Intangibles, markups, and the measurement of productivity growth

Nicolas Crouzet and Janice Eberly

Northwestern University
Since late 90’s, measured TFP growth has declined.
The decline in TFP growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth (p.p.)</td>
<td>3.62</td>
<td>2.68</td>
<td>-0.93</td>
</tr>
<tr>
<td>TFP growth $\frac{dZ}{Z}$ (p.p.)</td>
<td>1.36</td>
<td>0.86</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

Fernald (2014)
Question

Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends
Since late 90’s, measured TFP growth has declined.

This decline coincided with two other trends:

- Rise in measured profits (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)
- Growing importance of intangible capital (Crouzet and Eberly, 2018, 2019)

Did these trends contribute to the decline in TFP growth by affecting its measurement?
Rising profits

\[\frac{\Pi}{K_1} \]

- BEA
- Compustat
Since late 90’s, measured TFP growth has declined.

This decline coincided with two other trends:

- rise in measured profits (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)
- growing importance of intangible capital (Crouzet and Eberly, 2018, 2019)
Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends

rise in measured profits (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)

growing importance of intangible capital (Crouzet and Eberly, 2018, 2019)
Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends:

1. Rise in measured profits
 (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)

2. Growing importance of intangible capital
 (Crouzet and Eberly, 2018, 2019)
The growing importance of intangible capital

\[
\frac{Q_2 K_2}{Q_1 K_1}
\]

BEA; \(K_2 = \text{R&D} \)

Compustat, \(K_2 = \text{R&D} \)

Compustat; \(K_2 = \text{R&D} + \text{organization capital} + \text{balance sheet intangibles} \)
Question

Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends

rise in measured profits (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)

growing importance of intangible capital (Crouzet and Eberly, 2018, 2019)
Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends

rise in measured profits \hspace{1cm} \text{(Barkai, 2017; Gutierrez and Philippon, 2017, 2018)}

growing importance of intangible capital \hspace{1cm} \text{(Crouzet and Eberly, 2018, 2019)}

Did these trends contribute to the decline TFP growth?
Since late 90’s, measured TFP growth has declined.

This decline coincided with two other trends:

- Rise in measured profits (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)
- Growing importance of intangible capital (Crouzet and Eberly, 2018, 2019)

Did these trends contribute to the decline in TFP growth? ... by affecting its measurement?
Since late 90’s, measured TFP growth has declined

This decline coincided with two other trends

- rise in measured profits
 (Barkai, 2017; Gutierrez and Philippon, 2017, 2018)
- growing importance of intangible capital
 (Crouzet and Eberly, 2018, 2019)

Did these trends contribute to the decline TFP growth?

... by affecting its measurement?

≠ declining pace of innovation
 (Gordon, 2017)
This paper

What we do:
- theory: derive conditions under which intangibles + rents lead to \(\frac{\hat{dZ}}{Z} < \frac{dZ}{Z} \) in a general framework.
- data: test conditions and estimate \(\frac{dZ}{Z} - \frac{\hat{dZ}}{Z} \)

What we find:
- theory: for \(\frac{\hat{dZ}}{Z} < \frac{dZ}{Z} \), need both high intangible share \(\eta \) and high intangible price growth \(gQ^2 + \mu > 1 \) (bias in growth, off balanced growth).
- data: intermediate services as omitted intangible (organization capital) 97-18: \(\frac{\hat{dZ}}{Z} - \frac{dZ}{Z} = -30 \text{bps} = 0.6 \times \Delta(\frac{\hat{dZ}}{Z}) \) 47-96: \(\frac{\hat{dZ}}{Z} - \frac{dZ}{Z} = -5 \text{bps} \).
This paper

What we do:

Theory: derive conditions under which intangibles + rents lead to \(\hat{dZ}/Z < dZ/Z \) in a general framework.

Data: test conditions and estimate \(\hat{dZ}/Z - dZ/Z \).

What we find:

Theory: for \(\hat{dZ}/Z < dZ/Z \), need both high intangible share \(\eta \) and high intangible price growth \(gQ^2 \) and \(\mu > 1 \) (bias in \(g \), off balanced-growth).

Data: intermediate services as omitted intangible (organization capital). 97-18: \(\hat{dZ}/Z - dZ/Z = -30 \text{bps} = 0.6 \times \Delta (\hat{dZ}/Z) \). 47-96: \(\hat{dZ}/Z - dZ/Z = -5 \text{bps} \).
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\hat{d}Z}{Z} < \frac{dZ}{Z}$
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{dZ}{Z} < \frac{d\hat{Z}}{\hat{Z}}$

 general framework;
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\hat{d}Z}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{\hat{d}Z}{Z} - \frac{dZ}{Z}$

What we find:

- **theory**: for $\frac{\hat{d}Z}{Z} < \frac{dZ}{Z}$, need both intangibles + rents

 high intangibles share $\eta +$ high intangible price growth $g_{Q_2} + \mu > 1$ (bias in g, off balanced-growth)

- **data**: intermediate services as omitted intangibles (organization capital)

 97-18: $\frac{\hat{d}Z}{Z} - \frac{dZ}{Z} = -0.6 \times \Delta (\frac{\hat{d}Z}{Z})$

 47-96: $\frac{\hat{d}Z}{Z} - \frac{dZ}{Z} = -5 bps$
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{d\hat{Z}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{d\hat{Z}}{Z}$

97-18: $\frac{d\hat{Z}}{Z} - \frac{dZ}{Z} = -30\text{bps} = 0.6 \times \Delta (\frac{d\hat{Z}}{Z})$

47-96: $\frac{d\hat{Z}}{Z} - \frac{dZ}{Z} = -5\text{bps}$
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\hat{dZ}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{\hat{dZ}}{Z}$

What we find:
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{d\hat{Z}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{d\hat{Z}}{Z}$

What we find:

- **theory**: for $\frac{d\hat{Z}}{Z} < \frac{dZ}{Z}$, need both intangibles + rents
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to \(\frac{d\hat{Z}}{Z} < \frac{dZ}{Z} \)

 general framework; balanced growth model

- **data**: test conditions + estimate \(\frac{dZ}{Z} - \frac{d\hat{Z}}{Z} \)

What we find:

- **theory**: for \(\frac{dZ}{Z} < \frac{d\hat{Z}}{Z} \), need both intangibles + rents

 high intan share \(\eta \)
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to \(\hat{dZ}/Z < dZ/Z \)

 general framework; balanced growth model

- **data**: test conditions + estimate \(dZ/Z - \hat{dZ}/Z \)

What we find:

- **theory**: for \(\hat{dZ}/Z < dZ/Z \), need both intangibles + rents

 high intan share \(\eta \) + high intan price growth \(g_{Q2} \)
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\hat{dZ}/Z < dZ/Z$

 general framework; balanced growth model

- **data**: test conditions + estimate $dZ/Z - \hat{dZ}/Z$

What we find:

- **theory**: for $\hat{dZ}/Z < dZ/Z$, need **both** intangibles + rents

 high intan share η + high intan price growth $g_{Q2} + \mu > 1$
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\hat{d}Z}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{\hat{d}Z}{Z}$

What we find:

- **theory**: for $\frac{\hat{d}Z}{Z} < \frac{dZ}{Z}$, need **both** intangibles + rents

 high intan share η + high intan price growth $g_{Q_2} + \mu > 1$ (+ bias in g, off balanced-growth)
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to \(\frac{dZ}{Z} < \frac{\hat{d}Z}{\hat{Z}} \)

 general framework; balanced growth model

- **data**: test conditions + estimate \(\frac{dZ}{Z} - \frac{\hat{d}Z}{\hat{Z}} \)

What we find:

- **theory**: for \(\frac{\hat{d}Z}{\hat{Z}} < \frac{dZ}{Z} \), need **both** intangibles + rents

 high intan share \(\eta \) + high intan price growth \(g_{Q2} + \mu > 1 \)
 (+ bias in \(g \), off balanced-growth)

- **data**:

97-18:
\(\frac{\hat{d}Z}{\hat{Z}} - \frac{dZ}{Z} = -30 \text{bps} = 0.6 \times \Delta (\frac{\hat{d}Z}{\hat{Z}}) \)

47-96:
\(\frac{\hat{d}Z}{\hat{Z}} - \frac{dZ}{Z} = -5 \text{bps} \)
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{d\hat{Z}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{d\hat{Z}}{Z}$

What we find:

- **theory**: for $\frac{d\hat{Z}}{Z} < \frac{dZ}{Z}$, need both intangibles + rents

 high intan share η + high intan price growth $g_{Q_2} + \mu > 1$
 (+ bias in g, off balanced-growth)

- **data**: intermediate services as omitted intan (organization capital)
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\dot{dZ}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{\dot{dZ}}{Z}$

What we find:

- **theory**: for $\frac{\dot{dZ}}{Z} < \frac{dZ}{Z}$, need both intangibles + rents

 high intan share η + high intan price growth $g_{Q_2} + \mu > 1$
 (+ bias in g, off balanced-growth)

- **data**: intermediate services as omitted intan (organization capital)

 97-18: $\frac{\dot{dZ}}{Z} - \frac{dZ}{Z} = -30\text{bps} = 0.6 \times \Delta \left(\frac{\dot{dZ}}{Z} \right)$
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to $\frac{\hat{dZ}}{Z} < \frac{dZ}{Z}$

 general framework; balanced growth model

- **data**: test conditions + estimate $\frac{dZ}{Z} - \frac{\hat{dZ}}{Z}$

What we find:

- **theory**: for $\frac{dZ}{Z} < \frac{\hat{dZ}}{Z}$, need both intangibles + rents

 high intan share η + high intan price growth $g_{Q2} + \mu > 1$ (+ bias in g, off balanced-growth)

- **data**: intermediate services as omitted intan (organization capital)

 97-18: $\frac{\hat{dZ}}{Z} - \frac{dZ}{Z} = -30$bps $= 0.6 \times \Delta \left(\frac{\hat{dZ}}{Z} \right)$

 47-96: $\frac{\hat{dZ}}{Z} - \frac{dZ}{Z} = -5$bps
This paper

What we do:

- **theory**: derive conditions under which intangibles + rents lead to \(\hat{dZ}/Z < dZ/Z \)
 general framework; balanced growth model
- **data**: test conditions + estimate \(dZ/Z - \hat{dZ}/Z \)

What we find:

- **theory**: for \(\hat{dZ}/Z < dZ/Z \), need both intangibles + rents
 high intan share \(\eta \) + high intan price growth \(g_{Q2} + \mu > 1 \) (+ bias in \(g \), off balanced-growth)
- **data**: intermediate services as omitted intan (organization capital)

 \[
 \begin{align*}
 97-18: \quad & \hat{dZ}/Z - dZ/Z = -30 \text{bps} = 0.6 \times \Delta \left(\hat{dZ}/Z \right) \\
 47-96: \quad & \hat{dZ}/Z - dZ/Z = -5 \text{bps}
 \end{align*}
 \]
1. Measurement of productivity growth:
 - Solow (1957), Jorgenson and Griliches (1968), Basu and Fernald (2001), Corrado et al. (2009), Cette et al. (2016), Byrne et al. (2017), Fernald et al. (2017)

 This paper: bias in input shares and capital growth; organization capital

2. Investment-specific technical change:
 - Greenwood et al. (1997), Greenwood et al. (1998), Basu et al. (2013), Gourio and Rognlie (2020)

 This paper: markups+intan → overestimate contrib. of g_Q to growth

3. Macroeconomic implications of rising rents and rising intangibles:
 - Gutiérrez and Philippon (2017, 2018); Farhi and Gourio (2018); Barkai (2020); De Loecker et al. (2020); Crouzet and Eberly (2020); Edmond, Midrigan and Xu (2020)

 This paper: aggregate technical change, not allocative efficiency
1. Theory
The simple Solow residual approach

\[
\frac{\hat{d}Z}{Z} = \frac{\hat{d}Y}{Y} - (1 - \hat{s}_L) \frac{\hat{d}K}{K} - \hat{s}_L \frac{\hat{d}L}{L}
\]

A1: Constant returns to scale in production

\[
\frac{dZ}{Z} = \frac{dY}{Y} - (1 - \epsilon_L) \frac{dK}{K} - \epsilon_L \frac{dL}{L}
\]

A2: Variable cost minimization

\[
\epsilon_L = \frac{WL}{MCY}
\]

A3: Price = Marginal cost

\[
\hat{s}_L = \frac{WL}{PY} = \frac{WL}{MCY} = \epsilon_L
\]

A4: \(\frac{\hat{d}X}{X} = dX/X \)

\[
\frac{\hat{d}Z}{Z} = \frac{dZ}{Z}
\]
Measurement bias from markups

\[
A3: \quad P = \mu MC, \quad \mu > 1
\]

Result 1:

\[
\frac{\hat{d}Z}{Z} - \frac{dZ}{Z} = \hat{s}_L (1 - \mu) \left(\frac{dK}{K} - \frac{dL}{L} \right) < 0
\]

\(\hat{s}_L \) **under-estimates** \(\epsilon_L \):

\[
\hat{s}_L = \mu^{-1} \epsilon_L < \epsilon_L
\]

Basu and Fernald (2002), Fernald and Neiman (2011)
Measurement bias from markups

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{s}_L</td>
<td>0.68</td>
<td>0.62</td>
<td>-0.04</td>
</tr>
<tr>
<td>$\hat{dZ}/Z - dZ/Z$ ($\epsilon_L = 1.00$)</td>
<td>-0.73</td>
<td>-0.84</td>
<td>-0.11</td>
</tr>
<tr>
<td>$\hat{dZ}/Z - dZ/Z$ ($\epsilon_L = 0.68$)</td>
<td>0.00</td>
<td>-0.09</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

9bps, vs. 50bps observed decline in \hat{dZ}/Z.
Measurement bias from intangibles

\[A4 : \hat{K} \neq K \]

\[\hat{PY} = PY - B \]

Some capital is omitted from the measured stock \(\hat{K} \)

The corresponding investment \(B \) is treated as intermediate purchases in GDP
Measurement bias from intangibles

$A4 \implies \text{Capital growth might be mismeasured:}$

$$\frac{\hat{dK}}{K} \geq \frac{dK}{K}$$
Measurement bias from intangibles

\[\frac{\hat{d}Y}{Y} = \frac{dY}{Y} + \left(\frac{1}{b} - 1 \right) \left(\frac{dY}{Y} - \frac{d\tilde{B}}{\tilde{B}} \right) \]

\[b = \frac{\hat{P}Y}{PY} \leq 1 \]

\[\tilde{B} \equiv \left(\frac{B}{\hat{P}} \right) \left(\frac{P}{\tilde{P}} \right)^{\frac{b}{1-b}} \]
Measurement bias from intangibles

\[A4 \implies \hat{s}_L \text{ over-estimates } \epsilon_L: \]

\[\hat{s}_L = \frac{WL}{\hat{P}\hat{Y}} = \frac{WL}{PY} \frac{PY}{\hat{P}\hat{Y}} = \frac{\epsilon_L}{b} > \epsilon_L \]
Measurement bias from intangibles

Result 2:

\[
\frac{\hat{d}Z}{Z} - \frac{dZ}{Z} \equiv \Delta = \Delta^{(1)} + \Delta^{(2)} + \Delta^{(3)}
\]

\[
\Delta^{(1)} = \left(\frac{1}{b} - 1 \right) \left(\frac{dY}{Y} - \frac{d\hat{B}}{\hat{B}} \right) \quad \text{(GDP growth bias)} \geq 0
\]

\[
\Delta^{(2)} = \hat{s}_L (1 - b) \left(\frac{\hat{d}K}{K} - \frac{dL}{L} \right) \quad \text{(labor share bias)} > 0
\]

\[
\Delta^{(3)} = (1 - \epsilon_L) \left(\frac{dK}{K} - \frac{\hat{d}K}{K} \right) \quad \text{(capital growth bias)} \geq 0
\]

But:

\[
\hat{s}_L = \frac{\epsilon_L}{b} \quad \text{should be high/growing}
\]
Measurement bias from intangibles+markups

Result 3:

\[\frac{\hat{d}Z}{Z} - \frac{dZ}{Z} \equiv \Delta = \Delta^{(1)} + \Delta^{(2)} + \Delta^{(3)} \]

\[\Delta^{(1)} = \left(\frac{1}{b} - 1 \right) \left(\frac{dY}{Y} - \frac{d\hat{B}}{\hat{B}} \right) \quad \text{(GDP growth bias)} \geq 0 \]

\[\Delta^{(2)} = \hat{s}_L \left(1 - \mu_b \right) \left(\frac{\hat{d}K}{K} - \frac{dL}{L} \right) \quad \text{(labor share bias)} \geq 0 \]

\[\Delta^{(3)} = (1 - \epsilon_L) \left(\frac{dK}{K} - \frac{\hat{d}K}{K} \right) \quad \text{(capital growth bias)} \geq 0 \]

And:

\[\hat{s}_L = \frac{\epsilon_L}{b\mu} \quad \text{could be low/falling} \]
A model to help with the measurement

\[U = \int_0^{+\infty} e^{-\rho t} \frac{C_t^{1-\sigma}}{1-\sigma} dt \]

\[Y_t = Z_t K_t^\alpha L_t^{1-\alpha}, \quad \frac{dL_t}{L_t} = g_L dt, \quad \frac{dZ_t}{Z_t} = g_Z dt \]
A model to help with the measurement

\[U = \int_0^{+\infty} e^{-\rho t} \frac{C_t^{1-\sigma}}{1-\sigma} dt \]

\[Y_t = Z_t K_t^{\alpha} L_t^{1-\alpha}, \quad \frac{dL_t}{L_t} = g_L dt, \quad \frac{dZ_t}{Z_t} = g_Z dt \]

\[K_t = K_{1,t}^{1-\eta} K_{2,t}^{\eta}, \quad \frac{dQ_{n,t}}{Q_{n,t}} = g_{Q_n} dt \quad n = 1, 2 \]
A model to help with the measurement

\[U = \int_{0}^{+\infty} e^{-\rho t} \frac{C_{t}^{1-\sigma}}{1-\sigma} dt \]

\[Y_{t} = Z_{t}K_{t}^{\alpha}L_{t}^{1-\alpha}, \quad \frac{dL_{t}}{L_{t}} = g_{L} dt, \quad \frac{dZ_{t}}{Z_{t}} = g_{Z} dt \]

\[K_{t} = K_{1,t}^{1-\eta}K_{2,t}^{\eta}, \quad \frac{dQ_{n,t}}{Q_{n,t}} = g_{Q_{n}} dt \quad n = 1, 2 \]

\[Y_{t} = Q_{1,t}I_{1,t} + Q_{2,t}I_{2,t} + C_{t}, \quad \hat{Y}_{t} = Y_{t} - Q_{2,t}I_{2,t}, \quad \hat{K}_{t} = K_{1,t} \]
A model to help with the measurement

\[U = \int_{0}^{+\infty} e^{-\rho t} \frac{C_{t}^{1-\sigma}}{1-\sigma} dt \]

\[Y_{t} = Z_{t} K_{t}^{\alpha} L_{t}^{1-\alpha}, \quad \frac{dL_{t}}{L_{t}} = g_{L} dt, \quad \frac{dZ_{t}}{Z_{t}} = g_{Z} dt \]

\[K_{t} = K_{1, t}^{1-\eta} K_{2, t}^{\eta}, \quad \frac{dQ_{n, t}}{Q_{n, t}} = g_{Q_{n}} dt \quad n = 1, 2 \]

\[Y_{t} = Q_{1, t} I_{1, t} + Q_{2, t} I_{2, t} + C_{t}, \quad \hat{Y}_{t} = Y_{t} - Q_{2, t} I_{2, t}, \quad \hat{K}_{t} = K_{1, t} \]

\[W_{t} = \frac{1-\alpha Y_{t}}{\mu} \frac{Y_{t}}{L_{t}} \]
A model to help with the measurement

\[U = \int_0^{+\infty} e^{-\rho t} \frac{C_t^{1-\sigma}}{1-\sigma} dt \]

\[Y_t = Z_t K_t \alpha L^{1-\alpha}_t, \quad \frac{dL_t}{L_t} = g_L dt, \quad \frac{dZ_t}{Z_t} = g_Z dt \]

\[K_t = K_{1,t}^{1-\eta} K_{2,t}^\eta, \quad \frac{dQ_{n,t}}{Q_{n,t}} = g_{Q,n} dt \quad n = 1, 2 \]

\[Y_t = Q_{1,t} I_{1,t} + Q_{2,t} I_{2,t} + C_t, \quad \hat{Y}_t = Y_t - Q_{2,t} I_{2,t}, \quad \hat{K}_t = K_{1,t} \]

\[W_t = \frac{1 - \alpha Y_t}{\mu L_t} \]

A1, A2, A4, A3
Insights from the model

1. $\Delta (1) = GDP\ growth\ bias = 0$
 $Y_t, Q_2, t, I_2, t, \hat{Y}_t = Y_t - Q_2, t, I_2, t, all\ grow\ at\ same\ rate\ on\ the\ BGP$

2. $\Delta (2) = capital\ growth\ bias = -\alpha \eta (g_{Q_2} - g_{Q_1})$
 negative\ when\ $g_{Q_2} > g_{Q_1}$ and $b < 1$

3. $\Delta (3) = labor\ share\ bias\ still\ has\ an\ ambiguous\ sign ...\ but\ (generally)\ negative\ when\ g_{Q_2} > g_{Q_1}, b < 1, \ and \ \mu > 1$

Derivations
Insights from the model

1. \(\Delta^{(1)} = \) GDP growth bias = 0

\[Y_t, \quad Q_{2,t}I_{2,t}, \quad \hat{Y}_t = Y_t - Q_{2,t}I_{2,t} \quad \text{all grow at same rate on the BGP} \]
Insights from the model

1. $\Delta^{(1)} = \text{GDP growth bias} = 0$

\[Y_t, \quad Q_{2,t}I_{2,t}, \quad \hat{Y}_t = Y_t - Q_{2,t}I_{2,t} \quad \text{all grow at same rate on the BGP} \]
Insights from the model

1. $\Delta^{(1)} = \text{GDP growth bias} = 0$
 \[Y_t, Q_{2,t} I_{2,t}, \hat{Y}_t = Y_t - Q_{2,t} I_{2,t} \] all grow at same rate on the BGP

2. $\Delta^{(2)} = \text{capital growth bias} = -\alpha \eta (g_{Q_2} - g_{Q_1})$
 negative when $g_{Q_2} > g_{Q_1}$ and $b < 1$
Insights from the model

1. $\Delta^{(1)} = \text{GDP growth bias } = 0$

 $Y_t, Q_{2,t}I_{2,t}, \hat{Y}_t = Y_t - Q_{2,t}I_{2,t}$ all grow at same rate on the BGP

2. $\Delta^{(2)} = \text{capital growth bias } = -\alpha\eta (g_{Q_2} - g_{Q_1})$

 negative when $g_{Q_2} > g_{Q_1}$ and $b < 1$
Insights from the model

1. $\Delta^{(1)} = \text{GDP growth bias} = 0$

 $Y_t, \ Q_{2,t} I_{2,t}, \ \hat{Y}_t = Y_t - Q_{2,t} I_{2,t}$ all grow at same rate on the BGP

2. $\Delta^{(2)} = \text{capital growth bias} = -\alpha \eta \left(g_{Q_2} - g_{Q_1} \right)$

 negative when $g_{Q_2} > g_{Q_1}$ and $b < 1$

3. $\Delta^{(3)} = \text{labor share bias}$ still has an ambiguous sign ...

 ... but (generally) negative when $g_{Q_2} > g_{Q_1}, \ b < 1,$ and $\mu > 1$
2. Data
Methodology

Given estimates of \hat{b} and \hat{g}_{Q2}, and $\{\hat{g}, \hat{g}_K, \hat{g}_L, \hat{s}_L\}$, construct:

$$\eta = \frac{1 - \hat{b}}{\hat{b}\hat{s}_L} \frac{1 - \alpha \hat{r} + \delta_2 - \hat{g}_{Q2}}{\alpha \hat{g} + \delta_2 - \hat{g}_{Q2}}$$

$$g_Z = \hat{g} - (1 - \alpha)\hat{g}_L - \alpha \hat{g}_K + \alpha \eta (\hat{g}_{Q2} - (\hat{g} - \hat{g}_K)) \quad \text{[adjusted Solow residual]}$$

$$\mu = \frac{1 - \alpha}{\hat{b}\hat{s}_L}$$
Data on b

Commodity Use tables, 1997-2018: 61 different commodities and services.
Data

Data on \hat{b}

Commodity Use tables, 1997-2018: 61 different commodities and services.

$B_j = \text{total intermediate use of commodity/service } j$
Data

Data on \hat{b}

Commodity Use tables, 1997-2018: 61 different commodities and services.

$B_j = \text{total intermediate use of commodity/service } j$

$\hat{b}_j = \frac{\hat{P}Y}{\hat{P}Y + B_j}$
Data

Data on \hat{b}

Commodity Use tables, 1997-2018: 61 different commodities and services.

$B_j = \text{total intermediate use of commodity/service } j$

$$\hat{b}_j = \frac{\hat{PY}}{\hat{PY} + B_j}$$

Data on \hat{g}_{Q_2}

61 deflators from GDP-by-industry tables, 1997-2018 (minus PCE deflator).
Data

Data on \hat{b}

Commodity Use tables, 1997-2018: 61 different commodities and services.

$B_j = \text{total} \ intermediate \ use \ of \ commodity/service \ j$

$$\hat{b}_j = \frac{\hat{PY}}{\hat{PY} + B_j}$$

Data on \hat{g}_{Q_2}

61 deflators from GDP-by-industry tables, 1997-2018 (minus PCE deflator).

need commodity/service ↔ industry
10 largest GDP adjustments \hat{b}_j

<table>
<thead>
<tr>
<th>Service</th>
<th>\hat{b}_j</th>
<th>$\hat{g}_{Q2,j}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional, scientific, and technical services</td>
<td>0.940</td>
<td>0.49</td>
</tr>
<tr>
<td>Other real estate</td>
<td>0.952</td>
<td>-1.85</td>
</tr>
<tr>
<td>Administrative and support services</td>
<td>0.964</td>
<td>0.10</td>
</tr>
<tr>
<td>Insurance carriers and related activities</td>
<td>0.972</td>
<td>-0.31</td>
</tr>
<tr>
<td>Credit intermediation and related activities</td>
<td>0.973</td>
<td>0.96</td>
</tr>
<tr>
<td>Management of companies and enterprises</td>
<td>0.974</td>
<td>1.44</td>
</tr>
<tr>
<td>Commodities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical products</td>
<td>0.962</td>
<td>1.21</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>0.972</td>
<td>1.99</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.973</td>
<td>3.68</td>
</tr>
<tr>
<td>Food and beverage and tobacco products</td>
<td>0.976</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Investment in organization capital, misclassified as intermediates?
Cumulative GDP adjustments for business service sector

<table>
<thead>
<tr>
<th>Service groups</th>
<th>Average, 1997-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\hat{b}</td>
</tr>
<tr>
<td>Prof. services</td>
<td>0.94</td>
</tr>
<tr>
<td>Prof. services + Manag.</td>
<td>0.92</td>
</tr>
<tr>
<td>Prof. services + Manag. + Admin.</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Ratio of unadjusted to adjusted GDP

- IO tables, Prof. services
- IO tables, Prof. services + Management
- IO tables, Prof. services + Management + Admin.
Total adjustment to TFP growth

<table>
<thead>
<tr>
<th>Year</th>
<th>\hat{b}</th>
<th>\hat{g}_{Q_2} (%)</th>
<th>\hat{g}_{Z} (%)</th>
<th>μ</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947-1996</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>1997-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adj., no markups</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>No adj., markups</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
</tr>
<tr>
<td>Adj. for Prof. services</td>
<td>0.94</td>
<td>0.49</td>
<td>1.04</td>
<td>1.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag.</td>
<td>0.92</td>
<td>0.68</td>
<td>1.10</td>
<td>1.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag. + Admin.</td>
<td>0.89</td>
<td>0.55</td>
<td>1.14</td>
<td>1.19</td>
<td>0.50</td>
</tr>
</tbody>
</table>

$\Delta \hat{g}_{Z} = -22$bps (adjusted) vs. $\Delta \hat{g}_{Z} = -50$bps (unadjusted)
Total adjustment to TFP growth

<table>
<thead>
<tr>
<th></th>
<th>\hat{b}</th>
<th>\hat{g}_{Q2} (%)</th>
<th>g_Z (%)</th>
<th>μ</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947-1996</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>1997-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adj., no markups</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>No adj., markups</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
</tr>
<tr>
<td>Adj. for Prof. services</td>
<td>0.94</td>
<td>0.49</td>
<td>1.04</td>
<td>1.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag.</td>
<td>0.92</td>
<td>0.68</td>
<td>1.10</td>
<td>1.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag. + Admin.</td>
<td>0.89</td>
<td>0.55</td>
<td>1.14</td>
<td>1.19</td>
<td>0.50</td>
</tr>
</tbody>
</table>

$\Delta g_Z = -22\text{bps (adjusted)}$ vs. $\Delta g_Z = -50\text{bps (unadjusted)}$
Total adjustment to TFP growth

<table>
<thead>
<tr>
<th></th>
<th>(\hat{b})</th>
<th>(\hat{g}_{Q_2}) (%)</th>
<th>(g_Z) (%)</th>
<th>(\mu)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947-1996</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>1997-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adj., no markups</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>No adj., markups</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
</tr>
<tr>
<td>Adj. for Prof. services</td>
<td>0.94</td>
<td>0.49</td>
<td>1.04</td>
<td>1.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag.</td>
<td>0.92</td>
<td>0.68</td>
<td>1.10</td>
<td>1.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Adj. for Prof. services + Manag. + Admin.</td>
<td>0.89</td>
<td>0.55</td>
<td>1.14</td>
<td>1.19</td>
<td>0.50</td>
</tr>
</tbody>
</table>

\(\Delta g_Z = -22 \text{bps (adjusted)} \) vs. \(\Delta g_Z = -50 \text{bps (unadjusted)} \)
Pre- vs. post-1997

Previous analysis assumes no adjustments needed before 1997. Reasonable?

Apply adjustments to 47-96, and compare to 97-18. Problems:

1. Expenditure data (\hat{b}_j):
 - 47-96 service and commodity groups coarser than 97-18.
 - "Administrative and Waste Management Services" \supset "Administrative and Support Services"
 - use higher 47-96 aggregation level \rightarrow mechanically lower \hat{b}_j

2. Price data ($\hat{g}_{Q_2,j}$):
 - no deflators in GDP-by-industry tables pre-97; no source for service prices
 - use post-97 values as baseline
Pre vs. post-97: Cumulative GDP adjustment

<table>
<thead>
<tr>
<th></th>
<th>1947-1996</th>
<th>1997-2018</th>
<th>$\Delta \hat{b}$</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. services</td>
<td>0.955</td>
<td>0.921</td>
<td>-0.033***</td>
<td>-15.40</td>
</tr>
<tr>
<td>Prof. services + Manag.</td>
<td>0.937</td>
<td>0.899</td>
<td>-0.038***</td>
<td>-18.11</td>
</tr>
<tr>
<td>Prof. services + Manag. + Admin.</td>
<td>0.924</td>
<td>0.866</td>
<td>-0.057***</td>
<td>-16.23</td>
</tr>
</tbody>
</table>

* : $p < 0.05$, ** : $p < 0.01$, *** : $p < 0.001$.

No change in \hat{b} for the average commodity/service group
Pre vs. post-97: results

<table>
<thead>
<tr>
<th></th>
<th>1997-2018 g_Z (%)</th>
<th>1947-1996 g_Z (%)</th>
<th>Δg_Z (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No markups, no intan adjustment</td>
<td>0.86</td>
<td>1.36</td>
<td>-0.50</td>
</tr>
<tr>
<td>Markups, adjustment for Prof. serv.+Manag.+Admin.</td>
<td>1.18</td>
<td>1.43</td>
<td>-0.25</td>
</tr>
</tbody>
</table>
Robustness

Are the magnitudes for \hat{b} reasonable?
- Compustat expenditures on organization capital
- $\hat{b} = 0.91$, vs. 0.89 in Use tables
- Similar adjustment to $\frac{dZ}{Z}$

Are the magnitudes for \hat{g}_{Q_2} reasonable?
- Price data from BLS, 97-18
- $\hat{g}_{Q_2} > \hat{g}_{Q_1}$
- Smaller adjustment (20bps instead of 28bps)

Are the results robust to alternative values of other parameters?
- lower δ_2 slightly magnifies the mismeasurement; $\delta_2 = 0.05 \rightarrow$ 30bps adjustment
- higher α slightly weakens the mismeasurement; $\alpha = 0.36 \rightarrow$ 27bps adjustment
Conclusion
Main take-aways

Since late 90s, \(\frac{dZ}{Z} \) has been declining
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups
 - high η + high g_{Q_2} + $\mu > 1$
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups

 high η + high g_{Q_2} + $\mu > 1$

 investment in organization capital, misclassified as intermediate purchases
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups
 - high η + high $g_{Q2} + \mu > 1$
 - investment in organization capital, misclassified as intermediate purchases
- caveat: g is not biased ...

contribution of g_{Q2} overestimated \leftrightarrow contribution of g_{Z} underestimated

open questions
 bias off balanced-growth path
 other proxies for g_{Q2}
Main take-aways

Since late 90s, $\frac{dZ}{Z}$ has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups
 - high η + high $g_{Q_2} + \mu > 1$
 - investment in organization capital, misclassified as intermediate purchases

- caveat: g is not biased ...
 - contribution of g_Q overestimated \leftrightarrow contribution of g_Z underestimated
Main take-aways

Since late 90s, \(\frac{dZ}{Z} \) has been declining

- 40-60% due to measurement bias, driven by omitted intangibles + markups

 high \(\eta \) + high \(g_{Q_2} + \mu > 1 \)

 investment in organization capital, misclassified as intermediate purchases

- caveat: \(g \) is not biased ...

 contribution of \(g_{Q} \) overestimated \(\leftrightarrow \) contribution of \(g_{Z} \) underestimated

- open questions

 bias off balanced-growth path

 other proxies for \(g_{Q_2} \)
Reclassifying intermediate expenditures as intangibles

Are the magnitudes for b reasonable?

+ all service purchases treated as investment

− only externally purchased intangibles — no internally generated

Compare to magnitudes obtained using firm accounting data

empirical proxy for investment in org cap (Eisfeldt and Papanikolaou, 2013)

externally purchased + internally generated
Validation with Compustat

Compustat, 1997-2018, mapped to the 61 sectors s in the IO tables.

For each sector s,

$$M_s = 0.3 \times (xsga_s - xrd_s)$$

$$Y_s = \text{Adjusted value added} = \hat{Y}_s + M_s$$

$$\hat{Y}_s = \text{Measured value added} = \text{EBITDA}_s + xrd_s + Wages_s$$

Aggregating:

$$b \equiv \frac{\sum_s \hat{Y}_s}{\sum_s \hat{Y}_s + M_s} = \frac{\text{Unadjusted GDP}}{\text{Adjusted GDP}}$$

Note: $Wages_s$ estimated using the IO Use tables
Ratio of unadjusted to adjusted GDP

- IO tables, Prof. services
- IO tables, Prof. services + Management
- IO tables, Prof. services + Management + Admin.
Compustat comparison

<table>
<thead>
<tr>
<th></th>
<th>\hat{b}</th>
<th>\hat{g}_Q (%)</th>
<th>\hat{g}_Z (%)</th>
<th>μ</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947-1996</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>1997-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adjustment, no markups</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>No adjustment, markups</td>
<td>0</td>
<td>0</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
</tr>
<tr>
<td>Adjusted for Prof. services</td>
<td>0.94</td>
<td>0.49</td>
<td>1.04</td>
<td>1.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Adjusted for Prof. services + Manag.</td>
<td>0.92</td>
<td>0.68</td>
<td>1.10</td>
<td>1.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Adjusted for Prof. services + Manag. + Admin.</td>
<td>0.89</td>
<td>0.55</td>
<td>1.14</td>
<td>1.19</td>
<td>0.50</td>
</tr>
<tr>
<td>Adjusted for Organization capital (Compustat)</td>
<td>0.91</td>
<td>0.68</td>
<td>1.11</td>
<td>1.16</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Nominal investment to GDP, after adjusting for omitted intangible investment
Nominal investment to GDP, after adjusting for omitted intangible investment

- IO tables, unadj.
- IO tables, adj. for Prof. services
- IO tables, adj. for Prof. services + Management
- IO tables, adj. for Prof. services + Management + Admin.
- Compustat, unadj.
- Compustat, adj. for Organization capital
How large can the bias potentially be?

Given \((\eta, g_{Q_2})\), match post-97 moments:

\[
\hat{g} = \frac{\hat{d}Y}{Y}, \quad \hat{g}_L = \frac{\hat{d}L}{L}, \quad \hat{g} - g_{Q_1} = \hat{g}_K = \frac{\hat{d}K}{K}, \quad \hat{s}_L.
\]

Compute and plot implied values of:

\[
g_Z = \hat{g} - (1 - \alpha)\hat{g}_L - \alpha\hat{g}_K + \alpha\eta(g_{Q_2} - g_{Q_1})
\]

\[
\mu = \frac{1 - \alpha}{\hat{s}_L} + \alpha\eta\frac{g + \delta_2 - g_{Q_2}}{r + \delta_2 - g_{Q_2}}
\]

\[
b = \frac{1}{1 + \alpha\eta\frac{\hat{g} + \delta_2 - g_{Q_2}}{1 - \alpha\hat{r} + \delta_2 - g_{Q_2}}}
\]
Implied moments for $\alpha = 0.32$

TFP growth (g_z)

- Measured TFP growth (pre-97)
- Measured TFP growth (post-97)

Markup (μ)

- $g_{Q_2} = 0\%$
- $g_{Q_2} = 1\%$
- $g_{Q_2} = 2\%$

Measured/Actual GDP (b)

- $b = 1.05$
- $b = 1.00$
- $b = 0.95$
- $b = 0.90$
An alternative source for omitted capital prices

Industry classification does not exactly match IO tables

substantially more detail for certain commodities (e.g. consumer products)

missing commodities/services (e.g. Management of Companies)

Matching commodities/services, corr. w/ IO tables deflators is high but not perfect
Commodities or services with the largest GDP adjustments, 1997-2018

<table>
<thead>
<tr>
<th></th>
<th>\hat{b}</th>
<th>g_{Q_2} (VA)</th>
<th>g_{Q_2} (GO)</th>
<th>g_{Q_3} (BLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional, scientific, and technical services</td>
<td>0.940</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Other real estate</td>
<td>0.952</td>
<td>-0.019</td>
<td>-0.004</td>
<td>n.a.</td>
</tr>
<tr>
<td>Administrative and support services</td>
<td>0.964</td>
<td>0.001</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td>Insurance carriers and related activities</td>
<td>0.972</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Credit intermediation and related activities</td>
<td>0.973</td>
<td>0.010</td>
<td>0.008</td>
<td>-0.016</td>
</tr>
<tr>
<td>Management of companies and enterprises</td>
<td>0.974</td>
<td>0.014</td>
<td>0.007</td>
<td>n.a.</td>
</tr>
<tr>
<td>Commodities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical products</td>
<td>0.962</td>
<td>0.012</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>0.972</td>
<td>0.020</td>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.973</td>
<td>0.037</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>Food and beverage and tobacco products</td>
<td>0.976</td>
<td>0.010</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Implied moments for the different price indices

<table>
<thead>
<tr>
<th></th>
<th>GDP tables, BEA</th>
<th></th>
<th>PPI, BLS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g_Z (%)</td>
<td>μ</td>
<td>η</td>
<td>g_Z (%)</td>
</tr>
<tr>
<td>1947-1996</td>
<td>1.36</td>
<td>1.00</td>
<td>0</td>
<td>1.36</td>
</tr>
<tr>
<td>1997-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No adjustment, no markups</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>No adjustment, markups</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td>Adjusted for Prof. services</td>
<td>1.04</td>
<td>1.13</td>
<td>0.25</td>
<td>1.02</td>
</tr>
<tr>
<td>Adjusted for Prof. services + Admin.</td>
<td>1.08</td>
<td>1.17</td>
<td>0.40</td>
<td>1.04</td>
</tr>
<tr>
<td>Adjusted for Org. capital (Compustat)</td>
<td>1.08</td>
<td>1.16</td>
<td>0.38</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Price deflators in the IO tables vs. BLS PPI deflators

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{Q_2}^{(BLS)}$</td>
<td>0.97***</td>
<td>0.97***</td>
<td>1.04***</td>
<td>1.05***</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Commodity/service FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Clustering of s.e.</td>
<td>commodity + year</td>
<td>commodity + year</td>
<td>commodity + year</td>
<td>commodity + year</td>
</tr>
<tr>
<td>R^2</td>
<td>0.603</td>
<td>0.633</td>
<td>0.643</td>
<td>0.673</td>
</tr>
<tr>
<td>N</td>
<td>829</td>
<td>829</td>
<td>829</td>
<td>829</td>
</tr>
</tbody>
</table>
Implied moments for $\alpha = 0.36$

TFP growth (g_z)
- Measured TFP growth (pre-97)
- Measured TFP growth (post-97)

Markup (μ)
- $g_{Q_z} = 0\%$
- $g_{Q_z} = 1\%$
- $g_{Q_z} = 2\%$

Measured/Actual GDP (θ)
Implied TFP growth for alternative values of δ_2

<table>
<thead>
<tr>
<th>δ_2</th>
<th>Implied TFP growth, g_Z (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.15</td>
</tr>
<tr>
<td>0.10</td>
<td>1.14</td>
</tr>
<tr>
<td>0.15</td>
<td>1.13</td>
</tr>
<tr>
<td>0.20</td>
<td>1.12</td>
</tr>
<tr>
<td>0.25</td>
<td>1.11</td>
</tr>
<tr>
<td>0.30</td>
<td>1.10</td>
</tr>
<tr>
<td>0.35</td>
<td>1.09</td>
</tr>
<tr>
<td>0.40</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Implied TFP growth at baseline ($\delta_2=0.20$)
Approach 1: methodology and data

Methodology : for intang investment B misclassified as intermediates:

1. Compute $\hat{b} = \frac{\text{Unadjusted GDP}}{\text{Adjusted GDP}} = \frac{\hat{P}\hat{Y}}{\hat{P}\hat{Y} + B}$

2. From model, obtain g_{Q2} such that:

 $b = \hat{b}$
 $g_{Z} = \text{pre-97 measured TFP growth} = 1.36\%$
 $\hat{g}_{Z} = \text{post-97 measured TFP growth} = 0.86\%$

Data : Commodity Use tables, 1997-2018: 61 different commodities and services.

 $B_{j} = \text{total intermediate use of commodity/service } j \rightarrow \hat{b}_{j}$
Approach 1: 10 largest GDP adjustments

\(\hat{b}_j \) (average, 1997-2018)

<table>
<thead>
<tr>
<th>Services</th>
<th>(\hat{b}_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional, scientific, and technical services</td>
<td>0.940</td>
</tr>
<tr>
<td>Other real estate</td>
<td>0.952</td>
</tr>
<tr>
<td>Administrative and support services</td>
<td>0.964</td>
</tr>
<tr>
<td>Insurance carriers and related activities</td>
<td>0.972</td>
</tr>
<tr>
<td>Credit intermediation and related activities</td>
<td>0.973</td>
</tr>
<tr>
<td>Management of companies and enterprises</td>
<td>0.974</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodities</th>
<th>(\hat{b}_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical products</td>
<td>0.962</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>0.972</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.973</td>
</tr>
<tr>
<td>Food and beverage and tobacco products</td>
<td>0.976</td>
</tr>
</tbody>
</table>
Approach 1: results

<table>
<thead>
<tr>
<th>Service groups</th>
<th>Average, 1997-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. services</td>
<td>(\hat{b})</td>
</tr>
<tr>
<td>Prof. services + Manag.</td>
<td>0.94</td>
</tr>
<tr>
<td>Prof. services + Manag. + Admin.</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Approach 1: results

Average, 1997-2018

<table>
<thead>
<tr>
<th>Service groups</th>
<th>\hat{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. services</td>
<td>0.94</td>
</tr>
<tr>
<td>Prof. services + Manag.</td>
<td>0.92</td>
</tr>
<tr>
<td>Prof. services + Manag. + Admin.</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Are these magnitudes realistic?
Approach 1: results

<table>
<thead>
<tr>
<th>Service groups</th>
<th>Average, 1997-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\hat{b}</td>
</tr>
<tr>
<td>Prof. services</td>
<td>0.94</td>
</tr>
<tr>
<td>Prof. services + Manag.</td>
<td>0.92</td>
</tr>
<tr>
<td>Prof. services + Manag. + Admin.</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Approach 1: solution for g_{Q_2}

The unique price growth satisfying these conditions is given by:

$$g_{Q_2} = \frac{1}{2} \left(r + \delta_2 + \hat{g} - \hat{g}_K + \hat{\xi} - \sqrt{\left(\hat{\xi} + (\hat{r} - \hat{g} - (\hat{g}_K + \delta_2)) \right)^2 + 4(\hat{r} - \hat{g})(\hat{g}_K + \delta_2)} \right),$$

$$\hat{\xi} = \frac{\hat{s}_L \hat{b}}{(1 - \hat{b})(1 - \alpha)} \left[g_Z - (\hat{g} - (1 - \alpha)\hat{g}_L - \alpha \hat{g}_K) \right].$$

When $\hat{b} = 0$, $g_{Q_2} = \hat{g} - \hat{g}_K = g_{Q_1}$.
Pre vs. post-97: 10 largest GDP adjustments

\[\hat{b} \text{ (average)} \]

<table>
<thead>
<tr>
<th></th>
<th>1947-1996</th>
<th>1997-2018</th>
<th>(\Delta \hat{b})</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof., scient. & techn. services</td>
<td>0.955</td>
<td>0.921</td>
<td>-0.033***</td>
<td>-15.40</td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>0.957</td>
<td>0.929</td>
<td>-0.028***</td>
<td>-13.72</td>
</tr>
<tr>
<td>Real estate</td>
<td>0.973</td>
<td>0.952</td>
<td>-0.021***</td>
<td>-13.15</td>
</tr>
<tr>
<td>Admin. and waste services</td>
<td>0.984</td>
<td>0.959</td>
<td>-0.025***</td>
<td>-13.84</td>
</tr>
<tr>
<td>Information</td>
<td>0.979</td>
<td>0.967</td>
<td>-0.013***</td>
<td>-9.89</td>
</tr>
<tr>
<td>Management of companies</td>
<td>0.981</td>
<td>0.974</td>
<td>-0.007***</td>
<td>-17.60</td>
</tr>
<tr>
<td>Commodities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical products</td>
<td>0.966</td>
<td>0.962</td>
<td>-0.004***</td>
<td>-9.89</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>0.978</td>
<td>0.972</td>
<td>-0.007**</td>
<td>-2.78</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.980</td>
<td>0.973</td>
<td>-0.007***</td>
<td>-3.48</td>
</tr>
<tr>
<td>Food, beverage, tobacco</td>
<td>0.956</td>
<td>0.976</td>
<td>0.020***</td>
<td>6.07</td>
</tr>
<tr>
<td>All commodities and services</td>
<td>0.982</td>
<td>0.983</td>
<td>0.001</td>
<td>1.25</td>
</tr>
</tbody>
</table>

* : \(p < 0.05 \), ** : \(p < 0.01 \), *** : \(p < 0.001 \).
Pre vs. post-97: detailed results

<table>
<thead>
<tr>
<th></th>
<th>1997-2018</th>
<th></th>
<th></th>
<th>1947-1996</th>
<th></th>
<th></th>
<th>∆g Z (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ˆgQ₂ (%)</td>
<td>gZ (%)</td>
<td>μ</td>
<td>η</td>
<td>ˆgQ₂ (%)</td>
<td>gZ (%)</td>
<td>μ</td>
</tr>
<tr>
<td>No adj., no markups</td>
<td>0</td>
<td>0.86</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
</tr>
<tr>
<td>No adj., markups</td>
<td>0</td>
<td>0.95</td>
<td>1.06</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>1.00</td>
</tr>
<tr>
<td>Prof. serv.</td>
<td>0.49</td>
<td>1.07</td>
<td>1.15</td>
<td>0.33</td>
<td>0.49</td>
<td>1.40</td>
<td>1.05</td>
</tr>
<tr>
<td>Prof. serv.+Manag.</td>
<td>0.68</td>
<td>1.14</td>
<td>1.18</td>
<td>0.44</td>
<td>0.68</td>
<td>1.43</td>
<td>1.07</td>
</tr>
<tr>
<td>Prof. serv.+Manag.+Admin.</td>
<td>0.55</td>
<td>1.18</td>
<td>1.22</td>
<td>0.60</td>
<td>0.55</td>
<td>1.43</td>
<td>1.08</td>
</tr>
</tbody>
</table>

\[
\Delta g_Z = 1.18 - 1.43 = -25\text{bps (adj.)} \quad \text{vs.} \quad \Delta g_Z = 0.86 - 1.36 = -50\text{bps (unadj.)}
\]