Process intangibles and agency conflicts
by Chen, Kakhbod, Kazemi, and Xing

Discussion by Nicolas Crouzet

Kellogg
Overview

Measurement:

\[\text{process intensity} \equiv \frac{\text{process patent claims}}{\text{process + product patent claims}} \]

\[\uparrow \text{process intensity} \iff \uparrow \text{managerial compensation} \]

more so for firms with higher physical investment rates

Model:

\(\text{process intangibles} \equiv \text{asset that can increase } MRT (I \rightarrow K) \)

\(\text{agency conflict} \equiv \text{requires managerial effort} \)

\[\text{process intensity} \approx \text{impact of managerial effort on } MRT (I \rightarrow K) \equiv 1 - \theta \]

Implications:

\[\uparrow 1 - \theta \iff \uparrow \text{compensation}; \quad \uparrow \text{deferral of compensation} \]

\[\uparrow 1 - \theta \iff \uparrow \text{physical investment rates} \]
Overview

Measurement:

\[\text{Process Intensity} \equiv \frac{\text{Process Patent Claims}}{\text{Process + Product Patent Claims}} \]

\[\uparrow \text{Process Intensity} \iff \uparrow \text{Managerial Compensation} \]

More so for firms with higher physical investment rates

Model:

\[\text{Process Intangibles} \equiv \text{Asset that can increase MRT} (I \rightarrow K) \]

\[\text{Agency Conflict} \equiv \text{Requires managerial effort} \]

\[\text{Process Intensity} \approx \text{Impact of managerial effort on MRT} (I \rightarrow K) \equiv 1 - \theta \]

Implications:

\[\uparrow 1 - \theta \iff \uparrow \text{Compensation}; \uparrow \text{Deferral of compensation} \iff \uparrow 1 - \theta \iff \uparrow \text{Physical investment rates} \]
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)
Overview

Measurement: process intensity \equiv \frac{\text{process patent claims}}{\text{(process + product patent claims)}}

↑ process intensity \iff ↑ managerial compensation
Process intensity and compensation

![Graph showing the comparison between Full Process and Full Product against average executive compensation per unit capital across different intangibility bins.]
Overview

Measurement: \[\text{process intensity} = \frac{\text{process patent claims}}{\text{(process + product patent claims)}} \]

\[\uparrow \text{process intensity} \iff \uparrow \text{managerial compensation} \]
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \leftrightarrow \uparrow managerial compensation

more so for firms with higher physical investment rates
Process intensity, compensation, and physical investment
Overview

Measurement: process intensity $\equiv \frac{\text{process patent claims}}{\text{(process + product patent claims)}}$

\uparrow process intensity $\leftrightarrow \uparrow$ managerial compensation

more so for firms with higher physical investment rates
Overview

Measurement: process intensity ≡ process patent claims / (process + product patent claims)

↑ process intensity ↔ ↑ managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity $\leftrightarrow \uparrow$ managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \iff \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort
Overview

Measurement: process intensity ≡ process patent claims / (process + product patent claims)

↑ process intensity ↔ ↑ managerial compensation
more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles ≡ asset that can increase \(MRT(I \to K) \)
agency conflict ≡ requires managerial effort
process intensity ≈ impact of managerial effort on \(MRT(I \to K) \)
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \leftrightarrow \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort

process intensity \approx impact of managerial effort on $MRT(I \rightarrow K) \equiv 1 - \theta$
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \leftrightarrow \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort

process intensity \approx impact of managerial effort on $MRT(I \rightarrow K)$ \equiv $1 - \theta$

Implications:
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \leftrightarrow \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort

process intensity \approx impact of managerial effort on $MRT(I \rightarrow K) \equiv 1 - \theta$

Implications:

$\uparrow 1 - \theta \leftrightarrow \uparrow$ compensation;
Overview

Measurement: process intensity \equiv \frac{\text{process patent claims}}{\text{(process + product patent claims)}}

\uparrow \text{process intensity} \iff \uparrow \text{managerial compensation}

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv \text{asset that can increase } MRT(I \rightarrow K)

agency conflict \equiv \text{requires managerial effort}

process intensity \approx \text{impact of managerial effort on } MRT(I \rightarrow K) \equiv 1 - \theta

Implications:

\uparrow 1 - \theta \iff \uparrow \text{compensation}; \uparrow \text{deferral of compensation}
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \iff \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort

process intensity \approx impact of managerial effort on $MRT(I \rightarrow K)$ $\equiv 1 - \theta$

Implications:

$\uparrow 1 - \theta \iff \uparrow$ compensation; \uparrow deferral of compensation

$\uparrow 1 - \theta \iff \uparrow$ physical investment rates
Overview

Measurement: process intensity \equiv process patent claims / (process + product patent claims)

\uparrow process intensity \iff \uparrow managerial compensation

more so for firms with higher physical investment rates

Model: process intangibles s.t. agency conflict

process intangibles \equiv asset that can increase $MRT(I \rightarrow K)$

agency conflict \equiv requires managerial effort

process intensity \approx impact of managerial effort on $MRT(I \rightarrow K)$ \equiv $1 - \theta$

Implications:

$\uparrow 1 - \theta \iff \uparrow$ compensation; \uparrow *deferral* of compensation

$\uparrow 1 - \theta \iff \uparrow$ physical investment rates
Roadmap

1. Measurement

2. Model
1. Measurement
Process innovation

Learn

by
doing:

[Arrow (1962), Lucas (1988), ...]

unit costs fall with cumulative production

Or
gain
capital:

[Tomer (1987), Atkeson and Kehoe (2005), ...]

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant

Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread:

process innovation is about lowering unit costs, not necessarily changing MRT ($I \rightarrow K$)

This paper: process innovation is all about changing MRT ($I \rightarrow K$); no direct impact on unit costs
Process innovation

Learning by doing:

[Arrow (1962), Lucas (1988), ...]
Process innovation

Learning by doing:

unit costs fall with cumulative production
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

[Arrow (1962), Lucas (1988), ...]

[Arrow (1962), Lucas (1988), ...]

[Tober (1987), Atkeson and Kehoe (2005), ...]
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant

[Arrow (1962), Lucas (1988), ...]

[Tomer (1987), Atkeson and Kehoe (2005), ...]
Process innovation lowers unit costs

[Levitt, List, Syverson, 2013]
Process innovation

Learning by doing:
unit costs fall with cumulative production

Organizational capital:
firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant
Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant

Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value
Process innovation contributes to firm value

Vertical axis = \[\frac{\text{Enterprise value of public, non-financial US firms}}{\text{PPE replacement cost}} - 1 \]
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant

Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread:
Process innovation

Learning by doing:
unit costs fall with cumulative production

Organizational capital:
firms make deliberate investments to lower unit costs
Levitt, List, Syverson (2013): evidence for an automobile plant
Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread: process innovation is about lowering unit costs,
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant

Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread: process innovation is about lowering unit costs, not necessarily changing $MRT(I \to K)$
Process innovation

Learning by doing:
unit costs fall with cumulative production

Organizational capital:
firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant
Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread: process innovation is about lowering unit costs, not necessarily changing \(MRT(I \rightarrow K) \)

This paper:
Process innovation

Learning by doing:

unit costs fall with cumulative production

Organizational capital:

firms make deliberate investments to lower unit costs

Levitt, List, Syverson (2013): evidence for an automobile plant
Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread: process innovation is about lowering unit costs, not necessarily changing $MRT(I \rightarrow K)$

This paper: process innovation is all about changing $MRT(I \rightarrow K)$;
Process innovation

Learning by doing:

unit costs fall with cumulative production [Arrow (1962), Lucas (1988), ...]

Organizational capital:

firms make deliberate investments to lower unit costs [Tomer (1987), Atkeson and Kehoe (2005), ...]

Levitt, List, Syverson (2013): evidence for an automobile plant

Eisfeldt and Papanikolaou (2013), Crouzet and Eberly (2023): impact on firm value

Common thread: process innovation is about lowering unit costs, not necessarily changing $MRT(I \rightarrow K)$

This paper: process innovation is all about changing $MRT(I \rightarrow K)$; no direct impact on unit costs
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0 \), but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)
Fact 1

<table>
<thead>
<tr>
<th></th>
<th>Physical Investment / Physical Capital</th>
<th>Intangible Investment / Physical Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Process Intensity</td>
<td>0.027***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Intangibility</td>
<td>0.187***</td>
<td>0.124***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
</tr>
</tbody>
</table>
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0 \), but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)
Evidence on process innovation and physical investment

Fact 1: $\text{cov} (1 - \theta, I_t/K_t) > 0$, but $\text{cov} (1 - \theta, S_t/K_t) = 0$

Fact 2: Process intangibles (O_t) and I_t are complements in the production of K_t
Evidence on process innovation and physical investment

Fact 1: \(\text{cov}(1 - \theta, I_t/K_t) > 0, \) but \(\text{cov}(1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0, \) but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]

Requires variation in \(\theta_{f,t}\) within firm?

Inconsistent with rest of paper?

Why retain only estimates with \(\beta_f \geq 0\) and \(\gamma_f \geq 0\)?
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0 \), but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]

Requires variation in \(\theta_{f,t}\) within firm? Inconsistent with rest of paper?

Suggestion: How do process patents describe their goal? Does it involve \(K_t\)?
Fact 2

<table>
<thead>
<tr>
<th>Ratio Regression</th>
<th>ProcIn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.0123</td>
</tr>
<tr>
<td>Median</td>
<td>0.144</td>
</tr>
<tr>
<td>$i = 3$</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.027</td>
</tr>
<tr>
<td>Median</td>
<td>0.299</td>
</tr>
</tbody>
</table>
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0, \) but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+t}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]

Requires variation in \(\theta_{f,t}\) within firm? Inconsistent with rest of paper?

Why retain only estimates with \(\beta_f \geq 0\) and \(\gamma_f \geq 0\)?
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0, \) but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]

Requires variation in \(\theta_{f,t}\) within firm? Inconsistent with rest of paper?

Why retain only estimates with \(\beta_f \geq 0\) and \(\gamma_f \geq 0\)?

Fact 3: \(\text{cov} (1 - \theta, \text{Sales}_t/K_t) < 0 \) (!)
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0, \) but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1,3
\]

Requires variation in \(\theta_{f,t}\) within firm? Inconsistent with rest of paper?

Why retain only estimates with \(\beta_f \geq 0\) and \(\gamma_f \geq 0\)?

Fact 3: \(\text{cov} (1 - \theta, \text{Sales}_t/K_t) < 0 \) (!)

\(1 - \theta\) increase future sales/capital
Future sales $f_{t+i} = \theta_{f,t} \times \frac{\text{Sales}_{f,t+i}}{O_{f,t+i}}$
Evidence on process innovation and physical investment

Fact 1: $\text{cov} (1 - \theta, I_t/K_t) > 0$, but $\text{cov} (1 - \theta, S_t/K_t) = 0$

Fact 2: Process intangibles (O_t) and I_t are complements in the production of K_t

$$G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3$$

Requires variation in $\theta_{f,t}$ within firm? Inconsistent with rest of paper?

Why retain only estimates with $\beta_f \geq 0$ and $\gamma_f \geq 0$?

Fact 3: $\text{cov} (1 - \theta, Sales_t/K_t) < 0$ (!)

$1 - \theta$ increase future sales/capital
Evidence on process innovation and physical investment

Fact 1: \(\text{cov} (1 - \theta, I_t/K_t) > 0, \) but \(\text{cov} (1 - \theta, S_t/K_t) = 0 \)

Fact 2: Process intangibles \((O_t)\) and \(I_t\) are complements in the production of \(K_t\)

\[
G_{f,t-1,t+i}^{(K)} = \alpha_f + \beta_f (1 - \theta_{f,t}) \times (I/K)_{f,t} + \gamma_f (O/K)_{f,t} \times (I/K)_{f,t} + \varepsilon_{f,t}, \quad i = 1, 3
\]

Requires variation in \(\theta_{f,t}\) within firm? Inconsistent with rest of paper?

Why retain only estimates with \(\beta_f \geq 0\) and \(\gamma_f \geq 0\)?

Fact 3: \(\text{cov} (1 - \theta, \text{Sales}_t/K_t) < 0 \) (!)

1 – \(\theta\) increase future sales/capital

Suggestion: How do process patents describe their goal? Does it involve \(K_t\)?
Key facts:

- Compensation and deferred compensation both increase with $1 - \theta$.
- Conditional on O_t/K_t [Ward (2023)].

Clarify economic magnitude?

Suggestions:

- Compare to other sources of cross-sectional variation in executive compensation.
 - Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age.

Incremental R^2-squared of $1 - \theta$, relative to these factors?

Selection remains an issue

Incremental effect of $1 - \theta$ in sample of switching CEOs, controlling for CEO fixed effects?
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation? Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

Incremental R^2-squared of $1 - \theta$, relative to these factors?

Selection remains an issue Incremental effect of $1 - \theta$ in sample of switching CEOs, controlling for CEO fixed effects?
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t [Ward (2023)]
Process intensity and executive compensation

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable:</th>
<th>Total Compensation / Physical Capital</th>
<th>Deferred Compensation / Physical Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Process Intensity</td>
<td>0.034*</td>
<td>0.066***</td>
<td>0.054**</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.011)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Intangibility</td>
<td>0.896***</td>
<td>0.717***</td>
<td>0.912***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.020)</td>
<td>(0.033)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>0.076***</td>
<td>0.828***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.031)</td>
<td></td>
</tr>
</tbody>
</table>
Process intensity and executive compensation

![Graph showing the comparison between Process vs Product with different intangibility bins. The y-axis represents Average Executive Compensation per Unit Capital, and the x-axis shows Intangibility Bin numbers from 1 to 5. The graph uses two colors: grey for Full Process and blue for Full Product. The intangibility bins 3 and 5 show a higher compensation for Full Process compared to Full Product.](image-url)
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

[Ward (2023)]
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

[Ward (2023)]
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age
Cross-sectional variation in executive compensation

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(Firm value\textsubscript{t-1})</td>
<td>0.426***</td>
<td>0.459***</td>
<td>0.456***</td>
<td>0.455***</td>
<td>0.303***</td>
</tr>
<tr>
<td></td>
<td>[0.008]</td>
<td>[0.008]</td>
<td>[0.008]</td>
<td>[0.009]</td>
<td>[0.017]</td>
</tr>
<tr>
<td>Volatility\textsubscript{t-1}</td>
<td>2.842***</td>
<td>1.488***</td>
<td>1.606***</td>
<td>1.527***</td>
<td>0.00727</td>
</tr>
<tr>
<td></td>
<td>[0.177]</td>
<td>[0.185]</td>
<td>[0.199]</td>
<td>[0.197]</td>
<td>[0.233]</td>
</tr>
<tr>
<td>ln(Age\textsubscript{t})</td>
<td></td>
<td></td>
<td></td>
<td>(-0.163^*)</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.083]</td>
<td>[0.864]</td>
</tr>
<tr>
<td>ln(Tenure\textsubscript{t})</td>
<td></td>
<td></td>
<td>0.00854</td>
<td></td>
<td>0.0365*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.011]</td>
<td></td>
<td>[0.017]</td>
</tr>
<tr>
<td>Female\textsubscript{t}</td>
<td></td>
<td></td>
<td></td>
<td>0.0404</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.056]</td>
<td></td>
</tr>
</tbody>
</table>

Note: column 5 contains CEO fixed effects.
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

[Ward (2023)]
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

Incremental R-squared of $1 - \theta$, relative to these factors?
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

Incremental R-squared of $1 - \theta$, relative to these factors?

Selection remains an issue
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

Incremental R-squared of $1 - \theta$, relative to these factors?

Selection remains an issue

Incremental effect of $1 - \theta$ in sample of switching CEOs,
Process intensity and executive compensation

Key facts: compensation and deferred compensation both increase with $1 - \theta$

Conditional on O_t/K_t

Clarify economic magnitude?

Suggestion: compare to other sources of cross-sectional variation in executive compensation?

Edmans, Gabaix, Jenter (2017): size; volatility; CEO tenure; CEO age

Incremental R-squared of $1 - \theta$, relative to these factors?

Selection remains an issue

Incremental effect of $1 - \theta$ in sample of switching CEOs, controlling for CEO fixed effects?
2. Model
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(I_t - \delta K_t \right) dt + \sigma K_t dZ_t$$
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1 - \theta) O_t)^\rho \right)^{\frac{1}{\rho}} - \delta_k K_t \right) dt + \sigma_t K_t dZ_t$$
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(\frac{I_t^\rho + 1 - a}{a} e_t ((1 - \theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt + \sigma K_t dZ_t$$

$$e_t \in \{0, 1\} \quad \text{managerial effort}$$
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1-\theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt + \sigma K_t dZ_t$$

$$e_t \in \{0, 1\} \quad \text{managerial effort}$$

O_t also enters the production function

$$Y_t = \mu \left((1-\phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}}$$
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1 - \theta)O_t)^\rho \right)^{\frac{1}{\rho}} \delta_k K_t \right) dt + \sigma_k dZ_t$$

$e_t \in \{0, 1\}$ managerial effort

O_t also enters the production function

$$Y_t = \mu \left((1 - \phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}}$$

Optimal contract exposes manager to dK_t, and:
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1-\theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt + \sigma K_t dZ_t$$

$e_t \in \{0, 1\}$ managerial effort

O_t also enters the production function

$$Y_t = \mu \left((1-\phi)K_t^\psi + \phi (\theta O_t)^\psi\right)^{\frac{1}{\psi}}$$

Optimal contract exposes manager to dK_t, and:

defers compensation, i.e. only pays out when $u_t = \bar{u}(O_t/K_t)$
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1-\theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt + \sigma K_t dZ_t$$

$$e_t \in \{0, 1\} \text{ managerial effort}$$

O_t also enters the production function

$$Y_t = \mu \left((1-\phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}}$$

Optimal contract exposes manager to dK_t, and:

- defers compensation, i.e. only pays out when $u_t = \bar{u}(O_t/K_t)$

 $1 - \theta \quad \Rightarrow \quad$ higher compensation
Model overview

Key agency conflict involves accumulation of K_t

$$dK_t = \left(\left(I_t^p + \frac{1-a}{a} e_t ((1-\theta)O_t)^{\rho} \right)^{\frac{1}{\rho}} - \delta K_t \right) dt + \sigma K_t dZ_t$$

$e_t \in \{0, 1\}$ managerial effort

O_t also enters the production function

$$Y_t = \mu \left((1-\phi)K_t^{\psi} + \phi (\theta O_t)^{\psi} \right)^{\frac{1}{\psi}}$$

Optimal contract exposes manager to dK_t, and:

- defers compensation, i.e. only pays out when $u_t = \bar{u}(O_t/K_t)$
- $\uparrow 1-\theta \implies$ higher compensation
- $\uparrow 1-\theta \implies$ more deferred compensation
Model suggestions

\[dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1 - \theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt \quad \text{and} \quad Y_t = \mu \left((1 - \phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}} \]
Model suggestions

\[dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t ((1 - \theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt \] and \[Y_t = \mu \left((1 - \phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}} \]

Main issue: \(O_t \) two has separate purposes; but firm can’t control \(\theta \).
Model suggestions

\[dK_t = \left(\left(I_t^\rho + \frac{1-a}{a} e_t (1 - \theta) O_t^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt \quad \text{and} \quad Y_t = \mu \left((1 - \phi) K_t^{\psi} + \phi (\theta O_t)^{\psi} \right)^{\frac{1}{\psi}} \]

Main issue: \(O_t \) two has separate purposes; but firm can’t control \(\theta \).

1. Why not study the case \(\phi = 0 \)?

 \[Y_t = \mu K_t; \] then only enters l.o.m. for \(K_t \)

 Simpler; more focused on agency conflict w.r.t physical investment
Model suggestions

\[dK_t = \left(\left(I_t^\rho + \frac{1-a}{a}e_t ((1 - \theta)O_t)^\rho \right)^{\frac{1}{\rho}} - \delta K_t \right) dt \quad \text{and} \quad Y_t = \mu \left((1 - \phi)K_t^\psi + \phi (\theta O_t)^\psi \right)^{\frac{1}{\psi}} \]

Main issue: \(O_t \) two has separate purposes; but firm can’t control \(\theta \).

1. Why not study the case \(\phi = 0 \)?
 \[Y_t = \mu K_t; O_t \text{ then only enters l.o.m. for } K_t \]
 Simpler; more focused on agency conflict w.r.t physical investment

2. Why is \(\theta \) a measure of process intensity, as opposed to \(a \)?
 \[a = 1: \text{no agency conflict}; a \to 0: \text{large hold-up problem} \]
 Are comparative statics of compensation w.r.t. \(a \) different?
Model vs. data

Calibration + qualitative comparison to data
Model vs. data

Calibration + qualitative comparison to data

1. What is the impact of agency frictions on physical investment?
 compare first-best to optimal contract

2. Does the model replicate well estimates of performance-pay sensitivity
 contract exposes compensation to
 \(dK_t \)
 is that true in the data? how close are model and data elasticities?

3. Data: no relationship between \(1 - \theta \) and intangible investment rates
 Is that true in the model?
 Again, case \(\phi = 0 \) might be clearer
Model vs. data

Calibration + qualitative comparison to data

1. What is the impact of agency frictions on physical investment?
 compare first-best to optimal contract

2. Does the model replicate well estimates of performance-pay sensitivity
 contract exposes compensation to dK_t
 is that true in the data? how close are model and data elasticities?
Model vs. data

Calibration + qualitative comparison to data

1. What is the impact of agency frictions on physical investment? compare first-best to optimal contract

2. Does the model replicate well estimates of performance-pay sensitivity contract exposes compensation to dK_t
 is that true in the data? how close are model and data elasticities?

3. Data: no relationship between $1 - \theta$ and intangible investment rates
 Is that true in the model? Again, case $\phi = 0$ might be clearer
Conclusion
Conclusion

Very interesting paper, with original take on what process innovation is

Investment that improves $MRT(I \rightarrow K)$

Provide more empirical support for this take

Focus the model on process innovation only

Clarify the quantitative implications of the agency conflict
Conclusion

Very interesting paper, with original take on what process innovation is

Investment that improves $MRT(I \rightarrow K)$

Provide more empirical support for this take

Focus the model on process innovation only

Clarify the quantitative implications of the agency conflict
Conclusion

Very interesting paper, with original take on what process innovation is

Investment that improves $MRT(I \rightarrow K)$

Provide more empirical support for this take

Focus the model on process innovation only

Clarify the quantitative implications of the agency conflict
Conclusion

Very interesting paper, with original take on what process innovation is.

Investment that improves $MRT(I \rightarrow K)$

Provide more empirical support for this take.

Focus the model on process innovation only.

Clarify the quantitative implications of the agency conflict.