“Knowledge cycles and corporate investment” by Bustamante, Cujean, and Frésard

Nicolas Crouzet

Kellogg School of Management, Northwestern University

SFS Cavalcade 2021
What this paper does

Theory Q-theory model with knowledge cycles

knowledge = Z_t = perceived drift of productivity growth

cycles = occasional knowledge reset

$\implies i(Z_t) = \delta + \frac{1}{\gamma} (q(Z_t) + c(Z_t) - 1)$

Data Patent data to identify knowledge resets

investment/q dynamics around resets consistent w/model
Why should we care?

1. How do firms learn about the potential profitability of new projects?
 Berk, Green, Naik (2004)
 endogenous choice to discard a project and “explore”
 exploration is a “gamble”

2. Has the investment-q relationship changed over time, and why?
 sign of the investment/q wedge depends on state of the knowledge cycle
Roadmap

Sketch of theory

Identification

Empirics
Sketch of theory
Basic elements

\[\Pi_t = A_t^{1-\eta} K_t^{(1-\eta)} N_t^{-\eta} \]

\[dK_t = (i_t - \delta) K_t dt \quad \text{(investment)} \]

Net income \[= (1 - \gamma(i_t)) \Pi_t \]

\[\frac{dA_t}{A_t} \quad \text{drift} \propto Z_t \quad \text{(passive "learning")} \]

\[dZ_t = \mu_Z Z_t dt + \sigma_Z dB_t \]

\[\frac{dN_t}{N_t} = \phi Z_t^2 1 \{Z_t \geq 0\} \quad \text{(knowledge dissipation)} \]
Adding "exploration"

Without "exploration":

exit if Z_t sufficiently low — $V_t < 0$

but also if Z_t sufficiently high — as N_t grows

always true, or depends on α? interpretation?

Allow the firm to reset Z_t to $Z_{t+} = 0$ ("exploration")
The model with only "exploration"

Knowledge cycles

cycle = period between resets

Non-monotonic relationship between Z_t and q_t

But standard investment-q relationship holds

$$\iota(Z_t) = \delta + \frac{1}{\gamma} (q(Z_t) - 1)$$
Introducing “experimentation”

Assume drift of Z_t to depend positively on $i(Z_t)$

Investing more now increases Z_t, all other things equal

\[c(Z_t) \equiv \text{incremental value due to effect of investment on knowledge} \]

\[\propto \nu'(Z_t)Z_t + \nu''(Z_t) \geq 0 \]

Investment-q relationship is now:

\[\iota(Z_t) = \delta + \frac{1}{\gamma} (q(Z_t) + c(Z_t) - 1) \]
Theory: comments/suggestions

1. Insight: sign of $c(Z_t)$ can change as reset gets close
 - *Increasing* investment – ”gambling for exploration”
 - What makes the firm ”effectively” risk-sensitive?
 - Is this a numerical result? What does it depend on?
 - Is $q(Z_t)$ always decreasing close to the reset boundary?

2. Assumption: limited obsolescence upon reset
 - But investment and Z_t tied during the ”experimentation” phase
 - What is K_t? General purpose tech?
Identification
Identifying the "knowledge channel"

\[i(Z_t) = \delta + \frac{1}{\gamma} \left(q(Z_t) + c(Z_t) - 1 \right) \]

Investment-Q slope *conditional on* stage of the knowledge cycle:

\[\hat{\beta}_{Z_t \in [Z_1, Z_2]} = \frac{1}{\gamma} \left(1 + \frac{\text{cov}(q(Z_t), c(Z_t)|Z_t \in [Z_1, Z_2])}{\text{var}(q(Z_t)|Z_t \in [Z_1, Z_2])} \right) \]

No closed form, so use simulation
event period 0 = technology reset
$\hat{\beta}_k$, with $k =$ time from reset; max for $k = -1$
Identification: comments/suggestions

1. Why is $\hat{\beta}_{Z_t \in [Z_1, Z_2]}$ highest right before reset?
 - $i \uparrow$ “gambling on exploration”
 - $q \uparrow$?
 (seems inconsistent with earlier model discussion)

2. Enough power to reject the null $\hat{\beta}_{Z_t \in [Z_1, Z_2]} = \frac{1}{\gamma} \forall Z_t \in [Z_1, Z_2]$?
$\hat{\beta}_k$, with $k =$ time from reset; max for $k = -1$
1. Why does $\hat{\beta}_{Z_t \in [Z_1, Z_2]}$ spike right before reset?
 - $i \uparrow$ “gambling on exploration”
 - $q \uparrow$?
 (seems inconsistent with earlier model discussion)

2. Enough power to reject the null $\hat{\beta}_{Z_t \in [Z_1, Z_2]} = \frac{1}{\gamma} \forall (Z_1, Z_2)$?
 - simulate from same size data (≈ 1200 firms, 2000 resets)
Empirics
Measuring technology resets

\(v_{f,t} = 38 \times 1 \text{ vector} \)

% of patents cited by \(f \) in each of the 38 tech subclasses from \(t - 5 \) to \(t \)

\[
\Delta v^f_t = \frac{v^f_t}{|v^f_t|} \cdot \frac{v^f_{t-1}}{|v^f_{t-1}|}
\]

Reset event: \(\Delta v^f_t < E(\Delta v^f) - \theta \sigma(\Delta v^f) \)
Investment and average Q conditional on time to reset
Investment-Q sensitivity conditional on time to reset
Empirics: comments/suggestions

1. "Reset" in the data ≠ "exploration" in the model
 - existing patents not scrapped following reset
 - reset is byproduct of R&D, not "coin toss"
 - reset continuous, not discrete
 - discuss individual examples

2. Q in the data ≠ q in the model
 - model: marginal $q(Z_t)$; data: average Q_t
 - model: denominator = profits; data: denominator = capital

3. How informative are the conditional investment-Q sensitivities?
 - significance pre/post of decline?
 - does the decline happen specifically around resets? (placebo wrt other events)
Conclusion

- Creative model + interesting facts
- Directions for progress
 - key assumptions
 - validity + intuition for identification
 - what are “resets” in the data?