“Monetary Surprises, Debt Structure, and Credit Misallocation”
by Yuchen Chen

Nicolas Crouzet
Kellogg School of Management, Northwestern University

MFA 2021
Loans as a fraction of the total debt of corporations

(Crouzet, 2021)
Loans as a fraction of the total debt of corporations

(Crouzet, 2021)

% of total debt

- All corporations
- Public corporations

Years: 1960 to 2015

Y-axis: % of total debt
This paper

1. Document how debt structure changes after a monetary tightening for publicly traded US firms.

- "Unconstrained" firms: loan share ↑, leverage ↓.
- "Constrained" firms: loan share =, leverage ↓↓, equity issuance ↑↑.

2. Propose a model of investment + capital structure + debt structure for loans = risk-free + collateralized; bonds = risky debt.

stationary distribution + MP shock transmission.
This paper

1. Document how debt structure changes after a monetary tightening
1. Document how debt structure changes after a monetary tightening publicly traded US firms

This paper
This paper

1. Document how debt structure changes after a monetary tightening

 publicly traded US firms

 “unconstrained” firms: loan share ↑, leverage ↓
This paper

1. Document how debt structure changes after a monetary tightening publicly traded US firms

 “unconstrained” firms: loan share ↑, leverage ↓

 “constrained” firms: loan share =, leverage ↓↓, equity issuance ↑↑
This paper

1. Document how debt structure changes after a monetary tightening

 publicly traded US firms

 “unconstrained” firms: loan share ↑, leverage ↓

 “constrained” firms: loan share =, leverage ↓↓, equity issuance ↑↑
This paper

1. Document how debt structure changes after a monetary tightening
 publicly traded US firms
 “unconstrained” firms: loan share ↑, leverage ↓
 “constrained” firms: loan share =, leverage ↓↓, equity issuance ↑↑

2. Propose a model of investment + capital structure + debt structure
This paper

1. Document how debt structure changes after a monetary tightening

 publicly traded US firms

 "unconstrained" firms: loan share ↑, leverage ↓
 "constrained" firms: loan share =, leverage ↓↓, equity issuance ↑↑

2. Propose a model of investment + capital structure + debt structure

 loans = risk-free+collateralized; bonds = risky debt
1. Document how debt structure changes after a monetary tightening.

 publicly traded US firms

 “unconstrained” firms: loan share ↑, leverage ↓

 “constrained” firms: loan share =, leverage ↓↓, equity issuance ↑↑

2. Propose a model of investment + capital structure + debt structure.

 loans = risk-free+collateralized; *bonds* = risky debt

 stationary distribution + MP shock transmission
This paper

1. Document how debt structure changes after a monetary tightening
 publicly traded US firms

 “unconstrained” firms: loan share $\uparrow\uparrow$, leverage \downarrow
 “constrained” firms: loan share $=\downarrow\downarrow$, equity issuance $\uparrow\uparrow$

2. Propose a model of investment + capital structure + debt structure

 loans = risk-free+collateralized; bonds = risky debt
 stationary distribution + MP shock transmission
Why should we care?

- "Prior" that MP transmission should depend on bank dependence bank lending channel (Bernanke and Blinder, 1992)
- Collateral intensity (Kiyotaki and Moore, 1997)
- Floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
- Flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot (Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021)
- It's unclear which model best fits the data

Secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence.

Evidence is still scattershot. It’s unclear which model best fits the data. Secular decline in bank intermediation has different implications across models.
Why should we care?

- “Prior” that MP transmission should depend on bank dependence on the bank lending channel

(Bernanke and Blinder, 1992)
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 bank lending channel
 collateral intensity

 (Bernanke and Blinder, 1992)
 (Kiyotaki and Moore, 1997)

Evidence is still scattershot

Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

It’s unclear which model best fits the data

secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence
 - bank lending channel
 - collateral intensity
 - floating vs. fixed rate

 (Bernanke and Blinder, 1992)
 (Kiyotaki and Moore, 1997)
 (Ippolito, Ozdagli and Perez-Orive, 2018)

Evidence is still scattershot

Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

It’s unclear which model best fits the data

Secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 bank lending channel

 collateral intensity

 floating vs. fixed rate

 flexibility

 (Bernanke and Blinder, 1992)

 (Kiyotaki and Moore, 1997)

 (Ippolito, Ozdagli and Perez-Orive, 2018)

 (Bolton and Freixas, 2006; Crouzet, 2021)

Evidence is still scattershot

Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

It's unclear which model best fits the data

secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 bank lending channel (Bernanke and Blinder, 1992)
 collateral intensity (Kiyotaki and Moore, 1997)
 floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
 flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

Evidence is still scattershot

Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

It’s unclear which model best fits the data

secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 - bank lending channel
 - collateral intensity
 - floating vs. fixed rate
 - flexibility

- Evidence is still scattershot

(Bernanke and Blinder, 1992)
(Kiyotaki and Moore, 1997)
(Ippolito, Ozdagli and Perez-Orive, 2018)
(Bolton and Freixas, 2006; Crouzet, 2021)
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 - bank lending channel
 - collateral intensity
 - floating vs. fixed rate
 - flexibility

- Evidence is still scattershot

 Ippolito et al. 2018; Darmouni, Gyeske, Rodnansky, 2020; Crouzet, 2021
Why should we care?

- “Prior” that MP transmission should depend on bank dependence
 - bank lending channel (Bernanke and Blinder, 1992)
 - collateral intensity (Kiyotaki and Moore, 1997)
 - floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
 - flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot
 Ippolito et al. 2018; Darmouni, Gyeske, Rodnansky, 2020; Crouzet, 2021
Why should we care?

- “Prior” that MP transmission should depend on bank dependence
 - bank lending channel (Bernanke and Blinder, 1992)
 - collateral intensity (Kiyotaki and Moore, 1997)
 - floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
 - flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot
 - Ippolito et al. 2018; Darmouni, Gyeske, Rodnansky, 2020; Crouzet, 2021

- It’s unclear which model best fits the data
Why should we care?

- “Prior” that MP transmission should depend on bank dependence

 bank lending channel
 collateral intensity
 floating vs. fixed rate
 flexibility

 (Bernanke and Blinder, 1992)
 (Kiyotaki and Moore, 1997)
 (Ippolito, Ozdagli and Perez-Orive, 2018)
 (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot

 Ippolito et al. 2018; Darmouni, Gyeeseke, Rodnansky, 2020; Crouzet, 2021

- It’s unclear which model best fits the data

 secular decline in bank intermediation has different implications across models
Why should we care?

- “Prior” that MP transmission should depend on bank dependence
 - bank lending channel (Bernanke and Blinder, 1992)
 - collateral intensity (Kiyotaki and Moore, 1997)
 - floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
 - flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot
 - Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

- It’s unclear which model best fits the data
 - secular decline in bank intermediation has different implications across models
Why should we care?

- "Prior" that MP transmission should depend on bank dependence

 - bank lending channel (Bernanke and Blinder, 1992)
 - collateral intensity (Kiyotaki and Moore, 1997)
 - floating vs. fixed rate (Ippolito, Ozdagli and Perez-Orive, 2018)
 - flexibility (Bolton and Freixas, 2006; Crouzet, 2021)

- Evidence is still scattershot

 Ippolito et al. 2018; Darmouni, Gyeseke, Rodnansky, 2020; Crouzet, 2021

- It’s unclear which model best fits the data

 secular decline in bank intermediation has different implications across models
Debt structure and monetary policy shocks (Crouzet, 2021)
Debt structure and monetary policy shocks (Crouzet, 2021)

- US public corporations, quarterly data
Debt structure and monetary policy shocks (Crouzet, 2021)

- US public corporations, quarterly data

- Monetary policy shocks: η_{t}^{HF}
 - intraday change in Fed Funds futures
 - 164 FOMC announcement days, 1990q4-2007q4

 (Kuttner, 2001)

 (Gorodnichenko and Weber, 2016)
Debt structure and monetary policy shocks (Crouzet, 2021)

- US public corporations, quarterly data

- Monetary policy shocks: \(\eta_{t}^{HF} \)

 intraday change in Fed Funds futures

 164 FOMC announcement days, 1990q4-2007q4 (Kuttner, 2001)

 (Gorodnichenko and Weber, 2016)

- Average (\(\beta \)) and differential (\(\delta \)) effects on investment:

 \[
 \Delta \log(k_{j,t+1}) = \alpha_{j} + \text{(macro controls)} + \beta \eta_{t}^{HF} + \varepsilon_{j,t}
 \]

 \[
 \Delta \log(k_{j,t+1}) = \alpha_{j} + \text{(sector \times quarter f.e.)} + \delta \left(\eta_{t}^{HF} \times x_{j,t-1} \right) + \varepsilon_{j,t}
 \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls

\[\text{with initial loan shares } j, t - 1 \]

- Total borrowing falls

\[\text{This paper: } \uparrow \text{ for "constrained" firms} \]

- The loan share increases

\[\text{This paper: } \downarrow \text{ for "constrained" firms} \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 ↑ with initial loan share $s_{j,t-1}$
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[s_{j,t-1}\]
 ↑ with initial loan share \(s_{j,t-1}\)

- Total borrowing falls
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[
 \uparrow \text{with initial loan share } s_{j,t-1}
 \]

- Total borrowing falls
 \[
 = \text{with initial loan share } s_{j,t-1}
 \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[\uparrow \text{with initial loan share } s_{j,t-1}\]

- Total borrowing falls
 \[= \text{with initial loan share } s_{j,t-1}\]

- The loan share increases
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[\uparrow \text{with initial loan share } s_{j,t-1} \]

- Total borrowing falls
 \[= \text{with initial loan share } s_{j,t-1} \]

- The loan share increases
 \[= \text{with initial credit rating } C_{j,t-1} \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[\uparrow \text{with initial loan share } s_{j,t-1} \]

- Total borrowing falls
 \[= \text{with initial loan share } s_{j,t-1} \]

- The loan share increases
 \[= \text{with initial credit rating } C_{j,t-1} \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[\uparrow \text{with initial loan share } s_{j,t-1}\]

- Total borrowing falls
 \[= \text{with initial loan share } s_{j,t-1}\]

- The loan share increases
 \[= \text{with initial credit rating } C_{j,t-1}\]

[Not in this paper]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \[\uparrow \text{with initial loan share } s_{j,t-1} \]

- Total borrowing falls
 \[= \text{with initial loan share } s_{j,t-1} \]

- The loan share increases
 \[= \text{with initial credit rating } C_{j,t-1} \]
Comparison with the evidence of Crouzet (2021)

Following a positive shock to the Fed Funds rate

- Investment falls
 \uparrow with initial loan share $s_{j,t-1}$

- Total borrowing falls
 \uparrow for “constrained” firms
 \uparrow with initial loan share $s_{j,t-1}$

- The loan share increases
 \downarrow for “constrained” firms
 \downarrow with initial credit rating $C_{j,t-1}$
The response of total borrowing in Crouzet (2021)
The response of the loan share in Crouzet (2021)

Graph showing the response of loan shares for high-rated and low-rated firms over quarters after a shock.
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

$P(\text{new loan}|\Delta(\text{debt}) > 0) \downarrow$ for "constrained" firms

$P(\text{equity issuance}) \uparrow$ for "constrained" firms

-(New) loan and bond spreads increase \uparrow for "constrained" firms (for loans, not bonds)
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- \(P(\text{new loan}|\Delta(\text{debt}) > 0) \) increases
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- $P(\text{new loan} | \Delta(\text{debt}) > 0)$ increases

 ↓ for “constrained” firms
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- $P(\text{new loan}|\Delta(\text{debt}) > 0)$ increases

 ↓ for “constrained” firms

- $P(\text{equity issuance})$ increases
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- $P(\text{new loan} | \Delta(\text{debt}) > 0)$ increases
 ↓ for “constrained” firms

- $P(\text{equity issuance})$ increases
 ↑ for “constrained” firms
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- $P(\text{new loan}|\Delta(\text{debt}) > 0)$ increases
 ↓ for “constrained” firms

- $P(\text{equity issuance})$ increases
 ↑ for “constrained” firms

- (New) loan and bond spreads increase
Further findings in Chen (2021)

Following a positive shock to the Fed Funds rate

- $P(\text{new loan}|\Delta(\text{debt}) > 0)$ increases
 \[\downarrow\text{ for “constrained” firms}\]

- $P(\text{equity issuance})$ increases
 \[\uparrow\text{ for “constrained” firms}\]

- (New) loan and bond spreads increase
 \[\uparrow\text{ for “constrained” firms (for loans, not bonds)}\]
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess

Suggestion:
- Run as interactions everywhere

Suggestion:
- Baseline rates; shock → 100bps effect on FFR

Suggestion:
- Aggregate data (Jermann and Quadrini, 2012)
- Evidence on SEOs (DeAngelo, DeAngelo and Stulz, 2010)
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess

 Suggestion: Run as interactions everywhere

2. Magnitudes (e.g. meaning 6% vs. 8\%↑ in odds of equity issuance?)

 Suggestion: Baseline rates; shock → 100bps effect on FFR

3. Equity financing response is interesting + makes sense in the model

 Suggestion: Aggregate data (Jermann and Quadrini, 2012)
 Evidence on SEOs (DeAngelo, DeAngelo and Stulz, 2010)
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess
 Suggestion: Run as interactions everywhere

2. Magnitudes (e.g. meaning 6% vs. 8% ↑ in odds of equity issuance?)
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess

 Suggestion: Run as interactions everywhere

2. Magnitudes (e.g. meaning 6% vs. 8% ↑ in odds of equity issuance?)

 Suggestion: Baseline rates; shock → 100bps effect on FFR
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess

 Suggestion: Run as interactions everywhere

2. Magnitudes (e.g. meaning 6% vs. 8% ↑ in odds of equity issuance?)

 Suggestion: Baseline rates; shock → 100bps effect on FFR

3. Equity financing response is interesting + makes sense in the model
Comments/suggestions on empirical findings

1. Diff. results obtained on split samples, so significance hard to assess

 Suggestion: Run as interactions everywhere

2. Magnitudes (e.g. meaning 6% vs. 8% ↑ in odds of equity issuance?)

 Suggestion: Baseline rates; shock → 100bps effect on FFR

3. Equity financing response is interesting + makes sense in the model

 Suggestion: Aggregate data *(Jermann and Quadrini, 2012)*

 Evidence on SEOs *(DeAngelo, DeAngelo and Stulz, 2010)*
Model ingredients

- Standard investment-Q block

(Hayashi, 1982)
Model ingredients

- Standard investment-Q block
 (Hayashi, 1982)

- Standard equity issuance costs
 (Hennesy, Levy and Whited, 2007)
Model ingredients

- Standard investment-\(Q\) block (Hayashi, 1982)
- Standard equity issuance costs (Hennesy, Levy and Whited, 2007)
- Non-standard debt financing block

\[
\text{"bank loans":} \quad (1 + c)L_i, t + 1 \leq \theta (1 - \delta)k_i, t + 1
\]

\[
\text{"bonds": defaultable, fairly priced debt issuance cost } \xi_0 \text{ per unit of par } L_i, t + 1
\]

\[
\text{"bonds": defaultable, fairly priced debt issuance cost } \xi_1 < \xi_0 \text{ per unit of par } D_i, t + 1
\]
Model ingredients

- Standard investment-Q block
 (Hayashi, 1982)

- Standard equity issuance costs
 (Hennesy, Levy and Whited, 2007)

- Non-standard debt financing block
 [borrow b/c taxes + equity issuance costs]
Model ingredients

- Standard investment-Q block

 (Hayashi, 1982)

- Standard equity issuance costs

 (Hennesy, Levy and Whited, 2007)

- Non-standard debt financing block

 "bank loans":

 \[(1 + c)L_{i,t+1} \leq \theta(1 - \delta)k_{i,t+1}\]

 issuance cost \(\xi_0\) per unit of par \(L_{i,t+1}\)

 [borrow b/c taxes + equity issuance costs]
Model ingredients

- Standard investment-\(Q\) block

 (Hayashi, 1982)

- Standard equity issuance costs

 (Hennesy, Levy and Whited, 2007)

- Non-standard debt financing block

 [borrow b/c taxes + equity issuance costs]

 "bank loans":

 \[
 (1 + c)L_{i,t+1} \leq \theta(1 - \delta)k_{i,t+1}
 \]

 issuance cost \(\xi_0\) per unit of par \(L_{i,t+1}\)

 "bonds":

 defaultable, fairly priced debt

 issuance cost \(\xi_1 < \xi_0\) per unit of par \(D_{i,t+1}\)
1. Loans are more collateral-intensive than bonds. But risk-free?
Comments on the model (1/2)

1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?

 Suggestion: procyclical collateral values (Kyotaki and Moore, 1997)?

3. This seems more like a model of "tranching" Why is "tranching" privately optimal? (DeMarzo, 2019)

 Suggestion: 2-period example? Other empirical proxies for $L_{i,t+1} / (L_{i,t+1} + D_{i,t+1})$?
Comments on the model (1/2)

1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?
1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?

 Suggestion: procyclical collateral values (Kyotaki and Moore, 1997)?
Comments on the model (1/2)

1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?

 Suggestion: procyclical collateral values (Kyotaki and Moore, 1997)?

3. This seems more like a model of “tranching”
1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?

 Suggestion: procyclical collateral values (Kyotaki and Moore, 1997)?

3. This seems more like a model of “tranching”

 Why is “tranching” privately optimal? (DeMarzo, 2019)
Comments on the model (1/2)

1. Loans are more collateral-intensive than bonds. But risk-free?

 Suggestion: Rauh and Sufi (2010); Carey and Gordy (2007)

2. Which bond/loans difference matters most for MP transmission? Why?

 Suggestion: procyclical collateral values (Kyotaki and Moore, 1997)?

3. This seems more like a model of “tranching”

 Why is “tranching” privately optimal? (DeMarzo, 2019)

 Suggestion: 2-period example? Other empirical proxies for $L_{i,t+1}/(L_{i,t+1} + D_{i,t+1})$?
Comments on the model (2/2)

4. Do the smallest firms *only* borrow from banks? Why?
Comments on the model (2/2)

4. Do the smallest firms only borrow from banks? Why?

The *first* unit of bonds should carry a very low spread
4. Do the smallest firms only borrow from banks? Why?

The *first* unit of bonds should carry a very low spread

Suggestion: report cross-sectional distribution of $\frac{L_{i,t+1}}{L_{i,t+1} + D_{i,t+1}}$ w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?

Very clearly procyclical in the data

Suggestion: IRFs of aggregate loan share w.r.t. MP shocks vs. TFP shocks
Comments on the model (2/2)

4. Do the smallest firms only borrow from banks? Why?

The first unit of bonds should carry a very low spread

Suggestion: report cross-sectional distribution of $L_{i,t+1}/(L_{i,t+1} + D_{i,t+1})$ w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?
4. Do the smallest firms only borrow from banks? Why?

The first unit of bonds should carry a very low spread

Suggestion: report cross-sectional distribution of $L_{i,t+1}/(L_{i,t+1} + D_{i,t+1})$ w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?

Very clearly procyclical in the data
Comments on the model (2/2)

4. Do the smallest firms *only* borrow from banks? Why?

 The *first* unit of bonds should carry a very low spread

 Suggestion: report cross-sectional distribution of $L_{i,t+1}/(L_{i,t+1} + D_{i,t+1})$ w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?

 Very clearly procyclical in the data

 Suggestion: IRFs of aggregate loan share w.r.t. MP shocks vs. TFP shocks
4. Do the smallest firms *only* borrow from banks? Why?
 The *first* unit of bonds should carry a very low spread

 Suggestion: report cross-sectional distribution of \(\frac{L_{i,t+1}}{(L_{i,t+1} + D_{i,t+1})} \) w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?
 Very clearly procyclical in the data

 Suggestion: IRFs of aggregate loan share w.r.t. MP shocks vs. TFP shocks

6. Does the model get responses to MP shocks across firms right?
Comments on the model (2/2)

4. Do the smallest firms only borrow from banks? Why?

The *first* unit of bonds should carry a very low spread

Suggestion: report cross-sectional distribution of \(\frac{L_{i,t+1}}{L_{i,t+1} + D_{i,t+1}} \) w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?

Very clearly procyclical in the data

Suggestion: IRFs of aggregate loan share w.r.t. MP shocks vs. TFP shocks

6. Does the model get responses to MP shocks across firms right?

Suggestion: report cross-sectional IRFs and compare to data
Comments on the model (2/2)

4. Do the smallest firms only borrow from banks? Why?
 The *first* unit of bonds should carry a very low spread

 Suggestion: report cross-sectional distribution of $L_{i,t+1}/(L_{i,t+1} + D_{i,t+1})$ w.r.t. size

5. Is the (aggregate) loan share counter-cyclical in this model?
 Very clearly procyclical in the data

 Suggestion: IRFs of aggregate loan share w.r.t. MP shocks vs. TFP shocks

6. Does the model get responses to MP shocks across firms right?

 Suggestion: report cross-sectional IRFs and compare to data
Conclusion

- Interesting paper
Conclusion

- Interesting paper

 some novel empirical facts on MP transmission to firms
Conclusion

- Interesting paper
 some novel empirical facts on MP transmission to firms
 endogenous debt structure model
Conclusion

- Interesting paper
 some novel empirical facts on MP transmission to firms
 endogenous debt structure model

- Clearly preliminary, so lots of scope for further work
Conclusion

- Interesting paper

 some novel empirical facts on MP transmission to firms

 endogenous debt structure model

- Clearly preliminary, so lots of scope for further work

 clarify and “clean up” empirics
Conclusion

- Interesting paper
 some novel empirical facts on MP transmission to firms
 endogenous debt structure model

- Clearly preliminary, so lots of scope for further work
 clarify and "clean up" empirics
 how should we interpret the debt structure choice?
Conclusion

- Interesting paper
 some novel empirical facts on MP transmission to firms
 endogenous debt structure model

- Clearly preliminary, so lots of scope for further work
 clarify and “clean up” empirics
 how should we interpret the debt structure choice?
 link empirics to model predictions more systematically