation vs. ex-post intervention?
 - presumably, \(\theta \) = some ex-ante motive for gov’t to put risk limits on banks

4. Does the optimal policy map to real-world credit guarantees?
Credit guarantees in Europe

(Véron et al., 2021)

<table>
<thead>
<tr>
<th>Credit support programs</th>
<th>Number of programs</th>
<th>Envelope of programs (% total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guarantee on loans and other non-trade credit</td>
<td>14</td>
<td>92%</td>
</tr>
<tr>
<td>Guarantee on trade credit</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Purchase of debt securities</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Funding of loans</td>
<td>1</td>
<td>See note</td>
</tr>
<tr>
<td>Subordinated loans</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Wholesale refinancing of loan portfolio</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100%</td>
</tr>
</tbody>
</table>
Credit guarantees in Europe

<table>
<thead>
<tr>
<th>Credit support programs</th>
<th>Number of programs</th>
<th>Envelope of programs (% total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guarantee on loans and other non-trade credit</td>
<td>14</td>
<td>92%</td>
</tr>
<tr>
<td>Guarantee on trade credit</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Purchase of debt securities</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Funding of loans</td>
<td>1</td>
<td>See note</td>
</tr>
<tr>
<td>Subordinated loans</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Wholesale refinancing of loan portfolio</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100%</td>
</tr>
</tbody>
</table>

- partial guarantees
Credit guarantees in Europe

(Véron et al., 2021)

<table>
<thead>
<tr>
<th>Credit support programs</th>
<th>Number of programs</th>
<th>Envelope of programs (% total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guarantee on loans and other non-trade credit</td>
<td>14</td>
<td>92%</td>
</tr>
<tr>
<td>Guarantee on trade credit</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Purchase of debt securities</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Funding of loans</td>
<td>1</td>
<td>See note</td>
</tr>
<tr>
<td>Subordinated loans</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Wholesale refinancing of loan portfolio</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100%</td>
</tr>
</tbody>
</table>

- partial guarantees
- not indexed by θ (i.e. cover any credit loss, idiosyncratic or aggregate)