"Strategic Complementarities in a Dynamic Model of Technology Adoption"

Fernando Alvarez, David Argente, Francesco Lippi, Esteban Méndez, and Diana van Patten

Discussion by Nicolas Crouzet

Kellogg

Theory: decisions to adopt are complements across users

 \implies coordination problems

[Katz and Shapiro 1986, Farrell and Saloner 1986]

Theory: decisions to adopt are complements across users

 \implies coordination problems

In practice, how important are these coordination problems?

Katz and Shapiro 1986, Farrell and Saloner 1986]

Theory: decisions to adopt are complements across users

 \implies coordination problems

In practice, how important are these coordination problems?

Step 1: Model of technology adoption with strategic complementarities

Decentralized equilibrium + optimal planning problem

Katz and Shapiro 1986, Farrell and Saloner 1986]

Theory: decisions to adopt are complements across users

 \implies coordination problems

In practice, how important are these coordination problems?

Step 1: Model of technology adoption with strategic complementarities

Decentralized equilibrium + optimal planning problem

Step 2: Data on digital payment app in Costa-Rica

Can observe adoption within social networks (neighborhood, coworkers, family)

Katz and Shapiro 1986, Farrell and Saloner 1986]

Roadmap

- 1. The adoption of digital payments in India
- 2. The model
- 3. Mapping the model to the data

1. The adoption of digital payments in India

Context: the 2016 Indian Demonetization

Cash shortage unexpected large temporary

Adoption of an electronic wallet

B2C transactions

Context: the 2016 Indian Demonetization

Cash shortage

unexpected

large

temporary

Adoption of an electronic wallet

B2C transactions

Model

Firm $i \in [0, 1]$:

$$\pi_{i,t} = \begin{cases} M_t & \text{if } x_{i,t} = c \\ \theta_0 + \theta_n N_t & \text{if } x_{i,t} = e \end{cases}$$
(cash) (e-wallet)

$$M_t$$
 cash-based demand; exogenous, AR
 $N_t = \int \mathbf{1} \{x_{i,t} = e\} di = \text{number of adopters}$

Firm *i* chooses a switching rate $c \leftrightarrow e$, $\tilde{k}_{i,t} \in [0, k]$, to maximize NPV of $\pi_{i,t}$ subject to law of motion for (M_t, N_t)

Adoption rules

Equilibrium: aggregate law of motion for $N_t \triangleleft$ optimal switching rate $\tilde{k}_{i,t}$

Result: The equilibrium exists and is unique. Firms switch $c \rightarrow e$ at max rate k, if and only if:

 $M_t \leq \underline{\mathbf{M}}(N_t; \boldsymbol{\theta_n}),$

where:

 $\begin{aligned} \theta_n &= 0: \quad \underline{\mathbf{M}}(N_t; \theta_n) = \underline{\mathbf{M}}, \\ \theta_n &> 0: \quad \underline{\mathbf{M}}(N_t; \theta_n). \\ + \end{aligned}$

District d, quarter t

 $\log (y_{d,t}) = \alpha_t + \alpha_d + \delta_t (\text{Exposure})_d + \Gamma'_t Y_d + \epsilon_{d,t}$ $y_{d,t} \qquad : \text{ total # of active firms}$

District d, quarter t

$$\log (y_{d,t}) = \alpha_t + \alpha_d + \delta_t (\text{Exposure})_d + \Gamma'_t Y_d + \epsilon_{d,t}$$

$$y_{d,t} : \text{ # of newly active firms}$$

Testing for complementarities: state-dependence

Testing for complementarities: state-dependence

Key take-aways

In our setting

 $\theta_n > 0$; accounts for $\sim 1/2$ of adoption response

Key take-aways

In our setting

 $\theta_n > 0$; accounts for $\sim 1/2$ of adoption response

Beyond our setting

Dynamic tests for strategic complementarities endogenous persistence positive state-dependence

Key take-aways

In our setting

 $\theta_n > 0$; accounts for $\sim 1/2$ of adoption response

Beyond our setting

Dynamic tests for strategic complementarities endogenous persistence positive state-dependence The limits of a "big push"

persistent increase in average adoption across networks

at the cost of more dispersion

2. The model

Comparing the models

		This paper	CGM
Flow benefits	No adoption	0	M_t
	Adoption	$\mathbf{x}_{i,t} \left(\mathbf{\theta}_0 + \mathbf{\theta}_n N_t \right)$	$ heta_0 + heta_n N_t$
Lock-in after adoption		Yes	No
Friction		Fixed cost <i>c</i>	Switching intensity $\tilde{k}_{i,t} \leq k$

Comparing the models

		This paper	CGM
Flow benefits	No adoption	0	M _t
	Adoption	$\mathbf{x}_{i,t} \left(\mathbf{\theta}_0 + \mathbf{\theta}_n N_t \right)$	$\theta_0 + \theta_n N_t$
Lock-in after adoption		Yes	No
Friction		Fixed cost <i>c</i>	Switching intensity $\tilde{k}_{i,t} \leq k$

Which of these differences is economically important?

This paper : only idiosyncratic shocks

CGM: only aggregate shocks

"Phase shifts"

Sudden adoption of "dormant" technology

Sudden discarding of "dominant" technology

Aggregate risk can generate this

Idiosyncratic risk generates gradual and permanent diffusion

"Phase shifts"

Sudden adoption of "dormant" technology

Sudden discarding of "dominant" technology

Aggregate risk can generate this

Idiosyncratic risk generates gradual and permanent diffusion

Equilibrium unicity

This paper : multiple equilibria

CGM : unique equilibrium

"Phase shifts"

Sudden adoption of "dormant" technology

Sudden discarding of "dominant" technology

Aggregate risk can generate this

Idiosyncratic risk generates gradual and permanent diffusion

Equilibrium unicity

This paper : multiple equilibria

CGM : unique equilibrium

Aggregate shocks may eliminate multiplicity

See global games

But maybe not necessary: Alvarez, Lippi, Souganidis (2022) establish unicity in a closely related model

"Phase shifts"

Sudden adoption of "dormant" technology

Sudden discarding of "dominant" technology

Aggregate risk can generate this

Idiosyncratic risk generates gradual and permanent diffusion

Equilibrium unicity

- This paper : multiple equilibria
- CGM : unique equilibrium

Aggregate shocks may eliminate multiplicity

See global games

But maybe not necessary: Alvarez, Lippi, Souganidis (2022) establish unicity in a closely related model

Important for counterfactuals and policy analysis

Combining aggregate and idiosyncratic risk

CGM

As M_t crosses $\underline{\mathbf{M}}(N_t; \theta_n)$, mass kdt of firms change adoption decisions at once — "phase shift"

 \implies drift of N_t is a discontinuous function of M_t

This paper

Mass of firms revising their adoption decision remains small — no "phase shift" Distribution of adopters follows a standard KFE

Combining the two

If sufficiently large idiosyncratic shocks, Nt might become a standard diffusive process

Phase shifts + unicity + tractability CĞM this paper

3. Mapping the model to the data

Measuring strategic complementarities

Model
$$\log(\xi_{i,t}) = \frac{1}{1+p} \log\left(\theta_0 + \theta_n N_t\right) + \frac{1}{1+p} \log(x_{i,t}) \tag{1}$$

$$\Delta \log(\xi_{i,t}) = \lambda_t + \psi \Delta S_{i,t} + \tilde{\theta} \Delta N_{i,t} + \varepsilon_{i,t}$$
(2)

Data $S_{i,t} = \#$ of people in *i*'s social network

 $N_{i,t} = \%$ of people in *i*'s social network using the app

$heta_n \stackrel{?}{\leftrightarrow} ilde{ heta}$

Model
$$\log(\xi_i) = \theta_n N_i + \gamma \operatorname{age}_i + \varepsilon_i$$

$$N_i = \mathbb{E}\left[\log(\xi_j)|i' \text{s network}, \text{age}_i\right]$$

Model $\log(\xi_i) = \theta_n N_i + \gamma \operatorname{age}_i + \varepsilon_i$ $N_i = \mathbb{E} \left[\log(\xi_j) | i' \text{s network, age}_i \right]$ $\implies N_i = \frac{\gamma}{1 - \theta_n} \operatorname{age}_i$

Model $\log(\xi_i) = \theta_n N_i + \gamma \operatorname{age}_i + \varepsilon_i$ $N_i = \mathbb{E} \left[\log(\xi_i) | i' \text{s network, age}_i \right]$ $\implies N_i = \frac{\gamma}{1 - \theta_n} \operatorname{age}_i$ $\implies \hat{\theta}_{OLS} \equiv \frac{\operatorname{cov}(\log(\xi_i), N_i)}{\operatorname{var}(N_i)} = 1, \quad \text{even if } \theta_n \approx 0$

Model $\log(\xi_i) = \theta_n N_i + \gamma \operatorname{age}_i + \varepsilon_i$ $N_i = \mathbb{E} \left[\log(\xi_i) | i' \text{s network, age}_i \right]$ $\implies N_i = \frac{\gamma}{1 - \theta_n} \operatorname{age}_i$ $\implies \hat{\theta}_{OLS} \equiv \frac{\operatorname{cov}(\log(\xi_i), N_i)}{\operatorname{var}(N_i)} = 1, \quad \text{even if } \theta_n \approx 0$

Even if we control for age_i , the model is not identified (N_i and age_i are colinear)

Model $\log(\xi_i) = \theta_n N_i + \gamma \operatorname{age}_i + \varepsilon_i$ $N_i = \mathbb{E} \left[\log(\xi_i) | i' \text{s network, age}_i \right]$ $\implies N_i = \frac{\gamma}{1 - \theta_n} \operatorname{age}_i$ $\implies \hat{\theta}_{OLS} \equiv \frac{\operatorname{cov}(\log(\xi_i), N_i)}{\operatorname{var}(N_i)} = 1, \quad \text{even if } \theta_n \approx 0$

Even if we control for age_i , the model is not identified (N_i and age_i are colinear)

Do mass layoff regressions address this problem?

Choice of new firm might be driven by correlated characteristics among coworkers

Estimating the model

Model is calibrated

 $heta_n pprox ilde{ heta}$ + match median neighborhood adoption path

Resulting model \approx typical neighborhood

Could instead fit the distribution of adoption across neighborhoods: $\mathbb{E}_t(N_{n,t}), \sigma_t(N_{n,t}), \dots$

Need neighborhood fixed effects in the model; can use $N_{n,0}$, $\theta_0^{(n)}$, $U^{(n)}$

Useful to tackle policy questions about aggregate adoption

Calibrated model = complementarities + learning

What identifies the learning component?

i.e. what features of the data does the complementarities-only model fail to match?

What did I learn?

Optimal subsidy might not look like a "big push"

Individual technology use correlates with use by peers within granular social networks

What did I learn?

Optimal subsidy might not look like a "big push"

Individual technology use correlates with use by peers within granular social networks

What more is there to do?

Where is $\theta_n > 0$ coming from?

Two-sided markets Social learning [Jullien, Pavan, Rysman, 2021] [Akbarpour, Malladi, Saberi, 2020]

What did I learn?

Optimal subsidy might not look like a "big push"

Individual technology use correlates with use by peers within granular social networks

What more is there to do?

Where is $\theta_n > 0$ coming from?

Two-sided markets

Social learning

What are the broader implications of $\theta_n > 0$?

Spillovers to consumption, investment Competition, concentration, regulation [Jullien, Pavan, Rysman, 2021] [Akbarpour, Malladi, Saberi, 2020]

[Higgins, 2022]