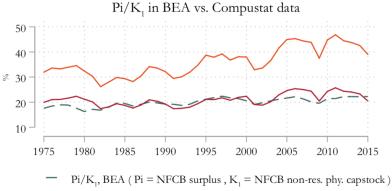

Discussion of "Q: Risks, Rents or Growth?" by Corhay, Kung and Schmid

Nicolas Crouzet¹


¹Kellogg School of Management, Northwestern University

- Two (medium-run) facts about the US economy

returns to capital are stable or rising growth and investment have been lackluster

From Crouzet and Eberly (2018)

 $= Pi/K_1, \text{ Compustat (Pi = Total NF ebitda, } K_1 = Total NF ppegt)$

Pi/K₁, Compustat (Pi = Total NF ebitda, K_1 = Total NF ppent)

From Crouzet and Eberly (2019)

- Two (medium-run) facts about the US economy

returns to capital are stable or rising growth and investment have been lackluster

- Puzzling, in particular in light of declining risk-free rate

- Two (medium-run) facts about the US economy

returns to capital are stable or rising growth and investment have been lackluster

- Puzzling, in particular in light of declining risk-free rate
- Hypotheses:
 - 1. market power (Gutierrez and Philippon, 2017; Barkai, 2017)
 - 2. risk premia (Farhi and Gourio, 2019)
 - 3. intangibles (Crouzet and Eberly, 2018)

This paper sorts out these hypotheses

- Macro model with ingredients corresponding to each hypothesis:
 - 1. oligopolistic competition + entry/exit
 - 2. time-varying, endogenous risk premia
 - 3. intangible capital accumulation

This paper sorts out these hypotheses

- Macro model with ingredients corresponding to each hypothesis:
 - 1. oligopolistic competition + entry/exit
 - 2. time-varying, endogenous risk premia
 - 3. intangible capital accumulation
- Estimate the model, using SMM, in two sub-periods
 1984-2000 (high *i*, low valuations/profits, high *r*)
 2001-2016 (low *i*, high valuations/profits, low *r*)

This paper sorts out these hypotheses

- Macro model with ingredients corresponding to each hypothesis:
 - 1. oligopolistic competition + entry/exit
 - 2. time-varying, endogenous risk premia
 - 3. intangible capital accumulation
- Estimate the model, using SMM, in two sub-periods
 1984-2000 (high *i*, low valuations/profits, high *r*)
 2001-2016 (low *i*, high valuations/profits, low *r*)
- Counterfactuals

isolate effect of changes in key structural parameters

		Contribution of:				
Moment	Δ (data)	8A	β	entry cost	Intan share	RRA
Output growth	-1.46 %	-1.92%	3.74%	-0.50%	0.01%	0.04%
Risk-free rate	-3.57 %	-0.32%	-1.73%	-0.85%	0.12%	-0.27%
Markup	18.74%	0.55%	-3.41%	18.96 %	-0.05%	0.00%
Intan/Phys. ratio	3.24%	-0.38%	-0.22%	-0.05%	6.18 %	-0.05%
PE ratio	5.03	-2.72	85.45	-2.78	0.65	-0.56

From Table 1 in the paper

Note off-diagonal terms + things don't really add-up ...

Points to interactions between hypotheses

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

- (No role for risk — just market power vs. intangibles)

 $\frac{V}{K_1} = Q_1$

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

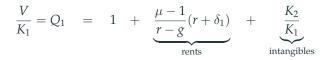
$$\frac{V}{K_1} = Q_1 = 1$$

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

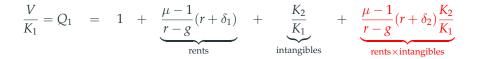

$$\frac{V}{K_1} = Q_1 = 1 + \underbrace{\frac{\mu - 1}{r - g}(r + \delta_1)}_{\text{rents}}$$

- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

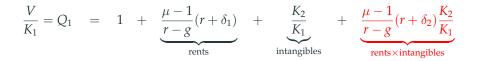


- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$


- Super-simple environment

$$\Pi_{t} = A_{t}^{1-\frac{1}{\mu}} K_{t}^{\frac{1}{\mu}}$$

$$K_{t} = \text{CES of physical } (K_{1,t}) \text{ and intangible } (K_{2,t}) \text{ capital}$$

$$A_{t+1}/A_{t} = 1 + g$$
No adj. costs, so marginal $q = 1$ if $\mu = 1$

- (No role for risk — just market power vs. intangibles)

- (This decomposition turns out to be fairly general — Crouzet and Eberly, 2019)

- Each of these components can be constructed using simple data:

 $\frac{K_2}{K_1} = S$ (BEA stock measures)

$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)
 $r - g = 1/PD$ (CRSP)

$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)
 $r - g = 1/PD$ (CRSP)
 $r + \delta_i$

$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)

$$r - g = 1/PD$$
 (CRSP)

$$r + \delta_i = (r - g) + (g + \delta_i)$$

$$\frac{K_2}{K_1} = S$$
(BEA stock measures)
$$r - g = 1/PD$$
(CRSP)
$$r + \delta_i = (r - g) + (g + \delta_i)$$

$$= 1/PD + \iota_i$$
(BEA flow measures)

$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)

$$r - g = 1/PD$$
 (CRSP)

$$r + \delta_i = (r - g) + (g + \delta_i)$$

$$= 1/PD + \iota_i$$
 (BEA flow measures)

$$\mu$$

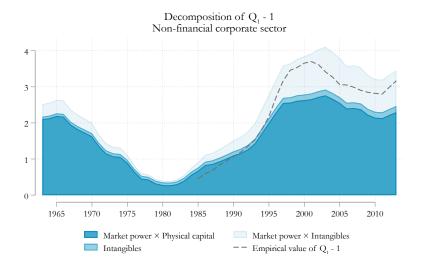
$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)

$$r - g = 1/PD$$
 (CRSP)

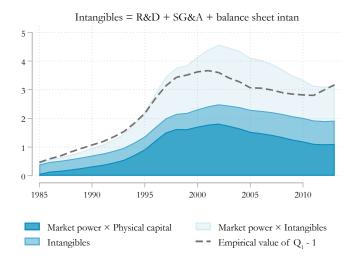
$$r + \delta_i = (r - g) + (g + \delta_i)$$

$$= 1/PD + \iota_i$$
 (BEA flow measures)

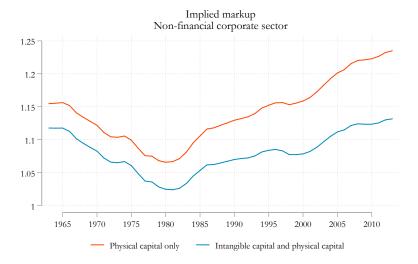
$$\mu = \frac{\Pi}{(r + \delta_1)K_1 + (r + \delta_2)K_2}$$


$$\frac{K_2}{K_1} = S$$
 (BEA stock measures)

$$r - g = 1/PD$$
 (CRSP)


$$r + \delta_i = (r - g) + (g + \delta_i)$$

$$= 1/PD + \iota_i$$
 (BEA flow measures)


$$\mu = \frac{\Pi}{(r + \delta_1)K_1 + (r + \delta_2)K_2}$$
 (BEA gross operating surplus)

From Crouzet and Eberly (2019) - with BEA data

From Crouzet and Eberly (2019) — with Compustat data, where K₂ is larger

With Compustat intangibles, markups rise from 1.02 in 1985 to 1.07 in 2015.

Comment 1: upshot for this paper

- this paper has well-defined counterfactuals

for each parameter/story in a much richer model!

Comment 1: upshot for this paper

- this paper has well-defined counterfactuals

for each parameter/story in a much richer model!

- but simple counterfactuals mail fail to capture interactions quantitatively large

Comment 1: upshot for this paper

- this paper has well-defined counterfactuals

for each parameter/story in a much richer model!

- but simple counterfactuals mail fail to capture interactions quantitatively large
- unclear what the correct way to get at this is

pairwise changes in parameters? fewer structural parameters — focus on κ , η , γ ?

Comment 2: competition and markups

- entry and exit dynamics great, missing elsewhere in the lit
- calibrate κ (entry costs) using ϕ (markups)

$$\phi = \frac{-\nu_2 N + (\nu_2 - \nu - 1)}{-(\nu_2 - 1)N + (\nu_2 - \nu_1)}$$
$$N = f(\kappa; .) \text{ (free entry)}$$

- I'm really not sure about using DLE (2017) markups for ϕ

problems with the sale/cogs ratio — it misses a lot of operating costs reported in ${\tt xsga}$

but xsga also contains things that are probably intangible investment

see Traina (2018), Crouzet and Eberly (2018), Ayyagari et al. (2019)

this is kind of a mess and I would suggest comparing ROA to user costs + labor share instead

- Why not match some measure of decline in entry rates?

- Intuition for identification using analytical exp. in steady-state only 5 structural parameters (δ 's seem directly calibrated) particularly interesting (to me) for κ

- Intuition for identification using analytical exp. in steady-state only 5 structural parameters (δ 's seem directly calibrated) particularly interesting (to me) for κ
- Over-identified SMM

at least, report data counterparts to non-targeted moments ...

- Intuition for identification using analytical exp. in steady-state only 5 structural parameters (δ 's seem directly calibrated) particularly interesting (to me) for κ
- Over-identified SMM

at least, report data counterparts to non-targeted moments ...

- Pre-1980's

Other recent work (Karabarbounis & Neiman, 2019) finds inverted trends pre-1980's

More limited data on markups, but could use ROA instead

- Intuition for identification using analytical exp. in steady-state only 5 structural parameters (δ 's seem directly calibrated) particularly interesting (to me) for κ
- Over-identified SMM

at least, report data counterparts to non-targeted moments ...

- Pre-1980's

Other recent work (Karabarbounis & Neiman, 2019) finds inverted trends pre-1980's

More limited data on markups, but could use ROA instead

- I was unclear about leverage in PD ratio computations

- This is a great paper
- To my knowledge, it's the first in this emerging literature that takes the modelling of imperfect competition seriously

in "pure macro": Edmond, Midrigan, Xu (2018)

- I hope it's published well!