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Abstract

This appendix reports the following:

A. the conditions characterizing the equilibrium of the baseline model of section 2;

B. a description of a real-business-cycle version of the stock-elastic demand model of Bils and

Kahn (2000), a characterization of the elasticity of intertemporal substitution in production

(EISP) in this model, and a derivation of analytical restrictions on structural parameters that

guarantee positive comovement of inventories and sales in response to news;

C. a similar treatment of the stockout-avoidance model of Kryvtsov and Midrigan (2013);

D. verification of our empirical SVAR strategy using model simulated data;

E. sources for the data used in section 4, and additional results for alternative specifications of

the empirical exercise of that section.
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A Detailed equilibrium conditions of the baseline model

The Lagrangian associated with the problem of the representative agent is:

L = E0

∑
t≥0

βt

[
U(ct, nt;ψt) + µt

{
yt − invt + (1− δi)invt−1 − st

(
1 + χ

(
invt
st

))}
+ λt {st − (ct + it)}

+mct
{
zt(utkt)

1−αnαt − yt
}

+ qt

{
it

[
1− φ

(
it
it−1

)]
+ (1− δk(ut))kt − kt+1

}]
(1)

Eliminating µt = mct, the set of equations characterizing a solution of (1) is:

(
ct − ψt

n1+ξ−1

t

1 + ξ−1

)−σ
= λt (2)(

ct − ψt
n1+ξ−1

t

1 + ξ−1

)−σ
ψtn

ξ−1

t = mctαzt(utkt)
1−αnα−1

t (3)

ct + it = st (4)

st + invt + stχ

(
invt
st

)
= (1− δi)invt−1 + yt (5)

1 + χ′
(
invt
st

)
= Et

[
β(1− δi)mct+1

mct

]
(6)

mct

(
1 + χ

(
invt
st

)
− invt

st
χ′
(
invt
st

))
= λt (7)

qt

(
1− φ

(
it
it−1

)
−
(

it
it−1

)
φ′
(

it
it−1

))
+βEt

[
qt+1

(
it+1

it

)2

φ′
(
it+1

it

)]
= λt (8)

βEt

[
(1− α)mct+1zt+1u

1−α
t+1

(
kt+1

nt+1

)−α
+ (1− δk(ut+1))qt+1

]
= qt (9)

mct(1− α)ztu
−α
t k1−α

t nαt = qtδ
′
k(ut)kt (10)

it

(
1− φ

(
it
it−1

))
+ (1− δk(ut))kt = kt+1 (11)

zt(utkt)
1−αnαt = yt (12)

mct = µt (13)
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B News shocks in the stock-elastic-demand inventory model

In this section, we describe and analyze a general equilibrium model of inventory dynamics

based on the work of Pindyck (1994), Bils and Kahn (2000), and Jung and Yun (2006).

The key feature of the so-called “stock-elastic” demand model is the assumption that sales

of a firm are elastic to the amount of goods available for sale, which we term “on-shelf goods.”

The positive elasticity of sales to on-shelf goods captures the idea that with more on-shelf goods,

customers are more likely to find a good match and purchase the product.

B.1 Description of the stock-elastic demand model

The economy consists of a representative household and monopolistically competitive firms.

The output of the firms are storable goods, of which they keep a positive inventory. We start with

the household problem.

Household problem A representative household maximizes the following expected sum of dis-

counted utility,

E0

[ ∞∑
t=0

βtU(ct, nt;ψt)

]
, (14)

where ct is the consumption of the final good, nt denotes the supply of labor services, and ψt is an

exogenous variable that introduces a wedge between consumption and leisure, which we call the

“labor wedge.” We assume the following GHH period utility function:

U(c, n;ψ) =
1

1− σ

(
c− ψ n

1+ξ−1

1 + ξ−1

)1−σ

,

where ξ is the Frisch elasticity of labor supply and σ denotes the inverse of the elasticity of the

household’s intertemporal substitution. The household’s maximization problem is subject to the

following constraints:

∫ 1

0
pt(j)st(j)dj + Et [Qt,t+1Bt+1] ≤Wtnt +Rtkt +

∫ 1

0
πt(j)dj +Bt, (15)

kt+1 = it

[
1− φ

(
it
it−1

)]
+ (1− δk)kt, (16)
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ct + it ≤ xt, (17)

xt =

(∫ 1

0
vt(j)

1
θ st(j)

θ−1
θ dj

) θ
θ−1

. (18)

Equation (15) is the household budget constraint. The household earns income each period

by providing labor nt at a given nominal wage Wt, lending capital kt at a rate Rt, claiming the

nominal profit πt(j) from each firm j ∈ [0, 1], and receiving nominal bond payments Bt. It spends

its income in purchases of each variety in the amount st(j) at a price pt(j), and in purchases of the

state-contingent one-period bonds Bt+1. The probability-adjusted price of each of these nominal

bonds is Qt,t+1, for each state in period t+ 1.

Equation (16) is the law of motion of capital with adjustment costs to investment. The adjust-

ment cost function φ(·) is twice-differentiable, with φ(1) = φ′(1) = 0 and φ′′(1) > 0. When firms’

desired future level of capital is high, this type of adjustment cost forces them to smooth out the

desired increase over time and start investing today.

Equation (17) states that the household’s consumption and investment cannot exceed its total

absorption of final goods, xt, which is constructed by aggregating their purchase of intermediate

goods {st(j)}j∈[0,1]. The aggregation of the intermediate goods {st(j)}j∈[0,1] into xt is given by a

Dixit-Stiglitz type aggregator (18) where vt(j) is the taste-shifter for each product j and θ is the

elasticity of substitution across intermediate goods. It follows from expenditure minimization that

the demand function for each good and the aggregate price level take the following forms:

st(j) = vt(j)

(
pt(j)

Pt

)−θ
xt, Pt =

(∫ 1

0
vt(j)pt(j)

1−θdj

) 1
1−θ

.

In the stock-elastic demand model, the taste shifter for variety j is assumed to depend on the

amount of goods on shelf proposed by the firm producing variety j, at(j), in the following fashion:

vt(j) =

(
at(j)

at

)ζ
, (19)

where the normalization by at, defined as the the economy-wide average of on-shelf goods, ensures

that the mean of νt(j) across goods is equal to 1. The parameter ζ > 0 controls the degree of the

shift in taste due to the relative amount of goods on shelf.
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Finally, the household is given an initial level of capital k0 and bonds B0, and its optimization

problem is subject to no-Ponzi conditions for both capital and stage-contingent bond holdings.

Firm problem Each monopolistically competitive firm j ∈ [0, 1] maximizes the expected dis-

counted sum of profits

E0

[ ∞∑
t=0

Q0,tπt(j)

]
, (20)

where

πt(j) = pt(j)st(j)−Wtnt(j)−Rtkt(j). (21)

Note that the profit in each period is the revenue from sales net of the cost from hiring labor nt(j)

and renting capital kt(j) at their respective prices Wt and Rt. The term Q0,t is the discount factor

of between period 0 and t, so that Q0,t =
∏t−1
T=0QT,T+1. This discount factor is consistent with

households being the final owners of firms. The firm faces the following constraints:

at(j) = (1− δi)invt−1(j) + yt(j), (22)

invt(j) = at(j)− st(j), (23)

yt(j) = ztk
1−α
t (j)nαt (j), (24)

st(j) =

(
at(j)

at

)ζ (pt(j)
Pt

)−θ
xt. (25)

Equation (22) is the inventory stock accumulation equation. The stock (on-shelf goods)

of the firm, at(j), consists of the undepreciated stock of inventories from the previous period

(1− δi)invt−1(j) and of current production yt(j). The parameter δi denotes the depreciation rate

of inventories. Equation (23) states that on-shelf goods that are unsold are accounted as invento-

ries.1 Equation (24) is the production function. Firms use a constant returns to scale production

function, with capital and labor as inputs. The variable zt represents total factor productivity and

is exogenous. Finally, monopolistically competitive firms face the demand function (25) stemming

from the household problem.

1In the data, this is recorded as the end-of-period inventory stock in each period.
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Market clearing Labor and capital markets clear, and net bond holdings is zero:

nt =

∫ 1

0
nt(j)dj, (26)

kt =

∫ 1

0
kt(j)dj, (27)

Bt = 0. (28)

Sales of goods for each variety j also clear, as is implicit in the expression of the demand function

(25). The average level of on-shelf goods in the economy at is defined by:

at =

∫ 1

0
at(j)dj. (29)

Since the price of the consumption good Pt is a numeraire, in what follows we will use the lower-

case variables wt = Wt/Pt for real wage, rt = Rt/Pt for real rental rate of capital, bt = Bt/Pt for real

bond holdings, qt,t+1 = Qt,t+1Pt+1/Pt for the real stochastic discount factor, and p̃t(j) = pt(j)/Pt

for the relative price of good j.

B.2 Equilibrium

A market equilibrium of this economy is a set of stochastic processes for aggregate variables

ct, nt, kt+1, it, bt+1, xt, at, wt, rt, qt,t+1,

and firm-level variables

{at(j)}, {nt(j)}, {kt(j)}, {vt(j)}, {st(j)}, {yt(j)}, {invt(j)}, {p̃t(j)},

such that, given the exogenous stochastic processes zt, ψt, as well as initial conditions k0, b0 and

{inv−1(j)}:

• households maximize (14) subject to (15) - (19) and two no-Ponzi conditions,

• each firm j ∈ [0, 1] maximizes (20) subject to (21) - (25),

• markets clear according to (26) - (29).
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A market equilibrium of the stock-elastic demand model is always symmetric: at(j) = at,

st(j) = st, invt(j) = invt, yt(j) = yt, and pt(j) = pt for all j. Along with the law of motion for

exogenous variable, the market equilibrium is characterized by the following set of equations:

(
ct − ψt

n1+ξ−1

t

1 + ξ−1

)−σ
= λt (30)

wt = ψtn
ξ−1

t (31)

ξt

(
1− φ

(
it
it−1

)
−
(

it
it−1

)
φ′
(

it
it−1

))
+ βEt

[
ξt+1

(
it+1

it

)2

φ′
(
it+1

it

)]
= λt (32)

it

(
1− φ

(
it
it−1

))
+ (1− δk)kt = kt+1 (33)

βEt [(1− δk)ξt+1 + λt+1rt+1] = ξt (34)

ct + it = xt (35)

ztk
1−α
t nαt = yt (36)

mctα
yt
nt

= wt (37)

mct(1− α)
yt
kt

= rt (38)

(1− δi)invt−1 + yt = st + invt (39)

st + invt = at (40)

Et
[
β
λt+1

λt
(1− δi)

mct+1

mct

]
= γt (41)

1

Et [(1− δi)qt,t+1mct+1]
= µt (42)

ζ
1

1 + invt
st

=

1
γt
− 1

µt − 1
(43)

θ

θ − 1
= µt (44)

st = xt (45)

Conditions (30)-(35) characterize the optimum of the household’s problem, conditions (36)-(43)

characterize that of the firm, and condition (45) reflects market clearing for goods. Condition (43)

characterizes its optimal choice of inventory holdings, while conditions (42) and (44) characterize
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optimal pricing by monopolistic firms in this environment. Conditions (39) and (40) are the law of

motion for inventories, and the definition of goods on shelf, respectively.

The two exogenous processes in our economy are total factor productivity zt and the labor wedge

ψt. As in the main paper, we assume that these processes are driven by both surprise innovations

and news shocks.

B.3 The optimal choice of inventories

The optimal stock choice of firms is governed by the equation:

mct =
∂st
∂at

+

(
1− ∂st

∂at

)
Et[qt,t+1(1− δi)mct+1]. (46)

The left hand side of this equation represents the cost of adding an extra unit of goods to the stock

of goods on sale, at, which equals the current marginal cost of production. The right hand side

represents the two benefits of adding this extra unit. First, by producing and stocking an extra

unit, the firm is able generate an additional fraction (∂st/∂at) of sales. Second, since some of the

extra goods stocked will not be sold and will be stored as inventories for the next period, future

production costs are reduced.

It is important to notice that at the nonstochastic steady state of the economy, the stock of

inventories is positive. Since the real interest rate and the inventory depreciation rate are both

positive at the steady state, holding inventories is costly. However, consistent with the first term

on the right hand side of (46), there is a convenience yield associated with holding a positive amount

of inventories in each period. In the model, the convenience yield is the additional sales created by

holding a positive level of stock. Therefore, there will be a positive amount of inventories in steady

state, despite the intertemporal costs that holding inventories implies.

Rearranging, (46) can be expressed as:

∂st
∂at

=
γ−1
t − 1

µt − 1
, (47)

where:

µt ≡
1

(1− δi)Et[qt,t+1mct+1]
, γt ≡ (1− δi)Et

[
qt,t+1mct+1

mct

]
.
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The variable µt is the markup of price over expected discounted future marginal cost. This is the

relevant markup concept in an economy where firms produce to stock: indeed, the true cost of

sales is not current but future marginal cost, since selling an extra unit reduces tomorrow’s stock of

goods. The variable γt is the expected discounted growth rate of marginal cost, which summarizes

the firm’s opportunity cost of producing today. The optimal stocking behavior of a firm balances

these 3 margins: markup, discounted growth rate of marginal cost, and additional sales generated

by extra inventory holdings.

In equilibrium, the optimal choice of inventories can be approximated up to first order as:

învt = ŝt + ηSE γ̂t,

where hatted variables represent log-deviations from its steady-state.2 As in the main paper, this

condition states that two forces determine the dynamics of inventories: a demand channel, ac-

cording to which firms in this economy build up their inventories when sales are high; and an

intertemporal substitution channel. The reduced-form parameter ηSE is the elasticity of intertem-

poral substitution in production (EISP) in this model; its relationship to structural parameters in

derived in proposition 1 below.

B.4 The propagation of news

We now turn to studying the effect of news shocks in this model economy. Like in the main

paper, we derive analytical conditions under which news shocks result in positive comovement on

impact between sales and inventories, assess whether those conditions are likely to hold in reasonable

calibrations of the model, and inspect the mechanisms underpinning the result.

B.4.1 Impact comovement

We analyze a first-order log-linear approximation of the model around its steady-state. The fol-

lowing framework summarizes the equilibrium conditions needed for the purpose of our subsequent

analysis.

2This equation is derived by combining (23), (47) and the optimal pricing condition µ̂t = 0.
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Proposition 1 On impact and without surprise shocks, so that ẑt = 0 and ψ̂t = 0, the market

equilibrium can be approximated by:

m̂ct = ωŷt, (48)

κŷt = ŝt +
κ− 1

δi
[învt − (1− δi)învt−1], (49)

învt = ŝt + τSEµ̂t + ηSE γ̂t, (50)

µ̂t = 0, (51)

µ̂t + γ̂t + m̂ct = 0. (52)

The mapping from the structural model parameters to the parameters of the reduced-form equations

is given by:

ω =
1 + (1− α)ξ

αξ
, (53)

κ = 1 + δiIS, (54)

ηSE =
1 + IS

IS

1

1− β(1− δi)
, (55)

τSE =
1 + IS

IS
θ,

where IS is the steady-state inventory-sales ratio, given by

IS =
(θ − 1)(1− β(1− δi))

ζβ(1− δi)− (θ − 1)(1− β(1− δi))
.

Equation (48) relates marginal cost to output, which is derived by combining the labor supply

and demand conditions, and the production function. Importantly, this equation is not connected

to the introduction of inventories in our model. The parameter ω is the elasticity of marginal

cost with respect to output, keeping constant total factor productivity; it expression in terms of

structural parameters is identical to the main paper.

Equation (49) is the law of motion for the stock of inventories, obtained from combining equa-

tions (22) and (23). This law of motion states that output should equal sales plus inventory

investment. The parameter κ in (49) denotes the steady-state output to sales ratio.
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Equations (50) and (51) are the optimal stocking and pricing conditions, respectively. Combin-

ing these two equations, we see that inventories are determined by the demand channel (ŝt) and the

intertemporal substitution channel (ηSE γ̂t). Equation (55) indicates that a lower bound for ηSE is:

ηSE ≥ ηSE =
1

1− β(1− δi))
.

The lower bound depends on two parameters, β and δi. First, the household discount factor β

governs the opportunity cost of holding inventories. In the limiting case where β = 1, there is

no opportunity cost of holding inventories since the real interest rate 1/β − 1 is 0. Second, the

depreciation rate of inventories δi represent the physical cost of holding inventories. Therefore, the

value 1− β(1− δi) represents the overall intertemporal cost of adjusting inventories.

Lastly, equation (52) follows from the definition of µt and γt. Using this first-order approxima-

tion, it is straightforward to establish the following analytical result.

Proposition 2 (The impact response of inventories to a good news about the future)

With news shocks (ẑt = 0 and ψ̂t = 0 but Etẑt+k 6= 0 or Etψ̂t+k 6= 0 for some k > 0) , inventories

and sales positively comove on impact if and only if:

ηSEω < κ.

This proposition indicates that the positive comovement between inventories and sales only depends

on the three parameters discussed above, κ, ω and η. Note that κ is, in general, very close to 1; in

NIPA data, it is approximately equalt to 1.005. Thus, following our discussion in the main paper,

a conservative upper bound on κ/ω is 1.005
0.33 ≈ 3.3. For the values of β = 0.99 and δi = 0.025 used

in the main paper, the lower bound on η is:

ηSE = 28.8.

Thus, the condition for positive comovement between inventories and sales in this model is not

met, and in fact, fails by an order of magnitude.
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Parameter Value Description / Target

β 0.99 Subjective discount factor
σ 1 Household elasticity of intertemporal substitution
ξ 2.5 Frisch elasticity of labor supply
α 0.67 Labor share of income
δ̄k 0.025 Capital depreciation rate
φ′′I (1) 9.11 Investment adjustment cost
n 0.2 Steady state hours worked
ρz 0.99 Persistence of the productivity process
ρψ 0.95 Persistence of the labor wedge process

δi 0.025 Inventory depreciation rate
ζ 0.25 IS = 0.75 in steady-state

θ 1.25 µ = θ
θ−1 = 1.25 in steady-state

Table 1: Calibration of the SE model used in the main paper.

B.4.2 Dynamic comovement

In the main paper, we report the impulse responses of the stock-elastic demand model, and

compares them to that of our baseline model. The calibration of the stock-elastic demand model

used in to construct these impulse responses is reported in table 1. This calibration matches the

same target for the IS ratio as in the baseline calibration of the main paper, and all non-inventory

parameters are identical. Note that the implied EISP in this model, ηSE , is larger than the lower

bound η̄SE , since η is finite. As a result, intertemporal substitution is stronger in this model than

in the baseline, and the fall in inventories is deeper and more protracted after the shock.

C News shocks in the stockout-avoidance inventory model

In this section, we describe a Real Business Cycle version of the stockout-avoidance models of

Kahn (1987) and Kryvtsov and Midrigan (2013), and analyze its impact response to news shocks.

C.1 Model description

The economy consists of a representative household and monopolistically competitive firms,

where again firms produce storable goods. Since many aspects of the model are similar to the

stock-elastic demand model, we refer directly to these equations.
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Household problem A representative household maximizes (14), subject to the household bud-

get constraint (15), capital accumulation rule (16), and the resource constraint (17). The aggrega-

tion of goods {st(j)}j∈[0,1] into xt is given by (18), where vt(j) is the taste shifter for product j in

period t.

In stockout-avoidance models, in contrast to the stock-elastic demand models, this taste shifter

is assumed to be exogenous. In particular, we assume it is identically distributed across firms and

over time according to a cumulative distribution function F (·) with a support Ω(·):

vt(j) ∼ F, vt(j) ∈ Ω. (56)

For each product j, households cannot buy more than the goods on shelf at(j), which is chosen by

firms:

st(j) ≤ at(j), ∀j ∈ [0, 1]. (57)

Although (57) also holds for the stock-elastic demand model, it has not been mentioned since it

was never binding. Households observe these shocks, and the amount of goods on shelf at(j), before

making their purchase decisions. Firms, however, do not observe the shock vt(j) when deciding

upon the amount at(j) of goods that are placed on shelf, so that (57) occasionally binds, resulting

in a stockout.

Again, a demand function and a price aggregator can be obtained from the expenditure mini-

mization problem of the household. The demand function for product j becomes

st(j) = min

{
vt(j)

(
pt(j)

Pt

)−θ
xt, at(j)

}
, (58)

which states that when vt(j) is high enough so that demand is higher than the amount of on-shelf

goods, a stockout occurs and demand is truncated at at(j). The price aggregator Pt is given by:

Pt =

(∫ 1

0
vt(j)p̃t(j)

1−θdj

) 1
1−θ

. (59)

The variable p̃t(j) is the Lagrange multiplier on constraint (57). It reflects the household’s shadow
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valuation of goods of variety j. For varieties that do not stock out, p̃t(j) = pt(j), whereas for

varieties that do stock out, p̃t(j) > pt(j).

Firm problem Each monopolistically competitive firm j ∈ [0, 1] maximizes (20) with πt(j)

defined as

πt(j) = pt(j)s̃t(j)−Wtnt(j)−Rtkt(j). (60)

As explained before, firms do not observe the exogenous taste shifter vt(j) and hence their demand

st(j) when making their price and quantity decisions in period t. Therefore, they will have to form

conditional expectations on sales st(j). This conditional expectation is denoted by s̃t(j).

The constraints on the firm are (22), (23), (24) and the demand function (58) with a known

distribution for the taste shifter vt(j) in (56). Notice that this distribution is identical across all

firms and invariant to aggregate conditions. By law of large numbers, firms observe Pt and xt in

their demand function. Therefore, s̃t(j) in (60) is given by:

s̃t(j) =

∫
v∈Ω(v)

min

{
v

(
pt(j)

Pt

)−θ
xt, at(j)

}
dF (v). (61)

Market clearing The market clearing conditions for labor, capital, and bond markets are iden-

tical to the stock-elastic model and are given by (26), (27) and (28). Sales of goods also clear by

the demand function for each variety.

C.2 Equilibrium

A market equilibrium of the stockout-avoidance model is defined as follows.

Definition 1 (Market equilibrium of the stockout-avoidance model) A market equilib-

rium in the stockout-avoidance model is a set of stochastic processes:

ct, nt, kt+1, it, Bt+1, xt, {at(j)}, {vt(j)}, {st(j)}, {s̃t(j)}, {yt(j)}, {invt(j)}, {pt(j)},Wt, Rt, Pt, Qt,t+1

such that, given the exogenous stochastic process zt and initial conditions k0, B0, and {inv−1(j)}:

• households maximize (14) subject to (15) - (18), (56) - (57), and a no-Ponzi condition,
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• each firm j ∈ [0, 1] maximizes profits subject to (22) - (24), (60) - (61),

• markets clear according to (26) - (28).

In what follows, we use the following notation for aggregate output, sales, and inventories:

yt =

∫ 1

0
yt(j)dj, st =

∫ 1

0
st(j)dj, invt =

∫ 1

0
invt(j)dj. (62)

C.2.1 Equilibrium symmetry and the stock-out wedge

In stockout-avoidance models, a market equilibrium is not symmetric across firms. Indeed,

because of the idiosyncratic taste shifters {νt(j)}, realized sales {st(j)} and end-of-period inventories

{invt(j)} differ across firms.

However, it can be shown that all firms make identical ex-ante choices. To see this, note first

that for the same reason mentioned for the stock-elastic demand model, marginal cost is constant

across firms. Second, the first-order conditions for optimal pricing and optimal choice of stock are

given, respectively, by:

mct =
∂s̃t(j)

∂at(j)

pt(j)

Pt
+

(
1− ∂s̃t(j)

∂at(j)

)
(1− δi)Et [qt,t+1mct+1] ,

pt(j)/Pt
(1− δi)Et [qt,t+1mct+1]

=
θ

θ − 1− s̃t(j)

pt(j)

∂s̃t(j)

∂pt(j)

,

where mct denotes nominal marginal cost deflated by Pt. Here, s̃t(j) denotes firm j’s expected

sales. Following equation (61), expected sales of firm j depend only on price pt(j) and on-shelf

goods at(j), and aggregate variables. In turn, the above optimality conditions can be solved to

obtain a decision rule for at(j) and pt(j) as a function of current and expected values of aggregate

variables, so that the choices of individual firms for these variables are symmetric. This implies

that there is a unique threshold of the taste shifter, common across firms, above which firms stock

out. From (58), this threshold is given by:

ν∗t (j) = ν∗t =

(
pt
Pt

)θ at
xt
.

The fact that those firms with a taste shifter νt(j) ≥ ν∗t run out of goods to sell implies that

15



pt 6= Pt. Indeed, as emphasized in (59), the aggregate price level Pt depends on the household’s

marginal value of good j, p̃t(j). This marginal value equals the (symmetric) sales price pt for all

varieties that do not stockout. However, for varieties that run out of stock, households would like

to purchase more of that good than what is on sale. Therefore, the household’s marginal value of

the good is higher than their market price: p̃t(j) > pt. Thus, the standard aggregation relation

Pt = pt fails to hold, and instead, Pt > pt. In what follows, we denote:

dt =
pt
Pt
.

This relative price term can be thought of as a stockout wedge. It is smaller when the household’s

valuation of the aggregate bundle of goods is large relative to the market price of varieties, that is,

when stockouts are more likely. Formally, it can be shown that the wedge dt is a strictly increasing

function of ν∗t , and therefore a decreasing function of the probability of stocking out, 1− F (ν∗t ).

With the stockout wedge, the firm-level markup µt differs from the definition of the aggregate

markup used above (the inverse of the aggregate expected marginal cost). In what follows, we

denote the aggregate by µAt . Since µt = pt
Pt
µAt , we have:

µt = dtµ
A
t . (63)

C.2.2 Equilibrium conditions

Using the results mentioned above, the equilibrium of the stockout-avoidance model is then

described by (30)-(41) (where µ is replaced by µAt ), along with the following equations:

1− F (ν∗t ) =

1
γt
− 1

µt − 1
, (64)

θ

θ − 1− 1− F (ν∗t )∫
ν≤ν∗t

ν
ν∗t
dF (ν)

= µt, (65)

∫
ν≤ν∗t

(
1− ν

ν∗t

)
dF (ν)∫

ν≤ν∗t
ν
ν∗t
dF (ν) + 1− F (ν∗t )

=
invt
st

, (66)

µt = dtµ
A
t (67)
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(∫
ν≤ν∗t

νdF (ν) + ν∗t

∫
ν>ν∗t

(
ν

ν∗t

) 1
θ

dF (ν)

) 1
θ−1

= dt, (68)

(
(ν∗t )

1
θ

∫
ν≤ν∗t

ν
ν∗t
dF (ν) +

∫
ν>ν∗t

ν
1
θ dF (ν)

) θ
θ−1∫

ν≤ν∗t
ν
ν∗t
dF (ν) + 1− F (ν∗t )

st = xt. (69)

Condition (64) determines the optimal choice of stock in the stockout avoidance model. Here,

ν∗t is related to the aggregate IS ratio through (66). Condition (65) is the optimal markup choice

in the stockout-avoidance model which also depends on the IS ratio through (66), reflecting the

dependence of the price elasticity of demand on the stock of goods on sale in this (not iso-elastic)

model. The firm markup µt and the aggregate markup µAt are linked by the stockout wedge dt in

equation (67). The stockout wedge itself is given by (68). Finally, condition (69) reflects market

clearing when some varieties are out of stock.

C.3 An alternative log-linearized framework

There are two important differences between stockout-avoidance models and the stock-elastic

demand model. The first difference is the occurrence of stockouts, which implies the existence of

the stockout wedge and hence the difference between firm-level and aggregate markups as described

above. The second difference is that, even in our flexible-price environment, firm-level markups are

not set at a constant rate over future marginal cost, as they did in the stock-elastic demand model.

These two differences mean that unlike stock-elastic demand models, we cannot exactly map this

class of models into the same log-linearized framework. We need an alternative framework, which

we provide in the following lemma.

Lemma 2 (The log-linearized framework for the stockout-avoidance model) In an equi-

librium of the stockout-avoidance model, if productivity zt is at its steady-state value, on impact,

up to a first order approximation around the steady-state, equations (48) and (49) hold (with µt

replaced by µAt ), along with:

învt = ŝt + τSAµ̂t + ηSAγ̂t, (70)

µ̂t = d̂t + µ̂At , (71)
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d̂t = εd

(
învt − ŝt

)
, (72)

µ̂t = εµ

(
învt − ŝt

)
. (73)

In this approximation, the parameters ω and κ are given by the same expressions as in the stock-

elastic demand model, (53) and (54), while the EISP ηSA > 0, and the reduced-form parameters

τSA > 0, εd > 0, and εµ are given in section C.5.

Several points are worth mentioning.

First, note that the effect of intertemporal substitution in production on inventories is again

summarized by a reduced-form parameter, the EISP ηSA. The EISP in the stockout-avoidance

model can be written as:

ηSA = Ξ(IS, µ)
1 + IS

IS

1

1− β(1− δi)︸ ︷︷ ︸
=ηSE

,

where:

Ξ(IS, µ) =
1− F (ν∗(IS, µ))

ν∗(IS, µ)f(ν∗(IS, µ))
(1− (1− F (ν∗(IS, µ))(1 + IS)).

The value ν∗(IS, µ) is the steady state of the cutoff for stocking out, as functions of the steady-

state IS ration and the firm-level markup, so that (1 − F (ν∗(IS, µ)) is the steady-state stockout

probability. The value ν∗(IS, µ) does not have a closed-form expression; section C.5 discusses the

equations that implicitly define this cutoff. Note that the expression for ηSA is similar to the relative

marginal cost elasticity in the stock-elastic demand model ηSE , save for the term Ξ(IS, µ). This

term is related to the generalized hazard rate characterizing the cumulative distribution function

of taste shifters. For the type of distributions considered in the literature, Ξ(IS, µ) is typically

smaller than 1. Thus in general, ηSA ≤ ηSE . That is, the intertemporal substitution channel is

weaker in these models than in the stock-elastic demand model. The fact that some firms stock

out of their varieties prevents them altogether from smoothing production over time by storing

goods or depleting inventories. However, setting the targets at IS = 0.75 and µ = 1.25, and

assuming that the taste shifter follows a log-normal distribution, ηSA is approximately two thirds

of ηSA. Therefore, given the large magnitude of the EISP in the stock-elastic demand model, the

intertemporal substitution motive remains large even in the stockout-avoidance model.
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Second, the optimal choice of inventories (70) depends on the firm-level markup µ̂t, which is

not equal to the aggregate markup µ̂At .

Third, in equation (71), aggregate markups and firm-level markups are linked by the stockout

wedge d̂t. This follows from the definition of firm-level markup and stockout wedge given in (63).

Fourth, note that the framework of lemma 2 now includes (72), an equation linking the stockout

wedge to the aggregate IS ratio. As we argued previously, the stockout wedge is negatively related

to the probability of stocking out. In turn, one can show that there is a strictly decreasing mapping

between the stockout probability, or equivalently a strictly increasing mapping between ν∗t , and the

ratio of the average end-of-period inventory to sales:

ISt =
invt
st

=

∫ 1
0 invt(j)dj∫ 1

0 st(j)dj
.

A lower probability of stocking out (i.e. a higher ν∗t ) implies that firms will, on average, be left with

a higher stock of inventories relative to the amount of goods sold. Combining these two mappings,

we obtain that the stockout wedge is increasing in the aggregate IS ratio, so that εd > 0.

Lastly, the framework of lemma 2 includes variable firm-level markups, as described in equation

(73). This is because in stockout-avoidance models, the desired firm-level markup is not constant.

Instead, it depends on the ratio of goods on-shelf to expected demand, which itself is linked to the

probability of stocking out. One can show that for log-normal and pareto-distributed idiosyncratic

demand shocks, µt is a strictly decreasing function of ν∗t , and therefore an increasing function of

the probability of stocking out. Thus, the elasticity εµ is typically negative. Intuitively, this is

because when firms are likely to stock out, the price-elasticity of demand is lower, and therefore

markups are higher. Indeed, with a high stockout probability, demand is mostly constrained by

the amount of goods available for sale, and does not vary much with price changes. The converse

intuition holds when the stockout probability is low.

Before moving on, note that this framework reduces to the stock-elastic demand model when

the stockout wedge is absent and firm-level markups are constant, so that d̂t = µ̂t = µ̂At = 0. Hence

the framework could also be viewed as a generalized version the stock-elastic demand model.
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C.4 The response to news shocks

C.4.1 The impact response to news shocks

We now turn to discussing the effects of a news shock using our new log-linearized framework.

We again maintain the assumption that the shock has the effect of increasing sales, ŝt > 0, while

leaving current productivity unchanged, ẑt = 0, so that we can indeed used the log-linearized

framework of lemma 2. Combining the equations of lemma 2, it is straightforward to rewrite the

optimality condition for inventory choice as:

învt = −η̃SAωm̂ct + ŝt.

In this expression, the elasticity of inventories to relative marginal cost, η̃SA is given by:

η̃SA =
1

1− ηSAεd + (ηSA − τSA)εµ
ηSA (74)

In contrast to the stock-elastic demand model, η̃SA does not purely reflect the EISP. The EISP

is now compensated for markup movements (the terms τSA and εµ) and for movements in the

stockout wedge (the term εd).

Unlike in the stock-elastic demand model, the sign of η̃SA cannot in general be established. This

is because its sign depends on the distribution of the idiosyncratic taste shock. However, for a very

wide range of calibrations and for the pareto and log-normal distributions, η̃SA is negative. We

document this in table 2. There, we compute different values of η̃SA, for different pairs of values

of σd, the standard deviation of the shock, and different values of the steady-state markup. In all

cases, we force the shock to have a mean equal to 1. The standard deviations we consider range

from 0.1 to 1, and the markups range from 1.05 to 1.75. In all cases, η̃SA is negative. In table 3,

we perform the same exercise for pareto-distributed shocks, and results are similar.

These results can be understood using (74). First, as discussed before, since εµ < 0 for standard

distributions, markups fall when the IS ratio increases. With a higher IS ratio, a stockout is less

likely for a firm, so that its price elasticity of demand is high, and its charges low markups. Second,

because (ηSA − τ)εµ > 0, markup movements tend to attenuate the intertemporal substitution

channel; that is, if we were to set εd = 0, then η̃SA < ηSA. Lower markups signal a higher future
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Value of η̃SA

σd ↓ ||µ→ 1.05 1.1 1.25 1.5 1.75

0.1 -729.12 -278.08 -121.98 -77.39 -61.87
0.25 -307.22 -116.94 -51.42 -32.71 -26.20
0.5 -167.04 -63.17 -27.66 -17.57 -14.06
0.75 -120.68 -45.25 -19.59 -12.35 -9.85

1 -97.75 -36.33 -15.51 -9.66 -7.66

Implied IS ratio

σd ↓ ||µ→ 1.05 1.1 1.25 1.5 1.75

0.1 0.05 0.09 0.15 0.18 0.21
0.25 0.12 0.23 0.39 0.50 0.57
0.5 0.23 0.47 0.83 1.13 1.32
0.75 0.32 0.69 1.31 1.88 2.26

1 0.41 0.90 1.81 2.73 3.36

Table 2: Value of η̃SA when idiosyncratic demand shocks follow a log-normal distribution with mean
1. Different lines correspond to different standard deviations of the associated normal distribution,
and different columns to different steady-state markups. Values are for β = 0.99 and δi = 0.011.

Value of η̃SA

σd ↓ ||µ→ 1.05 1.1 1.25 1.5 1.75

0.1 -1959.13 -297.78 -62.89 -27.02 -18.16
0.25 -926.82 -142.18 -30.44 -13.30 -9.06
0.5 -598.66 -92.85 -20.20 -8.98 -6.20
0.75 -499.86 -78.04 -17.14 -7.69 -5.35

1 -456.12 -71.51 -15.80 -7.13 -4.97

Implied IS ratio

σd ↓ ||µ→ 1.05 1.1 1.25 1.5 1.75

0.1 0.03 0.07 0.15 0.22 0.26
0.25 0.05 0.15 0.34 0.51 0.63
0.5 0.09 0.25 0.57 0.90 1.13
0.75 0.10 0.30 0.71 1.15 1.48

1 0.11 0.33 0.80 1.31 1.70

Table 3: Value of η̃SA when shock follow a Pareto distribution with mean 1. Different lines
correspond to different standard deviations for the Pareto distribution, and different columns to
different steady-state markups. Values are for β = 0.99 and δi = 0.011.

marginal cost to the firm, thereby leading it to increase inventories (for fixed current marginal

cost). At the same time, higher markups lead the firm to increase its sales relative to available

goods, leaving it with fewer inventories at the end of the period. On net, the first effect dominates,
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leading to higher inventories at the end of the period, and reducing thus the inventory-depleting

effects of the shock. Finally, ηSAεd − (ηSA − τ)εµ > 1, so that η̃SA < 0. Therefore, movements in

the stockout wedge change the sign of the elasticity of inventories to marginal cost.

With η̃SA < 0, the following results hold for the impact response of news shocks in the stockout-

avoidance model.

Proposition 3 (The impact response to news shocks in the stockout-avoidance model)

In the stockout-avoidance model with η̃SA < 0, when news arrive:

1. the inventory-to-sales ratio comoves positively with sales;

2. inventories and sales comove positively, if and only if:

(−η̃SA)ω < κIS.

The first part of this proposition is by itself daunting to news shocks, since the IS ratio tends

to be countercyclical (Kryvtsov and Midrigan, 2013).

The second part of proposition 3 provides a condition under which inventories comove positively

with sales. Much as in the case of the stock-elastic demand model and the simple model of the

main paper, this condition relates the degree of real rigidities, and a parameter depending on the

IESP, (−η̃SA). If the model is calibrated to match the same IS ratio as the baseline (IS = 0.75),

along with identical intertemporal inventory holding costs (β = 0.99 and δi = 0.025) and the same

degree of real rigidities, then:

ηSA = 19.3 , −η̃SA = 22.4 and
κIS

ω
= 0.7.

Again, the analytical restriction fails, this time by over an order of magnitude, and inventories

comove negatively with sales on impact. As discussed in the main paper, this remains true across

calibrations, for example, as one varies the steady-state IS ratio.
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Parameter Value Description / Target

β 0.99 Subjective discount factor
σ 1 Household elasticity of intertemporal substitution
ξ 2.5 Frisch elasticity of labor supply
α 0.67 Labor share of income
δ̄k 0.025 Capital depreciation rate
φ′′I (1) 9.11 Investment adjustment cost
n 0.2 Steady state hours worked
ρz 0.99 Persistence of the productivity process
ρψ 0.95 Persistence of the labor wedge process

δi 0.025 Inventory depreciation rate
σν 0.604 SD of demand shock, chosen to match IS = 0.75
θ 6.7 chosen to match µ = 1.25 in steady-state

Table 4: Calibration of the SA model used in the main paper.

C.4.2 Dynamic response

The main paper reports the impulse responses of the stockout-avoidance model, and compares

them to that of our baseline model. The calibration is reported in table 4, and uses a log-normal

distribution for idiosyncratic taste shocks. This calibration again matches the same target for the

IS ratio as in the baseline calibration, and again all non-inventory parameters are identical.

C.5 Expressions for the reduced-form coefficients of lemma 2

In what follows, we denote the steady-state stockout probability by:

Γ = 1− F (ν∗).

First, note that the log-linear approximation of equation (66) is:

învt − ŝt = (1− Γ(1 + IS))
1 + IS

IS
ν̂∗t .

This implies that the IS ratio and the stockout threshold move in the same direction. Indeed, the

restriction:

1 > Γ(1 + IS)
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follows from the fact that in the steady state,

IS =

∫
ν≤ν∗

(
1− ν

ν∗

)
dF (ν)∫

ν≤ν∗
ν
ν∗dF (ν) + Γ

⇔ 1

1 + IS
− Γ =

∫
ν≤ν∗

ν

ν∗
dF (ν) > 0.

Second, it can be shown that the log-linear approximations to equations (64), (65) and (68) are

respectively given by:

ν∗f(ν∗)

Γ
ν̂∗t =

µ

µ− 1
µ̂Ft +

1

1− β(1− δi)
γ̂t,

µ̂Ft = (µ− 1)Γ(1 + IS)

(
1− ν∗f(ν∗)

Γ

1

1− Γ(1 + IS)

)
ν∗t ,

d̂t =
µ− 1

µ
(1− Γ(1 + IS))∆ν̂∗t .

Here, the coefficient ∆ ∈ (0, 1] is defined as:

∆ ≡
∫
ν>ν∗

(
ν
ν∗

) 1
θ dF (ν)∫

ν≤ν∗
ν
ν∗dF (ν) +

∫
ν>ν∗

(
ν
ν∗

) 1
θ dF (ν)

,

where the relationship between the parameter θ and the steady-state markup is given by:

θ =
µ

µ− 1

1

1− Γ(1 + IS)
.

Combining these equations, one arrives at the following expressions for the different reduced-

form parameters defining the log-linear framework of lemma 2:

τSA =
Γ

ν∗f(ν∗)
(1− Γ(1 + IS))

1 + IS

IS

µ

µ− 1
> 0, (75)

ηSA =
Γ

ν∗f(ν∗)
(1− Γ(1 + IS))

1 + IS

IS

1

1− γ
> 0, (76)

εd =
IS

1 + IS

1

1− Γ(1 + IS)

µ− 1

µ
(1− Γ(1 + IS))∆ > 0, (77)

εµ =
IS

1 + IS

1

1− Γ(1 + IS)
(µ− 1)Γ(1 + IS)

(
1− ν∗f(ν∗)

Γ

1

1− Γ(1 + IS)

)
. (78)

The implicit equations determining ν∗, along with the variance of F , σν , as functions of IS and

µ, are:

IS =

∫
ν≤ν∗

(
1− ν

ν∗

)
dF (ν)∫

ν≤ν∗
ν
ν∗dF (ν) + (1− F (ν∗))

,
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1− F (ν∗) =

1
β(1−δi) − 1

µ− 1
.

D Monte-Carlo simulation

In this section, we illustrate the performance of our SVAR with 2-period dynamic restrictions

(i.e. 2-period negative comovement between inventory investment and consumption as well as

investment), in terms of recovering the “correct” impulse-response functions and forecast-error

variance of output with regards to news shocks in our model-simulated data. Data are simulated

from the calibrated model in the main paper. For clarity of exposition, TFP is assumed to be the

sole exogenous process, and labor wedge movements are suppressed in the simulation. The TFP

process has two innovations: surprise and news. The standard deviation of surprise innovation

is set at 1. The experiment is done with 3 different numbers for the standard deviation of news

innovations: 1/2, 1, 2.

The same VAR as in section 4 in the main paper is assumed, in particular, with 4 variables in

logs (consumption, investment, inventories and output) and with 4 lags and a constant. Since 2

shocks are used in generating the data, small i.i.d. measurement errors are included (with standard

deviations of 0.001) for each variable to avoid stochastic singularity in the estimation.

Figure 1 plots both the theoretical impulse response based on the model (blue dashed line) and

the 80% credible set of the identified impulse response using simulated data, with different standard

deviations for news innovations assumed.3 Our 2-period dynamic sign restriction captures well both

the average size and the longer run model dynamics of our key macro variables.

Figure 2 plots the posterior probability density of FEV for output. As expected, the posterior

median FEV is close to the theoretical FEV. One thing to note from this figure is that as news

shocks are assumed to explain a larger share of output volatility in the model, our 2-period dynamic

restriction may potentially underestimate the importance of news shocks. In particular, when news

shocks are assumed to account for around 77 percent of output volatility in 20 quarters, the posterior

density estimates the FEV of output to be 68 percent. This may be due to the prior density of the

VAR parameters implying a smaller FEV than the model. If more information is used to identify

3The scale of the theoretical impulse response is the standard deviation of the news shock times
√

2/π, which is
the mean of the folded standard normal distribution.
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news shocks consistent with the model, the posterior density may move closer to the true FEV.

To explore this channel, figure 3 plots the posterior probability density of FEV for output,

under the case where news shocks are assumed to account for a large variation of output dynamics

(standard deviation of news innovations = 2). Panel (a) plots the case when only impact restrictions

are imposed. We find that the posterior median FEV (black solid line) is significantly smaller than

the model FEV (blue dashed line). However, when more information is used, we find that the

posterior median FEV aligns well with the model FEV. Assuming 2-period restrictions in panel

(b) and 3-period restrictions in panel (c), the posterior median FEV becomes closer to the model

FEV. Hence, given that proper sign restrictions are imposed, we verify in our simulated example

that using more information on the comovement of inventories and demand improves on recovering

the true FEV of output.

E Empirical appendix

E.1 Data sources

Consumption is the sum of nominal nondurables and services (NIPA table 1.1.5), divided by

the GDP deflator (NIPA table 1.1.9) and the civilian noninstitutional population, obtained from

the BLS. Investment is the sum of nominal durable consumption and fixed investment (NIPA table

1.1.5), divided by the GDP deflator (NIPA table 1.1.9) and civilian noninstitutional population,

obtained from the BLS. The inventory data (nonfarm private and retail) are obtained from NIPA

tables 5.8.6A and 5.8.6B, divided by the civilian noninstitutional population, obtained from the

BLS.

E.2 Additional results

Two additional robustness checks of our main result are reported. We first check whether it is

sensitive to alternative detrending of the data by HP-filtering each time series. Figure 4 reports

the results obtained using the impact sign restriction. Figure 5 reports the posterior distribution of

the forecast error variance of output. Similar to our benchmark specification, the identified shock

accounts for 10 percent of output variation in the short run and 25 percent in the long run.

Second, in our benchmark estimation, we used real GDP as a measure of output. To be
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consistent with our model definition of output, we also constructed an alternative output series

which subtracts government spending and net exports from the GDP series. That is, the alternative

output measure is nominal GDP net of government spending and net exports, deflated by the GDP

deflator, expressed in per capita terms. Figures 6 and 7 indicate that the results obtained using

the impact restriction are not sensitive to this alternative definition of output.
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(a) Standard deviation of TFP news innovation: 1/2.

(b) Standard deviation of TFP news innovation: 1.

(c) Standard deviation of TFP news innovation: 2.

Figure 1: TFP news impulse responses. Blue dashed line: Model average impulse response. Shaded
area: 80% credible set of SVAR using simulated data. News shocks in SVAR are identified using
2-period sign restrictions on inventories, consumption, and investment.
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(a) Standard deviation of TFP news innovation: 1/2.

(b) Standard deviation of TFP news innovation: 1.

(c) Standard deviation of TFP news innovation: 2.

Figure 2: Share of FEV of output at horizons 1, 5, 10, 20, attributable to news shocks. News
shocks are identified using 2-period sign restrictions on inventories, consumption, and investment.
Blue dashed line: Model FEV. Shaded area: Posterior probability density of FEV based on SVAR.
Black solid line: Median FEV based on SVAR.
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(a) Impact restriction (Standard deviation of TFP news innovation: 2).

(b) Two period restriction (Standard deviation of TFP news innovation: 2).

(c) Three period restriction (Standard deviation of TFP news innovation: 2).

Figure 3: Share of FEV of output at horizons 1, 5, 10, 20, attributable to news shocks. News
shocks are identified using 1-, 2-, and 3-period sign restrictions on inventories, consumption, and
investment. Blue dashed line: Model FEV. Shaded area: Posterior probability density of FEV
based on SVAR. Black solid line: Median FEV based on SVAR. Grey solid line in (b): Median
FEV based on (a). Grey solid line in (c): Median FEV based on (b).

30



Figure 4: Median (solid line) and 80% credit set (shaded area) for the impulse responses to news
shocks for HP filtered series. News shocks are identified using sign restrictions on inventories,
consumption, and investment.

Figure 5: Posterior probability density and median (vertical line) FEV of output attributable to
news shocks for HP filtered series. News shocks are identified using sign restrictions on inventories,
consumption, and investment.

31



Figure 6: Median (solid line) and 80% credit set (shaded area) for the impulse responses to news
shocks for domestic output series. News shocks are identified using sign restrictions on inventories,
consumption, and investment.

Figure 7: Posterior probability density and median (vertical line) FEV of output attributable
to news shocks for domestic output series. News shocks are identified using sign restrictions on
inventories, consumption, and investment.
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