Shocks and Technology Adoption:
Evidence from Electronic Payment Systems

Nicolas Crouzet, Apoorv Gupta & Filippo Mezzanotti

Kellogg School of Management, Northwestern University, and Chicago Fed
Motivation

Many Fintech products are network technologies, payment platforms, lending platforms. Adoption decisions are complements across users. ⇒ coordination problems (Katz and Shapiro, 1982).

Theoretical possibility, but...

1. are coordination problems a quantitatively large obstacle to Fintech adoption?
2. how can policy address them?

This paper: adoption of an electronic payments platform during the Demonetization...
Motivation

Many Fintech products are network technologies
Motivation

Many Fintech products are network technologies

payment platforms, lending platforms
Motivation

Many Fintech products are network technologies

payment platforms, lending platforms

Adoption decisions are complements across users
Motivation

Many Fintech products are network technologies payment platforms, lending platforms

Adoption decisions are complements across users

⇒ coordination problems (Katz and Shapiro, 1982)
Motivation

Many Fintech products are network technologies payment platforms, lending platforms

Adoption decisions are complements across users

⇒ coordination problems (Katz and Shapiro, 1982)

Theoretical possibility, but ...
Motivation

Many Fintech products are *network* technologies payment platforms, lending platforms

Adoption decisions are *complements* across users

⇒ coordination problems (Katz and Shapiro, 1982)

Theoretical possibility, but ...

1. are coordination problems a quantitatively large obstacle to Fintech adoption?
Motivation

Many Fintech products are network technologies payment platforms, lending platforms

Adoption decisions are complements across users

⇒ coordination problems (Katz and Shapiro, 1982)

Theoretical possibility, but ...

1. are coordination problems a quantitatively large obstacle to Fintech adoption?
2. how can policy address them?
Motivation

Many Fintech products are network technologies
payment platforms, lending platforms

Adoption decisions are complements across users
⇒ coordination problems (Katz and Shapiro, 1982)

Theoretical possibility, but ...

1. are coordination problems a quantitatively large obstacle to Fintech adoption?
2. how can policy address them?

This paper: adoption of an electronic payments platform during the Demonetization
Findings

1. Theory: with adoption complementarities, after a temporary shock, (a) persistent increase in total users, (b) persistent increase in new users, (c) state-dependence in adoption.

2. Causal impact of Demonetization:
 - Instrument: local importance of chest banks
 - Responses qualitatively consistent with (a), (b), and (c).

3. Quantitative role of complementarities:
 - 60% of 8 month adoption response due to complementarities
 - Small but more persistent shocks → less variance in adoption
Findings

1 Theory:

- Persistent increase in total users
- Persistent increase in new users
- State-dependence in adoption

2 Causal impact of Demonetization

- Instrument: local importance of chest banks
- Responses qualitatively consistent with (a), (b), and (c)

3 Quantitative role of complementarities

- 60% of 8 month adoption response due to complementarities
- Small but more persistent shocks → less variance in adoption
Findings

1 Theory: with adoption complementarities, after a *temporary* shock,
Findings

1 Theory: with adoption complementarities, after a *temporary* shock,
 (a) *persistent* increase in total users
Findings

1 Theory: with adoption complementarities, after a *temporary* shock,
 (a) *persistent* increase in total users
 (b) *persistent* increase in *new* users
Findings

1 Theory: with adoption complementarities, after a temporary shock,
 (a) persistent increase in total users
 (b) persistent increase in new users
 (c) state-dependence in adoption
Findings

1 Theory: with adoption complementarities, after a temporary shock,

(a) persistent increase in total users
(b) persistent increase in new users
(c) state-dependence in adoption

2 Causal impact of Demonetization

· instrument: local importance of chest banks
· responses qualitatively consistent with (a), (b), and (c)

3 Quantitative role of complementarities

· 60% of 8 month adoption response due to complementarities
· small but more persistent shocks → less variance in adoption
Findings

1 Theory: with adoption complementarities, after a *temporary* shock,
 (a) *persistent* increase in total users
 (b) *persistent* increase in new users
 (c) state-dependence in adoption

2 Causal impact of Demonetization
 · instrument: local importance of chest banks
Findings

1 Theory: with adoption complementarities, after a temporary shock,

(a) *persistent* increase in total users
(b) *persistent* increase in new users
(c) state-dependence in adoption

2 Causal impact of Demonetization

· instrument: local importance of chest banks
· responses qualitatively consistent with (a), (b) and (c)
Findings

1 Theory: with adoption complementarities, after a *temporary* shock,
 (a) *persistent* increase in total users
 (b) *persistent* increase in new users
 (c) state-dependence in adoption

2 Causal impact of Demonetization
 · instrument: local importance of chest banks
 · responses qualitatively consistent with (a), (b) and (c)

3 Quantitative role of complementarities
Findings

1 Theory: with adoption complementarities, after a temporary shock,
 (a) persistent increase in total users
 (b) persistent increase in new users
 (c) state-dependence in adoption

2 Causal impact of Demonetization
 · instrument: local importance of chest banks
 · responses qualitatively consistent with (a), (b) and (c)

3 Quantitative role of complementarities
 · 60% of 8 month adoption response due to complementarities
Findings

1 Theory: with adoption complementarities, after a temporary shock,
 (a) persistent increase in total users
 (b) persistent increase in new users
 (c) state-dependence in adoption

2 Causal impact of Demonetization
 · instrument: local importance of chest banks
 · responses qualitatively consistent with (a), (b) and (c)

3 Quantitative role of complementarities
 · 60% of 8 month adoption response due to complementarities
 · small but more persistent shocks → less variance in adoption
Plan

1. Background
2. Theory
3. Reduced-form evidence
4. Structural estimation + counterfactuals
1. Background
The Indian demonetization of 2016
What was the effect on the use of electronic money?
What was the effect on the use of electronic money?

Study a large provider of electrony wallets
What was the effect on the use of electronic money?

Study a large provider of electronic wallets

registration only requires bank account + mobile phone
What was the effect on the use of electronic money?

Study a large provider of electronic wallets

registration only requires bank account + mobile phone

no set-up fees, no transaction fees
What was the effect on the use of electronic money?

Study a large provider of electronic wallets
registration only requires bank account + mobile phone
no set-up fees, no transaction fees
What was the effect on the use of electronic money?

Study a large provider of electronic wallets

registration only requires bank account + mobile phone
no set-up fees, no transaction fees

Sample

≈ 1 million firms
amount and # of transactions; geo identifiers
weekly (May 2016 to June 2017)
2. Theory
Economic environment
Economic environment

- \(t = 0, \Delta, 2\Delta, 3\Delta, \ldots \) with \(\Delta \) small; firms \(i \in [0, 1] \)
Economic environment

- $t = 0, \Delta, 2\Delta, 3\Delta, \ldots$, with Δ small; firms $i \in [0, 1]$

- Flow profits

$$\Pi(x_{i,t}, M_t, X_t) = \begin{cases}
M_t & \text{if } x_{i,t} = c \text{ (cash)} \\
M^e + CX_t & \text{if } x_{i,t} = e \text{ (electronic money)}
\end{cases}$$
Economic environment
- \(t = 0, \Delta, 2\Delta, 3\Delta, ..., \) with \(\Delta \) small; firms \(i \in [0, 1] \)
- Flow profits

\[
\Pi(x_{i,t}, M_t, X_t) = \begin{cases}
M_t & \text{if } x_{i,t} = c \text{ (cash)} \\
M^e + CX_t & \text{if } x_{i,t} = e \text{ (electronic money)}
\end{cases}
\]

\(M_t \) exogenous, AR(1)
Economic environment

- \(t = 0, \Delta, 2\Delta, 3\Delta, \ldots \), with \(\Delta \) small; firms \(i \in [0, 1] \)

- Flow profits

\[
\Pi(x_{i,t}, M_t, X_t) = \begin{cases}
M_t & \text{if } x_{i,t} = c \text{ (cash)} \\
M^e + CX_t & \text{if } x_{i,t} = e \text{ (electronic money)}
\end{cases}
\]

\(M_t \) exogenous, AR(1)

\[
X_t = \int_{i \in [0,1]} 1 \{ x_{i,t} = e \} \, di, \quad C \geq 0
\]
Economic environment
- \(t = 0, \Delta, 2\Delta, 3\Delta, \ldots \), with \(\Delta \) small; firms \(i \in [0, 1] \)

- Flow profits

\[
\Pi(x_{i,t}, M_t, X_t) = \begin{cases}
M_t & \text{if } x_{i,t} = c \text{ (cash)} \\
M^e + CX_t & \text{if } x_{i,t} = e \text{ (electronic money)}
\end{cases}
\]

\(M_t \) exogenous, AR(1)

\[
X_t = \int_{i \in [0,1]} 1 \{ x_{i,t} = e \} \, di, \quad C \geq 0
\]

- Max PDV of \(\Pi_{i,t} \) over \(\{ x_{i,t} \}_{t \geq 0} \) — can adjust w.p. \(1 - e^{-k\Delta} \) per period
The shock

\(S = \text{large shock to value of the cash technology, } M_t \)

\[
M_0 = (1 - e^{-\theta \Delta})M^c + e^{-\theta \Delta}M_{-\Delta} - S
\]
The shock

\[S = \text{large shock to value of the cash technology, } M_t \]

\[M_0 = (1 - e^{-\theta \Delta}) M^c + e^{-\theta \Delta} M_{-\Delta} - S \]

Compare dynamics under \(C = 0 \) and \(C > 0 \)
Abandon e-money
\[\Delta X_t = - (1 - e^{-\Delta k}) X_{t-\Delta} < 0 \]

Adopt e-money
\[\Delta X_t = (1 - e^{-\Delta k}) (1 - X_{t-\Delta}) > 0 \]

no complementarities \((C = 0)\)
Abandon e-money
\[\Delta X_t = -(1 - e^{-\Delta k}) X_{t-\Delta} < 0 \]

Adopt e-money
\[\Delta X_t = (1 - e^{-\Delta k}) (1 - X_{t-\Delta}) > 0 \]

no complementarities \((C = 0)\)
no endogenous persistence
complementarities \((C > 0)\)

\[
\Delta X_t = - (1 - e^{-\Delta k}) X_{t-\Delta} < 0
\]

\[
\Delta X_t = (1 - e^{-\Delta k}) (1 - X_{t-\Delta}) > 0
\]
complementarities ($C > 0$) persistent increase in total users X_t

new users ΔX_t
complementarities ($C > 0$)

state-dependence

Abandon e-money
$\Delta X_t = -(1 - e^{-\Delta k}) X_{t-\Delta} < 0$

Adopt e-money
$\Delta X_t = (1 - e^{-\Delta k})(1 - X_{t-\Delta}) > 0$
Testable predictions

With complementarities:

(a) persistent increase in total users

(b) persistent increase in new users

(c) state-dependence
Testable predictions

With complementarities:

(a) persistent increase in total users

(b) persistent increase in new users

(c) state-dependence
Testable predictions

With complementarities:

(a) persistent increase in total users

(b) persistent increase in new users

(c) state-dependence

With fixed costs: (a), but not (b) or (c)
Testable predictions

With complementarities:

(a) persistent increase in total users
(b) persistent increase in new users
(c) state-dependence

With fixed costs: (a), but not (b) or (c)

Next: test (a)-(c) using district- and firm-level data
3. Reduced-form evidence
Chest banks

- Want causal impact of cash contraction on SR and LR adoption
Chest banks

- Want causal impact of cash contraction on SR and LR adoption

- Use geographic variation in market share of *chest banks*
Chest banks

- Want causal impact of cash contraction on SR and LR adoption

- Use geographic variation in market share of chest banks

 commercial banks handling cash distribution within districts
Chest banks

- Want causal impact of cash contraction on SR and LR adoption

- Use geographic variation in market share of chest banks
 commercial banks handling cash distribution within districts
 larger market share \implies new cash circulated faster
Chest banks

- Want causal impact of cash contraction on SR and LR adoption

- Use geographic variation in market share of chest banks
 commercial banks handling cash distribution within districts
 larger market share \implies new cash circulated faster

- Share of deposits at chest banks in district $d \equiv \text{Chest}_d$
Chest banks

- Want causal impact of cash contraction on SR and LR adoption

- Use geographic variation in market share of *chest banks*
 commercial banks handling cash distribution within districts
 larger market share \Rightarrow new cash circulated faster

- Share of deposits at chest banks in district $d \equiv \text{Chest}_d$

- Exposure$_d = 1 - \text{Chest}_d$
Validation
Main specification

\[\log (y_{d,t}) = \alpha_t + \alpha_d + \delta_t \text{(Exposure)}_d + \Gamma'_t Y_d + \epsilon_{d,t} \]

\(d \): district

\(t \): month (May 2016 to June 2017)

\(Y_d \): district covariates (conditionally balanced)

s.e. clustered by district
Total firms on the platform

Effect on # of active firms

Time
New firms on the platform
Robustness
Robustness

Demand story?
- higher exposure \rightarrow lower consumption

Influential regions?
- one-state out

Placebo using consumption
State-dependence

Within district

Districts with larger pre-shock user base respond more.

Table

Between districts

Stronger effects for districts close to a large electronic payment hub?

\[d = \min \text{distance to the 5 largest pre-shock hubs} \]

\[X_d, s, t = \alpha_{st} + \alpha_d + \delta_t (D_d \times 1_{\{t \geq t_0\}}) + \gamma_t (\tilde{D}_d, s \times 1_{\{t \geq t_0\}}) + \Gamma' t Y_d + \epsilon_d, t \]
State-dependence

Within district

Districts with larger pre-shock user base respond more.
State-dependence

Within district

Districts with larger pre-shock user base respond more.

Between districts

Stronger effects for districts close to a large electronic payment hub?

\[
d = \min \text{distance to the 5 largest pre-shock hubs} \\
X_d, s, t = \alpha_{st} + \alpha_d + \delta_t (D_d \times 1\{t \geq t_0\}) + \gamma_t (\tilde{D}_d, s \times 1\{t \geq t_0\}) + \Gamma'_t Y_d + \epsilon_{d,t}
\]
State-dependence

Within district

Districts with larger pre-shock user base respond more.

Between districts

Stronger effects for districts close to a large electronic payment hub?

\[D_d = \text{min distance to the 5 largest pre-shock hubs} \]
State-dependence

Within district

Districts with larger pre-shock user base respond more.

Between districts

Stronger effects for districts close to a large electronic payment hub?

\[D_d = \text{min distance to the 5 largest pre-shock hubs} \]

\[X_{d,s,t} = \alpha_{st} + \alpha_d + \delta_t (D_d \times 1_{\{t \geq t_0\}}) + \gamma_t (\tilde{D}_{d,s} \times 1_{\{t \geq t_0\}}) + \Gamma_t Y_d + \epsilon_{d,t} \]
Total firms on the platform

Effect on # of active firms

Time

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-3 -2 -1 0 1 2 3 4 5 6 7 8
Summary

Reduced-form evidence shows:

(a) temporary shock \rightarrow increase in total platform users

(b) temporary shock \rightarrow increase in new platform users

(c) state-dependence
Summary

Reduced-form evidence shows:

(a) temporary shock \rightarrow increase in total platform users

(b) temporary shock \rightarrow increase in new platform users

(c) state-dependence

Qualitatively consistent with complementarities, but quantitative role?
4. Estimation and counterfactuals
Estimation and results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Adoption complementarities</td>
<td>0.063</td>
<td>(0.004)</td>
</tr>
<tr>
<td>S</td>
<td>Size of aggregate shock</td>
<td>0.246</td>
<td>(0.047)</td>
</tr>
</tbody>
</table>

- Estimate C and other structural parameters using SMM

C identified using average cumulative change in X_t after Feb 17

$S = \frac{24.6\%}{6 \text{ s.d.}} \times \text{G.E. estimates of Chodorow-Reich et al. (2018)}$
Estimation and results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Adoption complementarities</td>
<td>0.063</td>
<td>(0.004)</td>
</tr>
<tr>
<td>S</td>
<td>Size of aggregate shock</td>
<td>0.246</td>
<td>(0.047)</td>
</tr>
</tbody>
</table>

- Estimate C and other structural parameters using SMM

 C identified using average cumulative change in X_t after Feb 17

- Reject null of no complementarities

 3.0% lower profits if $X = 0$, 3.3% higher if $X = 1$
Estimation and results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.063</td>
<td>(0.004)</td>
</tr>
<tr>
<td>S</td>
<td>0.246</td>
<td>(0.047)</td>
</tr>
</tbody>
</table>

- Estimate C and other structural parameters using SMM

 C identified using average cumulative change in X_t after Feb 17

- Reject null of no complementarities

 3.0% lower profits if $X = 0$, 3.3% higher if $X = 1$

- Short-run decline in cash-based revenue: $S = 24.6\%$ or 6 s.d.

 3× of G.E. estimates of Chodorow-Reich et al. (2018)
Average change in adoption relative to October 2016 ($E_{t_0} [\Delta_{t_0} X_{d,t}]$)

- **Data**
- **Baseline**
- **Counterfactual: no complementarities**

(%)

0 1 2 3 4 5 6 7 8
Counterfactuals

Short-lived shocks \Rightarrow state-dependence \Rightarrow more dispersion

$$\text{arg max}_{S, \theta} E_{t=0} \left[\Delta_{t=0} X_d, t_0 + T \right] - g_2 \text{var}_{t=0} \left[\Delta_{t=0} X_d, t_0 + T \right] \text{s.t.} B(S, \theta) \leq B(\hat{S}, \theta_0)$$

Baseline Alternative policy interventions $g = 0$ $g = 0.1$ $g = 0.25$ $g = 0.5$

Shock size (p.p.) 24.56, 21.00, 18.31, 16.81, 14.22

Shock HL (months) 0.82, 1.05, 1.29, 1.37, 1.55

$E[\Delta X_d]$ (p.p.) 7.22, 8.34, 8.32, 8.23, 7.82

$sd[\Delta X_d]$ (p.p.) 26.42, 36.66, 34.64, 28.67, 24.81
Counterfactuals

Short-lived shocks \implies state-dependence \implies more dispersion
Counterfactuals

Short-lived shocks \implies state-dependence \implies more dispersion

$$\arg \max_{S, \theta} \quad \mathbb{E}_{t_0} [\Delta_{t_0} X_{d, t_0+T}] - \frac{g}{2} \text{var}_{t_0} [\Delta_{t_0} X_{d, t_0+T}] \quad \text{s.t.} \quad B(S, \theta) \leq B(\hat{S}, \theta_0)$$
Counterfactuals

Short-lived shocks \implies state-dependence \implies more dispersion

$$\arg\max_{S, \theta} \mathbb{E}_{t_0} [\Delta_{t_0} X_{d,t_0+T}] - \frac{g}{2} \text{var}_{t_0} [\Delta_{t_0} X_{d,t_0+T}] \quad \text{s.t.} \quad B(S, \theta) \leq B(\hat{S}, \theta_0)$$

$$B(S, \theta) = \text{NPV of } M^c - M_t$$
Counterfactuals

Short-lived shocks \(\implies \) state-dependence \(\implies \) more dispersion

\[
\text{arg max}_{S, \theta} \quad \mathbb{E}_{t_0} [\Delta_{t_0}X_{d, t_0+T}] - \frac{g}{2} \text{var}_{t_0} [\Delta_{t_0}X_{d, t_0+T}] \quad \text{s.t.} \quad B(S, \theta) \leq B(\hat{S}, \theta_0)
\]

\[
B(S, \theta) = \text{NPV of } M^c - M_t
\]

Baseline vs. Alternative policy interventions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Alternative policy interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g = 0)</td>
<td>(g = 0.10)</td>
</tr>
<tr>
<td>Shock size (p.p.)</td>
<td>24.56</td>
<td>21.00</td>
</tr>
<tr>
<td>Shock HL (months)</td>
<td>0.82</td>
<td>1.05</td>
</tr>
<tr>
<td>(\mathbb{E} [\Delta X_d]) (p.p.)</td>
<td>7.22</td>
<td>8.34</td>
</tr>
<tr>
<td>(sd [\Delta X_d]) (p.p.)</td>
<td>26.42</td>
<td>36.66</td>
</tr>
</tbody>
</table>
Take-aways

1. About 60% of the LR response of adoption due to complementarities

2. Smaller, more persistent shock would have led to:
 - higher average adoption increase
 - less dispersion in LR adoption rates across districts
5. Conclusion
Conclusion

1. Are coordination problems an obstacle to Fintech adoption?

2. Can policy interventions help?
1. Are coordination problems an obstacle to Fintech adoption?

 In the case of the Demonetization: they account for 60% of adoption response

2. Can policy interventions help?
Conclusion

1. Are coordination problems an obstacle to Fintech adoption?

 In the case of the Demonetization: they account for 60% of adoption response

2. Can policy interventions help?

 yes; large, temporary shocks → persistent increase in adoption
Conclusion

1. Are coordination problems an obstacle to Fintech adoption?

 In the case of the Demonetization: they account for 60% of adoption response

2. Can policy interventions help?

 yes; large, temporary shocks → persistent increase in adoption
 but temporary shocks also exacerbate initial adoption differences
Appendix
Dynamics of the number of users

\[X_t = \int_{i \in [0,1]} 1 \{ x_{i,t} = e \} \, di \]
(number of firms using \(e \))
Dynamics of the number of users

\[X_t = \int_{i \in [0,1]} 1 \{x_{i,t} = e\} \, di \quad \text{(number of firms using } e) \]

\[\Delta X_t = \]
Dynamics of the number of users

\[X_t = \int_{i \in [0,1]} 1 \{ x_{i,t} = e \} \, di \quad \text{(number of firms using e)} \]

\[\Delta X_t = (1 - e^{-k\Delta}) (1 - X_{t-\Delta}) 1 \{ x(c, B_{t-\Delta}) = e \} \]

\[\text{switchers (c \rightarrow e)} \]
Dynamics of the number of users

\[X_t = \int_{i \in [0,1]} 1 \{x_{i,t} = e\} \, di \quad \text{(number of firms using } e) \]

\[\Delta X_t = \left(1 - e^{-k\Delta}\right) (1 - X_{t-\Delta}) 1 \{x(c, B_{t-\Delta}) = e\} - \left(1 - e^{-k\Delta}\right) X_{t-\Delta} 1 \{x(e, B_{t-\Delta}) = c\} \]

- **Switchers (c \rightarrow e)**
- **Switchers (e \rightarrow c)**
Solution

Fixed costs

Must pay $\kappa > 0$ to switch from c to e

Technology choice

$$x(x_i,t-\Delta, B_{t-\Delta}) = \begin{cases}
 c & \text{if } B_{t-\Delta} \leq 0 \\
 x_{i,t-\Delta} & \text{if } B_{t-\Delta} \in [0, \kappa] \\
 e & \text{if } B_{t-\Delta} > \kappa
\end{cases}$$

where B_t = relative value of operating under e vs. c.

Equilibrium

switch to e \iff $B_{t-\Delta} > \kappa$ \iff $M_{t-\Delta} < \Phi(X_{t-\Delta})$

switch to c \iff $B_{t-\Delta} < 0$ \iff $M_{t-\Delta} > \Phi(X_{t-\Delta})$ $($>$\Phi(X_{t-\Delta}))$
Fixed costs

\[\Delta X_t = -(1 - e^{-\Delta t})X_{t-\Delta} < 0 \]

Adoption of paper money

\[\Delta X_t = (1 - e^{-\Delta t}) (1 - X_{t-\Delta}) > 0 \]

Adoption of electronic money

\[M_t = M \]

Inaction

\[\Delta X_t = 0 \]

\[M^c \]

Fraction of users (\(X_{t-\Delta}\))

Shock (\(M_{t-\Delta}\))

Back to testable predictions
Fixed costs

Number of e-money users $\mathbb{E}_t[X_{d,t}]$

Adoption decision

Back to testable predictions
Fixed costs
Mean quarterly growth in bank deposits

<table>
<thead>
<tr>
<th>Time</th>
<th>Annual % change in deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>-15</td>
</tr>
<tr>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Therefore, the shock led to a significant but temporary cash-crunch;
- Cash in circulation re-started to grow already in January;
- The Government removed all the cash withdrawal conditions already on January 31st.
Exposure validation

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \log(\text{deposits}))</th>
<th>(\Delta \log(\text{deposits}^{adj.}))</th>
<th>(\Delta \log(\text{deposits}^N))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Chest Exposure</td>
<td>0.094***</td>
<td>0.083***</td>
<td>0.085**</td>
</tr>
<tr>
<td></td>
<td>[0.013]</td>
<td>[0.012]</td>
<td>[0.013]</td>
</tr>
<tr>
<td>log(Pre Deposits)</td>
<td>-0.035***</td>
<td>-0.035***</td>
<td>-0.677**</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.003]</td>
<td></td>
</tr>
<tr>
<td>% villages with ATM</td>
<td>0.023</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.040]</td>
<td>[0.042]</td>
<td></td>
</tr>
<tr>
<td>% villages with banks</td>
<td>-0.051**</td>
<td>-0.051**</td>
<td>-1.000**</td>
</tr>
<tr>
<td></td>
<td>[0.023]</td>
<td>[0.024]</td>
<td></td>
</tr>
<tr>
<td>Rural Pop./Total Pop.</td>
<td>-0.063***</td>
<td>-0.070***</td>
<td>-1.224**</td>
</tr>
<tr>
<td></td>
<td>[0.016]</td>
<td>[0.017]</td>
<td></td>
</tr>
<tr>
<td>log(population)</td>
<td>0.036***</td>
<td>0.035***</td>
<td>0.707**</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.003]</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.118</td>
<td>0.313</td>
<td>0.099</td>
</tr>
<tr>
<td>District Controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at district level in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.
Exposure validation

<table>
<thead>
<tr>
<th></th>
<th>(1) 201604</th>
<th>(2) 201603</th>
<th>(3) 201602</th>
<th>(4) 201601</th>
<th>(5) 201504</th>
<th>(6) 201503</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exposure)$_d$</td>
<td>1.621***</td>
<td>-0.404</td>
<td>0.476**</td>
<td>0.137</td>
<td>0.163</td>
<td>0.342</td>
</tr>
<tr>
<td></td>
<td>[0.238]</td>
<td>[0.260]</td>
<td>[0.236]</td>
<td>[0.234]</td>
<td>[0.268]</td>
<td>[0.255]</td>
</tr>
<tr>
<td>Observations</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.313</td>
<td>0.027</td>
<td>0.026</td>
<td>0.162</td>
<td>0.020</td>
<td>0.054</td>
</tr>
<tr>
<td>District Controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(7) 201502</th>
<th>(8) 201501</th>
<th>(9) 201404</th>
<th>(10) 201403</th>
<th>(11) 201402</th>
<th>(12) 201401</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exposure)$_d$</td>
<td>-0.040</td>
<td>0.315</td>
<td>0.345</td>
<td>-0.734***</td>
<td>0.165</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>[0.231]</td>
<td>[0.240]</td>
<td>[0.291]</td>
<td>[0.280]</td>
<td>[0.257]</td>
<td>[0.269]</td>
</tr>
<tr>
<td>Observations</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.044</td>
<td>0.061</td>
<td>0.017</td>
<td>0.037</td>
<td>0.100</td>
<td>0.124</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at district level in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.
<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>mean</th>
<th>univariate OLS</th>
<th>baseline controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>coeff.</td>
<td>R²</td>
</tr>
<tr>
<td>Log(Pre Deposits)</td>
<td>11.083</td>
<td>-1.290***</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.273)</td>
<td></td>
</tr>
<tr>
<td>% villages with ATM</td>
<td>0.036</td>
<td>0.090***</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td># Bank Branches per 1000’s</td>
<td>0.047</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td># Agri Credit Societies per 1000’s</td>
<td>0.045</td>
<td>-0.016</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.027)</td>
<td></td>
</tr>
<tr>
<td>% villages with banks</td>
<td>0.085</td>
<td>0.131***</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.036)</td>
<td></td>
</tr>
<tr>
<td>Log(Population)</td>
<td>14.376</td>
<td>-0.501**</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.208)</td>
<td></td>
</tr>
<tr>
<td>Literacy rate</td>
<td>0.622</td>
<td>-0.029</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>Sex Ratio</td>
<td>0.946</td>
<td>0.008</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td>Growth Rate</td>
<td>0.208</td>
<td>-0.219</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.139)</td>
<td></td>
</tr>
<tr>
<td>Working Pop./Total Pop.</td>
<td>0.410</td>
<td>0.026</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.016)</td>
<td></td>
</tr>
</tbody>
</table>
Traditional electronic payments: intensive margin

Figure 1: Monthly growth in transaction on debit and credit cards
Traditional electronic payments: extensive margin

Figure 2: Monthly growth in application for electronic payments
Propagation: between-districts

<table>
<thead>
<tr>
<th></th>
<th>log(amount)</th>
<th>log(# transactions)</th>
<th>log(# firms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>(Distance to hub) (d \times 1{t \geq t_0})}</td>
<td>-5.473***</td>
<td>-3.663***</td>
<td>-3.567***</td>
</tr>
<tr>
<td></td>
<td>[0.946]</td>
<td>[1.175]</td>
<td>[0.597]</td>
</tr>
<tr>
<td>Observations</td>
<td>6,846</td>
<td>6,846</td>
<td>6,846</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.848</td>
<td>0.885</td>
<td>0.860</td>
</tr>
<tr>
<td>District Controls × Month f.e.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>State × Month f.e.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** p < 0.01, ** p < 0.05, * p < 0.1.
The model with $\theta < k$

Adoption of paper money
$\Delta X_t = -\left(1 - e^{-\Delta t}\right) X_{t-\Delta} < 0$

Adoption of electronic money
$\Delta X_t = \left(1 - e^{-\Delta t}\right) (1 - X_{t-\Delta}) > 0$
The model with $\theta < k$

- Weaker state-dependence: districts tend to converge to full adoption regardless of initial conditions
Difference-in-differences: Monte-Carlo validation

<table>
<thead>
<tr>
<th></th>
<th>No complementarities ((C = 0))</th>
<th>Complementarities ((C > 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1_{{d \in \mathcal{T}}} \times 1_{{t \geq t_0}})</td>
<td>0.116 (0.025,0.208)</td>
<td>0.118 (0.109,0.126)</td>
</tr>
<tr>
<td>Observations per simulation</td>
<td>22,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Average R-sq.</td>
<td>0.389</td>
<td>0.688</td>
</tr>
</tbody>
</table>

\(X_{d,t} = \alpha_d + \beta 1_{\{t \geq t_0\}} + \gamma 1_{\{d \in \mathcal{T}\}} + \delta (1_{\{d \in \mathcal{T}\}} \times 1_{\{t \geq t_0\}}) + \epsilon_{d,t}\)
Difference-in-differences: Monte-Carlo validation

High minus low exposure to the shock - dynamic effects

\[X_{d,t} = \alpha_d + \beta_t + \delta_t 1_{d \in T} + \epsilon_{d,t} \]
State dependence: Monte-Carlo validation

<table>
<thead>
<tr>
<th>No complementarities ((C = 0))</th>
<th>Complementarities ((C > 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1{x_{0,d} \in \hat{x}_0} \times 1{t \geq t_0})</td>
<td>(-0.009) ((-0.017, -0.002))</td>
</tr>
<tr>
<td>Observations per simulation</td>
<td>22,000</td>
</tr>
<tr>
<td>Average R-sq.</td>
<td>0.211</td>
</tr>
</tbody>
</table>

\[
X_{d,t} = \alpha_d + \beta 1\{t \geq t_0\} + \gamma 1\{x_{0,d} \geq \hat{x}_0\} + \delta \left(1\{x_{0,d} \geq \hat{x}_0\} \times 1\{t \geq t_0\}\right) + \epsilon_{d,t}
\]
State dependence: Monte-Carlo validation

\[X_{d,t} = \alpha_t + \beta_d + \delta_t \mathbf{1}_{\{X_{0,d} \geq \bar{X}_0\}} + \epsilon_{d,t} \]
State dependence: within district

<table>
<thead>
<tr>
<th>Model</th>
<th>Log(# transactions)</th>
<th>Log(amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>$1(t \geq t_0) \times 1(\text{Any adopter}_d)$</td>
<td>2.803***</td>
<td>4.864***</td>
</tr>
<tr>
<td></td>
<td>(0.246)</td>
<td>(0.346)</td>
</tr>
<tr>
<td>$1(t \geq t_0) \times \log(\text{Amount of transactions}_d)$</td>
<td>0.281***</td>
<td>0.230***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Month f.e.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>District f.e.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>District Controls</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>5,780</td>
<td>5,780</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.609</td>
<td>0.603</td>
</tr>
<tr>
<td>Number of districts</td>
<td>578</td>
<td>578</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

$X_d, t = \alpha t + \alpha d + \delta X_d, t - 1 + \Gamma t Y_d + \epsilon_d, t$.

Back
State dependence at the firm level: Monte-Carlo validation

<table>
<thead>
<tr>
<th>No complementarities ($C = 0$)</th>
<th>Complementarities ($C > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.862</td>
</tr>
<tr>
<td></td>
<td>(0.861, 0.864)</td>
</tr>
<tr>
<td>β</td>
<td>-0.175</td>
</tr>
<tr>
<td></td>
<td>(-0.180, -0.170)</td>
</tr>
<tr>
<td>γ</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(-0.020, -0.011)</td>
</tr>
<tr>
<td>Observations per simulation</td>
<td>2,100,000</td>
</tr>
<tr>
<td>Average R-sq.</td>
<td>0.754</td>
</tr>
</tbody>
</table>

$x_{i,d,t} = \alpha_i + \rho x_{i,d,t-\Delta} + \beta M_{d,t-\Delta} + \gamma X_{d,t-\Delta} + \epsilon_{i,d,t}$
Map Exposure
Consumption response

Survey-time vs. Effect on total consumption

Rob.
Drop One State

Effect on amount transacted

State excluded from sample
FIGURE 3: Evidence from Google Search Trends
State-dependence: firm level

![Graphs showing state-dependence at the firm level](image-url)
Placebo

Effect on Total Consumption

Placebo Survey-time

Chest Bank Exposure

Ideally, we would want to measure for each district:

\[
\text{Chest}_d = \frac{\text{Deposits in the banks with a currency chest in the district}}{\text{Total deposits in all banks in the district}}
\]

Drawback:
- deposit data available at district-bank group level, not district-bank level

Assume:
- deposits uniformly distr. across branches within bank group \(g\) in district \(d\)

\[
\text{Chest}_d = \frac{1}{D_d} \left(\sum_{g \in G_d} \left(D_{gd} \times \frac{N^{\text{chest}}_{gd}}{N^{\text{all}}_{gd}} \right) \right)
\]
State-dependence: firm level

\[x_{i,k,p,t} = \log(\# \text{ transactions})_{i,k,p,t} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{i,k,p,t} - 1)</td>
<td>0.707***</td>
<td>0.617***</td>
<td>0.593***</td>
<td>0.577***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(X_{k,p,t} - 1)</td>
<td>0.032***</td>
<td>0.062***</td>
<td>0.041***</td>
<td>0.017***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>R²</td>
<td>0.549</td>
<td>0.574</td>
<td>0.601</td>
<td>0.606</td>
</tr>
<tr>
<td>Firm f.e.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industry × Week f.e.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pincode × Week f.e.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>11,750,558</td>
<td>11,750,558</td>
<td>11,541,757</td>
<td>11,541,757</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** p < 0.01, ** p < 0.05, * p < 0.1.
\(C = 0, \kappa > 0 \) (pure fixed costs): no increase in switchers

- Permanent increase in the number of users
- Transitory increase in the number of switchers
$C = 0, \kappa > 0$ (pure fixed costs): adoption policies

Adoption policy is independent of $X_t - X_{t-\Delta} < 0$.

$\Delta X_t = -\left(1 - e^{-\kappa}\right) X_{t-\Delta} < 0$
Expression for B

$$B(M_{t-\Delta}, X_{t-\Delta}) = \text{value of using } e - \text{value of using } c$$

$$= \mathbb{E}_{t-\Delta} \left[(\Pi_t^e - \Pi_t^c) \Delta + e^{-(r+k)\Delta} B(M_t, X_t) \right]$$
Expression for B

\[
B(M_t-\Delta, X_t-\Delta) = \text{value of using } e - \text{value of using } c = E_t-\Delta \left[(\Pi_t^e - \Pi_t^c) \Delta + e^{-(r+k)\Delta} B(M_t, X_t) \right] + e^{-r\Delta} \left(1 - e^{-k\Delta} \right) E_t-\Delta \left[g(B(M_t, X_t)) \right]
\]

\[
g(B) = \max(0, \min(B, \kappa))
\]
Estimation methodology

Objective function:

\[
\hat{\Theta} = \arg\min \left(\hat{\Xi} - \frac{1}{S} \sum_{s=1}^{S} \Xi_{\text{sim}} (\Theta; \gamma_s) \right) \prime W \left(\hat{\Xi} - \frac{1}{S} \sum_{s=1}^{S} \Xi_{\text{sim}} (\Theta; \gamma_s) \right),
\]

where \(\hat{\Xi} = (\hat{\beta}, \hat{\gamma}, \hat{\delta}, \hat{\zeta}, \hat{\xi}, \hat{\eta}, \hat{\kappa}, \hat{\nu}) \).

Use the optimal weighting matrix:

\[
W = \frac{1}{N_m} \text{var} \left(\hat{\Xi} \right)^{-1},
\]

with \(\text{var} \left(\hat{\Xi} \right) \) estimated using the bootstrap, clustering by district:

\[
\text{var} \left(\hat{\Xi} \right) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\Xi}_b - \hat{\Xi} \right) \prime \left(\hat{\Xi}_b - \hat{\Xi} \right).
\]
Model fit

<table>
<thead>
<tr>
<th>Moment</th>
<th>Emp. val.</th>
<th>Sim. val.</th>
<th>Std. error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}$</td>
<td>0.030</td>
<td>0.032</td>
<td>0.004</td>
<td>0.32</td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td>0.038</td>
<td>0.035</td>
<td>0.003</td>
<td>0.06</td>
</tr>
<tr>
<td>$\hat{\delta}$</td>
<td>0.081</td>
<td>0.080</td>
<td>0.005</td>
<td>0.40</td>
</tr>
<tr>
<td>$\hat{\zeta}$</td>
<td>0.027</td>
<td>0.007</td>
<td>0.004</td>
<td>0.00</td>
</tr>
<tr>
<td>$\hat{\xi}$</td>
<td>0.083</td>
<td>0.093</td>
<td>0.004</td>
<td>0.02</td>
</tr>
<tr>
<td>$\hat{\eta}$</td>
<td>0.098</td>
<td>0.096</td>
<td>0.004</td>
<td>0.26</td>
</tr>
<tr>
<td>$\hat{\kappa}$</td>
<td>0.102</td>
<td>0.092</td>
<td>0.007</td>
<td>0.08</td>
</tr>
<tr>
<td>$\hat{\zeta}$</td>
<td>0.045</td>
<td>0.050</td>
<td>0.003</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OID stat</th>
<th>Degrees of freedom</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7076</td>
<td>3</td>
<td>0.1945</td>
</tr>
</tbody>
</table>
Estimation

5 structural parameters

C Strength of complementarities
k Speed of technology adjustment
S Size of aggregate shock
Me Returns to electronic payments with no adoption
σ Volatility of idiosyncratic innovations
Estimation

5 structural parameters

- C Strength of complementarities
- k Speed of technology adjustment
- S Size of aggregate shock
- M^e Returns to electronic payments with no adoption
- σ Volatility of idiosyncratic innovations

8 data moments

\[\Delta_{t_0} X_{d,t} = \beta + \gamma 1 \{ t \geq t_0 + 3 \} + \delta X_{d,t_0} + \zeta (1 \{ t \geq t_0 + 3 \} \times X_{d,t_0}) + \epsilon_{d,t}, \]

\[\hat{\text{var}}_t (\Delta_{t_0} X_{d,t}) = \eta + \kappa 1 \{ t \geq t_0 + 3 \} + \mu_t, \]

\[\hat{\text{var}}_d (\Delta_{t_0} X_{d,t}) = \nu + \omega_d, \quad \hat{\epsilon}_{d,t}^2 = \xi + \omega_{d,t}. \]
Estimation

5 structural parameters

\[C \quad \text{Strength of complementarities} \quad \rightarrow \gamma \]
\[k \quad \text{Speed of technology adjustment} \]
\[S \quad \text{Size of aggregate shock} \]
\[M_e \quad \text{Returns to electronic payments with no adoption} \]
\[\sigma \quad \text{Volatility of idiosyncratic innovations} \]

8 data moments

\[\Delta_{t_0}X_{d,t} = \beta + \gamma 1 \{ t \geq t_0 + 3 \} + \delta X_{d,t_0} + \zeta (1 \{ t \geq t_0 + 3 \} \times X_{d,t_0}) + \epsilon_{d,t}, \]
\[\hat{\text{var}}_i(\Delta_{t_0}X_{d,t}) = \eta + \kappa 1 \{ t \geq t_0 + 3 \} + \mu_t, \]
\[\hat{\text{var}}_d(\Delta_{t_0}X_{d,t}) = \nu + \omega_d, \quad \hat{\epsilon}_{d,t}^2 = \xi + \omega_{d,t}. \]
Estimation

5 structural parameters

\begin{align*}
C & \quad \text{Strength of complementarities} \\
k & \quad \text{Speed of technology adjustment} \\
S & \quad \text{Size of aggregate shock} \\
M^e & \quad \text{Returns to electronic payments with no adoption} \\
\sigma & \quad \text{Volatility of idiosyncratic innovations}
\end{align*}

8 data moments

\begin{align*}
\Delta_{t_0}X_{d,t} &= \beta + \gamma 1 \{t \geq t_0 + 3\} + \delta X_{d,t_0} + \zeta (1 \{t \geq t_0 + 3\} \times X_{d,t_0}) + \epsilon_{d,t}, \\
\hat{\text{var}}_t(\Delta_{t_0}X_{d,t}) &= \eta + \kappa 1 \{t \geq t_0 + 3\} + \mu_t, \\
\hat{\text{var}}_d(\Delta_{t_0}X_{d,t}) &= \nu + \omega_d, \quad \hat{\epsilon}^2_{d,t} = \xi + \omega_{d,t}.
\end{align*}
Estimation

5 structural parameters

- \(C \): Strength of complementarities \(\rightarrow \gamma \)
- \(k \): Speed of technology adjustment \(\rightarrow \kappa \)
- \(S \): Size of aggregate shock \(\rightarrow \beta \)
- \(M^e \): Returns to electronic payments with no adoption \(\rightarrow \nu \)
- \(\sigma \): Volatility of idiosyncratic innovations \(\rightarrow \xi \)

8 data moments

\[
\Delta_{t_0}X_{d,t} = \beta + \gamma 1 \{ t \geq t_0 + 3 \} + \delta X_{d,t_0} + \zeta (1 \{ t \geq t_0 + 3 \} \times X_{d,t_0}) + \epsilon_{d,t},
\]

\[
\hat{\text{var}}_i(\Delta_{t_0}X_{d,t}) = \eta + \kappa 1 \{ t \geq t_0 + 3 \} + \mu_t,
\]

\[
\hat{\text{var}}_d(\Delta_{t_0}X_{d,t}) = \nu + \omega_d, \quad \hat{\epsilon}_{d,t}^2 = \xi + \omega_{d,t}.
\]