Shocks and Technology Adoption: Evidence from Electronic Payment Systems

Nicolas Crouzet, Apoorv Gupta & Filippo Mezzanotti

Kellogg and Dartmouth

Motivation

Many Fintech products are network technologies

peer-to-peer lending; electronic payment platforms

Decisions to adopt are <u>complements</u> across users [Katz and Shapiro 1986, Farrell and Saloner 1986] coordination problems theoretical possibility, but quantitative importance?

This paper: evidence on coordination problems network technology: electronic wallet empirical setting: Indian demonetization of 2016

Results

Model: Large but temporary shock ⇒
P1 Persistent increase in network size
P2 Persistent increase in network growth rate
P3 State-dependence w.r.t. initial network size

Reduced-form tests

Instrument: geographic variation in exposure to demonetization Adoption response consistent with **P1-P3**

③ Structural estimation

6-month adoption response 60% smaller w/o externalities Trade-off btw. shock persistence and dispersion of adoption

Related literature

Dynamic coordination problems

 Frankel and Pauzner (2000), Burdzy, Frankel and Pauzner (2001), Guimarães and Machado (2018)

this paper : test predictions on persistence and state dependence

Payments in Fintech

· Higgins (2019)

this paper : coordination is an obstacle even if ≈ 0 adoption costs

Indian demonetization of 2016

· Chodorow-Reich et al. (2018)

this paper : imperfect substitutability btw. cash and e-money

Plan

- 1. Background
- 2. Theory
- 3. Reduced-form evidence
- 4. Structural estimation + counterfactuals

1. Background

The Indian demonetization of 2016

Nov 2016: surprise announcement Existing Rs.500 and Rs.1000 notes voided Swap to new Rs.500 and Rs.2000 notes

Nov 2016 - Jan 2017: cash crunch

Gov't withdrawal limits

Logistical problems in currency distribution

After Jan 2017: cash shortage abates

Withdrawal limits lifted

Cash queries

Growth of currency in circulation resumes

The Indian demonetization of 2016

Nov 2016: surprise announcement Existing Rs.500 and Rs.1000 notes voided Swap to new Rs.500 and Rs.2000 notes

Nov 2016 - Jan 2017: cash crunch

Gov't withdrawal limits

Logistical problems in currency distribution

After Jan 2017: cash shortage abates

Withdrawal limits lifted

Cash queries

Growth of currency in circulation resumes

Payments adoption during the Demonetization

Study a large provider of electronic wallets

registration only requires bank account + mobile phone no set-up fees, no transaction fees

Sample

 ≈ 1 million firms amount and # of transactions; geo identifiers weekly (May 2016 to June 2017)

Debit and credit cards

2. Model

Model description (1/2)

Flow profits for firm $i \in [0, 1]$:

$$\Pi(x_{i,t}, M_t, X_t) = \begin{cases} M_t & \text{if } x_{i,t} = c \\ M^e + CX_t & \text{if } x_{i,t} = e \end{cases}$$
(cash) (e-money)

Aggregate states (M_t, X_t)

$$dM_t = \theta \left(M^c - M_t \right) + \sigma dZ_t$$
$$X_t = \int \mathbf{1} \left\{ x_{i,t} = \mathbf{e} \right\} di$$

Firm *i* can switch $c \leftrightarrow e$ at Poisson rate $\tilde{k} \in [0, k]$

Model description (2/2)

Optimal switching rate:

$$a_t(M_t, X_t) = \mathbf{1} \left\{ \mathbb{E}_t \left[\int_{s \ge 0} e^{-(r+k)ds} \Delta \Pi(M_{t+s}, X_{t+s}) ds \right] \ge 0 \right\}$$
$$\tilde{k}_t(x_{i,t}, M_t, X_t) = \left\{ \begin{array}{ll} ka_t(M_t, X_t) & \text{if } x_{i,t} = c \\ k(1 - a_t(M_t, X_t)) & \text{if } x_{i,t} = e \end{array} \right.$$

Law of motion for X_t :

Eq'um characterization

$$dX_t = (1 - X_t)a_tkdt - X_t(1 - a_t)kdt$$
$$= (a_t - X_t)kdt$$

 $C > 0 \rightarrow$ adoption complementarities: $a_t(M_t, X_t)$

The response of adoption to large shocks

Characterize impulse responses

$$\mathcal{I}_X(t; M_0, X_0) = \mathbb{E}_0 \left[X_t \mid M_0, X_0 \right]$$
$$\mathcal{I}_a(t; M_0, X_0) = \mathbb{E}_0 \left[a_t \mid M_0, X_0 \right]$$

up to horizon

 $t > \theta^{-1}\log(2) =$ shock half-life

Prediction 1: $C > 0 \implies$ persistent increase in user base (X_t)

Numerical result: The IRF of the user base *X*_t is increasing in *C*:

 $\frac{\partial}{\partial C}\mathcal{I}_X(t;M_0,0)\geq 0.$

Prediction 2: $C > 0 \implies$ persistent increase in adoption rate (a_t)

Numerical result: The IRF of the adoption rate *a*_t is increasing in *C*:

 $\frac{\partial}{\partial C}\mathcal{I}_a(t;M_0,0)\geq 0.$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$
Prediction 3: $C > 0 \implies$ **state-dependence**

<u>Numerical result</u>: When C > 0, the IRF of the adoption rate a_t increases with X_0 :

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

Prediction 3: $C > 0 \implies$ **state-dependence**

<u>Numerical result</u>: When C > 0, the IRF of the adoption rate a_t increases with X_0 :

$$\frac{\partial}{\partial X_0}\mathcal{I}_a(t;M_0,X_0)>0.$$

Summary

When C > 0:

P1 Persistent response of user base X_t

P2 Persistent response of adoption rate a_t

P3 State-dependence with respect to X_0

Next: test P1-P3 using district- and firm-level data

3. Reduced-form evidence

Empirical setting

Limits of aggregate event study other aggregate shocks after Nov. 2016 (**P1**, **P2**) no variation in initial adoption (**P3**)

District-level analysis

District-level exposure: market share of <u>chest banks</u> commercial banks handling cash distribution within districts

> Chest share_d = $\frac{\text{Chest bank deposits}_d}{\text{Total bank deposits}_d}$ Exposure_d = 1 - Chest share_d

Validation of exposure measure

Other quarters Distribution Map

Table

Main specification

$$\log(y_{d,t}) = \alpha_t + \alpha_d + \delta_t(\text{Exposure})_d + \Gamma'_t Y_d + \epsilon_{d,t}$$

d: district

t : month (May 2016 to June 2017)

 Y_d : district covariates (to ensure conditional balance)

s.e. clustered by district

Result excluding individual states Placebo using consumption survey data

Total firms on the platform (P1)

New firms on the platform (P2)

Testing for state-dependence (P3)

Direct test

Districts with higher X_0 (pre-shock user base) respond more

Instrumenting for initial adoption

Stronger effects for districts close to a large electronic payment hub?

 $X_{d,t} = \alpha_t + \alpha_d + \delta_t D_d + \Gamma'_t Y_d + \epsilon_{d,t}$

 D_d = min distance to the 5 largest pre-shock hubs

Distance to hub and number of firms (P3)

Distance to hub and number of new firms (P3)

Alternative explanations (1/2)

(1) C = 0, but persistent shock and/or slow switching rate (low θ + low k) By Jan 2017, currency in circulation/GDP back to > 90% pre-shock level Model with low k + low $\theta \implies$ P1 and P2, but not P3

(2) C = 0, but fixed costs of switching

For firms in our sample, no purchase of POS terminal required; no sign-up fees Model with C = 0 but fixed cost \implies P1, but not P2 or P3

(3) C = 0, but demand shock

Higher exposure predicts lower consumption

Alternative explanations (2/2)

(4) C = 0, but adoption response driven by learning

Pre-Nov adopters: persistent increase in activity Nov-Jan adopters: shock exposure predicts increase in activity from Feb to June

Index of social connectivity does not predict stronger response to shock Survey: 36% "friends and family" vs. 80% "stores started accepting e wallets"

(5) C = 0, but reflection problem

State-dependence (P3) explained by common unobserved component

e.g. distance to hub corr. w/ propensity to adopt new products

Empirically, distance to hub does not predict growth in loans made on fintech platform growth in number of bank deposit accounts growth in number of mobile phones

Evidence	
Evidence	

Evidence

Evidence

Reduced-form evidence qualitatively consistent w/ model predictions when C > 0

- P1 Persistent response of user base
- P2 Persistent response of adoption rate
- P3 State-dependence

Quantitative impact of complementarities?

4. Structural estimation and counterfactuals

5 structural parameters:

- C Complementarities
- *k* Max switching rate
- *S* Shock to cash demand
- M^e Returns to **e** when $X_t = 0$
- σ Volatility of innovations to M_t

8 moments from the panel of districts:

 $\begin{aligned} \Delta_{t_0} X_{d,t} &= \beta + \gamma \mathbf{1} \{ t \ge t_0 + 3 \} + \delta X_{d,t_0} + \zeta \left(\mathbf{1} \{ t \ge t_0 + 3 \} \times X_{d,t_0} \right) + \epsilon_{d,t}, \\ v \hat{a} r_t(\Delta_{t_0} X_{d,t}) &= \eta + \kappa \mathbf{1} \{ t \ge t_0 + 3 \} + \mu_t, \\ v \hat{a} r_d(\Delta_{t_0} X_{d,t}) &= \nu + \omega_d, \end{aligned}$

5 structural parameters:

- C Complementarities
- *k* Max switching rate
- *S* Shock to cash demand
- M^e Returns to **e** when $X_t = 0$
- σ Volatility of innovations to M_t

8 moments from the panel of districts:

 $\begin{aligned} \Delta_{t_0} X_{d,t} &= \beta + \gamma \mathbf{1} \{ t \ge t_0 + 3 \} + \delta X_{d,t_0} + \zeta \left(\mathbf{1} \{ t \ge t_0 + 3 \} \times X_{d,t_0} \right) + \epsilon_{d,t}, \\ v \hat{a} r_t(\Delta_{t_0} X_{d,t}) &= \eta + \kappa \mathbf{1} \{ t \ge t_0 + 3 \} + \mu_t, \\ v \hat{a} r_d(\Delta_{t_0} X_{d,t}) &= \nu + \omega_d, \end{aligned}$

5 structural parameters:

- C Complementarities $\rightarrow \gamma$
- *k* Max switching rate
- *S* Shock to cash demand
- M^e Returns to **e** when $X_t = 0$
- σ Volatility of innovations to M_t

8 moments from the panel of districts:

 $\begin{aligned} \Delta_{t_0} X_{d,t} &= \beta + \gamma \mathbf{1} \{ t \ge t_0 + 3 \} + \delta X_{d,t_0} + \zeta \left(\mathbf{1} \{ t \ge t_0 + 3 \} \times X_{d,t_0} \right) + \epsilon_{d,t}, \\ v \hat{a} r_t(\Delta_{t_0} X_{d,t}) &= \eta + \kappa \mathbf{1} \{ t \ge t_0 + 3 \} + \mu_t, \\ v \hat{a} r_d(\Delta_{t_0} X_{d,t}) &= \nu + \omega_d, \end{aligned}$

5 structural parameters:

- C Complementarities $\rightarrow \gamma$
- *k* Max switching rate $\rightarrow \kappa$
- *S* Shock to cash demand
- M^e Returns to **e** when $X_t = 0$
- σ Volatility of innovations to M_t

8 moments from the panel of districts:

 $\begin{aligned} \Delta_{t_0} X_{d,t} &= \beta + \gamma \mathbf{1} \{ t \ge t_0 + 3 \} + \delta X_{d,t_0} + \zeta \left(\mathbf{1} \{ t \ge t_0 + 3 \} \times X_{d,t_0} \right) + \epsilon_{d,t}, \\ v \hat{a} r_t(\Delta_{t_0} X_{d,t}) &= \eta + \kappa \mathbf{1} \{ t \ge t_0 + 3 \} + \mu_t, \\ v \hat{a} r_d(\Delta_{t_0} X_{d,t}) &= \nu + \omega_d, \end{aligned}$

5 structural parameters:

- C Complementarities $\rightarrow \gamma$
- *k* Max switching rate $\rightarrow \kappa$
- *S* Shock to cash demand $\rightarrow \beta$
- M^e Returns to e when $X_t = 0 \longrightarrow \nu$
- σ Volatility of innovations to $M_t \rightarrow \xi$

8 moments from the panel of districts:

 $\begin{aligned} \Delta_{t_0} X_{d,t} &= \beta + \gamma \mathbf{1} \{ t \ge t_0 + 3 \} + \delta X_{d,t_0} + \zeta \left(\mathbf{1} \{ t \ge t_0 + 3 \} \times X_{d,t_0} \right) + \epsilon_{d,t}, \\ v \hat{a} r_t(\Delta_{t_0} X_{d,t}) &= \eta + \kappa \mathbf{1} \{ t \ge t_0 + 3 \} + \mu_t, \\ v \hat{a} r_d(\Delta_{t_0} X_{d,t}) &= \nu + \omega_d, \end{aligned}$

Results

Parameter		Estimate	Standard error
С	Complementarities	0.063	(0.004)
k	Max switching rate	0.163	(0.041)
S	Shock to cash demand	0.246	(0.047)
M^e	Returns to e when $X_t = 0$	0.970	(0.004)
σ	Volatility of innovations to M_t	0.039	(0.011)

- Reject null of C = 0

_

3.0% lower profits if X = 0, 3.3% higher if X = 1

- Short-run decline in cash-based revenue: 24.6% or $6~{\rm s.d.}$

 $3 \times$ of G.E. estimates of Chodorow-Reich et al. (2020)

Model fit

Counterfactuals

Short-lived shocks \implies state-dependence \implies more dispersion

$$\arg \max_{\boldsymbol{S},\boldsymbol{\theta}} \quad \mathbb{E}_{t_0}\left[\Delta_{t_0} X_{d,t_0+T}\right] - \frac{\boldsymbol{g}}{2} \operatorname{var}_{t_0}\left[\Delta_{t_0} X_{d,t_0+T}\right] \quad \text{s.t.} \quad B(\boldsymbol{S},\boldsymbol{\theta}) \le B(\hat{\boldsymbol{S}},\boldsymbol{\theta}_0)$$

$$B(\mathbf{S}, \boldsymbol{\theta}) = \text{NPV of } M^c - M_t$$

	Baseline	Al	Alternative policy interventions				
		g = 0	g = 0.10	<i>g</i> = 0.25	g = 0.5		
Shock size (p.p.)	24.6	21.0	18.3	16.8	14.2		
Shock HL (months)	0.8	1.1	1.3	1.4	1.6		
$\mathbb{E}\left[\Delta X_{d}\right]$ (p.p.)	7.2	8.3	8.3	8.2	7.8		
$sd\left[\Delta X_{d}\right]$ (p.p.)	26.4	36.7	34.6	28.7	24.8		

5. Conclusion

Conclusion

Do network externalities play a significant role in the diffusion of Fintech?

In our setting, they account for 60% of adoption response to demonetization

Implications for policy

large but temporary interventions can be enough to spur adoption <u>but</u> temporary intervention also exacerbate initial adoption differences

Appendix

Equilibrium characterization

Equilibrium: adoption rules $\{a_t(M_t, X_t)\}$ that are individual best responses to all other firms following the same adoption rules.

<u>Result</u>: Let $T < +\infty$ and assume that:

$$\vartheta_t = \begin{cases} \theta & \text{if } t \leq T, \\ 0 & \text{if } t > T. \end{cases}$$

Then the equilibrium exists and is unique. There exists a function $\Phi_t(X_t)$ *such that:*

$$a_t(M_t, X_t) = 1 \quad \iff \quad M_t \le \Phi_t(X_t).$$

If C = 0, $\Phi_t(X_t) = \Phi_t \forall X_t$, whereas if C > 0, $\Phi_t(X_t)$ is strictly increasing.

Google queries about cash in circulation

Microfoundations: two-sided market and multi-homing (1/3)

Consumers allocate deposits to cash L_t^c and the electronic wallet L_t^e subject to:

$$\max_{\substack{C_{t}^{c}, C_{t}^{e}, L_{t}^{c}, L_{t}^{e} \\ s.t. \quad L_{t}^{c} + L_{t}^{e} \\ C_{t}^{c}, C_{t}^{e}, L_{t}^{c}, L_{t}^{e}} } X_{t} \left(\zeta C_{t}^{e} + (1 - \zeta) C_{t}^{c} \right) + (1 - X_{t}) C_{t}^{c} - \frac{1}{2\gamma} \left(L_{t}^{e} - L^{e} \right)^{2}$$
s.t.
$$L_{t}^{c} + L_{t}^{e} \\ L_{t}^{c} \leq D \quad [\lambda_{t}]$$

$$L_{t}^{c} \leq L_{t} \quad [\mu_{t}]$$

$$C_{t}^{c} \leq L_{t}^{c} \quad [\nu_{t}^{c}]$$

$$C_{t}^{e} \leq L_{t}^{e} \quad [\nu_{t}^{e}]$$

 X_t is the fraction of firms that accept <u>both</u> the wallet, and cash.

If matched with a firm that accepts both (prob. X_t), choose the wallet w.p. ζ .

Microfoundations: two-sided market and multi-homing (2/3)

Firm profits are given by:

$$\Pi(x_{i,t}, C_t^c, C_t^e) = \begin{cases} \zeta C_t^e + (1 - \zeta) C_t^c & \text{if } x_{i,t} = e, \\ C_t^c & \text{if } x_{i,t} = c. \end{cases}$$

e now denotes a firm that accepts <u>both</u> electronic money and cash.

Microfoundations: two-sided market and multi-homing (3/3)

Assume that $D \ge L_t + L^e + \gamma \zeta$. With $L_t^e = C_t^e$, $L_t^c = C_t^c$, we have:

 $C^c_t + C^e_t < D$ $C^e_t = L^e + \gamma \zeta X_t$ $C^c_t = L_t$

Therefore:

$$\Delta \Pi(X_t, L_t) = \zeta \left(L^e + \gamma \zeta X_t - L_t \right),$$

which is isomorphic to the baseline model, with, in particular:

$$C = \gamma \zeta^2.$$

Estimation methodology: SMM

Objective function:

$$\hat{\Theta} = \arg\min\left(\hat{\Xi} - \frac{1}{S}\sum_{s=1}^{S}\Xi_{sim}\left(\Theta;\gamma_{s}\right)\right)'W\left(\hat{\Xi} - \frac{1}{S}\sum_{s=1}^{S}\Xi_{sim}\left(\Theta;\gamma_{s}\right)\right),$$

where $\hat{\Xi} = (\hat{\beta}, \hat{\gamma}, \hat{\delta}, \hat{\zeta}, \hat{\xi}, \hat{\eta}, \hat{\kappa}, \hat{\nu}).$

Use the optimal weighting matrix:

$$W = \frac{1}{N_m} var\left(\hat{\Xi}\right)^{-1},$$

with $var\left(\hat{\Xi}\right)$ estimated using the bootstrap, clustering by district:

$$var\left(\hat{\Xi}\right) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\Xi}_{b} - \hat{\Xi}\right)' \left(\hat{\Xi}_{b} - \hat{\Xi}\right).$$

Validation of exposure measure: table

	Δ log(deposits)		$\Delta \log(\mathrm{deposits}^{adj})$		$\Delta \log(\mathrm{deposits}^N)$	
	(1)	(2)	(3)	(4)	(5)	(6)
Chest Exposure	0.094***	0.083***	0.085***	0.075***	1.821***	1.621***
	[0.013]	[0.012]	[0.013]	[0.012]	[0.257]	[0.238]
log(Pre Deposits)		-0.035***		-0.035***		-0.677***
		[0.003]		[0.003]		[0.063]
% villages with ATM		0.023		0.020		0.445
0		[0.040]		[0.042]		[0.769]
% villages with banks		-0.051**		-0.051**		-1.000**
0		[0.023]		[0.024]		[0.449]
Rural Pop./Total Pop.		-0.063***		-0.070***		-1.224***
1,		[0.016]		[0.017]		[0.317]
log(population)		0.036***		0.035***		0.707***
8(f of)		[0.003]		[0.003]		[0.068]
Observations	510	510	510	F10	510	F10
Observations	512	512	512	512	512	512
K-squared	0.118	0.313	0.099	0.290	0.118	0.313
District Controls		\checkmark		\checkmark		\checkmark

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** $p\!<\!0.01$, ** $p\!<\!0.05,$ * $p\!<\!0.1$.

Validation of exposure measure: placebo

	(1)	(2)	(3)	(4)	(5)	(6)
	2016q4	2016q3	2016q2	2016q1	2015q4	2015q3
(Exposure) _d	1.621***	-0.404	0.476**	0.137	0.163	0.342
	[0.238]	[0.260]	[0.236]	[0.234]	[0.268]	[0.255]
Observations	512	512	512	512	512	512
R-squared	0.313	0.027	0.026	0.162	0.020	0.054
District Controls	√	√	√	✓	✓	√
	(7)	(8)	(9)	(10)	(11)	(12)
	2015q2	2015q1	2014q4	2014q3	2014q2	2014q1
(Exposure) _d	-0.040	0.315	0.345	-0.734***	0.165	0.012
	[0.231]	[0.240]	[0.291]	[0.280]	[0.257]	[0.269]
Observations R-squared District Controls	512 0.044 √	512 0.061 √	512 0.017 √	512 0.037 √	512 0.100	512 0.124 √

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** p < 0.01, ** p < 0.05, * p < 0.1.

Balance Analysis

Dependent variable:	mean	univariate OLS		baseline controls	
		coeff.	R ²	coeff.	\mathbb{R}^2
Log(Pre Deposits)	11.083	-1.290***	0.054		
	(0.048)	(0.273)			
% villages with ATM	0.036	0.090***	0.040		
-	(0.004)	(0.023)			
# Bank Branches per 1000's	0.047	0.002	0.000	0.015	0.234
-	(0.002)	(0.012)		(0.012)	
# Agri Credit Societies per 1000's	0.045	-0.016	0.001	0.016	0.062
	(0.004)	(0.027)		(0.022)	
% villages with banks	0.085	0.131***	0.033	0.058	0.580
	(0.006)	(0.036)		(0.036)	
Log(Population)	14.376	-0.501**	0.015	0.304	0.481
	(0.035)	(0.208)		(0.199)	
Literacy rate	0.622	-0.029	0.003	-0.001	0.227
	(0.005)	(0.025)		(0.025)	
Sex Ratio	0.946	0.008	0.001	-0.009	0.063
	(0.003)	(0.015)		(0.017)	
Growth Rate	0.208	-0.219	0.014	-0.232	0.021
	(0.016)	(0.139)		(0.171)	
Working Pop./Total Pop.	0.410	0.026	0.005	0.010	0.075
	(0.003)	(0.016)		(0.017)	
Distance to State Capital(kms.)	0.215	0.035	0.002	0.026	0.016
	(0.006)	(0.032)		(0.032)	
Rural Pop./Total Pop.	0.746	0.170***	0.034	0.046	0.464
	(0.008)	(0.047)		(0.039)	
State dependence: within district

	Log(# tra	nsactions)	Log(amount)	
	(1)	(2)	(3)	(4)
$1(t \ge t_0) \times 1(\text{Any adopter}_d)$	2.803***		4.864***	
n n n	(0.246)		(0.346)	
$1(t \ge t_0) \times \log(\text{Amount of transactions}_d)$		0.281^{***}		0.230***
		(0.028)		(0.052)
Month f.e.	\checkmark	\checkmark	\checkmark	\checkmark
District f.e.	\checkmark	\checkmark	\checkmark	\checkmark
District Controls		\checkmark		\checkmark
Observations	5,780	5,780	5,780	5,780
R-squared	0.609	0.603	0.578	0.570
Number of districts	578	578	578	578

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** p<0.01, ** p<0.05, * p<0.1.

How persistent was the shock?

The response of consumption

The figure plots estimates of consumption responses depending on exposure to the shock (Exposure_d). The treatment is our measure of Exposure_d. The dependent variable on the *y*-axis is the (log) total expense by household. 95% confidence intervals are represented with the vertical lines; standard errors are clustered at the district level.

Learning: pre-Nov adopters

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	amount	amount	amount	amount	transactions	transactions	transactions	transactions
$SR \times exposure$		1.651***		1.660**		0.721**		0.733**
		[0.600]		[0.645]		[0.317]		[0.339]
$LR \times exposure$		1.276**		1.244*		0.415		0.404
		[0.620]		[0.650]		[0.261]		[0.278]
$post \times exposure$	1.370**		1.348**		0.492*		0.486^{*}	
	[0.598]		[0.633]		[0.268]		[0.287]	
post $ imes$ exposure $ imes$ high sci			-0.883				-0.643	
			[2.056]				[0.666]	
post $ imes$ high sci			0.903	0.903			0.579	0.579
			[1.316]	[1.316]			[0.390]	[0.390]
SR imes exposure imes high sci				-1.270				-0.826
				[2.098]				[0.737]
$LR \times exposure \times high sci$				-0.754				-0.582
				[2.056]				[0.651]
Observations	132,608	132,608	132,552	132,552	132,608	132,608	132,552	132,552
R-squared	0.543	0.544	0.544	0.544	0.575	0.575	0.575	0.575
District f.e.	\checkmark							
Month f.e.	\checkmark							
District Controls \times Month f.e.	\checkmark							

Notes: Standard errors clustered at district level are reported in brackets. Significance level: *** p<0.01, ** p<0.05, * p<0.1.

Learning: Nov-Jan adopters

The reflection problem (1/3)

The reflection problem (2/3)

The reflection problem (3/3)

Histogram of exposure

Map of exposure

Results excluding individual states

Placebo using consumption

Traditional electronic payments: intensive margin

Traditional electronic payments: extensive margin

