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IA.A. Proofs of main results

IA.A.1. Lemma 1 and Result 1

Proof. The first-order necessary condition and the envelope theorem, for each capital type,

are:

Φ′n,t = qn,t

∂V c
t+1

∂Kn,t+1

= Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

(IA.1)

Multiplying the latter condition by Mt,t+1Kn,t+1, combining with the former condition, and

taking expectations at time t, we obtain:

qn,tKn,t+1 = Et [Mt,t+1 (Πn,t+1Kn,t+1 − Φn,t+1Kn,t+1)] + Et [Mt,t+2qn,t+1Kn,t+2] (IA.2)

Assuming the transversality condition limk→+∞ Et [Mt,t+kqn,t+k−1Kn,t+k+1] = 0 holds for each

type of capital, we can iterate forward and sum across capital types to obtain:

N∑
n=1

qn,tKn,t+1 =
N∑
n=1

∑
k≥1

Et [Mt,t+k {Πn,t+kKn,t+k − Φn,t+kKn,t+k}]

=
∑
k≥1

Et

[
Mt,t+k

N∑
n=1

{Πn,t+kKn,t+k − Φn,t+kKn,t+k}

]
.

(IA.3)

On the other hand, firm value excluding current distributions is given by:

V e
t =

∑
k≥1

Et

[
Mt,t+k

{
Πt+k −

N∑
n=1

Φn,t+kKn,t+k

}]
.

Note that, given Assumption 1, we have that:

Πt+k = µΠK,t+kKt+k

= µ

N∑
n=1

ΠK,t+k
∂Ft+k
∂Kn,t+k

Kn,t+k = µ
N∑
n=1

Πn,t+kKn,t+k,
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so that firm value can be rewritten as:

V e
t =

∑
k≥1

Et

[
Mt,t+k

N∑
n=1

{µΠn,t+kKn,t+k − Φn,t+kKn,t+k}

]
. (IA.4)

Taking the difference between Equations (IA.4) and (IA.3) gives the result of Lemma 1.

Result 1 follows from dividing both sides by Kn,t+1, and subtracting qn,t.

IA.A.2. Result 2

Proof. We start with the case of a general investment cost function:

Φn(x) = x− 1 + δn + γnΓ(x), n = 1, ..., N.

The necessary first-order conditions, for each type of capital, are given by:

Φ′n,t = qn,t,

qn,t = 1
1+r

(
Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

)
.

(IA.5)

which we can rewrite as:

(1 + r)Φ′n (1 + gn,t) = Πn,t+1 − Φn (1 + gn,t+1) + Φ′n (1 + gn,t+1) (1 + gn,t+1),

where gn,t ≡ Kn,t+1

Kn,t
− 1.

We next guess and verify that gn,t = g̃ for n = 1, ..., N , for some trend growth rate g̃, is a

solution. Substituting into the condition above, and re-arranging, we obtain:

Rn = Πn,t+1, (IA.6)

where we defined:

Rn ≡ (r − g̃)Φ′n (1 + g̃) + Φn (1 + g̃) .

3



By homogeneity of degree 1 of the capital aggregator:

Πn,t+1 =
1

µ
A

1− 1
µ

t+1 K
1
µ
−1

t+1

∂Kt+1

∂Kn,t+1

, n = 1, ..., N. (IA.7)

Under our guess, the left-hand side of this expression is a constant. Moreover, the linear

homogeneity of the capital aggregator implies that Kt+1 also grows at rate g̃. Also, each

partial derivative ∂Kt+1

∂Kn,t+1
is homogeneous of degree 0 in each of its arguments, implying that

they only depend on the N − 1 ratios:

Sm,t+1 =
Km,t+1

K1,t+1

, m = 2, ..., N,

of each capital stock to the physical capital stock. Under our guess of constant growth gn,t = g̃,

these ratios must be constant. Therefore, the right-hand side of equation (IA.7) grows at rate

g1−1/µg̃1/µ. Given that the left-hand side is constant, this implies that it must be the case

that g̃ = g.

Taking the ratio of the first-order condition (IA.6) for n = 2, ..., N , to the first-order

condition for n = 1, we obtain:

Rm

R1

=
∂Kt/∂Km,t

∂Kt/∂K1,t

, n = 2, ..., N. (IA.8)

This is a system of N − 1 equations in N − 1 variables, {Sm,t+1}Nm=2. Assume that F is such

that the solution
{
S̃m

}N
m=2

is unique. Then, the steps above show that any solution with

constant growth rates g for each capital stock, and capital ratios equal to Sm,t = S̃m, satisfies

the set of first-oder conditions (IA.5).2

2In Appendix IA.B.1, below, we provide the exact solution to the system of equations (IA.8) when the

aggregator between capital types is constant elasticity of substitution (CES).
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Finally, the expressions for the generalized user costs follow from the Taylor expansion:

(r − g)Φ′n(1 + g) + Φn(1 + g) = (r − g)(1 + γng + o(g)) +

(
δn + g +

1

2
γng

2 + o(g2)

)
= r + δn + γnrg −

1

2
γng

2 + o(g)(r − g)

= r + δn + γnrg + o(g).

This approximation is exact when adjustment costs are given by the following functional form:

Φn (x) = x− 1 + δn + γnr

(
x− 1 + (r − (x− 1)) log

(
r − (x− 1)

r

))
.

It can be checked that this cost function is strictly convex and satisfies the conditions Φn(1) =

δn, Φ′n(1) = 1 and Φ′′n(1) = γn, n = 1, 2. Additionally, this functions satisfies the relationship:

(r − y)Φ′(1 + y) + Φ(1 + y) = r + δn + γnry,

leading to an exact expression for the generalized user costs, Rn = r + δn + γnrg.

IA.A.3. Results on Total Q

Define total Q (Peters and Taylor, 2017) and total net investment as:

Qtot,t ≡ V e
t /

N∑
n=1

Kn,t+1,

gt,t+1 ≡
∑N

n=1 sn,t+1gn,t,t+1,

(IA.9)

where:

sn,t+1 = Kn,t+1/

N∑
m=1

Km,t+1. (IA.10)

In general, we have:

Qtot,t =
N∑
n=1

sn,t+1qn,t + (µ− 1)
N∑
n=1

sn,t+1

∑
k≥1

Et [Mt,t+kΠn,t+k(1 + gn,t+1,t+k)] . (IA.11)
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Thus, Qtot,t is the sum of two terms: “total marginal q”:

qtot,t =
N∑
n=1

sn,t+1qn,t,

and a term reflecting the rents generated by each type of capital. Unsurprisingly, in the

presence of rents (µ > 1), Qtot,t overstates qtot,t, and does measure the incentive to invest.

However, even in the absence of rents (µ = 1), Total Q may not be a sufficient statistic

for total net investment. The total net investment rate is given by:

gt,t+1 =
N∑
n=1

sn,t+1Ψn,t (qn,t − 1) , Ψn,t ≡ (Φ′n,t)
−1.

In general, gt,t+1 depends on each marginal q separately; it is not a monotone function of their

weighted average qtot,t. Thus, even when µ = 1, and Qtot,t = qtot,t, the latter need not be a

good proxy for total net investment.

When is qtot,t a sufficient statistic for total net investment? A first case is when adjustment

costs are identical across types of capital goods, so that Ψn,t = Ψt, and when the function Ψt

is linear. In that case, the expression above simplifies to gt,t+1 = Ψt (qtot,t − 1) , and total Q is

indeed a sufficient statistic for total investment. Another case is if marginal q is equal across

different types of capital. In this case, qtot,t = qn,t, and so gt,t+1 =
∑N

n=1 sn,t+1Ψn,t (qtot,t − 1),

so that qtot,t is a sufficient statistic for investment.

When is marginal q equalized across types of capital? The framework studied by Peters

and Taylor (2017) is an example where this is the case. That framework considers cost func-

tions C1(K1,t, K2,t) and C2(K1,t, K2,t) that are not additively separable (as in this paper), but

nevertheless satisfy ∂(C1,t+C2,t)

∂K1,t
= ∂(C1,t+C2,t)

∂K2,t
.3 In our model, the difference between marginal

3As discussed in Appendix I.C of Crouzet and Eberly (2019), for the general class of cost functions of the

form C1(K1,t,K2,t) and C2(K1,t,K2,t), a necessary condition for q1,t = q2,t is that intangible and physical

capital be perfect substitutes, and also that they depreciate at the same rates, and enter the capital aggregator

with the same weights. In this sense, the conditions under which marginal q is equalized across types of capital,

and thus under which Qtot,t and qtot,t are relevant to understanding the behavior of total net investment, are

fairly specific.
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q for two types of capital is given by:

qn,t − qm,t =
∑
k≥1

Et [Mt,t+k(1 + gn,t,t+k) {Πn,t+k − Πm,t+k − (Φn,t+k − Φm,t+k)}] .

Thus, a sufficient condition for equalized marginal qs is that (a) Πn,t = Πm,t, which, using

Equation (5), implies that ∂Kn,t/∂Km,t = 1, or equivalently that capital types are perfect

substitutes; and (b) adjustment costs are identical across capital types.

IA.B. Model extensions

This appendix provides more details on the extensions to the model discussed in Section

E.

IA.B.1. Preliminary: partial solution with CES capital aggregator

We start by stating a preliminary result, which partially characterizes the solution to the

model when capital aggregation is CES. We use this result in several different extensions to

the model.

LEMMA 1: Assume that :

Πt = A
1− 1

µ

t K
1
µ

t ,

Kt =

(
N∑
n=1

ηnK
ρ
n,t

) 1
ρ

, ρ ≤ 1,
N∑
n=1

ηn = 1.

(IA.12)

Then, the solution to the model satisfies:

Kn,t+1 = ξn,t+1At+1, Kt+1 = ξt+1At+1,
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where:

Rt+1 ≡

(
N∑
n=1

η
1

1−ρ
n R

− ρ
1−ρ

n,t+1

)− 1−ρ
ρ

,

ξt+1 ≡ (µRt+1)−
µ
µ−1 ,

ξn,t+1 ≡
(
ηn

Rt+1

Rn,t+1

) 1
1−ρ

ξt+1.

and:

Rn,t+1 ≡
∂V c

t+1

∂Kn,t+1

+ Φn,t+1(1 + gn,t+1)− Φ′n,t+1(1 + gn,t+1)
Kn,t+2

Kn,t+1

, n = 1, ..., N.

Proof. The necessary first-order conditions and the envelope conditions of the general model

are:

Φ′n,t(1 + gn,t) = qn,t

∂V c
t+1

∂Kn,t+1

= Πn,t+1 − Φn,t+1(1 + gn,t+1) + Φ′n,t+1(1 + gn,t+1)
Kn,t+2

Kn,t+1

,

where: qn,t = Et
[
Mt,t+1

∂V c
t+1

Kn,t+1

]
. Using the first part of Assumption IA.12, the envelope

conditions imply that:

A
1− 1

µ

t+1 K
1
µ
−1

t+1

∂Kt+1

∂Kn,t+1

= µRn,t+1, n = 1, ..., N.

When the capital aggregator is CES, as in the second part of assumption IA.12, one can check

that the solution to these N equations takes the form reported in Lemma 1.

IA.B.2. Closed form solutions with uncertainty

IA.B.2.1. Result

Assume that the fundamentals process follows:

At+1

At
= 1 + gt =


1 + gt−1 w.p. 1− λ

1 + g̃ w.p. λ

(IA.13)

8



Here, g̃ is drawn, at time t, from a distribution F (.), which is time-invariant, and the draw is

independent of past realizations of gt. The investment gap for physical capital is then given

by

G1,t =
µ− 1

r − ν(gt)
(r + δ1) + S +

µ− 1

r − ν(gt)
(r + δ2)S. (IA.14)

The function ν(gt) is given by:

ν(gt) = (1− λ)E
[

1

1 + λ(1 + g̃)/(r − g̃)

]
gt + λE

[
1

1− (1− λ)(1 + g̃)/(1 + r)
g̃

]
(IA.15)

It depends on the parameters λ and on the distribution F (.). When λ = 0, the firm’s growth

rate is constant, and ν(gt) = gt. When λ = 1, the growth rate of the firm is i.i.d and

ν(gt) = E [g̃]. Thus, the term 1
r−ν(gt)

is analogous to the standard Gordon growth formula,

but the function ν(.) adjusts for shifts in the growth rate of fundamentals. Thus, the key

insights from the discussion in the main text survive. In particular, even with stochastic

growth, the two rents terms can be thought of as the present value of markups over the user

costs of physical and intangible capital, respectively.

IA.B.2.2. Derivations of the result

We define the function ν(gt) as:

ν(gt) = r − ζ(gt)
−1,

where:

ζ(gt) ≡ Et

[∑
k≥1

(1 + r)−k
At+k
At+1

]
.

To obtain the decomposition of the investment gap in closed form, we use the following lemma.

LEMMA 2: When fundamentals follow the process (IA.13), the function ζ(gt) is given by:

ζ(gt) = E
[

r − g̃
r − g̃ + λ(1 + g̃)

]−1
1

r − gt + λ(1 + gt)
.

It is straightforward to check that this solution for ζ(gt) then implies expression (IA.15).
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Proof. Let:

ζ(gt) ≡ Et

[∑
k≥1

(1 + r)−k
At+k
At+1

]
,

then ζ(gt) satisfies:

ζ(gt) =
1

1 + r
(1 + λE [(1 + g̃)ζ(g̃)] + (1− λ)(1 + gt)ζ(gt)) ,

where we used the law of iterated expectations, and the law of motion for At. Solving for

ζ(gt):

ζ(gt) =
1 + λX

1 + r − (1− λ)(1 + gt)
, X ≡ E [(1 + g̃)ζ(g̃) ]

Multiplying by (1 + gt), taking expectations on both sides, and solving for X, we obtain:

X =
Y

1− λY
, Y ≡ E

[
1 + gt

1 + r − (1− λ)(1 + gt)

]
.

After rearranging, we have:

ζ(gt) =
1

1− λY
1

r − gt + λ(1 + gt)
,

which gives the result, using the solution for Y .

We now derive the closed-form expressions for the decomposition of the investment gap when

the fundamentals process is given by (IA.13). We rely on the general solution of the model

with uncertainty and a CES aggregator described in Lemma (1). With the fundamentals

process (IA.13), At+1 is in the time-t information set. Using Lemma (2), since:

Kn,t+1 = ξn,t+1At+1,

and since the {Kn,t+1}Nn=1 are chosen as of time t, this implies that the {ξn,t+1}Nn=1 are also

in the information set of time t. Therefore, the user costs {Rn,t+1}Nn=1 are also in the time-t

information set, so that, using Assumption 3:

∀n = 1, ..., N, ∀t, Et [Mt,t+1Rn,t+1] = Et [Mt,t+1]Rn,t+1 = (1 + r)−1Rn,t+1.
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Assumption 3 also implies that:

qn,t = 1

Rn,t+1 =
∂V c

t+1

∂Kn,t+1

− (1− δn).

Using the relationship Et [Mt,t+1Rn,t+1] = (1 + r)−1Rn,t+1 and the definition of qn,t, these

equations imply that:4

Rn,t+1 = r + δn, ∀n = 1, ..., N, ∀t.

This implies that:

ξn,t+1 = ξn, ∀n = 1, ..., N, ∀t.

Thus, Kn,t = ξnAt for all n, t. Therefore, the net growth rates of capital stocks are given by

gn,t = gt, and the ratios Sn,m,t ≡ Km,t+1

Kn,t+1
are constant.

Using these results, and the fact that qn,t = 1 and Πn,t = Rn,t = r+ δn for all n, t, we can

write the investment gap decomposition for capital of type n as:

Qn,t − qn,t = (µ− 1) (r + δn)
∑
k≥1

Et [Mt,t+k(1 + gt+1,t+k)]

+
N∑
m=1
m6=n

Sm,n

+ (µ− 1)
N∑
m=1
m6=n

Sm,n(r + δm)
∑
k≥1

Et [Mt,t+k(1 + gt+1,t+k)] ,

where we have denoted:

gt+1,t+k ≡
Kn,t+k

Kn,t+1

=
At+k
At+1

.

Using the lemma above, as well as the fact that we have assumed that Mt,t+k = (1 + r)−k,

the present values that appear in the rents term in the investment gap above are given by:

∑
k≥1

Et [Mt,t+k(1 + gt+1,t+k)] =
∑
k≥1

Et
[
(1 + r)−k

At+k
At+1

]
= ζ(gt) =

1

r − ν(gt)
.

4The result is somewhat stronger:
∂V c

t+1

∂Kn,t+1
= 1 + r, since

∂V c
t+1

∂Kn,t+1
is also in the information set of time t.
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Thus the investment gap decomposition is given by:

Qn,t − qn,t =
(µ− 1)(r + δn)

r − ν(gt)
+

N∑
m=1
m6=n

Sm,n + (µ− 1)
N∑
m=1
m6=n

(µ− 1)(r + δm)

r − ν(gt)
× Sm,n,

and the decomposition (IA.14) is a particular case of this expression for N = 2.

IA.B.3. Market power, decreasing returns, and rents

Proofs for key lemmas are reported at the end of this section.

IA.B.3.1. Model

Consider a monopolistic firm that uses M distinct variable inputs, {Mj,t}Nn=1, as well as

capital, to produce and sell output to consumers whose demand function is given by:

Yt = P
− µS
µS−1

t Dt,

where Pt is the price of the good, Dt indexes aggregate demand, and µS ≥ 1 will be the

markup over the marginal cost of gross output (or sales) charged by the firm. The prices of

the variable inputs are given by {Wj,t}Nn=1. The total input of capital, Kt (which is made up

of tangible and intangible capital), is quasi-fixed; that is, it is chosen dynamically by the firm

but cannot be modified immediately. The static variable profit maximization problem of the

firm is then:

Πt = max
{Mj,t}Mj=1,Pt

P
− 1
µS−1

t Dt −
M∑
j=1

Wj,tMj,t

s.t. Zt

Kα
t

(
M∏
j=1

M
νj
j,t

)1−α
ζ

≥ P
− µS
µS−1

t Dt [MCt].

(IA.16)

In addition to market power on the output market, with markup µS, the firm’s problem

features returns to scale ζ with respect to an aggregate of capital inputs Kt and variable

inputs. We assume that:

ζ ≤ µS,
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so that the maximization problem has a unique interior solution. In general, we will be

interested in cases where ζ ≤ 1, so that there are decreasing returns to scale, but constant or

increasing returns are possible so long as the markup µS is sufficiently high. The aggregate

of variable inputs, including labor, is given by:

Mt =
N∏
j=1

M
νj
j,t ,

where the Cobb-Douglas shares {νj}Mj=1 are assumed to sum up to 1. The parameter α there-

fore represents the Cobb-Douglas elasticity of substitution between capital and aggregated

variable inputs. The Lagrange multiplier MCt measures the marginal cost of gross output.

Additionally, note that Yt = P
− µS
µS−1

t Dt is gross output, and St = PtYt = P
− 1
µS−1

t Dt is total

revenue. Finally, Πt represents operating surplus (revenue minus variable costs):

Πt = St −
M∑
j=1

Wj,tMj,t.

LEMMA 3: After minimizing variable cost and optimally choosing the price, operating surplus

is given by:

Πt = A
1− 1

µ

t K
1
µ

t (IA.17)

where:

µ ≡ 1 +
χ− 1

α
≥ 1

χ ≡ µS
ζ

≥ 1
(IA.18)

and:

At ≡
(

χ

1− α

)− χ
χ−1
(

χ

1− α
− 1

)χ−(1−α)
χ−1

D
χ−ζ
χ−1

t W
− 1−α
χ−1

t Z
1

ζ(χ−1)

t

Wt ≡
M∏
j=1

(
Wj,t

νj

)νj (IA.19)

There are two main points to note about Lemma 3. First, Equation (IA.17) indicates

that the functional form for operating surplus as a function of capital Kt and exogenous

conditions At is the same as the one used in the balanced growth model of Section C. Thus,

the firm problem (IA.16) provides a microfoundation for the functional form assumption for
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operating surplus as a function of capital in that model. The exogenous process At can then

be interpreted as reflecting simultaneously the cost of intermediate inputs Wt, demand Dt,

and total factor productivity Zt.

Second, Equation (IA.18) gives a structural interpretation of the reduced-form rents pa-

rameter µ used in our model. It indicates that the reduced-form rents parameter µ increases

with markups µS, and decreases with the degree of returns to scale ζ and the Cobb-Douglas

elasticity of capital with respect to variable inputs, α. Fixing α, rents will therefore be ele-

vated either when markups are substantially above 1, or when returns to scale are substantially

below 1, or both.

IA.B.3.2. Partial identification of pure and quasi-rents

Perhaps most importantly, Equation (IA.18) indicates that the reduced-form rents param-

eter µ does not vary independently with markups µS and returns to scale ζ. Instead, it is

only a function of their ratio χ = µS
ζ

. As a result, separating pure rents µS from quasi-rents

ζ is challenging, and generally requires a direct estimate of the production function. The

following Lemma formalizes this point.

LEMMA 4: Given data on the ratios of variable input costs, labor costs, capital costs, value

added and operating surplus to either sales, value added, or operating surplus, the markup µS

and the degree of returns to scale ζ cannot be separately identified.

Without loss of generality, we assume that the first variable input is labor. In that case,

value added in the model is given by:

VAt = St − (WtMt −W1,tM1,t) = Πt +W1,tM1,t.

Table V reports the ratios of variable input costs, labor costs, capital costs, value added and

operating surplus to either sales, value added, or operating surplus in the model above. It

also reports the expressions for rents as a fraction of sales, value added or operating surplus,

where rents are defined as:

Ret = Πt − (R1,tK1,t +R2,tK2,t).
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In order to pin down competitive payments to capital, we assume that the firm solves the

same dynamic problem as in the balanced growth model of Section A. In this case, since

competitive payments to capital, R1,tK1,t +R2,tK2,t, satisfy:

R1,tK1,t +R2,tK2,t =
1

µ
Πt =

α

χ− (1− α)
Πt,

Table V uses this expression to solve for the different ratios in Lemma 4 as a function of the

structural parameters α, ζ and µS.

The main point of Table V is that none of the 18 ratios depend independently on µS

and ζ; instead, they only depend on their ratio, the reduced-form parameter χ = µS
ζ

. Thus,

manipulation of these ratios cannot be used to separately identify µS and ζ.

Lemma 4 is useful because a number of the approaches that have been used in the literature

to estimate markups rely partially or entirely on these ratios. The implication of Lemma 4 is

then that these approaches do not in fact identify markups, but rather, some function of the

reduced-form parameter χ, which depends on both markups and decreasing returns. (Put

differently, these approaches only identify markups under the assumption of constant returns

to scale, ζ = 1). We next give three examples of such approaches.

Example 1: the surplus ratio approach The surplus ratio approach is used by Baqaee

and Farhi (2020). It consists of using the ratio of operating surplus to sales, xΠ = Πt/St, net

of the ratio of capital costs to sales, xK = (RtK1,t + RtK2,t)/St, to estimate markups. The

results of Table V imply that, in our balanced growth model,

xΠ − xK =

(
1− 1− α

χ

)
−
(
α

χ

)
=
χ− 1

χ
.

Thus, this approach recovers an estimate of χ, but not of µS and ζ separately.

Example 2: the user cost approach The user cost approach is used by Gutiérrez and

Philippon (2017). It consists of computing an implied markup µ̂ by inverting relationship:

Πt

Kt

= Rt +

(
1− 1

µ̂

)
St
Kt

,
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where Kt denotes total capital input. In our model, interpreting Rt as Rt = R1,tK1,t/Kt +

R2,tK2,t/Kt, we can rewrite this relationship as:

1

νK
= 1 +

(
1− 1

µ̂

)
1

sK
,

where:

νK =
R1,tK1,t +R2,tK2,t

Πt

and sK =
R1,tK1,t +R2,tK2,t

St

are the ratios of competitive payments to capital to either operating surplus, or sales. How-

ever, manipulation of the results of Table V shows that:

1

νK
= 1 +

(
1− 1

χ

)
1

sK
.

In other words, the “implied markup” µ̂ derived in the user cost approach recovers, from the

standpoint of our model, the reduced form parameter χ.5

Example 3: the cost share approach The cost share approach is used by De Loecker

et al. (2020). It consists of estimating the markup using the ratio xM = (WtMt)/St of variable

costs to sales. Using the results of Table V, this ratio is given by:

xM =
1− α
χ

.

Thus, alone, this ratio does not separately identify α, µS, and χ. As a result, De Loecker

et al. (2020) estimate, separately, the elasticity of gross output with respect to variable costs.

In our model, this elasticity is given by:

η = (1− α)ζ.

5Equivalently, the expression of the user cost relationship in the context of a model that allows for

decreasing returns is:

Πt

Kt
= Rt +

(
1− 1

χ

)
St

Kt
= Rt +

(
1− ζ

µS

)
St

Kt
.
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One can then recover the markup µ by forming:

η

xM
=
µS(1− α)ζ

(1− α)ζ
= µS.

This method therefore cannot identify the markup using only the variable cost share; a

separate estimate of (1− α)ζ (that is, a direct estimate of the production function) must be

constructed first.

We conclude by noting another consequence of the results of Table V.

LEMMA 5 (The share of rents): The share of pure rents in sales, value added, and operating

surplus are given by:

xRe =
Ret
St

=
χ− 1

χ
,

sRe =
Ret
VAt

=
χ− 1

χ− (1− α)(1− ν1)
= (1− sL)

µ− 1

µ
,

νRe =
Ret
Πt

=
χ− 1

χ− (1− α)
=
µ− 1

µ
,

where sL = (W1,tM1,t)/VAt is the labor share of value added.

Thus, the reduced-form parameter χ should be interpreted as controlling the size of rents

relative to sales, whereas the reduced-form parameter µ controls the size of rents relative to

operating surplus. Again, rents shares do not depend on the separate values of µS and ζ, but

only on their ratio. This implies that the size of rents relative to sales, operating surplus, or

value added does not depend on markups µS or decreasing returns ζ independently, but only

on their ratio.6

6Additionally, this lemma indicates is that knowledge of the reduced-form parameter µ, along with a

measure of the labor share, is sufficient to compute the implied ratio of rents to value added, which is a

commonly used measure of the size of rents (see, e.g., Karabarbounis and Neiman 2019). We use this result

in order to map our estimates of µ to a value for the share of rents as a fraction of value added.
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IA.B.3.3. Proofs for results on market power and decreasing returns

Proof of Lemma 3. To make notation lighter, we rewrite the firm problem (1) as:

Πt = max
{Mj,t}Mj=1,Pt

P
− 1
µS−1

t Dt −
M∑
j=1

Wj,tMj,t

s.t. Xt

(
N∏
j=1

M
νj
j,t

)γ

≥ P
− µS
µS−1

t Dt [MCt]

where:

γ ≡ (1− α)ζ, Xt ≡ ZtK
αζ
t .

We solve this problem in two steps. The cost minimization problem is:

V Ct = min
{Mj,t}Mj=1

M∑
j=1

Wj,tMj,t,

s.t. Xt

(
N∏
j=1

M
νj
j,t

)γ

≥ Yt [M̃Ct].

Define:

Wt ≡
M∏
j=1

(
Wj,t

νj

)νj
, Mt ≡

M∏
j=1

M
νj
j,t .

Then solution to the cost minimization problem is:

Wj,tMj,t

WtMt

= νj,

and:

V Ct = WtMt = Wt

(
Yt
Xt

) 1
γ

= γM̃CtYt,

M̃Ct =
Wt

γYt

(
Yt
Xt

) 1
γ

=
∂V Ct
∂Yt

=
V Ct
γYt

,

Mt =

(
Yt
Xt

) 1
γ

.

Substituting the expression for total variable cost, the price and quantity choice problem is:

Πt = max
Pt,Yt

P
− 1
µS−1

t Dt −Wt

(
Yt
Xt

) 1
γ

,

s.t. Yt ≥ P
− µS
µS−1

t Dt [MCt].
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The first-order conditions are

Pt = µSMCt and MCt =
Wt

γYt

(
Yt
Xt

) 1
γ

so that M̃Ct = MCt, and:

Yt =

(
µS
γ

)− γµS
γ(µS−1)+(1−γ)µS

D
γ(µS−1)

γ(µS−1)+(1−γ)µS
t W

− γµS
γ(µS−1)+(1−γ)µS

t X
µS

γ(µS−1)+(1−γ)µS
t .

We can use the solution to the cost minimization problem to obtain:

V Ct =

(
µS
γ

)− µS
γ(µS−1)+(1−γ)µS

D
µS−1

γ(µS−1)+(1−γ)µS
t W

− γ
γ(µS−1)+(1−γ)µS

t X
1

γ(µS−1)+(1−γ)µS
t .

Moreover, profits are given by:

Πt =

(
µS
γ
− 1

)
V Ct,

so that:

Πt =

(
µS
γ
− 1

)(
µS
γ

)− µS
γ(µS−1)+(1−γ)µS

D
µS−1

γ(µS−1)+(1−γ)µS
t W

− γ
γ(µS−1)+(1−γ)µS

t X
1

γ(µS−1)+(1−γ)µS
t .

Using the definitions of γ and Xt, we can write this as:

Πt = A
1− 1

µ

t K
1
µ

t ,

µ ≡ 1 +
µS/ζ − 1

α
,

At =

((
µS

(1− α)ζ
− 1

)(
µS

(1− α)ζ

)− µS
µS−(1−α)ζ

D
µS−1

µS−(1−α)ζ
t W

− (1−α)ζ
µS−(1−α)ζ

t Z
1

µS−(1−α)ζ
t

)µS−(1−α)ζ
µS−ζ

.

Substituting χ =
µS
ζ

in these expressions gives the results of Lemma 3.

19



IA.B.4. Heterogeneous rents parameters

IA.B.4.1. Model and assumptions

The model of the firm is a generalization of the baseline model. The firm solves:

V c
t (Kt) = max

Kt+1

Π̃t(Kt)− Φ̃t (Kt,Kt+1) + Et
[
Mt,t+1V

c
t+1 (Kt+1)

]
(IA.20)

where V c
t (.) is the value of the firm including distributions.

We make the same assumptions regarding adjustment costs as in the baseline model.

Different from the baseline model, we replace the two assumptions 1-2 by the following as-

sumption.

ASSUMPTION 1: There exist real numbers {µn}Nn=1, µn ≥ 1 ∀n = 1, ..., N , such that the

function Π̃t satisfies:

∀Kt = {Kn,t}Nn=1 , Π̃t (Kt) =
N∑
n=1

µnΠ̃n,t (Kt)Kn,t, (IA.21)

where Πn,t is the marginal revenue product of capital of type n, i.e. Πn,t ≡ ∂Πt
∂Kn,t

.

Under our baseline assumptions, the revenue function satisfies:

∀Kt = {Kn,t}Nn=1 , Π̃t = µ
N∑
n=1

Π̃n,tKn,t.

Assumption (1) thus broadens our baseline assumptions, but allowing heterogeneity in the

wedge between marginal and average revenue for each type of capital. A fairly general func-

tional form that satisfies Assumption 1 is:

Π̃t (Kt) = Gt

({
Y

(n)
t (Kn,t)

}N
n=1

)
, where :

Gt is homogeneous of degree
1

µ
, µ ≥ 1

∀ n = 1, ..., N, Y
(n)
t is homogeneous of degree

1

µ̃n
, µ̃n ≥ 1

(IA.22)
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In this case, it is easy to check that the rents parameters {µn}Nn=1 are given by:

∀ n = 1, ..., N, µn = µ× µ̃n. (IA.23)

Our baseline model is a particular case of the functional form (IA.22), with G (Kt) ≡

Πt (Ft(Kt)), and Y
(n)
t (Kn,t) = Kn,t. In this case, µ̃n = 1 for all n = 1, ..., N , so that µn = µ,

that is, rents are the same across capital types. One concrete example of a function satisfying

equation (IA.22) is:

Π̃t (Kt) = A
1− 1

µ

t

(
N∑
n=1

ηn

(
A

1− 1
µ̃n

n,t K
1
µ̃n
n,t

)ρ) 1
µρ

. (IA.24)

Heuristically, this aggregator can be described as follows. Production of final goods in the

firm takes place in two stages. In the first stage, each type of capital is used (potentially in

conjunction with flexible labor, but separately from other capital types) to produce interme-

diate varieties. In the second stage, intermediate varieties are aggregated into a final good. In

the first stage (intermediate input production), the firm has decreasing returns with respect

to each type of capital: intermediate output is Y
(n)
t = (An,t)

1− 1
µnK

1
µn
n,t , where µn indexing

the strength of the decreasing returns for each capital type n. In the second stage (aggrega-

tion), the firm has monopoly power in the consumer goods market. Revenue is then given by

A
1− 1

µ

t

(∑N
n=1 ηnY

ρ
n,t

) 1
ρµ

, where µ governs the firm’s market power in final goods markets, and

ρ the substitutability between intermediates.

IA.B.4.2. The investment gap with heterogeneous rents

RESULT 1: Firm value can be written as:

V e
t =

N∑
n=1

qn,tKn,t+1 +
N∑
n=1

(µn − 1)
∑
k≥1

Et
[
Mt,t+kΠ̃n,t+kKn,t+k

]
, (IA.25)
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and the investment gap for each capital type can be written as:

Qn,t − qn,t = (µn − 1)
∑
k≥1

Et
[
Mt,t+kΠ̃n,t+k(1 + gm,t+1,t+k)

]
(IA.26)

+
N∑
m=1
m 6=n

qm,tSm,n,t+1 (IA.27)

+
N∑
m=1
m 6=n

(µm − 1)
∑
k≥1

Et
[
Mt,t+kΠ̃m,t+k(1 + gm,t+1,t+k)

]
× Sm,n,t+1, (IA.28)

where 1 + gn,t+1,t+k ≡
Kn,t+k

Kn,t+1

, and Sm,n,t+1 ≡
Kn,t+1

Km,t+1

.

Proof. Following the same steps as in proof for the baseline model, we have:

V e
t −

N∑
n=1

qn,tKn,t+1 =
N∑
n=1

∑
k≥1

Et
[
Mt,t+k

{
Π̃t − Π̃n,t+kKn,t+k

}]

=
N∑
n=1

∑
k≥1

Et
[
Mt,t+k(µn − 1)Π̃n,t+kKn,t+k

]

=
N∑
n=1

(µn − 1)
∑
k≥1

Et
[
Mt,t+kΠ̃n,t+kKn,t+k

]
.

The decomposition of the investment gap follows from this expression.

The interpretation of the investment gap decomposition is the same as for our base-

line model. The terms (µn − 1)
∑

k≥1 Et
[
Mt,t+kΠ̃n,t+kKn,t+k

]
represent the gap between the

average and marginal revenue products of capital of type n, and therefore capture rents at-

tributable to capital of type n. Rents remain additively separable across capital types, as in

the baseline decomposition. The main difference with our baseline decomposition is that the

size of rents (per unit of marginal revenue product) can now differ between capital types.

IA.B.4.3. Analytical expression in balanced growth

We next given an analytical solution for a balanced growth version of the model above.

Our definition of balanced growth is the same as in our baseline analysis, except that we also

22



assume that the function Π̃t is given by Equation (IA.24). In this case, we have the following

result, of which Result (5) is a particular case.

RESULT 2: Let n = 1 denote physical capital. Along the balanced growth path, the physical

investment gap is given by:

Q1 − q1 =
∑
m≥2

qmSm +
(µ1 − 1)R1

r − g
+
∑
m≥2

(µm − 1)Rm

r − g
× Sm, (IA.29)

where:

Rn = (r − g)Φ′n(1 + g) + Φn(1 + g), n = 1, ..., N.

Proof. Along the balanced growth path, the necessary first-order conditions, for capital of

type n, are given by:

Φ′n,t = qn,t,

qn,t =
1

1 + r

(
Π̃n,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

)
.

(IA.30)

We can write these conditions as:

(1 + r)Φ′n (1 + gn,t) = Π̃n,t+1 − Φn (1 + gn,t+1) + Φ′n (1 + gn,t+1) (1 + gn,t+1),

where gn,t ≡ Kn,t+1

Kn,t
− 1.

We next guess and verify that gn,t = g for n = 1, ..., N is a solution. Substituting into the

condition above, and re-arranging, we obtain:

Rn ≡ (r − g)Φ′n (1 + g) + Φn (1 + g) = Π̃n,t+1.

Moreover, using the functional form (IA.24):

Π̃n,t+1 =
ηn
µµ̃n

A
1− 1

µ

t+1 K
1
µ
−ρ

t+1 A
(1− 1

µ̃n
)ρ

n,t K
ρ
µn
−1

n,t , n = 1, ..., N.
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Define the following variables detrended variables:

kn,t =
Kn,t

An,t
, αn =

An,t
At

, n = 1, ..., N

where we have used the fact that An,t and At grow at the same rate. With these definitions,

we can write the system of first-order conditions as:

Rn =
ηn
µµ̃n

H
(
{kn,t}Nn=1

)−( 1
µ
−1)

I
(
{kn,t}Nn=1

)1−ρ
k
−(1− 1

µ̃n
)ρ

n,t (IA.31)

where the functions H(.) and I(.) are given by:

H({kn,t}Nn=1) ≡

(
N∑
n=1

ηn

(
αnk

1
µ̃n
n,t

)ρ) 1
ρ

=
Kt

At
,

I({kn,t}Nn=1) ≡

(
N∑
n=1

ηn

(
k

1
µ̃n
−1

n,t

)ρ) 1
ρ

=
Kt

Kn,t

.

The system (IA.31) consists of N equations in N unknowns, {kn,t}Nn=1. We assume that

the solution to this system exists and is unique and given by {kn}Nn=1.7 Since none of the

parameters in this system of equation is time-varying, we must have kn,t = kn for all n. Given

that each of the An,t grows at rate g, this confirms the guess gn,t = g. This also implies that

the ratios Sn,1,t = Kn,t/K1,t are constant along the balanced growth path. Constant shares,

constant growth, and the constant discount rate, along with the relationship Πn,t+1 = Rn,

then imply the decomposition (IA.29).

IA.B.5. Relationship to the production-based asset pricing literature

IA.B.5.1. Definitions

Recall that our model of the firm is:

V c
t (Kt) = max

Kt+1

Πt(Kt)− Φ̃t (Kt,Kt+1) + Et
[
Mt,t+1V

c
t+1 (Kt+1)

]
s.t. Kt = Ft (Kt) ,

(IA.32)

7We have not been able to establish existence and unicity formally, except in the case N = 2.
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where Ft is homogeneous of degree 1, and Πt is homogeneous of degree µ, and:

Φ̃t (Kt,Kt+1) =
N∑
n=1

Φn,t

(
Kn,t+1

Kn,t

)
Kn,t.

Assuming that the firm is equity-financed, realized stock returns are defined as:

RE,t+1 ≡
V c
t+1

V e
t

=
Πt+1 −

∑N
n=1 Φn,t+1Kn,t+1 + V e

t+1

V e
t

, V e
t ≡ Et

[
Mt,t+1V

c
t+1 (Kt+1)

]
.

Stock returns are defined for the firm as a whole. We define returns on investment, for each

type of capital n = 1, ..., N , as:

Rn,I,t+1 ≡
Πn,t+1 − Φn,t+1 + Kn,t+2

Kn,t+1
Φ′n,t+1

Φ′n,t
.

This definition is the same as in Cochrane (1991), Equation (12). The denominator is the cost

of adding an incremental unit to Kn,t+1, which, given our assumption about the structure of

investment costs, is simply Φ′n,t. The numerator is the marginal return. This marginal return

is the sum of two terms: incremental flow profits (the term Πn,t+1); and the net change in

investment costs associated with the incremental unit of Kn,t+1, assuming that the stock at

time t+ 2 and onward is unchanged (the term Kn,t+2

Kn,t+1
Φ′n,t+1 − Φn,t+1).8

IA.B.5.2. Asset pricing equations

Stock returns satisfy the fundamental asset pricing relationship:

1 = Et [Mt,t+1RE,t+1] . (IA.33)

Recall that the first-order conditions and the envelope conditions for the firm problem are:

Φ′n,t = qn,t,

∂V c
t+1

∂Kn,t+1

= Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

, n = 1, ..., N,
(IA.34)

8The mapping from the model of Cochrane (1991), equations (7)-(9), to the model in our paper is, in the

one-capital case, f(Kt, Lt, st) = Πt(Kt) and g(Kt, It) = KtΦ
−1
t (It/Kt).
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where qn,t ≡ Et
[
∂V c

t+1

∂Kn,t+1

]
=

∂V e
t

∂Kn,t+1

. Using the first-order condition qn,t = Φ′n,t, returns to

investment can be rewritten as:

Rn,I,t+1 ≡
Πn,t+1 − Φn,t+1 + Kn,t+2

Kn,t+1
qn,t+1

qn,t
.

Using the envelope condition, we then have, for each type of capital:

1 = Et [Mt,t+1Rn,I,t+1] . (IA.35)

IA.B.5.3. Relationship between stock returns and returns to investment

RESULT 3: Stock returns RE,t+1 and the returns to investment {Rn,I,t+1}Nn=1 satisfy:

RE,t+1 =
N∑
n=1

qn,t
Qn,t

Rn,I,t+1 + (µ− 1)
N∑
n=1

1

Qn,t

(∑
k≥1

Et+1 [Mt+1,t+k {Πn,t+k(1 + gn,t+1,t+k)}]

)
,

(IA.36)

where 1 + gn,t+1,t+k ≡
Kn,t+k

Kn,t+1

and Qn,t ≡
V e
t

Kn,t+1

. Moreover, for any capital type n,

RE,t+1 −Rn,I,t+1 =
1

Qn,t

{
− (Qn,t − qn,t)Rn,I,t+1

+ (µ− 1)
∑
k≥1

Et+1 [Mt+1,t+kΠn,t+k(1 + gm,t+1,t+k)]

+
N∑
m=1
m6=n

Sm,n,t+1qm,tRm,I,t+1

+ (µ− 1)
N∑
m=1
m6=n

Sm,n,t+1

∑
k≥1

Et+1 [Mt+1,t+kΠm,t+k(1 + gm,t+1,t+k)]
}
.

When N = 1 and µ = 1, so that Qt = qt, stock returns are equalized with investment returns:

∀t, RE,t+1 = RI,t+1.

The proof is reported below. The first part of this result gives a relationship between stock

returns, and an appropriately weighted average of investment returns. The weights are the
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ratio of marginal qn,t to average Qn,t for each type of capital. Note that in the definition of

the return to investment, the denominator is the marginal cost of investment, which is equal

to marginal q. Analogously, stock returns can be written, in terms of average Qn,t for each

type of capital, as:

RE,t+1 =
Πt+1/Kn,t+1 −

∑N
m=1 Φm,t+1Sm,n,t+1 + (Kn,t+2/Kn,t+1)Qn,t+1

Qn,t

,

which helps understand why the ratio qn,t/Qn,t is used to “weight” investment returns. Equa-

tion (IA.36) then says that the gap between stock returns and this weighted average of

investment returns is exactly equal to the present value of future rents. Moreover, as in our

analysis of investment gap, the present value of rents can be separated across capital types.9

Note that, even when there are no rents (µ = 1), stock returns are not necessarily equal to

the returns to investing in each capital type, since, as discussed in the main text, qn,t need not

equal Qn,t even when there are no rents. However, stock returns are equalized to a weighted

average of investment returns state by state, analogous to the results of Cochrane (1991) and

Cochrane (1996).

The second part of the result gives a decomposition of the gap between equity returns,

and returns to investment for each capital type RI,n,t+1. The intuition for the components of

this gap is analogous to the intuition for the components of the investment gap.

When there is only one type of capital and no rents (N = 1, µ = 1), the difference

between stock returns and investment returns is given by −(1−Qn,t/qn,t) = 0, since in that

case, average Q and marginal q are equal.

When there is only one type of capital, but the firm earns rents (N = 1, µ > 1), the

difference between stock returns and investment returns is given by:

RE,t+1 −
q1,t

Q1,t

R1,I,t+1 = Q−1
1,tNt+1.

In other words, the gap between stock and investment returns is higher, the larger the rents

Nt+1 that the firm earns.

9Note that using the two asset pricing conditions (IA.33) and (IA.35), Equation (IA.36) implies our main

firm value decomposition, Result 1 in the main text.
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When there are several types of capital, but the firm earns no rents (N > 1, µ = 1), the

difference between stock and investment returns can be written as:

RE,t+1 −Rn,I,t+1 = Q−1
n,t

(
−(Qn,t − qn,t)Rn,I,t+1 +

∑N
m=1
m6=n

Sm,n,t+1qm,tRm,I,t+1

)

=
N∑
m=1
m 6=n

qm,t
Qm,t

(Rm,I,t+1 −Rn,I,t+1),

where, to go from the first to the second line, we used the relationship between Qn,t and qn,t

derived in the main paper for the case N > 1 and µ =. In that case, as discussed above, stock

returns are equal to an appropriately weighted sum of investment returns; so an intuition for

the difference between stock returns and individual investment returns is that the gap will

be larger, for capital types n whose investment returns are low relative to other investment

types (and particularly relative to those with high marginal q relative to average Q).

Finally, in the general case N > 1, µ > 1, the gap between stock returns and investment

returns reflects a combination of three factors: the rents generated by capital of type n (anal-

ogous to the “traditional rents” in the investment gap decomposition); investment returns of

capital of type n relative to other capital types (analogous to the “omitted capital effect” in

the investment gap decomposition); and the interaction of the two, i.e. the effect of the rents

generated by omitted capital types.

Proof of Result 3. First, using the definition of equity returns, we have:

RE,t+1V
e
t = Πt+1 −

∑N
n=1 Φn,t+1

(
Kn,t+2

Kn,t+1

)
Kn,t+1 + V e

t+1

= Πt+1 −
∑N

n=1 Φn,t+1

(
Kn,t+2

Kn,t+1

)
Kn,t+1 + Et+1

[
Mt+1,t+2RE,t+2V

e
t+1

]
Therefore, assuming that the transversality condition limk→+∞ Et

[
Mt,t+kRE,t+kV

e
t+k

]
= 0

holds, we have that:

RE,t+1V
e
t =

∑
k≥1

Et+1

[
Mt+1,t+k

{
Πt+k −

N∑
n=1

Φn,t+1Kn,t+k

}]
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Using homogeneity of degree µ of the revenue function, we can rewrite this expression as:

RE,t+1 · V e
t =

N∑
n=1

∑
k≥1

Et+1 [Mt+1,t+k {µΠn,t+kKn,t+k − Φn,t+kKn,t+1}] .

Similarly, iterating forward the definition of investment returns, we obtain that, for each

n = 1, ..., N :

Rn,I,t+1 · (qn,tKn,t+1) =
∑
k≥1

Et+1 [Mt+1,t+k {Πn,t+kKn,t+k − Φn,t+1Kn,t+1}] ,

so that:

N∑
n=1

Rn,I,t+1 · (qn,tKn,t+1) =
N∑
n=1

∑
k≥1

Et+1 [Mt+1,t+k {Πn,t+kKn,t+k − Φn,t+1Kn,t+1}] .

Combining these two equations, we obtain:

RE,t+1 · V e
t =

N∑
n=1

Rn,I,t+1 · (qn,tKn,t+1) + (µ− 1)
N∑
n=1

∑
k≥1

Et+1 [Mt+1,t+kΠn,t+kKn,t+k] .

This establishes Equation (IA.36), and the rest of the result follows.

IA.B.5.4. Implications in balanced growth

We next briefly discuss the implications of the balanced growth model for the behavior of

stock returns and investment returns. In the balanced growth case, there is no uncertainty,

so the two asset pricing relationships collapse to:

RE,t+1 = 1 + r, ∀t,

Rn,I,t+1 = 1 + r, n = 1, 2, ∀t.

So, along the balanced growth path, stock returns and returns to investment in either physical

or intangible capital are equalized. This can also be see directly from the definition of the
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two returns. For stock returns:

RE,t+1 =
Πt+1 −

∑2
n=1 ΦnKn,t+1 + V e

t+1

V e
t

=
ROA1 − (Φ1 + Φ2) + (1 + g)Q1

Q1

=
ROA1 − (ι1 + Sι2)− (γ1 + γ2S)g2 + (1 + g)Q1

Q1

= r − g + (1 + g) = 1 + r,

where, to go from the first to the second line, we used the notation for key ratios that are

constant along the balanced growth path, to go from the second to the third line, we used

the relationship Φn = ιn + γng
2 + o(g) (implied by the functional form we use for adjustment

costs), and to go from the third to the fourth line, we used the expression for Q1 obtained in

the main text.

Likewise, for returns to investment in capital of type n = 1, 2:

Rn,I,t+1 =
Πn − Φn − (1 + g)qn

qn

=
Rn − Φn − (1 + g)qn

qn

=
r + δn + γnrg − Φn + (1 + g)qn

qn

=
(1 + γng)(r − g) + (1 + g)qn

qn
= 1 + r,

where we successively used the balanced growth path optimality condition Rn = Πn, the

balanced growth user cost definition Rn = r+ δn +γnrg = r− g+ ιn +γnrg, and the q-theory

condition qn = 1 + γng.
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IA.B.6. Financing frictions

IA.B.6.1. Overview of key results

In this section, we provide two key results, one for debt frictions and one for equity

frictions.

RESULT 4: Assume that shareholders can raise debt Bt+1, subject to a collateral constraint of

the form Bt+1 ≤ θK1,t+1. Define marginal qn,t as q1,t ≡ q
(E)
1,t +λtθ for n = 1 and qn,t ≡ q

(E)
n,t for

n = 2, ..., N , where q
(E)
n,t is the marginal value of an unit of capital to shareholders, and λt is

the Lagrange multiplier on the leverage constraint. Then, the decomposition of the enterprise

investment gap for capital n is the same as in Result 1.

This result states that a collateral constraint with respect to physical capital does not

change the expression for the investment gap, so long as one focuses on the enterprise in-

vestment gap, defined as the gap Qn,t − qn,t.10 The intuition is that because debt is risk-free,

there is no conflict between creditors and shareholders, and the investment policy chosen by

shareholders also maximizes total enterprise value.

RESULT 5: Assume that the flow value of dividends to shareholders is given by Ktf(dt),

where dt = Dt/Kt, Dt is revenue net of investment costs, and f satisfies f(0) = 0, f ′ > 0,

f ′(0) = 1, and f ′′ ≤ 0. Then, the investment gap has the same expression as in Result 1,

replacing the discount factor Mt,t+k with f ′(dt+k)Mt,t+k.

The function f(.) describes equity financing frictions in a reduced-form way: the fact that

f ′(dt) < 1 when dt > 0 could capture agency costs of free cash flows (Jensen and Meckling,

1976), while the fact that f ′(dt) > 1 when dt < 0 could capture costs of seasoned equity

offerings (Altınkılıç and Hansen, 2000).11 These frictions change the way in which shareholders

10Below, we show that, consistent with the prior literature, the investment gap for shareholders, that

is, the difference between the ratio of equity value to the stock of physical capital, and q
(E)
n,t , has a similar

expression as Result 1, with an additional, negative wedge, reflecting the fact that part of the marginal return

to investment, for shareholders, comes from the fact that it relaxes the borrowing constraint.

11We follow Hennessy et al. (2007), except that we allow for f ′(dt) < 1 when dt > 0. This makes equity

financing costs matter on the balanced growth path, where dt = d > 0.
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value future rents, but do not affect the three main elements of the decomposition.12

IA.B.6.2. Frictions to equity issuance or dividend distributions

General results The firm solves:

V c
t (Kt) = max

Kt+1

Ktft

(
Dt

Kt

)
+ Et

[
Mt,t+1V

c
t+1 (Kt+1)

]
s.t. Dt = Πt(Kt)− Φ̃t (Kt,Kt+1) ,

Kt = Ft (Kt) .

(IA.37)

The only difference with our baseline model is how dividend payments are valued. The flow

value of dividends is Ktft(Dt/Kt), instead of Dt in the baseline model. (The baseline model

is nested in this model, when ft(x) = x.)

ASSUMPTION 2 (Frictions to equity issuance or dividend distributions): The functions

{ft : R→ R} are increasing, concave, twice differentiable, and satisfy:

∀t, ft(0) = 0, f ′t(0) = 1.

The function ft(.) captures the equity issuance frictions. We require it to be smooth,

so that we can continue using a first-order approach. The concavity of ft(.) implies that

firms will prefer to smooth dividend distributions or equity issuances. The restriction that

f ′t(0) = 1 additionally implies that dividend distributions are (weakly) less valuable, at the

margin, than in the baseline model, while equity issuances are (weakly) more costly, at the

margin, than in the baseline model. These distortions could capture direct costs of equity

issuance (when dt < 0) or agency costs associated with free cash flow (when dt > 0).

12As discussed below, two definitions of marginal q are possible, depending on whether one normalizes

marginal q by f ′(dt) or not. Result 5 refers to an unadjusted marginal q; with the latter definition, the

investment gap has an additional wedge, which we characterize below.
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RESULT 6: Firm value can be written as:

V e
t =

N∑
n=1

qn,tKn,t+1 +
N∑
n=1

(µ− 1)
∑
k≥1

Et
[
Mt,t+kf

′
t+k(dt+k)Πn,t+kKn,t+k

]
= f ′(dt)

{
N∑
n=1

q
(a)
n,tKn,t+1 +

N∑
n=1

(µ− 1)
∑
k≥1

Et
[
M

(a)
t,t+kΠn,t+kKn,t+k

] }
(IA.38)

where qn,t ≡ Et
[
Mt,t+1

∂V
(e)
t+1

∂Kn,t+1

]
, M

(a)
t,t+k ≡

f ′t+k(dt+k)

f ′t(dt)
Mt,t+k, and q

(a)
n,t ≡

qn,t
f ′t(dt)

.The gap be-

tween Qn,t and qn,t is given by the same expression as in Result (1), replacing Mt,t+k with

f ′(dt+k)Mt,t+k. Moreover, denote Q
(a)
n,t ≡

Qn,t

f ′(dt)
. Then we have:

G
(a)
t = Q

(a)
n,t − q

(a)
n,t = (µ− 1)

∑
k≥1

Et
[
M

(a)
t,t+kΠn,t+k(1 + gn,t+1,t+k)

]

+
N∑
m=1
m 6=n

q
(a)
m,tSm,n,t+1

+ (µ− 1)
N∑
m=1
m 6=n

∑
k≥1

Et
[
M

(a)
t,t+kΠm,t+k(1 + gm,t+1,t+k)

]
× Sm,n,t+1,

and:

G
(u)
t = Qn,t − q(a)

n,t = −
(

1− f ′t(dt)
f ′t(dt)

)
Qn,t +G

(a)
t .

The proof is reported below.

When the investment gap is defined as Qn,t−qn,t, as in the baseline model, equity frictions

do not change the basic insights from that model. The friction primarily appears as mod-

ification to the discount factor, and thus affects the way future rents are valued. However,

an important difference with the baseline model is that qn,t is not a sufficient statistic for

investment. Indeed, the first-order condition for investment can be written as:

Φ′n,tf
′(dt) = qn,t.

The term f ′(dt), which can be thought of as the marginal rate of substitution between “inside”

cash and “outside” distributions, appears as a wedge between the marginal value of capital
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and the marginal cost of investment. As noted by other papers, this wedge changes the

expected relationship between investment and both average Q and marginal q, even in a

model without rents or intangibles. For instance, in a model with no intangibles and no

rents, and with quadratic adjustment costs, we have qt = Qt, but:

ιt = δ +
1

γ

(
qt

f ′(dt)
− 1

)

= δ +
1

γ

(
Qt

f ′(dt)
− 1

)
.

This creates an “investment gap” in the sense that ιt is lower than predicted by values of Qn,t

whenever dt < 0 (so that f ′(dt) > 1).

This suggests studying an alternative decomposition based on “adjusted” average q and

marginal Q, q
(a)
n,t ≡

qn,t
f ′t(dt)

and Q
(a)
n,t ≡

Qn,t

f ′(dt)
. The result above shows that the decomposition

of the investment gap between these two quantities has the same three components as in our

baseline analysis.

However, Q
(a)
n,t is not directly observable. The result therefore also reports the gap between

marginal q, q
(a)
n,t (the correct measure of the incentive to invest) and observable average Q,

Qn,t. In this case, the gap has an additional term, which is simply equal to Qn,t −Q(a)
n,t . This

difference is zero in the absence of equity issuance frictions, i.e. f ′t(dt) = 1.

Under this last definition, there is a bias in the level of the investment gap, which appears

even if there are no rents and no intangibles. In this case, we have:

Qn,t = f ′(dt)q
(a)
n,t .

When dt < 0, f ′(dt) > 1 and so Qn,t > q
(a)
n,t . In other words, there is a positive “investment

gap”. Intuitively, q
(a)
n,t is the marginal value of capital “inside” the firm (that is, expressed in

units of internal cash flows), whereas Qn,t is the average value of capital to “outsiders” (that

is, to shareholders). When the firm is issuing equity (dt > 0), outside liquidity is more costly

than inside liquidity, so average Qn,t is higher than marginal q; and conversely if dt < 0.

Proof. The first-order necessary condition and the envelope theorem, for each capital type,
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are:

f ′t (dt) Φ′n,t = qn,t,

∂V c
t+1

∂Kn,t+1

=
(
ft+1(dt+1)− dt+1f

′
t+1(dt+1)

)
Fn,t

+ f ′(dt+1)

(
Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

)
.

Multiplying the latter condition by Mt,t+1Kn,t+1, combining with the former condition, and

taking expectations at time t, we obtain:

qn,tKn,t+1 = Et
[
Mt,t+1

{(
ft+1(dt+1)− dt+1f

′
t+1(dt+1)

)
Fn,t+1Kn,t+1

+ f ′t+1(dt+1) (Πn,t+1Kn,t+1 − Φn,t+1Kn,t+1)
}]

+ Et [Mt,t+2qn,t+1Kn,t+2]

Assuming the transversality condition limk→+∞ Et [Mt,t+kqn,t+k−1Kn,t+k] = 0 holds for each

type of capital, we can iterate forward and sum across capital types to obtain:

N∑
n=1

qn,tKn,t+1 =
∑
k≥1

Et

[
Mt,t+k

{
ft+k(dt+k)Kt+k

+ f ′t+k(dt+k)

((
N∑
n=1

Πn,t+kKn,t+k − Φn,t+kKn,t+k

)
−Dt+k

)}] (IA.39)

where we used the homogeneity of degree 1 of the capital aggregator, which implies:

Kt+1 =
N∑
n=1

Fn,t+1Kn,t+1.

Likewise, since:

Πt = µ

N∑
n=1

Πn,t+1Kn,t+1,
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we have:

N∑
n=1

qn,tKn,t+1 =
∑
k≥1

Et

[
Mt,t+k

{
ft+k(dt+k)Kt+k

−(µ− 1)f ′t+k(dt+k)

(
N∑
n=1

Πn,t+kKn,t+k

)}]
=
∑
k≥1

Et [Mt,t+kft+k(dt+k)Kt+k]

−
N∑
n=1

∑
k≥1

Et
[
Mt,t+kf

′
t+k(dt+k)(µ− 1)Πn,t+kKn,t+k

]
(IA.40)

On the other hand, firm value excluding current distributions is given by:

V e
t =

∑
k≥1

Et [Mt,t+kft+k(dt+k)Kt+k] . (IA.41)

Taking the difference between Equations (IA.41) and (IA.40) gives the result. The expression

of the investment gap for the adjusted definitions of marginal q and average Q, q
(a)
n,t and Q

(a)
n,t ,

follows from dividing the second part of Result 6 by f ′t(dt), and likewise for the expression of

the investment gap between Qn,t and q
(a)
n,t .

Balanced growth We next give analytical expressions for the different definitions of the

investment gap above in the balanced growth version of the model. We make the same

assumptions as in the main text, and moreover, we assume that ft(dt) = f(dt) for all t ≥ 0.

RESULT 7: Let n = 1 denote physical capital. Along the balanced growth path, the adjusted

physical investment gap is given by:

Q
(a)
1 − q

(a)
1 =

∑
m≥2

q(a)
m Sm +

(µ− 1)R
(a)
1

r − g
+
∑
m≥2

(µ− 1)R
(a)
m

r − g
× Sm (IA.42)

where:

∀n = 1, ..., N, q
(a)
n = 1 + γng,

R̃n = r + δn + γnrg −
1− ε(d)

ε(d)
Fnd,

d > 0 is the dividend to capital ratio along the balanced growth path, and ε(d) ≡ df ′(d)
f(d)

.

The proof is reported below. The intuition for the expressions of the different terms
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in the decomposition is the same as in the baseline model. The main effect of the equity

frictions is to modify the relevant definition of user costs, which include an additional term:

−1− ε(d)

ε(d)
Fnd < 0. This term can be thought of as a “capital gains” expression: along the

balanced growth path, trend growth in total capital Kt increases the flow value of dividends,

Ktf(Dt/Kt), when Dt > 0.

Proof. Along the balanced growth path, the first-order conditions for each type of capital can

be written as:

f ′ (dt) Φ′n,t = qn,t,

(1 + r)qn,t = (f(dt+1)− dt+1f
′(dt+1))Fn,t+1

+ f ′(dt+1)

(
Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

)
,

which we can write as:

(1 + r)Φ′n (1 + gn,t) = (f(dt+1)− dt+1f
′(dt+1))Fn,t+1

+ f ′(dt+1) (Πn,t+1 − Φn (1 + gn,t+1) + Φ′n (1 + gn,t+1) (1 + gn,t+1)) ,

where gn,t ≡ Kn,t+1

Kn,t
− 1. We next guess and verify that gn,t = g for n = 1, ..., N is a solu-

tion. First, note that with this guess, because of the homogeneity of degree 1 of the capital

aggregator F , Kt is also growing at rate a. Therefore:

Dt = A
1−1/µ
t K

1/µ
t −

N∑
n=1

Φ

(
Kn,t+1

Kn,t

)
Kn,t

is also growing at rate g. Define the following detrended variables:

k ≡ Kt

At
, d ≡ Dt

Kt

, kn,t =
Kn,t

At
, n = 1, ..., N,

which are all constant under our guess. Substituting the guess into the first-order condition
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above, and re-arranging, we obtain:

(r − g)Φ′n (1 + g) + Φn (1 + g) =

(
f(d)

f ′(d)
− d
)
Fn,t+1 + Πn,t+1.

Neglecting terms of order o(g) and higher, we can rewrite this as:

r + δn + γnrg =

(
f(d)

f ′(d)
− d
)
Fn,t+1 + Πn,t+1 =

((
f(d)

f ′(d)
− d
)

+
1

µ

(
Kt+1

At+1

) 1
µ
−1
)
Fn,t+1.

(IA.43)

Given the homogeneity of degree 1 of the capital aggregator, we have:

Kt+1

At+1

=
F (K1,t+1, ..., Kn,t+1)

At+1

= F (k1, ..., kn). (IA.44)

and:

Fn,t+1 = Fn(K1,t+1, ..., Kn,t+1) = Fn(k1, ..., kn). (IA.45)

Thus, (IA.43) is a system of N equations in N unknowns, the {kn}Nn=1. We assume that it

has a unique solution {k1}Nn=1.13 Using this solution, we can verify that the guess Kn,t = knAt

indeed satisfies the necessary first-order conditions for each type of capital.

Note that, because f(.) is concave and f(0) = 0,

f(d)

f ′(d)
− d ≥ 0.

If the inequality holds strictly (that is, when there is a dividend smoothing motive), there is

no analytical solution to the system of equations (IA.43). Nevertheless, we can define:

R̃n = r + δn + γnrg −
(
f(d)

f ′(d)
− d
)
Fn;

we then have Πn = R̃n for each n = 1, ..., N , thus establishing the result.

13We can establish this formally for the case of a CES aggregator; otherwise, we have not been able to find

a general proof of existence and unicity.
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IA.B.6.3. Debt issuance with collateral limit

General results Shareholders solve:

Ec
t (Bt,Kt) = max

Kt+1

Dt + Et
[
Mt,t+1E

c
t+1 (Bt+1,Kt+1)

]
s.t. Dt = Πt(Kt)− Φ̃t (Kt,Kt+1) +Bt+1 − (1 + rb,t−1)Bt,

Kt = Ft (Kt) ,

Bt+1 ≤ θK1,t+1 [λt].

(IA.46)

Here, Et is the (cum-dividend) value of equity, Bt is the stock of debt outstanding, and rb,t is

the interest rate on debt, defined as:

rb,t−1 ≡ Et−1 [Mb,t−1,t]
−1 − 1,

where Mb,t,t+1 is the stochastic discount factor of debtholders. All debt is one-period. We

assume that debt is collateralized using K1,t+1; θ captures the collateral limit. In our ap-

plications, K1,t+1 will denote the stock of physical capital, so that the assumption that the

borrowing constraint only involves K1,t+1 captures the idea that physical assets are more

likely to be used as collateral in lending transactions.

The Lagrange multiplier λt capture the shadow value of relaxing the borrowing constraint

to equityholders. The first-order condition with respect to investment in each type of capital

n is given by:

qE1,t + λtθ = Φ′n

(
Kn,t+1

Kn,t

)
qEn,t = Φ′n

(
Kn,t+1

Kn,t

)
, n = 2, ..., N,

where:

qEn,t ≡

[
Mt,t+1

∂E
(c)
t+1

∂Kn,t+1

]
, n = 1, ..., N,

is the marginal value of a unit of debt to shareholders, or equity’s marginal q. Note, that,

for physical capital, equity’s marginal q is not a sufficient statistic for investment in physical

capital. This is because another marginal benefit of increasing investment in physical capital
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is that it relaxes the collateral constraint. Therefore, we also define the firm’s marginal q as:

q1,t ≡ q
(E)
1,t + λtθ,

qn,t ≡ q
(E)
n,t , n = 2, ..., N.

Given the first-order conditions above, the {qn,t}Nn=1 are sufficient statistics for investment in

each type of capital.

The first-order condition with respect to borrowing is:

λt = 1− Et

[
Mt,t+1

∂E
(c)
t+1

∂Bt+1

]

We make the following assumption about the borrowing constraint

ASSUMPTION 3 (Binding borrowing constraint): The stochastic discount factors Mb,t,t+1

and Mt,t+1 are such that the collateral constraint is always binding, that is:

∀t, λt > 0 and Bt+1 = θKt+1.

Our baseline model and this model will coincide whenever λt = 0∀t, a sufficient condition

for which is that debtholders and shareholders have the same discount factor. We assume that

the borrowing constraint is binding in order to deviate from the baseline model.14 Under this

assumption, combining the first-order condition for debt issuance with the envelope condition

for the stock of debt, we obtain:

λt = 1− (1 + rb,t)Et [Mt,t+1] ,

14In the balanced growth path, this assumption will hold as long as r > rb, where r is the discount rate of

equityholders and rb is the discount rate of debtholders. In general, the sufficient condition for the borrowing

constraint to be binding should be:

∀t ≥ 0, 1 + rb,t ≡ Et [Mb,t,t+1]
−1

< Et [Mt,t+1]
−1
,

though we do not have a formal proof.
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that is, the shadow value of an additional unit of debt is one minus the discounted interest

cost of borrowing. Thus, in this model, equityholders choose to borrow (despite frictionless

equity markets) because of the positive wedge between their discount rate and debtholders’

discount rate. The collateral constraint then limits their ability to do so.15

RESULT 8: Define total firm value as:

V
(e)
t = Et

[
Mt,t+1E

c
t+1

]
+ Et [Mb,t,t+1(1 + rb,t)Bt+1] = Ee

t +Bt+1.

Total firm value is given by the same expression as in the main text:

V
(e)
t =

N∑
n=1

qEn,tKn,t+1 + (µ− 1)
N∑
n=1

Et

[∑
k≥1

Mt,t+kΠn,t+kKn,t+k

]
+ λtBt+1

=
N∑
n=1

qn,tKn,t+1 + (µ− 1)
N∑
n=1

Et

[∑
k≥1

Mt,t+kΠn,t+kKn,t+k

] (IA.47)

The investment gap is given by the same expression as in the main text:

Gn,t = Qn,t − qn,t = (µ− 1)
∑
k≥1

Et [Mt,t+kΠn,t+k(1 + gn,t+1,t+k)]

+
N∑
m=1
m6=n

qm,tSm,n,t+1

+ (µ− 1)
N∑
m=1
m6=n

∑
k≥1

Et [Mt,t+kΠm,t+k(1 + gm,t+1,t+k)]× Sm,n,t+1.

The proof is reported below. In this model with a borrowing constraint, the same de-

composition of the investment gap hold as in our baseline model, where debt issuance is

unconstrained. The interpretation of the components of the investment gap is the same as in

that model.

A “shareholder” investment gap for physical capital can be defined as: QE
1,t − qE1,t =

15Note, in particular, that we assume unlimited liability on the part of the shareholders, that is, no option

to default if the value of equity falls below zero. This assumption will not bind along the balanced growth

path. In the general analysis, it helps us avoid having to deal with complications associated with pricing

default risk in debt contracts and describing the resolution of default.
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E
(e)
t /K1,t+1 − qE1,t. It satisfies QE

1,t − qE1,t = Q1,t − q1,t − (1 − λt)θ. The two coincide when

λt = 1 (in which case equity and debt financing are perfect substitutes) or when θ = 0 (in

which case the firm is all equity-financed).

However, though this is not immediately visible from the decomposition, the introduction

of a collateral constraint along with an incentive to use debt will change the quantitative

implications of the model. This is because in choosing how much to investment in physical

capital, shareholders take into account its beneficial effects on the borrowing constraint. This,

in turn, affects the user cost of physical capital. We return to this issue in our empirical

applications (Appendix IA.D.9).

Proof. In general, the necessary first-order conditions to the shareholder value maximization

problem are:

λt = 1 + Et

[
Mt,t+1

∂E
(e)
t+1

∂Bt+1

]
∂E

(e)
t+1

∂Bt+1

= −(1 + rb,t) +
∂λt+1

∂Bt+1

(θK1,t+2 − θBt+2)

Φ′1,t = Et

[
Mt,t+1

∂E
(e)
t+1

∂K1,t+1

]
+ λtθ

Φ′n,t = Et

[
Mt,t+1

∂E
(e)
t+1

∂Kn,t+1

]
, n = 2, ..., N

∂E
(e)
t+1

∂Kn,t+1

= Πn,t+1 − Φn,t+1 + Φ′n,t+1

Kn,t+2

Kn,t+1

+
∂λt+1

∂Kn,t+1

(θK1,t+2 − θBt+2)

When the borrowing constraint is binding, these conditions imply that:

qE1,t+1K1,t+1 = Et [Mt,t+1 (Π1,t+1K1,t+1 − Φ1,t+1K1,t+1)]

+θEt [Mt,t+1λt+1K1,t+2] + Et
[
Mt,t+1q

E
1,t+1K1,t+2

]
,

qEn,t+1Kn,t+1 = Et [Mt,t+1 (Πn,t+1Kn,t+1 − Φn,t+1Kn,t+1)] + Et
[
Mt,t+1q

E
n,t+1Kn,t+2

]
, n = 2, ..., N,

Combining these expressions, and assuming that the transversality conditions:

lim
k→+∞

Et
[
Mt,t+kq

E
n,t+kKn,t+k+1

]
= 0
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and:

lim
k→+∞

Et [Mt,t+kλt+kKn,t+k+1] = 0

hold for each type of capital, we obtain:

N∑
n=1

qEn,tKn,t+1 = Et

[∑
k≥1

N∑
n=1

Mt,t+k (Πn,t+kKn,t+k − Φn,t+kKn,t+k)

]

+ θEt

[∑
k≥1

Mt,t+kλt+kK1,t+k+1

]
.

Equity value is given by:

Ee
t = Et

[∑
k≥1

Mt,t+k

(
Πt+k −

N∑
n=1

Φn,t+kKn,t+k

)]

+ Et

[∑
k≥1

Mt,t+k (Bt+k+1 − (1 + rb,t+k−1)Bt+k)

]

The net present value of net proceeds from future debt issuances to the shareholders is given

by:

Et

[∑
k≥1

Mt,t+k (Bt+k+1 − (1 + rb,t+k−1)Bt+k)

]

=− Et [Mt,t+1(1 + rb,t)Bt+1]

+ Et

[∑
k≥1

Mt,t+k (1−Mt+k,t+k+1(1 + rb,t+k))Bt+k+1

]

=− Et [Mt,t+1(1 + rb,t)Bt+1] + θEt

[∑
k≥1

Mt,t+kλt+kK1,t+k+1

]

where, to go from the second to the third line, we used the law of conditional expectations,

the fact that Bt+k+1 = θK1,t+k+1 (because the borrowing constraint is assumed to bind), and

the first-order condition for borrowing when the borrowing constraint is binding:

λt+k = 1− Et+k [Mt+k,t+k+1(1 + rb,t+k)] .
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Therefore, total firm value is given by:

V
(e)
t = E

(e)
t +Bt+1

= Et

[∑
k≥1

Mt,t+k

(
Πt+k −

N∑
n=1

Φn,t+k

(
Kn,t+k+1

Kn,t+k

)
Kn,t+k

)]
+ θEt

[∑
k≥1

Mt,t+kλt+kKt+k+1

]

+ (1− Et [Mt,t+1(1 + rb,t)])Bt+1

= Et

[∑
k≥1

Mt,t+k

(
Πt+k −

N∑
n=1

Φn,t+k

(
Kn,t+k+1

Kn,t+k

)
Kn,t+k

)]
+ θEt

[∑
k≥1

Mt,t+kλt+kKt+k+1

]

+ λtBt+1

=
N∑
n=1

qEn,tKn,t+1 + (µ− 1)
N∑
n=1

Et

[∑
k≥1

Mt,t+kΠn,t+kKn,t+k

]
+ λtBt+1

=
N∑
n=1

qn,tKn,t+1 + (µ− 1)
N∑
n=1

Et

[∑
k≥1

Mt,t+kΠn,t+kKn,t+k

]

where, to go from the penultimate to the last line, we used the fact that qn,t = q
(E)
n,t for

n = 2, ..., N , and q1,t = qE1,t + λtθ. The investment gap decomposition reported in Result 8

then follows. Equity value is given by:

E
(e)
t = V

(e)
t −Bt+1

=
(
qE1,t − (1− λt)θ

)
K1,t+1 +

N∑
n=2

qEn,t+1Kn,t+1

+ (µ− 1)
N∑
n=1

Et

[∑
k≥1

Mt,t+kΠn,t+kKn,t+k

]
,

establishing the decomposition of the investment gap for shareholders.
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IA.C. Data sources and construction

IA.C.1. Sources for investment and profit rates for the NFCB sector

We use the following time series from NIPA, all for the non-financial corporate business sec-

tor (NFCB): NFCB gross value added (Y (BEA)) (FRED series A455RC1Q027SBEA), NFCB

compensation of employees (WN (BEA)) (FRED series A460RC1Q027SBEA), NFCB taxes

on production less subsidies (T (BEA)) (FRED series W325RC1Q027SBEA), NFCB transfers

(Tr(BEA)) (FRED series W325RC1Q027SBEA). The data are annual. We use them to com-

pute the surplus of the NFCB sector as:

Π(BEA) = Y (BEA) −WN (BEA) − T (BEA) − Tr(BEA)

and to compute the labor share of the NFCB sector as:

LS = WN (BEA)/(Y (BEA) − T (BEA) − Tr(BEA)).

We use the labor share only to translate our estimates of the model parameter governing

rents, µ, into the share of rents as a fraction of value added. Additionally, we obtain current

cost measures of the capital stock for the NFCB sector from the BEA fixed asset tables. We

extract K
(BEA)
struct , K

(BEA)
equip and K

(BEA)
intan , from BEA table 4.1; in particular, we define K

(BEA)
intan as

the stock of intellectual property products. We then define:

K
(BEA)
1 = K

(BEA)
struct +K

(BEA)
equip , K

(BEA)
2 = K

(BEA)
intan .

We use table 4.7 to obtain measures of current investment for the NFCB sector, and we define

I
(BEA)
1 and I

(BEA)
2 analogously to K

(BEA)
1 and K

(BEA)
2 . Note that all time series from tables

4.1 and 4.7 are expressed in current dollar values; we only use them in the computation of

ratios.
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IA.C.2. Computation of enterprise value for the NFCB sector

Next, we consider an alternative measure of the enterprise value of the NFCB sector, that

of Hall (2001). As mentioned in the main text, this measure subtracts all financial assets of

the NFCB sector from gross claims, instead of subtracting only liquid financial assets, as we

do in our baseline. The top panel of Figure 8 reports the time series for Q1 obtained this way

(details on data construction are below). It is lower than in our baseline, though it displays

approximately the same medium and long-run trends. The bottom panel of Appendix Figure

8 then reports the investment gap obtained using this measure of Q1.

The main difference with our baseline is in the overall level of the gap; it is about half

as large. As a result, implied rents are lower than in our baseline. For instance, without

adjustment costs, rents are 4.2% of value added when using this measure of Q1, as opposed to

7.7% in our baseline measurement exercise, and their cumulative increase from 1985 to 2015

is 5 p.p., as opposed to 6.2 p.p. in our baseline measurement exercise.16 Moreover, the direct

effect of intangibles becomes larger; and overall, intangibles account for more of the gap with

this measure of Q1 than in our baseline. Overall, results using this alternative measure of

the enterprise value of the NFCB sector suggest that intangibles play a larger role in the

investment gap.

Methodology In order to construct an estimate of Q1,t for the NFCB sector, we require

a time series for total firm value for the non-financial corporate business (NCFB) sector, Vt,

for the 1947-2017 period. We measure Vt by estimating the total market value of securities

outstanding from the NCFB sector. Specifically, we define:

Vt = MVEt +MVDt − Lt.

Here, MVEt is the market value of equity claims on the NFCB sector, MVDt is the market

value of other financial claims (including debt liabilities) on the NFCB sector, and Lt is the

book value of liquid financial assets owned by the NFCB sector.

We use measures of MVEt and Lt provided by the Flow of Funds. For MVEt, we use Flow

16With adjustment costs, the share of rents is 3.4% in 2015, and the 1985 to 2015 increase is 5.1 p.p.
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of Funds series LM103164103 (nonfinancial corporate business; corporate equities; liability;

Table L.103). This series is constructed by the Flow of Funds as the sum of the market value

of equities of publicly traded companies, plus an estimate of the market value of equities

of closely held firms, which is estimated from a variety of sources, including the Statistics

of Income from the IRS.17 For Lt, we use Flow of Funds series FL104001005 (Nonfinancial

corporate business; liquid assets, broad measure; Table L.103). This series is the sum of

the market values of municipal securities, commercial paper, deposits, Treasuries and agency

securities, repos, money market fund shares, and corporate equities held by the NFCB sector,

estimated from a variety of sources, including the Statistics of Income and the Quarterly

Financial Report.18

The main difficulty in constructing a series for Vt is to obtain an estimate of the market

value of other financial claims on the NFCB sector, MVDt. In order to estimate this quantity,

we extend the approach of Hall (2001) (whose data stops in 1999) to the 1947-2017 period.

Specifically, we estimate MVDt as:

MVDt = BVDt + (MVBt −BV Bt),

where BVDt is the book value of all non-equity claims on the NFCB sector, MVBt is an

estimate of the market value of bonds issued by the NFCB sector, and BV Bt is the book

value of bonds issued by the NFCB sector. This approach therefore only imputes a market

value for bonds issued by NFCB, as opposed to imputing a market value for all non-equity

claims on the NFCB.

For BVDt, we use Flow of Funds series FL104190005 (Nonfinancial corporate business; to-

tal liabilities; Table L.103).19 We define BV Bt as the sum of the book value of taxable bonds

(Flow of Funds series FL103163003; Nonfinancial corporate business; corporate bonds; liabil-

17See www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=LM103164103&t=L.103&suf=Q and

www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL103164123&t=.

18See www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL104001005&t=L.103&suf=Q.

19BV Bt includes debt securities, taxes payable, trade payables, miscellaneous liabilities, and foreign direct

investment. It does not include any estimate of the book value of equities. See www.federalreserve.gov/

apps/fof/SeriesAnalyzer.aspx?s=FL104190005&t=L.103&suf=Q for more details.
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ity; Table L.103), plus tax-exempt bonds (Flow of Funds series FL103162000; Nonfinancial

corporate business; municipal securities; liability; Table L.103).

We proceed as in Hall (2001) in order to compute MVDt. For taxable securities, we

assume a maturity at issuance of ten years. In each year, we compute gross issuance as

the sum of net issuance (obtained from the Transactions table, series FA103163003), plus

principal repayment from the 10-year-prior vintage. We then impute a coupon rate for this

new bond vintage equal to the yield on corporate bonds multiplied by total gross issuance.

Finally, in each year, we recalculate the market value of each bond vintage by discounting the

remaining principal and coupon payments on all outstanding vintages at the current bond

yield. We follow the same strategy for municipal securities.

For yields on taxable bonds, we use Moody’s Seasoned Corporate Baa bond yield (FRED

series BAA). These yields are based on securities with maturities 20 years and above, so we

subtract the gap between the 20-year and the 10-year Treasury yield (FRED series GS10 and

GS20). For non-taxable securities, we use the Bond Buyer Go 20-Bond Municipal Bond Index

(FRED series WSLB20).20

Comparison with Hall (2001) Appendix Figure 21 reports the resulting time series for

Vt (the black dotted line).21 The figure also reports two other estimates of Vt. The crossed

green line is the total market value of securities outstanding from the NFCB sector, V Hall
t ,

constructed by Hall (2001), and the solid blue line is an update of this time series to 2017.22

The series for V Hall
t is defined as:

V Hall
t = MVEt +MVDt − Ft = Vt − (Ft − Lt),

20When the data are missing, and before 1986, we use the time series provided in the replication files of

Hall (2001), available at web.stanford.edu/~rehall/SMCA_Data_Appendix.html. The WSLB20 series was

discontinued 2016m10, so we splice it with the yield on taxable securities for the remainder of the sample.

21The time series are estimated at the quarterly frequency; the annual time series used in the main analysis

are obtained by averaging the quarterly time series for each year.

22We obtained the original data (up to 1999) used in Hall (2001) from web.stanford.edu/~rehall/SMCA_

Data_Appendix.html. The replication code for our paper contains an extension to 2017 of Figures 2, 3, 4, 5,

8, 9, and 10 from Hall (2001).
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where MVEt and MVDt are defined as above, and Ft denotes total financial assets of the

NFCB sector (Flow of Funds series FL104090005; Nonfinancial corporate business; total

financial assets; from Table L.103).

In words, while Hall (2001) nets out all financial assets from estimates of the value of

claims on the NFCB in order to arrive at an estimate of the market value of non-financial

corporations, we only subtract those financial assets identified by the Flow of Funds as liquid.

Note that in the Flow of Funds, Ft ≥ Lt, and Lt is a subcomponent of Ft.

We choose to diverge from the Hall (2001) methodology in this respect two reasons. First,

the purpose of netting out financial claims is to obtain an estimate of net (as opposed to gross)

debt liabilities in the numerator of Tobin’s Q. Standard measures of net debt, however, typi-

cally net out cash and cash equivalents, not other financial securities that may not be readily

liquidated in order to honor debt commitments. Second, and more important, in the Flow

of Funds, the difference between Ft and Lt is series FL103090005, Miscellaneous Financial

Assets. The bulk of that series (Unidentified Miscellaneous Assets, series FL103090005) is a

residual, imputed by the Flow of Funds in order to reconcile firm-level financial assets totals

from the Statistics of Income and the Quarterly Financial Report, from totals obtained, at

the instrument-level, from other sources.23 So the gap between Ft and Lt is as likely to cap-

ture measurement error across different underlying data sources as it is to capture actual net

financial claims. As a result, in our baseline, we exclude from the imputation of net debt in

the computation of Tobin’s Q.

IA.C.3. Growth rates of capital stocks

We use table 4.2 to construct estimates of the real net growth rates of the stocks of

physical, intangible, and total capital. One difficulty is that the Fixed Assets tables do not

report a quantity index for physical capital, but only separate quantity indices for equipment

and for structures. We aggregate the growth rates in these quantity indices into a growth

23See www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL103093005&t=L.103&bc=L.103:

FL103090005&suf=Q.
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rate rate g1,t for physical capital following the BEA’s own methodology:

g1,t =

(
Kstruct,t

Kt

(1 + gstruct,t)
−1 +

Kequip,t

Kt

(1 + gequip,t)
−1

)−1

− 1.

Here, Kstruct,t is the current-cost net stock of non-residential structures (from Fixed assets

Table 4.1), gstruct,t is the growth rate in the chain-type quantity index for the net stock of

non-residential structures (Fixed assets Table 4.2), Kequip,t and gequip,t are similarly defined,

but for equipment, and Kt = Kstruct,t + Kequip,t is the current-cost total stock of physical

capital. For the growth rates in the quantity of total capital gt and intangible capital g2,t, we

directly use the growth rate of the quantity indices reported in Fixed Assets Table 4.2.

Appendix Figure 3 reports times series of these estimates.24 Growth rates in these quantity

indices approximately coincide for physical and total capital (they are 2.8% and 3.0% per year

on average, respectively), while the growth rate of the quantity index of intangible stock is

higher (5.6% per year, on average).

The bottom panel plots the difference in the growth rates of the physical and intangible

capital stock over time.25 In both cases, the difference between the two growth rates in

quantity indices is positive, on average. Thus, the balanced growth assumption that g1 =

g2 = g does not hold strictly in the data. However, the assumption seems be plausible

for certain sub-periods, such as the post-2000s, as well as the 1970-1980 period, when the

difference is substantially smaller.

IA.C.4. Estimates of average depreciation rates across capital types

We next describe how we construct estimates for the average rate of economic depreciation

of physical and intangible capital. In order to describe our approach, we briefly summarize

the methodology behind the BEA estimates of capital stocks.26 Throughout the paper, we

24For completeness, the graph also reports nominal time series for growth rates, though these are not used

in our analysis.

25The two lines refer to the difference obtained when growth rates are measured from stocks evaluated at

current cost (”nominal”), and when they are obtained from changes in real quantity indices (”real”).

26See Evans (2003) for a detailed description, as well as a list of the economic depreciation rates used by

the BEA in applying the perpetual inventory method.
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measure investment rates as:

ιt =
Ict
Kc
t−1

, (IA.48)

where Ict is current cost investment during year t, and Kc
t−1 is the current-cost net stock of

capital at the end of year t− 1, and c refers to equipment, structures, or intellectual property

products. We use the data provided in Fixed Assets tables 4.1 (for the net stocks at current

cost) and 4.7 (for the gross investment flows at current cost). For physical capital, we use

the sum of equipment and structures, and for intangible capital, we use intellectual property

products.

For a particular capital aggregate c (equipment, structures or intellectual property prod-

ucts), the BEA’s current-cost estimate of the net stock is constructed from the history of

gross investment flows and assumptions on depreciation rates, as follows. First, both current-

cost investment flows and current-cost net stocks are simple sums of flows and stocks at the

asset-type level:

Ict =
∑
j

Icj,t, Kj,t =
∑
j

Kc
j,t.

In this notation, asset types are indexed by j; for instance, for equipment, this comprises

automobiles, computers, machinery, etc. At the asset-type level, the net stock is defined as:

Kc
j,t = Pj,tK

r
j,t.

Here, Pj,t is a price index that is used to deflate investment in the construction of real stocks

(as described below), and Kr
j,t is a real-cost estimate of the net capital stock. The real-cost

estimate of the capital stock is computed using a perpetual inventory method. Specifically:

Kr
j,t =

∑
k≥0

Kr
j,t,t−k =

∑
k≥0

(1− νδj)(1− δj)k
Icj,t−k
Pj,t−k

. (IA.49)

The price index Pj,t is used to express current-cost gross investment in fixed dollars. Kr
j,t,t−k

represents the contribution of investment in year t − k to the net stock of capital of type

j at time t. This contribution depends on initial investment Icj,t−k/Pj,t−k, and economic

depreciation, δj, which is allowed to vary across asset types, but is fixed over time for particular

asset type. The contribution also depends on ν ∈ [0, 1], which captures when the investment
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is assumed to be placed in service (ν = 0 corresponds to the end of the year, and ν = 1

corresponds to the beginning of the year; the BEA uses ν = 1/2).

In order to gain some intuition on the implications of this methodology for the drivers of the

investment rate time series defined in Equation (IA.48), assume that, in the underlying data,

gross investment flows at current cost by asset type Icj,t were growing at the constant rate gnomj ,

while the price indices were growing at the constant rate πj. Then, given the methodology

described above for constructing net stocks, measured investment rates, as defined in Equation

(IA.48), would be constant, and given by:

ιcj,t ≡
Ict

Kc
j,t−1

=
1 + gnomj − (1− δj)(1 + πj)

1− νδj
≈ gj + δj,

where gj = gnomj − πj is the real growth rate of investment flows. Thus, measured investment

rates, even on average, would not be driven only by assumptions about depreciation rates,

δj, but also the growth rates of measured gross investment flows, gj, which are entirely

independent from δj.

We next describe how to construct an estimate of average economic depreciation from

the data provided in the aggregate Fixed Assets tables. We define our current-cost average

depreciation estimate as:

δct ≡
Dc
t

Kc
t−1 + νIct

, (IA.50)

where Dc
t is the estimate of current-cost depreciation reported in Fixed Assets table 4.4, and

Kc
t and Ict are defined as above. This data object is related to the economic depreciation rates

δj at the asset-type level as follows:

δct =
∑
j

wcj,tδj, wcj,t ≡
(Pj,t/Pj,t−1)Kc

j,t−1 + νIcj,t
Kc
t−1 + νIct

. (IA.51)

This expression says that δct is weighted average of the constant, asset-specific depreciation

rates, where the weights reflect the current cost value of the undepreciated stock of capital

in period t.27

27These weights do not exactly add up to 1. This is because the definition of the average depreciation rate

in Equation (IA.50) does not appropriately reflate the value of the current-cost stock of capital. Appropriately
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The reason why δct defined in this way is a weighted average of asset-level depreciation

rates is the following. First, in the BEA data, the current-cost estimate of depreciation for a

particular capital aggregate is defined as Dc
t =

∑
j D

c
j,t, where Dc

j,t = Pj,tD
r
j,t is a current-cost

estimate of depreciation during year t for asset type j, and where Dr
j,t is its real counterpart.

In turn, Dr
j,t is computed from gross investment and real net stock estimates, as:

Dr
j,t =

Icj,t
Pj,t
− (Kr

j,t −Kr
j,t−1).

In words, the real depreciation estimates Dr
j,t are constructed as residuals that satisfy the

law of motion for capital.28 However, these asset-level depreciation flows can be used to infer

depreciation rates. Using the perpetual inventory formula (IA.49), we have:

Kr
j,t = (1− νδj)

Icj,t
Pj,t

+ (1− δj)Kh
j,t−1 =⇒ δj =

Dr
j,t

Kr
j,t−1 + ν

Icj,t
Pj,t

.

Using this result, it is straightforward to see that Equation (IA.51) holds.29

reflating is difficult to do directly because the price indices Pj,t are not reported in Fixed Assets tables 4.1-4.7.

However, this only affects the interpretation of δct , not its value.

28Two additional points are worth making. First, as can be directly checked from the data in Fixed

Assets tables 4.1, 4.4 and 4.7, the aggregate current-cost time series do not satisfy the law of motion Dc
t =

Ict−(Kc
t−Kc

t−1). Second, in practice, the BEA uses a slightly different deflator for translating real depreciation

estimates into current cost estimates (the average of Pj,t over the year, instead of its end-of-period value);

this latter point complicates somewhat the expression for wc
j,t, but does not change its interpretation.

29As an alternative to δct , we can also define an average depreciation rate based on the historical cost

estimates reported in Tables 4.3 and 4.6, as follows:

δht ≡
Dh

t

Kh
t−1 + νIht

. (IA.52)

Here, Kh
t−1 and Dh

t are historical cost estimates of the net stock of capital and of depreciation, respectively.

These estimates are constructed by the BEA exactly as the current-cost estimates, but assuming that the

price index is Pj,t = 1 for all underlying asset types. In other words, these estimates do not account for

changes in the relative price of underlying assets over time. Following similar steps as above, one can show

that:

δht =
∑
j

wh
j,tδj , wj,t ≡

Kh
j,t−1 + νIhj,t
Kh

t−1 + νIht
, (IA.53)
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Appendix Figure 4 reports time-series for average depreciation rates δct , along with the

gross investment rates ιct = Ict /K
c
t−1 used in the paper. We report this separately for physical

capital (defined as the sum of equipment and structures) and intangibles (intellectual property

products), consistent with our approach in the paper.30 Note that underlying depreciation

rates assumed by the BEA at the asset type level (the δj) are constant. The small upward

trends in average depreciation rates for physical and intangible capital therefore reflect com-

positional changes in the underlying asset types, as opposed to changes in economic rates of

depreciation of granular assets types.

IA.C.5. Compustat data

Sample selection We use the annual version of the Compustat-CRSP merged files. We

apply the standard screens (indfmt=INDL, popsrc=D, consol=C, datafmt=STD). We keep

firm-year observations that satisfy the following criteria: fic=USA (domestically incorpo-

rated), 2-digit SIC code (first two digits of the variable sic) not equal to 49 (utilities), not

between 60 and 69 (finance and real estate), and not between 90 to 99 (public administration);

2-digit SIC code not missing; variable sale (sales) and at (assets) not missing; variables emp,

sale, at, act, lct, ppent, ppegt, che, and gdwl not negative. Finally, we drop any observation

which we can identify as an American Depository Institution (ADR). We use only data from

1974 onward (included), as the data prior to 1974 has incomplete coverage (a jump in the

number of firms in the sample occurs from 1973 to 1974).

Variable construction For each firm, we start by constructing six time series in lev-

els, {K1,t, I1,t, K2,t, I2,t,Πt, Vt}. For physical capital investment, we use capital expenditures

(capx) net of sales of property, plant and equipment (sppe); we measure the stock using gross

property, plant and equipment (ppegt), for reasons we discuss in Appendix IA.C.7. We con-

sider two definitions of intangibles: R&D capital, and organization capital. For R&D, we use

where the δj are the same as for current-cost estimates. We prefer using the current-cost version of δt because

our analysis relies on current-cost estimates of net stocks. However, the two time series δct and δht are very

close in trends and, for intangibles, in levels.

30For physical capital, following the logic above, we weigh the aggregate depreciation rate of equipment

and structures by their lagged shares of undepreciated net stocks.
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reported R&D expenditure (xrd), recoding missing values with 0.

We mesaure investment in organization capital as 30% of SG&A expenditures (variable

xsga) net of R&D investment. For the stock of both R&D and organization capital, we use

the capitalized values provided by Peters and Taylor (2017). We discuss below in more detail

the sources for the imputation of investment in organization capital.

For Πt, we use the Compustat variable oibdp. We add estimates of intangible investment

expenditures to actual measures of operating income in order to obtain an adjusted operating

surplus measure consistent with our model. For Vt, we use the sum of the market value of

common stock and the book value of debt, net of cash and liquid securities. We then take the

sum of these time series across firms either by year (when studying all publicly traded firms

jointly), or by year and sector (when constructing the sectoral investment gaps.) Finally,

we construct the growth rate of total capital at either the aggregate or sectoral level by

subtracting from the growth rate of K1,t +K2,t the deflator implicitly used in Section II, that

is, the difference between nominal and real growth rates of total non-residential fixed assets

for the NFCB sector.

Sectoral classification Appendix Tables I and II report the sectoral classification used in

the analysis of Section III. In order to be able to match the data to the BLS’s KLEMS data

for the period over which the latter are available, we use a NAICS-based classification that

maps to the BLS classification of sectors. We nevertheless aggregate the data up to sectors

that are similar to the Fama-French 5 subsectors, with the main difference being that we

exclude financial companies from our analysis.

Rate of imputation of investment in organization capital We follow Eisfeldt and

Papanikolaou (2014) and Peters and Taylor (2017) in choosing a rate of imputation of λ = 0.3

for SG&A (net of R&D expenditures) for our measure of investment in organization capital.

Peters and Taylor (2017) show that their main conclusions regarding the relationship between

investment and Q hold for values of λ ranging from 0.2 to 1.0. They also attempt to estimate

λ via maximum likelihood, allowing for heterogeneity across industries, and find values in

the neighborhood of 0.3, though they caution against using these estimates, since they rely

heavily on assuming perfect substitution between intangible and physical capital.
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In both Eisfeldt and Papanikolaou (2014) and Peters and Taylor (2017), the main source

for the imputation rate of λ = 0.3 is Hulten and Hao (2008). That paper uses data from

financial statements of a composite of six large US pharmaceutical companies, which report

expenditures on brand equity and organization capital. These expenditures account for 30%

of all SG&A spending in their sample.

More recently, Ewens et al. (2020) provide estimates of λ (and the implied values for the

organization capital stock) based, in part, from asset valuations of public firms that exit, either

by going private, being liquidated, or being acquired. Their average estimate (Table 5 of their

paper) is λ = 0.43, with values ranging from 0.24 (in Manufacturing) to 0.62 (in Healthcare).

Moreover, the ratios of total intangible (R&D plus organization capital) to physical capital

implied by their estimated values for λ are quantitatively similar to our estimates, in both

levels and trends (see their Figure 8(a)). Their estimates rely on a different structure than

the one we explore in this paper (specifically, they use an investment-Q model with no rents

and perfect substitutability between physical and intangible capital). While their estimates

are quantitatively close to the value of λ used in our paper and in Peters and Taylor (2017),

we nevertheless think that using these estimates would not be internally consistent, given

our approach in this paper. Their finding of higher values for λ in Healthcare and Tech, and

lower values in the Consumer and Manufacturing sector, would likely strengthen our point

on heterogeneity in the composition of the investment gap across sectors.

IA.C.6. Other data sources

We obtain the statutory corporate income tax rate form the Tax Policy Center.31 For

the cum- and ex-dividend returns to equity used to compute the PD ratio, Rc
E,t−1,t and

Re
E,t−1,t, we use returns from the CRSP file on daily returns on the S&P 500, downloaded

from WRDS.32 We compute cumulative annual cum- and ex-dividend returns by taking the

cumulative sum of the log of one plus daily returns over each year, and exponentiating end-

of-year values. As a measure of the risk-free rate, we use the average annual rate of return

31The specific series we use is the Top Tax Bracket series at https://www.taxpolicycenter.org/

statistics/corporate-top-tax-rate-and-bracket.

32We use the dsp500 file.
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on one-month Treasury bills, obtained from Kenneth French’s website.33 Finally, we use the

BLS multifactor productivity database in order to obtain measures of value added as well as

total factor productivity growth.34

IA.C.7. Robustness checks and comparisons across data sources

Residential assets Our baseline approach for the NFCB sector only includes non-

residential fixed assets. As a robustness check, we obtained residential fixed assets K
(BEA)
resid

as the difference between the sum of the three capital stocks above, and total fixed assets

of NFCB sector report in BEA fixed asset table 6.1, and likewise for investment. The top

panel of Figure 21 reports time series for the ratio Π(BEA)/K(BEA). The solid red and solid

orange line use Π(BEA) as the numerator, and for the total capital stock, either K = K
(BEA)
struct +

K
(BEA)
equip +K

(BEA)
intan (as in our baseline analysis), or K = K

(BEA)
struct +K

(BEA)
equip +K

(BEA)
intan +K

(BEA)
resid .

The two lines are almost identical. The stock of residential fixed assets in the NFCB sector

thus appears to be low relative to other types of fixed assets owned by the NFCB sector, and

so we abstract from it in our analysis.

Economy-wide vs. NFCB measures Finally, Figure 21 also compares our measures

of Π/K for the NFCB sector, with those reported by Farhi and Gourio (2018), who study

economy-wide trends, instead of the NFCB sector specifically. The rate of return on capital

measured by these authors is substantially lower than our measures of rates of return for the

NFCB sector (by about 5-7% throughout the sample.) Here, we briefly discuss why this is

the case, as it matters for inferences about the importance of rents. These authors compute

Π/K as:

Π/K =
[
(Y (BEA) −WN (BEA) − T (BEA) − Tr(BEA))/(Y (BEA) − T (BEA) − Tr(BEA))

]
× Y/K,

33Specifically, we use the time series for Rf available at https://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip.

34The BLS multifactor productivity, or KLEMS, database is available at https://www.bls.gov/mfp/

special_requests/klemscombinedbymeasure.xlsx.

57

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_CSV.zip
https://www.bls.gov/mfp/special_requests/klemscombinedbymeasure.xlsx
https://www.bls.gov/mfp/special_requests/klemscombinedbymeasure.xlsx


where Y is total nominal GDP (including other sectors than the NFCB) and K is the total

private capital stock (at replacement cost). This adjustment is made in order to maintain

comparability with other ratios in their analysis, which has a broader scope than the NFCB.

By contrast, our measures of Π/K are:

Π/K =
[
(Y (BEA) −WN (BEA) − T (BEA) − Tr(BEA))/(Y (BEA) − T (BEA) − Tr(BEA))

]
× (Y (BEA) − T (BEA) − Tr(BEA))/K(BEA).

Thus the differences between our measures of Π/K and the measures in Farhi and Gourio

(2018) must be due to differences in the ratio of value added to capital between the NFCB

sector and the economy as a whole. The bottom panel of Figure 21 indeed shows that the

NFCB sector has a substantially higher dollar of value added per dollar of capital at current

cost. The most accurate comparison is between the crossed blue line of the bottom panel,

and the orange solid line, which measures K for the NFCB sector as the sum of all types of

capital (residential, non-residential physical, and non-residential intangible): the value added

to capital ratio is approximately 10 percentage points higher in the NFCB sector versus the

economy as a whole.

Compustat nonfinancials vs. NFCB sector There are two potentially important dif-

ferences between the data used in Section II and the Compustat data. First, Compustat only

includes publicly traded corporations. There may be systematic differences in returns to cap-

ital and intangible intensity between privately held and publicly traded corporations. Second,

the measurement of the stock of physical capital differs across sources. We next discuss these

differences in more detail.

In Compustat, our baseline measure of surplus as the sum of ebitda across all observations

in our sample. (Missing observations are thus treated as zeros.) We use ebitda because it is the

financial statement measure most closely related to our model definition of Πt; it is a measure

of operating income before depreciation, and does not deduct costs of capital, or non-operating

income, which our model does not capture.35 The top right panel of Appendix Figure 24 report

35The inclusion of non-operating income makes little difference to the results.

58



the NFCB sector surplus measured in this manner in Compustat, and the measure from the

BEA tables. The two are highly correlated, but their levels differs substantially. This reflects

the fact that the BEA NFCB sector data also includes private firms. The surplus of public

firms (from Compustat) represents about two thirds of the total surplus of the NFCB sector

(from the BEA).

The main difficulty in the Compustat data is in computing estimates of the current-cost

total stock of physical capital. A natural definition would seem to be net property, plant

and equipment (variable ppent). However, measuring K1 for the NFCB sector in Compustat

leads to extremely elevated measures of Π/K1, as reported in the bottom right panel of

Appendix Figure 24. These measures are almost double the BEA-derived measures. This is

primarily because the aggregate value of ppent in Compustat is only about a third of physical

capital in the NFCB sector according to BEA data (top left panel of Appendix Figure 24).

The reason for this gap are unclear. One hypothesis is that the surplus of Compustat firms

includes income from foreign subsidiaries, and so could overestimate the true surplus of public

NFCB firms. Alternatively, it could be that private firms indeed have much lower rates of

return on physical capital than public firms do (though the gap would have to be very large,

given the relative importance of public firms in total surplus, as indicated in the top right

panel of Appendix Figure 24). The more likely reason is that the accounting treatment of

depreciation may lead the (balance sheet) net stock to underestimate the true current cost

stock of physical assets. The red line in the top left and bottom left panels of Appendix

Figure 24 instead report measures of asset returns using aggregate gross property, plant and

equipment at historical cost (deflated using the implicit deflator from the BEA fixed tables).

The bottom left panel shows that this estimate of K1 leads to values of Π/K1 that align

more closely (in levels) with those provided by the BEA data on the NFCB. In what follows,

in order to align our BEA and Compustat profitability moments as closely as possible, we

therefore use gross property, plant and equipment as our main measure of K1 in Compustat

data.

We measure (gross) investment in physical capital in Compustat using capital expenditures

(variable capx) minus sales of property, plant and equipment (variable sppe). Appendix Figure

22, top panel, shows that physical investment, computed in this manner, accounts for about
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two thirds of total physical investment in the BEA NFCB sector (I
(BEA)
1 , with closely related

cyclical movements. For investment rates (the bottom panel of Appendix Figure 22), the

data again suggest a much higher investment rate in Compustat when K1 is measured using

net book values, but investment rates are closer in levels when the capital stock is measured

using gross book values.

IA.D. Additional empirical results

IA.D.1. Heterogeneous growth rates across capital stocks

While the balanced growth model imposes the restriction g = g1 = g2, we can nevertheless

try to assess, heuristically, what the impact of having heterogeneous growth rates for the two

capital stocks would be on our baseline decomposition.

In order to do this, we construct an “approximate” decomposition of the investment gap.

This decomposition is the same as our baseline, except that when we map model and data,

we allow the growth rates that enter marginal q, as well as user costs, to differ. That is, given

the same data as in our baseline exercise, as well as growth rates g1 for physical capital and

g2 for intangible capital, we construct the following variables:

q̂1 ≡ 1 + γ1g1 (IA.54)

q̂2 ≡ 1 + γ2g2

r̂ − g ≡ ROA1 − (ι1 + Sι2)

Q1

− γ1g
2
1 + γ2g

2
2S

Q1

R̂1 ≡ r̂ − g + ι1 + γ1(r̂ − g + g)g1

R̂2 ≡ r̂ − g + ι2 + γ1(r̂ − g + g)g2

µ̂ ≡ ROA1

R̂1 + SR̂2

These definitions are analogous to those derived from the balanced growth model, except that

we replaced qi = 1 + γig by q̂i = 1 + γigi, i = 1, 2, and we also replaced any term of the form
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γig or γig
2 by γigi or γig

2
i , i = 1, 2 in user costs.

To the extent that g 6= g1 6= g2, the values of
{
r̂ − g, R̂1, R̂2, µ̂, q̂1, q̂2

}
defined above

will differ from the values for the variables {r − g,R1, R2, µ, q1, q2} computed in our baseline

approach using the same data.

It is straightforward to show that, as in our baseline decomposition, the hatted variables

defined above satisfy:

Q1 − q̂1 = q̂2S +
(µ− 1)R̂1

r̂ − g
+

(µ− 1)R̂2

r̂ − g
× S. (IA.55)

We can therefore compare the decomposition obtained when imposing g = g1 = g2 on the

data (consistent with the model’s predictions along the balanced growth path), and the more

general decomposition (IA.55), which allows for g 6= g1 6= g2 (but is not consistent with the

balanced growth restrictions imposed by the model).Note, importantly, that the decomposi-

tion (IA.55) is not structural (since it violates g1 = g2 = g), so that comparisons with our

baseline decomposition are only heuristic.

In order to measure g, g1 and g2, we then use the growth rate in the quantity indices for

the three capital stocks reported in the middle panel of Appendix Figure 3, consistent with

our measurement in the main paper.

Appendix figure 14 reports the results. The top panel is the baseline decomposition in

the main paper, and the bottom panel is the decomposition using heterogeneous growth

rates, as outlined above. The two are difficult to distinguish. Intuitively, heterogeneity in

the measurement of the growth rates that enter marginal q have similar effects as changing

adjustment costs across capital types. As we discuss in the main text, the effect of varying

capital adjustment costs on the decomposition is small; the result here is consistent with that

finding.

IA.D.2. Implications for the labor share

Consider the model with variable intermediate inputs, described in Appendix IA.B.3, and

assume that all intermediate inputs are labor (or equivalently, that the production function

is a value-added production function), and that returns to scale are constant. Then, using
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the results of Table V, the labor share of value added is given by:

LS ≡ WtLj,t
Pj,tYt

=
1− α
µS

.

Moreover, using Lemma 3, the link between our reduced-form rents parameter µ and LS is:

µS = α(µ− 1) + 1 = (1− µSLS)(µ− 1) + 1,

and so, solving for the markup µS:

µS =
µ

µLS + (1− LS)
.

However, this approach implicitly assumes that 1− α, the Cobb-Douglas exponent for labor

in the production function, is varying over time, at least to the extent that the labor share

varies. Specifically, our procedure also implies that 1−α = µLS/ (µLS + (1− LS)) . The top

panel of Appendix Figure 35 shows the implied value for 1− α in our baseline exercise. The

mean is approximately 0.72. Moreover, the implied value declines from 0.74 to 0.70 during

the 2000’s, along with the decline in LS.

An alternative approach is to fix the Cobb-Douglas labor exponent. In that case, we do

not require data on the labor share to obtain the valued-added markup µ̃ implied by our

estimate of the rents parameter µ; it can simply be obtained from µ̃ = α(µ−1)+1. The share

of rents in value added, s = 1 − 1/µ obtained with this approach, reported in the middle

panel of Appendix Figure 35, is very close to the share of rents of value added obtained in

our baseline approach.

Additionally, this approach produces an implied labor share that is given by LS = (1 −

α)/µ̃. The bottom panel of Appendix Figure 35 reports the path of this implied labor share,

and compares it to the data. The magnitude of the decline in the implied labor is similar to

the data, but the timing is somewhat different, because the rents parameter µ starts rising in

the mid-80’s, along with the rise in the investment gap, whereas the labor share only starts

declining in the late 2000’s.
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IA.D.3. No intangibles or no rents

IA.D.3.1. No intangibles

When the firm has no intangibles, the expression for the investment gap collapses to:

Q1,t − q1,t = (µ− 1)
∑
k≥1

Et [Mt,t+kΠ1,t+k(1 + g1,t+1,t+k)] (IA.56)

In other words, the investment gap is exactly the net present of future rents generated by

physical capital K1,t, as in Lindenberg and Ross (1981). In this case, the decomposition of

the investment gap in balanced growth is:

Q1 − q1 =
(µ− 1)R1

r − g
.

The variables entering the expression for the present value of rents can be constructed using

the same methodology as described in Section A, setting the ratio of intangible to physical

capital to S = 0 and the intangible investment rate to ι2 = 0.

Since by assumption, all of the investment gap is now accounted for by rents, we do not

report its decomposition in this case. Instead, in Appendix Figure 12, we report the implied

pure rents, expressed as a fraction of total value added, obtained using this approach. The

top panel reports the estimate of this share obtained when assuming that firms do not use

any intangibles in production. Ignoring intangibles, by 2015, rents account for about 14% of

value added; by contrast, in our baseline estimate with intangibles measured as R&D (also

reported in Figure 6), rents account for only about 8% of total value added.

The bottom panel of Figure 12 repeats this exercise, for the same sample of Compustat

non-financial firms studied in the first part of Section III. In this sample, assuming firms

have no intangible capital leads to an estimate of pure rents of 14% in 2015; including R&D

capital lowers this estimate of 10%. Additionally, including a fraction of capitalized SG&A

expenditures as a measure of organization capital further lowers estimates of pure rents to

approximately 6%.

In this case (as also for the NFCB sector in the late 1940s), estimates of pure rents can

be negative in the early 1980s. This reflects the combination of two effects: our estimates of
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Q are strictly lower than 1 for a few years around 1980; and, as mentioned in Section III,

estimates of the organization capital stock, while overall elevated, have relatively little trend

upward in the Compustat sample (by contrast with R&D capital).

IA.D.3.2. No rents

When the firm earns no rents (µ = 0), the decomposition of the investment gap collapses

to:

Q1,t − q1,t = q2,tSt, St ≡
K2,t

K1,t

.

Along the balanced growth path, the same expression holds, without the time subscripts.

One can invert this relationship in order to recover a value for S, the ratio of intangible to

physical capital:

S =
Q1 − q1

q2

=
Q1 − (1 + γ1g)

(1 + γ2g)
,

where g is the trend growth rate of the capital stock. Effectively, this amounts to backing out

an implied value of the intangible capital stock from observed values of Q1, which is possible

when there are no rents. This is the approach followed by Hall (2001).

Additionally, given a value for S, the same relationship as in Section A holds for r − g:

r − g =
ROA1 − (ι1 + Sι2)

Q1

− γ1 + γ2S

Q1

g2

=
ROA1 − (ι1 + Sι2)

Q1

− Q1 − (1 + S)

Q1

g

where, to go from the first to the second line, we used the expression for the investment gap

along the balanced growth path when µ = 1. From this expression, one can then obtain values

of user costs, R1 and R2.36 The implied Cobb-Douglas share of intangibles in production is

36Note that when there are strictly positive adjustment costs, γ1, γ2 > 0, this approach requires taking a

stance on the gross intangible investment rate ι2 and on the growth rate of the capital stock g. For g, in

Figure 8, we use the growth rate of the physical capital stock. There is some tension between assuming that

ι2, the intangible investment rate, is observed, and assuming that St = K2,t/K1,t is unobserved. In Figure

8, we assume that ι2 is given by the R&D investment rate, but results are not materially different if it is

assumed to be equal to 0 or, in the case of Compustat non-financial firms, to the total investment rate in

R&D and organization capital.
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then given by

η = 1− 1

1 +
R2

R1

S
.

Figure 8 reports implied estimates for S and η when we assume that µ = 1, that is, there

are no rents. The top two panels provide results from the NFCB sector as a whole, and the

bottom two panels provide results for Compustat non-financial firms.

The results show that assuming away rents will lead to high estimates of the importance

of intangible capital in production, relative to physical capital. For instance, among Com-

pustat firms, assuming no rents leads to an estimate of the ratio S of intangible to physical

capital of approximately 1.2 in 2015. By contrast, in Compustat data, the magnitude of S is

approximately 0.4 when including both R&D and organization capital (as indicated by the

bottom right panel of Figure 8). We note, however, that values of S close to 1 seem plausible

for some sectors, such as the Healthcare sector and the Consumer sector (for the latter, when

organization capital is included).

An additional drawback from this approach is that the implied time-series S exhibit

periods of large decline (in the 1970s, and after the burst of the dot-com bubble). This

reduction in the stock intangible capital (relative to the physical capital) is difficult to reconcile

with the fact that empirical measures of S have trended upward consistently throughout the

post-war period.

IA.D.4. Separating R&D from SG&A capital

Methodology With more than two types of capital, the decomposition of the physical

investment gap along the balanced growth path can be written as:

Q1 − q1 =
∑
m≥2

Smqm +
(µ− 1)R1

r − g
+
∑
m≥2

(µ− 1)RmSm
r − g

.

Additionally, we have:

(µ− 1)

(
R1 +

∑
m≥2

SmRm

)
= ROA1 −

(
R1 +

∑
m≥2

SmRm

)
. (IA.57)
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Multiplying the expression for the investment gap by r− g, using the expression above, along

with the fact that, neglecting terms of order o(g), for each n = 1, ..., N :

Rn = r − g + ιn + γnrg,

qn = 1 + γng,

we arrive at:

(r − g)Q1 = ROA1 −

(
R1 +

∑
m≥2

SmRm

)
−

(
γ1 +

∑
m>2

γmSm

)
g2,

or:

(r − g) =
ROA1 −

(
R1 +

∑
m≥2 SmRm

)
Q1

−
(
γ1 +

∑
m>2 γmSm

)
Q1

g2.

Given values for investment rates {ιn}Nn=1, relative capital stocks {Sm}Nm=2, adjustment costs

{γn}Nn=1, average Q1, the return to physical capital ROA1, and the growth rate of the total

capital stock g, the right-hand side of this expression can be constructed in the data, implying

a particular value for r − g. The values of user costs can then be obtained from Rn =

r − g + ιn + γnrg, and the value of µ is then given by Equation (IA.57). Along with the fact

that qn = 1 + γng, this is sufficient to construct all the elements in the decomposition of the

investment gap.

Results The bottom panel of Appendix Figure 6 reports the results of the generalized

decomposition of the physical investment gap when R&D capital and organization capital

SG&A are treated as different capital inputs:

Q1 − q1 = S2q2 + S3q3 +
(µ− 1)R1

r − g
+

(µ− 1)R2S2

r − g
+

(µ− 1)R3S3

r − g
,

where the number 2 indexes R&D capital, and the number 3 indexes organization capital.

For the adjustment cost to R&D capital, we use a value of γ2 = 12, as in the main text, while

for the adjustment cost to organization capital, we use the estimate of γ3 = 3.2 reported in

Belo et al. (2019) (Table 3) for the parameter governing the convexity of adjustment costs

to brand capital. This decomposition is quantitatively very similar to the decomposition in
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the middle panel (which takes the simple sum of organization and R&D capital), in that it

attributes approximately 40% of the physical investment gap after 2000 to the direct effect

of th R&D and intangible capital stocks, and approximately 30% to the rents they generate.

An additional insight from this graph is that rents account for a bigger fraction of the part

of the investment gap created by the R&D capital stock than they do for the organization

capital stock. This result is driven by the fact that user costs for R&D capital implied by the

decomposition, R2, are higher than those for organization capital, R3. In turn, this difference

in user costs can be explained by the fact that investment rates for R&D capital imputed

using Compustat data are on average 25% per year after 2000, whereas investment rates for

organization capital are only 15%.

Recall that our decomposition implicitly infers depreciation rates from observed gross in-

vestment rates, so that high gross investment rates imply high rates of depreciation and hence

high user costs. The magnitude of both R&D investment rates and the implied depreciation

rates (in the order of 20%) are consistent with the evidence in Li and Hall (2020). To our

knowledge, there are no direct sources for depreciation rates on organization capital, though

the literature typically uses a depreciation rate of 20% (Lev and Radhakrishnan, 2005; Eisfeldt

and Papanikolaou, 2013; Peters and Taylor, 2017; Falato et al., 2020). Thus, our decomposi-

tion produces somewhat lower implicit depreciation rates for organization capital than those

assumed in the literature. We note, however, that both Peters and Taylor (2017) and Ewens

et al. (2020) show that estimates of the size of the organization capital stock obtained from

Compustat data are not very sensitive to the choice of depreciation rate.

IA.D.5. GMM estimation on split samples

IA.D.5.1. Moment conditions

We first derive moment conditions that can be used for estimation. We use a model with

uncertainty that admits a closed-form solution. Specifically, as in Lemma 1, we assume that:

Πt = A
1− 1

µ

t K
1
µ

t ,

Kt =

(
N∑
n=1

ηnK
ρ
n,t

) 1
ρ

, ρ ≤ 1,
N∑
n=1

ηn = 1.

(IA.58)

67



In order to obtained closed-form solutions, we make the following additional assumptions.

ASSUMPTION 4: Assume that:

(1) Adjustment costs are linear: Φn,t(1 + g) = g + δn, ∀n = 1, ..., N, ∀t.

(2) The discount rate is constant: Mt,t+1 = (1 + r)−1.

(3) {At}t≥0 satisfies At+1 = (1 + gt)At, gt ∼ F (.) i.i.d., E(gt) = ḡ.

LEMMA 6: If Assumption 4 holds, then the solution to the model satisfies:

St =
η

1− η

(
r + δ1

r + δ2

) 1
1−ρ

(IA.59)

ι1,t = gt + δ1 (IA.60)

ι2,t = gt + δ2 (IA.61)

gK,t = gt (IA.62)

ROA1,t = µ ((r + δ1) + (r + δ2)St) (IA.63)

Q1,t = 1 + St +
(µ− 1)

r − ḡ
(r + δ1) +

(µ− 1)

r − ḡ
(r + δ2)St (IA.64)

where:

gK,t ≡
K1,t+1 +K2,t+1

K1,t +K2,t

− 1.

This result is a particular case of the risky balanced growth model described in Section

E and Appendix IA.B.2.1, when growth in fundamentals is i.i.d. (which corresponds to the

case λ = 1). Note that the first five expressions for key ratios do not depend on the i.i.d.

growth assumption (that assumption is only used in the computation of Q1,t), though they

do depend on the assumption that At+1 is in the information set of time t. Additionally, the

ratios St, ROA1,t and Q1,t implied by the model are constant over time; random shocks gt will

only appear in measures of investment gK,t, ι1,t and ι2,t. We write the closed-form solution of
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the model as moment conditions:

0 = E

[
St −

η

1− η

(
r + δ1

r + δ2

) 1
1−ρ
]

(IA.65)

0 = E [ι1,t − (ḡ + δ1)] (IA.66)

0 = E [ι2,t − (ḡ + δ2)] (IA.67)

0 = E [gK,t − ḡ] (IA.68)

0 = E [ROA1,t − µ {(r + δ1) + (r + δ2)St}] (IA.69)

0 = E
[
Q1,t −

{
1 + St +

(µ− 1)

r − ḡ
(r + δ1) +

(µ− 1)

r − ḡ
(r + δ2)St

}]
(IA.70)

IA.D.5.2. Estimation approach

We fix the elasticity of substitution between intangible and physical capital, ρ, to ρ = 0,

so that the two types of capital are Cobb-Douglas substitutes. This follows our approach in

the main text. We then estimate the six structural parameters {ḡ, δ1, δ2, µ, η, r} using the six

moment conditions above.

Our estimation method is standard: we use two-step efficient GMM (Hansen, 1982), with

the identity matrix as the first-step weighting matrix. HAC standard errors are computed

using a Bartlett kernel with four lags.

We report two additional sets of results from this estimation. First, we compute point

estimates and standard errors for four “implied moments”: user costs R1 and R2, the markup

over value added µV A, and the share of rents as a fraction of value added sV A. We obtain esti-

mates and standard errors for these implied moments by stacking the four moment conditions

to the GMM system:

0 = E [R1 − (r + δ1)] (IA.71)

0 = E [R2 − (r + δ2)] (IA.72)
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0 = E
[
sV A − (1− sL,t)

(
1− 1

µ

)]
(IA.73)

0 = E
[
µV A −

1

1− sV A

]
(IA.74)

where sL,t is the time-series for labor as a share of value added.37 Second, we also compute the

difference between point estimates across subsamples, and test for whether it is significantly

different from zero. We perform this test by stacking the moment conditions for the two

subsamples (with a set of structural parameter and implied moments for each subsample),

and interacting the moment conditions with an indicator for each subsample. The p-values

reported are for the two-sided test against the null of equality of a given structural parameter

or implied moment across subsamples.

IA.D.5.3. Results

The results for this estimation approach are reported in Table 21. The table contains

estimation results for the NFCB sector as a whole (the first three columns), and for the

sample of Compustat non-financial firms (columns four through nine), separating the case

where intangibles are measured using R&D from the case where they are measured using

R&D plus organization capital. Additionally, we focus on data form 1985-2017, since this is

the period of primary interest for the paper, and we report results on subsamples split around

the year 2000, following again our analysis in the main text.

Before discussing the results, it is worth noting that in the simple model with i.i.d. growth,

GMM estimation leads to exactly the same point estimates as one would obtain by replacing

the various data series in the moment conditions above by their sample means, and then

inverting the moment conditions. This is very similar to what we do in our baseline approach.

The reason for the equivalence between the GMM estimation and our baseline approach is

that, with the exception of the solution for investment rates, the representation of the model

with i.i.d. growth and adjustment costs is exactly the same. (Moreover, investment rates

are linear functions of the only source of random disturbances, gt.) Thus, qualitatively, we

37Following our discussion in Section E and Appendix IA.B.3, the reduced-form moment µV A is the value-

added markup under the assumption of constant returns in production.
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should expect to find the same patterns as were obtained in the simpler analysis of the baseline

model.

Quantitatively, there two reasons why the GMM results for the simple model with i.i.d.

growth might differ from the baseline results in the paper, and in particular the results of

Table 1 of the main paper. First, our baseline approach averages moments over seven-year

rolling windows. By contrast, GMM estimation of the simple model uses averages over the

16-year and 17-year windows that make up the two subsamples from 1985-2017. Second, the

results of Table 1 rely on the model with adjustment costs, whereas the simple model with

i.i.d. growth does not allow for adjustment costs.

Given this caveat, the main interest of estimating the simple model via GMM is that it

allows to assess the statistical significance of the structural changes that we documented with

our baseline approach. The results of Table 21 find the same two simultaneous structural

changes as in our baseline approach: an increase in the share of intangibles in production,

and an increase in rents. The increase in the share of intangibles in production between the

1985-2000 period and 2001-2017 is significant at the 1% level in all three data sources, and it

is quantitatively similar to the one obtained in our baseline approach.

The statistical significance of the increase in rents is somewhat more muddled. In the

NFCB data, all measures of rents (the curvature parameter µ, the rent share of value added

sV A, and the markup over value added µV A) are statistically significant. However, in the

Compustat sample, the increase in the curvature parameter µ is only significant at the 5%

level when measuring intangibles as R&D, and it becomes insignificant when intangibles are

measured as the sum of R&D and organization capital. The latter finding is consistent

with our baseline results, which suggested that adding organization capital to the measure

of intangibles tends to weaken the upward trend in rents. Likewise, in the Compustat data,

the increase in µV A and sV A is only significant at the 5% level when measuring intangibles

as R&D, and at the 10& level when also including organization capital. Additionally, and

consistent with the results in the main text, there is a decline in estimated user costs, but it

is only significant in the NFCB sector.

The main issue with these estimation results is that the point estimates of the implied

discount rate r are substantially higher, and more stable, for the Compustat sample than
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they are for the NFCB sector (in the order of 8%, instead of 5% for the NFCB sector).

(Note that this was also true in our baseline approach, though we had not reported the

values of the discount rate in isolation in Table 1, so that this difference between the NFCB

data and the Compustat data was not clearly visible.) The empirical force driving this

result is the fact that measured returns on assets are substantially higher in Compustat

than they are in the NFCB sector. Recall that, in the model, the discount rate r satisfies

r−gt = (ROA1−(ι1 +ι2S))/Q1 — it is the wedge between flow profits in excess of investment

costs, over valuations. Empirically, values of returns on assets ROA1 are substantially higher

in the Compustat data (as also reported in Table 1 in the main text), in a manner that is not

fully offset by either higher investment rates, or a higher values of Q1 among publicly traded

non-financial firms.

IA.D.6. Alternative identification strategies

Along the balanced growth path, the general decomposition of the investment gap is:

Q1 − q1 = q2S +
(µ− 1)R1

r − g
+

(µ− 1)R2

r − g
× S. (IA.75)

In our baseline approach, we directly measure S. We primarily infer the Gordon growth term

r− g from the value of Q1. Combining estimates of this term with investment rates, we then

compute the user costs R1 and R2. Finally, we infer µ by combining the estimates of user

costs with a measure of the average return on physical assets, ROA1.

Here, we describe in detail alternative approaches that could be used to construct our

decomposition. All these alternative approaches rely on constructing a measure of the average

cost of capital, r, in order to construct the Gordon growth term r − g, instead of using Q1,

as we do in our baseline approach. This allows the value of Q1 to be used to infer some other

underlying structural parameter, such as intangible intensity or rents. In order to limit the

size of the results, we only report them for the NFCB sector; they are qualitatively similar

for the Compustat sample.
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IA.D.6.1. Alternative approach 1: average cost of capital

We next describe a different identification approach, which we refer to as the ”average

cost of capital approach”. This approach is closer to that of Barkai (2020) and Karabarbounis

and Neiman (2019) (case Π). We measure the average cost of capital as the leverage weighted

average of the cost of debt (obtained from average interest rates on the market value of debt

of the NFCB sector), and the cost of equity (obtained from the PD ratio of public firms).

We then construct the different terms on the right-hand side of Equation (19) using the same

moments as in our baseline, except that we do not match the observed value of Q1.

In this approach, the (implied) value of the investment gap (that is, the left-hand side of

Equation 19) is growing faster after 1985 than the investment gap we measured in our baseline

approach (that is, the left-hand side of Equation 19). By 2015, the implied investment gap is

about twice as large as the measured one. This is because the discount rate r obtained using

an average cost of capital approach is lower, and declining faster, than the discount rate

implicit in our baseline decomposition. Consistent with Barkai (2020) and Karabarbounis

and Neiman (2019) (case Π), lower discount rates also lead to a higher, and more rapidly

increasing profit share (approximately 9.0 p.p. over the 1985 to 2015 period, instead of 6.2

p.p. in our baseline approach).

However, the composition of the implied investment gap remains similar to our baseline

findings. The rest of this Appendix reports more detailed results, compares the discount

rates implied by both approaches, and expands on the interpretation of the results in terms

of implicit equity risk premia, following the discussion of Section C.

Description Let {DE,t} and {DB,t} be distributions to shareholders and debtholders.

These distributions must satisfy Dt = DE,t + DB,t, where Dt are total distribution to firm

owners. Moreover, let Ee
t and M e

t be the ex-distribution values of equity and debt, which

must satisfy V e
t = Ee

t +Be
t , where V e

t is total firm value. We make the following assumptions

about {DE,t, DB,t, E
e
t , B

e
t }.

ASSUMPTION 5 (Weighted average cost of capital): There exists two discount factors

73



{ME,t,t+1} and {MB,t,t+1}, such that:

Ee
t = Et

[
ME,t,t+1

(
DE,t+1 + Ee

t+1

)]
, Be

t = Et
[
MB,t,t+1

(
DB,t+1 +Be

t+1

)]
.

Moreover, along the balanced growth path, (a) there exist rE and rB such that:

∀t, M−1
E,t,t+1 = 1 + rE, M−1

B,t,t+1 = 1 + rB,

and (b) the ratio of the market value of debt to the market value of equity is constant:

lt ≡
Ee
t

Be
t

= l.

In this case, along the balanced growth path, r, rE and rB must satisfy:

r =
l

1 + l
rB +

1

1 + l
rE.

In other words, under Assumption 5, the firm-wide discount rate r must equal the weighted

average of the shareholder and debtholder discount rates rE and rB. This suggests an alter-

native avenue to construct the decomposition, which is to use estimates of rB and rE in order

to construct the Gordon growth term r − g from the relationship:

r − g =
l

1 + l
(rB − g) +

1

1 + l
(rE − g).

This is similar to the approach followed by Barkai (2020) and in Karabarbounis and Neiman

(2019) in order to estimate of the pure profit share.

Implementation In order to implement this approach, we need estimates of rB and rE.

For the former, we use a weighted average of the different interest rates which were an input

into our computation of the market value of total debt liabilities of non-financial corporations,

and are described in Appendix IA.C.2. The weights are the relative market values of each

types of debt liability. We then pre-multiply this interest rate by ones minus the statutory

top corporate income tax rate. We denote the resulting time series by rnb . For the estimate of
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rE, we use the fact that along the balanced growth path, the PD ratio is constant and given

by:

PDt ≡
Ee
t−1

DE,t

=
1

rE − g
.

In order to estimate the PD ratio, we use the fact that:

PDt =
1

Rc
E,t−1,t −Re

E,t−1,t

, Rc
E,t−1,t ≡

DE,t + Ee
t

Ee
t−1

, Re
E,t−1,t ≡

Ee
t

Ee
t−1

.

Our sources for Re
E,t−1,t, R

c
E,t−1,t and the corporate income tax rate are described in Appendix

IA.C.6. Finally, for leverage l, we use the ratio of the market value of debt liabilities to the

market value of equity, both of which we computed in order to construct the total value of

the firm, V e
t . We then obtain the Gordon growth term as:

r − g =
l

1 + l
(rnB − gn) +

1

1 + l
PD−1.

where gn is the nominal growth rate of the total capital stock.38 Appendix Figure 15 reports

the resulting time series for the PD ratio PDt.
39 The top panel of Appendix Figure 16 reports

the resulting cost of equity, the cost of debt, and the average cost of capital.40

Results Figure 17 reports the results obtained in this alternative approach. The top panel of

the figure shows the implied investment gap, and its decomposition. Generally, this approach

implies a larger estimated investment gap, particularly so in the first half of the sample,

prior to 1980. Nevertheless, targeting the PD ratio still leads to the same key insights as the

baseline approach. In particular, by 2015, the rents attributable to intangibles account for

29% of the total investment gap in the PD ratio approach (compared to 25% in the baseline

38We use the nominal instead of the real growth rate because the time series for the cost of debt rnb which

we construct is a nominal interest rate.

39The figure also reports the time series for the “leverage-adjusted” PD ratio, defined as PD = (r− g)−1,

and which, in the balanced growth path of the model, satisfies PD = V e
t−1/Dt.

40All are expressed in nominal terms; for the cost of debt, this is the series rNB which we directly construct

from the data, and for the cost of equity and the average cost of capital, we report rnE ≡= (rE − g) + gn and

rn = (r − g) + gn.
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approach), while the two rents-related terms together account for 33% of the total investment

gap (versus 36% in the baseline approach).

This approach leads to a larger overall investment gap because the values of Tobin’s Q for

physical capital which it implies are far superior to those observed in the data, as reported in

the bottom left panel of Figure 17. Fundamentally, this is because the average cost of capital

approach leads to a lower estimate of the firm discount rate r than our baseline approach.

The top panel of Figure 2 reports the estimates of (nominal) discount rates we obtain in the

average cost of capital approach and in our baseline approach. The former is generally lower

than the latter. The two are closest together in 1985. After 1985, the discount rate in the

average cost of capital approach declines more than in our baseline approach.

Because lower discount rates imply lower user costs, the average cost of capital approach

also leads to higher estimates of the pure profit share, as reported in the bottom right panel of

Figure 2. The ratio is both higher on average, and increasing faster, in our approach, relative

to the baseline approach. After 1985, rents in the average cost of capital approach increase

by about 9.0 p.p., versus 6.2 p.p. in our baseline approach.

Why the two approaches lead to a different implied discount rate is a difficult question.

As discussed in Section C, one possible interpretation is in terms of implicit risk premia on

equity. To illustrate this, the bottom panel of Figure 17 constructs a measure of the risk

premium implicit in the cost of equity implied by our baseline approach and by the average

cost of capital approach. We define this implicit risk premium as:

RP ≡ (1 + l)

(
rn − l

1 + l
rnB

)
− rnf = rnE − rnf ,

where rn = (r−g)+gn is the nominal, firm-wide discount rate, l is leverage, rnB is the (nominal,

after-tax) cost of debt, and rnf is a measure of the risk-free rate. We use the average annual

return on one-month Treasury bills to measure the risk-free rate; the source is reported in

Appendix IA.C.6.

The resulting time series show that the average cost of capital approach leads to a lower

implicit equity risk premium than our approach. The two implicit risk premia are closest in

1985; after that year, the implicit risk premium in our approach rises somewhat more than
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in the average cost of capital approach.

There are also measurement issues that may contribute to the differences between our

baseline approach and the average cost of capital approach. The sample underlying our

measure of Q1 (the NFCB sector) and the sample underlying our measure of the PD ratio

(the S&P 500). Additionally, distributions to equityholders may not be accurately measured.

Our measure is based on cash distributions, and excludes share repurchases, which became

more common after the early 2000’s. Generally, it is difficult to accurately match the rate of

distributions to shareholders implicit in the computation of the PD ratio, and the distributions

to shareholders measured in Flow of Funds data; this may contribute to further differences

between the two approaches.

A different measure of rE We also report the results of this approach when using a

similar method to measure the cost of equity as Barkai (2020). Specifically, we assume that

the (nominal) cost of equity is:

rnE = rnf +RP,

where RP is a constant risk premium, and rnf is the time-series for the risk-free rate described

above. We then compute the Gordon growth term as:

r − g =
l

1 + l
(rnB − gn) +

1

1 + l
(rnE − gn).

For the constant risk premium, we use a value of RP = 6.5%, in line with the long-run

average estimates of equity risk premia constructed by Campbell and Thompson (2008) and

extended by Martin (2017).

The bottom panel of Figure 16 reports the time series for the average cost of capital used

in this approach, and Figure 2 compares it with the cost of capital in other approaches. The

most notable difference with the other approaches is that the cost of capital according to this

approach is substantially lower in the 1945-1985 period. In fact, in a number of years in this

period, the implied discount rate is close to, or below, the growth rate of the capital stock.

In turn, this implies implausibly high values of Tobin’s Q1 (in excess of 20, in particular in

the early part of the sample). Therefore, we only report the results related to the investment
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gap obtained using this approach after 1985.

These results are reported in Figure 18. After 1985, the results share number of common

features with Figure 17, where the PD ratio is used instead of the risk-free rate. The implied

values for Q1 are substantially higher than in the data. Moreover, the increase in total rents

as a fraction of value added is larger than in our baseline approach. The latter effect is more

muted than in alternative approach 1; this is because, as indicated in Figure 17, the discount

rate in this approach is somewhat higher than when using the PD ratio.

Finally, note that in this approach, the implicit risk premium is constant. By contrast, in

both our baseline approach, and the average cost of capital approach using the PD ratio, the

implicit equity risk premium is rising after 1985. Additionally, in our baseline approach, the

implicit equity risk premium is above 6.5% after 2003. These differences help explain why

estimates of the pure profit share are lower in our baseline approach than in either of the two

average cost of capital approaches.

IA.D.6.2. Alternative approach 2: inferring intangibles from the investment gap

Given a measure of the Gordon growth term r − g that is independent from Q1, the

decomposition above can also be used as a way to derive an implicit stock of intangibles,

as opposed to measuring it in the data. This amounts to computing the ratio of intangible

to physical capital such that the model matches both measured r − g and the measured

investment gap Q1 − q1. Straightforward derivations show that this ratio is given by:

Simplied =
(r − g)(Q1 − q1)− (ROA1 −R1)

(r − g)q2 −R2

. (IA.76)

This expression can be thought of as a generalization of the approach of Hall (2001), who

derives the ratio of intangible to physical capital consistent with stock market values and

measures of the physical capital stock (and therefore of Q1). The expression is a generalization

in the sense that it allows for rents. In the Hall (2001) case of no rents (µ = 1), from the

decomposition of the investment gap, the value of S is given by:

SHall =
Q1 − q1

q2

.
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When µ can be different from 1, given a value of S, the implied value for µ is41:

µ =
ROA1

R1 + SimpliedR2

.

Figure 19 reports results from the decomposition constructed using this approach, rather

than our baseline approach. The top panel shows the investment gap decomposition, and

the bottom two panels report, respectively, the time series for Simplied (comparing it with the

time series for S in the data, which is the one that our baseline approach matches); and the

time series for the value of rents as a fraction of total value added implied by the model.

One noteworthy finding from Figure 19 is that, after 2000, Simplied grows substantially

faster than what is measured by the BEA Fixed Assets tables. By 2015, the implied intangible

stock is about twice as large as its BEA counterpart. As a result of this rapid growth, the

implied increase in rents is lower than in our baseline approach. Overall, as indicated by the

top panel, this approach attributes a bigger share of the overall investment gap to intangibles

than our baseline approach (about two-thirds, versus one-third in our baseline approach).

A potential problem with this approach, however, is that it also implies that there must

have been a very large stock of intangible capital, relative to physical capital, in the 1950-

1970 period (and moreover, that this stock turned negative for a few years around 1980).

Mechanically, this is because the stock of intangibles account for movements in the investment

gap that cannot be fully accounted for by increases in the PD ratio (and therefore declines

in r − g). In other words, through the lens of the model, the period 1950-1970 was one

where discount rates (as implied by PD ratios) were low, but not enough to explain the high

investment gap, so that intangibles must have been high.

Another drawback of this approach is that it creates a mechanical negative correlation

between the level of discount rates (implied by the PD ratio), and the stock of intangibles.

Hall (2001) also contends with this issue, and finds the same declining intangible capital stock

in the late 1970s. This “destruction” of intangible capital might be difficult to reconcile with

the fact that direct measures of the capital stock instead suggest that the ratio of intangible

41Equation (IA.76) can be rewritten as (r−g)
(
Q1 − q1 − q2Simplied

)
= ROA1−R1−SimpliedR2. Therefore,

Simplied = SHall, if and only if, ROA1 = R1 + SimpliedR2, which is the same as µ = 1.
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to physical capital has been continuously growing over the post-war period.

IA.D.6.3. Alternative approach 3: inferring rents from the investment gap

Another possible approach is to infer the rents parameter, µ, from the investment gap. In

this approach, the rents parameter would be obtained from:

µ = 1 +
r − g

R1 +R2S
(Q1 − q1 − q2S) . (IA.77)

This approach will lead to positive estimates of rents whenever average Q1 is higher than

q1 + q2S, which would be the value of Q1 in a model without rents. Moreover, relative to the

baseline approach, the model will not necessarily match measured returns to physical capital

ROA1. The model-implied value of returns to physical capital is then:

ROAimplied
1 = R1 +R2S + (r − g)(Q1 − q1 − q2S). (IA.78)

The no-rents case again obtains when Q1 = q1 +q2S, which implies that the return to physical

capital is equated to the weighted average user cost R1 + R2S. As in the other alternative

approach, this approach requires using measures of r − g not derived from Tobin’s Q1; we

use the average cost of capital measure, with the inverse PD ratio as a proxy for the cost of

equity capital.

Figure 20 reports results in this case. The decomposition of the investment gap (top panel)

is qualitatively and quantitatively close to our baseline results. As indicated by the bottom

right panel of Figure 20, the size of rents is somewhat smaller in this approach alternative

approach, particularly after 2000. The bottom right panel of Figure 20 reports the implied

returns to physical capital, ROA1 in this approach, and compares them with their measures

in the data, which our baseline approach matches by construction. Returns to capital implied

by this approach are overall lower than in the data, consistent with the fact that this approach

leads to somewhat lower rents. Both in the data and in the model-implied series, there is

an increase in average returns to physical capital after 1980, though it is less marked in this

approach than in the data. Thus, overall, this approach leads to somewhat smaller rents than

our baseline, both in levels, and in terms of their overall increase since 1985.
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IA.D.7. Markups and returns to scale

IA.D.7.1. Methodology

Given the partial identification result highlighted by Lemma 4, in what follows, we com-

pute estimates of the reduced-form parameter χ = µS/ζ, and report implied values of the

markup µS of price over the marginal cost of sales under different assumptions about decreas-

ing returns to scale.

The results of Table V can be used to identify the reduced-form rents parameter χ and

the Cobb-Douglas elasticity α separately. We use the following approach, which, as explained

below, is consistent with our analysis of the balanced growth model.

LEMMA 7: The values of α and χ can be derived from data on the ratio of operating surplus

to sales, and on the ratio of capital costs to operating surplus:

xΠ ≡
Πt

St
, νK ≡

R1,tK1,t +R2,tK2,t

Πt

,

as follows:

χ =
1

νK + (1− νK)(1− xΠ)
≥ 1,

α = 1− 1− xΠ

νK + (1− νK)(1− xΠ)
≤ 1.

(IA.79)

The proof of this result follows from the expressions reported in Appendix Table V. Of

course, there are other combination of the ratios reported in Appendix Table V that could

also be used to identify separately χ and α. The advantage of this particular identification

approach is twofold. First, given an estimate of capital costs, it can be implemented using firm

accounting data, since it only requires observing total sales and total operating surplus. (In

particular, no separate measure of labor costs is needed.) Second, this approach encompasses

the approach used to measure the rents parameter µ in the balanced-growth model of the

main text. Indeed, there, the reduced-form rents parameter is obtained from the relationship:

1

µ
=

α

χ− (1− α)
=
R1,tK1,t +R2,tK2,t

Πt

= νK .

Identification of µ, α and χ can therefore be thought of as follows. First, estimate µ, using a
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measure of νK , as we do in our empirical analysis of the balanced growth model in the main

text. Second, estimate α, using the expression reported in Lemma 7. Third, obtain the value

of χ = µS/ζ using:

µ = 1 +
χ− 1

α
⇐⇒ χ =

µS
ζ

= 1 + α(µ− 1),

or equivalently, using the expression reported in Lemma 7.

IA.D.7.2. Results

Figure 31 reports the results of this methodology, applied to the data from the entire

Compustat Non-Financial sample, from 1974 to 2017. We focus on this data source because,

to our knowledge, there is no good source on total sales (as opposed to total profits or total

operating surplus) for the non-financial corporate sector.42 The data we use is the same as in

the analysis of Section III in the main text, except that we also make use of the ratio of total

sales to gross operating surplus. Total sales is measured using Compustat variable sale.

The results of Figure 31 report the time series for the sales markup, which, following the

previous discussion, is measured as:

µS = (1 + α(µ− 1)) ζ = (νK + (1− νK)(1− xΠ))−1 ζ.

Related work has taken different approaches to estimating returns to scale, depending on

data availability. Where detailed cost data are available, for example from the Census of Man-

ufacturing, returns to scale can be estimated using data on cost shares and output. Syverson

(2004) develops this methodology and estimates that a benchmark of constant returns to

scale is justified in his detailed industry analysis. More recently De Loecker et al. (2020) use

42The NIPA tables do not appear to contain information on domestic sales specifically for non-financial

corporations; see https://apps.bea.gov/iTable/iTable.cfm?ReqID=13&step=1. The Flow of Funds re-

ports a series titled Revenue from Sales of Goods and Services (FRED series BOGZ1FA106030005Q), but this

series is identical to the gross value added for the non-financial corporate sector reported in NIPA table 1.14

(FRED series A455RC1Q027SBEA), indicating that the Flow of Funds series likely measures value added,

not gross revenue, despite its name.
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two approaches. First, using Compustat and hence lacking detailed cost shares, they use a

demand approach and estimate slightly increasing returns to scale in their specifications. In a

standard specification, similar to ours, they estimate nearly constant returns of 1.02 in 1980,

rising to 1.08 by 2016. When they specify overhead in the production function, which in

Compustat includes some intangibles, they have higher returns to scale of 1.07 initially rising

to 1.13 at the end of the sample. When instead they approximate the Syverson (2004) cost

share methodology, they obtain lower estimates of nearly constant returns, of 0.98 pre-1980

and 1.03 by 2010, using industry averages. In firm-level data, which have more heterogeneity,

they find initially slightly more decreasing returns and a larger increase.

Given this background, we report the implied values of µS for three different values of the

degree of returns to scale: decreasing returns (ζ = 0.95); constant returns (ζ = 1.00, as in

our baseline analysis), and increasing returns (ζ = 1.05).

In the case of decreasing returns (ζ = 0.95), implied markups over sales range from

negative (approximately 0.92-0.95) in the 1980s, to approximately 0 in the 2000s, when in-

tangibles are measured either using R&D or using the sum of R&D and organization capital.

Thus, a modest amount of decreasing returns in aggregate is sufficient to eliminate markups

altogether.

On the other hand, with increasing returns (ζ = 1.05), implied markups are substantially

larger, reaching approximately 1.1 in the 2000s. Note that, even so, these numbers are

substantially smaller than those obtained in the literature that estimates markups using a

production function approach, such as for instance De Loecker et al. (2020). (The sales

markups we find here are approximately one-third of the median markup documented by

these authors.)

Table VI reports averages for the underlying values of µ, χ and α obtained in two sub-

samples, 1980-2000 and 2001-2015. That table also attempts to isolate the contribution of

”pure rents” (those due to markups). The rents due to markups, as a fraction of value added,

are defined as:

sµRe ≡ (1− sL)

(
µS − 1

α + µS − 1

)
.

Recall that total rents as fraction of value added are given by (1 − sL)

(
µS/ζ − 1

α + µS/ζ − 1

)
.
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So, for any value of markups µS, sµRe gives the implied rents, as a fraction of value added,

assuming constant returns. The numbers reported in Table VI under ”Rents due to markups”

are the values of sµRe, using the markups implied by different values of ζ. As discussed above,

with even relatively modest decreasing returns (ζ = 0.95), the value of χ implies negative

markups, so that ”pure rents” contribute negatively to total rents. With increasing returns,

“pure rents” exceed total rents (because increasing returns implies negative “quasi-rents”).

Even then, the size of rents attributable to markups is relatively small in comparison to the

numbers implied by the estimate of De Loecker et al. (2020) (which are in the order of 40%

of total value added).

IA.D.8. Heterogeneous rents parameters

Methodology The decomposition of the investment gap in the case of heterogeneous rents

parameter, balanced growth, and N = 2, can be implemented as follows. First, as in our

baseline model, we can recover the value of r − g through:

r − g =
ROA1 − ι1 − ι2S

Q1

− γ1 + γ2S

Q1

g2,

where all the objects on the right-hand side can be obtained from the data. Third, we can

measure user costs as:

Rn = r + δn + γnrg

= r − g + ιn + γnrg

= r − g + ιn + γng
2 + γn(r − g)g

= (r − g)qn + ιn + γng
2, n = 1, 2.

where all the objects on the right-hand side can now be measured in the data. Finally, note

that the first-order conditions to the firm’s problem imply that:

Πt = µ1R1K1,t + µ2R2K2,t.
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Define the average markup as:

µ̄ =
R1

R1 + SR2

µ1 +
SR2

R1 + SR2

µ2.

Note that the values for R1, R2 and S that we derive from the data are not dependent upon

whether the rents parameters µn, n = 1, 2 are heterogeneous or not. The average markup µ̄

will therefore always be given by:

µ̄ =
R1

R1 + SR2

µ1 +
SR2

R1 + SR2

µ2

=
Πt/K1,t

R1 + SR2

=
ROA1

R1 + SR2

,

(IA.80)

where the expression in the last line only depends on data objects, and does not depend on

the values of µ1 and µ2. Note that this is the expression for the rents parameter obtained our

baseline case, µ. Thus, the average of the rents parameters across capital types, weighted by

their user costs, will always be equal to the rents parameter that we obtained in our baseline

decomposition. In other words, the total contribution of rents (generated by either intangibles

or by physical capital) to the decomposition is the same whether one uses baseline model with

a single rent parameter, or the heterogeneous rents model; heterogeneous values for (µ1, µ2)

only affects the distribution of rents across capital types.

In order to estimate quantify separately the two rents parameter {µ1, µ2}, we additionally

assume that the operating profit function is given by:

Πt(K1,t, K2,t) =

(
A

1− 1
µ1

1,t K
1
µ1
1,t

)1−η (
A

1− 1
µ2

2,t K
1
µ2
2,t

)η

where A1,t and A2,t are both growing at rate g. The first-order conditions Rn = Πn,t can then

be expressed as:

R1 =
1− η
µ1

K1,t

Πt

,

R2 =
η

µ2

K2,t

Πt

,
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so that the capital-specific rents parameters satisfy:

µ1 = (1− η)
ROA1

R1

,

µ2 = η
ROA1

SR2

.

Results The methodology described above helps clarify that, in the more general model

with heterogeneous rents parameters, our methodology identifies the user-cost weighted av-

erage rents parameter. However, the methodology has the drawback that the value of η must

be known (independently from measures of S) in order to estimate µ1 and µ2. In other words,

while it is straightforward to measure the (user-cost weighted) average rents parameter, esti-

mating them separately from the data seem difficult.

In Figure 30, we provide bounds on the values of η in the two limit cases where rents are

due either only to intangible capital, or only to physical capital. Rents will only be due to

intangibles when:

µ1 = 1, µ2 =
ROA1 −R1

S2R
, η =

ROA1 −R1

ROA1

.

Figure 30 shows that this would imply an increase in η has been increasing rapidly over time,

reaching approximately η = 0.4 by 2015. At the other extreme, rents will only be due to

physical capital when:

µ1 =
ROA1 − SR2

R1

, µ2 = 1, η =
SR2

ROA1

.

This would imply a smaller increase in η, reaching only approximately η = 0.2 by 2015, as

reported in the bottom panel of Figure 30. The bottom panel of Figure 30 also reports the

implied values of the rents parameters in these two limiting cases. The case in which all rents

are due to physical capital implies values for µ1 that are close to our baseline estimates of µ,

since the relative user cost R1/SR2 is large. On the other hand, when all rents are due to

intangibles, µ2 must be very large (in the order of µ2 = 2), again because when intangibles

are measured with R&D capital, the relative weight SR2/R1 is small.

Separate identification of µ1 and µ2 without the knowledge of η is more difficult. The core

issue is that without being able to separate cash flows generated by either type of capital
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(which, when they are not perfect substitutes, is difficult), it is also challenging to measure

average returns generated by each type of capital. Even under an alternative interpretation

where µ1 and µ2 reflect monopsony power in the market for capital inputs, separate data on

rental rates intangible and physical capital would be required to identify each rents parameter

separately.

IA.D.9. Financing frictions

IA.D.9.1. Equity financing frictions

Appendix Figures 10 and 11 report a simplified decomposition of the investment gap,

under different assumptions about the magnitude of equity financing frictions. Specifically,

using the balanced growth results of Appendix IA.B.6.2, we have that along the balanced

growth path,

Q1 − q1 = Q1 − f ′(d)(1 + γ1g)

= f ′(d)

(
q2S +

(µ− 1)R̃1

r − g
+

(µ− 1)R̃2

r − g
S

)

so that total rents are given by:

Rents ≡ f ′(d)

(
(µ− 1)R̃1

r − g
+

(µ− 1)R̃2

r − g
S

)
= Q1 − f ′(d)(1 + S + (γ1 + γ2S)g).

Appendix Figures 10 and 11 use these expressions to construct the contribution of total rents

and of the omitted capital effect for different values of f ′(d).

The main message of these figures is that introducing equity financing frictions will in

general magnify the total contribution of rents to the gap. The intuition is that total rents

(those due to either physical capital or intangibles) are the residual after taking into account

the value of the intangible capital stock. This latter value is adjusted downward with equity

financing frictions, because of the wedge f ′(dt) between inside and outside finance. Thus for

a given (empirical) value of Q1, rents are magnified.
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Next, we briefly discuss how the results of our main empirical decomposition, which as-

sumes no equity financing frictions, would be biased if the data had instead been generated

by a model with equity frictions. Since our procedure to estimate the decomposition relies

on the balanced growth model, we study this question in the context of the balanced growth

model. For simplicity, we also abstract from adjustment costs to capital in this discussion.

Recall that our procedure uses five data moments, {S,ROA1, ι1, ι2, Q1}. We combine

these five moments as follows:

r̂ − g =
ROA1 − (ι1 + Sι2)

Q1

R̂1 = r̂ − g + ι1

R̂2 = r̂ − g + ι2

µ̂ =
ROA1

R̂1 + SR̂2

Moreover, in the balanced growth model with no adjustment costs, the (unadjusted) physical

investment gap is given by Q1 − 1. We decompose it as:

Q1 − 1 = S +
(µ̂− 1)

r̂ − g
R̂1 +

(µ̂− 1)

r̂ − g
R̂2S.

By contrast, the adjusted investment gap is given by:

Qa
1 − 1 = S +

µ− 1

r − g
R

(a)
1 +

µ− 1

r − g
R

(a)
2 S

Note, that if the data is generated by a model with equity frictions, there is no guarantee that

r̂ − g will properly measure r − g, and likewise for R̂1, R̂2 and µ̂. Additionally, measurable

and adjusted average Q will generally differ, i.e. Q1 6= Q
(a)
1 . Nevertheless, we can establish

the following results.

RESULT 9: Along the balanced growth path, the unadjusted investment gap is biased downward
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relative to the adjusted investment gap:

Q1 − 1 =
(
Q

(a)
1 − 1

)
−
(

1− f ′(d)

f ′(d)

)
Q1 < Q

(a)
1 − 1.

This bias is entirely reflected in the estimated contribution of total rents to the unadjusted

investment gap, R̂ents, which is biased downward relative to their contribution to the adjusted

investment gap, Rents:

(µ̂− 1)

r̂ − g
R̂1 +

(µ̂− 1)

r̂ − g
R̂2S︸ ︷︷ ︸

≡R̂ents

=
(µ− 1)

r − g
R

(a)
1 +

µ− 1

r − g
R

(a)
2 S︸ ︷︷ ︸

≡Rents

−
(

1− f ′(d)

f ′(d)

)
Q1.

The ratio of intangible rents relative to physical rents is biased upward, if and only if:

F2

F1

≥ ι2
ι1
,

or, in the case of a Cobb-Douglas capital aggregator with elasticity of substitution η,

η ≥ ι2S

ι1 + ι2S
. (IA.81)

Proof. The value of r̂ − g implied by our empirical decomposition is:

r̂ − g =
ROA1 − (ι1 + ι2S)

Q1

In a model with equity issuance frictions,

Q1 =
ROA1 − (ι1 + ι2S)

r − g
f(d)

d

so:

r̂ − g =
d

f(d)
(r − g) ≡ 1

ν(d)
(r − g).
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We then have:
R̂2

R̂1

=
r̂ − g + ι2

r̂ − g + ι1
=
r − g + ν(d)ι2
r − g + ν(d)ι1

=
R

(a)
2 + F2ε(d)− (1− ν(d))ι2

R
(a)
1 + F1ε(d)− (1− ν(d))ι1

=
R

(a)
2

R
(a)
1

1 + F2/R
(a)
2 ε(d)− (1− ν(d))ι2/R

(a)
2

1 + F1/R
(a)
1 ε(d)− (1− ν(d))ι1/R

(a)
1

Along the balanced growth path, the first-order conditions of the firm’s problem imply that

R
(a)
2

R
(a)
1

=
F2

F1

. Thus, R̂2

R̂1
>

R
(a)
2

R
(a)
1

, if and only if:

ι2/ι1 < R
(a)
2 /R

(a)
1 = F2/F1,

establishing the result.

There are two parts to this result. First, as highlighted above, within equity frictions,

the level of the (unadjusted) investment gap is generally too low, relative to the level of

the “adjusted” investment gap, reflecting the fact that Q1 is too low relative to Q
(a)
1 . The

intuition is that along the balanced growth path where dt > 0, the replacement cost of existing

capital, K1,t+1, is too high relative to shareholders’ valuation of it, f ′(dt)K1,t+1. The first part

of the result says that, in our empirical decomposition, this bias does not affect estimates of

the direct effect of intangibles on the investment gap (which are simply given by S, in both

our empirical decomposition and the adjusted investment gap decomposition). Instead, the

bias shows up in estimated rents, which are too small, compared to the rents in the adjusted

investment gap decomposition. The ratio of true rents to estimated rents is given by:

R̂ents

Rents
=

Q1 − 1− S
Q1 − 1− S + 1−f ′(d)

f ′(d)
Q1

Consistent with the intuitions developed in Appendix Figures 10 and 11, accounting for equity

frictions would thus lead to higher overall rents, with the quantitative effect.

The second part of the result says that the composition of rents, though, need not be

biased in a particular direction. The share of rents attributable to intangibles vs. physical
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capital, in our baseline decomposition, depends on:

R̂2S

R̂1

,

whereas in the adjusted investment gap decomposition, it depends on:

R
(a)
2 S

R
(a)
1

.

The result says that along the balanced growth path, the difference between these two ratios

only depends on the properties of the production function, and on (observable) rates of gross

investment in each type of capital — not on the curvature parameter f ′(d).

Different from the baseline model, without knowledge of the function f(d), if the data

is generated by a model with equity issuance frictions, one cannot construct the different

elements on the adjusted investment gap decomposition. In particular, in the case of a

Cobb-Douglas capital aggregator, it is not possible to estimate the elasticity of substitution

η between intangible and physical capital without knowing f(.).

However, condition (IA.81) gives a lower bound on η, above which our estimate of the

relative contribution of intangibles to rents would be biased upward. Appendix Figure 32

reports the times series for this lower bound, when intangibles are measured either as R&D

capital, or as the sum of R&D and organization capital. This graph shows that the lower

bound for the composition bias is relatively high. By 2015, η would have needed to be higher

than 0.3 (with only R&D) or 0.6 (with R&D and organization capital) for our decomposition

to overstate the contribution of intangibles to rents. (One can compare this to the estimates

of η in Appendix Figure 7, which, though they are obtained using a model without equity

frictions, are uniformly below these lower bounds.) Thus, if anything, equity frictions appear

more likely to lead to understating the contributions of intangibles to total rents, rather than

overstating it.

IA.D.9.2. Debt financing frictions

We next discuss how the investment gap would change, and how our results would be

biased, in the presence of debt issuance subject to a collateral constraint. As for the case of
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equity frictions, we focus on the balanced growth model, since this is the model to which we

apply our estimation approach in the main text. We start by giving the expression of the

decomposition in the model with debt issuance frictions.

RESULT 10: Let n = 1 denote physical capital. Along the balanced growth path, neglecting

terms of order o(g) and higher, the physical investment gap is given by:

Q1 − q1 =
∑
m≥2

qmSm +
(µ− 1)R1

r − g
+
∑
m≥2

(µ− 1)Rm

r − g
× Sm (IA.82)

where:

∀n = 1, ..., N, qn = 1 + γng,

R1 = r + δ1 + γ1rg − θ(r − rb)

∀n = 2, ..., N, Rn = r + δn + γnrg.

With respect to our baseline decomposition, the only difference is in the expression for the

user cost of physical capital. Specifically, the user cost of physical capital is lower than in the

baseline model, at least when θ > 0 and r > rb. Intuitively, the user cost of physical capital

is lower because there is an additional benefit from holding physical capital: it relaxes the

borrowing constraint, and allows shareholders to lever up and take advantage of the wedge

between their discount rate and the discount rate of debtholders.

When there are debt collateral constraint, is our empirical decomposition of the investment

gap, which relies on a model without collateral constraints, biased, and if so, how? The

following result provides an answer to this question. As in the case of equity frictions, we use

hatted variables to denote the parameters we derive from observations of {Q1, ROA1, ι1, ι2, S}

from the model. We focus on the version of the model without adjustment costs and with

only two capital types for simplicity. The mapping from observed moments to estimated

parameters is the following:

r̂ − g =
ROA1 − (ι1 + Sι2)

Q1

R̂1 = r̂ − g + ι1
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R̂2 = r̂ − g + ι2

µ̂ =
ROA1

R̂1 + SR̂2

Our estimate of the decomposition is then given by:

Q1 − 1 = S +
µ̂− 1

r̂ − g
R̂1 +

µ̂− 1

r̂ − g
SR̂2︸ ︷︷ ︸

≡R̂ents

RESULT 11: Let the total contribution of rents to the investment gap in the true model (i.e.

the model with collateral constraints) be given by:

Rents ≡ µ− 1

r − g
R1 +

µ− 1

r − g
SR2

Along the balanced growth path, our approach correctly estimates the total size of rents:

Rents = R̂ents.

Moreover, the contribution of intangibles to rents is underestimated, and the contribution of

physical capital is overestimated:

R̂1 > R1, R̂2 < R2.

Finally, the rents parameter is overestimated, while the Gordon growth term is underestimated:

µ̂ > µ, r̂ − g < r − g.

The fact that the total contribution of rents is correctly estimated, Rents = R̂ents, follows

from the fact that total rents are effectively estimated as Q1 − 1− S, which is correct, from

the standpoint of the model with a collateral constraint.43

43Recall that we assumed no adjustment costs, so that q1 = 1; more generally, the estimate of the size of

total rents is Q1 − q̂1 − S = Q1 − (1 + γ1g)− S, which is correct in both versions of the model.
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The presence of collateral constraints however biases the estimates of the user costs of

physical and intangible capital relative to their true value. The estimated user cost of physical

capital is too high, because it fails to take into account the fact that part of the return to

holding physical capital is the shadow value of relaxing the collateral constraint. The user

cost of intangibles is too low because, generally speaking, our approach estimates an implicit

discount rate of shareholders, r̂ = r̂ − g + g, that is too low. The estimated shareholder

discount rate obtained in our approach can be written as:

r̂ =

(
1− Ee

t

V e
t

)
rb +

Ee
t

V e
t

r < r.

In other words, our approach recovers the weighted average cost of capital, instead of the rele-

vant cost of capital for computing the opportunity cost of investing, which is the shareholders’

discount rate.

Finally, estimated markups are generally too high, relative to their true value, because

total estimated user costs in our approach are too low, relative to their true value:

R̂1 + R̂2S > R1 +R2S.

The effect of the overestimation of the user cost of physical capital always dominates, resulting

in estimates of total user costs that are too high, and therefore estimates of µ that are too

low relative to their true values.

How large are the biases likely to be? Figures 33 and 34 illustrate the potential size of

the biases.

Figure 33 reports the decomposition of the investment gap obtained using the baseline

model (top panel) and using the model with collateral constraints (middle and bottom panels).

In order to construct the latter two decompositions, θ and r−rb are all that is needed besides

the moments we already use in our baseline decomposition. We follow the model and use the

empirical debt-to-physical capital ratio in order to estimate the collateral tightness parameter

θ, since:

θ =
Bt+1

K1,t+1

.
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Moreover, we assume two potential values for r− rb, r− rb = 0.02 and r− rb = 0.05. There is

no clear source for calibrating the wedge between discount factors. However, the quantitative

effects are very small regardless of the value of r−rb chosen. The three panels of Figure 33 are

indeed hard to distinguish. Thus the potential biases in the investment gap decomposition,

though they generally would lead to a higher estimate of the importance of intangible rents

and a lower estimate of the importance of physical rents, are small quantitatively. In a similar

spirit, Figure 34 reports the implied markups for the baseline model and for two versions of

the model with a debt collateral constraint. The differences in implied markups are very close

across the different models, with a gap of 2% at most across the different models, occurring

toward the late 2000s.

Overall, we therefore conclude that, while the omission of debt frictions characterized by

a collateral constraint would generally lead our decomposition to produce biased estimates,

the quantitative effect of these biases would almost certainly be second order.

IA.D.10. Rents and productivity

We use the disaggregated data to assess whether our measure of rents (the parameter µ) is

related to productivity. A worry is that, because our approach uses average returns to capital

to identify µ, a high value of µ may reflect high marginal products of capital, rather than high

rents. In order to assess this possibility, we look at the correlation between measures of total

factor productivity at the industry level obtained from the BLS’ KLEMS data, described in

Appendix IA.C, and the measure of rents which we obtain from applying the balanced growth

model at the same level of sectoral aggregation.

In Figure 36, we report a scatterplot and regression results that highlight the lack of

correlation between the upward trend in rents, and total factor productivity growth, across

sectors. In all panels, a point represents a KLEMS industry s. Its vertical coordinate is

an estimate of the time slope β of the rents parameter in the industry over the 1985-2015

period. Its horizontal coordinate is the average growth rate of multi-factor productivity in

that industry over the same period. Simple regression lines by groups of industry are also

reported. The different panels of the figure correspond to different industry groups or different

measures of the intangible capital stock.
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The main message of the figure is that the correlation between our estimates of the rents

parameters and KLEMS’ measure of multifactor productivity growth is either zero or negative.

Visually, there is no clear correlation, and simple regressions all deliver robust t-statistics

below 1 in absolute value. Thus, this simple evidence suggests that our estimates of the

changes in rents do not simply (or even mainly) reflect changes in multifactor productivity.

An important caveat to this simple evidence is that, while the KLEMS multi-factor pro-

ductivity growth series have the advantage of relying strictly on output measures (as opposed

to revenue), they still implicitly assume perfect competition and no pure profits. If, in reality,

firms earn rents, the KLEMS measures will generally be biased. We explore this issue in more

detail in Crouzet and Eberly (2020); there, we argue that this bias could have led to sub-

stantially underestimated aggregate productivity growth, though not necessarily of sectoral

productivity growth.
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Broad sector Subsector NAICS codes

Consumer (20%)

Crop and Animal Production† 111

Forestry, Fishing, and Related Activities† 113

Wholesale Trade 42

Retail Trade 44

High-tech (11%)

Computer and Electronic Products 334

Publishing industries, except internet (includes software) 511

Motion picture and sound recording industries† 512

Data processing, internet publishing, and other information services 518 to 519

Broadcasting and telecommunications 515 to 517

Computer Systems Design and Related Services 5415

Healthcare (10%)

Chemical Products 325

Miscellaneous Manufacturing 339

Ambulatory Health Care Services† 621

Hospitals and Nursing and Residential Care Facilities 622 to 623

Manufacturing (22%)

Oil and Gas Extraction 211

Mining, except Oil and Gas 212

Support Activities for Mining 213

Utilities 22

Food and Beverage and Tobacco Products 311 to 312

Textile Mills and Textile Product Mills† 313 to 314

Apparel and Leather and Applied Products 315 to 316

Wood Products 321

Paper Products 322

Printing and Related Support Activities† 323

Petroleum and Coal Products 324

Plastics and Rubber Products 326

Nonmetallic Mineral Products 327

Primary Metal Products 331

Fabricated Metal Products 332

Machinery 333

Electrical Equipment, Appliances, and Components 335

Transportation Equipment 336

Furniture and Related Products 337

Table I. Composition of the Consumer, High-tech, Healthcare, and Manufacturing sectors
studied in Section III. Numbers in parentheses in the first column indicate the sectors’ share
of 2001 total value added by private non-financial businesses, constructed using KLEMS
data. These numbers do not add up to 100% because the remaining sectors, described in
Table II, also contribute to total value added by private businesses. The second and third
column reports reports the name of the subsectors and the corresponding NAICS codes.
Subsectors are defined following the classification used by the BLS to construct the KLEMS
data. Subsectors marked with † are dropped from the analysis of disaggregated subsectors
because they do not have at least 10 firms in Compustat in each year from 1985 to 2015.
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Broad sector Group Subsector NAICS codes

Other (36%)

Services (64%)

Legal services† 5411

Miscellaneous Professional, Scientific, and
Technical Services

5412 to 5414, 5416 to 5419

Management of companies and enterprises† 55

Administrative and Support Services 561

Waste Management and Remediation
Services†

562

Educational Services† 61

Social assistance† 624

Amusements, Gambling, and Recreation
Industries

713

Performing arts, spectator sports, museums,
and related activities†

711 to 712

Accommodation 721

Food Services and Drinking Places 722

Other services except Government† 81

Construction∗ (23%) Construction† 23

Transportation and
warehousing∗ (14%)

Truck Transportation 484

Other Transportation and Support Activities† 487 to 488

Air Transportation 481

Rail Transportation 482

Pipeline Transportation† 486

Water Transportation† 483

Transit and ground passenger transportation† 485

Warehousing and storage† 493

Table II. Composition of the Services and Other sectors. The number in parentheses in the
first column is the overall share of 2001 total value added by private non-financial businesses of
the sectors in this table, constructed using KLEMS data. The numbers in parentheses in the
second column report the share of each group in the all the sectors in the table (so that they
add up to 100%). The last columns the name of the subsectors and the corresponding NAICS
codes. Subsectors are defined following the classification used by the BLS to construct the
KLEMS data. Subsectors are defined following the classification used by the BLS to construct
the KLEMS data. Subsectors marked with † are dropped from the analysis of disaggregated
subsectors because they do not have at least 10 firms in Compustat in each year from 1985 to
2015. The Construction and Transportation groups are marked with ? to indicate that they
are not included in the analysis of the five main sectors (Consumer, High-tech, Healthcare,
Manufacturing, and Services), and that their subsectors are not included in the analysis of
disaggregate subsectors.
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Compustat non-financials (Intangibles = R&D + organization capital)

Consumer Services High-tech Healthcare Manufacturing

Targeted moments

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

i1 Physical investment rate 0.128 0.098 0.142 0.084 0.139 0.101 0.105 0.082 0.093 0.093

i2 Intangible investment rate 0.278 0.261 0.288 0.259 0.302 0.292 0.235 0.196 0.222 0.226

S Intangible/physical capital 0.799 0.813 0.260 0.259 0.541 0.548 0.729 1.171 0.267 0.087

ROA1 Return on physical capital 0.489 0.485 0.329 0.309 0.443 0.478 0.448 0.588 0.262 0.222

Q1 Av. Q for physical capital 2.672 2.651 2.517 2.587 2.937 3.261 3.064 4.306 1.743 1.743

g Growth rate of total capital stock 0.054 0.037 0.082 0.016 0.065 0.014 0.046 0.028 0.016 0.028

Implied moments

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

Q1 − q1 Investment gap 1.523 1.645 1.380 1.574 1.634 2.424 1.908 3.329 0.367 0.687

% rents from physical capital 9 14 50 50 13 32 13 18 -21 35

% intangibles 77 63 26 21 73 29 67 45 132 48

% rents from intangibles 14 23 24 29 14 39 20 38 -11 17

η Intangible share in production 0.606 0.627 0.325 0.371 0.507 0.546 0.580 0.683 0.373 0.333

s Rents as a fraction of value added 0.011 0.027 0.042 0.082 0.019 0.073 0.026 0.065 -0.009 0.027

R1 User cost of physical capital 0.185 0.167 0.190 0.149 0.197 0.174 0.171 0.150 0.173 0.158

R2 User cost of intangible capital 0.354 0.346 0.355 0.340 0.384 0.378 0.323 0.278 0.321 0.300

µ Curvature of operating profit function 1.040 1.086 1.163 1.317 1.075 1.273 1.103 1.240 0.977 1.088

µ̃ Markup over value added 1.040 1.086 1.043 1.090 1.020 1.079 1.027 1.070 0.992 1.028

Table III. Summary of targeted and implied moments for the different sectors of the Compustat non-financial sample. All columns measure
intangibles as the sum of the R&D capital stock plus the organization capital stock. The moments are averages over the sub-period indicated
in each column. The intangible share in production is estimated under the assumption that physical and intangible capital are Cobb-Douglas
substitutes: Kt = K1−η

1,t K
η
2,t. Rents as a fraction of value added are computed as s = (1− sL)(1− 1/µ), where sL is the labor share of value

added for the NFCB sector. Markups over value added are computed as µ̃ = 1/(1 − s). The implied moments reported are for the model
with adjustment costs; the adjustment cost values are γ1 = 3 and γ2 = 12. In the decomposition of the investment gap, percentages may not
add up due to rounding. Data sources and construction are described in Section III.
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Non-Financial Compustat Non-Financials

Corporate Businesses Intangibles = R&D Intangibles = R&D + org. cap.

Structural parameters
2000

-
1985

2017
-

2001
Diff.

2000
-

1985

2017
-

2001
Diff.

2000
-

1985

2017
-

2001
Diff.

ḡ Mean g.r. of fundamentals 0.029 0.019 -0.010 0.030 0.025 -0.005 0.031 0.024 -0.007
[0.021,0.037] [0.016,0.021] (0.021) [0.022,0.039] [0.006,0.043] (0.625) [0.019,0.042] [0.007,0.040] (0.530)

r Discount rate 0.067 0.056 -0.011 0.087 0.088 0.002 0.087 0.087 0.000
[0.062,0.073] [0.051,0.061] (0.000) [0.069,0.104] [0.069,0.107] (0.911) [0.068,0.106] [0.070,0.105] (0.993)

δ1 Phys. depreciation rate 0.070 0.068 -0.002 0.079 0.069 -0.010 0.078 0.070 -0.009
[0.067,0.073] [0.065,0.072] (0.413) [0.065,0.092] [0.050,0.087] (0.437) [0.062,0.094] [0.053,0.086] (0.510)

δ2 Intan. depreciation rate 0.251 0.242 -0.010 0.230 0.223 -0.007 0.221 0.221 0.000
[0.239,0.264] [0.234,0.250] (0.166) [0.209,0.251] [0.198,0.248] (0.674) [0.203,0.238] [0.197,0.245] (0.990)

η Cobb-Douglas intan. share 0.223 0.281 0.058 0.201 0.247 0.046 0.426 0.474 0.049
[0.196,0.250] [0.276,0.287] (0.000) [0.183,0.219] [0.240,0.254] (0.000) [0.407,0.444] [0.464,0.484] (0.000)

µ Curv. of profit function 1.196 1.276 0.079 1.241 1.387 0.146 1.121 1.208 0.087
[1.157,1.235] [1.253,1.299] (0.002) [1.108,1.374] [1.357,1.418] (0.043) [1.016,1.226] [1.182,1.234] (0.122)

Implied moments
2000

-
1985

2017
-

2001
Diff.

2000
-

1985

2017
-

2001
Diff.

2000
-

1985

2017
-

2001
Diff.

µV A Markup over value added 1.051 1.079 0.028 1.061 1.105 0.044 1.033 1.062 0.029
[1.042,1.061] [1.069,1.090] (0.001) [1.032,1.091] [1.095,1.115] (0.012) [1.006,1.060] [1.054,1.070] (0.056)

sV A Rents/value added 0.049 0.073 0.025 0.058 0.095 0.037 0.032 0.059 0.026
[0.040,0.057] [0.064,0.082] (0.001) [0.032,0.084] [0.087,0.103] (0.015) [0.007,0.057] [0.051,0.066] (0.061)

R1 User cost of phy. cap. 0.137 0.125 -0.013 0.165 0.157 -0.008 0.165 0.157 -0.008
[0.133,0.142] [0.122,0.127] (0.000) [0.158,0.173] [0.146,0.168] (0.181) [0.158,0.173] [0.146,0.168] (0.181)

R2 User cost of intan. cap. 0.319 0.298 -0.021 0.317 0.311 -0.006 0.308 0.308 0.000
[0.307,0.331] [0.292,0.304] (0.002) [0.308,0.326] [0.302,0.320] (0.386) [0.300,0.316] [0.296,0.320] (0.963)

Table IV. GMM estimation of a version of the model with with i.i.d. shocks to the growth rate of fundamentals. The columns marked
“Non-Financial Corporate Businesses” report results obtained aggregate data for the NFCB sector, while the columns marked “Compustat
Non-Financials” report results using aggregated data from the sample of Compustat non-financial firms. In the columns marked “1985-2000”
and “2001-2017”, the numbers in brackets are (5, 95) confidence intervals for the point estimates of the different parameters or implied
moments, computed using HAC standard errors based on a Bartlett kernel with four lags (the data are all annual). Point estimates for
implied moments are computed by stacking the moment conditions defining these additional implied moments with the rest of the GMM
moment conditions. The columns marked ”Diff.” report the change in structural parameters or implied moments across periods; the numbers
in parentheses are p-values for the two-sided test that the difference is equal to 0. The p-value is computed by re-estimating the model on all
the data from 1985 to 2017, and interacting all data and estimated parameters or implied moments with a full set of dummies for each of the
two sub-samples. Estimation is done using two-step efficient GMM with the identity matrix as the first-step weighting matrix. More details
are provided in Appendix IA.D.5.
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Ratio to:

Sales St Value added VAt Operating surplus Πt

Variable input costs
WtMt

1− α
χ

1− α
χ− (1− α)(1− ν1)

1− α
χ− (1− α)

Labor costs
W1,tM1,t

1− α
χ

ν1
1− α

χ− (1− α)(1− ν1)
ν1

1− α
χ− (1− α)

ν1

Capital costs†

R1,tK1,t +R2,tK2,t
α

χ

α

χ− (1− α)(1− ν1)

α

χ− (1− α)

Rents†

Ret
χ− 1

χ

χ− 1

χ− (1− α)(1− ν1)

χ− 1

χ− (1− α)

Value added
VAt 1− 1− α

χ
(1− ν1) 1 1 +

1− α
χ− (1− α)

ν1

Operating surplus
Πt 1− 1− α

χ
1− 1− α

χ− (1− α)(1− ν1)
ν1 1

Table V. Expression for the ratios of variable input costs, labor costs, capital costs, rents,
value added, and operating surplus, to sales, value added, and operating surplus implied by
the variable profit maximization problem described in Appendix IA.B.3. These expressions
hold generally (regardless of how capital inputs are chosen), except the expressions for capital
and rents shares, marked with †, which only hold in the balanced growth model of Section
C of the main text. Variable input costs are defined as

∑
jWj,tMj,t = WtMt, where Wt and

Mt are aggregate price and quantity indices defined in Appendix IA.B.3. Without loss of
generality, labor is assumed to be the first variable input, entering the aggregate quantity
index Mt with Cobb-Douglas share ν1. The parameter α is the Cobb-Douglas elasticity of
substitution between capital Kt and variable inputs Mt. The reduced-form parameter χ ≥ 1
indexes the importance of rents in the model; it is given, in terms of structural parameters,
by ζ = µS

ζ
, where µS is the markup of the price of output over the marginal cost of output,

and ζ is the degree of returns to scale to the capital-variable input bundle Kα
t M

1−α
t . Revenue

is St = PtYt; value added is V At = St− (WtMt−W1,tM1,t) = Πt+W1,tM1,t; operating surplus
is Πt = V At −WtMt. Given competitive payments to capital R1,tK1,t + R2,tK2,t, rents are
defined as: Ret = Πt − (R1,tK1,t +R2,tK2,t).
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Compustat Non-Financials

R&D R&D + org. cap.

Identified parameters
2000

-
1985

2017
-

2001

2000
-

1985

2017
-

2001

µ Curvature of profit function 1.152 1.346 1.038 1.168

α Elast. subs. btw. Kt and Mt 0.144 0.135 0.197 0.191

χ = µS/ζ 1.021 1.047 1.007 1.032

Implied markup over sales µS

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

µS Decreasing returns (ζ = 0.95) 0.970 0.994 0.957 0.980

µS Constant returns (ζ = 1.00) 1.021 1.047 1.007 1.032

µS Increasing returns (ζ = 1.05) 1.072 1.099 1.057 1.084

Implied size of rents
2000

-
1985

2017
-

2001

2000
-

1985

2017
-

2001

s Rents as a fraction of value added 0.037 0.088 0.009 0.049

due to markups (if ζ = 0.95) -0.081 -0.015 -0.086 -0.039

due to markups (if ζ = 1.00) 0.037 0.088 0.009 0.049

due to markups (if ζ = 1.05) 0.099 0.144 0.066 0.104

Table VI. Markups and decreasing returns in the Compustat Non-Financial sample. The
first panel reports estimates of three parameters of the version of the balanced growth model
with an explicit microfoundation for variable input choices. α is the Cobb-Douglas elasticity of
substitution between variable inputs and capital. χ is the reduced-form parameter governing
the size of rents as a fraction of total sales; it is equal to the ratio of the two structural
parameters µS (the markup of the marginal cost of variable inputs over sales) and ζ (the
degree of returns to scale with respect to variable inputs and capital). The reduced-form
parameter µ, which governs the size of rents as a fraction of operating surplus, is the same
as in the balanced growth model of Section I, and is related to the other parameters by
µ = 1+ χ−1

α
. The estimates of these parameters are obtained using the methodology described

in II; in particular, the values of the rents parameter µ are the same as in Section II. The
second and third panels report the values for the markup µS implied by different assumptions
regarding the degree of returns to scale, as well as the implications for the size of rents as a
fraction of value added. The “rents due to markups” are defined as (1−sL) (α/(α + µS − 1)).
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Non-Financial Corporate Businesses
Compustat

non-financials
(R&D)

Compustat
non-financials

(R&D+ org. cap.)

Targeted moments
1965

-
1947

1984
-

1966

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

i1 Physical investment rate 0.089 0.108 0.099 0.087 0.097 0.090 0.097 0.090

i2 Intangible investment rate 0.252 0.276 0.281 0.261 0.260 0.248 0.251 0.245

S Intangible/physical capital 0.053 0.078 0.124 0.164 0.102 0.136 0.308 0.377

ROA1 Return on physical capital 0.208 0.211 0.211 0.221 0.225 0.256 0.276 0.314

Q1 Av. Q for physical capital 1.184 1.413 2.032 2.479 1.764 2.177 1.764 2.177

g Growth rate of total capital stock 0.034 0.038 0.029 0.019 0.026 0.024 0.026 0.024

Implied moments
1965

-
1947

1984
-

1966

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

Q1 − q1 Investment gap 0.072 0.308 0.908 1.439 0.620 1.173 0.859 1.446

% rents from physical capital 69 41 61 71 71 66 36 33

% intangibles 25 52 21 14 15 15 43 41

% rents from intangibles 7 7 18 24 15 19 21 26

η Intangible share in production 0.099 0.145 0.227 0.286 0.179 0.222 0.392 0.440

s Rents as a fraction of value added -0.008 0.014 0.035 0.067 0.029 0.076 0.005 0.043

R1 User cost of physical capital 0.193 0.171 0.143 0.128 0.164 0.155 0.163 0.155

R2 User cost of intangible capital 0.392 0.369 0.341 0.312 0.350 0.326 0.339 0.322

µ Rents parameter 0.984 1.051 1.136 1.244 1.117 1.290 1.023 1.145

µ̃ Markup over value added 0.993 1.014 1.037 1.072 1.030 1.083 1.005 1.045

Table VII. Complete version of Table I from the main text. For Compustat non-financials, columns 6 and 7 use R&D as the measure of
intangibles, and columns 8 and 9 use the sum of R&D and SG&A as the measure of intangibles. The moments are averages over the sub-period
indicated in each column. The intangible share in production is estimated under the assumption that physical and intangible capital are
Cobb-Douglas substitutes: Kt = K1−η

1,t K
η
2,t. Rents as a fraction of value added are computed as s = (1− sL)(1− 1/µ), where sL is the labor

share of value added for the NFCB sector. Markups over value added are computed as µ̃ = 1/(1− s). The implied moments reported are for
the model with adjustment costs; the adjustment cost values are γ1 = 3 and γ2 = 12. In the decomposition of the investment gap, percentages
may not add up due to rounding. Data sources are described in Sections II and III.
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Compustat non-financials (Intangibles = R&D)

Consumer Services High-tech Healthcare Manufacturing

Targeted moments

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

i1 Physical investment rate 0.128 0.098 0.142 0.084 0.139 0.101 0.105 0.082 0.094 0.093

i2 Intangible investment rate 0.245 0.317 0.241 0.224 0.346 0.331 0.225 0.190 0.226 0.226

S Intangible/physical capital 0.008 0.023 0.028 0.010 0.227 0.238 0.346 0.722 0.113 0.087

ROA1 Return on physical capital 0.269 0.281 0.261 0.245 0.359 0.397 0.355 0.495 0.226 0.222

Q1 Av. Q for physical capital 2.672 2.651 2.517 2.587 2.937 3.261 3.064 4.306 1.467 1.743

g Growth rate of total capital stock 0.054 0.037 0.082 0.016 0.065 0.014 0.046 0.028 0.016 0.028

Implied moments

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

2000
-

1985

2017
-

2001

Q1 − q1 Investment gap 1.523 1.645 1.380 1.574 1.634 2.424 1.908 3.329 0.367 0.687

% rents from physical capital 98 93 93 97 46 55 42 32 43 72

% intangibles 1 2 3 1 31 13 30 27 47 16

% rents from intangibles 1 6 4 2 23 32 28 41 9 12

η Intangible share in production 0.013 0.058 0.038 0.020 0.324 0.367 0.387 0.562 0.176 0.143

s Rents as a fraction of value added 0.087 0.124 0.070 0.130 0.044 0.110 0.060 0.103 0.016 0.052

R1 User cost of physical capital 0.188 0.169 0.191 0.150 0.198 0.174 0.173 0.151 0.175 0.159

R2 User cost of intangible capital 0.319 0.418 0.310 0.306 0.429 0.420 0.316 0.271 0.332 0.305

µ Curvature of operating profit function 1.412 1.575 1.308 1.621 1.184 1.474 1.260 1.433 1.064 1.186

µ̃ Markup over value added 1.095 1.142 1.075 1.150 1.047 1.124 1.064 1.115 1.017 1.055

Table VIII. Complete version of Table II from the main text. All columns measure intangibles as the R&D capital stock. The moments are
averages over the sub-period indicated in each column. The intangible share in production is estimated under the assumption that physical
and intangible capital are Cobb-Douglas substitutes: Kt = K1−η

1,t K
η
2,t. Rents as a fraction of value added are computed as s = (1−sL)(1−1/µ),

where sL is the labor share of value added for the NFCB sector. Markups over value added are computed as µ̃ = 1/(1 − s). The implied
moments reported are for the model with adjustment costs; the adjustment cost values are γ1 = 3 and γ2 = 12. In the decomposition of the
investment gap, percentages may not add up due to rounding. Data sources are described in Section III.
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Figure 1. Time series for the moments used in the construction of the physical investment gap decomposition, Equation (19) from the main
text. Returns to physical capital are defined as Πt/K1,t, where Πt is operating surplus and K1,t the stock of physical capital at current cost.
Investment rates are defined as in,t = In,t/Kn,t, n = 1, 2, where n = 1 indexes physical capital and n = 2 indexes intangible capital, K2,t is the
stock of intangible capital at current cost, and In,t are investment expenditures for each type of capital. The ratio of intangible to physical
capital is St = K2,t+1/K1,t+1. Average Tobin’s Q of physical capital is defined as Q1,t = Vt/K1,t+1, where Vt is an estimate of the total market
value of net claims on the sector. The time series are the raw data; in particular, they are not averaged over seven-year windows. Data
sources are described in Section II and in Appendix IA.C.
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Panel A. Implied firm discount rate

0

.05

.1

.15

.2

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Baseline approach
Average cost of  capital approach (cost of  equity from PD ratio)
Average cost of  capital approach (cost of  equity from risk-free rate + constant risk premium)

Panel B. Implicit risk premium in cost of equity
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Figure 2. Firm discount rates (top panel) and implicit equity risk premium (bottom panel)
across different approaches. The top panel reports the firm-wide discount rate expressed in
nominal terms, defined as rn = (r − g) + gn. The bottom panel reports the risk premium
implicit in the equity cost of capital across different approaches. In all three approaches
approach, this is computed as RP = (1 + l)(rn − l/(1 + l)rnb )− rnf , where l is the ratio of the
market value of debt to the market value of equity, and rnb is the (after-tax, nominal) cost of
debt reported in Appendix Figure 15.
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Panel A. Growth rates of capital stocks at current cost
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Panel B. Growth rates of real quantity indices for capital stocks
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Panel C. Growth rate of intangible capital stock minus growth rate of physical capital stock
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Figure 3. Growth rates for intangible, physical, and total capital stocks. The top panel
reports the growth rates of net capital stocks at current cost, obtained from Fixed Assets
table 4.1; physical capital is defined as the sum of equipment and structures, intangible
capital is defined as intellectual property products, and total capital is the sum of the two.
The medium panel reports the growth rates of real quantity indices for capital stocks. For
intangible and total capital, this is obtained from Fixed Assets table 4.2; for physical capital,
the growth rate is constructed as described in Appendix IA.C.3. The bottom panel reports
the difference between the growth rate of intangible capital and the growth rate of physical
capital, when they are measured using either stocks at current cost (”nominal”) or quantity
indices (”real”).
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Panel A. Implied depreciation rate of physical capital
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Panel B. Implied depreciation rate of intangibles

.15

.2

.25

.3

.35

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Gross investment rate (data) Average depreciation rate (data) Implied depreciation rate (model)

Figure 4. Gross investment rates and average depreciation rates in the data, and model-
implied depreciation rates. Data is for the NFCB sector. The top panel reports data for
physical capital, and the bottom panel reports data for intangible capital. Each panel reports
the gross investment rate (black triangle line) and average depreciation rates (black solid
line), both computed from BEA Fixed Assets tables. In particular, average depreciation
rates are computed using current cost estimates of depreciation and net stocks. Model-
implied depreciation rates (teal crossed lines) are computed as δi = Ri − r − γirg = ιi − g,
i = 1, 2. Appendix IA.C.4 contains more detail on methodology and data sources.
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Figure 5. Time series moments for Compustat Non-Financial (NF), all sectors (aggregated). The corresponding time series moments for the
aggregate non-financial corporate business (NFCB) sector are also reported, for comparison. All variables are defined as in Appendix Figure
1. Data sources for the NFCB sector are described in Section II and Appendix IA.C. Data sources are described in Section III.
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Panel A. Intangibles = R&D
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Panel B. Intangibles = R&D + organization capital
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Panel C. Separating R&D and organization capital
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Figure 6. The investment gap Q1 − q1 for physical capital in the Compustat Non-Financial
(NF) sample. The top panel reports results when only R&D is used to measure intangibles.
The middle panel reports results when both R&D and organization capital are used to measure
intangibles. In the top and middle panels, we use the version of model with adjustment costs
γ1 = 3 and γ2 = 12, in order to construct the components of the investment gap. The bottom
panel reports a version of the decomposition that separates explicitly the contribution of the
terms related to R&D capital (in green) and those related to organization capital (in orange).
In order to construct this decomposition, we use a model with adjustment costs of γ1 = 3 for
physical capital, γ2 = 12 for R&D capital, and γ3 = 3.2. Our values for adjustment costs are
drawn from Belo et al. (2019). Methodology and data sources are described in Section III.
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Panel A. Intangible share
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Panel B. Rents as a fraction of value added
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Panel C. User cost of physical capital
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Panel D. User cost of intangible capital
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Figure 7. Other model moments for the Compustat Non-Financial (NF) sample. Panel (a) reports the share of intangibles in production, η,
when the capital aggregator is assumed to be Cobb-Douglas: Kt = K1−η

1,t K
η
2,t. Panel (b) reports rents as a fraction of value added, sV A, which

is given by sV A = (1− sL)(1−1/µ), where µ is the model parameter governing the size of rents, and sL is labor’s share of value added. Panels
(c) and (d) report user costs for each type of capital, R1 and R2. We use the version of model with adjustment costs γ1 = 3 and γ2 = 12, in
order to construct the components of the investment gap. Methodology and data sources are described in Section III.
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Panel A. Average Tobin’s Q for physical capital, Q1
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Panel B. Investment gap
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Figure 8. Robustness: the investment gap Q1 − q1 for physical capital in the non-financial
corporate (NFCB) sector when using the Hall (2001) measure of Tobin’s average Q for physical
assets. Panel A reports our baseline measure of average Tobin’s Q for physical capital, Q1

(black line), and an alternative measure based on Hall (2001). The difference between the
two is that our baseline measure only nets out financial assets identified as liquid in the Flow
of Funds in the computation of the net value of claims on the NFCB sector. Panel B reports
the investment gap in the model without adjustment costs (γ1 = γ2 = 0). Details on the
construction of total enterprise value are discussed in Appendix IA.C.2.
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Panel A. 1985-2015 change in Q1-q1 Panel B. 2015 contribution of intangibles to Q1-q1

Panel C. 2015 intangible share Panel D. 2015 rents as a fraction of value added

Figure 9. Robustness: adjustment costs. Each panel reports a moment from the invest-
ment gap decomposition, Equation (19), for the NFCB sector, for different combinations of
adjustment costs for physical and intangible capital. In each panel, a point corresponds to a
particular combination for (γ1, γ2), and the color corresponds to the value of the moments,
with the correspondence reported on the right axis. Panel (a) reports the change in Q1 − q1

from 1985 to 2015; in our baseline results with positive adjustment costs, this moment is equal
to 1.30. Panel (b) reports the contribution of intangibles to Q1 − q1 in 2015; in our baseline
results, this moment is equal to 0.39 (or 39%). Panel (c) reports the implied intangible share
in production in 2015; in our baseline results with positive adjustment costs, this moment
is equal to 0.29. Panel (d) reports rents as a share of value added in 2015; in our baseline
results with positive adjustment costs, this moment is equal to 0.063. Our baseline results
with positive adjustment costs use γ1 = 3 and γ2 = 12. Methodology and data sources are
described in Section II in the main text.
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Panel A. No equity financing frictions (f ′(d) = 1)
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Panel B. Positive equity financing frictions (f ′(d) = 0.90)
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Panel C. High equity financing frictions (f ′(d) = 0.80)
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Figure 10. The investment gap for physical capital in the Compustat Non-Financial (NF)
sample, for different magnitudes of equity financing frictions. In each panel, the crossed green
line is an estimate of the investment gap. The shaded areas present the decomposition of the
physical investment gap into two terms, corresponding to total rents (the dark region) and
the omitted intangibles effect (light region). The top panel reports results with no equity
financing frictions (f ′(d) = 1); the middle panel reports results positive equity financing
frictions (f ′(d) = 0.90); and the bottom panel reports results with high equity financing
frictions (f ′(d) = 0.80). The methodology is described in Section IV in the main text and
Appendix IA.D.9.1.
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Panel A. Consumer sector, no frictions (f ′(d) =

1)
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Panel B. Consumer sector, frictions (f ′(d) =

0.90)
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Panel C. Services sector, no frictions (f ′(d) = 1)
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Panel D. Services sector, frictions (f ′(d) = 0.90)
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Panel E. High-tech sector, no frictions (f ′(d) =
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Panel F. High-tech sector, frictions (f ′(d) =

0.90)
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Panel G. Healthcare sector, no frictions (f ′(d) =
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Panel H. Healthcare sector, frictions (f ′(d) =

0.90)
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Panel I. Manufacturing sector, no frictions

(f ′(d) = 1)
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Panel J. Manufacturing sector, frictions (f ′(d) =

0.90)
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Figure 11. Sectoral investment gaps, with and without equity financing frictions. The
left column reports the investment gaps obtained in our baseline approach, without equity
financing frictions. The left column reports the gaps with equity financing frictions, assuming
f ′(d) = 0.90. The methodology is described in Section IV in the main text and Appendix
IA.D.9.1.
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Panel A. Rents as a fraction of value added: NFCB sector
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Panel B. Rents as a fraction of value added: Compustat non-financial firms
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Figure 12. Rents as a fraction of value added, in the case of no intangibles versus the baseline.
The top panel reports results obtained using aggregate data for the Non-Financial Corporate
Business (NFCB) sector. The bottom panel reports results obtained using aggregated data
for the Compustat non-financial (NF) sample. In both panels, the circled line is the trend
in markups obtained when we assume that firms have no intangible assets. The other lines
correspond to the cases where either capitalized R&D, or capitalized R&D plus capitalized
SG&A are used to measure the intangible capital stock. In both panels, we use the version
of model with adjustment costs γ1 = 3 and γ2 = 12.
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Panel A. Cobb-Douglas share of intan, NFCB
sector
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Panel B. Intangibles/physical capital: NFCB
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Panel C. Cobb-Douglas share of intan: Com-
pustat NF
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Panel D. Intangibles/physical capital: Com-
pustat NF
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Figure 13. The importance of intangible capital in production, in the case of no rents versus
the baseline. The top panels reports results obtained using data for the non-financial corpo-
rate business (NFCB) sector. The bottom panels reports results obtained using aggregated
data from Compustat nonfinancials (NF). Panels in the left column report estimates of the
intangible share of capital in the production function, η, assuming a Cobb-Douglas specifica-
tion. Panels in the right column report estimates of the stock of intangible capital relative
to physical capital, S. The two are related through η/(1 − η) = SR2/R1. In all panels, the
circled lines represent the implied values of η or S when we assume no rents, µ = 0. The
other lines correspond to the cases where either capitalized R&D, or capitalized R&D plus
capitalized SG&A are used to measure the intangible capital stock. In all panels, we use the
version of model with adjustment costs γ1 = 3 and γ2 = 12.
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Panel A. Positive adjustment costs and g = g1 = g2

0

.5

1

1.5

2

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Rents attributable to physical capital Intangibles Rents attributable to intangibles Total

Panel B. Positive adjustment costs and g 6= g1 6= g2
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Figure 14. The investment gap Q1 − q1 for physical capital in the non-financial corporate
business (NFCB) sector, allowing for heterogeneous growth rates between physical and intan-
gible capital. The top panel reports the investment gap in our baseline approach with positive
adjustment costs (γ1 = 3, γ2 = 12), where the two types of capital are assumed to grow at
the same rate (g1 = g2 = g), and g is measured using the growth rate of the total capital
stock in the NFCB sector. The results are the same as the middle panel of Figure 1 in the
main text. The bottom panel reports the investment gap decomposition when we allow for
heterogeneous growth rates in intangible and physical capital, g1 6= g2, in the measurement
of marginal q for physical capital and intangible capital. The two growth rates are computed
using data from the Fixed Asset Tables, as described in Appendix IA.C.3.
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Figure 15. Time series for the PD ratio used in alternative approach 1. The short dashed
line is the unadjusted PD ratio, PD = 1/(Rc

E,t−1,t−Re
E,t−1,t), where Re

E,t−1,t and Rc
E,t−1,t are,

respectively, the cum- and ex-dividend returns on the S&P 500. The long dashed line is the
PD ratio adjusted for leverage, ˜PD = (1 + l)PDE/(1 + (rnB − gn)lPD), where l = Be

t−1/E
e
t−1

is market leverage, rnB is the (after-tax, nominal) interest rate on debt securities, and gn is
the nominal growth rate of the total capital stock. Data sources are described in Appendix
IA.C.
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Panel A. Using the PD ratio to measure the cost of equity
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Panel B. Using risk-free rate + constant risk premium to measure the cost of
equity
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Figure 16. Components of the average cost of capital. All the costs of capital are expressed
in nominal terms. Both panels report rnB, r

n
E and rn, which are respectively the cost of debt,

equity, and the weighted average cost of capital, where rn = l/(1+ l)rnb +1/(1+ l)rne . rn is the
nominal discount rate and is related to the Gordon growth term via rn = (r− g) + gn, where
gn is the growth rate of the nominal capital stock. rnE is the nominal cost of equity. In the top
panel, it is measured as rnE = PD−1 + gn, where PD is the PD ratio reported in Appendix
Figure 15. In the bottom panel, it is measured as rnE = rnf + RP , where rnf is the (nominal)
rate of return on one-month T-bill, and RP is a constant risk premium of RP = 6.5%. In
both panels, rnb is an average interest rate on debt liabilities of non-financial corporate firms.
More details are provided in Appendix IA.D.6.1.
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Panel A. Physical investment gap decomposition
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Panel B. Tobin’s Q for physical capital, Q1
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Panel C. Rents as a fraction of value added
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Figure 17. Results in the average cost of capital approach, when the PD ratio is used
to measure the cost of equity. Data is for the non-financial corporate (NFCB) sector. The
top panel reports the decomposition of the investment gap obtained obtained using this
approach. The bottom panels compare the value of Q1 (left panel) and of the share of rents
as a fraction of value added s = (1− µ−1)(1− LS), between our baseline and this approach.
Solid correspond to the baseline, which matches empirical values of Q1, while circled lines
correspond to alternative approach 1. The model without adjustment costs (γ1 = γ2 = 0) is
used in both cases.
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Panel A. Physical investment gap decomposition
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Panel B. Tobin’s Q for physical capital, Q1
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Panel C. Rents as a fraction of value added
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Figure 18. Results in the average cost of capital approach, when the risk-free rate plus a
constant risk premium is used to measure the cost of equity. Data is for the non-financial
corporate (NFCB) sector. The top panel reports the decomposition of the investment gap
obtained obtained using this approach. The bottom panels compare the value of Q1 (left
panel) and of the share of rents as a fraction of value added s = (1− µ−1)(1− LS), between
our baseline and this approach. Solid correspond to the baseline, which matches empirical
values of Q1, while circled lines correspond to the alternative approach. The model without
adjustment costs (γ1 = γ2 = 0) is used in both cases. For Tobin’s Q1 and the investment
gap, only values after 1985 are reported, because before 1985, the implied discount rate is
frequently very close to or below the growth rate g, leading to implausible values for Q1 and
the investment gap.
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Panel A. Physical investment gap decomposition
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Panel B. Ratio of intangible to physical cap-
ital, S
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Panel C. Rents as a fraction of value added

-.04

-.02

0

.02

.04

.06

.08

.1

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Model-implied, baseline approach
Model-implied, using investment gap to infer S

Figure 19. Results when the size of the investment gap is used to infer the ratio of intangible
to physical capital, S. Data is for the non-financial corporate (NFCB) sector. The top panel
reports the decomposition of the investment gap obtained obtained using this approach. The
bottom panels compare the value of S (left panel) and of the share of rents as a fraction of
value added s = (1 − µ−1)(1 − LS) (right panel), between our baseline and this approach.
Solid lines correspond to the baseline, which matches empirical values of S, while dashed lines
correspond to the alternative approach. The model without adjustment costs (γ1 = γ2 = 0)
is used in both cases.
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Panel A. Physical investment gap decomposition
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Panel B. Return on physical assets, ROA1
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Panel C. Rents as a fraction of value added
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Figure 20. Results when the size of the investment gap is used to infer the size of the
rents parameter µ. Data is for the non-financial corporate (NFCB) sector. The top panel
reports the decomposition of the investment gap obtained obtained using this approach. The
bottom panels compare the value of ROA1 (left panel) and of the share of rents as a fraction
of value added s = (1− µ−1)(1− LS) (right panel), between our baseline and this approach.
Solid correspond to the baseline, which matches empirical values of ROA1, while dashed lines
correspond to the alternative approach. The model without adjustment costs is used in both
cases.
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Figure 21. Total market value of securities outstanding from the non-financial corporate
(NFCB) sector, Vt. Vt is defined as the sum of the market value of equity securities, plus an
estimate of the market value of non-equity claims, minus financial assets. The estimate of the
market value of non-equity claims is equal to their book value, plus an adjustment for the
difference between the market and book value of corporate bonds and municipal securities,
following Hall (2001). Data are from the Flow of Funds. The black line reports the estimate
used in the main text. The green dotted line is the estimate of Vt constructed by Hall
(2001), and obtained from his replication data, available at web.stanford.edu/~rehall/

SMCA_Data_Appendix.html. The solid blue line is an extension of the Hall (2001) estimate
of Vt to 2017. The differences between original and extended Hall (2001) estimates come
from small differences in the updated data sources, and in the time series for the stock of
municipal bonds and the issuance of corporate bonds in the 1950s and 1960s. All time series
are deflated using the deflator for investment in non-residential fixed assets (FRED series
A008RD3Q086SBEA) for the solid blue and black lines, and the original deflator constructed
by Hall (2001) for the dotted green line. More details on data sources and methodology are
reported in Appendix IA.C.1.
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Figure 22. Measures of the dollar value of investment in the NFCB sector (top panel), and
of the investment rate (bottom panel). Dashed lines are measures obtained using BEA data,
while solid lines are measures obtained using Compustat data. Differences between the series
are discussed in Appendix IA.C.5.
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Figure 23. Comparison between alternative measures of Πt/(K1,t+K2,t) (surplus per unit of
total capital; top panel) and Yt/(K1,t +K2,t) (value added per unit of capital; bottom panel)
in BEA data. The construction of each time series is discussed in Appendix IA.C.1. The blue
line reproduces the measures of Π/K and Y/K used in Farhi and Gourio (2018), which differ
from our measures primarily because we focus only on the NFCB sector instead of the whole
economy. See Appendix IA.C.1 for further details on data sources.
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Figure 24. Measures of the total physical capital stock at current cost (K1), of surplus (Π),
and of the ratio of surplus to capital (Π/K1) in BEA and Compustat data. All nominal data
are deflated using the CPI with base 2009. Differences between the series are discussed in
Appendix IA.C.5.
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Figure 25. Time series moments for the Consumer sector, in the Compustat nonfinancials (NF) sample. All variables are defined as in
Figure 1. Data sources for Compustat NF are described in Section III. The sectoral classification is described in Appendix Tables I and II.
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Figure 26. Time series moments for the High-Tech sector, in the Compustat nonfinancials (NF) sample. All variables are defined as in
Figure 1. Data sources for Compustat NF are described in Section III. The sectoral classification is described in Appendix Tables I and II.
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Figure 27. Time series moments for the Healthcare sector, in the Compustat nonfinancials (NF) sample. All variables are defined as in
Figure 1. Data sources for Compustat NF are described in Section III. The sectoral classification is described in Appendix Tables I and II.
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Figure 28. Time series moments for the Manufacturing sector, in the Compustat nonfinancials (NF) sample. All variables are defined as in
Figure 1. Data sources for Compustat NF are described in Section III. The sectoral classification is described in Appendix Tables I and II.
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Figure 29. Time series moments for the Services sector, in the Compustat nonfinancials (NF) sample. All variables are defined as in Figure
1. Data sources for Compustat NF are described in Section III. The sectoral classification is described in Appendix Tables I and II.
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Panel A. Share of intermediate goods produced using intangibles in total revenue
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Panel B. Implied rents parameters
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Figure 30. Share of intermediate goods produced using intangibles. The revenue function

of the firm is assumed to be given by Πt =
(
A

1−1/µ1
1,t K

1/µ1
1,t

)1−η (
A

1−1/µ2
2,t K

1/µ2
2,t

)η
, where µ1

indexes rents generated by intangibles and µ2 indexes rents generated by physical capital.
The top panel reports the value of η when µ1 = 1 (circled line) and when µ2 = 1 (crossed
line). The bottom panel reports the implied value of µ2 when all rents are attributable to
intangibles (circled line), the implied value of µ1 when all rents are attributable to physical
capital (crossed line), and user-cost weighted average rents parameter µ, which is identical
in either case, and is also equal to the rents parameter µ obtained in our baseline analysis.
Details of the decomposition of the investment gap, and of the derivation of η, are reported
in Appendix IA.D.8.
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Panel A. Markup over sales µS (intangibles = R&D)
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Panel B. Markup over sales µS (intangibles = R&D + org. cap.)
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Figure 31. Markup over sales µS implied by different degrees of returns to scale ζ, in
the Compustat non-financial (NF) sample. The top panel reports results when intangibles
are defined are R&D only, and the bottom panel reports results when intangibles are de-
fined as R&D plus organization capital. In each panel, markups over sales are computed as
µS = (νK + (1− νK)(1− sΠ)))−1 ζ, where νK = (R1,tK1,t+R2,tK2,t)/Πt is the ratio of capital
payments to operating surplus, and sΠ = Πt/St is the ratio of operating surplus to sales. The
ratio of capital payments to operating surplus is obtained from solving the balanced growth
model; each point corresponds to a value estimated over a different 7-year centered window;
in the computation of µS, sΠ is also averaged over the same windows. See Section I in the
main text for more details.
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Figure 32. Composition bias with equity issuance frictions. The graph reports the time
series for ι2S/(ι1 + ι2S), when intangibles are measured either as R&D, or as the sum of
R&D and organization capital. This ratio provides the lower bound above which omitting
equity issuance frictions would bias upward the contribution of intangibles to total rents. See
Appendix IA.D.9.1 for more details.
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Panel A. r − rb = 0 (baseline model)
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Panel B. r − rb = 0.02 (model with collateral constraint)
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Panel C. r − rb = 0.05 (model with collateral constraint)
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Figure 33. The physical investment gap Q1−q1 with and without debt collateral constraints.
The top panel reports the investment gap in our baseline model, where we assume no frictions
in debt issuance. The middle and bottom panels report the physical investment gap in the
model with a collateral constraint limiting debt issuance, under different assumptions about
the wedge between shareholders’ and debtholders’ discount factor. In all three figures, we use
the model with no adjustment costs, and R&D as a measure of intangibles.
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Figure 34. Implied markup over value added µ̃ with and without debt collateral constraints.
The solid line reports the implied markup in our baseline model, where we assume no fric-
tions in debt issuance. The crossed and dashed line report the markup in the model with
a collateral constraint limiting debt issuance, under different assumptions about the wedge
between shareholders’ and debtholders’ discount factor. In all three lines, we use the model
with no adjustment costs, and R&D as a measure of intangibles.
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Figure 35. Implications for the labor share. The top panel reports the value of the Cobb-
Douglas exponent on labor, 1 − α, obtained when using the model described in Appendix
IA.B.3, and assuming that all intermediate inputs are labor (or equivalently, that the produc-
tion function is a value-added production funciton), and matching the labor share, as we do
in our baseline analysis when translating estimates of µ into rents as a share of value added,
s. The middle panel reports estimates of s in our baseline approach, and in an approach
where we instead fix 1 − α = 0.7 (and use no information on the labor share). Finally, the
bottom panel reports the labor share obtained when we fix 1− α = 0.7, and the actual labor
share in the data.
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Panel A. Manuf., Tech, and Health — R&D
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Panel B. Consumer and services — R&D
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Panel C. Manuf., Tech, and Health — R&D and org
cap
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Panel D. Consumer and services — R&D and org cap
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Figure 36. The relationship between rising rents and productivity growth across subsectors. Each panel reports a scatterplot of the coefficients
(γµ,s, gZ,s), where s is a sector, the coefficients γµ,s are the estimated time trends of the rents parameters µs,t and the Cobb-Douglas intangible
intensity ηs,t, i.e. µs,t = αµ,s +γµ,st+ εµ,s,t, and gZ,s are the average growth rates of multi-factor productivity in the corresponding sector. The
top left panel reports these coefficients for the Manufacturing, Healthcare, and High-tech sectors when intangibles are measured using R&D
capital (the slope of the simple OLS line is −0.06, with a robust t-statistic of −0.64); the bottom left panel reports these when intangibles
are measured using R&D capital plus organization capital (the slope of the simple OLS line is 0.01, with a robust t-statistic of 0.28). The top
and bottom right panels are similarly constructed, but subsectors belonging to the Consumer and Services subsectors; in the top panel, the
slope of the OLS line is −0.47, with a robust t-statistic of −0.31; in the bottom panel, the slope is −0.34, with a robust t-statistic of −0.58.
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