Intangible Capital, Non-Rivalry, and Growth

Nicolas Crouzet, Janice Eberly, Andrea Eisfeldt, and Dimitris Papanikolaou

Northwestern and UCLA
The importance of intangible assets

Intangible assets now account for a large part of the capital stock of businesses
The importance of intangible assets

Intangible assets now account for a large part of the capital stock of businesses

- IT-related assets (software, data)
- Intellectual property (patents, trademarks)
- Organization capital (production/distribution systems, firm-specific processes)
The importance of intangible assets

Intangible assets now account for a large part of the capital stock of businesses

- IT-related assets (software, data)
- Intellectual property (patents, trademarks)
- Organization capital (production/distribution systems, firm-specific processes)

What is special about intangible assets, relative to physical assets?
The importance of intangible assets

Intangible assets now account for a large part of the capital stock of businesses

- IT-related assets (software, data)
- Intellectual property (patents, trademarks)
- Organization capital (production/distribution systems, firm-specific processes)

What is special about intangible assets, relative to physical assets?

Hard to measure?
The importance of intangible assets

Intangible assets now account for a large part of the capital stock of businesses

- IT-related assets (software, data)
- Intellectual property (patents, trademarks)
- Organization capital (production/distribution systems, firm-specific processes)

What is special about intangible assets, relative to physical assets?

- Hard to measure?
- Special economic characteristics?
The economic properties of intangible assets
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.

Replicability

Excludability
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.

Replicability

Information on products, processes, organization, customers

Technology determines how easy replication is — e.g. language, writing, digital

Excludability
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.

Replicability

Information on products, processes, organization, customers

Technology determines how easy replication is — e.g. language, writing, digital

Excludability

Value as an asset comes from restricting use by other firms

Institutions determine how easy exclusion is — e.g. patent system
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.

Replicability — \(\rho \)

Information on products, processes, organization, customers

Technology determines how easy replication is — e.g. language, writing, digital

Excludability — \(\delta \)

Value as an asset comes from restricting use by other firms

Institutions determine how easy exclusion is — e.g. patent system
The economic properties of intangible assets

Intangibles are assets that are replicable, but hard to exclude.

Replicability $\quad \rightarrow \quad \rho$

Information on products, processes, organization, customers

Technology determines how easy replication is — e.g. language, writing, digital

Excludability $\quad \rightarrow \quad \delta$

Value as an asset comes from restricting use by other firms

Institutions determine how easy exclusion is — e.g. patent system

Different types of intangible assets \leftrightarrow different (ρ, δ)
The economic properties of intangibles

Limited Excludability (δ) vs. Replicability (ρ)
The economic properties of intangibles

Limited Excludability (δ)

Physical Capital (K)

Replicability (ρ)
The economic properties of intangibles

Limited Excludability (δ)
Physical Capital (K)

Patented Innovation
Replicability (ρ)
The economic properties of intangibles

- Limited Excludability (δ)
- Physical Capital (K)
- Management Process
- Patented Innovation
- Replicability (ρ)
The economic properties of intangibles

- Limited Excludability (δ)
- Physical Capital (K)
- Management Process
- Patented Innovation
- Replicability (ρ)
The economic properties of intangibles

Limited Excludability (δ)

Replicability (ρ)

Physical Capital (K)

Patented Innovation

Management

Process

Data
This paper

Question Implications for growth?

Findings

ρ = \Rightarrow

- \uparrow scale economies
- \uparrow spillovers to future entrants
- \uparrow spillovers to existing competitors

If negative competitive effect dominates (high ρ)

\downarrow growth, investment, entry

\uparrow profits, valuations, concentration
This paper

<table>
<thead>
<tr>
<th>Question</th>
<th>Implications for growth?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrib.</td>
<td>Macro model w/intangibles</td>
</tr>
<tr>
<td></td>
<td>Formalize replicability ((\rho)) and excludability ((\delta))</td>
</tr>
</tbody>
</table>
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles
 Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho$
Growth rate g

Replicability ρ
Intan $\sim K$

Solow model

Growth rate g

Replicability ρ
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles
 Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho$
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles
 Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho \implies$

This paper

Question Implications for growth?

Contrib. Macro model w/intangibles

Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho \implies$

\begin{align*}
&\uparrow \text{scale economies} \\
&\uparrow \text{scale economies}
\end{align*}
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles

Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho \implies \begin{cases}
\uparrow \text{scale economies} \\
\uparrow \text{spillovers to future entrants}
\end{cases}$
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles

Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho \implies$

- \uparrow scale economies
- \uparrow spillovers to future entrants
- \uparrow spillovers to existing competitors
This paper

Question: Implications for growth?

Contrib.: Macro model w/intangibles
Formalize replicability (ρ) and excludability (δ)

Findings: $\uparrow \rho \implies$
- \uparrow scale economies
- \uparrow spillovers to future entrants
- \uparrow spillovers to existing competitors

If negative competitive effect dominates (high ρ)
This paper

Question Implications for growth?

Contrib. Macro model w/intangibles
Formalize replicability (ρ) and excludability (δ)

Findings $\uparrow \rho \implies \begin{cases} \uparrow \text{scale economies} \\ \uparrow \text{spillovers to future entrants} \\ \uparrow \text{spillovers to existing competitors} \end{cases}$

If negative competitive effect dominates (high ρ)
\downarrow growth, investment, entry
This paper

Question
Implications for growth?

Contrib.
Macro model w/intangibles
Formalize replicability (ρ) and excludability (δ)

Findings
$\uparrow \rho \implies$
- \uparrow scale economies
- \uparrow spillovers to future entrants
- \uparrow spillovers to existing competitors

If negative competitive effect dominates (high ρ)
- \downarrow growth, investment, entry
- \uparrow profits, valuations, concentration
Related literature

Macro and financial implications of rising intangibles

Contribution: formalize replicability and limited excludability

Endogenous technological change
Lucas and Moll (2014), Stokey (2015); Jones and Tonetti (2020), Farboodi and Veldkamp (2022)

Contribution: replicability facilitates imitation; not limited to data

Competition and returns to innovation
Aghion, Bloom, Blundell, Griffith, Howitt (2005), Aghion, Bergeaud, Boppart, Klenow, Li (2022)

Contribution: replicability creates both returns to scale and competitive risk
Roadmap

1. Economic environment

2. The effects of replicability
1. Economic environment
Overview

Household → Production labor → Creators → Imitators → Projects

Consumption goods

Entrepreneurial labor

Project = \{ product streams \in [0, x_t] \} \times t: project "span"
Overview

Household

Consumption goods

Production labor

Creators

Entrepreneurial labor

Imitators

Spillovers

Projects

\[
\text{project} = \{ \text{product streams} \}^s_{t \in [0, x_t]} : \text{project} \text{ span}
\]
Overview

Household → Creators

Production labor → Creators

Entrepreneurial labor

Consumption goods

Imitators

Spillovers

Projects

\[\text{project} = \{ \text{product streams} \in [0,x_t] \} x_t \]

\text{span}
project = \{ \text{product streams } s \in [0, x_t] \}

x_t: \text{project ”span”}
Allocating intangible capital within a project

\[\Pi(x_t, N_t) = \max_{\{N(s), L(s)\}, L_t} \int_0^{x_t} N(s)^{1-\zeta} L(s)^{\zeta} ds - W_t L_t \]
Allocating intangible capital within a project

\[
\Pi(x_t, N_t) = \max \left\{ N(s), L(s) \right\} L_t \int_0^{x_t} N(s)^{1-\zeta} L(s)^\zeta ds - W_t L_t
\]

s.t.

\[
\int_0^{x_t} L(s) ds \leq L_t
\]

\[
\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds \right)^{1-\rho} \leq N_t \quad \rho \in [0, 1]
\]
Allocating intangible capital within a project

$$\Pi(x_t, N_t) = \max \left\{ N(s), L(s) \right\}, L_t \int_0^{x_t} N(s)^{1-\xi} L(s) \xi ds - W_t L_t$$

s.t. \(\int_0^{x_t} L(s) ds \leq L_t \)

\(\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds \right)^{1-\rho} \leq N_t \) \quad \rho \in [0, 1]

$$\Pi(x_t, N_t) \propto x_t^\rho N_t$$
What does ρ capture?

\[
\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} \, ds \right)^{1-\rho} \leq N_t
\]
What does ρ capture?

$$\left(\int_0^{\mathbf{x}_t} N(s) \frac{1}{1-\rho} \, ds \right)^{1-\rho} \leq N_t$$

$\rho = 0$
What does ρ capture?

$$\int_{0}^{x_{t}} N(s) \, ds \leq N_{t}$$

$\rho = 0$
What does ρ capture?

$$\int_0^{x_t} N(s) \, ds \leq N_t$$

$\rho = 0$

increasing $N(s)$ requires reducing $N(-s)$ one-for-one
What does ρ capture?

$$\int_0^{x_t} N(s) \, ds \leq N_t$$

$\rho = 0$

increasing $N(s)$ requires reducing $N(-s)$ one-for-one

intangible capital is non-replicable within the project
What does ρ capture?

$$\int_0^{x_t} N(s) \, ds \leq N_t$$

$\rho = 0$

increasing $N(s)$ requires reducing $N(-s)$ one-for-one

intangible capital is non-replicable within the project

e.g. leasehold rights to airport gates

allocating a gate to a route makes it unavailable to other routes
What does \(\rho \) capture?

\[
\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} \, ds \right)^{1-\rho} \leq N_t
\]

\(\rho = 1 \)
What does ρ capture?

$$\max_{s \in [0, x_t]} N(s) \leq N_t$$

$\rho = 1$
What does ρ capture?

$$\max_{s \in [0,x_t]} N(s) \leq N_t$$

$\rho = 1$

increasing $N(s)$ doesn’t require reducing $N(-s)$ at all.

intangible capital is fully replicable within the project.
What does ρ capture?

\[
\max_{s \in [0,x_t]} N(s) \leq N_t
\]

$\rho = 1$

increasing $N(s)$ doesn’t require reducing $N(-s)$ at all

intangible capital is fully replicable within the project

e.g. a patent for a steel alloy

using it in one mill does not reduce its availability to other mills
What does ρ capture?

$$\max_{s \in [0, x_t]} N(s) \leq N_t$$

$$\rho \in (0, 1)$$
What does ρ capture?

\[
\left(\int_0^{x_t} N(s) \frac{1}{1-\rho} \, ds \right)^{1-\rho} \leq N_t
\]

$\rho \in (0, 1)$
What does ρ capture?

\[
\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} \, ds \right)^{1-\rho} \leq N_t
\]

$\rho \in (0, 1)$

increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one

intangible capital is imperfectly replicable within the project
What does ρ capture?

\[
\left(\int_0^{x_t} N(s) \frac{1}{1-\rho} \, ds \right)^{1-\rho} \leq N_t
\]

$\rho \in (0, 1)$

increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one

intangible capital is imperfectly replicable within the project

e.g. an inventory management process for an online retailer
deploying it in a new warehouse requires managerial resources
takes managerial time away from other warehouses
What does ρ capture?

\[
\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} ds \right)^{1-\rho} \leq N_t
\]

$\rho \in (0, 1)$

increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one

intangible capital is imperfectly replicable within the project

e.g. an inventory management process for an online retailer

 deploying it in a new warehouse requires managerial resources

takes managerial time away from other warehouses
What does ρ capture?

$\left(\int_0^{x_t} N(s)^{\frac{1}{1-\rho}} \, ds \right)^{1-\rho} \leq N_t$

replicability of intangibles (ρ) \leftrightarrow returns to scale within firm
What does ρ capture?

$$\left(\int_{0}^{x_t} N(s)^{\frac{1}{1-\rho}} \, ds \right)^{1-\rho} \leq N_t$$

replicability of intangibles (ρ) \leftrightarrow returns to scale within firm

$$\Pi_t \propto x_t^\rho N_t$$

if $\rho > 0$, N_t raises marginal returns to x_t
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt

$$dx_t = -\delta x_t dt$$
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt

\[
dx_t = -\delta x_t dt
\]

\[
\Rightarrow dN_t = -\delta (1 - \rho) N_t dt
\]
Classifying intangibles

Excludability (δ)

Replicability (ρ)

- Patents
- Distribution systems
- Resource rights
- Customer lists
- Software, data
Classifying intangibles

Excludability (δ)

Replicability (ρ)

Patents

Distribution systems

Resource rights

Customer lists

Software, data
Classifying intangibles

Excludability (δ)

Replicability (ρ)

Resource rights

Distribution systems

Patents

Customer lists

Software, data
Classifying intangibles

Excludability (δ)

- Distribution systems
- Resource rights
- Customer lists
- Software, data
- Patents

Replicability (ρ)
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt

\[
\begin{align*}
 dx_t &= -\delta x_t dt \\
 \implies dN_t &= -\delta (1 - \rho) N_t dt
\end{align*}
\]
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt

\[dx_t = -\delta x_t dt \]

\[\Rightarrow dN_t = -\delta(1 - \rho)N_t dt \]

Spillovers: S_t; benefit new projects and imitators
Imperfect excludability and spillovers

Imperfect excludability: ownership of each stream is lost w.p. δdt

\[dx_t = -\delta x_t dt \]

\[\Rightarrow dN_t = -\delta (1 - \rho) N_t dt \]

Spillovers: S_t; benefit new projects and imitators

Initial intangible stock $= N_\tau = \left(N_t^{\frac{1}{1-\rho}} + S_t^{\frac{1}{1-\rho}} \right)^{1-\rho}$
Higher ρ accelerates spillovers
Higher ρ accelerates spillovers
Higher ρ accelerates spillovers

The diagram shows the function N_τ over time intervals $t = \tau$, $t = \tau + 5$, and $t = \tau + 10$. The curve S_t, with $\rho = 0.5$, increases smoothly as time progresses.
Higher ρ accelerates spillovers
Higher ρ accelerates spillovers

N_τ

$t = \tau$

$t = \tau + 5$

$t = \tau + 10$

$S_t, \quad \rho = 1.0$
New projects

Initial span: x_τ.

Assume: $\delta = \gamma(x_\tau)$, γ increasing and convex.

Value of project to creator:

$$V_\tau(N_\tau) \propto \max x_\tau N_\tau x_\rho r + \gamma(x_\tau) - (-\zeta g) \text{(scale) (limited excludability)}$$

New project requires 1 unit of labor, and starts with intangible stock:

$$N_\tau = \nu \int_0^\tau (i) \leq \tau S_i, \tau d_i$$
New projects

Initial span: x_τ. Assume:

$$\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex.}$$
New projects

Initial span: x_τ. Assume:

$$\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex.}$$

Value of project to creator:

$$V^e_\tau(N_\tau) \propto \max_{x_\tau} \frac{N_\tau x_\tau^\rho}{r + \gamma(x_\tau) - (-\zeta g)}$$
New projects

Initial span: x_τ. Assume:

$$\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex.}$$

Value of project to creator:

$$V^e_{\tau}(N_\tau) \propto \max_{x_\tau} \frac{N_\tau x_\tau^\rho}{r + \gamma(x_\tau) - (-\zeta g)} \quad \text{(scale)} \quad \text{(limited excludability)}$$
New projects

Initial span: \(x_\tau \). Assume:

\[
\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex.}
\]

Value of project to creator:

\[
V^e_\tau(N_\tau) \propto \max_{x_\tau} \frac{N_\tau x_\tau^\rho}{r + \gamma(x_\tau) - (-\zeta g)} \quad \text{(scale)}
\]

\[
\text{limited excludability}
\]
New projects

Initial span: x_τ. Assume:

$$\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex}.$$

Value of project to creator:

$$V^e_\tau(N_\tau) \propto \max_{x_\tau} \frac{N_\tau x^\rho_\tau}{r + \gamma(x_\tau) - (\zeta g)} \quad \text{(scale)} \quad \text{(limited excludability)}$$

New project requires 1 unit of labor, and starts with intangible stock:
New projects

Initial span: \(x_\tau \). Assume:

\[
\delta = \gamma(x_\tau), \quad \gamma \text{ increasing and convex.}
\]

Value of project to creator:

\[
V^e_\tau(N_\tau) \propto \max_{x_\tau} \frac{N_\tau x_\tau^\rho}{r + \gamma(x_\tau) - (-\zeta g)} \quad \text{(scale)}
\]

\[
\text{(limited excludability)}
\]

New project requires 1 unit of labor, and starts with intangible stock:

\[
N_\tau = \nu \int_{\tau(i) \leq \tau} S_{i,\tau} di
\]
Imitators

Imitators take over expropriated product streams
Imitators

Imitators take over expropriated product streams

Produce using labor, $S_{\tau,t}$
Imitators

Imitators take over expropriated product streams

Produce using labor, $S_{\tau,t}$

$$V_t \equiv \text{Total project value} \propto \frac{N_t x_t^p}{r + \zeta g}$$
Imitators

Imitators take over expropriated product streams

Produce using labor, $S_{\tau,t}$

$$V_t \equiv \text{Total project value} \propto \frac{N_t x_t^p}{r + \zeta g}$$

Creator's share $= \frac{V_t^e}{V_t} = \frac{r + \zeta g}{r + \delta + \zeta g} \equiv \theta$
Imitators

Imitators take over expropriated product streams

Produce using labor, $S_{\tau,t}$

$V_t \equiv \text{Total project value} \propto \frac{N_t x_t^p}{r + \zeta g}$

Creator’s share $= \frac{V_t^e}{V_t} = \frac{r + \zeta g}{r + \delta + \zeta g} \equiv \theta$

Imitators’ share $= 1 - \theta$
Labor markets and equilibrium

Free-entry

\[V_t^e(x_t, N_t) = W_t \]
Labor markets and equilibrium

Free-entry

\[V_t^e(x_t, N_t) = W_t \]

Labor market clearing

\[L_e,t + L_{p,t} = 1 \]

#new projects

Result 1 (Balanced growth path)

For any \(\rho \in [0,1] \), if \(\nu \) is sufficiently high, there exists a unique equilibrium where \((x_t, L_e,t)\) are constant and \((S_t, N_t)\) grow at the same constant rate \(g\).
Labor markets and equilibrium

Free-entry

Labor market clearing

\[V^e_t(x_t, N_t) = W_t \]

\[L_{e,t} + L_{p,t} = 1 \]

#new projects

Result 1 (Balanced growth path)

For any \(\rho \in [0, 1] \), if \(\nu \) is sufficiently high, there exists a unique equilibrium where \((x_t, L_{e,t})\) are constant and \((S_t, N_t)\) grow at the same constant rate \(g\).
2. The Effects of Replicability
The effects of replicability

\[N_t = \nu \bar{S}_t \]
The effects of replicability

\[g = n(g; \rho)L_e \]
The effects of replicability

\[g = n(g; \rho)L_e \]

\[\rho = 0: \text{ Solow model} \]
The effects of replicability

\[g = n(g; \rho) L_e \]

\(\rho = 0: \text{Solow model} \)

\(n = 0 \)
The effects of replicability

\[g = n(g; \rho)L_e \]

\[\rho = 0: \text{Solow model} \]
\[n = 0 \]
\[g = 0 \]
The effects of replicability

\[g = n(g; \rho) L_e \]

\(\rho = 0: \) Solow model

\(n = 0 \)

\(g = 0 \)

\(\rho = 1: \) Romer model
The effects of replicability

\[g = n(g; \rho)L_e \]

\(\rho = 0: \) Solow model
\[n = 0 \]
\[g = 0 \]

\(\rho = 1: \) Romer model
\[n = \nu \]
The effects of replicability

\[g = n(g; \rho)L_e \]

\(\rho = 0: \) Solow model
\[n = 0 \]
\[g = 0 \]

\(\rho = 1: \) Romer model
\[n = \nu \]
\[g = \nu L_e \]
Equilibrium growth

\[L_e(\rho) = L_e(\rho - \delta) = g_n(\rho + \delta, \delta - \rho) = 1 - \zeta \]
Equilibrium growth

"Demand" for projects

\[L_e(g) = n(g; \rho + \delta) \]

"Supply" of projects (free-entry)

\[L_s(g) = 1 - \zeta_1 - \zeta_r + \delta + \zeta_g n(g; \rho + \delta) \]
Equilibrium growth

”Demand” for projects

\[g = n(g; \rho)L_e \]
Equilibrium growth

"Demand" for projects

\[g = n(g; \rho)L_e \]

\[L_e^{(d)}(g; \rho) = \frac{g}{n(g; \rho)} \]
Equilibrium growth

”Demand” for projects

\[g = n(g; \rho) L_e \]

\[L_e^{(d)}(g; \rho) = \frac{g}{n(g; \rho)} \]
Equilibrium growth

”Demand” for projects

\[g = n(g; \rho) L_e \]

\[L_e^{(d)}(g; \rho) = \frac{g}{n(g; \rho)} \]

”Supply” of projects (free-entry)
Equilibrium growth

"Demand" for projects

\[g = n(g; \rho) L_e \]

\[L_e^{(d)}(g; \rho) = \frac{g}{n(g; \rho)} \]

"Supply" of projects (free-entry)

\[L_e^{(s)}(g; \rho, \delta) = 1 - \frac{\zeta (r + \delta + \zeta g)}{1 - \zeta} \frac{1}{n(g; \rho)} \]
Equilibrium growth

"Demand" for projects

\[g = n(g; \rho) L_e \]

\[L_e^{(d)}(g; \rho) = \frac{g}{n(g; \rho)} \]

"Supply" of projects (free-entry)

\[L_e^{(s)}(g; \rho, \delta) = 1 - \frac{\zeta}{1 - \zeta} \frac{r + \delta + \zeta g}{n(g; \rho)} \]
Equilibrium growth

"Demand" for projects

\[g = n(g; \rho) L_e \]

\[L_e^{(d)}(g; \rho) = g \frac{n(g; \rho)}{n(g; \rho)_+} \]

"Supply" of projects (free-entry)

\[L_e^{(s)}(g; \rho, \delta) = 1 - \frac{\zeta}{1 - \zeta} \frac{r + \delta + \zeta g}{n(g; \rho)_+} \]
What happens when ρ increases?
What happens when ρ increases?

\[\rho \uparrow \implies \hat{g} \]

[Diagram showing the relationship between $L_e^{(d)}$ and $L_e^{(s)}$ with g on the x-axis and L_e on the y-axis.]
What happens when ρ increases?

$\rho \uparrow \implies \uparrow n$
What happens when ρ increases?

\[\rho \uparrow \implies \uparrow n \implies \downarrow L_e^{(d)}, \uparrow L_e^{(s)} \]
What happens when ρ increases?

\[
\rho \uparrow \implies \uparrow n \implies \downarrow L_e^{(d)}, \; \uparrow L_e^{(s)}
\]
What happens when \(\rho \) increases?

\[
\rho \uparrow \implies \uparrow n
\]

\[
\implies \downarrow L_e^{(d)}, \quad \uparrow L_e^{(s)}
\]
What happens when ρ increases?

\[\hat{g} \uparrow \implies \uparrow n \]

\[\implies \downarrow L_e^{(d)}, \quad \uparrow L_e^{(s)} \]

\[\implies \uparrow \hat{g} \]
What happens when ρ increases?

$\rho \uparrow \implies \uparrow n$

$\implies \downarrow L_e^{(d)}, \uparrow L_e^{(s)}$

$\implies \uparrow \hat{g}$
What happens when ρ increases?

\[
\begin{align*}
\rho \uparrow & \implies \uparrow n \\
& \implies \downarrow L_e^{(d)}, \uparrow L_e^{(s)} \\
& \implies \uparrow \hat{g}
\end{align*}
\]

\[
\begin{align*}
\rho \uparrow & \implies \uparrow x \implies \uparrow \delta = \gamma(x)
\end{align*}
\]
What happens when ρ increases?

\[\rho \uparrow \implies \uparrow n \]
\[\implies \downarrow L_e^{(d)}, \quad \uparrow L_e^{(s)} \]
\[\implies \uparrow \hat{g} \]

\[\rho \uparrow \implies \uparrow x \quad \implies \quad \uparrow \delta = \gamma(x) \]
\[\implies \downarrow L_e^{(s)} \]
What happens when ρ increases?

$\rho \uparrow \quad \Rightarrow \quad \uparrow n$

$\Rightarrow \quad \downarrow L_e^{(d)}$, $\uparrow L_e^{(s)}$

$\Rightarrow \quad \uparrow \hat{g}$

$\rho \uparrow \quad \Rightarrow \quad \uparrow x \quad \Rightarrow \quad \uparrow \delta = \gamma(x)$

$\Rightarrow \quad \downarrow L_e^{(s)}$

$\Rightarrow \quad \downarrow \hat{g}$
The effects of replicability

Growth rate g

Replicability ρ
The effects of replicability

Growth rate g

Spillover intensity n

Replicability ρ
The effects of replicability

Growth rate g

Optimal span x

Replicability ρ
The effects of replicability

Growth rate g

Expropriation risk $\delta = \gamma(x)$
The effects of replicability

Growth rate g

Share retained by creators θ

Replicability ρ
The effects of replicability

Growth rate g

Entry value $n \theta \left(\frac{V_t}{N_t} \right)$

[excludability]
When is there an inverse-U shaped relationship?

\[\gamma(z) \equiv \frac{1}{\lambda} (z - 1)^{1+\alpha} \]
When is there an inverse-U shaped relationship?

\[\gamma(z) \equiv \frac{1}{\lambda}(z - 1)^{1+\alpha} \implies \delta(\lambda) \]
When is there an inverse-U shaped relationship?

\[\gamma(z) \equiv \frac{1}{\lambda} (z - 1)^{1+\alpha} \quad \Rightarrow \quad \delta(\lambda) \]

Result 2 (Non-monotonicity)

There exists \(\lambda \) such that for all \(\lambda \geq \lambda \), growth is maximized at \(\hat{\rho} \in (0, 1) \).
When is there an inverse-U shaped relationship?

\[\gamma(z) \equiv \frac{1}{\lambda} (z - 1)^{1+\alpha} \implies \delta(\lambda) \]

Result 2 (Non-monotonicity)

There exists \(\lambda \) such that \(\forall \lambda \geq \lambda \), growth is maximized at \(\hat{\rho} \in (0, 1) \).

When \(\lambda \) is large enough, spillovers to imitators \(\gg \) spillovers to new firms at \(\rho = 1 \).
When is there an inverse-U shaped relationship?

The graph shows the relationship between spillover intensity ν and limits to excludability λ. The shaded regions represent different conditions:

- $\hat{\rho} = 1$
- $\hat{\rho} \in (0, 1)$
- No BGP

The axes are labeled as follows:

- Spillover intensity ν
- Limits to excludability λ
Returns to capital and Tobin’s Q

\[V_t = V_t^c + (1 - \theta) V_t \]

\(V_t^c \) creators

\((1 - \theta) V_t \) imitators
Returns to capital and Tobin’s Q

\[V_t = V^e_t + (1 - \theta)V_t \]

Transfers to capital

\[Y_t = W_t L_t + R_{N,t} \times (p_{N,t} N_{tot,t}) + (1 - \theta)Y_t \]
Returns to capital and Tobin’s Q

\[V_t = \left(V_t^c \right)_{\text{creators}} + \left(1 - \theta \right) V_t \]

Returns to capital

\[Y_t = \left(W_t L_t \right)_{\text{labor}} + R_{N,t} \times \left(p_{N,t,\tilde{N}_{tot,t}} \right) + (1 - \theta) Y_t \]

Tobin’s Q

\[Q_t^c \equiv \frac{V_t^c}{p_{N,t,\tilde{N}_{tot,t}}} = 1 \]

\[Q_t \equiv \frac{V_t}{p_{N,t,\tilde{N}_{tot,t}}} = \frac{1}{\theta} > 1 \]
Returns to capital and valuations

Growth rate g

Pure profit share

Replicability ρ
Returns to capital and valuations

Growth rate g

Aggregate Q

Replicability ρ
Concentration

Sales share for project i

$$s_{i,t} = n \times e^{-g(t - \tau(i))}$$

Stronger spillovers (n) makes the relative size of new projects larger.
Concentration

Sales share for project i

$$s_{i,t} = n \times e^{-g(t - \tau(i))}$$

Stronger spillovers (n) makes the relative size of new projects larger

Herfindhal of sales across projects

$$H_t = \int_{\tau(i) \leq t} s_{i,t}^2 di = \frac{n}{2}$$
Concentration

Growth rate g

Equilibrium concentration

- Among projects
- Among entrepreneurs

Replicability ρ

Non-rivalry ρ
Conclusion
Q: Unlike K, intangible assets are replicable. Does that matter for growth?

scale economies + spillovers to future entrants vs. spillovers to competitors

\implies non-monotonic relationship btw. ρ and growth

Next:

Transitional dynamics

Estimation of (ρ, δ)

Implications of replicability for capital structure and for firm boundaries
The ratio of N/K
Output growth dY/Y and intangible capital growth dN/N
Intangible intensity and concentration

Crouzet, Eberly, 2019

[Crouzet, Eberly, 2019]
Intangible intensity and market share

<table>
<thead>
<tr>
<th></th>
<th>Market share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>Compustat intangible share</td>
<td>0.1308***</td>
</tr>
<tr>
<td></td>
<td>(17.69)</td>
</tr>
<tr>
<td>Observations</td>
<td>98520</td>
</tr>
<tr>
<td>Industry × year f.e.</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm f.e.</td>
<td>No</td>
</tr>
<tr>
<td>Year f.e.</td>
<td>No</td>
</tr>
</tbody>
</table>

[Crouzet, Eberly, 2019]
Examples

<table>
<thead>
<tr>
<th></th>
<th>Storage Medium</th>
<th>Property-Rights Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents</td>
<td>Patent application</td>
<td>Patent system</td>
</tr>
<tr>
<td>Software</td>
<td>Computers</td>
<td>Copyright system</td>
</tr>
<tr>
<td>Production/distribution systems</td>
<td>Key talent, manuals</td>
<td>Non-compete clauses, trade secrets</td>
</tr>
<tr>
<td>Brands</td>
<td>Consumers</td>
<td>Trademark system (c)</td>
</tr>
<tr>
<td>Video and audio material</td>
<td>Audiovisual media</td>
<td>Copyright system</td>
</tr>
<tr>
<td>Franchise agreements</td>
<td>Contract</td>
<td>Contract enforcement</td>
</tr>
<tr>
<td>Customer lists</td>
<td>Digital media</td>
<td>Contract enforcement</td>
</tr>
</tbody>
</table>
The effects of excludability

Growth rate g

Spillover intensity n

Limits to excludability δ_0
The effects of excludability

Growth rate g

Expropriation risk δ

Limits to excludability δ_0
The effects of excludability

Growth rate g

Share retained by creators θ

Limits to excludability δ_0

Limits to excludability δ_0
The effects of excludability