
Shocks and Technology Adoption:

Evidence from Electronic Payment Systems ∗

Nicolas Crouzet† Apoorv Gupta‡ Filippo Mezzanotti§

First version: September, 2018
This version: November, 2020

Abstract

Theories of coordination failures in technology adoption have been influential in economics, but

empirical evidence on their importance is limited. This paper studies the role of this friction in the

adoption of digital payments systems, using data from the largest provider of electronic wallets in India

during the 2016 Demonetization. Our empirical strategy exploits variation in the intensity with which

Indian districts were exposed to the cash contraction induced by the Demonetization. Consistent with

a dynamic technology adoption model with complementarities, we show that the rate of adoption of the

technology increased persistently in response to the large but temporary cash contraction. Estimates

of the model indicate that the 6-month adoption response would have been 60% lower absent adoption

complementarities. This suggests that large but temporary policy interventions can resolve coordination

failures in technology adoption, though we highlight an important limitation of this logic: temporary

interventions can also exacerbate initial differences in adoption across regions or markets.
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1 Introduction

A rich literature in economics has argued that coordination failures could be an important obstacle to the

adoption of new technologies (Rosenstein-Rodan, 1943; Carlton and Klamer, 1983). Coordination failures

can arise when decisions to adopt a new technology are complements across users — that is, when the private

value of adoption for each single user depends positively on adoption by other users (Katz and Shapiro, 1985,

1986).1 In these situations, expectations of low adoption can become self-fulfilling. While the possibility

of coordination failures is theoretically well understood (Murphy et al., 1989; Matsuyama, 1995), direct

evidence of their importance is scarce. Using data on the adoption of a digital wallet technology during

the 2016 Indian Demonetization, our paper provides novel evidence on coordination failures in technology

adoption, and studies the role that policy can play in addressing them.

There are two reasons why documenting the role of coordination failures in adoption of this technology

is useful. First, this product provides a clean test case for the more general proposition that coordination

failures can slow down technology adoption. Digital wallets are network goods; this makes adoption decisions

complements across users, and creates scope for coordination failures (Katz and Shapiro, 1994; Rysman,

2007). More importantly, relative to other network goods, digital wallets are generally cheap and simple to

adopt, which helps isolate the role of coordination problems. Second, digital wallets are a canonical example

of financial technology (“fintech”) products. The rapid diffusion of information technology over the past two

decades has raised expectations about the potential for fintech to improve financial inclusion, particularly

in developing countries, where fostering access to financial services remains a key goal for policymakers.2

Understanding the obstacles to their adoption is therefore also relevant to policy.

To examine the role of these coordination failures, this paper studies the adoption of a digital payment

technology by merchants after the 2016 Indian Demonetization. This unexpected policy shock resulted in

a large but temporary reduction in the availability of cash, leading to a temporary incentive to adopt the

technology. Our analysis is organized in three parts. First, we develop a dynamic model of technology

adoption with complementarities and use it to characterize the key features of the response of adoption

of digital payments to a temporary shock to the availability of traditional means of payment. Second, we

use merchant level data from the leading fintech payment system in India and quasi-exogenous variation

in exposure to the Demonetization to test the model’s predictions. Third, we quantify the contribution of

complementarities to the overall adoption response by structurally estimating our model.

1Katz and Shapiro (1985, 1986) highlight how externalities can arise both directly — when the number of users affects the
quality of the product — or indirectly — in situations where the number of users affect the value of other add-on products due
to compatibility (e.g. hardware/software) or the type of post-purchase services (e.g. cars).

2For the benefits of fintech in payment systems, see Yermack (2018); Suri and Jack (2016); Jack and Suri (2014); Beck
et al. (2018); Agarwal et al. (2019). For the role of fintech in funding markets, such as mortgage and small business lending,
see Bartlett et al. (2018); Buchak et al. (2018); Fuster et al. (2018); Howell et al. (2018).
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Our main findings are the following. First, the Demonetization caused an adoption wave among mer-

chants, characterized by three features: a persistent increase in the size of the platform, that is, the total

number of merchants using it; a persistent increase in the platform’s adoption rate, that is, the number

of new merchants adopting the platform each month; and state-dependence in adoption, meaning that the

long-run adoption response depends on the initial (pre-shock) strength of complementarities. The latter two

features are important, as we show that they are distinctive predictions of the model when complementarities

are present. Second, our quantitative estimation of the model shows that complementarities were not only

present, but played a large role: they account for approximately 60% of the long-run adoption response.

Taken together, our results suggest that coordination problems — as opposed to pecuniary adoption costs

or transaction costs — could be an important obstacle to the diffusion of fintech.

In this context, a central lesson from both the model and our data is that large-scale but temporary inter-

ventions can, in principle, be used to overcome coordination problems. However, on this point, our analysis

offers an important caveat: interventions that are too short-lived can also exacerbate long-run differences in

adoption across markets or regions. In fact, the state-dependence created by adoption externalities is key

to this insight: markets with high initial adoption rates will experience persistent long-run adoption effects,

while in other markets, the effects will not persist. We find evidence for this mechanism in the data, and

explore its policy implications using counterfactual experiments in our estimated model. These experiments

suggest that the length of a policy intervention may have a first order economic effect on both the level and

the dispersion of the adoption response.

The empirical setting of the paper is the Indian Demonetization of 2016. On November 8th, 2016, the

Indian government announced that it would void the two largest denominations of currency in circulation

and replace them with new bills. At the time of the announcement, the voided bills accounted for 86.4%

of the total cash in circulation. The public was not given advanced warning, and the bills were voided

effective immediately. A two-month deadline was announced for exchanging the old bills for new currency.

In order to do so, old bills had to be deposited in the banking sector. However, withdrawal limits, combined

with frictions in the creation and distribution of the new bills, meant that immediate cash withdrawal was

constrained. As a result, cash in circulation fell and bank deposits spiked. Cash transactions became harder

to conclude, but more funds were available for use in electronic payments. Importantly, though the shock

was very large, it was also temporary, as things normalized for the most part by February 2017.

In Section 2, we start by showing that the Demonetization led to a large aggregate increase in the use of

electronic payment systems. We focus primarily on data from the largest Indian provider of non-debit card

electronic payments. This payment platform operates as a digital wallet. The digital wallet consists of a

mobile app that allows customers to pay at stores using funds deposited in their bank accounts. Payment is
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then transferred to merchants’ bank accounts via the app. The economic costs associated with the adoption

of this technology for merchants are small; in fact, there are no usage fees, and all that is required to join

the platform is to have a bank account and a mobile phone, both of which were very common in India by

2016 (Agarwal et al., 2017). Aggregate activity on the platform doubled several times over during the two

months following the Demonetization announcement. Additionally, this adoption response was persistent,

though the shock was not. There was no significant mean-reversion in the aggregate number of merchants

using the technology or in aggregate transaction volumes once cash withdrawal constraints were lifted.

The aggregate evidence thus suggests that the temporary contraction in cash led to a persistent increase in

adoption of fintech payments. However, this finding alone is not sufficient to establish that complementarities

played a role. First, theoretically, economic mechanisms other than complementarities may also generate

persistent responses to transitory shocks. Second, empirically, long-term responses in aggregate event studies

are potentially confounded by subsequent aggregate shocks.

In order to address the first issue, in Section 3, we characterize further the testable implications of adoption

complementarities by studying a dynamic technology adoption model. The model builds on the framework of

Burdzy et al. (2001). Firms face a choice between two technologies, one of which (the “platform”) is subject

to positive adoption externalities — the flow profits from operating under this technology increases with its

rate of use by other firms.3 Moreover, the relative benefit of adopting the platform is subject to aggregate

shocks. The presence of these common shocks helps eliminate the potential equilibrium multiplicity arising

from complementarities in adoption decisions.

The model predicts that following a large, temporary shock, the total number of firms using the platform

increases persistently, consistent with the aggregate evidence of Section 2. However, it delivers two additional

predictions. First, the presence of complementarities — on top of increasing the size of the platform — also

generates a persistent increase in the adoption rate. In other words, the number of new firms joining

the platform every period remains high even after the shock has dissipated. The reason is that, with

complementarities, the initial adoption triggered by the shock, by temporarily raising the size of the platform,

increases the relative future value of adoption for other firms. This “snowball” effect can generate endogenous

persistence in the increase in adoption rates. Second, the model predicts that adoption responses exhibit

state-dependence: the long-run adoption response depends on the pre-shock adoption rates. The intuition

for this result is simple: initially stronger complementarities, in the form of a higher initial adoption rate,

make it easier to reach the tipping point beyond which the platform has sufficient critical mass to continue

growing even if the initial shock dissipates.

3Different mechanisms could account for this relationship: for instance, the more merchants are on the platform, the more
valuable it is for consumers to use it, which in turn increases new merchants’ incentive to join the platform. We discuss
microfoundations in 2, and provide an example with a two-sided market in Appendix B.2.
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In Section 4, we then show that the empirical predictions of the model with complementarities highlighted

above are consistent with the adoption responses observed in the data after the Demonetization. In order to

do this, we provide an empirical design to estimate the causal impact of the cash contraction on adoption. Our

empirical design exploits variation across districts in the importance of chest banks — local bank branches

in charge of the distribution of new currency — to identify variation in exposure to the shock. This design

allows us to isolate the effect of the cash contraction from other effects of the Demonetization, therefore

overcoming the limitations of the aggregate evidence. We show that the districts that were more exposed

to the cash crunch also experienced a larger and more persistent increase in total adoption following the

Demonetization, the first prediction of the model. Crucially, higher exposure also predicts a larger increase

in the number of new firms joining the platform, even after restrictions on cash withdrawals are lifted — the

second prediction of the model.4 Finally, we find robust evidence consistent with state-dependence, the third

prediction of the model with complementarities. Districts where the pre-shock value of joining the platform

is higher — either because pre-shock adoption was high, or because they were located close to other high

adoption cities — are characterized by a higher average adoption response. The same pattern holds at a

disaggregated level: a firm’s choice to use the technology is positively affected by the rate of adoption of

firms in the same local industry. This latter result does not simply capture variation across locations and

industries, since it holds conditional on these fixed effects interacted with time.

Altogether, this reduced-form evidence shows that a model with adoption complementarities can account

for the qualitative features of the adoption response caused by the Demonetization. However, it is silent

about the quantitative contribution of complementarities to the adoption response. In order to address this

issue, in Section 5, we estimate the dynamic adoption model of Section 3 via simulated method of moments,

using our data on fintech payments. The key parameter of interest is the size of adoption complementarities.

Following the intuition described above, we show that this parameter can be identified using the difference

between short- and long-run adoption rates following the shock.

Using the estimates of the model, we provide two main results. First, we show that complementarities

are quantitatively important in understanding the total adoption response: they account for approximately

60% of the total response of adoption to the Demonetization, in the sense that the medium-run adoption

rate would have been 60% lower (and declining), had the technology featured no complementarities in

adoption. Second, we show that the persistence of the shock is crucial to understanding its effects, both in

terms of average adoption, and for the variance of adoption across regions. As discussed earlier, temporary

interventions may increase overall adoption. However, because of state-dependence, they can also exacerbate

4We provide a number of robustness tests that confirm the causal interpretation of these results. Among other things,
we use our empirical design to show that consumption also temporarily declined following the shock. This evidence helps to
reinforce the notion that our results capture the effects of a temporary shock to cash, rather than the effects of a demand shock.
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initial differences in adoption. Consistent with this intuition, we show that, keeping the present value of

the decline in cash constant, a cash crunch with a smaller initial magnitude (by around 40%) but a longer

half-life (by a factor of 2), would have led to higher long-run adoption rates (by about 10%) and lower

dispersion. Thus, an implication of our model is that policymakers with a preference for uniform adoption

across regions or industries should generally favor smaller but more persistent interventions.

Contribution to the literature We contribute to three existing areas. First, our paper relates to the

growing literature on fintech (Bartlett et al., 2018; Buchak et al., 2018; Fuster et al., 2018; Howell et al.,

2018; Alvarez and Argente, 2019). Our contribution is to establish that externalities can be a quantitatively

important obstacle to adoption of digital payments systems, beyond traditional pecuniary costs, such as

setup or transaction fees, which are virtually absent for the technology we study. This finding is important

because of the benefits of electronic payment systems documented in the literature (Yermack, 2018; Jack

and Suri, 2014; Beck et al., 2018).5 In general, the idea that large, temporary events may be instrumental in

generating a large shift in technology adoption is not new in the policy discussion about electronic payments.6

For instance, a well-known example of the rapid adoption of an electronic payment technology is M-PESA

in Kenya, which grew by 70% between 2007 and 2011 and was used by 97% households in 2014 (Suri and

Jack, 2016). In this context, the large-scale political unrest in early 2008 — which lasted for two months and

led to shutdown of the traditional financial services — is commonly believed to have played a substantial

role in driving the initial wave in adoption (Mas and Morawczynski, 2009). Similarly, in the Lake Kivu

region in Rwanda, the disruption following the February 2008 earthquake is considered to have contributed

to a significant increase in the use of the credit held on mobile phones (Blumenstock et al., 2016). Despite

the frequency of such events, there is little work systematically documenting their implications for adoption

dynamics. In this paper, we go beyond qualitative evidence and conduct a quantitative analysis to show

that temporary shocks can indeed induce large and persistent increases in electronic payments use.

Second, our work relates to the literature studying the diffusion of technologies across firms.7 We focus on

the role of coordination problems for technologies featuring adoption complementarities (Arthur, 1989; Katz

and Shapiro, 1985; Farrell and Saloner, 1986; Sakovics and Steiner, 2012). Relative to existing work on the

5Relatedly, we show that traditional payment technologies — such as credit or debit cards — where not widely adopted by
new users during the Demonetization, though they were more actively used by existing users. Our paper thus also relates to
the literature on debit cards and household behavior (Bachas et al., 2017; Schaner, 2017).

6Related work by Higgins (2019) explores how a permanent increase in the availability of debit cards in Mexico affected
both consumers and retailers. Relative to Higgins (2019), our work directly quantifies the importance of complementarities in
explaining the adoption response. Additionally, we argue that while that permanent interventions may not be necessary to spur
adoption, interventions that are too temporary may also exacerbate dipersion in adoption rates in the long-run.

7There is an extensive literature on slow adoption of new technologies (Hall and Khan, 2003; Rosenberg, 1972), which offers
several examples of firms failing to use efficiency-enhancing technologies (Mansfield, 1961) or processes (Bloom et al., 2013),
for reasons ranging from the presence of organizational constraints (Atkin et al., 2017) to slow social learning and information
frictions (Munshi, 2004; Young, 2009; Conley and Udry, 2010; Gupta et al., 2020) to lack of financial development (Comin and
Nanda, 2019; Bircan and De Haas, 2019). For a review of this literature, see Foster and Rosenzweig (2010).
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topic, we provide direct evidence on key predictions of models with dynamic coordination problems: first,

temporary shocks lead to persistent responses; second, temporary shocks can have heterogeneous long-run

effects depending on the initial strength of externalities.8 Electronic payment systems are a natural example

of technology exhibiting adoption complementarities (Katz and Shapiro, 1994; Rysman, 2007; Gowrisankaran

and Stavins, 2004), and for which coordination problems may be an important obstacle to adoption (Crowe

et al., 2010). While we interpret the adoption complementarities as arising from the network nature of the

technology we study, alternative mechanisms —– for instance, learning about the costs and benefits of the

technology (Munshi, 2004; Suri, 2011) —– may also contribute to adoption complementarities. In section 4,

we provide evidence that is inconsistent with learning being the primary mechanism. While this evidence

reinforces the notion that network effects are important in our context, the key implications of our analysis

do not depend on the specific mechanism that generates complementarities in adoption.

Third, we contribute to the literature on the impact of the Demonetization on the Indian economy.9 We

focus on the adoption of electronic payment systems, and argue that the adoption wave following Demone-

tization may be difficult to rationalize in a model where complementarities do not play an important role.

Despite the potentially large benefits of adopting electronic payments, it is also important to point out that

any positive impact should be weighted against the large costs that the Demonetization imposed on the real

economy, as documented by Chodorow-Reich et al. (2019), and consistent with our findings in Appendix

C.10 Our analysis uses the Demonetization as a laboratory to identify the frictions that are relevant to the

adoption of electronic payments; it does not aim to provide a welfare evaluation of this event.

The rest of the paper is organized as follows. Section 2 provides some background on the Demonetization

and documents aggregate adoption effects. Section 3 analyzes our dynamic adoption model and derives key

predictions. Section 4 tests these predictions in the electronic wallet data. Section 5 estimates the model

and provides counterfactuals. Section 6 concludes.

8Other papers providing related evidence are Björkegren (2015), who quantifies the impact of externalities in determining
the cost of a tax on network goods; Saloner et al. (1995) who examine the importance of the potential size of a network in
the decision to adopt a new technology (ATM); Tucker (2008), who studies how different types of adopters may influence the
expansion of the network; and Ryan and Tucker (2012), who study the adoption of video calling by firms. A related empirical
analysis of dynamic coordination problems is Foley-Fisher et al. (2020), who study self-fulfilling runs in the US life insurance
market. Their analysis uses a different framework, and largely abstracts from the persistence of responses to temporary shocks.
Related work by Buera et al. (2020) studies how coordination failures in technology adoption can amplify the effects of other
negative distortions in a general equilibrium setting, but also how changes in distortions can spur adoption.

9This literature includes, among others, Banerjee et al. (2018), Agarwal et al. (2019), Dharmapala and Khanna (2018), and
Lahiri (2020).

10Chodorow-Reich et al. (2019) quantifies the economic effects of the Demonetization using a cash in advance model that
abstracts from externalities and assumes that cash and electronic payments have a fixed elasticity of substitution that is smaller
than unity. Our paper complements this analysis by studying the mechanism explaining the adoption increase. In particular,
in our framework the elasticity of substitution between means of payment is endogenous and reflects changes in the strength of
externalities. Additionally, we provide a different research design for identifying quasi-exogenous exposure to Demonetization,
which can be easily replicated using publicly available data.
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2 Background

2.1 The Demonetization

On November 8, 2016, at 08:15 pm IST, Indian Prime Minister Narendra Modi announced the Demoneti-

zation of Rs.500 and Rs.1,000 notes during an unexpected live television interview. The announcement was

accompanied by a press release from the Reserve Bank of India (RBI), which stipulated that the two notes

would cease to be legal tender in all transactions at midnight on the same day. The voided notes were the

largest denominations at the time, and together they accounted for 86.4% of the total value of currency in

circulation. The RBI also specified that the two notes should be deposited with banks before December 30,

2016. Two new bank notes, of Rs.500 and Rs.2,000, were to be printed and distributed to the public through

the banking system. The policy’s stated goal was to identify individuals holding large amounts of “black

money,” and remove fake bills from circulation.11

However, the swap between the new and old currency was not immediate, and the public was unable to

withdraw cash at the same rate as they were depositing old notes. As a result, the amount of currency in

circulation dropped precipitously during the first two months of the Demonetization period. This can be

seen in Figure 2, which plots the monthly growth rate of currency in circulation.12 Overall, it declined by

almost 50% during November and continued declining in December.

This cash crunch partly reflected limits on cash withdrawals put in place by the RBI in order to manage

the transition.13 But it was also driven by the difficult logistics of the swap itself. In order to ensure that

the policy remained undisclosed prior to its implementation, the RBI had not printed and circulated large

amounts of new notes beforehand. This caused many banks to be unable to meet public demand for cash,

even under the withdrawal limits.14

Importantly, the Demonetization did not lead to a reduction in the total money supply, defined as the

sum of cash and bank deposits. The total money supply was stable over this period, as reported in Figure

2. In its press release, the RBI highlighted that deposits to bank accounts could be freely used through

“various electronic modes of transfer.” The public was thus still allowed to transact using any form of

noncash payment, such as cards, checks, or any other electronic payment method; cash transactions were

the only ones to be specifically impaired.

11In its annual report for 2017-2018, the RBI reported that 99.3% of the value of voided notes had been deposited in the
banking system during the Demonetization.

12The time series for currency in circulation reported in this graph does not mechanically drop with the voiding of the two
notes; it only declines as these notes are deposited in the banking sector.

13See Appendix Section A.1 for a more detailed discussion of the effects of the shock on cash availability. Banerjee et al.
(2018) argue that the uncertainty surrounding the withdrawal limits may have exacerbated the cost of the intervention during
this transition period.

14See also Krishnan and Siegel (2017). Section A.1 in Appendix contains a more extensive discussion of the effects of the
Demonetization on cash in circulation.
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Despite its magnitude, the cash crunch was a temporary phenomenon. Overall, things significantly

improved in January and essentially normalized in February. Cash in circulation grew significantly again

in January 2017, suggesting that the public was finally able to withdraw cash from banks (see Figure 2).

Furthermore, by January 30th, 2017, the Government lifted most of the remaining limitations on cash

withdrawals, in particular removing any ATM withdrawal limit from current accounts.15

The Demonetization thus had three key features relevant to our analysis. First, it led to a significant

contraction of cash in circulation. Second, it did not change the total money stock, that is, the sum of cash

and deposits. As a result, the public could still access and use money electronically once the notes had been

deposited. Third, it was relatively short-lived: the cash shortage was particularly acute in November and

December, it improved with the new year, and generally normalized with February.

2.2 Fintech payment systems during the Demonetization

Overall, the Demonetization was associated with a large uptake in electronic payments. We start by illus-

trating this fact using data from the leading digital-wallet company in the country. The company allows

individuals and businesses to undertake transactions with each other using only their mobile phone. To use

the service, a customer needs to download an application and link their bank account to the application.

Merchants can then use a uniquely assigned QR code to accept payments directly from the customers into a

mobile wallet. The contents of the mobile wallet can then be transferred to the merchant’s bank account.16

Importantly, adoption and usage costs of this technology are low, in particular relative to traditional

electronic payments. No investment in a point of sale (POS) terminal is required; the retailer simply needs

a cellphone and a bank account, which are both very common in India (Agarwal et al., 2017). Furthermore,

for small and medium-sized merchants — who make up the bulk of our data —, transactions using the

technology do not involve fees.17

Figure 3 reports data for the total number and total value of transactions executed by merchants using

this technology. In the months before the Demonetization, the weekly growth in the usage of the wallet

technology had been positive on average but relatively modest. However, after the Demonetization, the shift

towards this payment method was dramatic. In particular, in the first week after the shock, the number of

transactions grew by more than 150%, and the value of transactions increased by almost 200%. For the first

15Consistent with the view that cash availability was most impaired during the November-January period, we collect data
on Google search of key words that are related to the Demonetization events, and find that the perception of the negative
consequences of the Demonetization on means of payment significantly improved with the new year. These results are reported
in Figure E.1, and discussed more in detail in Appendix A.1.

16In Appendix A.3, we provide a more detailed description of the technology. Notice that a smart-phone with access to
Internet is not necessary: in 2016, the company introduced a new service that allows customers to make payments using text
messaging only.

17Finally, the time for retailer to be verified and approved are typically short. See the discussion of the features of the wallet
in Appendix A.3.
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month after the shock, weekly growth rates were consistently around 100%.

Crucially, this initial positive effect of the Demonetization on adoption did not dissipate, even after

the cash-availability constraints were relaxed. The data show a slow-down in aggregate growth starting in

January, which is when the limits on the circulation of new cash started to be lifted. However, after a small

negative adjustment in early February, the average growth rate over the next two months remained positive,

indicating that users did not abandon the platform as cash became widely available again.18 In other words,

a temporary decline in the availability of cash led to a permanent increase in the usage of the platform.

The data shared with us by the electronic wallet company end in June 2017. However, it is important to

point out that the increase in electronic-wallet technologies in India also persisted after this period, and this

is true despite the introduction of a new ”Goods and Services Tax” (GST) in July 2017, which was generally

thought to have increased the incentive to use cash for transactions to avoid this new tax. According to

the official estimates by the Reserve Bank of India, monthly mobile-wallet transactions increased from 75

million to over 300 million between September 2016 and March 2017, which is the central period in our

analysis. In March 2019, monthly transactions still totaled around 385 million, suggesting that adoption

has not dissipated since the Demonetization. While our mechanisms may explain this persistent increase in

adoption, it is also important to recognize that over such a long period of time total adoption will likely be

affected by a variety of other factors that are outside the scope of our paper.

2.3 Traditional electronic payment systems during the Demonetization

Aside from this fintech platform, more traditional electronic payment technologies were also available to the

public. We collected publicly available data on monthly debit and credit card activity aggregated at the

national level by the RBI. Figure 4 presents these data. The first panel reports the growth in the number

of transactions for both credit and debit cards, across ATMs and points of sale (stores). The second panel

reports the growth in the number of cards, again divided between debit and credit cards.

Two findings are important to highlight. First, the permanent increase in electronic payments is not

unique to electronic-wallet technologies. In particular, the growth rate of transactions at point of sales

increases dramatically in both November and December, before returning to levels similar to the pre-shock

period. This suggests that the Demonetization also led to a permanent increase in debit card transactions.

Second, the short-run increase is completely driven by the intensive margin, unlike with the electronic wallet.

In other words, the overall volume of debit card transactions increases only because debit-card holders start

to use them more frequently. In fact, the second panel of Figure 4 shows no clear growth rate in the number

18We believe that this decline may be related to the announcement of a small fee in February (which was later canceled), an
increase in competition, and entrance by other electronic payment companies.
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No frictions Fixed costs Complementarities
(C = 0, κ = 0) (C = 0, κ > 0) (C > 0, κ = 0)

P1: Persistent increase in size of user base 7 3 3
P2: Persistent increase in adoption rate 7 7 3
P3: Positive dependence on initial adoption 7 7 3

Table 1: Predictions across versions of the model.

of new cards during either November and December.

These findings speak to the differences between traditional and fintech electronic payments. Relative to

the electronic wallet technology, for retailers, cards involve both larger fixed adoption costs (point of sales

terminals) and flow use costs (transaction fees). The former, in particular, could explain why the extensive

margin response was more limited for traditional must wait electronic payment methods.19

3 Theory

In this section, we analyze a dynamic model of technology diffusion. This model makes a number of specific

empirical predictions, which depend on whether the technology features adoption complementarities, and

are summarized in Table 1.20 In Section 4, we test these predictions using the adoption of the electronic

wallet technology after the Demonetization. In section 5, we use the model to quantify the contribution of

complementarities to the adoption response and to produce counterfactual responses to the Demonetization

shock.

3.1 Model

Economic environment Time is discrete: t = 0,∆t, 2∆t, .... There is a collection of infinitely-lived firms,

indexed by i ∈ [0, 1], that discount the future at rate e−r. We refer to these firms as a “district”, by analogy

with our empirical analysis in the following section. At different points in time, firm i must choose between

operating under one of two technologies, xi,t ∈ {c, e}, where c stands for “cash” and e stands for “e-money”.

Flow profits are:

Π(xi,t,Mt, Xt) =

 Mt if xi,t = c,

Me + CXt if xi,t = e,

19In this respect, our setting differs substantially from Higgins (2019), who studies a technology — debit cards — which
requires merchants to pay a large set-up cost as well as regular fees.

20The model is a variant of Frankel and Pauzner (2000) and Burdzy et al. (2001), with fixed costs of adjusting technology. It
is closely related to the literature on global games and equilibrium selection (Carlsson and Van Damme, 1993; Morris and Shin,
1998, 2003). This literature has also analyzed the effects of aggregate (public) signals in environment where agents’ actions are
complements (Morris and Shin, 2002). The two key differences of this framework with global games models is that (a) firms
have no private information on the returns to adoption; (b) firms solve a dynamic coordination problem, instead of a one-shot
static model. The latter difference is important, as it allows us to distinguish between short- and long-run effects of the shock.
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(t)

(xi,t−∆t,Mt−∆t, Xt−∆t)

Technology choice
xi,t = x(xi,t−∆t,Mt−∆t, Xt−∆t)

Realization of
Mt, Xt and profits

Option to revise
technology arrives w.p.

1− e−k∆t

(t+ ∆t)

(xi,t,Mt, Xt)

Figure 1: Timing of actions and events during a period.

where Me > 0 and C ≥ 0 are parameters, and Xt ≡
∫
i∈[0,1]

1 {xi,t = e} di. Since C ≥ 0, flow profits to

technology e are increasing in the number of other firms using e. The magnitude of C controls the strength

of this effect. Below, we discuss what could explain these positive external returns in the case of the wallet

technology, and provide a simple microfoundation in a two-sided market with consumers.

Flow profits to technology c are exogenous and subject to shocks. These shocks are common to all firms.

For simplicity, we refer to Mt as ”cash,” though it may be thought of as capturing, more broadly, cash-based

demand. We assume that cash follows an AR(1) process:

Mt = (1− e−θ∆t)M c + e−θ∆tMt−∆t +
√

∆tσεt, εt ∼ N(0, 1), i.i.d. (1)

where M c is the long-run mean of Mt, σ is the standard deviation of innovations to Mt, and θ captures the

speed of the mean-reversion of the shock.

There are two frictions that might prevent switching between technologies. First, during each increment

of time ∆t, 1 − e−k∆t ∈ [0, 1] firms receive a “technology adjustment” shock and are able to change their

technology adoption. This shock is purely idiosyncractic, and it arrives independently of the common

shock. When k → +∞, firms can continuously adjust their technology choices, while when k = 0, they are

permanently locked into their initial choice. We will assume 0 < k < +∞, that is, sluggish adjustment.

Second, there are fixed (pecuniary) costs of adopting technology e. Specifically, a firm must pay a fixed

cost κ if it decides to revise its technology from c to e. There is no cost of switching from e to c and no cost

of staying with the same technology.

The timing of actions within period t is depicted in Figure 1. Note that firms make their technology choice

at the beginning of period t, before either cash Mt or the current fraction of adopters Xt are determined.

Their choice is thus conditioned on {xi,t−∆t,Mt−∆t, Xt−∆t}.

Technology choice Let V (xi,t,Mt−∆t, Xt−∆t) be the value of a firm after any potential technology revi-

sions, and define:

B(Mt−∆t, Xt−∆t) = V (e,Mt−∆t, Xt−∆t)− V (c,Mt−∆t, Xt−∆t).

11



This is the relative value of having technology e in place. Appendix B shows that it follows:

B(Mt−∆t, Xt−∆t) = Et−∆t

[
(Πe

t −Πc
t) ∆t+ e−(r+k)∆tB(Mt, Xt) + e−r∆t(1− e−k∆t)g(B(Mt, Xt))

]
(2)

where Πe
t = Π(e,Mt, Xt), Πc

t = Π(c,Mt, Xt), and g(B) = max (0,min(B, κ)). When there are no fixed costs

of switching, κ = 0, we have g(B) = 0. In this case, B(., .) is simply the expected present value of flow

adoption benefits Πe
t − Πc

t . With fixed costs, g(B) ≥ 0; in that case, g(B) captures the option value of

technology e. The resulting technology adoption rule for adjusting firms is:

x(xi,t−∆t, Bt−∆t) =


c if Bt−∆t ≤ 0

xi,t−∆t if Bt−∆t ∈ [0, κ]

e if Bt−∆t > κ

, (3)

where Bt−∆t = B(Mt−∆t, Xt−∆t). In particular, firms remain locked in their prior technology choice in the

inaction region Bt−∆t ∈ [0, κ] . Define ac→e,t = 1 {x(c,Bt−∆t) = e} and ae→e,t = 1 {x(e,Bt−∆t) = e}. Since

the arrival of the option to revise is independent of the current technology choice, the change in the number

of firms using technology e, ∆Xt ≡ Xt −Xt−∆t, is given by:

∆Xt =
(
1− e−k∆t

)
(1−Xt−∆t)ac→e,t −

(
1− e−k∆t

)
Xt−∆tae→e,t. (4)

Equilibrium An equilibrium of the model is a technology choice rule, x, mapping {c, e}×R→ {c, e}, and

a function for the gross adoption benefit, B, mapping R×R→ R, such that the technology choice rule and

the gross adoption benefit solve the system of equations (2)-(3) when Xt follows the law of motion given by

(4), and cash follows the law of motion given by (1).

Discussion of key assumptions We make two main assumptions in this model. First, the technology e

features positive external returns with respect to adoption by other firms in the district, that is, C ≥ 0. This

assumption could capture, for instance, external returns arising in a two-sided market, where a high level of

adoption among firms incentivizes customers to adopt the platform, and conversely, a high participation by

customers on the platform raises the benefits of adoption for firms. Appendix B.2 provides a more precisely

microfounded version of the model, with a two-sided market, and which, additionally, the e-money technology

is an add-on (so that firms that have adopted it still accept cash). The microfounded version is isomorphic

to the baseline model described here, as discussed in the appendix. Alternatively, external returns could

arise from spillovers across firms in learning how to use the technology. In either case, the main testable
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predictions of the model highlighted below would be qualitatively identical. We discuss this issue in more

detail in Section 4.

The second key assumption is that firms are unable to continuously adjust their technology choice, but

instead must wait (on average) 1/k periods before being able to re-optimize. This assumption captures

the possibility that firms have heterogeneous (unobservable) abilities to adjust to market conditions as they

change, because of behavioral or informational frictions that we leave unmodelled.21 This friction affects

technology choices symmetrically, not just the decision to adopt e, by contrast with the cost κ. It makes

technology adjustment sluggish and allows for persistent deviations from the optimal technology choice even

if fixed pecuniary costs of adoption are small, which we have argued is likely the case for the technology we

study.

3.2 The effects of a cash crunch

We now discuss the effects of a sudden, unanticipated reduction in Mt of size S at date 0:

M0 = (1− e−θ∆t)M c + e−θ∆tM−∆t − S.

We start by discussing its effects in a version of the model where there are no fixed adoption costs, and

complementarities are the only potential barrier to adoption (C > 0 and κ = 0). We highlight three key

testable implications: a persistent effect of the shock on the size of the user base; a persistent effect on

the adoption rate, that is, the number of new users joining the platform each period; and a dependence of

long-run responses on initial adoption rates. We then contrast these predictions to other versions of the

model in which complementarities are absent.

3.2.1 Predictions in the model with complementarities

With complementarities, technology choices depend on firms’ expectations about how the number of users

of e will evolve. In principle, this could lead to equilibrium multiplicity, with self-fulfilling expectations.

However, with common shocks (σ > 0), Frankel and Pauzner (2000) show that there is a unique equilibrium,

characterized by a frontier Φ(.) such that firms adopt e, if and only if Mt−∆t ≤ Φ(Xt−∆t).
22

A key feature of the equilibrium is the fact that when C > 0, the adoption rule is increasing in Xt−∆t.

The slope is positive because adoption benefits depend positively on the current value of the number of users

21From a theoretical standpoint, sluggishness helps neutralize the potential for complementarities to generate multiple
equilibria, as emphasized by Frankel and Pauzner (2000).

22Frankel and Burdzy (2005) generalize the results of Frankel and Pauzner (2000) to the case of mean-reverting shocks, and
provide technical restrictions on the stochastic shock process so that unicity is guaranteed. Our constant rate of mean reversion
falls under the restrictions formulated in assumption A2 of their paper. The working paper version of Guimarães and Machado
(2018) also discusses this issue. We thank Bernardo Guimarães for clarifying this point.
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of e, Xt−∆t. In turn, this is because, when adoption is sluggish (k < +∞), the number of users of e displays

some persistence. Firms re-optimizing their technology choice when Xt−∆t is currently high can expect it

to stay high, at least in the near future. This raises the incentive to adopt e, so that the level of Mt−∆t

must be higher in order to dissuade firms from moving to e. The dynamics implied by this adoption rule

are illustrated in Figure 5. This panel plots the adoption threshold Φ(.) as well as two different trajectories

after the shock, one (in red) for a district which starts from a low number of firms using technology e, and

another (in blue) for a district which starts from a higher number of firms using technology e. We next

discuss qualitatively three key features of these dynamics.23

P1: persistent increase in the size of the user base The negative shock to Mt can have persistent

effects on the total number of firms using the technology. If the initial number of adopters e is sufficiently

high, it can be the case that, after the shock, Xt does not converge back to initial level, but instead, converges

to 1. This is illustrated in the blue trajectory in Figure 5. On that trajectory, once the shock has taken

place, the district permanently remains below the adoption threshold. In this case, the number of firms

using e increases permanently, despite the fact that the shock is transitory.

P2: persistent increase in adoption rate Importantly, on the blue trajectory, firms with the option of

changing technology always opt for e, even long after the shock has dissipated. Thus, with complementarities,

the shock should lead not only to a persistent increase in size of the platform, but also in its adoption rate,

that is, the flow of new users into the platform each period.

P3: positive dependence on initial adoption Finally, these adoption effects are stronger and more

persistent, the higher the initial level of adoption. For instance, if the number of users is initially low (red

line), the economy jumps from point A to point B as the negative shock to Mt occurs. Firms then start

switching from c to e. But eventually, the economy reaches point C, on the adoption threshold. The economy

then moves to the region in which abandoning e is optimal. Eventually, the economy converges back to point

A. In this instance, the shock thus only has a temporary effect on technology choices. Thus, the model

features positive state-dependence with respect to initial adoption rates.24

23Appendix B.4 establishes these properties more formally, using Monte-Carlo simulations.
24This latter feature also differentiates the model from a standard S-curve adoption models, in which there is no state-

dependence in adoption. Appendix B.4.1 shows that state-dependence can be thought of as generating a “conditional” S-curve:
the long-run adoption response to the shock is an increasing, S-shaped function of the initial level of adoption, as reported in
Appendix Figure E.10. The analogy to standard S-curve is only superficial, though, as Figure E.10 traces out the long-run
response as a function of initial adoption rates, while traditional S-curves refer to the dynamics of the total adoption level over
time.
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3.2.2 Other versions of the model

To what extent do the empirical predictions we highlighted characterize complementarities? Appendix B.4

discusses alternative versions of the model in more detail, and Table 1 summarizes the findings.

The frictionless model In the frictionless case (C = 0 and κ = 0), it is straightfoward to see that while

the cash crunch causes a short-run spike in adoption, firms revert back to cash as the shock dies out. Thus,

the frictionless model does not generate a persistent increase in adoption in response to a temporary shock.

Fixed costs In the model with fixed costs (C = 0 and κ > 0), firms’ technology choice follows a simple

(S, s) rule. Two boundaries, M and M , fully characterize the policy: a firm chooses to switch to e if Mt < M ,

to switch to c if Mt > M , and inaction when M < Mt < M . As illustrated in Appendix Figure E.5, a large

shock moves the economy from its initial state (point A) to the adoption region (point B); but in finite time,

the economy reaches the boundary M again (at point C). There, adoption ceases, but firms that receive the

technology adjustment shock choose inaction, so that the fraction of users of e stays constant.

Thus, large temporary shocks can have persistent effects on the user base, just as in the model with

complementarities; but the adoption rate of the platform does not increase persistently, and instead it goes

to zero as the shock dissipates. In other words, in a model characterized only by fixed costs, the increase in

adoption generated by the shock is entirely due to firms switching at the height of the cash crunch, with no

impact on new adopters outside this initial period. Additionally, the model with fixed costs does not feature

state-dependence with respect to baseline adoption rates, since the initial number of users is irrelevant to

adoption choices of other firms.25

Shock persistence The externalities due to complementarities in adoption may seem to give policymak-

ers unusually strong powers in triggering technology adoption: temporary interventions can indeed have

permanent effects. However, an important point to note is that an increase in average adoption can also

be accompanied by more heterogeneity in adoption rates across districts, depending on initial differences in

baseline adoption rates, consistent with the state-dependence of responses discussed above.

The strength of this effect crucially depends on the degree of persistence of the shock. At the extreme,

very temporary interventions (θ →∞) will do nothing more than accentuate differences in initial technology

adoption. On the other hand, a more persistent shock is likely to lead to permanent adoption even in districts

25The total number of users in fact features slightly negative state dependence. In Appendix Figure E.5, the expected time
to go from point B (the point to which the economy is brought after the shock) to point C (the point at which the inaction
region is reached again) does not depend on the initial number of users of e. However, because the law of motion for Xt, from
B to C, is simply ∆Xt = (1− e−k∆t)(1−Xt−∆t), the cumulative change in Xt is a decreasing function of the initial number
of users, X0. Appendix B.6 uses numerical simulations of the model to further contrast the response of the long-run adoption
rate and its state-dependence, with respect to the model with C > 0 and κ = 0.
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with low baseline adoption rates. More specifically, state-dependence in the adoption response can occur

whenever θ > k that is, the speed at which firms may adjust their technology choice is slow relative to the

speed of mean-reversion of the shock. Under the alternative assumption (θ < k), the model to generates

a stronger permanent switch to e after the shock, but a weaker relationship between initial conditions and

subsequent increases in the number of users. This is discussed in Appendix B.7. The strong state-dependence

we document in the analysis of the next section indicates that θ > k is the empirically relevant case for the

Demonetization (something our structural estimates of the model also confirm).26

Policymakers may therefore face a trade-off between the persistence of the shock and its distributional

effects. The following section argues that there is strong state-dependence in the data, so that this trade-off

is relevant empirically; Section 5 uses the model to study this trade-off quantitatively.

4 Adoption dynamics

This section uses micro data from the leading electronic wallet in India to test the three empirical predictions

of the model with externalities highlighted in Section 3. We test the first two predictions, on the long-run

increase in both the size of the platform and in its adoption rate, by using quasi-random variation in the

exposure to the shock. Additionally, we provide both district- and firm-level evidence consistent with the

third prediction, the positive dependence of adoption responses on baseline adoption rates.

4.1 Data

The main data we use in our analysis are merchant-level transactions from the leading digital-wallet com-

panies in the country.27 We observe weekly level data on the sales amount and number of transactions

happening on the platform for anonymized merchants between May 2016 and June 2017.28 For each mer-

chant, we also observe the location of the shop at the district level, as well as the store’s detailed industry.

For a random sub-sample of shops, the location is provided at the more detailed level of 6-digit pincode.29

There are two key features of these data. First, the information is relatively high frequency, since we can

aggregate the data at weekly or monthly levels. Second, the transactions are geo-localized, therefore allowing

us to aggregate them up at the same level as other data sources used in this study.

26For state-dependence to also generate dispersion in long-run adoption rates, initial conditions must also be sufficiently
heterogeneous across districts. As we discuss in the next section, this is the case in the data we study.

27During the period of our study, this mobile platform was the largest provider of mobile transaction services. However, since
March 2017, a few other public platforms have emerged, in part as a result of the government’s “cashless economy” initiative.

28The company shared with us information on the top million firms using the platform during this period. This sample
represents the quasi-totality of transactions — in both number and value — conducted using the off line technology. See
Appendix Section A.3 for more details on the technology.

29A pincode in India is the approximate equivalent of a five-digit zip-code in the US. Pincodes were created by the postal
service in India. India has a total of 19,238 pincodes, out of which 10,458 are covered in our dataset.
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We obtain data on district-level banking information from the RBI. This includes three pieces of informa-

tion at the district level: first, the number of bank branches; second, information on the number of currency

chests by district and the banks operating the chests; third, quarterly bank deposits at the bank-group level

in each district. Finally, we complement this data with information from the Indian Population Census of

2011 to obtain a number of district-level characteristics, including: population, quality of banking services

(share of villages with an ATM and banking facility, number of bank branches and agricultural societies per

capita), socioeconomic development (sex ratio, literacy rate, growth rate, employment rate, share of rural

capital), and other administrative details, including distance to the nearest urban center.

4.2 The effects of Demonetization on adoption

Next, we test the first two predictions of the model: the long-run increase in both the size of the platform

and its adoption rate. The aggregate event study evidence discussed in Section 2 is qualitatively consistent

with these predictions. At the same time, this aggregate event study evidence may not properly capture

the long-run causal response of adoption to the shock. One particularly important confounding factor are

national government policies that may have affected the subsequent adoption of electronic payments for

reasons unrelated to externalities, as we describe in Appendix Section A.2. We overcome this concern by

using quasi-random variation across different districts in exposure to the cash contraction. This approach

allows us to recover the causal effect of the temporary cash contraction on adoption of electronic payments

independently of any other aggregate shocks after the Demonetization.

Exposure measure To identify heterogeneity in the exposure to the cash contraction, we exploit the

heterogeneity across districts in the relative importance of chest banks — defined as banks operating a

currency chest in the district — in the local banking market. In the Indian system, currency chests are

branches of commercial banks that are entrusted by the RBI with cash-management tasks in the district.

Currency chests receive new currency from the central bank and are in charge of distributing it locally. While

the majority of Indian districts have at least one chest bank, districts differ in the total number of the chest

banks, as well as in chest banks’ share of the local deposit market.

Consistent with anecdotal evidence, we expect that districts where chest banks account for a larger share

of the local banking market should experience a smaller cash crunch during the months of November and

December.30 On some level, this relationship is mechanical. Chest banks were the first institutions to

receive new notes, so in districts where chests account for a larger share of the local banking market, a larger

30In the popular press, several articles argue that proximity — either geographical or institutional — to chest banks con-
tributed to the public’s ability to have early access to new cash. For instance, see https://www.thehindubusinessline.com/

opinion/columns/all-you-wanted-to-know-about-currency-chest/article9370930.ece.
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share of the population can access the new bills faster. Furthermore, the importance of chest banks may

be an even more salient determinant of access to cash if these institutions were biased toward their own

customers or partners. Indeed, concerns of bias in chest-bank behavior were widespread in India during the

Demonetization.31 In any case, we will show that this connection between chest bank presence and the cash

contraction is supported by data.

To measure the local importance of chest banks, we combine data on the location of chest banks with

information on overall branching in India and data on bank deposits in the fall quarter of the year before

Demonetization (2015Q4). Ideally, we want to measure the share of deposits in a district held by banks

operating currency chests in that district. However, data on deposits are not available at the district level

for each bank. Instead, the data are only available at the bank-type level (Gd).
32 Since we have information

on the number of branches for each bank at the district level, we can proxy for the share of bank deposits of

each bank by scaling the total deposits of the bank type in the district by the banks’ share of total branches

in that bank type and district.33 We can then can compute our score as:

Chestd =

∑
b∈Cd

∑
j Djbd∑

b∈Bd

∑
j Djbd

≈ 1

Dd

∑
g∈Gd

(
Dgd ×

N c
gd

Ngd

)
where Dd is the total amount of deposit in the district d, Dgd and Ngd are respectively the amount of deposits

and the number of branches in bank-type g and district d, and N c
gd is the number of branches of banks of

type g with at least one currency chest in the district.34 Since we want to interpret our instrument as a

measure of the strength of the shock, our final score Exposured is simply the converse of the above chest

measure i.e. Exposured = 1−Chestd. The score is characterized by a very smooth distribution centered on a

median around 0.55, with large variation at both tails (Figure E.15). Overall, exposure appears to be evenly

distributed across the country, as very high and very low exposure districts can be found in every region

(Figure E.16). Consistent with this idea, in the robustness section we show that results do not depend on

any specific part of the country.

According to the logic of our approach, we expect areas where chest banks are less prominent — or have

31In a report in December, the RBI has discussed this issue extensively. In one comment, they report how “these
banks with currency chests are, therefore, advised to make visible efforts to dispel the perception of unequal alloca-
tion among other banks and their own branches.” See https://economictimes.indiatimes.com/news/economy/finance/

banks-with-currency-chest-need-to-boost-supply-for-crop-rbi/articleshow/55750835.cms?from=mdr.
32The RBI classifies banks in six bank groups: State Bank of India (SBI) and its associates (26%), nationalized banks (25%),

regional rural banks (25%), private sector banks (23%) and foreign banks (1%).
33A simple example may help. Assume we want to figure out the local share of deposit by two rural banks A and B. From

the data, we know that rural banks in aggregate represents 20% of deposits in the district, and that bank A has 3 branches in
the district, while bank B only has one. Our method will impute the share of deposits to be 15% for bank A, and 5% for B.

34In practice, this approximation relies on the assumption that the amount of deposits held by each bank is proportional to
the number of branches within each district. The strength of our first-stage analysis suggests that this approximation appears
to be reasonable.
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higher exposure according to the index — to have experienced a higher cash contraction during the months

of November and December. While we cannot directly observe the cash contraction at the local level, we

can use deposit data to proxy for it. Cash declined because old notes had to be deposited by the end of

the year, but withdrawals were severely limited. Therefore, the growth in deposits during the last quarter

of 2016 should proxy for the cash contraction in the local area. Figure E.17 provides evidence consistent

with this intuition by plotting deposit growth across districts for the last quarter of both 2016 and 2015.

In normal times (2015), the growth distribution is relatively tight around a small positive growth. During

the Demonetization, the distribution looks very different. First, almost no district experienced a reduction

in deposits. Second, the median increase in deposits was one order of magnitude larger than during normal

times. Third, there is a lot of dispersion across districts, suggesting that the effect of the Demonetization

was likely not uniform across Indian districts.35

Using this proxy for the cash crunch, we can provide evidence that supports the intuition behind our

identification strategy. Figure 6 shows that there is a strong relationship between district-level exposure

to the shock and deposit growth. The same relationship holds when using different measures of deposit

growth and including district-level controls, as shown in Table E.1. Importantly, Table E.2 also shows

that this strong relationship only holds during the Demonetization quarter, therefore further validating our

approach.36

Econometric model Using this measure of exposure, for different outcome variables of interest, y, we

estimate the following difference-in-difference model:

log (yd,t) = αt + αd + δ
(
Exposured × 1{t≥t0}

)
+ Γ′tYd + εd,t, (5)

where t is time (month), d indexes the district, t0 is the time of the shock (November 2016), and Exposured

is the measure of the district’s exposure constructed with chest-bank data, as explained above. The equation

is estimated with standard errors clustered at the district level, which is the level of the treatment (Bertrand

et al., 2004). Lastly, the specification is based on the data between May 2016 and June 2017.37

Importantly, the specification is also augmented with a set of district-level controls (Yd), which are

measured before the shock and interacted with time dummies. The presence of controls is important,

35The result is essentially the same if we compare 2016 with 2014 on deposit growth dispersion.
36In particular, the Table uses data since 2014 and shows that, in normal times, the relationship between these two quantities

is small and generally insignificant. In the only other case in which this relationship is positive, this effect is one-fourth of the
magnitude of 2016Q4.

37We exclude sparsely populated northeastern states and union territories from the analysis due to missing information on
either district-level characteristics or banking variables. The seven north-eastern states include Arunachal Pradesh, Manipur,
Meghalaya, Mizoram, Nagaland, Sikkim, and Tripura while union territories include Anadaman and Nicobar Islands, Chandi-
garh, Dadra and Nagar Haveli, Daman and Diu, Lakshadweep and Pondicherry. Altogether these regions account for 1.5% of
the Indian population.
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because chest exposure is clearly not random. Table 2 examines this issue, by showing the difference across

characteristics for districts characterized by different exposure. Exposure to chest banks is uncorrelated with

several district-level demographic and economic characteristics, but not all of them. In particular, higher

exposure is found in districts with a smaller deposit base, a smaller population, and a larger share of rural

population. However, most of the variation in exposure is absorbed once we control for two observables: the

size of the deposit base in the quarter before the shock and the percentage of villages with an ATM (last

columns, Table 2). Taking a more conservative approach, our controls include the log of deposits in the

quarter before the Demonetization, the percentage of villages with an ATM, the log of population, the share

of villages with a banking facility, and the share of rural population.

Results Table 3 shows that districts more exposed to the cash contraction also experienced higher adoption

of electronic payments. Column 1 shows that districts that were more exposed to the shock saw a larger

increase in the amount transacted on the platform in the months following the Demonetization. This result

is both economically and statistically significant. Districts with one standard deviation higher exposure

experienced a 55% increase in the amount transacted on the platform relative to the average. Similarly, the

number of firms operating on the platform — our main measure of adoption — increased by 20% more in

districts with one standard deviation higher exposure to the shock (Column 2).38

In Figure 7 (first two panels) we plot the dynamics of the main effect, i.e. the month-by-month estimates

of how districts characterized by different levels of exposure responded to the shock.39 This figure highlights

three main findings. First, it confirms that our main effect is not driven by differential trends across high-

vs. low-affected areas. Second, the shift in adoption across districts happened as early as November. Third,

the difference in the response also persists after the cash availability returns to normal level. In particular,

the effects are still large and significant after the month of February. These findings, taken together with

the aggregate-level evidence in Section 2, confirm that the temporary cash contraction led to a persistent

increase in size of the user base of the electronic payment technology, consistent with the first prediction of

the model.

Next, we test the second prediction of the model, which is that the shock led to a persistent increase

in the adoption rate, that is, the flow of new users in the platform. We empirically test this by analyzing

whether districts more affected by the shock witnessed a more persistent increase in new adopters. We define

new adopters at time t as the firms using the technology for the first time at time t. The third panel of

Figure 7 shows that districts experiencing a larger contraction in cash saw a larger increase in new adopters

38To be conservative, we measure the number of active firms in the platform as firms with at least 50 Rs. of transactions in
the period. We obtain similar results when we use different transaction thresholds (including a threshold of zero).

39The specification is log
(
yd,t

)
= αt + αd + δt (Exposured) + Γ′tYd + εd,t, and October is the base month.
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joining the platform as early as on November 2016. Crucially, the relative increase in the number of new

adopters continued even after January 2017, the last month during which cash withdrawal was constrained,

and persisted for the whole of spring 2017. This persistent increase in new users is consistent with the second

prediction of the model.

Robustness As stated above, we argue that the relationship between exposure to the cash contraction

and adoption of electronic payments is causal. Consistent with this interpretation, we have shown that,

conditional on covariates, more exposed areas do not look different than less exposed regions in pre-shock

levels. Additionally, our effects are not driven by pre-trends across affected districts. As a further robustness

check, we note that our main results are not driven by the response of any particular region in the country:

our effects are stable when excluding any of the Indian states from our analysis (Appendix Figure E.18).

Given these results, one remaining concern to rule out is the presence of a contemporaneous demand shock

that is correlated with our exposure measure but it is unrelated to the cash scarcity. We provide two tests

to rule this out, which Appendix C expands on. First, we show that the same highly affected districts also

experienced a larger decline in consumption during this period. In particular, using the same empirical model

and a panel of almost 100k households in India around the Demonetization, we document that exposure to

the cash contraction led to a temporary contraction in total consumption. This effect is mostly driven by a

reduction of non-essential consumption items (e.g. recreational expenses). This result is interesting on its

own, but also helps rule out the possibility that unobserved demand shocks could explain our results. In fact,

a demand-side explanation of the increase in electronic payments would require that highly exposed districts

receive a positive demand shock. Our findings reject this hypothesis and actually find that — consistent with

a supply-side interpretation — highly affected areas saw a reduction in consumption.40 Second, Appendix

C also presents a full set of placebos that exploit the longer-panel dimension in the consumption data and

confirm the quality of our empirical strategy.

4.3 State-dependence in adoption

One of the key predictions of the model with complementarities is the state-dependence of adoption. In

particular, the model suggests that a temporary shock may lead to a permanent shift in adoption, but

that the increase in adoption will not be uniform across regions: it will crucially depend on the initial

strength of complementarities in the area. In this section, we use the data on electronic payments to present

evidence that are consistent with this prediction. Conceptually, the objective of these tests is not to causally

identify a relationship between variables, but rather to generate empirical regularities that would support

40Appendix C discusses more in detail these tests as well as the possible alternative demand channels we rule out.
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the importance of state-dependence in explaining the data. To do so, we will try to isolate the role of the

state-dependence mechanism from alternative economic forces that might also be consistent with the same

result. While none of the tests will be perfect, we believe that all of them together provide convincing

evidence on the empirical importance of state-dependence.

Initial size and adoption In the model, the strength of complementarities in a district is completely

captured by the pre-shock size of the user base. Specifically, the model predicts that the initial size of the

platform in a district should amplify the adoption response to the shock. In Table E.4, we provide evidence

that the data are consistent with this prediction.41 In particular, we find that a high initial level of adoption

at the district level tends to be correlated with a higher change in adoption after the shock.

This simple evidence is thus consistent with state-dependence as defined in the model. However, it suffers

from two shortcomings. First, in reality, the scope of complementarities may extend beyond the district.

For example, if complementarities are due to a shared customer base, then it is unclear whether or not

adoption at the district level is the correct way to proxy for their initial strength. The second is the standard

reflection problem (Manski, 1993; Rysman, 2019). Past adoption decisions by firms in the district may reflect

unobservable heterogeneity across firms in a district that are unrelated to the strength of complementarities,

but correlated to subsequent adoption decisions. To overcome these limitations, in what follows, we propose

and implement two alternative tests for state-dependence, one involving district-level data, and the second

involving firm-level data.

District level test First, we test how the increase in adoption differs depending on the distance between

a district and areas in which the usage of the electronic wallets was large prior to November (hubs). The

mapping between the strength of complementarities and distance to the electronic payment hub is intuitive.

In the model, the heterogeneity in the strength of complementarities is completely determined by the number

of users in the same area. In reality, individuals move across districts and therefore the size of adoption in

neighboring districts will also be important. Therefore, being located close to a large hub — a center where

electronic payment use is relatively common — may significantly increase the benefits of adoption Comin

et al. (2012).42

41Specifically, we estimate:
Xd,t = αt + αd + δ

(
Id × 1{t≥t0}

)
+ Γ′tYd + εd,t, (6)

where Id is initial adoption levels in a district, measured either by dummy for whether a district had a positive adoption level
before the Demonetization, or by the total amount of transactions in the district before the Demonetization.

42In particular, we define a district to be an electronic payment hub if there were more than 500 active firms pre-
Demonetization (September 2016). The results are essentially identical if we use a threshold of 1,000 firms to define the
hub districts. The nine hubs are spread evenly across the country. In particular, these districts are: Delhi, Chandigarh and
Jaipur (North), Kolkata (East); Mumbai and Pune (West); Chennai, Bangalore and Rangareddy (South). The distance to the
hub is defined as the minimum of the distance between the district and all the hubs.

22



We implement this test by running a simple difference-in-difference model where we compare the usage of

wallet technologies around the Demonetization period across districts that are differentially close to a digital

wallet hub. Despite the clear advantages relative to the naive evidence presented above, there still are two

concerns with this approach. First, by sorting on distance we might capture variation coming from areas

that are located in more extreme or remote parts of the country. Second, since the electronic hubs are some

of the largest and most important cities in the country, we should expect that being located close to them

will have benefits that go beyond the effect of complementarities.43

We deal with these limitations in three ways. First, we limit the comparison to districts that are located

within the same state, adding state-by-month fixed-effects. In this way, we only exploit distance variation

between areas that are already located in similar parts of the country. Second, we also control for the

distance to the capital of the state, also interacted with time effects. This control allows us to isolate the

effect of the distance to a major electronic payment hub from the effect of being located close to a large city.

Third, as in the previous analyses, we augment the specification with a wide set of district-level covariates

interacted with the time dummies. This implies a specification of the following form:

Xd,s,t = αst + αd + δ
(
Dd × 1{t≥t0}

)
+ γ

(
D̃d,s × 1{t≥t0}

)
+ Γ′tYd + εd,t, (7)

where t indicates time, defined at the monthly level in this analysis, d indexes the district and s identifies

the state of the district. Dd is the district’s distance to the nearest electronic-wallet hub and D̃d,s is the

district’s distance to the capital district of the state. As before, standard errors clustered at district level.44

The main coefficient of interest is δ — which provides the difference in the level of adoption pre- and

post-Demonetization depending on how far the district is from its closest electronic-wallet hubs.

These results are reported in Table 4. Across all the outcomes — the amount of transactions, number

of operating firms and number of new adopters — we find that the districts farther away from major hubs

experienced a lower increase in the post-Demonetization period. The most conservative of the estimates

indicates that a 50km increase in distance translates into a 19% lower increase in the amount of transactions.

Importantly, these effects are not driven by differential trends in adoption between areas that are closer and

further from hub cities (Figure 8). In general, distance does not matter before November, but it predicts

differential responses starting in December.45

43A third concern is that distance may simply capturing variation in exposure to the shock, as defined before. However, we
actually find that the two treatment variables are uncorrelated.

44It is important to point out that we remove major digital wallet hubs from this analysis. Notice that this exclusion does
not affect our results; the results that includes the hubs are, if anything, stronger.

45In Table E.5, we show that we find similar results when we use a dichotomous definition of the treatment. In particular,
we consider several alternatives, going from 400km down to 200km. Across all these tests, the results are stable and significant.
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Firm level test Our second test examines the role of state-dependence using firm-level data. In the model,

analogously to the district-level prediction, state-dependence implies a positive relationship between a firm’s

use of the technology and the overall use by other firms in the same area.46 Using firm-level data, we can

directly test this prediction, following an approach that is consistent with the empirical literature on spillover

(e.g. Munshi 2004, Goolsbee and Klenow 2002). Furthermore, the use of firm-level data allows us to control

directly for several dimensions of heterogeneity that may explain adoption decisions for reasons unrelated to

externalities.

For each firm, we measure the total use of the technology by other companies located in the same

geographical area and operate in the same industry. We choose this reference group because we believe that

complementarities should be strongest among firms in the same area and industry. For instance, we expect

to find the largest overlap in customers for companies within the same area and industry, as well as the

largest spillovers in learning about the value of the technology. 47 In particular, we estimate:

xi,p,k,t = αi + αp,t + αk,t + ρxi,p,k,t−1 + γXp,k,t−1 + εi,p,k,t. (8)

Here xi,p,k,t is a measure of technology choice by firm i in industry k and pincode p at time t (where t is a week

in the period May 2016-June 2017).48 For instance, this measure could be a dummy for whether the firm

used the platform, or it could be the amount of activity of the firm on the platform.49 The variable Xp,k,t−1

is a measure of adoption by other firms in the same pincode and the same industry during the previous

week. To be consistent, we measure Xp,k,t−1 using the same variable we used as the outcome, summing that

dimension across all firms in the same pincode and industry, and always excluding the firm itself. To ease

the interpretation of the coefficients, apart from when the outcome is a dummy, we log-transform all the

relevant variables.50 Standard errors are clustered at the location level (pincode).

Results reported in Table 5 provide evidence consistent with state-dependence. Across several specifica-

tions, we find that a higher volume of electronic transactions by firms in the same reference group strongly

predicts more transactions for the firm itself in the following week. For instance, in our baseline we have that

a one-standard-deviation increase in transactions by firms in the reference group leads to a 40% increase in

the amount of transactions for the firm, which corresponds to 18% of the standard-deviation of the outcome

46Consistent with this discussion, Appendix B.8 shows, using Monte-carlo evidence, that this positive relationship arises in
the model when there are externalities, and is absent otherwise.

47Our results also hold when using alternative definitions of the reference group. For instance, in Table E.6 in the Appendix
we define the relevant market as any firm in the same location (pincode), irrespective of the industry.

48We use pincode to identify firms’ locations because we want to use the narrowest definition of location that is available in
the data. Our main results also hold using districts (Table E.7 in Appendix).

49We classify firms into 14 broad industries: Food and Groceries (14%), Clothing (10%), Cosmetics (2%), Appliances (8%),
Restaurants (12%), Recreation (2%), Bills and Rent (1%), Transportation (13%), Communication (12%), Education (3%),
Health (7%), Services (4%), Jewellery (1%) and Others (11%).

50In other words, we transform each variable to be equal to the log-plus one of the primitive.
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variable. The same results hold –– with similar magnitude — when we look at the number of transactions

or at whether the firm was active on the platform.

Overall, the main concern in this analysis is that past decisions by firms in the reference group may

correlate with an individual firm’s behavior because of unobservable heterogeneity across firms which are

unrelated to the strength of complementarities — the reflection problem. To assuage this problem, we show

that results still hold once we augment the baseline with firm fixed-effects (column 2), pincode-by-week

fixed-effects (column 3), and industry-by-week fixed-effects (column 5) altogether. Relative to the baseline

specification specification (column 1), the addition of these fixed-effects will allow us to keep constant in the

model any characteristics of the area — even to the extent that these characteristics have a differential effect

over time — and also adjust the estimates for changes in adoption rates in the same industry.51

We conclude by repeating the same analysis as before, but allowing for month-specific parameters for

each of our outcomes (Figure 9).52 Across the three outcomes, there are two key findings. First, the positive

effect documented before is always present in the data, both before and after the policy shock. This is

reassuring, since the state-dependence induced by complementarities is not a function of the shock but a

feature of technology choices in any scenario. Second, the effect of adoption in the reference group is much

higher in the months of the Demonetization, relative to the preceding and succeeding months.

4.4 Alternative mechanisms and discussion

Overall, the evidence suggests that the Demonetization caused an adoption wave with features that are

qualitatively consistent with three predictions of the model with externalities: (i) a persistent increase in

the size of user base; (ii) a persistent increase in the adoption rate, that is, the flow of new users into

the platform; and (iii) state-dependence in responses, that is, a positive relation between initial adoption

rates and the initial strength of adoption externalities, broadly defined. In the context of our model, these

predictions are specific to the presence of externalities, so these reduced-form results support the notion that

externalities played a key role in shaping the adoption response following the shock.

In this section, we discuss three aspects of our analysis. First, we examine the extent to which factors that

are not in the scope of our model (i.e. competition among platforms, fees and marketing) may nevertheless

51The inclusion of individual fixed-effects in a dynamic model may bias the main parameters in the model, as first discussed
in Nickell (1981). However, there are two important things to highlight about our application. First, the presence of fixed-effect
is not necessary to obtain the desired result, since we still find the same effect without any fixed-effects (column 1). Second,
the Nickell bias is a feature of models characterized by short panels, as the bias converges to zero as T − 1 increases, where
T is the time-dimension in the panel. In our case, T is relatively large - data is at weekly level and the time span is almost
a year - and therefore the bias will be small in magnitude. In particular, since our main prediction is on the direction of the
relationship rather than on the exact magnitude, this issue will not affect the conclusion of this study.

52In fact, the model suggests that the effect estimated should actually be different across time. In particular, using the
simulated data from the model, we can show that the importance of the adoption by other firms is particularly large in the
shock period.
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influence our reduced-form results. Second, we discuss which mechanism is most likely to explain the

presence of externalities among retailers in their decision to adopt, comparing the role of pure network

effects to learning among retailers. Lastly, we provide a final interpretation of our reduced form evidence.

To start, we do not believe that competition between platforms plays a primary role in our analysis.

Within fintech, our partner firm was the largest provider in India, and could be considered the de facto

monopolist for most of the sample period. At the same time, other traditional electronic payments did

not experience any increase in new adopters at the time of the Demonetization (as discussed in Section

2). Furthermore, the nature of our data also implies that competition between platforms should increase

measurement error and therefore – if anything – this would bias our analyses towards finding no effects.

Furthermore, we also want to stress how marketing efforts and pricing strategies by the platform should

not be important confounding factors. If local marketing spending by the partner company is correlated with

our district-level treatment, then our effects would capture responses to such marketing efforts. However,

our partner company organizes customer acquisition through national campaigns, and there was no program

targeting specific local areas. At the same time, pricing strategies to overcome coordination failure — as

suggested in Rochet and Tirole (2006) and Weyl (2010) – do not play an essential role in our analysis as the

fees to join the platform were zero during our sample period.53

While our results strongly support the idea that complementarities are key to explain the increase in

adoption, we have been so far silent about the exact sources of complementarities in our context. The model

of Section 3 does not take a clear stand on this; instead, it captures complementarities in reduced form,

by assuming that the returns to adoption increase with the number of other adopters. As discussed there,

complementarities in the decision to adopt can arise because of the network nature of electronic payment

platforms (Katz and Shapiro, 1994; Rysman, 2007). At the same time, learning about the costs and benefits

of the technology — either through social interactions or by observing the experiences of peers — could also

make adoption decisions complements (Munshi, 2004; Young, 2009; Bailey et al., 2019).54

While some features of the adoption response may differ depending on the source of externalities, the

main implications of our study do not depend on the nature of the underlying mechanisms. In particular,

persistence in adoption after a temporary shock and state-dependence does not depend on the specific

mechanism generating complementarities. While a quantification of the relative importance of these different

mechanisms is outside the scope of this paper, we think that shedding more light on these mechanisms is

important and more feasible empirically. We next provide novel evidence suggesting that learning is unlikely

53It is also important to highlight that our period of analysis ends before the introduction of the GST tax in India, which
took place in July 2017.

54Notice that this is different than simply saying that people became aware of the technology after Demonetization. This
simpler mechanism is akin to a fixed cost and therefore cannot explain the whole set of results, as discussed earlier in the paper.
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the key driver of our results.

First, to the extent that social learning is the main driver of our results, we should expect to find

stronger effects of cash contraction in districts where social learning among firms is more prevalent. We

explore this idea by constructing a measure of social learning at district level and augmenting our baseline

specification with additional interactions of our measure of cash contraction and proxy for social learning.

We use the degree of language concentration in a district, since the social interactions and size of social

networks in a region arguably increases when there are more individuals speaking the same language in that

region (Michalopoulos, 2012).55 Column (1) of Table E.8 shows that our main effects remain unchanged

and that districts with higher language concentration do not have different adoption responses in the post-

Demonetization period. In Column (2) we also do not find any evidence that the responses from cash

contraction is different in districts with more language concentration. Since learning could also occur from

peers that adopted the technology (Banerjee, 1992), we also test whether we find stronger effects when there

are more similar firms in a region (Munshi, 2004).56 However, also in this case, we find evidence that is

inconsistent with this hypothesis (columns 3 and 4, Table E.8).

Lastly, since learning cannot be undone (at least within a few months), there should be more limited

reversal after the shock if this feature were the key source of complementarities. Places that reached high

adoption in January should remain at elevated levels afterwards.57 In general, the data seem at odds with

this scenario. In fact, despite the average increase in adoption, slightly more than a quarter of our district-

month pairs experienced some negative growth after the Demonetization. Related to this point, we also

find that firms that were early adopters — defined as firms already using the electronic wallet in October

2016 — experienced a substantial increase of about 100% in number of transactions between October 2016

to May 2017. If our effects were driven by learning, then there should have been very limited response

from early adopters. Altogether, while we cannot definitively rule out that learning did not play a role

in generating complementarities in adoption, these tests provide strong support that our estimates are not

simply capturing the effects of learning.

The key take-away from this section is that complementarities in adoption decisions are necessary to

rationalize simultaneously the persistence and the state-dependence in adoption documented in the data.

55We define language concentration in a district as: Language Concentrationd = 1−
∑
l s

2
dl where sdl is the share of district

d population speaking language l. We obtain the information on language distribution among population using Census of India,
2011.

56To examine this dimension, we use 4-digit industry concentration (based on share of employment) within a district as a
proxy for observational learning, since the possibility of learning through peers in a region is arguably higher when there are
more firms within the same industry in that district.

57We acknowledge that this difference in predictions between complementarities based on learning versus network externalities
is beyond the scope of our simple model. In our simple model, state-dependence implies there can be long-run mean-reversion
if initial adoption is sufficiently weak or if the initial shock is sufficiently small. Our point here is that in richer model where
complementarities are explicitly modelled via learning, mean-reversion should, in principle, be weakened. Furthermore, this
evidence also confirms our initial modeling assumption.
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However, these results leave two related questions open. First, they do not indicate how large these com-

plementarities are in the data — that is, in terms of the model of Section 3, how large C is. Second, from

these reduced-form results, no conclusions can be drawn about the effects of alternative shocks (say, a more

transitory cash contraction). By the same token, these results are silent regarding how a policymaker seeking

to promote adoption may decide to structure an intervention. These two issues are connected since they

both require some knowledge of the strength of externalities in this setting. In the next section, we address

both by structurally estimating the model using the data on electronic wallet adoption and studying the

model’s counterfactual and policy implications.

5 Quantifying the role of complementarities

5.1 Estimation

We use the simulated method of moments to estimate the key parameters of the model. We start by

describing briefly our approach, focusing on the intuition for how specific moments help identify different

model parameters. We then report the results and discuss model fit.

Methodology and identification We calibrate two parameters. First, we set r = − log(0.90)/12, cor-

responding to a time discount rate of 0.90 per year.58 Second, we set θ = − log(1 − 0.90)/(82/30), where

θ is the (inverse of) the persistence of innovations to the money stock.59 Additionally, and without loss of

generality, we normalize the long-run mean of Md,t to M c = 1.

We estimate the remaining Np = 5 parameters of the model, Θ = (S,C, k, σ,Me). They are, respectively,

the size of the Demonetization shock (S), the strength of complementarities in adoption (C), the Poisson

arrival rate of the technology switching shock (k), the standard deviation of normal innovations to the money

stock (σ), and the profits associated with the electronic payments technology when there is no adoption (Me).

In order to estimate those parameters, we use the following set of regressions, on a balanced panel of districts:

∆t0Xd,t = β + γ1 {t ≥ t0 + 3}+ δXd,t0 + ζ (1 {t ≥ t0 + 3} ×Xd,t0) + εd,t,

ˆvart(∆t0Xd,t) = η + κ1 {t ≥ t0 + 3}+ µt,

ˆvard(∆t0Xd,t) = ν + ωd,

(9)

and we additionally estimate the average of the squared residuals ε̂2d,t from the first regression in (9), through

58As described in appendix B, the model is solved using a discrete time approximation where ∆t = 1/10, so that a time
period is approximately one tenth of one month.

59This choice ensures it takes on average 82 days for the aggregate shock to be 90% dissipated. The choice of 82 days
corresponds to the time which elapsed between the announcement of the cash swap (November 8th, 2016) and the date at
which the government lifted most remaining restrictions on cash withdrawals (January 30th, 2017).
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ε̂2d,t = ξ+ωd,t. In these regressions, d indexes the 512 districts included in our analysis, and t indexes months.

The month t0 is October, 2016 (the last month observed prior to the Demonetization shock), and ∆t0Xd,t

is the cumulative change in adoption rates: ∆t0Xd,t = Xd,t − Xd,t0 . We use the 8 months running from

November, 2016 to June, 2017.60 We compute the participation rate in each district, Xd,t, as the ratio of

the number of monthly users active on the platform during month t, divided by the number of retailers with

less than three employees, which we obtain from the 2014 Census.61 Finally, ˆvart(.) denotes cross-sectional

variances, while ˆvard(.) denotes within-district variances.

In order to estimate our 5 data parameters, we use Nm = 8 data moments from the regressions above:

Ξ̂ = (β̂, γ̂, δ̂, ζ̂, ξ̂, η̂, κ̂, ν̂). Appendix D reports the details of the estimation procedure. We use the bootstrap,

clustering by district, in order to construct the variance-covariance matrix of data moments. Here, we focus

instead on the intuition for why the chosen data moments help identify the five estimated parameters.

Our main parameter of interest is the strength of complementarities, C. Consistent with our earlier

discussion of the model, this parameter is primarily identified by the difference between the short and

medium-run response of adoption to the shock, γ̂.62 Without adoption complementarities (C = 0), the

short-run adoption wave triggered by the shock has no bearing on the adoption decision of firms further

down the road. As a result, once the shock is dissipated, there should be no further adoption by new

firms. The model would then predict that γ̂ = 0. By contrast, when adoption complementarities are present

(C > 0), the short-run adoption wave raises the value of future adoption for other firms, and so new firms

continuing adopting even once the shock is dissipated, leading to positive values of γ̂. Additionally, as

discussed earlier in the paper, the dependence of the response to the shock on initial conditions (δ̂, ζ̂) also

helps pin down the strength of adoption complementarities.

The rate at which firms reset their technology choice, k, is identified using estimates of the between-district

variance of the change in adoption, η̂ and κ̂. The medium-run variance, κ̂, is particularly informative about

k. As highlighted in our ealier discussion, if firms reset their technology quickly relative to the persistence

of the shock (i.e. k is sufficiently high relative to θ), then all districts will rapidly converge to full adoption,

thus leading to lower cross-sectional variance in adoption rates in the medium-run.

Finally, the size of the shock, S, is primarily identified by the short-run adoption caused by the shock,

which is β̂. Absent an aggregate shock, β̂ is not statistically different from 0, and the magnitude of the

coefficient increases with the size of the shock, independent of the existence of complementarities. The

60We substract the initial adoption rate in order to eliminate district-specific fixed effects, but results either in levels or
adding explicit fixed effects in the estimation of (9), are similar.

61Additionally, we re-normalize the Census retail counts so that the five districts by adopter share reach full adoption.
Appendix D discusses this normalization in more detail, and shows that it does not materially affect our results.

62Here, we define “medium-run” as three months after the shock; by then, in the data, cash circulation had returned to
pre-shock levels; and, in the model, the aggregate shock is more than 90% dissipated.
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standard deviation of idiosyncratic innovations to districts, σ, is identified using the variance of residuals

from the first equation in (9). The residual variation in adoption, after controlling for initial condition, should

be driven by district-level shocks. The rate of profits associated with the electronic payments technology

when there is no adoption, Me, is identified using the variance of within-district adoption rates. Even when

there are no complementarities, a lower level of Me is associated with shorter adoption spells, and therefore

lower overall volatility of adoption rates.

Results Table 6 reports estimates of the five structural parameters. The point estimate for the size of the

shock, S, is 24.6% (with a 90% coverage interval of [15.0%, 34.1%]). The parameter S expresses the decline

in profits associated with cash-based transactions, relative to their long-run mean. There are two numbers

with which this estimate could be compared. First, recall that the cash denominations which were voided

by the shock represented 86.4% of the total currency in circulation. The shock size we estimate is much

smaller than this, but not all of the voided currency was actively used in transactions prior to shock (though

it is difficult to measure exactly what fraction was). Second, Chodorow-Reich et al. (2019) estimates that

the general equilibrium response of output to the shock was approximately 3 percentage points. Aside from

being a general equilibrium estimate, this figure expresses the response of value added (not profits), includes

the potential effects of substitution into electronic payments technologies, and encompasses all sectors of the

economy. For these reasons, it is likely a lower bound on the size of the shock. Our point estimate however

has a reasonable magnitude compared to theirs: for instance, assuming a labor share of 70% in retail, and

no adjustment of labor or hours in the short-run, the implied decline in profit rates in retail using the 3%

figure is 1/0.3× 3% = 9%, or approximately one third of our point estimate.

The magnitudes of the point estimates for the level and the slope of the switching frontier are difficult

to interpret explicitly, but it is worth making two points about them. First, the point estimate of C is

0.063, with a 90% coverage interval of [0.056, 0.070]. Our findings therefore reject the null of no adoption

complementarities. Second, the point estimates imply that relative to cash, profits under the electronic

technology are on average 3.0% lower if there are no other adopters, and 3.3% higher if there is full adoption.

Together with other parameters, these differences imply that the equilibrium switching frontier is such that

cash-based profits Md,t must fall by 12.6% in a district with Xd,t = 0 adoption, or about three standard

deviations, in order for adoption to start. The estimated size of the shock substantially exceeds this threshold.

Finally, the point estimate of the rate of technology resetting implies that, on average, firms receive the

option to adjust their technological choice every 6.1 months, with the 90% coverage interval of the arrival

rate corresponding to frequencies between 4.3 and 10.6 months. The estimate of k is fairly imprecise, but

it implies that arrival rates higher than 3 months can be rejected at the 1% level. As discussed earlier, this
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relatively slow technological adjustment rate may reflect learning or cognitive costs associated with the use

of the technology. Additionally, we can reject, at the 1% level, the null that k > θ, so that at its point

estimate, the model generates state-dependence in impulse responses.

Table 7 reports measures of goodness of fit. The first column reports the empirical value of the moments

used in the estimation. The second column provides average values, standard deviations, and one-sided p-

values obtained from SCI = 2000 simulations of the model with structural parameters set to their estimated

values, i.e. Θ = Θ̂. We can reject equality of the empirical and simulated moments at the 1% for two of

the eight moments, and overall, the over-identification test cannot reject the null that the model is correctly

specified at the 1% level.63 The model matches the empirical moments closely, particularly the short- and

medium-run average adoption response, the two most precisely estimated moments in our data.64

5.2 Counterfactuals

Next, we use the estimated model to construct the quantitative answer to three questions about the effects

of the shock, and the role played by complementarities in the adoption process.

How would adoption have responded, in the absence of complementarities? Figure 10 reports

empirical and model-based paths of average adoption across districts, in the aftermath of the shock. At

the point estimates reported in Table 6, adoption rises by approximately 4p.p. by the end of December,

and 7p.p. by the end of May, in line with the empirical estimates. This result is not surprising, since

these moments were explicitly targeted. The figure also reports a counterfactual path of adoption rates,

under the assumption that there are no complementarities, that is, when C = 0. With respect to the data,

and to our baseline estimate, the adoption path is similar during the first three months, when the cash

crunch is still ongoing. After that, it diverges from the data and from the model with complementarities,

declining in the medium-run. The gap is fairly substantial: the predicted increase in adoption rates without

complementarities would have been 4p.p. (or approximately 60%) lower than observed. Thus, the model

attributes a important share of the response of adoption rates to complementarities.

63The moment that the model has the most trouble matching is the effect of initial adoption on the long-run response. The
reason is primarily that this moment is imprecisely estimated in our data, given the limited variation in intial adoption rates,
so that it receives low weight in the estimation objective. A stronger degree of complementarities than the point estimate for
C implies would help bring model and data closer in this respect.

64The moment with the worse fit is the interaction between the medium-run effect of the shock and the pre-shock adoption
level. This moment depends strongly on the variance of innovations to the idiosyncratic shocks to districts, which we primarily
identify using the average squared residuals from equation (9). A higher variance of idiosyncratic innovations, in the model,
will mask the dependence on initial conditions; but it may be necessary to match large squared residuals in empirical estimates
of (9), which themselves may reflect unmodelled sources of variation in adoption rates.
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What if the cash swap had been completed more quickly? Figure 10 also reports counterfactual

adoption paths which speak to the role of the size and persistence of the shock. We first construct adoption

paths under the assumption that a 90% decay rate of the shock is two weeks, instead of three months;

this captures an alternative world in which the cash swap would have been executed as rapidly as initially

intended. Under this scenario, adoption would only have risen by approximately 2p.p., and the increase in

the dispersion of adoption would have been negligible. Figure 10 also indicates that, if the shock had been

smaller in magnitude — which could capture a situation in which only one denomination would have been

replaced, for instance — the long-run response would have been smaller. With a shock half as large, the

average adoption rate only rises by approximately 4p.p., versus 7p.p. in the baseline case. The model thus

suggests that the persistence and size of the cash crunch might have had substantial, though unintended,

positive effects on adoption overall.

What sort of intervention maximizes long-run adoption? We next use the model to ask whether

a hypothetical policymaker could have achieved higher long-run changes in adoption rates by implementing

the cash swap differently. In order to answer this question, we first define the cost of the cash swap as the

present value of the decline in cash-based demand:

C(S, θ) = Et0

[
+∞∑
n=0

e−r∆n {M c −Mt0+∆n}

]
=

S

1− exp(−(r + θ))
. (10)

We next consider the following maximization problem for the hypothetical policymaker:

arg max
S,θ

Et0 [∆t0Xd,t0+T ]− g

2
vart0 [∆t0Xd,t0+T ] s.t. C(S, θ) ≤ C(Ŝ, θ0) (11)

where Ŝ is the value reported in Table 6, θ0 = log(1− 0.90)/(82/30) is the calibrated shock persistence, and

g is an arbitrary positive number.

This is the problem facing the hypothetical policymaker who chooses the size and persistence of the shock

to cash-based demand, aims to maximize average adoption at horizon T = 3 years, and possibly exhibits some

aversion to dispersion in adoption rates (when g > 0). The aversion to dispersion could capture a preference

of policymakers toward broad-based adoption. Furthermore, we assume this policymaker is constrained in

the total cost of the intervention, and we use the empirically estimated cost of the Demonetization shock as

the maximum cost the policymaker can incur.

Table 8 reports the numerical solution to problem (11), under different values of g. Additionally, the first

column reports the model estimates of the size and persistence of shocks, and the implied long-run first and

second moments of the change in adoption rates.
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Results for the first column, g = 0, show that the “constrained optimal” plan, for a policymaker that

does not care about long-run dispersion in adoption rates across districts, involves choosing a shock that is

more persistent but smaller than what we estimated. Thus, the model indicates that, given the total cost of

the intervention implied by the model estimates, a policymaker seeking to maximize long-run adoption could

have done better than the observed outcome, by making the shock both more persistent and smaller. The

difference with respect to the estimated shock, however, is not large (the shock half-life is approximately one

month, instead of 0.8 month in the baseline case, and the shock would have been only 20% smaller in size).

Because the “constrained optimal” shock is smaller, it also leads to more dispersion in adoption rates in

the long run. The intuition for this is that, with a smaller shock, a higher initial adoption rate is required

for the district to enter the adoption region. The initial differences between districts are then exacerbated.

As a result, long-run dispersion in the “constrained optimal” plan when g = 0 is higher than in the model

estimates, as indicated in Table 8.

However, as aversion to dispersion increases (that is, as g increases), the “constrained optimal plan”

progressively involves smaller and more persistent shocks. As discussed in Section 3, a more persistent shock

(of a given size) tends to reduce long-run dispersion in outcomes, because it reduces the degree of state-

dependence of adoption rates. In the limit where the shock is permanent, all districts whose initial adoption

rates are sufficiently high that the shock triggers some adoption in the short-run, will also converge to full

adoption in the long-run. A policymaker who cares about dispersion thus has a motive to further increase

the persistence of the intervention; at the point estimates of the model, this effect dominates the reduction

in dispersion that a larger shock might generate. In particular, the “constrained optimal” plan with an

aversion to dispersion of g = 0.5 leads to comparable long-run dispersion than in the estimated model, but

a lower average adoption rate.

Overall, while the size and persistence of the shock had positive effects on long-run adoption — as

discussed above —, the model also suggests that if the objective of the policy had been to increase long-

run adoption while minimizing the dispersion in outcomes across districts, a more persistent but smaller

intervention would have been preferable. That said, long-run adoption gains under these alternative policies

are relatively mild, in the order of 10% to 15% of the long-run adoption increase implied by the estimates.

The analysis of this section has shown that the simple model of Section 3 can account well for key moments

of the data. Counterfactuals suggest that complementarities account for 60% of the medium-run response of

adoption, and that a smaller, but more persistent intervention may have led to a larger increase in long-run

adoption rates, along with a lower long-run dispersion in adoption across districts.
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6 Conclusion

An increasing number of new technologies feature network externalities. When this is the case, the tech-

nology’s ability to grow and scale is subject to coordination frictions. How can this coordination friction

be overcome? Furthermore, how can a policy intervention help to foster adoption? In this paper, we used

the Indian Demonetization of 2016, and its subsequent effect on the adoption of electronic wallets, as a

laboratory to study these questions.

We started by showing that the Demonetization led to a large and persistent increase in the overall use

of this technology, even though the Demonetization shock itself was temporary. We argued that this large

and persistent increase is consistent with a dynamic technology adoption model with externalities, and we

derived some additional testable predictions unique to externalities. In particular, we showed that in this

model, a temporary shock can cause a persistent increase in the adoption rate of the platform (as opposed

to only its size), and that the response of adoption rates depends positively on initial adoption levels.

Using micro data on electronic payments, we then showed that these additional testable predictions

are supported by the data. At the the district level, we proposed a novel identification strategy based on

heterogeneity in the presence of chest banks to estimate the causal impact of the cash crunch. We showed that

the cash crunch caused a persistent increase in the adoption rate by firms of electronic wallets. Additionally,

the adoption responses are characterized by positive state-dependence, both at the district and the firm

level. Finally, we provided a structural estimation of our dynamic model. This estimation suggests that

about 60% of the total adoption response is due to complementarities.

Our analysis also highlighted some of the challenges faced by policymakers in environments with com-

plementarities. In those environments, large, punctual interventions can have permanent effects on adoption

because they effectively act as coordinating devices that help firms overcome coordination frictions. How-

ever, because of state-dependence, an intervention that is too brief can also exacerbate inequality in adoption

rates. Policymakers may therefore face a trade-off between the length the intervention and how much it will

exacerbate initial difference in adoption rates. These results are important for several economic areas, as the

presence of externalities is common among technologies in the new economy.65

Our work suggests two avenues for future research. First, we highlighted some general testable predictions

of dynamic adoption models with externalities, that could be tested in contexts other than the adoption of

payments technology. Second, future work should study the strategic changes in firms’ behavior in response

to the adoption of electronic payments.

65On top of the network-based fintech sector already discussed, the presence of complementarity in adoption can be also
generated by the type of social data acquisition that is typical of many online services (Bergemann et al., 2020).
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Figures and tables

Figure 2: Change in nominal value of currency in circulation
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Notes: The figure shows the change in the nominal value of the stock of currency in circulation (in grey) and change
in the value of the total money supply (in blue) in India. Month 0 is the month of October 2016; the figures are
end-of-month estimates. Source: Reserve Bank of India.

Figure 3: Amount and Transaction Growth on Mobile Payment Platform
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Notes: Week-over-week growth rate in the number of transactions (left panel) and total amounts (right panel) on
the electronic wallet platform. The dashed red line indicates the week of November 8th, 2016. Data is discussed in
Appendix Section A.3.
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Figure 4: Changes across alternate electronic payment systems
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October 2016 is normalized to be zero. Source: Reserve Bank of India.
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Figure 5: Adoption dynamics in the model with complementarities (C > 0 and κ = 0).

Notes: The model illustrated here corresponds to the case θ > k (the shock is transitory relative to the adjustment
speed of firms). The red line shows the path of a district that starts with a low adoption level Xd,0 = 0. The blue line
shows the path of a district that starts with a high adoption level, Xd,0 = 0.4. The paths are constructed assuming
that each district receives no other shock than the initial decline in Mt, i.e. that εt = 0 for all t > 0.
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Figure 6: Relation between Exposure and 2016 Q4 deposit growth
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Notes: The figure shows the relation between our measure of Exposured (as described in Section 4) and the change
in bank deposits in the district between September 30, 2016 and December 31, 2016 i.e. during the quarter of
demonetization. Source: Reserve Bank of India.
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Figure 7: District adoption dynamics in electronic payments data based on exposure to shock
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Notes: The figure plots the dynamic treatment effects of the demonetization shock on technology adoption of
electronic payment systems. The graphs report the coefficients δt from specification 5; the top panel reports the
effects for the total amount of transactions (in logs), the middle panel reports the effects for the total number of
active firms on the platform (in logs), and the bottom panel reports the effect for the total number of new firms on the
platform (in logs). The x-axis represents the month, where October 2016 is normalized to be zero. 95% confidence
intervals are represented with the vertical lines; standard errors are clustered at the district level.
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Figure 8: District adoption dynamics in electronic payments data based on distance to electronic hub
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Notes: The figure plots the dynamic effects of adoption across districts based on a district’s initial adoption rates as
proxied by the distance of that district to the closest district with more than 500 active firms before demonetization.
The specification we estimate δt in the dynamic version of equation 7. The top panel reports the effects for the
total amount of transactions (in logs), the middle panel looks at the total number of firms, while the bottom panel
reports the effects for the total number of new firms transacting on the platform (in logs). The x-axis represents
month, where October 2016 is normalized to be zero. 95% confidence intervals are represented with the vertical lines;
standard errors are clustered at the district level.
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Figure 9: Firm adoption dynamics in electronic payments data based on existing adopters
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Notes: The figure plots month-by-month estimates of the dependence of firm-level adoption rates on the share
of other adopters in the industry/pincode. The specification we estimate is a version of equation 8 in which each
coefficient is interacted with a weekly dummy; we reported the monthly estimates of the coefficient γ. The top panel
reports the effects when x is the total amount of transactions, the middle panel reports the effects when x is the
total number of transactions, and the bottom panel reports the effects when x is a dummy for whether the firm used
the platform over the past week. 95% confidence intervals are represented with the vertical lines; standard errors are
clustered at the pincode level.
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Figure 10: Counterfactual paths of average adoption rates across districts.

Notes: The black solid line reports the empirical change in average adoption rates across districts. The other lines
report average changes in adoption rates constructed using S = 100 simulations from the model, each of a dataset
of the same size as the actual data. The dashed blue line is the change in adoption rate obtained from the model
evaluated at the point estimates reported in table 6. The solid crossed red line is the average change in adoption rate
in the absence of complementarities, assuming that the switching frontier (which is flat without externalities) has the
same level as the switching frontier with externalities when adoption is 0. The solid diamond red line is the change
in adoption rate when θ = 4.6, corresponding to a 90% decay time of 15 days. The dotted red line is the change in
adoption rate when the shock has half the initial size as estimated in table 6.
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Table 2: Exposured and district characterisitics (Balance Test)

(1) (2) (3) (4) (5)

Dependent variable: mean univariate OLS baseline controls

coeff. R2 coeff. R2

Log(Pre Deposits) 11.083 -1.290*** 0.054
(0.048) (0.273)

% villages with ATM 0.036 0.090*** 0.040
(0.004) (0.023)

# Bank Branches per 1000’s 0.047 0.002 0.000 0.015 0.234
(0.002) (0.012) (0.012)

# Agri Credit Societies per 1000’s 0.045 -0.016 0.001 0.016 0.062
(0.004) (0.027) (0.022)

% villages with banks 0.085 0.131*** 0.033 0.058 0.580
(0.006) (0.036) (0.036)

Log(Population) 14.376 -0.501** 0.015 0.304 0.481
(0.035) (0.208) (0.199)

Literacy rate 0.622 -0.029 0.003 -0.001 0.227
(0.005) (0.025) (0.025)

Sex Ratio 0.946 0.008 0.001 -0.009 0.063
(0.003) (0.015) (0.017)

Growth Rate 0.208 -0.219 0.014 -0.232 0.021
(0.016) (0.139) (0.171)

Working Pop./Total Pop. 0.410 0.026 0.005 0.010 0.075
(0.003) (0.016) (0.017)

Distance to State Capital(kms.) 0.215 0.035 0.002 0.026 0.016
(0.006) (0.032) (0.032)

Rural Pop./Total Pop. 0.746 0.170*** 0.034 0.046 0.464
(0.008) (0.047) (0.039)

Notes: The table tests for differences in observable district-characteristics and Exposured. Column 1 reports the
mean of the district-characteristics. The treatment variables is our measure of Exposured as described in Section 4.
Columns (2) & (3) report the coefficient of the univariate OLS regression of each variable on the treatment variable.
Columns (4) & (5) report the coefficients after controlling for the pre-demonetization bank deposits in the districts
(in logs) and share of villages with an ATM. Robust standard errors are reported in parentheses. ∗ ∗ ∗ : p < 0.01,
∗∗ : p < 0.05, ∗ : p < 0.1.
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Table 3: Exposured and adoption of digital wallet

log(amount) log(# users) log(# switchers)

(1) (2) (3)

(Exposure)d × 1 (t ≥ t0) 3.134*** 1.054** 0.851***

[0.884] [0.423] [0.326]

Observations 6,846 6,846 6,552

R-squared 0.849 0.868 0.830

District f.e. X X X

Month f.e. X X X

District Controls × Month f.e. X X X

Notes: Difference-in-differences estimates of the effect of the shock on the adoption of digital wallet. The estimated
specification is equation (5). In Column (1), the dependent variable is the log of the total amount (in Rs.) of
transactions carried out using digital wallet in district d during month t; in Column (2), the dependent variable is
the log of the total number of active retailers using a digital wallet in district d during month t; in Column (3), the
dependent variable is the log of the total number of new retailers joining the digital wallet in district d during month
t. District controls include (log) pre-shock banking deposits, share of villages with ATM facilities, share of villages
with banking facility, share of rural population and level of population in the district. Standard errors clustered at
the district level are reported in parentheses. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.

Table 4: District adoption rate of digital wallet based on distance to the hubs

log(amount) log(# users) log(# switchers)

(1) (2) (3) (4) (5) (6)

(Distance to hub)d × 1 (t ≥ t0) -5.098*** -3.958*** -2.233*** -1.724*** -1.613*** -1.100***

[0.936] [1.190] [0.468] [0.497] [0.361] [0.387]

Observations 6,846 6,846 6,846 6,846 6,846 6,846

R-squared 0.852 0.886 0.871 0.912 0.821 0.871

District Controls × Month f.e. X X X X X X

State × Month f.e. X X X

Notes: Difference-in-differences estimate of the effect of initial conditions, using the distance to the nearest hub
(defined as districts with more than 500 retailers in September 2016) as a proxy for the initial share of adopters. The
specification estimated is equation 7. In Columns (1) and (2), the dependent variable is the log of the total amount
(in Rs.) of transactions carried out using a digital wallet in district d during month t; in Columns (3) and (4), the
dependent variable is the log of the total number of active retailers using a digital wallet in district d during month
t; in Columns (5)-(6), the dependent variable is the log of the total number of new retailers joining the digital wallet
in district d during month t. District-level controls include (log) pre-shock banking deposits, share of villages with
ATM facilities, share of villages with banking facility, share of rural population, level of population and distance to
state capital. Standard errors clustered at district level are reported in parentheses. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05,
∗ : p < 0.1.
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Table 5: Firm adoption based on existing adoption rate in electronic payments data

(1) (2) (3) (4)

xi,k,p,t = log(amount)i,k,p,t

xi,k,p,t−1 0.528*** 0.437*** 0.369*** 0.358***

(0.005) (0.004) (0.004) (0.004)

Xk,p,t−1 0.090*** 0.155*** 0.032*** 0.015***

(0.003) (0.001) (0.001) (0.001)

R2 0.365 0.404 0.455 0.460

xi,k,p,t = log(# transactions)i,k,p,t

xi,k,p,t−1 0.707*** 0.617*** 0.593*** 0.577***

(0.005) (0.005) (0.005) (0.005)

Xk,p,t−1 0.032*** 0.062*** 0.041*** 0.017***

(0.002) (0.002) (0.001) (0.001)

R2 0.549 0.574 0.601 0.606

xi,k,p,t = 1 {On platform}i,k,p,t
xi,k,p,t−1 0.509*** 0.404*** 0.334*** 0.323***

(0.005) (0.004) (0.003) (0.003)

Xk,p,t−1 0.046*** 0.097*** 0.038*** 0.022***

(0.004) (0.003) (0.002) (0.001)

R2 0.341 0.387 0.443 0.448

Firm F.E. X X X

Pincode × Week F.E. X X

Industry × Week F.E. X

Observations 11,750,558 11,750,558 11,541,757 11,541,757

Notes: The table reports estimates of the dependence of firm-level adoption rates on the share of other adopters in
the industry/pincode. The specification we estimate is a version of equation 8 in which each coefficient is interacted
with a weekly dummy; we reported the estimates of the coefficient γ. The top panel reports effects when x is the
total value of the transactions, the middle panel reports the effects when x is the total number of transactions, and
the bottom panel reports the effects when x is a dummy for whether the firm used the platform. Standard errors
clustered at pincode level are reported in parentheses. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.

Table 6: Point estimates and standard deviations for Θ̂.

Parameter Estimate Standard error

S Size of aggregate shock 0.246 (0.047)

C Adoption complementarities 0.063 (0.004)

k Speed of technology adjustment 0.163 (0.041)

σ Volatility of idiosyncratic innovations 0.039 (0.011)

Me Returns to electronic payments when Xd,t = 0 0.970 (0.004)

Notes: The parameters are estimated on a balanced panel with 512 districts and 8 months. The estimation procedure
uses the simulated method of moments and is described in section 5. Standard errors are reported in parenthesis;
they are computed using the bootstrap described in Appendix D.
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Table 7: Model fit for the SMM estimation.

Moment Emp. value Sim. value Std. error p-value

β̂ Short-run average effect 0.030 0.032 0.004 0.32

γ̂ Medium-run average effect 0.038 0.035 0.003 0.06

δ̂ Short-run effect of initial adoption 0.081 0.080 0.005 0.40

ζ̂ Medium-run effect of initial adoption 0.027 0.007 0.004 0.00

ξ̂ Mean squared residuals 0.083 0.093 0.004 0.02

η̂ Short-run between-district variance 0.098 0.096 0.004 0.26

κ̂ Medium-run between-district variance 0.102 0.092 0.007 0.08

ξ̂ Within-district variance 0.045 0.050 0.003 0.00

OID statistic Degrees of freedom p-value

4.7076 3 0.1945

Notes: The second column shows the empirical values of the moments used in the estimation of the model, and
described in section 5. The simulated values are computed using the point estimates reported in table 6. We simulate
2000 panels consisting of 512 districts, and sample data from each panel at the monthly frequency. We then use each
panel to compute the moments described in equation (9) and used in the estimation of the model. The standard error
reported is the simulated sample standard error. The p-values reported for each moment are one-sided: they are the
fraction of observations for which the simulated moment is at least as far from the average simulated moment as the
empirical moment is. In the estimation procedure, we use the square root of all second order moments; the table
above reports these standard errors and not the variance. More details on the estimation procedure are reported in
Appendix D.

Table 8: Alternative interventions.

Baseline Alternative interventions

g = 0 g = 0.10 g = 0.25 g = 0.5

Shock size (p.p.) 24.56 21.00 18.31 16.81 14.22

Shock half-life (months) 0.82 1.05 1.29 1.37 1.55

Et0 [∆t0Xd,t0+T ] (p.p.) 7.22 8.34 8.32 8.23 7.82

sdt0 [∆t0Xd,t0+T ] (p.p.) 26.42 36.66 34.64 28.67 24.81

Notes: The column marked “Baseline” report the estimated shock size, the shock half-life, and the mean and
standard deviation of long-run changes in average adoption rates; we use T = 3 years and s = 100 simulations to
compute these moments. The other columns report these moments under alternative scenarios. For each value of
g — the aversion to dispersion in the planner’s objective function — we compute the value of the shock size and
persistence which maximizes the objective described in equation (11).
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A Institutional background

A.1 The impact of the Demonetization

This Section provides some extra background on the Demonetization. This information complements the
discussion that is provided in the main body of the paper.

As discussed before, the announcement of the Demonetization on November 8 2016 voided automatically
about 86.4% of the total value of currency in circulation. Even if you had until the end of the year to deposit
the old notes in the banking sector, the voided bills could not be used immediately after the announcement.
At the same time, the new notes were not available right away, as the Government in November had not
even finished printing all the necessary bills. Combining these two things together, India found itself with a
shortage of currency in cash overnight.

Evidence of the scarcity of cash is abundant during this period. One way to see this issue is to focus on
the disruption that characterized banks’ operation during this period. In a survey of 214 households in 28
slums in the city of Mumbai, 88% of households reported waiting for more than 1 hour for ATM or bank
services between 11/09/2016 and 11/18/2016. In the same survey, 25% of households reported waiting for
more than 4 hours (Krishnan and Siegel, 2017). Another randomized survey conducted over nine districts
in India by a mainstream newspaper, Economic Times, showed that the number of visits to either a bank
or an ATM increased from an average of 5.8 in the month before Demonetization to 14.4 in the month
after Demonetization.66 This evidence confirms the presence of a large unmet demand for cash during the
aftermath of the Demonetization.

For consumers, the generalized scarcity of cash was made potentially worse by the constraints on cash
withdrawal that were put into place by the Government. For instance, in its initial press release, the
RBI indicated that over the counter cash exchanges could not exceed Rs.4,000 per person per day, while
withdrawals from accounts were capped at Rs.20,000 per week, and ATM withdrawals were capped at
Rs.4,000 per card per day, for the days following the announcement. However, a wide set of exceptions were
granted, including for fuel pumps, toll payments, government hospitals, and wedding expenditures. Banerjee
et al. (2018) discuss the uncertainty surrounding the withdrawal limits and exceptions, and argue that this
uncertainty may have exacerbated the overall confusion during this transition period.

Despite its magnitude, the cash crunch was a temporary phenomenon. Overall, things significantly
improved in January and essentially normalized in February. The cash in circulation grew significantly again
in January 2017, suggesting that the public was able to withdraw cash from banks (see Figure 2). This
evidence is consistent with the idea that banks in January had a sufficient inventory of new bills to meet the
transactional demand for cash in the country. Indeed, by January 30th, 2017, the Government lifted most
of the remaining limitations on cash withdrawals, in particular removing any ATM withdrawal limit from
current accounts. In practice, limits started to be progressively relaxed after the announcement, as banks’
reserve started to receive the new bills. After January, the only limitation left was on withdrawal from saving
accounts. However, this limitation was relatively high - i.e. raised in February 2017 to Rs.50,000 per week -,
not particularly binding (you could move money out saving account to withdraw). Moreover, by mid-March
2017, all limits on withdrawals had been removed.

This narrative on the timing of the Demonetization — large disruption in the short run, with relative
normalization starting around February — is also consistent with data on internet searches, which may help
us to elicit individuals’ perception. In particular, figure E.1 reports the monthly plot (09/2016 to 07/2017)
of Google searches for several key words that could be associated with the shock. For instance, we collect
data on searches on the words ”Cash” or ”ATM line,” and others. Data is obtained by Google Trends, and
the index is normalized by Google to be from 0 to 100, with the value of 100 assigned to the day with the
maximum number of searches made on that topic. Across all the panels, we find that Google searches that
are related to the Demonetization spiked in November, remained high in December, but then significantly
dropped in January, before returning to the pre-shock levels in February. One exception is the search on
“ATM Cash withdrawal limit today” which reached its maximum on January 31, 2017. This is consistent
with the fact that January 31, 2017 was the date when most limits on ATM withdrawals were lifted by the
RBI. Altogether, this information is consistent with the relatively short-lived nature of the shock.

66https://economictimes.indiatimes.com/news/politics-and-nation/how-delhi-lost-a-working-day-to-demonetisation/

articleshow/56041967.cms
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A.2 The Demonetization and the policy response

As discussed in the paper, the November Demonetization led to a large contraction in cash. While the initial
objective of the governments was not to foster a shift towards electronic payments, the increase in electronic
payments that characterized the first weeks did not pass unnoticed. As a result, the Government decided to
actively support the increase in electronic payments in the months following the Demonetization.

On top of generic announcements from top politicians, the Government and the RBI put into place
several interventions in the area of electric payments in the months following the Demonetization. First,
the Government actively supported the adoption of traditional electronic payment technologies by trying to
lower the adoption costs of point-of-sales (POS) system, in particular for small businesses. One example of
this type of program was the grants that were provided by the National Bank for Agriculture and Rural
Development (NABARD) to support the acquisition of POS machines in small villages.67 Second, the
Government partnered with several other organizations to provide discounts on their products when payments
are made electronically. The main discounts involved patrol and railroads. For instance, the Government
partnered with Indian Oil Corp, Bharat Petroleum, and Hindustan Petroleum to give a 0.75% discount to
the consumers if they paid electronically. For railroads, the incentives ranged from a small discount on ticket
acquired with electronic payments – generally up to 0.5% - to free accidental insurance for travelers.68

This government response is important for us because it suggests that an aggregate event study may not
be sufficient to understand the effects over the medium-run of the temporary shock. While the immediate
response is still likely going to capture only the effect of the cash contractions, the response over time is
going to capture a combination of the persistence of the temporary shock and the effect of the Government’s
policies rolled over in the meantime.

This motivated us to conduct most of our analyses at the disaggregated level, exploiting heterogeneity
across districts in the exposure to the temporary cash contraction. Relative to the event study, this approach
requires much weaker identification assumptions, since this specification differences out any aggregate change
in policy during our period. In fact, at best of our knowledge, all the policies that were introduced by the
Government were aggregate in nature and therefore they did not target specifically any district or subset of
the country. From a detailed analyses of the policy changes, we found no evidence that any intervention was
designed formally or informally to specifically target areas that were more affected by the cash contraction,
which is what would be the issue in our case. In a way, for most policies the inability to target certain areas
is intuitive (e.g. discount for railways were available from every city, not only those we categorize as highly
affected). In general, the only policy that may have targeted a specific area is the provision of subsidy on
POS. In this regard, it is important to point out that our setting — electronic wallet technology — did
not require any POS. Furtermore, we found no evidence of targeting of POS subsidies in the law or media
coverage.

Overall, our disaggregate approach seems to be well suited to examine the impact of the cash contrac-
tion, conditional on aggregate changes. In the empirical section, we discuss more carefully the identification
assumptions for this model, for instance highlighting also the importance of district level controls for iden-
tification.

A.3 Electronic Wallet Technology

The main focus of the paper is on the adoption of one specific type of electronic payment option, which is the
electronic wallet technology. This section provides further details on this technology, which are important
to understand the context of the paper.

Our data comes from a company that – at the time of the Demonetization – was the largest player in the
provision of electronic wallet payment services and the main fintech company active in India. The company
allows individuals and businesses to undertake transactions with each other using only their mobile phone.
To use the service, a customer would normally need to download an application and link their bank account
to the application. However, in 2016 the company also established a new service that allows customers to
make payments without the need of internet or a smart phone.

67https://indianexpress.com/article/business/business-others/demonetisation-nabard-cashless-economy-debit-cards-
4417938/

68https://economictimes.indiatimes.com/industry/transportation/railways/soon-you-will-be-rewarded-for-cashless-booking-
of-railway-tickets/articleshow/61954004.cms?from=mdr
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To be more specific, in our context there are multiple ways to transact using the digital wallet. First,
customers can scan the merchants’ unique QR code in the application installed on their smartphones to
complete the transaction. Second, instead of scanning the QR code, customers can enter the mobile number
of the merchant. In this case, the merchant would receive a unique code from the company, which is then used
by the customer to complete the transaction. Third, if a smartphone or mobile internet are not available,
customers can call a toll-free number and ask the wallet company to make a transaction using the cell-phone
number of the merchant. To use this feature, customers needed to be enrolled through a one-time verification
process.

Money can then be transferred from the electronic wallet to a traditional bank account. Therefore,
the technology is in many respect similar to a credit card or other more traditional electronic payment
systems. However, relative to these other electronic payment technologies, adoption costs are much lower,
since merchants and consumers can access the electronic wallet almost instantaneously, without the need of
anything more than a phone and a bank account. In particular, from the standpoint of the retailers, the
mobile wallet does not require the acquisition of a POS.

On top of fixed cost, variable costs of this technology are also very limited, in particular for small mer-
chants. Merchants using the digital wallet are classified by the provider into three segments: small, medium
and large. Small merchants have lower limits on the amount they can transact and pay 0% transaction costs.
Medium merchants can transfer money to their bank account at midnight every day up to a certain limit.
Large merchants can transact any amount but pay a percentage of the transfer amount as a fees. Our data
only covers small and medium merchants. From our discussion with the company, large merchants tend to
have more personalized contract, which could bundle different services and payment options together.

B Appendix to Section 3

B.1 Derivations

B.1.1 Value functions

The value of a firm which is operating under technology xi,t in period t, after any potential technology
revisions, but before the realization of the money shock Mt, is:

V (xi,t,Mt−∆t, Xt−∆t) = Et−∆t

[
Π (xi,t,Mt, Xt) ∆t +

e−r∆t
{(

1− e−k∆t
)
VR(xi,t,Mt, Xt) + e−k∆tV (xi,t,Mt, Xt)

} ]
.

Here, VR(xi,t,Mt, Xt−∆t) denotes the value of a firm that receives the option to revise its technological choice
early on in period t+ ∆t (and has entered that period with technology choice xi,t). This value is given by:

VR(xi,t,Mt) =



V (e,Mt, Xt)− κ if xi,t = c and V (e,Mt, Xt)− V (c,Mt, Xt) ≥ κ

V (c,Mt, Xt) if xi,t = c and V (e,Mt, Xt)− V (c,Mt, Xt) < κ

V (e,Mt, Xt) if xi,t = e and V (e,Mt, Xt)− V (c,Mt, Xt) ≥ 0

V (c,Mt, Xt) if xi,t = e and V (e,Mt, Xt)− V (c,Mt, Xt) < 0

(Note that this assumes that κ is a fixed cost that does not scale with the size of the time period, ∆t. So it
should be interpreted in units of firms value.) Denote by:

B(Mt−∆t, Xt−∆t) = V (e,Mt−∆t, Xt−∆t)− V (c,Mt−∆t, Xt−∆t).

This is the value of a firm which has the electronics payment in place, relative to one that doesn’t. Straight-
forward computation then shows that the gross adoption benefits follow (2).
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B.1.2 The relative value of adoption in the model with complementarities (C > 0 and κ = 0)

The conditional distribution of Mt+∆tn, n ≥ −1, given initial conditions Mt−∆t is:

Mt+∆tn|Mt−∆t ∼ N
(

(1− e−(n+1)θ∆t)M c + e−(n+1)θ∆tMt−∆t,
1− e−(n+1)θ∆t

1− e−θ∆t
∆tσ2

)
.

The net benefits of adoption can be written as:

B(Mt−∆t, Xt−∆t) = Et−∆t

∑
n≥0

e−(r+k)∆tn (Me + CXt+∆tn −Mt+∆tn) ∆t


We need to compute:

PVMt−∆t = Et−∆t

∑
n≥0

e−(r+k)∆tnMt+∆tn∆t

 =
∑
n≥0

e−(r+k)∆tn
{(

1− e−(n+1)θ∆t
)
M c + e−(n+1)θ∆tMt−∆t

}
=
∑
n≥0

e−(r+k)∆tn
{(

1− e−(n+1)θ∆t
)
Mc + e−(n+1)θ∆tMt−∆t

}
∆t

=
∆t

1− e−(r+k)∆t
M c +

e−θ∆t∆t

1− e−(r+k+θ)∆t
(Mt−∆t −M c)

Finally, we need to compute:

PV Xt−∆t = Et−∆t

∑
n≥0

e−(r+k)∆tnXt+∆tn∆t


The dynamics of the adopter share are:

Xt+∆tn =
(
1− e−k∆t

)
ae,t+∆tn + e−k∆tXt+∆t(n−1)

=
(
1− e−k∆t

)
ae,t+∆tn + e−k∆t

(
1− e−k∆t

)
ae,t+∆t(n−1) + e−2k∆tXt+∆t(n−2)

Xt+∆tn =
(
1− e−k∆t

) n∑
p=0

e−k∆t(n−p)ae,t+∆tp + e−k∆t(n+1)Xt−∆t

Thus we have:

PV Xt−∆t = Et−∆t

[
+∞∑
n=0

e−(r+k)∆tnXt+∆tn∆t

]

= Et−∆t

[
+∞∑
n=0

e−(r+k)∆tn

{(
1− e−k∆t

) n∑
p=0

e−k∆t(n−p)at+∆tp + e−k∆t(n+1)Xt−∆t

}
∆t

]

=
(
1− e−k∆t

)
Et−∆t

[
+∞∑
n=0

e−(r+k)∆tn

{
n∑
p=0

e−k∆t(n−p)at+∆tp

}
∆t

]
+

e−k∆t

1− e−(r+2k)∆t
Xt−∆t∆t
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Moreover,

Et−∆t

[
+∞∑
n=0

e−(r+k)∆tn

{
n∑
p=0

e−k∆t(n−p)at+∆tp

}]

= Et−∆t

[
+∞∑
n=0

e−(r+2k)∆tn

{
n∑
p=0

ek∆tpat+∆tp

}]

= Et−∆t

[
+∞∑
p=0

ek∆tpat+∆tp

{
+∞∑
n=p

e−(r+2k)∆tn

}]

=
1

1− e−(r+2k)∆t
Et−∆t

[
+∞∑
p=0

e−(r+k)∆tpat+∆tp

]

=
1

1− e−(r+2k)∆t
Et−∆t

[
+∞∑
n=0

e−(r+k)∆tnat+∆tn

]
So:

PV Xt−∆t =
1− e−k∆t

1− e−(r+2k)∆t

+∞∑
n=0

e−(r+k)∆tnEt−∆t [at+∆tn∆t] +
∆te−k∆t

1− e−(r+2k)∆t
Xt−∆t

=
1− e−k∆t

1− e−(r+2k)∆t
PV At−∆t +

∆te−k∆t

1− e−(r+2k)∆t
Xt−∆t,

(12)

where:

PV At−∆t =

+∞∑
n=0

e−(r+k)∆tnEt−∆t [at+∆tn∆t] . (13)

Therefore,

Bt−∆t =
∆t

1− e−(r+k)∆t
(Me −M c) +

∆te−θ∆t

1− e−(r+k+θ)∆t
(M c −Mt−∆t)

+

{
∆te−k∆t

1− e−(r+2k)∆t
Xt−∆t +

1− e−k∆t

1− e−(r+2k)∆t
PV At−∆t

}
× C.

This shows, in particular, that the value of adoption depends positively on the current level of adopters, so
long as k < +∞. This is the reason for the positive slope in the adoption frontier Φ(.).

B.2 Microfoundations

This appendix describes a version of the model with extended microfoundations. Relative to the baseline
model, the model described here has two additional features. First, firms that have adopted the electronic
payments technology can still accept payments in cash, so that the electronic payments technology is an
add-on, not an alternative to cash. Second, the choice of consumers between cash and electronic payments
is explicitly modelled. The main point of this appendix is that the model with extended microfoundations
is isomorphic to the simpler model studied in the main text.

Consumers There is a continuum of mass 1 of identical households. Each period, households randomly
meet with firms. Each household holds D units of deposits, where D is exogenous and fixed. Deposits
can be used for payment in retail transactions, either by converting them to cash or by using them in
electronic payments. Households can only withdraw up to Lt units of cash, where Lt is exogenous. Finally,
they behave myopically: each period, after observing the number of firms that accept electronic payments,
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Xt ≡
∫
i∈[0,1]

1 {xi,t = e} di ∈ [0, 1], they solve the following problem:

max
Cc

t ,C
e
t ,L

c
t ,L

e
t

Xt (ζCet + (1− ζ)Cct ) + (1−Xt)C
c
t −

1

2γ

(
Let − Le

Pt

)2

s.t. Lct + Let ≤ D [λt]

Lct ≤ Lt [µt]

PtC
c
t ≤ Lct [νct ]

PtC
e
t ≤ Let [νet ]

Because meetings are random, the probability that a household meets a firm that accepts both electronic
payments and cash is Xt. Upon meeting, the household and the firm decide on which means of payment to
use in order to conduct the transaction. We assume that electronic money is chosen with probability ζ, and
cash is chosen otherwise; the probability ζ is exogenous, constant, and strictly positive. Meeting a firm that
accepts both electronic payments and cash thus yields expected utility ζCet + (1− ζ)Cct to the household. If
the household instead meets a firm that only accepts cash, the meeting yields utility Cct .

Additionally, there are quadratic utility costs associated with holding real balances of electronic means of
payment away from an exogenous level Le. Here, Le could be arbitrarily small. This cost is non-pecuniary:
it is a shorthand for modeling cognitive or, in this static framework, opportunity costs of adjusting real
balances of electronic money. Finally, the household’s problem is subject to two constraints that state that
consumption using either type of payment cannot exceed real balances of each type.69 We assume that prices
of consumption goods are constant, and normalize them to Pt = 1. Eliminating the multipliers νct and νet ,
the necessary first-order conditions for optimality for this problem can be written as:

λt +
1

γ
(Let − Le) = ζXt

λt + νt = 1−Xt + (1− ζ)Xt

(14)

along with four complementary-slackness conditions, λt (D − Lct − Let ) = 0, µt (Lt − Lct) = 0, νct (Lct − Cct ) =
0, and νet (Let − Cet ) = 0. The two state variables of the household’s problem are Xt and Lt.

Firms The problem of each firm is identical to that described in Section 3, except for the definition of flow
profits of each firms. Namely, we now assume that profits are now given by:

Π(xi,t, C
c
t , C

e
t ) =

{
(µ− 1) (ζCet + (1− ζ)Cct ) if xi,t = e,
(µ− 1)Cct if xi,t = c.

where µ > 1 is a constant markup over marginal cost. Each period, the firm meets a different household. If
the firm has adopted electronic payments (xi,t = e), its expected revenue is ζCet + (1− ζ)Cct . Otherwise, its
revenue is Cct . The rest of the firms’ problem is identical. Following the same steps as in the main text, net
adoption benefits follow:

Bt−∆t = Et−∆t

[
(µ− 1)ζ (Cet − Cct ) ∆t+ e−(r+k)∆tBt + e−r∆t(1− e−k∆t)g(Bt)

]
, (15)

implying that the state variables in each individual firm’s problem are now (xi,t−∆t, C
e
t−∆t, C

c
t−∆t). The

adoption rule, equation (3), and the law of motion for the number of adopters, equation (2), are defined in
the same way as in the model in the main text.

Equilibrium There is a unique exogenous stochastic process in this model, Lt, the dynamics of which we
leave unspecified for now. An equilibrium of this model is a technology choice rule, x, mapping {c, e}×R2 →
{c, e}, a function for the gross adoption benefit, B, mapping R3 → R, and household choice rules Cc, Ce,
Lc, Le and their associated Lagrange multipliers, mapping R2 → R. These objects must be such that, given
the processes for Lt, the technology choice rule and the gross adoption benefit solve the system of equations

69Because of the static nature of the household’s problem, these are not, strictly speaking, “cash in advance” constraints.
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(15) and (3) when Xt follows the law of motion given by (4), and the household choice rules satisfy the first
order conditions (14), along with the associated complementary slackness conditions.

Isomorphism to baseline model Next, we show that the baseline model of the main is a particular case
of the microfounded model described above. Specifically, we assume that deposits, D, are large relative to
both cash in circulation and to potential demand for electronic payments D ≥ Lt + Ce + γζ In this case,
the unique equilibrium has the following features. First, λt = 0, since the deposit constraint is slack when
deposits are sufficiently high. Second, when Xt > 0, the constraint Let = Cet binds, so that:

Cet = Le + γζXt.

Moreover, µct = νt = 1 −Xt + (1 − ζ)Xt > 0, so that Cct = Lt. Additionally, when Xt = 0, the solution is
Cet = Ce and Cct = Lt. The flow benefits of adoption are then given by:

Πe
t −Πc

t = (µ− 1)ζ (Cet − Cct ) = (µ− 1)ζ (Le + γζXt − Lt)

Thus, the microfounded model produces identical dynamics to the model in the main text so long as:

C = (µ− 1)γζ2, Me = (µ− 1)ζLe, Mt = (µ− 1)ζLt.

where C, Me and Mt are the exogenous parameters and processes described in Section 3. In this version
of the model, the reduced-form parameter governing externalities, C = (µ− 1)γζ2, is large either when the
slope of adjustment costs for electronic money, which is given by 1/γ, is high (so that households adjust
their holdings of electronic money rapidly in response to changes in Xt), or ζ is high, so that when a match
between households using e-money and firms accepting it occurs, e-money is likely to be the medium of
exchange chosen.

B.3 Numerical solution method

In what follows we describe the numerical method for constructing the function Φ(.) that characterizes
equilibrium adoption strategies in the model with complementarities.

First, given a mapping Φ(.) : [0, 1]→ R, define the functions:

PV A(Mt−∆t, Xt−∆t; Φ) =

+∞∑
n=0

e−(r+k)∆tnEt−∆t

[
1
{
Mt+∆t(n−1) ≥ Φ(Xt+∆t(n−1))

}
∆t
]

B(Mt−∆t, Xt−∆t; Φ) =
∆t

1− e−(r+k)∆t
(Me −M c) +

∆te−θ∆t

1− e−(r+k+θ)∆t
(M c −Mt−∆t)

+

{
∆te−k∆t

1− e−(r+2k)∆t
Xt−∆t +

1− e−k∆t

1− e−(r+2k)∆t
PV A(Mt−∆t, Xt−∆t; Φ)

}
× C.

In the definition of the function PV A(Mt−∆t, Xt−∆t; Φ), the sequence Xt+∆t(n−1), in particular, is assumed
to follow:

Xt+∆tn = e−k∆tXt+∆t(n−1) + (1− e−k∆t)1
{
Mt+∆t(n−1) ≥ Φ(Xt+∆t(n−1))

}
,

starting from (Xt−∆t,Mt−∆t).
With these definitions, the algorithm proceeds as follows:

- Initialization: We derive a threshold rule Φ(.) such that adoption of electronic money (ae,t = 1) is a
strictly dominant strategy, if and only if, Mt−∆t ≤ Φ(Xt−∆t). For adoption of electronic money to be
a strictly dominant strategy it must be that Bt−∆t ≥ 0 even if the firm expects no adoption at all by
other firms, so that PV At−∆t = 0. In that case:

Bt−∆t =
∆t

1− e−(r+k)∆t
(Me −M c) +

∆te−θ∆t

1− e−(r+k+θ)∆t
(M c −Mt−∆t) +

{
∆te−k∆t

1− e−(r+2k)∆t
Xt−∆t

}
× C,
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and so Bt−∆t ≥ 0, if and only if:

0 ≤ Me −M c +
e−θ∆t(1− e−(r+k)∆t)

1− e−(r+k+θ)∆t
(M c −Mt−∆t) +

{
e−k∆t(1− e−(r+k)∆t)

1− e−(r+2k)∆t
Xt−∆t

}
× C

Mt−∆t ≤ Φ(Xt−∆t) = M c − 1− e−(r+k+θ)∆t

e−θ∆t − e−(r+k+θ)∆t
(M c −Me) +

e−k∆t − e−(r+2k+θ)∆t

e−θ∆t − e−(r+2k+θ)∆t
CXt−∆t

Following similar steps, the upper threshold for Mt−∆t above which adoption of cash is a strictly
dominant strategy is:

Mt−∆t ≥ Φ(Xt−∆t) = Φ(Xt−∆t) +
e−k∆t − e−(r+2k+θ)∆t

e−θ∆t − e−(r+2k+θ)∆t

1− e−k∆t

e−k∆t − e−(r+2k)∆t
C.

Given these functions, we set Φ(0) = Φ and Φ
(0)

= Φ.

- Iteration: At step n, given two functions Φ(n) and Φ
(n)

, we compute their iterates as the solutions
to:

B(Φ
(n+1)

(Xt−∆t), Xt−∆t; Φ
(n)

) = 0,

B(Φ(n+1)(Xt−∆t), Xt−∆t; Φ(n)) = 0.

These iterates are constructed on a linear grid for X.

- Convergence: We repeat the iteration step until max
∣∣∣Φ(n+1)

(.)− Φ
(n)

(.)
∣∣∣,

max
∣∣∣Φ(n+1)(.)− Φ(n)(.)

∣∣∣, and max
∣∣∣Φ(n+1)

(.)− Φ(n+1)(.)
∣∣∣ are below some threshold.

The only difficulties are in the computation of PV A(Mt−∆t, Xt−∆t; Φ), which in general has no closed
form. To compute it, we use a Monte-Carlo approach: we simulate a large number of sample paths for the
money stock starting at Mt−∆t, and the implied path for Xt−∆t under the adoption rule Φ(.), and we then
average across these sample paths. The threshold rule is interpolated linearly between the points of the grid
for X.

B.4 Predictions across versions of the model

We next discuss the qualitative predictions of the model emphasized in the main text, using Monte-Carlo
simulations of the response of a large number of districts to an aggregate shock to cash-based demand Mt.

B.4.1 The cash crunch in the model with complementarities (C > 0 and κ = 0)

We first provide an illustration of the quantitative properties of the model with complementarities, by
simulating the response of a large number of districts to the shock. These districts are assumed to have
heterogeneous exposures to the aggregate shock S; namely, district d’s shock is given by:

Md,0 = (1− e−θ∆t)M c + e−θ∆tMd,−∆t − eεdS, εd ∼ N(−σ2
D/2, σ

2
D).

The average path of cash is reported in Figure E.2. Districts are otherwise identical, save for their initial con-
ditions (M−∆tt,d, Xd), which reflect the ergodic distribution of the model prior to the shock. The calibration
of the model is otherwise that reported in table 6.

Figure E.3 shows the average response across districts. The number of firms using e increases permanently
(left panel of Figure E.3). Moreover, the likelihood of switching also increases permanently (right panel of
Figure E.3).

This average response masks substantial heterogeneity across districts. First, districts which (all other
things equal) experience a larger decline in M (that is, have a higher exposure eεd) are more likely to remain
in the adoption region in the long-run. Indeed, quantitatively, the model predicts that the long-run response
of the number of users of e (the left panel of Figure E.4) is increasing in the exposure of the district to the
shock, eεd .
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Second, districts with different initial conditions will also experience different long-run adoption dynamics
(for a given exposure level). As discussed above, we should expect districts with high initial adoption to
respond more to the shock, all other things equal. That is, the long-run response should be state-dependent,
where the word “state” here refers to the endogenous state variable of the district, the initial number of
users of e, X0,d. The numerical simulations confirm this. The right panel of Figure E.4 shows that the
long-run response of both the number of users of e is increasing in the level of initial adoption, X0,d. This
result highlights the broader idea that long-run adoption dynamics are determined by the initial strength of
complementarities.

B.5 The cash crunch in the frictionless model (C = 0 and κ = 0)

The left panel of figure E.11 reports the joint dynamics of (Xt,Mt) in the frictionless model. This graph
is constructed under the assumption that M c > Me, so that on average, there are higher flow profits to
technology c. The red line shows the average trajectory of a district which starts from point A, where
X−∆t = 0 and M−∆t = M c. At time 0, the shock shifts the economy from point A to point B. At point B,
the stock of cash has fallen enough that the optimal technology choice of revising firms is to switch from c
to e. As a result the number of firms using technology e, Xt, increases for a period of time. At the same
time, the money stock reverts toward its long-run mean, M c. After a certain time, it reaches the level M at
which firms that revise their technology choice choose c over e.70 In the long-run, the district will therefore
converge back to point A.

The top row of figure E.12 further illustrates this point. This graph plots the average response of a large
number of districts to a common shock S. (The corresponding average path of Mt across the D districts is
reported in figure E.2.) On average across districts, the number of firms using technology e rises during the
period when Mt is still substantially below its long-run mean, but thereafter rapidly returns to zero, since
firms that revise their technology choice find it optimal to switch back to c once Mt is close enough to its
long-run mean. Thus, the frictionless model cannot generate permanent increases in the number of firms
using technology e out of a transitory shock to Mt. Consistent with this, the long-run response of districts
is zero and, in particular, it is independent of their individual exposures, as reported on the left panel of
figure E.13.

Additionally, the sequence of technology choices by firms in a district, following the shock, is independent
of the initial fraction of firms already using technology e prior to the shock, X−∆t. The left panel of figure
E.11 illustrates this, by also showing (in blue) the trajectory of a district starting from X−∆t = 0.4 > 0. In
the long-run, this district also converges to zero adoption. For the same reasons as in the fixed cost model,
the mechanical relationship between adoption level and adoption rate in the model then implies that the
change in the number of users of e depends negatively on the initial number of users, as illustrated in the
right panel of figure E.13.

B.6 The cash crunch in the model with fixed costs (C = 0 and κ > 0): Monte-
Carlo illustration

Figures E.6 and E.7 highlight the differences between the fixed cost and the complementarities model using
Monte-Carlo simulations. Figure E.6 reports the average response of the economy to the same shock as above
in the model with fixed costs. The number of users increases permanently, but the likelihood of switching
goes to zero after the shock has dissipated. Consistent with the long-run response of the number of users
overall across districts with different exposures to the shock, the long-run response of the number of users
is positively related to shock exposure (left panel of Figure E.7). However, as reported on the right panel of
Figure E.7, the long-run response of the number of users is negatively related to initial conditions, instead
of the positive relationship predicted by the model with complementarities.

70In the absence of complementarities (C = 0) or fixed costs (κ = 0), it is straightforward to see (using equation 2) that
the gross value of adoption, Bt, only depends on the level of cash, Mt. Therefore, the technology choice is entirely determined
by the level of the aggregate shock, Mt−∆t. One can then verify that, given the functional forms for flow profits, firms switch

from c to e whenever Mt−∆t ≤ M = Mc −
1− e−(r+k+θ)∆t

e−θ∆t − e−(r+k+θ)∆t
(Mc −Me) . When shocks are purely transitory (θ = +∞),

firms either always or never switch (depending on whether Me ≷Mc), while when shocks are permanent θ = 0, firms switch as
soon a shock pushes Mt below the flow profits from technology e in the absence of complementarities, Me.
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B.7 Persistence and state-dependence in the model with complementarities
(C > 0 and κ = 0)

The discussion in the main text focuses on versions of the model with complementarities in which θ > k, that
is, the speed at which firms may adjust their technology choice is slow relative to the speed of mean-reversion
of the shock. Under the alternative assumption (θ < k), the pure complementarities model tends to generate
a stronger permanent switch to e after the shock, but a weaker relationship between initial conditions and
subsequents increases in the number of users.

The first part of this claim is illustrated in Appendix Figure E.8, which describes the adoption dynamics
in a version of the model where θ < k. The average fraction of firms using technology e rapidly converges
to 1 after the shock, reflecting the fact that firms frequently receive the technology adjustment shock. As
a result, adoption converges to 1, and the likelihood of switching also increases, as illustrated in Appendix
Figure E.9. Importantly, this occurs independently of whether the initial adoption rate is high or not. As
a result, there is little dependence on initial conditions — all districts tend to converge to X∞ = 1 in this
case. The right panel of Appendix Figure E.10 illustrates this further in numerical simulations of the model.
There is a weak negative relationship between the change in the number of users and initial conditions when
θ < k, instead of the strong positive one when adjustment is more sluggish (θ > k).

B.8 Firm-level state-dependence: Monte-Carlo illustration

Finally, we discuss the firm-level predictions of the model with respect to state dependence. Specifically,
we show that the model predicts a positive relationship between firm-level adoption and the overall existing
user base, conditional on the level of cash, only when there are positive complementarities (C > 0). To be
precise, we simulate data from variants of the model and estimate a firm-level regression of the following
form:

xi,d,t = α+ ρxi,d,t−∆ + βMd,t−∆ + γXd,t−∆ + εd,t (16)

Table E.3 reports the results. Under the assumption that the technology is characterized by positive exter-
nalities (C > 0), the level of adoption by other firms in the same area will positively predict the adoption
by the firm (Column 2 of Table E.3). The intuition for this result is simple: an increase in the use of the
technology will increase the value of the technology itself, which will in turn positively affect adoption by
firms. Importantly, the same relationship does not hold without externalities (Column 1 of Table E.3).

Finally, in Figure E.14 we also report estimates of the coefficient γt in the monthly version of the regression
above:

xi,d,t =
∑
t′

(αt′ + ρt′xi,d,t′−∆ + βt′Md,t′−∆ + γt′Xd,t′−∆) 1{t=t′} + εd,t. (17)

The coefficients are the Monte-Carlo analogs of the point estimates reported in Figure 9. The simulated
sample we use is the same as for the the estimation of Model (16) above. As in the data, we find that the
effect of the adopter share is highest during the months that immediately follow the shock.

C Cash contraction and Consumption

In this Section, we examine how household consumption responded to the cash swap using the same identifi-
cation strategy from Section 5. In other words, we compare behaviors across districts that were characterized
by different exposure to chest banks before the Demonetization. The objective of this analysis is twofold.
First, these tests can provide novel evidence on how the Demonetization affected the real economy. Results
from previous sections provide evidence that the Indian Demonetization led to a widespread and persistent
rise in electronic payments. Given the size and speed of these responses, a natural question is whether the
rise in electronic money was indeed sufficient to shield the real economy from the cash crunch.

Second, as discussed briefly in Section 4, this evidence on consumption is useful because it provides further
robustness on the quality of our empirical model to identify the supply side effect of a cash contraction. The
intuition for this second aspect is simple. Our tests on electronic payment — in particular the sharp response
right around the policy shock — provides very strong evidence regarding the fact that our estimates capture
how electronic payment use was affected by the Demonetization. However, the Demonetization could have
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affected the use of electronic payments in several ways, and not only because of a contraction in cash (supply
shock). For instance, the Demonetization may have increased the overall uncertainty in the economy, which
in turn may have reduced consumption. To the extent that our treatment captures this dimension — e.g.
highly affected areas are places with lower increase in uncertainty — this alternative explanation may also
be explaining our results.

The good news is that consumption response may help separating explanations based on cash contraction
from alternative demand-side mechanisms. In particular, a demand side explanation would generally predict
that the effects for consumption and electronic payments should go in the same direction. Instead, the
opposite results — i.e. highly exposed areas experienced both higher increase in electronic payments and
lower consumption — would be hard to rationalize by a demand mechanism, but easy to interpret as a
supply side shock. In this sense, exploring the consumption response could provide useful evidence for
our mechanism. In terms of robustness, the consumption data has a longer time series than the electronic
payments. This will allow us to run several extra tests on the quality of our analysis.

C.1 Empirical setting

In this Section, we examine how household consumption responded to the cash swap using the same identifi-
cation strategy from Section 4. In other words, we compare behaviors across districts that were characterized
by different exposure to chest banks before the Demonetization.

To measure the changes in consumption behavior by Indian households, we use data from the Consumer
Pyramids database maintained by the Center for Monitoring Indian Economy (CMIE). This dataset has two
crucial advantages relative to the widely used National Sample Survey (NSS), which is a consumption survey
conducted by the central government agencies. First, the NSS is not available for the period of interest, as
it was ran for the last time in 2011. Second, the NSS is a repeated cross-section of households, while CMIE
data is a panel.

The data set provides a representative sample of Indian households, where households are selected to be
representative of the population across 371 “homogeneous regions” across India. The survey has information
on the monetary amount of the household expenditure across different large categories and some other back-
ground information on the members of the households. The expense categories include food, intoxicants,
clothing and footwear, cosmetics and toiletries, restaurants, recreation, transport, power and fuel, commu-
nication and information services, health, education, bills and rents, appliances, equal monthly installments
(EMIs), and others. Overall, the data quality is considered high, in particular since CMIE collects the data
in person using specialized workers. Each household is interviewed every four months and is asked about
their consumption pattern in the preceding four months. Thus, about 39,500 households are surveyed every
month.

The data is organized in event-time around the month of the shock. In other words, for each household
we aggregate data at the wave-level and we define the time of each wave relative to the wave containing
November 2016. The final sample used in the analysis is constituted by about 95,000 households. We reach
this count because we consider households for which the age of the head of household is between 18 and 75
years as of September 2016. To make the panel balance, we also only consider households with non-missing
information between June 2016 and March 2017.

The main difference compared with the analyses in Section 4 is the timing. Before, the district-level data
were measured at monthly level. For these household data, the survey procedure is such that households
belonging to different waves of interviews are asked about the same month at different points in time.
Therefore, the reporting on November 2016 — the first month of the shock — is generally clustered together
with a different group of months depending on the wave.71 This feature is quite common among consumer
surveys, and it is similar to the Consumer Expenditure Survey in the US.72 Following the literature in this
area (e.g. Parker et al. (2013)), we deal with this feature by organizing the data by event-time. In other
words, for each household we aggregate data at the wave-level and we define the time of each wave relative
to the wave containing November 2016.73

71For example, 25% percent of households will be asked about August-November 2016 consumption in December 2016,
25% percent will be asked about September-December 2016 consumption in January 2017 and so on. Thus, November 2016
consumption will be recorded with other months depending on the month it was surveyed between December 2016-March 2017.

72The main difference is that the Consumer Expenditure Survey is run every three months rather than four months.
73Therefore, the time in the panel is the one for the wave in which a household was interviewed about November, and it is
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With this data set of about 95,000 households, we then estimate the following household-level difference-
in-difference model:

log (yh,d,t) = αt + αh + δt
(
Exposured × 1{t≥t0}

)
+ Γ′tYh,d + εh,d,t, (18)

where yh,d,t are consumption measures for household h in district d and survey-time t, αt and αh are event-
time and household fixed effects, Exposured is the district’s exposure as described in Section 3, which is
interacted with dummies for the survey-time post-Demonetization, and Yh,d are controls, which are either at
district or individual level. For controls in the regression, we use the same district-level covariates as in the
previous set of analyses along with the addition of household-level controls including the age of the head of
the household and log of household income, both measured as in the last survey before the shock. As usual,
standard errors are clustered at district level, which is the level of the treatment.

C.2 Main results

Table E.9 shows the results for consumption responses based on exposure to the shock. Column (1) shows
that relative to the pre-period, total consumption was cut more for households located in the highly affected
district. The effect is sizable: a one-standard deviation increase in the chest bank score corresponds to about
a 3.6% relative decline in total consumption. The same holds when using a dichotomous version of the shock:
in this case, the highly affected households (top quartile) saw a relative drop of about 5.7%. Importantly,
these results are not driven by differences in pre-trends between affected districts (Figure E.19).74

Therefore, the cash contraction negatively affected household consumption. However, there are three
important things to point out about this negative effect. First, the impact of the shock was temporary.
Looking at the interaction between the treatment and dummies identifying the next 3 waves in which the
household was interviewed, we consistently find a small and non-significant coefficient. This effect suggests
that the cash contraction only significantly impacted household behavior during the months immediately
after the Demonetization and did not lead to a permanent change in consumption behavior. This evidence
is consistent with the idea that the shock was really only binding between November and January.

Second, consistent with the idea that households were able to partially limit the impact of the shock, the
contraction in consumption was larger for items that are less costly to cut for households. As a first step,
we divide consumption into necessary and unnecessary items, where the former group contains expenses
for food, rent and bills, and utilities (power and gas) while the latter contains the remaining part of the
consumption basket. Table E.10 shows that, when consumption is split between the two baskets of goods,
the effect on unnecessary consumption was economically larger (about 22% higher).75

This last result does not depend on the way we categorize consumption as necessary and unnecessary.
In Columns (3)-(5) of Table E.10, we consider three consumption categories: rent and bills, food, and
recreational expenses. For the first group - rent and bills - we find essentially no effect of the Demonetization.
For food, the effect is still negative and significant. In particular, a one standard-deviation increase in
exposure led to about 3% decline in food expenditure. However, this effect on food dwarfs in comparison to
the cut on recreational expenses. For this category, we find that a standard-deviation increases led to more
than a 15% cut in consumption.

Third, we also find direct evidence that electronic payments helped to partially limit the impact of the
shock. While this evidence confirms that the rise in electronic payment was unable to undo the effects of
the cash contraction, it may still be the case that electronic payments helped to partially limit the impact
of the shock. To test this hypothesis, we examine the responsiveness to the shock across areas characterized
by different levels of penetration of electronic payments in the pre-shock period. In particular, we focus on

zero for the wave that happened four months before the one that includes November 2016 and one for the one that happened
four months after.

74This analysis shows a positive and borderline significant effect on consumption two quarters after the Demonetization. One
interpretation is that households have shifted some consumption to the future. Consistent with this interpretation, we actually
find that the effect is driven entirely by unnecessary consumption, which is a category that contains durable expenditure.
However, we also want to point out that this positive result is statistically weak and it does not replicate using alternative
treatment specifications (e.g. using top quartile).

75The same difference also holds when looking using a dichotomous treatment (Appendix Table E.11): here necessary
consumption is cut by 4%, while unnecessary consumption by about 8%.
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the penetration of debit cards, which we proxy by the number of ATMs per million people in a district.76

Our focus on traditional electronic payment is motivated by its relative size. In fact, debit cards represent
the largest share of electronic transaction in India. Furthermore, while the issuance of new debit cards was
overall modest, the Demonetization led to an increase in the amount of transactions, suggesting that debit
cards were indeed used as a way to replace cash during the shock period.

The results of this analysis are presented in Table E.12. The key parameter in these regressions is the
triple interaction between the time dummies, the measure of exposure to the shock, and a dummy that a
value of one for districts that have an above-median number of ATMs per one million people. We repeat
the same analysis using both the continuous (odd columns) and dichotomous (even columns) versions of
the shock. Looking at total consumption (columns 1 and 2), we find consistently that the effect of the
cash contraction was smaller in districts with a high penetration in electronic payments. Depending on the
specification, districts with high penetration experienced a contraction in total consumption that is between
60% and 90% smaller than in low penetration areas.77

These results show that the cash contraction had a negative effect on individual consumption. However,
the negative effects were somehow limited to the most acute period of the Demonetization. Furthermore, the
cut was larger for unnecessary goods, like recreational expenses, and much more limited for food expense.
Building on these patterns, we also show that the presence of a developed electronic payment infrastructure
in a local market explains part of the variation in the response to the shock in the local market. This
evidence suggests that – while electronic money was not sufficient to completely shield the economy from
the contraction – its presence may have played a role in limiting the costs of the Demonetization.

Furthermore, this evidence is consistent with the interpretation of our specification as correctly capturing
heterogeneity on the cash contraction. Consistent with this supply side interpretation, we find that our
treatment predicts both lower consumption and higher use of electronic payments.

C.3 Placebo tests

In the body of the paper, we have also mentioned that the longer time series in the consumption data also
allows us to run more detailed placebo tests on our treatment measure.

In general, before this test, one residual concern is that districts with high exposure to chest banks are
regions that are particularly sensitive to business cycle fluctuations. The pre-trend analysis partially helps
with this concern, but it cannot rule this out completely because it focuses on one specific point in time.
Therefore, to bolster our identification further, we construct a large set of placebo tests, in which we repeat
our main analysis centering it in periods in which there was no contraction in cash. In particular, to keep our
approach general enough, we consider placebo shocks happening every month between February 2015 and
February 2016. We then replicate our main specification, testing for the presence of a differential response
across households in the wave of the placebo shock relative to the previous one.78

The results of this set of placebo tests are reported in Figure E.20. The general finding is that — in
normal times — there is essentially no statistical difference in the change in total consumption between
households in districts with different chest bank exposure. Together with the pre-trend analysis, this test
excludes the concern that differential exposure to business cycles may explain our results. More broadly,
this test provide new evidence on the validity of our empirical specification.

76The underlying assumption is that districts with a high number of ATMs per person will also be characterized by the
highest concentration of debit cards and POS machines. We focus on ATM rather than directly on cards or POS, since we
cannot directly measure the number of debit cards or POS machines at the district level, but only in aggregate.

77Table E.12 also examines the same effect across types of consumption. In particular, the access to electronic payments
helped to reduce the impact of the shock in necessary consumption (columns 3 and 4),the impact in explaining the effect for
unnecessary consumption was minimal (columns 5 and 6). This heterogeneity between types of consumption is consistent with
both demand and supply mechanisms. On the one hand, consumers facing a scarce access to electronic payments may be
more likely to allocate a larger share of their electronic money to necessary consumption. On the other hand, for necessary
consumption – in particular food – consumers are more likely to face the option to trade with retailers that are larger in size
(e.g. grocery chains) relative to unnecessary consumption (e.g. restaurants).

78In our main result, there is essentially no difference when we compare the effect on the previous wave - as in Figure E.19
- or the average of the previous three waves, like in Table E.9. Here we choose to compare to the previous wave because this
allows us to go further back in time with the placebo.
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D Appendix to Section 5

Let Y and Z denote the dependendent and independent variables in the system of equations (9); we first
construct the OLS estimate of the data moments, Ξ̂ = (Z ′Z)−1Z ′Y . We then estimate the variance-
covariance matrix of Ξ̂ using the bootstrap. Specifically, we let:

var
(

Ξ̂
)

=
1

B − 1

B∑
b=1

(
Ξ̂b − Ξ̂

)′ (
Ξ̂b − Ξ̂

)
,

where Ξ̂b is the estimate obtained in replication b of the bootstrap. We use B = 100 and sample with
replacement district by district.

The point estimate for the Np × 1 vector of parameters Θ is obtained by solving:

Θ̂ = arg min

(
Ξ̂− 1

S

S∑
s=1

Ξsim (Θ; γs)

)′
W

(
Ξ̂− 1

S

S∑
s=1

Ξsim (Θ; γs)

)
.

In this objective, S is the number of simulations, and Ξsim(Θ; γs) is the same vector of moments as above,
estimated using data produced by simulation s. We use S = 20 simulations, in keeping with the recommen-
dations of Michaelides and Ng (2000). Each simulation has the same size as the panel data; data is sampled
monthly from model simulations. We simulate data with a burn-in period of 10 years for each district.
Additionally, γs is a vector of random disturbances for simulation s, which we keep constant across values
of Θ for which the objective is evaluated. We use Matlab’s patternsearch routine to minimize the objective,
with 20 randomly drawn starting points for Θ.

Following the litterature (Pakes and Pollard, 1989; Rust, 1994; Hennessy and Whited, 2005, 2007; Taylor,
2010), we use the optimal weighting matrix:

W =
1

Nm
var

(
Ξ̂
)−1

.

The variance-covariance matrix for Θ̂, the vector of estimated parameters, is obtained as:

Ω =

(
1 +

1

S

){(
∂G

∂Θ
(Θ̂)

)′
W

(
∂G

∂Θ
(Θ̂)

)}−1

,

with:

G(Θ) ≡ Ξ̂− 1

S

S∑
s=1

Ξsim (Θ; γs) .

We approximate the Jacobian of G(.) using numerical differentiation. We also report the following test
statistic for over-identifying restrictions:

J =
S

1 + S
G(Θ̂)′

(
var

(
Ξ̂
)−1

)
G(Θ̂),

which is distributed as a χ-squared with Nm−Np degrees of freedom under the null that the over-identifying

restrictions hold. Additionally, we use SCI = 2000 simulations of the panel, with parameters set to Θ̂, to
construct the standard errors and p-values reported in table 7.

In the data, we also re-normalize the Census retail counts so that at least n ≥ 0 districts reach full

adoption. Specifically, for all districts d, we define Xd,t = min(Nd,t/N̄
(n)
d , 1), where Nd,t is the number of

adopters per district, and N̄
(n)
d =

Ndn,t0

Ndn
Nd, Nd is the Census count of retailers in district d in 2014, and dn

is a reference district. The reference district is defined as the district with the nth highest un-normalized
maximum adoption rate, i.e. the nth highest value of maxt

Nd,t

Nd
. We do this because it is unclear whether

the Census counts properly measure the pool of potential adopters. We experimented with values ranging
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from n = 0 (no normalization) to n = 10 (the 10 highest-adoption districts reach full adoption). In all cases,
we can reject the null of no complementarities, and estimates of the contribution of complementarities to
the long-run change in adoption are largely unchanged, ranging from 40% to 65%. We use n = 5 in the
estimation that follows.
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E Appendix figures and tables

Figure E.1: Evidence from Google Search Trends
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Notes: The figure reports the daily plot between September 2016 and July 2017 of Google searches for several key
words that could be representative of public actions and information associated with the demonetization shocks.
Data is obtained through Google Trends, and the index is normalized by Google to be 0 to 100, with a value of 100
assigned to the day with the maximum number of searches made for that topic. Source: Google Search Index.

Figure E.2: Path of the average level of cash across districts after the cash crunch.
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Notes : Path of the average level of cash across districts, Et [Md,t], after the cash crunch. The first grey dashed
line indicates the date of the shock, and the second one indicates the date at which Mt is back to within 90% of its
long-run value, Mt = Mc = 1. The model is simulated for D = 104 districts, with a burn-in period of 5 years. The
persistence of the shock is θ = 1.38, corresponding to a half-life of two weeks.
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Figure E.3: Average number of users in the model with complementarities.
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Notes : Average number of users (Et [Xd,t], left column) and average adoption decision (Et [ad,t], right column) after
the cash crunch in the complementarities model (C > 0 and κ = 0). The results reported here are generated using
a version of the model where θ > k (the shock is transitory relative to the adjustment speed of firms.) Specifically,
the model is solved with k = 0.2, corresponding to an average waiting time between technology resets of 5.0 months,
while the persistence of the shock is θ = 1.38, corresponding to a half-life of two weeks.

70



Figure E.4: Conditional impulse responses in the model with complementarities.
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Notes : Conditional impulse responses in the complementarities model (C > 0 and κ = 0). These impulse responses
are generated from the same type of simulations as in figure E.3. The left column reports the relationship between the
district’s exposure to the shock, proxied by eεd (with a value of 1 indicating an average exposure to the shock), and
the long-run change in the number of users after the shock. The right column reports the relationship between the
initial number of users, Xd,0, and the long-run change in the number of users after the shock. The long-run number
of users in the left panel is defined as E0 [Xd,∞ −Xd,0|εd] = limt→+∞E0 [Xd,t −Xd,0|εd] (and similarly for the right
panel). For both columns, in each district, the adoption path is constructed by averaging across 103 draws. The limit
as t→∞ is obtained by simulating the response of each district for five years and using the end-of-simulation values.
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Figure E.5: Adoption dynamics in the fixed cost model (C = 0 and κ > 0).

Notes: The red line shows the path of a district that starts with a low adoption level Xd,0 = 0. The blue line shows
the path of a district that starts with a high adoption level, Xd,0 = 0.4. The paths are constructed assuming that
each district receives no other shock than the initial decline in Mt, i.e. that εt = 0 for all t > 0.
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Figure E.6: Average number of users in the fixed cost model.
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Notes : Average number of users (Et [Xd,t], left column) and average adoption decisions (right column) after the
cash crunch in the fixed cost model (C = 0 and κ > 0). The graph on the right panel reports separately the adoption
decision of firms currently using cash and the adoption decision of firms currently using electronic money. The
calibration assumes that Me > Mc and k = 0.2, corresponding to an average waiting time between technology resets
of 5.0 months.
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Figure E.7: Conditional impulse responses in the fixed cost model.
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Notes : Conditional impulse responses in the fixed cost model (C > 0 and κ = 0). These impulse responses are
generated from the same type of simulations as in figure E.6. The left column reports the relationship between the
district’s exposure to the shock, proxied by eεd (with a value of 1 indicating an average exposure to the shock), and
the long-run change in the number of users after the shock. The right column reports the relationship between the
initial number of users, Xd,0, and the long-run change in the number of users after the shock. The long-run number
of users in the left panel is defined as E0 [Xd,∞ −Xd,0|εd] = limt→+∞E0 [Xd,t −Xd,0|εd] (and similarly for the right
panel). For both columns, in each district, the adoption path is constructed by averaging across 103 draws. The
limit as t→∞ is obtained by simulating the response of each district for five years, and using the end-of-simulation
values.
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Figure E.8: Adoption dynamics in the model with complementarities and persistent shocks.

Notes : Adoption dynamics in response to a large decline in Mt in the complementarities model (C > 0 and κ = 0).
The model illustrated here corresponds to the case θ < k (the shock is persistent relative to the adjustment speed of
firms.) The red line shows the path of a district that starts with a low adoption level Xd,0 = 0. The blue line shows
the path of a district that starts with a high adoption level, Xd,0 = 0.4. The paths are constructed assuming that
each district receives no other shock than the initial decline in Mt, i.e. that εt = 0 for all t > 0.
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Figure E.9: Average number of users in the model with complementarities and persistent shocks.
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Notes : Average number of users (Et [Xd,t], left column) and average adoption decision (Et [ad,t], right column) after
the cash crunch in the complementarities model (C > 0 and κ = 0). The results reported here are generated using a
version of the model where θ < k (the shock is persistent relative to the adjustment speed of firms.) Specifically, the
model is solved with k = 2, corresponding to an average waiting time between technology resets of 2 weeks, while
the persistence of the shock is θ = 1.38, corresponding to a half-life of two weeks.
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Figure E.10: Conditional impulse responses in the model with complementarities and persistent shocks.
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Notes : Conditional impulse responses in the complementarities model (C > 0 and κ = 0). These impulse responses
are generated from the same type of simulations as in figure E.9, that is, the case where θ < k (the shock is persistent
relative to the adjustment speed of firms.) The left column reports the relationship between the district’s exposure
to the shock, proxied by eεd (with a value of 1 indicating an average exposure to the shock), and the long-run change
in the number of users after the shock. The right column reports the relationship between the initial number of
users, Xd,0, and the long-run change in the number of users after the shock. The long-run number of users in the left
panel is defined as E0 [Xd,∞ −Xd,0|εd] = limt→+∞E0 [Xd,t −Xd,0|εd] (and similarly for the right panel). For both
columns, in each district, the adoption path is constructed by averaging across 103 draws. The limit as t → ∞ is
obtained by simulating the response of each district for five years and using the end-of-simulation values.
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Figure E.11: Adoption dynamics in the frictionless model.

Notes : Adoption dynamics in response to a large decline in Mt in the frictionless model (C = 0 and κ = 0). The
red line shows the path of a district that starts with a low adoption level Xd,0 = 0. The blue line shows the path of
a district that starts with a high adoption level, Xd,0 = 0.4. The paths are constructed assuming that each district
receives no other shock than the initial decline in Mt, i.e. that εt = 0 for all t > 0.
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Figure E.12: Average number of users in the frictionless model.
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Notes : Average number of users (Et [Xd,t], left column) and average adoption decision (Et [ad,t], right column) after
the cash crunch in the frictionless model (C = 0 and κ = 0).
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Figure E.13: Conditional impulse responses in the frictionless model.
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Notes: Conditional impulse responses in the frictionless model (C = 0 and κ = 0). These impulse responses are
generated from the same type of simulations as in figure E.9, that is, the case where θ < k (the shock is persistent
relative to the adjustment speed of firms.) The left column reports the relationship between the district’s exposure to
the shock, proxied by eεd (with a value of 1 indicating an average exposure to the shock), and the long-run change in
the number of users after the shock. The right column reports the relationship between the initial number of users,
Xd,0, and the long-run change in the number of users after the shock. The long-run number of users in the left panel
is defined as E0 [Xd,∞ −Xd,0|εd] = limt→+∞E0 [Xd,t −Xd,0|εd] (and similarly for the right panel). In the left panel,
the long-run change in the number of users is represented by the thick black line (which, for this version of the model,
is constant and equal to 0). For both columns, in each district, the adoption path is constructed by averaging across
103 draws. The limit as t → ∞ is obtained by simulating the response of each district for five years and using the
end-of-simulation values.
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Figure E.14: Dynamic effect of adopter share on firm-level adoption in Monte-Carlo simulations.
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Notes: This graph reports estimates of the coefficient γt in Model (17). This regression model is the same as the
one used on the data and reported in Figure 9. The coefficients reported capture the dependence on the existing
share of adopters at month t, Xd,t, with the month-9 coefficient normalized to 0, along with 95% confidence bands.
The simulated data is aggregated at the district level and sampled monthly; 512 districts (as in the data) and 1000
simulations are used, as in Table E.3.
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Figure E.15: Distribution of Exposured across districts
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Notes: The figure shows the distribution of Exposured (as described in Section 4) across Indian districts. Source:
Reserve Bank of India.
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Figure E.16: Map of the Distribution of Exposured

Notes: The figure maps the distribution of Exposured (as described in Section 4) across Indian districts. Source:
Reserve Bank of India
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Figure E.17: Distribution of growth in deposits across districts

0
10

20
30

D
en

si
ty

-.2 0 .2 .4
Quarterly growth in deposits

Sep-Dec 2015

Sep-Dec 2016

Notes: Distribution across deposits of the growth in total banking sector deposits from October to December during
the year 2015 (blue) and 2016 (black). The vertical dashed lines represents the corresponding mean deposit growth
for these years. Source: Reserve Bank of India.

Figure E.18: Robustness: one-state out
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Notes: This figure reports a robustness in which we exclude from the main analysis one state at a time and we
recalculate the main coefficient of interest. In particular, we consider the specification in which we look at amount of
transactions as an outcome and we consider the coefficient on post multiplied to the chest exposure measure. Each
bar reports the main coefficient for the specification excluding the state in the x-axis and the 95% confidence interval.
The horizontal dashed line is the main coefficient from the main table of the paper, added for reference.
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Figure E.19: Consumption responses based on exposure to the shock
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Notes: The figure plots estimates of consumption responses depending on exposure to the shock (Exposured). The
specification we estimate is a version of equation 18 in which each coefficient is based on the interaction of the
treatment variable with a event-time dummy. We report the event-time estimates of the coefficient δ. The treatment
is our measure of Exposured as described in Section 4. The dependent variable on the y-axis is the (log) total expense
by household (as described in Section C). 95% confidence intervals are represented with the vertical lines; standard
errors are clustered at the district level. Source: CMIE Consumption Data.

Figure E.20: Consumption responses based on placebo shocks
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Notes: The figure plots the estimates of consumption responses depending on exposure to the shock where we assume
the occurrence of a “fake” shock in each survey-time corresponding to each entry on the x-axis. The specification
we estimate is a version of equation 18 in which each coefficient is based on the interaction of the treatment variable
(Exposured) with an event-time dummy. We report the coefficient δ for the event-time right after shock. The
treatment variable is our measure of Exposured for the district (as described in Section 4). The dependent variable
log(yh,d,t) is the log of total consumption (as described in Section C). 95% confidence intervals are represented with
the vertical lines; standard errors are clustered at the district level. Source: CMIE Consumption Data.
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Table E.1: Share of Chest Banks and Deposit Growth

∆ log(deposits) ∆ log(depositsadj.) ∆ log(depositsN )

(1) (2) (3) (4) (5) (6)

Chest Exposure 0.094*** 0.083*** 0.085*** 0.075*** 1.821*** 1.621***
[0.013] [0.012] [0.013] [0.012] [0.257] [0.238]

log(Pre Deposits) -0.035*** -0.035*** -0.677***
[0.003] [0.003] [0.063]

% villages with ATM 0.023 0.020 0.445
[0.040] [0.042] [0.769]

% villages with banks -0.051** -0.051** -1.000**
[0.023] [0.024] [0.449]

Rural Pop./Total Pop. -0.063*** -0.070*** -1.224***
[0.016] [0.017] [0.317]

log(population) 0.036*** 0.035*** 0.707***
[0.003] [0.003] [0.068]

Observations 512 512 512 512 512 512
R-squared 0.118 0.313 0.099 0.290 0.118 0.313
District Controls X X X

Notes: The table reports the results from regression of the district-level deposit growth (between September 30,
2016 and December 31, 2016) on the measure of Exposured for the district (as described in Section 4). Columns
(1) and (2) use the measure of change in total deposits. Columns (3) and (4) uses the measure of abnormal growth
in total deposits, which adjust for the normal deposit growth in the district across the last two years. Specifically,
we subtract the mean deposit growth in the last 8 quarters from the growth in 2016Q4 deposits. Columns (5) and
(6) uses the dependent variable of deposit growth that is normalized to have mean zero and standard deviation 1.
Odd columns shows the correlation without any controls. Even columns include the district-level controls for (log)
pre-shock banking deposits, share of villages with ATM facilities, share of villages with banking facility, share of rural
population and level of population in the district. Robust standard errors are reported in parentheses; ∗∗∗ : p < 0.01,
∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.2: Exposured and Deposit Growth (pre-shock quarters)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
201604 201603 201602 201601 201504 201503 201502 201501 201404 201403 201402 201401

Chest Exposure 1.621*** -0.404 0.476** 0.137 0.163 0.342 -0.040 0.315 0.345 -0.734*** 0.165 0.012
[0.238] [0.260] [0.236] [0.234] [0.268] [0.255] [0.231] [0.240] [0.291] [0.280] [0.257] [0.269]

Observations 512 512 512 512 512 512 512 512 512 512 512 512
R-squared 0.313 0.027 0.026 0.162 0.020 0.054 0.044 0.061 0.017 0.037 0.100 0.124
District Controls X X X X X X X X X X X X

Notes: Regression of district-level deposit growth for all eleven quarters before the shock (2016 Q4) on the density of chest banks in the district. The dependent
variable is normalized to have mean zero and standard deviation 1. Treatment variable is our measure of Exposured for the district (as described in Section
4). District-level controls include (log) pre-shock banking deposits, share of villages with ATM facilities, share of villages with banking facility, share of rural
population and level of population in the district. Standard error in parentheses; ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.3: Firms adoption rates in the simulated data

No complementarities (C = 0) Complementarities (C > 0)

ρ 0.862 0.863

(0.861,0.864) (0.862,0.864)

β −0.175 −0.177

(-0.180,-0.170) (-0.183,-0.171)

γ −0.016 0.198

(-0.020,-0.011) (0.196,0.200)

Obs. per sim. 2,100,000 2,100,000

Average R-sq. 0.754 0.837

Notes: This table reports the estimates of the panel data regression Model 16 on simulated firm-level data. The
coefficient ρ is the autocorrelation of a firm’s technology choice, xi,d,t, while the coefficient β captures the dependence
on the stock of money, Md,t−∆, and the coefficient γ captures the dependence on the existing share of adopters,
Xd,t−∆. The simulated data is aggregated at the district level and sampled monthly; 512 districts (as in the data)
and 1000 simulations are used. The 95% Monte-Carlo confidence interval is reported in parentheses.

Table E.4: District adoption rates based on initial adoption in electronic payment data: OLS

log(amount) log(# users) log(# switchers)

(1) (2) (3) (4) (5) (6)

1 (Any Adopter)d × 1 (t ≥ t0) 1.416*** 1.751*** 1.312***

[0.379] [0.188] [0.150]

log(pre-amount)d × 1 (t ≥ t0) 0.050 0.173*** 0.127***

[0.050] [0.022] [0.018]

Observations 6,846 6,846 6,846 6,846 6,552 6,552

R-squared 0.849 0.848 0.880 0.878 0.842 0.839

District f.e. X X X X X X

Month f.e. X X X X X X

District Controls × Month f.e. X X X X X X

Notes: The table shows adoption dependence on initial conditions at the district level. The specification estimated is
equation 6. In the first row, Id is a dummy if a district had a positive adoption level before the demonetization. In the
second row, Id the total amount of transactions before the demonetization. In Columns (1) and (2), the dependent
variable is the log of the total amount (in Rs.) of transactions carried out using digital wallet in district d during
month t; in Columns (3) and (4), the dependent variable is the log of the total number of active retailers using digital
wallet in district d during month t; in Columns (5)-(6), the dependent variable is the log of the total number of new
retailers joining the digital wallet in district d during month t. District-level controls include (log) pre-shock banking
deposits, share of villages with ATM facilities, share of villages with banking facility, share of rural population and
level of population in the district. Standard errors are clustered at the district level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05,
∗ : p < 0.1.
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Table E.5: District adoption rates based on initial adoption: Alternative specification

log(amount) log(# users) log(# switchers)

δ = 200 δ = 300 δ = 400 δ = 200 δ = 300 δ = 400 δ = 200 δ = 300 δ = 400

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(Distance To Hub > δ km.) × 1{t≥t0} -1.309*** -1.129*** -1.113*** -0.537*** -0.499*** -0.482*** -0.358** -0.357*** -0.360***

[0.374] [0.357] [0.345] [0.182] [0.151] [0.138] [0.143] [0.116] [0.108]

Observations 6,846 6,846 6,846 6,846 6,846 6,846 6,846 6,846 6,846

R-squared 0.886 0.886 0.886 0.912 0.912 0.912 0.871 0.871 0.871

District f.e. X X X X X X X X X

Month f.e. X X X X X X X X X

District Controls × Month f.e. X X X X X X X X X

State × Month f.e. X X X X X X X X X

Notes: The table shows difference-in-differences estimate of the effect of initial conditions, using distance to the nearest hub (defined as districts with greater
than 500 retailers in September 2016) as a proxy for the initial share of adopters. The specification estimated is equation 7, replacing Dd with a dummy for
distance to hub based on threshold δ (1{Distance To Hub>δ km.}), The dependent variable is either the or the log of the total nominal value of transactions; log
of total number of active firms; log of total number of new firms on the digital wallet. District-level controls include (log) pre-shock banking deposits, share of
villages with ATM facilities, share of villages with banking facility, share of rural population, level of population, distance to state capital and employment rate
in the district. Standard errors are clustered at the district level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.6: Firm adoption based on existing adoption rate (allowing for spillovers across industries)

(1) (2) (3) (4)

xi,p,d,t = log(amount)i,p,d,t

xi,p,d,t−1 0.533*** 0.444*** 0.375*** 0.358***

(0.006) (0.005) (0.004) (0.003)

Xp,d,t−1 0.076*** 0.135*** 0.023*** 0.016***

(0.002) (0.002) (0.002) (0.001)

R2 0.364 0.402 0.432 0.441

xi,p,d,t = log(# transactions)i,p,d,t

xi,p,d,t−1 0.711*** 0.621*** 0.586*** 0.579***

(0.005) (0.005) (0.005) (0.005)

Xp,d,t−1 0.022*** 0.043*** 0.021*** 0.013***

(0.001) (0.001) (0.001) (0.001)

R2 0.548 0.573 0.585 0.590

xi,p,d,t = 1 {On platform}i,p,d,t
xi,p,d,t−1 0.496*** 0.381*** 0.334*** 0.323***

(0.007) (0.003) (0.003) (0.003)

Xp,d,t−1 0.035*** 0.071*** 0.027*** 0.015***

(0.002) (0.001) (0.001) (0.001)

R2 0.347 0.398 0.420 0.428

Firm F.E. X X X

Industry × Week F.E. X X

District × Week F.E. X

Observations 11,750,558 11,750,558 11,750,558 11,749,732

Notes: The table reports estimates of the dynamic specification for adoption based on : xi,p,d,t = αi + αdt +
ρxi,p,d,t−1+γXp,d,t−1+εi,p,d,t allowing for spillovers across industries within the same pincode. We reported estimates
of the coefficient γ. The top panel reports effects when x is the total value of transactions, the middle panel reports
effects when x is the total number of transactions, and the bottom panel reports effects when x is a dummy for
whether the firm used the platform in the week. Standard errors are clustered at the pincode level. ∗ ∗ ∗ : p < 0.01,
∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.7: Firm adoption based on existing adoption rate (district-level)

(1) (2) (3) (4)

xi,k,d,t = log(amount)i,k,d,t

xi,k,d,t−1 0.572*** 0.474*** 0.420*** 0.410***

(0.0100) (0.0108) (0.0108) (0.0105)

Xk,d,t−1 0.0696*** 0.117*** 0.0295*** 0.00606***

(0.00257) (0.00662) (0.00439) (0.00134)

R2 0.398 0.437 0.459 0.463

xi,k,d,t = log(# transactions)i,k,d,t

xi,k,d,t−1 0.776*** 0.709*** 0.635*** 0.624***

(0.0101) (0.00933) (0.0149) (0.0148)

Xk,d,t−1 0.0237*** 0.0600** 0.116*** 0.0212***

(0.00821) (0.0301) (0.00693) (0.00205)

R2 0.598 0.615 0.635 0.637

xi,k,d,t = 1 {On platform}i,k,d,t
xi,k,d,t−1 0.528*** 0.408*** 0.378*** 0.370***

(0.00828) (0.00931) (0.00857) (0.00849)

Xk,d,t−1 0.0158*** 0.0314*** 0.0198*** 0.00489***

(0.00131) (0.00180) (0.00202) (0.000938)

R2 0.369 0.419 0.433 0.437

Firm F.E. X X X

District × Week F.E. X X

Industry × Week F.E. X

Observations 58,022,429 58,022,429 58,021,662 58,021,662

Notes: The table reports estimates of the dependence of firm-level adoption rates on the share of other adopters in
the industry/district. The specification we estimate is a version of equation 8 at district-level in which each coefficient
is interacted with a weekly dummy; we reported estimates of the coefficient γ. The top panel reports effects when
x is the total value of transactions, the middle panel reports effects when x is the total number of transactions, and
the bottom panel reports effects when x is a dummy for whether the firm used the platform in the week. Standard
errors are clustered at the district level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.8: Robustness: Firm adoption after inclusion of controls for language concentration and industry concen-
tration

log(# switchers)

(1) (2) (3) (4)

(Exposure)d × 1 (t ≥ t0) 0.877*** 0.894*** 0.716** 0.688**

[0.328] [0.337] [0.323] [0.314]

(Lang. Conc.)d × 1 (t ≥ t0) -0.034 -0.189

[0.057] [0.206]

(Exposure)d × (Lang. Conc.)d × 1 (t ≥ t0) 0.284

[0.385]

(Ind. Conc.)d × 1 (t ≥ t0) 0.247*** 0.104

[0.052] [0.175]

(Exposure)d × (Ind Conc.)d × 1 (t ≥ t0) 0.249

[0.286]

Observations 6,454 6,454 6,552 6,552

R-squared 0.832 0.832 0.832 0.832

District f.e. X X X X

Month f.e. X X X X

District Controls × Month f.e. X X X X

Notes: The table reports estimates of the effect of cash contraction on the adoption of digital wallet, after con-
trolling for and interacting with proxies of learning in a district. Language concentration in a district is defined as:
Lang. Conc.d = 1 −

∑
l(share of district d population speaking language l)2. Industry concentration in a district is

defined as: Ind. Conc.d = 1−
∑
i(share of workers in district d employed in industry i)2. We obtain the information

on language distribution among population using Census of India (2011), and information on share of employment
across 121 industries from Economic Census (2013). Standard errors clustered at district level are reported in paren-
theses. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.9: Consumption responses based on exposure to the shock

log(ExpenseTotal)

Exposured : Continuous measure Top 25%

(1) (2)

(Exposure)d × 1(t = t1) -0.199*** -0.0577**
(0.0637) (0.0234)

(Exposure)d × 1(t = t2) -0.0337 -0.0199
(0.0815) (0.0296)

(Exposure)d × 1(t = t3) 0.148 0.0146
(0.102) (0.0370)

(Exposure)d × 1(t = t4) 0.0252 -0.0187
(0.141) (0.0588)

Household f.e. X X
Survey-time f.e. X X
District Controls × Survey-time f.e. X X
Household controls × Survey-time f.e. X X
Observations 564,690 564,690
R-squared 0.707 0.706

Notes: The table shows the difference-in-differences estimate for consumption responses for each event-time after the
demonetization shock relative to the pre-period (four event-time). The specification estimated is equation 18. The
treatment variable is our measure of Exposured for the district (Column (1)) and takes the values of 1 if the measure
of Exposured is in the top quartile of the distribution (Column (2)). The dependent variable log(yh,d,t) is the log of
total consumption as defined in Section C. District-level controls include (log) pre-shock banking deposits, share of
villages with ATM facilities, share of villages with a banking facility, share of rural population and level of population
in the district. Household-level controls include pre-shock income and age of head of the household. Standard errors
are clustered at the district level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.10: Consumption responses across categories based on exposure to the shock

Necessary Unnecessary Bills and Rent Food Recreation

(1) (2) (3) (4) (5)

(Exposure)d × 1(t = t1) -0.174*** -0.211** 0.250 -0.185*** -0.996**
(0.0573) (0.0987) (0.268) (0.0595) (0.431)

Household f.e. X X X X X
Survey-time f.e. X X X X X
District Controls × Survey-time f.e. X X X X X
Household controls × Survey-time f.e. X X X X X
Observations 564,690 564,690 564,690 564,690 564,690
R-squared 0.731 0.622 0.700 0.684 0.460

Notes: The table shows the difference-in-differences estimate for consumption responses across various categories for
each event-time after the demonetization shock relative the pre-period (four event-time). The specification estimated
is equation 18. The treatment variable is our measure of Exposured for the district (as described in Section 4). The
dependent variable log(yh,d,t) is either the log of consumption of necessary goods (Column (1)); the log of consumption
of unnecessary goods (Column (2)); log of expenditure on bills and rent (Column (3)); the log of expenditure on
food (Column (4)); the log of expenditure on recreation activities (Column (5)) as defined in Section C. District-
level controls include (log) pre-shock banking deposits, share of villages with ATM facilities, share of villages with
a banking facility, share of rural population and level of population in the district. Household-level controls include
pre-shock income and age of head of the household. Standard errors are clustered at the district level. ∗∗∗ : p < 0.01,
∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.11: Consumption responses based on alternative cutoff for exposure to the shock

log(Expense)

Total Necessary Unnecessary

(1) (2) (3)

1{t=t1} × (Top 25% Exposure)d -0.0577** -0.0427* -0.0781**
(0.0234) (0.0230) (0.0343)

1{t=t2} × (Top 25% Exposure)d -0.0199 -0.0172 -0.0277
(0.0296) (0.0266) (0.0454)

1{t=t3} × (Top 25% Exposure)d 0.0146 -0.00438 0.0519
(0.0370) (0.0307) (0.0533)

1{t=t4} × (Top 25% Exposure)d -0.0187 -0.0588 0.0374
(0.0588) (0.0580) (0.0786)

Household f.e. X X X
Survey-time f.e. X X X
District Controls × Survey-time f.e. X X X
Household controls × Survey-time f.e. X X X
Observations 564,690 564,690 564,690
R-squared 0.706 0.731 0.622

Notes: The table shows difference-in-differences estimate for consumption responses for each event-time post the
demonetization shock relative the pre-period (four event-time). The specification estimated is equation 18. Treatment
variable takes the value of 1 if our measure of Exposured for the district (as described in Section 4) is in the top
25% value of exposure. The dependent variable log(yh,d,t) is either log of total consumption (Column (1)); log of
consumption of necessary goods (Column (2)); log of consumption of unnecessary goods (Column (3)) as defined in
Section C. District-level controls include (log) pre-shock banking deposits, share of villages with ATM facilities, share
of villages with banking facility, share of rural population and level of population in the district. Household-level
controls include pre-shock income and age of head of the household. Standard errors are clustered at the district
level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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Table E.12: Heterogeneous consumption responses by district’s exposure to alternate payment system

Total Necessary Unnecessary

(1) (2) (3) (4) (5) (6)

1(t = t1)× (Exposure)d -0.303*** -0.298*** -0.280**
(0.0771) (0.0740) (0.121)

1(t = t2)× (Exposure)d -0.177* -0.201** -0.114
(0.0972) (0.0889) (0.157)

1(t = t3)× (Exposure)d 0.103 0.0199 0.275
(0.131) (0.108) (0.203)

1(t = t4)× (Exposure)d 0.121 -0.124 0.445
(0.212) (0.182) (0.319)

1(t = t1)× 1(ATM)d -0.118* -0.0506* -0.127** -0.0491** -0.0917 -0.0413
(0.0615) (0.0298) (0.0518) (0.0241) (0.0963) (0.0463)

1(t = t2)× 1(ATM)d -0.148** -0.0535* -0.157*** -0.0528** -0.116 -0.0438
(0.0663) (0.0302) (0.0584) (0.0253) (0.105) (0.0490)

1(t = t3)× 1(ATM)d -0.0431 0.0000 -0.0481 -0.0105 -0.0118 0.0356
(0.0731) (0.0315) (0.0615) (0.0282) (0.118) (0.0486)

1(t = t4)× 1(ATM)d 0.117 0.0644 -0.0285 -0.00480 0.299* 0.145*
(0.114) (0.0604) (0.0968) (0.0516) (0.174) (0.0864)

1(t = t1)× (Top 25% Exposure)d -0.106*** -0.104*** -0.102**
(0.0318) (0.0291) (0.0510)

1(t = t2)× (Top 25% Exposure)d -0.0782** -0.0829** -0.0666
(0.0375) (0.0335) (0.0609)

1(t = t3)× (Top 25% Exposure)d 0.00985 -0.0126 0.0669
(0.0478) (0.0385) (0.0761)

1(t = t4)× (Top 25% Exposure)d 0.0227 -0.0993 0.211
(0.0914) (0.0776) (0.137)

1(t = t1)× (Exposure)d × 1(ATM)d 0.185* 0.217** 0.129
(0.102) (0.0987) (0.151)

1(t = t2)× (Exposure)d × 1(ATM)d 0.232* 0.261** 0.167
(0.119) (0.112) (0.185)

1(t = t3)× (Exposure)d × 1(ATM)d 0.0744 0.0724 0.0536
(0.142) (0.116) (0.226)

1(t = t4)× (Exposure)d × 1(ATM)d -0.139 0.0818 -0.454
(0.218) (0.202) (0.326)

1(t = t1)× (Top 25% Exposure)d × 1(ATM)d 0.0913** 0.114*** 0.0479
(0.0437) (0.0423) (0.0645)

1(t = t2)× (Top 25% Exposure)d × 1(ATM)d 0.101* 0.116** 0.0628
(0.0520) (0.0470) (0.0811)

1(t = t3)× (Top 25% Exposure)d × 1(ATM)d 0.00388 0.0110 -0.0363
(0.0600) (0.0494) (0.0933)

1(t = t4)× (Top 25% Exposure)d × 1(ATM)d -0.0622 0.0771 -0.289*
(0.0994) (0.0949) (0.148)

Observations 554,894 554,894 554,899 554,899 554,899 554,899
R-squared 0.704 0.704 0.730 0.730 0.618 0.618

Notes: The table shows triple-difference estimate for consumption responses for each event-time post the demoneti-
zation shock relative the pre-period (four event-time), based on district’s access to ATM facility. Treatment variable
is our measure of Exposured for the district (odd columns) and takes the values of 1 if the measure of Exposured
is in the top quartile of the distribution (even columns). 1(ATM)d takes the values of 1 if the number of ATM per
capita in district is above the median of the distribution. The dependent variable log(yh,d,t) is either the log of total
consumption (Column 1-2); log of necessary consumption (Column 3-4); log of unnecessary consumption (Column
5-6). as defined in Section C. District-level controls include (log) pre-shock banking deposits, share of villages with
ATM facilities, share of villages with banking facility, share of rural population and level of population in the district.
Household-level controls include pre-shock income and age of head of the household. Standard errors are clustered
at the district level. ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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