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Abstract

We study the effects of policies proposed for addressing “short-termism”in financial markets.

We examine a noisy rational expectations model in which investors’exposures and information

about fundamentals endogenously vary across horizons. In this environment, taxing or outlaw-

ing short-term investment has no negative effect on the information in prices about long-term

fundamentals. However, such a policy reduces the profits and utility of short- and long-term in-

vestors. Changing policies on the release of short-term information can help long-term investors

—an objective of some policymakers —at the expense of short-term investors, but it also makes

prices less informative and increases costs of speculation.

For decades economists and policymakers have expressed concern about the potentially negative

effects of “short-termism”among investors in financial markets. Research has argued that short-

term investors may increase the volatility and reduce the informativeness of asset prices (Froot,

Scharfstein, and Stein (1992)), exacerbate fire sales and crashes (Cella, Ellul, and Giannetti (2013)),

ineffi ciently incentivize managers to focus on short-term projects (Shleifer and Vishny (1990)), or

reduce incentives of other investors to acquire information (Baldauf and Mollner (2017); Weller

(2017)), making prices less informative overall.

Those who take the view that short-termism is bad for financial markets or the economy as

a whole have proposed a broad array of policies to encourage long-term investment. One of the
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oldest proposals is the tax on transactions of Tobin (1978).1 Some policies directly depend on

holding periods, such as US tax treatment of capital gains and dividends, the SEC’s most recent

proxy access rules, the proposed Long-Term Stock Exchange, linking corporate voting rights to

tenure, and the proposal of Bolton and Samama (2013) for corporations to explicitly reward long-

term investors.2 Budish, Cramton, and Shim (2015) propose to eliminate trade at the very highest

frequencies by shifting markets from continuous operation to frequent batch auctions, and there

have also been proposals to limit or eliminate quarterly financial reports and earnings guidance in

the US, following similar changes in the UK, e.g. by Dimon and Buffett (2018).3 A number of

these policies were endorsed in a letter from 2009 signed by leaders in business, finance, and law.4

This paper theoretically evaluates the effect of policies targeting short-termism on price infor-

mativeness and investor outcomes. Unlike the previous literature, we consider a simple and very

general setting with investors who are ex ante identical and then may endogenously specialize into

different horizons. While there is some recent work on the consequences of various limits on infor-

mation gathering ability and there have been empirical analyses of high-frequency traders, we are

not aware of any other work that directly studies the effects of restrictions on short- and long-term

strategies on price informativeness and investor profits in a general setting.5

The model is designed to be as simple and general as possible. Two key features that it

must have are that investors choose among investment strategies at different horizons, and that

they choose how much information to acquire about fundamentals across horizons. We study a

version of the noisy rational expectations model developed in Kacperczyk, Van Nieuwerburgh, and

Veldkamp (2016). Whereas that paper studies investment in a cross-section of assets, we argue here

that investment policies over time can be thought of as a choice of exposures on many different

future dates. Each of those dates represents a different “asset”, and the returns on those assets

1See also Stiglitz (1989), Summers and Summers (1989), and Habermeier and Kirilenko (2003)
2See LTSE.org and Osipovich and Berman (2017).
3See also Nallareddy, Pozen, and Rajgopal (2016).
4“Overcoming Short-termism: A Call for a More Responsible Approach to Investment and Business Management”,

available at https://assets.aspeninstitute.org/content/uploads/files/content/docs/pubs/overcome_short_state0909_0.pdf.
See also Stiglitz (2015).

5 In much recent work, including Cartea and Penalva (2012), Baldauf and Mollner (2017) and Biais, Foucault, and
Moinas (2015), high-frequency or short-term investors are somehow different from others, either in preferences or
trading technologies. Those models are better suited to studying high-frequency trade specifically.
For recent analyses of limits on information gathering ability, see Banerjee and Green (2015), Goldstein and Yang

(2015), Dávila and Parlatore (2016), and Farboodi and Veldkamp (2017).
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will be correlated across dates.6 The model in this paper is notable for allowing an arbitrarily long

horizon (as opposed to two or three periods), with turnover at any frequency.

It is important to note that the model is not fully dynamic —all trade happens on date 0, so

investors cannot rebalance in response to news or the realization of fundamentals, even though they

might desire to. The model takes a dynamic problem, with information flowing and investment

choices being made over time, and compresses it into a single time period, along the lines of

the classic Arrow—Debreu type analysis, but without a complete set of state-contingent contracts.

Dynamic market equilibria are diffi cult or impossible to solve, and we do not contribute to that

area.7 The paper’s focus is instead on the choice of short- versus long-term investment strategies

and information acquisition. Short-term investors arise naturally in the model as agents whose

exposures to fundamentals fluctuate rapidly across dates due to the type of information they have

acquired. The relevant concept of short- versus long-term here ranges between days and years —

the model is not designed to analyze technical features of higher frequency trading, like market

microstructure effects or exchange fragmentation.

There are a number of potential reasons why a policymaker might want to regulate investment

strategies. As is common in the literature, those reasons are somewhat outside the model. For

example, research often examines how policies affect price effi ciency, even though the models stud-

ied do not generally imply that price effi ciency raises welfare (see Bond, Edmans, and Goldstein

(2012) for a review of the literature on the value of price effi ciency).8 There are at least three po-

tential motivations for regulation. First, if price informativeness at long horizons is more important

6The paper uses a frequency transformation that allows the model to be solved by hand. For other related work
on frequency transformations, see Bandi and Tamoni (2014), Bernhardt, Seiler, and Taub (2010), Chinco and Ye
(2017), Chaudhuri and Lo (2016), Dew-Becker and Giglio (2016), and Kasa, Walker, and Whiteman (2013).

7The lack of dynamics means that the model is not suited for studying the relationship between investor horizon
and bubbles, such as those of Blanchard (1979). There is work that has made substantial progress in solving the
infinite regress problem, but those models assume that investors have only single-period objectives and they do not
allow for a choice of information across horizons. See Makarov and Rytchkov (2012), Kasa, Walker, and Whiteman
(2013), and Rondina and Walker (2017). Recent work also examines dynamic models with strategic trade (with
similar restrictions regarding horizons), whereas here we study a fully competitive setting in which all investors are
price takers — see Vayanos (1999, 2001), Ostrovsky (2012), Banerjee and Breon-Drisch (2016), Foucault, Hombert,
and Rosu (2016), Du and Zhu (2017), and Dugast and Foucault (2017).

8Bond, Edmans, and Goldstein (2012) identify two channels for such spillovers. First, information that stock
prices reveal may guide real activity through investment decisions (Dow and Gorton (1997); Kurlat and Veldkamp
(2015)) and the decisions of outside investors and regulators to intervene in a firm’s activities (Bond, Goldstein,
and Prescott (2009); Bond and Goldstein (2015)). Second, price informativeness allows shareholders to tie manager
compensation to equity prices, thus improving the real effi ciency of management activities (Fishman and Hagerty
(1989); Holmström and Tirole (1993); Farboodi and Veldkamp (2017)).
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for economic decisions like physical investment, then long-term information acquisition might be

encouraged. Second, policymakers might have a general bias toward long-term investors, perhaps

because they are more likely to be people saving for retirement. Finally, one might think of the noise

traders in the model as retail investors who make poor investment decisions driven by sentiment, or

perhaps as uninformed speculators.9 We use the model to examine how restrictions on investment

policies affect price informativeness and the profits and utility of the various investors in order to

help inform the policy debate. If the goal is to reduce mistakes or uninformed speculation, then

one would ask how to reduce the losses borne by noise traders and their effects on prices.

The paper examines a number of specific policies, including direct restrictions on investment

strategies (which map to the batch auction mechanism of Budish, Cramton, and Shim (2015)),

taxes on transactions, and taxing or subsidizing information acquisition. As to transaction taxes

and investment restrictions, we show that when sophisticated agents are restricted from investing

and trading at some frequency, prices become uninformative at that frequency. So if a policy

were implemented saying that investors could no longer maintain positions for less than a month,

variation in prices within the month would become uninformative for fundamentals, and instead

be driven purely by liquidity demand. Intra-month price volatility and mean reversion would also

rise.

However, there is no spillover across horizons. A short-term restriction or transaction tax does

not reduce price informativeness or increase return volatility at longer horizons, so prices would

remain informative at frequencies lower than a month (in an extension of the model, informativeness

can even rise). This separability across horizons follows from a statistical result showing that there

is a robust independence across frequencies in stationary models, along with a separability in mean-

variance (or constant absolute risk aversion) preferences.

The next question is how investment restrictions affect investor outcomes. While it seems

inevitable that a restriction on short-term investment would reduce the welfare of short-term in-
9One view is that policies aimed at short-termism are trying to reduce speculation, but that term is somewhat ill-

defined. Sometimes speculators are simply investors with no fundamental hedging demand, in which case we would
say that all the sophisticated investors in our model are speculators. Alternatively, speculators might be agents
who invest based on signals about the demand of others, rather than about fundamentals. In the present setting,
a signal about demand, after conditioning on prices, is directly informative about fundamentals, so there is little
economic difference between the two here. We thus focus on motivations for addressing short-termism that have
direct counterparts in the model.
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vestors, it is less obvious what would happen to long-term investors or noise traders. An increase

in short-term investment (e.g. due to a change in technology that makes short-term information

acquisition or trading cheaper) turns out to make long-term investors worse off, essentially taking

away some of the long-term investors’trading opportunities. But restricting short-term investment

does not transfer profits back to long-term investors; instead it simply eliminates those profits,

making both short- and long-term investors worse off.

In the context of the model, the way to tilt markets in favor of long-term investors —if that is

one’s goal —is to make acquisition of short-term information more expensive for investors. There

have been numerous recent proposals to do just that, for example by limiting quarterly earnings

guidance (e.g. Schacht et al. (2007), Pozen (2014), Dimon and Buffett (2018), and the Aspen

Institute’s report). In the UK, in fact, such reports are no longer mandatory for publicly traded

companies. The model in this paper is well suited to analyze such policies, and we show that they

can shift the equilibrium toward long-term investors, increasing their average profits and utility

(though the direction of this result depends on how one models information releases).

Finally, the paper examines the impact of the various policies on the profits of noise traders.

Intuitively, the noise traders are constantly making mistakes, potentially affecting prices. There are

two ways to protect them from those mistakes: stop them from trading, or reduce the losses they

take on each trade. Stopping them from trading is in principle simple —just close asset markets —

but then one loses the information contained in prices, along with any gains from trade.

More interestingly, the paper shows that a better alternative is to subsidize or otherwise encour-

age information acquisition, which causes prices to become more informative and less responsive to

noise trader (perhaps speculative) demand. Such a policy can, in the limit, drive noise trader losses

to zero, while simultaneously making prices more useful for economic decisions and reducing the

excess volatility caused by noise trader speculation. However, and interestingly, it is the opposite

of the policy that we showed helps the long-term investors. Furthermore, it is important to temper

the results on noise traders with the knowledge that there is no single canonical model of noise

traders. The paper examines robustness to an alternative formulation driven by time-varying hedg-

ing demand and shows that welfare predictions are more diffi cult to make, though the predictions

for price informativeness and return volatility are similar.
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Overall, then, we obtain three basic results about policies aimed at short-termism:

1. Restricting short-term investment affects short-run but not long-run price informativeness

and return volatility.

2. Restricting short-term investment hurts both short- and long-term investors, but helps noise

traders.

3. Taxing or restricting the availability of short-term information helps long-term investors,

hurts short-term investors and noise traders, and reduces short-term price effi ciency. Subsidizing

information or mandating greater disclosure by firms does the opposite.

On net, then, we would argue that mandatory information releases or subsidizing information

acquisition are the most natural policies to address short-termism, as they both reduce speculative

effects on prices and improve price effi ciency. They do, however, come with costs to long-term

investors, and also run against recent proposals to reduce quarterly reporting.

The answers to the questions of how restrictions on trade affect price informativeness and

welfare are not obvious ex ante. One view is that there might be some sort of separation across

frequencies, so that restrictions in one realm do not affect outcomes in another. On the other hand,

investors obviously interact — they trade with each other — so it would be surprising if policies

targeting a particular type of investor did not act to benefit others. What we find is a mix of

the two: market characteristics at high frequencies can affect the profits and utility of long-term

investors —the model is not entirely separable across frequencies in that sense —but they do not

affect low-frequency price informativeness in our baseline case. Furthermore, there is a tension

between helping long-term investors, helping noise traders, and maintaining price informativeness.

No single policy helps all the groups at the same time due to a zero-sum aspect of the model, and

policies that may be attractive to certain investors can come with negative side effects for agents

outside the model —e.g. executives, or policymakers like the FOMC —who might make decisions

based on asset prices.

The remainder of the paper is organized as follows. Sections 1 and 2 lay out the model and its

solution. Section 3 examines the effects for price volatility and informativeness of restrictions on

investment at different horizons, while section 4 examines the impacts of such policies on the profits

and welfare of different investors. Section 4 also examines the impact of restrictions on information
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releases such as earnings announcements, and section 5 concludes.

1 The model

1.1 Market structure

Time is denoted by t ∈ {−1, 0, 1, ..., T}, with T even, and we will focus on cases in which T may be

treated as large. There is a fundamentals process Dt, on which investors trade forward contracts,

with realizations on all dates except −1 and 0. The time series is stacked into a vector D ≡

[D1, D2, ..., DT ]′ (versions of variables without time subscripts denote vectors) and is unconditionally

distributed as

D ∼ N(0,ΣD). (1)

For our benchmark results, we focus on the case where fundamentals are stationary. Appendix

H shows that the results extend naturally to a case in which fundamentals are stationary in their

growth rate, rather than their level. We discuss that case further below. Stationarity implies that

ΣD is constant along its diagonals, and we further assume that the eigenvalues of ΣD are finite and

bounded away from zero (which is satisfied by standard ARMA processes).

The biggest restriction imposed by the stationarity assumption (whether in levels or differences)

is that we are assuming that the distribution of fundamentals is determined entirely by the matrix

ΣD . The model thus does not allow for stochastic volatility or more general changes in the higher

moments of Dt over time (though it could handle deterministic changes)10, nor does it allow for

nonlinearities in the time series dependence of D. The fact that we study the level (or change) in

fundamentals, rather than their log, is also a restriction, though one that is generally shared by

CARA—Normal specifications (e.g. Grossman and Stiglitz (1980)).

Those restrictions, along with those implicit in the preferences below, mean that the model is

useful primarily for qualitative analysis —it does admit the functional forms required for a realistic

quantitative analysis. In exchange, though, the assumptions yield tractability and closed-form

solutions.
10All the variables in the model are heteroskedastic. The model could accommodate predictable cahgnes in volatility,

such as intra-day patterns and volatility around scheduled announcements, through time-change methods as in Ané
and Geman (2000), and Geman, Madan, and Yor (2001).
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There is a set of futures claims on realizations of the fundamental. When we say that the

model features a choice of investment across dates or horizons, we mean that investors will choose

portfolio allocations across the futures contracts, which then yield exposures to the realization of

fundamentals on different dates in the future.

A concrete example of a process Dt is the price of crude oil: oil prices follow some stochastic

process and investors trade futures on oil at many maturities. Dt could also be the dividend on a

stock, in which case the futures would be claims on dividends on individual dates. The analysis of

futures is an abstraction for the sake of the theory, though we note that dividend futures are in fact

traded (Binsbergen and Koijen (2017)). While the concept of a futures market on the fundamentals

will be a useful analytic tool, we will also price portfolios of futures. Equity, for example, is a claim

to the stream of fundamentals over time. Holding any given combination of futures claims on the

fundamental is equivalent to holding futures contracts on equity claims.

1.2 Information structure

There is a unit mass of “sophisticated”or rational investors, indexed by i ∈ [0, 1] , who have rational

expectations, conditioning on both prices and private signals. The realization of the time series of

fundamentals, {Dt}Tt=1, can be thought of as a single draw from a multivariate normal distribution.

The signals an agent observes are a collection {Yi,t}Tt=1 observed on date 0 with

Yi,t = Dt + εi,t, εi ∼ N (0,Σi) , (2)

where Σ−1
i is investor i’s signal precision matrix (which will be chosen endogenously below).

Through Yi,t, investors can learn about fundamentals on all dates between 1 and T . εi,t is a

stationary error process in the sense that Cov (εi,t, εi,t+j) depends on j but not t. That also implies

that V ar (εi,t) is the same for all t, so all dates are equally diffi cult to learn about. The station-

arity assumption is imposed so that no particular date is given special prominence in the model.

Investors must choose an information policy that treats all dates symmetrically, and they are not

allowed to choose to learn about a single date.

The signal structure generates one of our desired model features, which is that investors can

choose to learn about fundamentals across different dates in the future. When the errors are
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positively correlated across dates, the signals are relatively less useful for forecasting trends in

fundamentals since the errors also have persistent trends. Conversely, when errors are negatively

correlated across dates, the signals are less useful for forecasting transitory variation and pro-

vide more accurate information about moving averages. What types of fluctuations investors are

informed about will determine their investment strategies.

1.3 Investment objective

On date 0, there is a market for forward claims on fundamentals on all dates in the future. Investor

i’s demand for a date-t forward conditional on the set of prices and signals is denoted Qi,t. Investors

have mean-variance utility over terminal wealth:11

U0,i = max
{Qi,t}

T−1E0,i

[
T∑
t=1

βtQi,t (Dt − Pt)
]
− 1

2
(ρT )−1 V ar0,i

[
T∑
t=1

βtQi,t (Dt − Pt)
]
, (3)

where 0 < β ≤ 1 is the discount factor, E0,i and V ar0,i are the expectation and variance operators

conditional on agent i’s date-0 information set, {P, Yi}, and ρ is risk-bearing capacity per unit of

time. We treat all investors as having identical horizons, T —they can follow different strategies,

and may have different rates of portfolio turnover, but they all want to earn the highest possible

returns, with the least amount of risk, in the shortest time. The sense in which the model maps

into the colloquial use of the term “short-termism” is that agents in the model may choose to

follow investment strategies featuring very rapid changes in their positions across dates. Appendix

B shows that the horizon does not affect information choices in the model. Short- and long-term

investors are distinguished by how long they maintain positions, not by their objective.

The key restriction here (beyond those implicit in the mean-variance assumption) is that signals

are acquired and trade occurs on date 0. In general settings there is no known closed-form solu-

tion to even the partial-equilibrium dynamic portfolio choice problem, let alone to the full market

equilibrium.12 The dynamic portfolio choice problem is diffi cult due to the presence of dynamic

11To see why this is over terminal wealth, note that when the profits from each futures claim, Dt−Pt, are reinvested
at the riskless rate β−1, terminal wealth, WT,i, is

∑T
t=1 β

t−TQi,t (Dt − Pt), which is simply β−T times the argument
of the expectation and variance in the preferences. For motivation, see Dumas and Luciano (1991). Other papers
using similar preferences include Carpenter (2000), Cox and Leland (2000), Li and Ng (2000).
12Frequency-domain solutions to the infinite regress problem, such as Kasa, Walker, and Whiteman (2013) and

Makarov and Rytchkov (2012), restrict preferences to depend on wealth one period ahead in order to avoid the
dynamic portfolio problem.
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hedging motives and rebalancing in response to news. Moreover, allowing agents to obtain sig-

nals repeatedly yields a highly nontrivial statistical updating task. We therefore use a relatively

minimal static model which eliminates those problems by assumption. The model nevertheless

has the two characteristics that we stated we desire in the introduction: it allows for investment

strategies that place different weight on fundamentals on different dates in the future, and it allows

investors to make a choice about how precise their signals are for different types of fluctuations in

fundamentals.13

It should also be noted that the model can only accommodate mean-variance (or constant

absolute risk aversion) preferences and remain tractable. The specification used here does not

allow for generalized recursive utility, for example.

The time discounting in (3) has the effect of making dates farther in the future less important

in the objective of the investors. We therefore define

Q̃i,t ≡ βtQi,t (4)

to be agent i’s discounted demand. In what follows, the Q̃i,t will be stationary processes. That

means that Qi,t = β−tQ̃i,t will generally grow in magnitude with maturity t, though only to a

relatively small extent for typical values of β and horizons on the order of 10—20 years.

1.4 Noise trader demand

In order to keep prices from being fully revealing, we assume there is uninformed demand from a set

of noise traders. The noise traders are investors with the same objective as the rational agents, but

whose expectations are formed differently. Specifically, their expectations of fundamentals depend

on a signal, Zt, that is in reality uncorrelated with fundamentals, so it can be viewed as a type

of sentiment shock. The noise traders can also be viewed as uninformed speculators. Appendix L

examines all of our results in an alternative model in which exogenous demand is due to hedging.

13 In a dynamic model, signals are revealed and investment decisions are made in each period. here, information
flows and investment decisions are compressed into a single period. The two key differences from a fully dynamic
model are that agents cannot condition on the realization of fundamentals and that there is not a full set of state-
contingent contracts. The former restriction will bind more weakly when agents make decisions primarily based on
private signals rather than the realization of fundamentals. The latter restriction could potentially lead to a form of
time inconsistency here, depending on how one assumes agents update information sets and preferences over time.
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Appendix A shows that when the noise traders maximize an objective of the form of (3) but

with their incorrect expectations, then their demand, denoted Nt, can be written as

Ñt = Zt − kPt, (5)

where Ñt ≡ βtNt. (6)

Zt depends on the signals the noise traders receive (which are assumed to be common across them)

and k is a coeffi cient determining the sensitivity of noise trader demand to prices, which depends

on their risk aversion and how precise they believe their signals to be. In principle, Nt can depend

on prices on all dates (depending on the structure of priors and signals), but we restrict attention

to the case where Nt depends only on Pt for the sake of simplicity.

In the benchmark case where Dt is stationary in levels, we assume that Zt is also stationary in

levels —the noise traders have a signal technology with the same stationarity properties as that of

the sophisticates —which yields a useful symmetry between fundamentals, supply, and the signals,

in that they are all assumed to be stationary processes.

1.5 Asset market equilibrium in the time domain

We begin by solving for the market equilibrium on date 0 that takes the agents’signal precisions,

Σ−1
i , as given. The Σ−1

i are chosen on date -1, and that optimization is discussed below.

Definition 1 For any given set of individual precisions {Σi}i∈[0,1], a date-0 asset market equilib-

rium is a set of demand functions, {Qi (P, Yi)}i∈[0,1], and a price vector P , such that investors

maximize utility and all markets clear:
∫
iQi,tdi+Nt = 0 for all t ≥ 1.

Investors submit demand curves for each futures contract and the equilibrium price vector, P ,

is the one that clears all markets. The structure of the time-0 equilibrium is mathematically that

of Admati (1985), who studies investment in a cross-section of assets, and the solution from that
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paper applies directly here (with the minor difference that supply is also a function of prices):

P = A1D +A2Z, (7)

A1 ≡ I −
(
ρ2Σ−1

avgΣ
−1
Z Σ−1

avg + Σ−1
avg + Σ−1

D + ρ−1k
)−1 (

ρ−1k + Σ−1
D

)
, (8)

A2 ≡ ρ−1A1Σ−1
avg, (9)

where Σ−1
avg ≡

∫
i
Σ−1
i di. (10)

As Admati (1985) discusses, this equilibrium is not particularly illuminating since standard intu-

itions, including the idea that increases in demand should raise prices, do not hold. Prices of futures

maturing on any particular date depend on fundamentals and demand for all other maturities ex-

cept in knife-edge cases. Interpreting the equilibrium requires interpreting complicated products

of matrix inverses. The following section shows that the equilibrium can be solved by hand nearly

exactly when it is rewritten in terms of frequencies.

2 Frequency domain interpretation

2.1 Frequency portfolios

The basic diffi culty of the model is that fundamentals, noise trader demand, and signal errors

are all correlated across dates. For any one of those three processes, we could use a standard

orthogonal (eigen-) decomposition to yield a set of independent components. But in general three

time series with different correlation properties across dates will not have the same orthogonal

decomposition. A central result from time series analysis, though, is that a particular frequency

transform asymptotically orthogonalizes all standard stationary time series processes.

Such a transformation represents simply analyzing the prices of particular portfolios of futures

instead of the futures themselves. It must satisfy three requirements. First, the transformation

should be full rank, so that the set of portfolios allows an investor to obtain the same payoffs as

the futures themselves. Second, the transformed portfolios should be independent of each other.

And third, since we are studying trade at different frequencies, it would be nice if the portfolios

also had a frequency interpretation.
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There are many different conceptions of fluctuations at different frequencies. One might imagine

step functions switching between +1 and -1 at different rates. For reasons we will see below, using

sines and cosines will be most natural in our setting. The portfolios that we study —representing

investor exposures —vary smoothly over time in the form cos (ωt) and sin (ωt).

Formally, the portfolio weights are represented as vectors of the form

ch ≡
√

2

T

(
cos (ωh (t− 1))

)T
t=1

, (11)

sh ≡
√

2

T

(
sin (ωh (t− 1))

)T
t=1

, (12)

where ωh ≡ 2πh/T, (13)

for different values of the integer h ∈ {0, 1, ..., T/2}. c0 is the lowest frequency portfolio, with the

same weight on all dates, while cT
2
is the highest frequency, with weights switching each period

between ±1.

Figure 1 plots the weights for a pair of those portfolios. The x-axis represents dates and the

y-axis is the weight of the portfolio on each date. The weights vary smoothly over time, with the

rate at which they change signs depending on the frequency ω.

Economically, the idea is to think about the investment problem as being one of choosing

exposure to different types of fluctuations in fundamentals. A long-term investor can be thought of

as one whose exposure to fundamentals changes little over time, while a short-term investor holds

a portfolio whose weights change more frequently and by larger amounts.

Our claim is that studying the frequency portfolios is more natural than studying individual

futures claims. Investors do not typically acquire exposure to fundamentals on only a single date.

Rather, they have exposures on multiple dates, and the portfolios we study are one way to express

that. While investors will also obviously not hold a portfolio that takes the exact form of a cosine,

any portfolio can be expressed as a sum of cyclical components. An investor whose portfolio loadings

change frequently will have a portfolio whose weights are relatively larger on the high-frequency

components, which figure 1 shows generate rapid changes in loadings.
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2.2 Properties of the frequency transformation

The portfolio weights can be combined into a matrix, Λ, which implements the frequency transfor-

mation.

Λ ≡
[

1√
2
c0, c1, s1, c2, s2, ..., cT

2
−1, sT

2
−1,

1√
2
cT
2

]
(14)

(s0 and sT/2 do not appear since they are identically equal to zero; the 1/
√

2 scaling for c0 and

cT/2 gives them the same norms as the other vectors).

We use lower-case letters to denote frequency-domain objects. So whereas Q̃t is investor i’s

vector of discounted allocations to the various futures, q̃i is their vector of discounted allocations

to the frequency portfolios, with

Q̃i = Λq̃i. (15)

In what follows, the index j = 1, ..., T identifies columns of Λ. The jth column of Λ is a vector

that fluctuates at frequency ωb j2c = 2π
⌊
j
2

⌋
/T , where b·c is the integer floor operator.14 So there

are two vectors, a sine and a cosine, for each characteristic frequency, with the exceptions of j = 1

(frequency 0, the lowest possible) and j = T (frequency T
2 , the highest possible).

Note also that Λ has the property that Λ−1 = Λ′, so that frequency-domain vectors can be

obtained through

q̃i = Λ′Q̃i. (16)

In the same way that q̃i represents weights on frequency-specific portfolios, d ≡ Λ′D is a

representation of the realization of fundamentals written in terms of frequencies instead of time.

The first element of d, for example, is proportional to the realized sample mean of D. Equivalently,

d is the set of regression coeffi cients of D on the columns of Λ (which generate an R2 of 1).

As a simple example, consider the case with T = 2. The low-frequency or long-term component

of dividends is then d0 = (D1 + D2)/
√

2 and the high-frequency or transitory component is d1 =

(D1 − D2)/
√

2. Agents invest in the low-frequency component d0 by buying an equal amount of

the claims on D1 and D2 and they trade the high-frequency component d1 by buying offsetting

amounts of the claims on D1 and D2. A short-term investment in this case is one where the sign

of the exposure to fundamentals changes, while the long-term investment has a fixed position.

14bxc is the largest integer that is less than or equal to x.
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The most important feature of the frequency transformation is that it approximately diagonal-

izes the variance matrices.

Definition 2 For an n× n matrix A with elements al,m, the weak matrix norm is

|A| ≡
(

1

n

n∑
l=1

n∑
m=1

a2
l,m

)1/2

. (17)

If |A−B| is small, then the elements of A and B are close in mean square.

The frequency transform will lead us to study the spectral densities of the various time series:

Definition 3 The spectrum at frequency ω of a stationary time series Xt is

fX (ω) ≡ σX,0 + 2
∞∑
t=1

cos (ωt)σX,t, (18)

where σX,t = cov (Xs, Xs−t) . (19)

The spectrum, or spectral density, is used widely in time series analysis. The usual interpretation

is that it represents a variance decomposition. fX (ω) measures the part of the variance of Xt

associated with fluctuations at frequency ω, which is formalized as follows.

Lemma 1 For any stationary time series {Xt}Tt=1, with frequency representation x ≡ Λ′X, the

elements of the vector x are approximately uncorrelated in the sense that the covariance matrix of

x, Σx ≡ Λ′ΣXΛ, is nearly diagonal,

|Σx − diag (fX)| ≤ bT−1/2, (20)

and x converges in distribution to

x→d N (0, diag (fX)) , (21)

where b is a constant that depends on the autocorrelations of X,15 and diag (fX) denotes a matrix

with the vector
{
fX
(
ωbj/2c

)}T
j=1

on the main diagonal and zeros elsewhere.16

15Specifically, b = 4
(∑∞

j=1 |jσX,j |
)
.

16A requirement of this lemma, which we impose for all the stationary processes studied in the paper, is that
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Proof. These are textbook results (e.g. Brockwell and Davis (1991) and Gray (2006)). Appendix

C.1 provides a derivation of the inequality (20) specific to our case. The convergence in distribution

follows from Brillinger (1981), theorem 4.4.1.

Lemma 1 says that Λ approximately diagonalizes all stationary covariance matrices. So the

frequency-specific components of fundamentals, prices, and noise trader demand are all (approx-

imately) independent when analyzed in terms of frequencies. That is, d = Λ′D, yi = Λ′Yi, and

z = Λ′Z all have asymptotically diagonal variance matrices. That independence will substantially

simplify our analysis, and it is a special property of the sines and cosines, as opposed to other con-

ceptions of frequencies.17 The various primitive restrictions on the model, including mean-variance

preferences, stationarity, and homoskedasticity, are required in order to be able to take advantage

of this diagonalization result.

2.3 Market equilibrium in the frequency domain

2.3.1 Approximate diagonalization

Instead of solving jointly for the prices of all futures, the approximate diagonalization result al-

lows us to solve a series of parallel scalar problems, one for each frequency. Intuitively, since the

frequency-specific portfolios have returns that are nearly uncorrelated with each other, the investors’

utility can be written approximately as a sum of mean-variance optimizations18

U0,i ≈ max
{qi,j}

T−1
T∑
j=1

{
E0,i [q̃i,j (dj − pj)]−

1

2
ρ−1V ar0,i [q̃i,j (dj − pj)]

}
. (22)

In what follows, we solve the model using the approximation for U0,i, and then show that it converges

to the true solution from Admati (1985). When utility is completely separable across frequencies,

the autocovariances are summable in the sense that
∑∞
j=1 |jσX,j | is finite (which holds for finite-order stationary

ARMA processes, for example). Trigonometric transforms of stationary time series converge in distribution under
more general conditions, though. See Shumway and Stoffer (2011), Brillinger (1981), and Shao and Wu (2007).
17Finally, it is should be noted that infill asymptotics, where T grows by making the length of a time period shorter,

are not suffi cient for lemma 1 to hold. What is important is that T is large relative to the range of autocorrelation
of the process X. So, for example, if fundamentals have nontrivial autocorrelations over a horizon of a year, then it
is important that T be substantially larger than a year. Van Binsbergen and Koijen (2017), for example, examine
data on dividend futures with maturities as long as 16 years. This also means that the correct numerical value for T
depends on the length of a time period. If one shifts from annual to monthly data, then T should rise by a factor of 12
for the approximations to be equally accurate. T should thus be both long enough for the frequency approximation
to be accurate and also to give a reasonable representation of investor horizons.
18This follows from lemma 1 combined with the fact that Λ′Λ = I, so that Q′iD = Q′iΛ

′ΛD = q′id.
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there is an equilibrium frequency by frequency:

Solution 1 Under the approximations d ∼ N (0, diag (fD)) and z ∼ N (0, diag (fZ)), the prices of

the frequency-specific portfolios, pj, satisfy, for all j

pj = a1,jdj + a2,jzj (23)

a1,j ≡ 1−
ρ−1k + f−1

D,j(
ρf−1
avg,j

)2
f−1
Z,j + f−1

avg,j + f−1
D,j + ρ−1k

(24)

a2,j ≡
a1,j

ρf−1
avg,j

(25)

where f−1
avg,j ≡

∫
i f
−1
i,j di is the average precision of the agents’signals at frequency j.

Proof. See appendix C.2.

The price of the frequency-j portfolio depends only on fundamentals and supply at that fre-

quency due to the independence across frequencies. As usual, the informativeness of prices,

V ar [dj | pj ] can be shown to increase in the precision of the signals that investors obtain, while

the impact of noise trader demand on prices is decreasing in signal precision and risk tolerance.

These solutions for the prices are standard results for scalar markets. What is different here is

simply that the agents chose exposures across frequencies, rather than across dates; pj is the price

of a portfolio whose exposure to fundamentals fluctuates over time at frequency 2π bj/2c /T . Both

prices and demands at frequency j depend only on signals and supply at frequency j —the problem

is completely separable across frequencies.

In what follows, we assume that k is suffi ciently small that ka2,j < 1 for all j, which ensures

that z represents a positive demand shock in equilibrium (though most of the results hold without

that assumption). The restriction is that noise trader demand not be too sensitive to prices; in the

literature k is usually equal to zero.

2.3.2 Quality of the approximation

While solution 1 is an approximation, its error can be bounded. The time domain solution is

obtained from the frequency domain solution by premultiplying by Λ (from equation (15)), and we

have,
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Proposition 1 The difference between solution 1 and the exact Admati (1985) solution is small

in the sense that

∣∣A1 − Λdiag (a1) Λ′
∣∣ ≤ c1T

−1/2 (26)∣∣A2 − Λdiag (a2) Λ′
∣∣ ≤ c2T

−1/2 (27)

for constants c1 and c2. Furthermore, the variances of the approximation error for prices and

quantities are bounded by:

|V ar (Λp− P )| ≤ cPT
−1/2 (28)∣∣∣V ar (Λq̃i − Q̃i

)∣∣∣ ≤ cQT
−1/2 (29)

for constants cP and cQ.

Proof. See appendix C.3.

Proposition 1 shows that the frequency domain solution to the market equilibrium provides a

close approximation to the true solution in the sense that the solution in (23), once it is rotated

back to the time domain, converges to equations (7—9). Moreover, Λp is stochastically close to P

in the sense that the variance of the pricing errors is of order T−1/2. So the standard time-domain

solution for stationary time series processes becomes arbitrarily close to a simple set of parallel

scalar problems in the frequency domain for large T .

2.4 Optimal information choice in the frequency domain

The analysis so far takes the precision of the signals as fixed. Following Van Nieuwerburgh and

Veldkamp (2009) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), we allow investors to

choose their signal precisions, Σ−1
i to maximize the expectation of their mean-variance objective
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(3) subject to an information cost,19

max
{fi,j}

E−1

[
Ui,0 | Σ−1

i

]
− ψ

2T
tr
(
Σ−1
i

)
, (30)

where E−1 is the expectation operator on date −1, i.e. prior to the realization of signals and

prices (as distinguished from Ei,0, which conditions on P and Yi), and ψ is the per-period cost

of information. Total information here is measured by the trace operator tr
(
Σ−1
i

)
. Note that

while Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) focus on the case where investors have

a fixed budget of precision, we are studying the dual problem in which information comes at a

constant marginal cost. This can be thought of as a case where an investment firm can choose

how many analysts to hire at a fixed wage, with total precision scaling linearly with the number

of analysts. We discuss below how the choice of a constraint versus cost affects the main results.20

Appendix K.3 and section 3.4 discuss another alternative specification where information flows are

measured by entropy.

Given the optimal demands, an agent’s expected utility is linear in the precision they obtain at

each frequency.

Lemma 2 Each informed investor’s expected utility at time −1 may be written as a function of

their own signal precisions, f−1
i,j , and the average across other investors, f

−1
avg,j ≡

∫
i f
−1
i,j di, with

E−1 [U0,i | {fi,j}] =
1

2T

T∑
j=1

λj

(
f−1
avg,j

)
f−1
i,j + constant, (31)

where the constant does not depend on investor i’s precision and λj (x) > 0 and λ′j (x) < 0 for all

x ≥ 0.

Proof. See appendix C.4.

Since expected utility and the information cost are both linear in the set of precisions that

19The preferences can equivalently be written in terms of utility over terminal wealth, WT,i. Specifically, maximiza-
tion of E−1

[
−ρ−1T−1 logE0,i [exp (−ρWT,i)] | Σ−1i

]
, where E0,i conditions on priors, agent i’s signals, and prices, is

equivalent to maximization of (30) since U0,i = ρ−1T−1 logE0,i [exp (−ρWT,i)].
20The constraint model corresponds to a world where firms cannot expand the number of analysts that they employ,

just shift them among tasks (frequencies). The cost model that we focus on represents a world where firms are free
to hire more analysts from an elastic supply. This is more relevant if the financial sector does not account for most
of the employment of the people capable of doing research.
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agent i chooses,
{
f−1
i,j

}
, it immediately follows that agents purchase signals at whatever subset of

frequencies has λj
(
f−1
avg,j

)
≥ ψ.

Solution 2 Information is allocated so that

f−1
avg,j =

 λ−1
j (ψ) if λj (0) ≥ ψ,

0 otherwise.
(32)

Because attention cannot be negative, when λj (0) ≤ ψ, no attention is allocated to frequency

j. Otherwise, attention is allocated so that its marginal benefit and its marginal cost are equated.

This result does not pin down precisely how any specific investor’s attention is allocated; this class

of models, with a non-convex information cost, only determines the aggregate allocation of attention

across frequencies. For the purposes of studying price informativeness, though, characterizing this

aggregate allocation is all that is necessary.

Solution 2 is the water-filling equilibrium of Kacperczyk, Van Nieuwerburgh, and Veldkamp

(2016). In their case it applied to the variances of principal components of a cross-section of assets,

where here it applies to variances of frequency portfolios —the spectrum.

At this point there are still no investors who are explicitly “short-term” or “long-term”. In-

vestors can follow many different strategies, with different mixes of short- and long-term focus.

Even without any specialization to particular strategies, though, we now have suffi cient structure

to analyze the effects of restrictions on the strategies that investors may follow. Later on, we

explicitly discuss how to think about short- and long-term investors.

3 The consequences of restricting investment frequencies for prices

This section focuses on the effects on prices of restrictions on the frequencies at which investment

strategies can operate. It examines a particularly stark restriction that simply outlaws certain

strategies. Section 4 studies information restrictions, while appendix I shows that the results here

are similar to those obtained by imposing a quadratic tax on trading.
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3.1 Restricting investment frequencies

The assumption in this section is that investors are restricted to setting q̃i,j = 0 for j in some set R.

We leave the noise traders unconstrained, assuming that, like retail investors, they face different

regulations from large and sophisticated institutions.

Intuitively, if an investor is restricted from exposures at frequencies shorter than a day (i.e. R

is the set of frequencies corresponding to cycles lasting less than one day), then they can effectively

only choose exposures once per day. Rather than forcing the investor to literally only trade once

a day, though, the restriction in our case corresponds to a portfolio that varies smoothly between

days. So (approximately) if the investor can choose daily exposures, then their actual exposures,

minute-by-minute, might be represented by a spline that smooths between the daily exposures.

More formally, a restriction on exposures to the frequency portfolios reduces the number of

degrees of freedom that an investor has in making choices. Consider a model in which each time

period is an hour, and T is a year, or 1625 trading hours. A restriction that investors cannot invest

at a frequency higher than a day (6.5 hours) would mean that they would go from a strategy with

1625 degrees of freedom to one with only 250. A pension that sets a portfolio once a quarter would

have only four degrees of freedom. In that sense, then, a frequency restriction is similar to a shift

from a continuous market to one with infrequent batch auctions, as in Budish, Cramton, and Shim

(2015). While that paper proposes holding the auctions still very frequently (i.e. more than once

per second), a more aggressive restriction could have auctions only once per day, or once per hour.

Appendix H examines the version of the model in which fundamentals are stationary in differ-

ences instead of levels (i.e. they have a unit root). In that case, the analysis goes through nearly

identically —frequency restrictions still represent decreases in the degrees of freedom available to

investors —but with a single small change: the lowest frequency portfolio, rather than being one

that puts equal weight on fundamentals on all dates, puts weight on fundamentals only on the final

date, T . Intuitively, an investor who wants to take a position in long-run growth rates does that

by buying a claim just to the level on date T . On the other hand, an investor who holds a portfolio

that loads on rapid changes in the growth rate of fundamentals will have a portfolio with weights

on the level of fundamentals that also change quickly. So in that case, the example of restricting

investment in portfolios with frequencies higher than a day continues to impose the same limit on
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the set of strategies investors can choose from.

Derivations of the results in the remainder of this section are in appendix D.

3.2 Results

We begin by describing price informativeness at different frequencies to demonstrate our key sepa-

ration result. We then show what happens to prices of standard claims in the time domain.

3.2.1 Price informativeness across frequencies

In terms of frequencies, there is a complete separation: prices become uninformative at restricted

frequencies, while remaining unaffected at unrestricted frequencies.

Result 1 When investment by sophisticated investors is restricted at a set of frequencies R, prices

satisfy

pj =

 k−1zj for j ∈ R

a1,jdj + a2,jzj otherwise

 , (33)

where a1,j and a2,j are the same as those defined in solution 1.

Intuitively, when sophisticated investors are restricted, prices depend only on sentiment, since

the agents with information cannot express their opinions. Moreover, the market becomes illiquid,

and it is cleared purely through prices rather than quantities.

Since the solution for information acquisition at a frequency j does not depend on anything

about any other frequency, the information acquired at a frequency j /∈ R is also unaffected by the

policy. We then have the result that:

Corollary 1.1 When investors are restricted from holding portfolios with weights that fluctuate at

some set of frequencies j ∈ R, then prices at those frequencies, pj, become completely uninformative

about dividends. The informativeness of prices for j /∈ R about dividends is unchanged. More

formally, V ar [dj | pj ] for j /∈ R is unaffected by the restriction. For j ∈ R, V ar [dj | pj ] = V ar [dj ].

So a policy that eliminates short-term investment, e.g. by requiring holding periods of some

minimum length, reduces the informativeness of prices for the short-term or transitory components

of fundamentals, but has no effect on price informativeness in the long-run.
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3.2.2 Price informativeness across dates

The fact that prices remain equally informative at some frequencies does not mean that they remain

equally informative for any particular date. Dates and frequencies are linked through a standard

Fourier result

V ar (Dt | P ) =
1

T

T∑
j=1

V ar [dj | pj ] . (34)

The variance of an estimate of fundamentals conditional on prices at a particular date is equal

to the average of the variances across all frequencies. So when uncertainty rises at some set of

frequencies, the informativeness of prices for fundamentals on every date falls by an equal amount.

Corollary 1.2 Investment restrictions reduce price informativeness for fundamentals on all dates

by equal amounts, and by an amount that weakly increases with the number of frequencies that are

restricted.

If a person is making decisions based on estimates of fundamentals from prices and they are

worried that prices are contaminated by high-frequency noise due to a restriction on short-term

investment, a natural response would be to examine an average of fundamentals and prices over

time (across maturities of futures contracts).

Corollary 1.3 The informativeness of prices for the sum of fundamentals depends only on infor-

mativeness at the lowest frequency:

V ar

(
T−1

T∑
t=1

Dt | P
)

= V ar
[
T−1/2d0 | p0

]
, (35)

where d0 is the lowest frequency portfolio —with equal weight each date —and p0 is its price.

Result 1.3 follows immediately from the definition of d0 and the independence across frequencies

in the solution. It shows that the informativeness of prices for moving averages of fundamentals

depends only on the very lowest frequency. So even if prices have little or no information at high

frequencies —V ar [dj | pj ] is high for large j —there need not be any degradation of information

about averages of fundamentals over multiple periods, as they depend primarily on precision at

lower frequencies (smaller values of j).
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More concretely, going back to our example of oil futures, when investors are not allowed to

choose exposure to the high-frequency portfolios, prices become noisier, making it more diffi cult to

obtain an accurate forecast of the spot price of oil at some specific moment in the future. But if

one is interested in the average of spot oil prices over a year, the model predicts that prices remain

informative under restrictions on short-term strategies. It is possible to derive a similar result for

moving averages shorter than T ; in that case the weights on the frequencies are given by the Fejér

kernel.

In the case where fundamentals are stationary in terms of growth rates instead of levels, the

results in this section also hold, but replacing Dt by its first difference. In particular, result 1.3

then states that V ar(DT | P ) is equal to the variance of the lowest frequency portfolio. This

is unsurprising since, as we had previously noted, in the difference-stationary case, the lowest

frequency portfolio is the one that places weight only on DT . In that case, the prediction of the

model is that V ar (DT | P ) is unaffected by restrictions on short-term investment.

When long-run investment strategies are restricted, on the other hand, as in the case of a trading

desk that cannot have exposure to cycles lasting longer than a day (e.g. Brock and Kleidon (1992)

and Menkveld (2013)), then it is natural to examine the informativeness of differences in prices

across dates. As an example, we can consider the variance of the first difference of fundamentals.

Corollary 1.4 The variance of an estimate of the change in fundamentals across dates conditional

on observing the vector of prices is

V ar [Dt −Dt−1 | P ] =
T∑
j=1

2
(
1− cos

(
ωbj/2c

))
V ar [dj | pj ] . (36)

The function 2 − 2 cos (ω) is equal to 0 at ω = 0 and rises smoothly to 4 at the highest

frequency, ω = π. So period-by-period changes in fundamentals are driven primarily by high-

frequency variation. Reductions in price informativeness at low frequencies have relatively large

effects on moving averages and small effects on changes, while the reverse is true for reductions in

informativeness at high frequencies.

To summarize, any restriction on investment reduces price informativeness for any particular

date. But when short-term investment is restricted, there is little change in the behavior of moving
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averages of prices. So if a manager is making investment decisions based on fundamentals only at

a particular moment, then that decision will be hindered by the policy since prices now have more

noise. But if decisions are made based on averages of fundamentals over longer periods, the model

predicts that there need not be adverse consequences.

Similar results appear if investors face a constraint on the total precision of their signals, rather

than a fixed cost. At targeted frequencies, informativeness still falls to zero. In addition, though,

in the constraint specification a decline in information acquisition at the restricted frequencies

mechanically leads to an increase in acquisition at unrestricted frequencies. For result 1, then,

the a1 and a2 coeffi cients can change at the unrestricted frequencies, with a1 increasing. For

corollary 1.1, price informativeness at unrestricted frequencies actually increases. So in either the

constraint or cost case, a restriction on investment at some set of frequencies does no damage to

informativeness at the unrestricted frequencies, and in the constraint case it will actually increase

informativeness. Corollary 1.2 becomes ambiguous in the constraint case because informativeness

falls at some frequencies and rises at others. Since V ar (Dt | P ) depends on all frequencies, it is

natural that in the constraint case the effects would be ambiguous, since then the total amount of

precision is held fixed.

3.2.3 Return volatility

Corollary 1.5 Given an information policy f−1
avg,j, the variance of returns at frequency j, rj ≡

dj − pj is

V ar (rj) =

 fD,j +
fZ,j
k2

for j ∈ R

min (ψ, λj (0)) otherwise
. (37)

Moreover, the variance of returns at restricted frequencies satisfies V ar(rj) > fD,j +
fZ,j

(k+ρf−1D,j)
2
,

which is the variance that returns would have at the same frequency if investment were unrestricted

but agents were uninformed.

The volatility of returns at a restricted frequency is higher than it would be if the sophisticated

investors were allowed to trade, even if they gathered no information. When uninformed active

investors have risk-bearing capacity (ρ > 0), they absorb some of the exogenous demand by sim-

ply trading against prices, buying when prices are below their means and selling when they are
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above. The greater is the risk-bearing capacity, the smaller is the effect of sentiment volatility on

return volatility. Thus, the restriction affects return volatilities through its effects on both liquidity

provision and information acquisition.

Restricting sophisticated investors from following short-term strategies in this model can thus

substantially raise asset return volatility in the short-run —it can lead to, for example, large day-

to-day fluctuations in prices (though those fluctuations in prices are, literally, variations in prices

across maturities for different futures contracts on date 0). Sophisticated traders typically play

a role of smoothing prices across maturities, intermediating between excess demand on one day

and excess supply in the next. When they are restricted from holding positions in futures that

fluctuate from day to day, they can no longer provide that intermediation service, and short-term

volatility increases. So while there might be other reasons why one might want to restrict short-

term investment (e.g. due to incentive effects on managers, as in Shleifer and Vishny (1990), or

reducing losses of noise traders, as we discuss below), a consequence will be that transitory and

ineffi cient price volatility will increase.

Finally, we note that the results in this section could be extended fairly easily to account for

more general types of restrictions, such as placing restrictions only on the trade of a subset of

agents, or perhaps bounding the size of the positions of some agents at certain frequencies.21

3.3 The pricing of equity

Equity is a claim on the entire future stream of fundamentals, so in the model we define it to be

a claim that pays Dt on each date t. Since the payoff of an equity claim is simply the sum of

fundamentals, in the case where fundamentals are stationary in levels the date-1 equity claim has

a payoff of exactly d0. Corollary 1.3 then says that the absolute level of the price of equity remains

equally informative under a short-run investment restriction as in the unrestricted case (though

this does not hold for non-stationary fundamentals). That result is natural: if only short-run

investment is restricted, then long-run investors, who simply buy and hold equity, are unaffected

and can continue to maintain price effi ciency.

However, that does not mean that equity prices are unaffected by the restriction. In particular,

21See Dávila and Parlatore (2018) for an extensive analysis of the relationship between informativeness and volatil-
ity.
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while the level of equity prices on an individual date remains equally informative, changes in equity

prices over time are not. In particular, note that

P equityt − P equityt+1 = Pt (38)

where P equityt ≡
∑∞

j=0 Pt+j is the price of equity on date t. The difference between equity prices

between dates t and t+ 1 is exactly equal to the price of the single-period dividend claim on date t.

That is because a strategy that holds equity on date t but then immediately sells it on date t+ 1

only actually has exposure to fundamentals on date t.

So when restrictions on short-term investment make the prices of the individual futures claims

less informative, they also make changes in the value of equity over time less informative. The

results above for the informativeness of individual futures claims map directly into informativeness

of differences in equity prices across dates.

3.4 Numerical example

We now examine a numerical example to illustrate the predictions of the model for the behavior of

investor positions, prices, and returns, both with and without restrictions on investment.

The length of a time period is set to a week.22 The spectrum of fundamentals, fD, is calibrated

to match the features of dividend growth for the CRSP total market index. Since dividends are

nonstationary in the data, the numerical calibration assumes that ∆Dt is stationary, so that the

individual futures are claims to dividend growth (see appendix H).23 Appendix F provides full

details of the estimation. The top-left panel of figure 2 plots the calibrated spectrum for dividend

growth, fD. Empirically, there is substantial persistence in dividend growth, which causes fD to

peak at low frequencies.24

The top-right panel of figure 2 plots the variance of returns on the dividend claims at each

22As discussed above, the model is not intended to match sub-second scale features of financial markets, like limit
order books and exchange fragmentation. It could be plausibly applied to a daily or perhaps hourly frequency.
Here we choose a week because that is the highest frequency at which aggregate economic indicators are released
(specifically, initial claims for unemployment).
23Technically, the spectrum, fD, is fit to the change in log dividends in calculating our calibration, but in the

analysis that follows, we take fD as applying to the first difference of the level of dividends.
24We set ρ = 57.8, k = 0.2, and fZ to be 1/8th of the smallest value of fD. The qualitative features of the model,

as demonstrated in the results above, are not sensitive to those choices.
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frequency, both with and without a restriction on investment at frequencies corresponding to cycles

lasting less than one month (ω ≥ 2π/4), which could be thought of as similar to a tax on very short-

term capital gains. Consistent with the results above, the variance of returns rises substantially at

the restricted frequencies.

In addition to the benchmark case where each frequency is equally diffi cult to learn about, we

also consider an alternative specification for the information cost in which the cost of precision that

increases as the frequency falls. Formally, in the benchmark specification, the total cost of informa-

tion is
∑

j ψf
−1
i,j , and the alternative uses the generalization

∑
j ψjf

−1
i,j , with ψj ∝ (ωj + ω1)−1.25

That specification has two uses. First, it illustrates what would happen if a regulator taxed or

subsidized information acquisition differentially across frequencies. Second, it will help match the

empirical behavior of dividend strip variances. The top-right panel shows that the consequence

of that change is to cause the variance of returns to rise at low frequencies. The bottom-left

panel of figure 2 plots the average precision of the signals obtained by investors at each frequency.

Under the investment restriction, the precision goes to zero, since the information becomes useless.

When information costs vary across frequency, so does information acquisition, and approximately

inversely to the cost.

Finally, the bottom-right panel of figure 2 plots annualized Sharpe ratios of dividend strips

at maturities of 1 to 7 years along with the equity claim (i.e. the claim to all dividend strips to

maturity T ) under the three different information policies.26 The dividend strips are modeled as

claims to the level of dividends on a given date in the future. Since it is ∆D that is stationary

here, a claim to Dt is equal to a claim to
∑t

s=1 ∆Ds.

We assume that there is a unit supply of equity, which induces positive average returns on

claims to dividends (see appendices C.2 and F.1). Because ∆D1 affects the level of dividends

on every date in the future, while ∆DT affects only the level of dividends on date T , there is

effectively greater supply of the shorter-maturity dividend claims, meaning that they earn higher

returns in equilibrium, consistent with the findings of Binsbergen and Koijen (2017) and inducing

25The average cost of information is set in this specification so that total information acquisition is equal to the
baseline case, just shifted to higher frequencies.
26See Binsbergen, Brandt, and Koijen (2012), Collin-Dufresne, and Goldstein (2015), Binsbergen and Koijen (2017),

and Hasler and Marfe (2016). Binsbergen and Koijen (2017) empirically study dividend strips with maturities of one
to seven years.
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downward-sloping Sharpe ratios.

In the benchmark case where investors acquire information at all frequencies, returns have the

same variance at all frequencies and horizons, which is inconsistent with the data in Binsbergen

and Koijen (2017). The cost specification that increases at low frequencies causes the variance

curve to slope upward strongly with frequency, generating more strongly downward-sloping Sharpe

ratios, both of which are consistent with the results reported by Binsbergen and Koijen (2017).

That result is obtained because the variances of the dividend strips depend on lower frequencies

when their maturities are longer (see appendix F.2). Figures A.2 and A.3 report further results

and compare the model to the data reported by Binsbergen and Koijen (2017); see appendix F.3.

As an alternative to the frequency-specific cost function, appendix K.3 shows that similar results

are obtained when information flows are measured by entropy. The entropy case also is able to

match the increasing variance of dividend strip returns across maturities (see figure A.1). In other

words, the model is able to match the slope of dividend strip variances without necessarily assuming

high low-frequency information costs.

The previous section argues that while a restriction on short-term investment does not affect

the informativeness of the level of equity prices on date 1, it does affect the informativeness of

differences across dates. Table 1 reports informativeness for both the level and various changes in

equity prices over time. For the level, informativeness is measured as the increase in precision from

observing prices,

log

var
[∑T

t=1Dt | P equity1

]−1

var
[∑T

t=1Dt

]−1

 (39)

Similarly, for the k-period change in equity prices, we report

log

var
[∑T

t=1Dt −
∑T

t=k+1Dt | P equityk+1 − P equityt

]−1

var
[∑T

t=1Dt −
∑T

t=k+1Dt

]−1

 (40)

These measures of price informativeness map to the empirical measures of Bai, Philippon, and Savov

(2016), who measure price informativeness across horizons based on the fraction of the variation in

earnings explained by stock prices (see also Dávila and Parlatore (2018) for a related analysis).

Table 1 shows that the level of equity prices is no less effi cient under the short-term investment
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restriction while the difference in equity prices between the first and second weeks is substantially

less effi cient. As the length of the difference gets longer, so that it focuses on lower frequencies, the

effi ciency rises back toward the baseline. Finally, looking at a second difference, which measures the

change in price growth across two periods, isolating higher frequencies, the short-term restriction

again has measurable effects (see corollary 1.4). The case where low frequencies are more costly

to learn about, e.g. because of a tax on low-frequency information acquisition or a subsidy to

high-frequency acquisition, leads to precisely the opposite effects.

4 Investor outcomes

This section studies the impacts of the various policies studied above on investor profits and utility.

The particular scenario it examines is a decline in the cost of acquiring high-frequency information,

which then leads to an increase in high-frequency investment. High-frequency investment and the

related policy responses have been an area of active interest, but the results in this section also

apply to shifts at other frequencies.

We obtain two main results for outcomes for the sophisticated investors, which initially appear

to be in conflict:

1. A rise in short-term investment reduces the profits and utility of long-term investors.

2. Restricting short-term investment further reduces the profits and utility of long-term in-

vestors.

So while long-term investors are worse off when short-term investment rises, cutting off short-

term investment strategies (the ability to rapidly turn over portfolios) neither restores the old

equilibrium, nor does it make the long-term investors better off. Instead, policies that change the

cost of information acquisition are better targeted.

The last part of the section examines the implications of the possible policy responses for noise

traders, finding that noise traders are best off when prices are most informative.

4.1 Who are short- and long-term sophisticated investors?

We define a short-term investor as one whose portfolio is driven relatively more by high-frequency

fluctuations, while a long-term investor holds a portfolio that is driven relatively more by low-
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frequency fluctuations. That definition can be formalized by a variance decomposition, using the

facts

V ar
(
Q̃i,t

)
=

T∑
j=1

V ar (q̃i,j) (41)

and
d

df−1
i,j

[V ar (q̃i,j)] > 0 (42)

The component of the variance of Q̃i,t that is driven by fluctuations at frequency j, V ar (q̃i,j), is

increasing in the precision of the signals agent i acquires at frequency j (f−1
i,j ). So if two investors

have the same total variance of their positions, V ar
(
Q̃1,t

)
= V ar

(
Q̃2,t

)
, but one of them has

higher-precision signals at high frequencies, i.e. f−1
1,j > f−1

2,j for j above some cutoff, then variation

in that investor’s position is driven relatively more by high-frequency components.

(42) shows that V ar (q̃i,j) is increasing in the precision of the signals that agent i receives.

When an investor has more precise signals at a given frequency, they trade more aggressively for

two reasons. First, since their signals are more precise, their demand is more sensitive to their

own signals. Second, the quality of their signals also means that they can worry less about adverse

selection, so they trade more strongly to accommodate demand shocks from noise traders.

For two investors with positions that have the same unconditional variance, the short—term

investor —whose fluctuations happen relatively faster —is the one with relatively more precise signals

about the transitory or high-frequency features of fundamentals. That is, short-term investors

have short-term/high-frequency information, and long-term investors have long-term/low-frequency

information. As an extreme case —which is a simplification of the world for the sake of theoretical

clarity —we will take short-term investors as people whose signals have positive precision only for

j above some cutoff jHF , and long-term investors have signals with positive precision only for j

below some jLF with jHF > jLF .
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4.2 Investor profits and utility

Result 2 Let R = D − P be the vector of returns in the time domain. Investor i’s average

discounted profits are

E−1

[
Q̃′iR

]
=

T∑
j=1

(1− ka2) (−E−1 [zjrj ]) + ka1E−1 [rjdj ] + ρ
(
f−1
i,j − f

−1
avg,j

)
V ar−1 [rj ] (43)

and expected profits at each frequency are nonnegative,

E−1 [q̃i,jrj ] ≥ 0 for all i, j (44)

with equality only if f−1
i,j = 0 and f−1

D,j = ρf−1
avg,jf

−1
Z,jk (i.e. in a knife-edge case).

Each investor’s expected discounted profits depend on three terms. The first represents the

profits earned from noise traders. E [zjrj ] = −a2f
−1
Z < 0 since the sophisticated investors imper-

fectly accommodate their demand. When the noise traders have high demand (that is, when z is

high), they drive prices up and expected returns down. The sophisticated investors earn profits

from trading with that demand.27

The second term represents the profits that the informed investors earn by buying from the

noise traders when they have positive signals on average. The coeffi cient ka1,j represents the slope

of the supply curve that the informed investors face.

Finally, the third term in (43) represents a reallocation of profits from the less to the more

informed sophisticated investors. An investor who has highly precise signals about fundamentals

at frequency j can accurately distinguish periods when prices are high due to strong fundamentals

from those when prices are high due to high sentiment. That allows them to earn relatively more

profits on average than an uninformed investor.

That said, an uninformed sophisticated investor does not earn negative expected profits at any

frequency, even with f−1
i,j = 0. There are always, except in a knife-edge case, profits to be earned

27Note here that we are referring to flow profits, which do not include the cost of information acquisition that
investors pay on date −1. We do this partly because flow profits are more readily measurable than the potential
fixed costs of setting up information acquisition technologies, and also because flow profits are still relevant in the
case where investors face a constraint on information instead of a cost, or where the cost is in terms of utility units
instead of money.
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by trading with noise traders. Intuitively, this result follows from the separability of the problem

across frequencies. The reason that an investor must always earn nonnegative expected profits is

that if at some frequency j they did not, then they could simply set qi,j = 0, ensuring profits of

zero and hence higher utility.28 An uninformed investor forecasts returns based only on prices, so

that knife-edge case represents the condition under which prices alone have no forecasting power

for returns, and they set qi,j = 0 in all states.

Result 2 yields two key insights. First, all investors, no matter their information, have the ability

to earn profits at all frequencies through liquidity provision. Second, all else equal, investors who

are informed about a particular frequency earn the most money from investing at these frequencies.

Short-term investors —those with relatively more information about high-frequency fundamentals

—earn relatively higher returns at high frequencies, while long-term investors earn relatively higher

returns at low frequencies.

4.3 The effects of an increase in short-term investment

This section studies the consequences of a decline in the cost of acquiring information at high

frequencies for short- and long-term investors, as well as potential policy responses.

4.3.1 Effects on short- and long-term investors

Formally, under the specification of the model where the total cost of information is
∑

j ψjf
−1
i,j

(where the baseline is the special case of ψj = ψ for all j), the equilibrium condition for information

acquisition is

f−1
avg,j =

 λ−1
j

(
ψj
)

if λj (0) ≥ ψj ,

0 otherwise.
(45)

(see appendix K.1 for a derivation of the other theoretical results in this case). We examine the

effects of a marginal reduction in ψj for j > jHF from some point ψj > λj (0) to the point ψj =

λj (0) —i.e. exactly where reducing information costs will lead to an initial increase in information

acquisition. The investors who acquire information at those frequencies (setting f−1
i,j > 0 for

28Even better, if some qi,j yields negative expected returns, then −qi,j must yield positive expected returns with
the same variance.
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j > jHF ) are then the short-term investors, while those who do not, leaving f−1
i,j = 0 for j > jHF ,

are the long-term investors.

Corollary 2.1 Starting from a ψj such that no investors acquire information at frequency j, a

decline in ψj that leads to an increase in the equilibrium f−1
avg,j reduces profits and utility of an

investor for whom f−1
i,j remains unchanged. Specifically,

d

dψj
E−1 [q̃LF,jrj ]

∣∣∣∣
ψj=λj(0)−

> 0 (46)

d

dψj
E−1

[∑
t

Q̃LF,t (Dt − Pt)
]∣∣∣∣∣
ψj=λj(0)−

> 0 (47)

d

dψj
E−1 [ULF,0]

∣∣∣∣
ψj=λj(0)−

> 0 (48)

where the notation ψj = λj (0)− indicates the derivative is taken to the left (i.e. comparing ψj =

λj (0) to ψj = λj (0) − ε for a small ε) and the LF subscripts denote positions and utility of

a long-term investor who keeps f−1
i,j = 0 at the affected frequency. Concretely, in an economy

populated only by long-term investors who gather no short-term information, an increase in short-

term investment —caused by a decline in the cost of short-term information — increases f−1
avg,j for

j > jHF and therefore reduces the expected profits at those frequencies, total expected profits, and

the utility of long-term investors.

The source of that result is the fact that investors with low-frequency information may still invest

in the short-run (i.e. have exposures that change from day to day). Suppose, for example, that not

only does f−1
LF,j = 0 for high j, but also that f−1

avg,j does —nobody has short-term information. In that

setting obviously any sophisticated investor will be happy to accommodate transitory fluctuations

in noise trader demand. More concretely, an investor who has information that the long-term value

of a stock is $50 will be willing to provide liquidity in the short-run, buying when the price is

below $50 and selling when the price is higher. That liquidity provision will have high-frequency

components when liquidity demand (noise trader demand) has high-frequency components (i.e.

fz,j > 0 for j > jHF ). That is, if there are short-run variations in sentiment, then there will be

short-run variation in the low-frequency investor’s position.
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The increase in short-term investment hurts those with low-frequency information because those

with high-frequency information are better at providing short-term liquidity. Result 2 and corollary

2.1 formalize that idea and shows that how short-term investors hurt long-term investors — by

crowding out their ability to provide liquidity. It is critical to note, though, that result 2 still

shows that the increase in high-frequency investment never drives the profits earned by long-term

investors below zero, even at high frequencies.

Furthermore, none of this is suboptimal from the perspective of the long-term investors —at the

equilibrium, all investors are indifferent between acquiring information and not at any frequency

where λj (0) > ψj , so their utility is not increased by acquiring more information at high frequencies.

Moreover, that indifference also means that the short-term investors —those who actually create the

increase in f−1
avg,j —also see declines in expected utility. The decline in ψj , by increasing information

acquisition, makes prices more effi cient, leaving less scope for investors to predict returns and earn

profits.

The results also do not change the incentives of low-frequency investors to acquire information

at low frequencies. While they lose money from a decrease in liquidity provision at high frequencies,

their choices at low frequencies are unaffected, so if one’s primary concern is price informativeness

at low frequencies, the entry of short-term investors will have no effect. There is also nothing special

about analyzing a shift in ψj at high frequencies —the economic results are the same if the cost of

information changes at any frequency.

Nevertheless, there is something of an arms race here in that investor profits are decreasing in

the information acquired by other investors. When the cost of high-frequency information falls,

somebody will acquire more information, and the investor who does not will earn lower trading

profits going forward. Appendix I shows how a reduction in trading costs, which could also be

due to a decline in the cost of high-speed communication, similarly leads to an increase in average

precision and a sort of arms race. That said, making the arms race idea fully formal would require

modeling a speed tournament or some sort of imperfect competition, so the link is at best stylized,

but could be an extension of the present framework.

Finally, we also note that the entrance of short-term investors has positive effects on the overall

market:
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Corollary 2.2 An increase in high-frequency investment, due to a reduction in ψj that increases

f−1
avg,j for j > jHF , increases price informativeness and reduces return volatility at those frequencies.

That is, for any frequency

d

dψj
V ar [dj | pj ]

∣∣∣∣
ψj=λj(0)−

≥ 0 (49)

d

dψj
V ar [rj ]

∣∣∣∣
ψj=λj(0)−

≥ 0 (50)

So while long-term investors may be hurt by the entry of the short-term investors, to a regulator

whose goal is simply to maximize price informativeness or minimize return volatility, the short-term

investors are beneficial.29

Appendix K.2 discusses the robustness of these results to the constraint versus cost specifica-

tion for information acquisition. Under the constraint model, profits and utility still fall at the

frequencies where ψj falls. However, they also weakly rise at the other frequencies, since attention

is reallocated away from them. The results for total profits and total utility integrated across

frequencies then become ambiguous.

4.3.2 Policy responses

If a decline in the cost of high-frequency information or trading hurts the incumbent long-term

investors, a natural question to the incumbents might be how to restore the old equilibrium. We

consider three responses that have been proposed: restricting or eliminating short-term invest-

ment, taxing transactions (or variation in positions), and limiting the availability of short-term

information.

First, consider a restriction on short-term/high-frequency investment that says that no sophis-

ticated investor may set qi,j 6= 0 for j above some cutoff, as in the previous section. A concrete

example of such a policy is an infrequent batch auction mechanism, similar to Budish, Cramton,

and Shim (2015). Restricting investment above the daily frequency would approximately corre-

29Under a constraint specification for information, investors would be essentially constrained in their number of
analysts, so a reduction in ψj would lead to a shift in analysts away from low frequencies. The analysis is further
complicated by the fact that in the constraint case there is both that substitution effect and also an income effect,
since a reduction in any ψj relaxes the constraint that sophisticated investors face. While the first derivative in
corollary 2.1 retains its sign in the constraint case, the others in this section become ambiguous.
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spond to having an auction once per day. Result 2 shows that such a restriction would, rather

than restoring the profits and utility of the long-term investors, actually reduce them further. The

result follows from the fact that restricting investment eliminates the terms in the summation for

j above the cutoff, which are all nonnegative. While short-term investors make liquidity provision

at high frequencies more diffi cult, outlawing short-term investment simply makes it impossible. So

eliminating short-term investment does not restore the old equilibrium —it actually compounds the

effect of the entrance of short-term investors.

Corollary 2.3 Limiting short-term investment with a policy that restricts sophisticated investors

from holding qi,j 6= 0 for j > jHF weakly reduces the profits and expected utility of all sophisticated

investors.

Imposing a tax on changes in positions, specifically, a tax on (Qi,t −Qi,t−1)2, will have similar

effects to a restriction on short-term investment in that the tax is most costly for short-term

strategies with high turnover. Appendix J formalizes that intuition.

The final policy response would be to somehow limit the acquisition of high-frequency informa-

tion. In the context of the model, that would represent a restriction on the ability of investors to

learn about period-to-period variation in fundamentals, for example by making it more costly to

acquire high-frequency information. The most obvious response to a decline in the cost at frequency

j is to directly impose a tax that exactly reverses the decline.

In the context of the model, a restriction on information acquisition could in fact exactly restore

the equilibrium that exists in the absence of the short-term investors. Since the long-term investors

do not acquire high-frequency information, the restriction has no direct effect on them. In terms of

the results above, the reason that short-term investors harm long-term investors in the model is that

they increase f−1
avg,j for high values of j. A policy that makes short-term information more expensive

does the opposite, reducing f−1
avg,j and shifting the market back to the previous equilibrium.

A specific example of a policy that could make it more costly for investors to acquire high-

frequency information might be a reduction in the information that firms freely release. For exam-

ple, there have been suggestions to change financial reporting requirements so that less short-run

information is revealed proposed by the CFA institute (Schacht et al. (2007)) and Brookings Insti-

tution (Pozen (2014)). In the UK quarterly earnings reports are no longer mandatory, and Gigler et
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al. (2014) argue that reducing reporting frequency can reduce managerial biases toward short-term

projects. When firms stop reporting quarterly earnings, or providing short-term earnings guidance,

they are in a sense making information acquisition more expensive — instead of simply reading

and interpreting announcements, investors now must do research to try to measure short-term

performance.

To be clear, the claim here is not that markets should be tilted in the direction of long-term

investors. Restricting information can help long-term investors in some cases, but it would also

have potential negative externalities from reduced price informativeness that have been studied

in the literature, making investment decisions worse, making monitoring of firms more diffi cult,

and limiting firms’ability to tie managerial pay to performance (see Bond, Edmans, and Goldstein

(2012) for a review). Furthermore, the next section shows that restricting information in the model,

even though it helps one class of investors, will hurt others.

That analysis here takes the view that interpreting financial reports is not free —an investment

firm must pay an analyst to say how the report affects the conditional expectation of future div-

idends. An alternative interpretation of a change in mandatory financial reporting is that such

reports might represent noisy public signals about fundamentals that are freely available to all

investors —that is, interpreting the report is costless. In that case, a decrease in disclosures, rather

than corresponding to an increase in ψj , would represent decline in the precision of public signals.

Appendix G shows that public disclosures reverse the declines in utility and profits following a

decline in ψj . The effects of disclosure therefore depend on modeling choices, which need to be

evaluated empirically. The model is about costly information acquisition and processing, so it is

somewhat inconsistent with the general approach to assume that it costless for investors to inter-

pret, for example, financial statements. Nevertheless, the basic pattern of the effects is the same,

in that both a tax on information acquisition, raising ψj , and an increase in the precision of public

signals raises the profits of low-frequency investors and noise traders (as we show in the next sec-

tion) and reduces the profits of high-frequency investors. A public signal has the added advantage

of increasing price informativeness.
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4.4 Outcomes for noise traders

The formalization of noise traders used here is that they are investors whose demand depends on

an uninformative signal that they erroneously believe forecasts fundamentals. Under that interpre-

tation, a natural objective of a policymaker might be to set policies to try to reduce the losses of

these investors. That is, if one thinks that retail investors trade based on sentiment, then one might

want to try to limit their losses and keep speculative demand from affecting prices and creating

volatility (that is the motivation of the transaction tax in Tobin (1978)).

4.4.1 Noise trader profits

The policies examined in the previous section have direct implications for the losses of noise traders.

First, note that the average returns that noise traders earn must be exactly the opposite of what

the informed investors earn on average (i.e. equation (43) with f−1
i,j = f−1

avg,j):

Corollary 2.4 The average earnings of noise traders are

E

[
T∑
t=1

ÑtRt

]
=

∑
j

((1− ka2,j) zj − ka1dj)︸ ︷︷ ︸
Noise trader demand

((1− a1,j) dj − a2,jzj)︸ ︷︷ ︸
Returns

(51)

= −
∑
j

[a2,j (1− ka2,j) fZ,j + ka1,j (1− a1,j) fD,j ] (52)

Average noise trader earnings are quadratic in the coeffi cients determining prices, a1,j and a2,j .

That is caused by the interaction of two effects. First, when expected returns are more responsive

to their demand shocks (a2,j is large) or to fundamentals (1− a1,j is large), then expected returns

vary more, giving more potential for losses. However, variation in prices inhibits their trading since

they have downward sloping demand curves, with slope k. So when 1 − ka2,j is small or ka1,j is

small, losses are smaller.

There are thus two ways to drive the losses of noise traders to zero. One is for prices to be

completely informative, with a1,j = 1 and a2,j = 0 (i.e. pj = dj). That case is obviously ideal in

that noise traders have no losses and prices are also most useful as signals for making decisions.

Noise trader losses are zero in this case because informed investors have perfectly elastic demand

curves, and will trade any quantity since they know the price is exactly equal to fundamentals.
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The second way to reduce noise trader losses to zero is to drive a1,j to zero and a2,j = k−1. In that

case, prices are completely uninformative, and they move in such a way that there is no trade. This

achieves the goal of minimizing noise trader losses, but at the cost of eliminating all information

from asset markets. Note, though, that noise trader profits are non-monotonic in both a1 and a2,

so while we can draw conclusions about the extreme cases of a1 and a2 equal to 0 or 1, the exact

response of profits to interior values of those coeffi cients is parameter dependent.

4.4.2 The consequences of restricting investment strategies

The two policies examined above —restricting trade and restricting information —both drive in the

direction of the second way to reduce noise trader losses. Restricting all investment by the informed

investors at a given frequency eliminates all information from prices, but it also means that the

noise traders have nobody to trade with, so their losses are identically zero. Similarly, restricting

information, by reducing f−1
avg,j to zero, sets a1,j to zero, so that the noise traders have no losses

due to the information held by the sophisticated investors (the second part of equation (52)). We

also have

favg,j = 0⇒ 1− ka2,j =
f−1
D

ρ−1k + f−1
D

(53)

The noise traders will still lose money to the informed investors in general, through the first term

in equation (52). As the amount of fundamental uncertainty grows, though — f−1
D shrinks — the

losses eventually fall to zero.

So unlike above, for the purpose of protecting noise traders, instead of long-horizon investors,

the trading restriction is more effective than the information restriction. The information restriction

does not in general reduce the losses of the noise traders to zero, while the trade restriction does.

Either policy is only second-best, though, in the sense that they help noise traders by reducing the

informativeness of prices and increasing price volatility.

The policy of restricting investment would be most natural if there were some frequencies at

which fZ was particularly large and fD particularly small. At such a frequency, the information

loss from restricting investment is relatively small — in fact it could potentially even be zero if

λj (0) is suffi ciently small (since there would also be no information acquisition in the absence of

the restriction) —and the benefit is relatively large, since it increases in fZ (equation (52)). So
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restrictions on investment make the most sense at frequencies with little variation in fundamentals

but substantial variation in sentiment or noise trader demand.

Corollary 2.5 At any frequency where fZ,j is suffi ciently large or fD,j suffi ciently small that

λj (0) ≤ ψ (recall that λj (0) represents the marginal value of acquiring information when f−1
avg,j =

0), there is no information acquisition in equilibrium and prices are completely uninformative. At

those frequencies, restricting trade by mandating that qi,j = 0 reduces the losses of noise traders to

zero and has no effect on price effi ciency, since prices are already uninformative.30

A common view is that there is relatively little important economic news at high frequencies

since economic decisions such as physical investment depend on relatively long-term expectations.

In such a case, one would think that fD,j is small at high frequencies. The results here then show

that it would be natural to restrict high-frequency investment since there is no information loss

and the effects of noise trader demand or speculation are eliminated. The model here formalizes

that common intuition.

4.4.3 The consequences of subsidizing information

On the other hand, if the goal was to reduce noise trader losses without any reduction in price

informativeness, then the ideal policy would be one that increases f−1
avg,j . Specifically, as the quantity

of information that investors acquire becomes infinite, prices become completely informative:

lim
f−1avg,j→∞

a1,j = 1 (54)

lim
f−1avg,j→∞

a2,j = 0 (55)

and noise traders have zero average losses:

lim
f−1avg,j→∞

E [njrj ] = 0 (56)

30An alternative model of exogenous demand (which breaks the no-trade theorem) is that instead of having sen-
timent shocks, agents could simply have exogenous liquidity or hedging needs (see Dávila and Parlatore (2018), for
example). In that case, restricting investment at any frequency would be very bad for them, since trading is funda-
mentally valuable. The optimal policy for agents of that type would be to subsidize information in order to reduce
a2,j towards zero, since that would mean that their liquidity needs did not affect prices (e.g. when forced to buy they
would not drive prices up). See section 4.4.4.
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Increases in f−1
avg,j could be encouraged by subsidizing or otherwise encouraging information

production by investors (e.g. a tax credit for research). In the context of the discussion in the

previous section, this corresponds to actively trying to reduce the ψj that investors face (ideally

to zero, if the goal is to send f−1
avg,j to infinity). More generally, if the noise traders are thought

of as speculators, these results say that the effect of speculators is eventually reduced when the

sophisticated investors have suffi cient information. Certainly an information subsidy would not be

costless to implement, and whether its benefits outweigh the costs is theoretically ambiguous.

A closely related policy, and one that might be cheaper than a subsidy for research, is to

mandate greater information production by firms, such as more frequent or thorough earnings

announcements. Appendix G examines a version of the model in which a public signal is revealed

on date 0. It shows that such a revelation reduces noise trader losses (and in this case that result

holds across the parameter space, not just in the limit; appendix G illustrates this result with a

numerical example). So both methods of increasing price informativeness have the effect of reducing

noise trader losses.

Note, interestingly, that the optimal policy for helping noise traders and simultaneously in-

creasing price informativeness is the opposite of what we found above would help the long-term

investors. The simple reason is that the profits of the long-term investors are earned at the expense

of the noise traders.

In the end, therefore, there is a clear tension in the model among short-term investors, long-

term investors, and noise traders. Long-term investors benefit from reductions in f−1
avg at high

frequencies, but that comes at the cost of reducing price informativeness and hurting noise traders

and short-term investors. Noise traders benefit from increasing f−1
avg (when f−1

avg is suffi ciently

large, at least), or mandating greater disclosure about fundamentals, but that hurts the informed

investors in general, since their trading opportunities shrink. These results follow from the simple

fact that these investors are playing a game with zero-sum payoffs. To those who sit outside

the financial market, if what matters most is price effi ciency, then obviously a policy encouraging

greater information acquisition and higher f−1
avg,j will be ideal, all else equal.
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4.4.4 Noise traders as hedgers

As discussed above, an alternative model of the exogenous demand, Z, is that there is a set of

rational investors with an outside investment opportunity that is correlated with the fundamental,

D. Their demand, Z, is driven by hedging. Appendix L, using an extension of the model in Wang

(1994), shows that all the results up to this point go through essentially unchanged.31 When the

exogenous demand is from hedging, though, instead of sentiment shocks, the welfare implications

of the model change. While the model with noise traders is zero-sum, with hedgers it is positive

sum since there are gains from trade. The immediate consequence of that fact is that, unlike noise

traders, hedgers are not made better off by restrictions on trade —instead, their utility is weakly

reduced, just like the speculators (again, because not investing is always an option). In fact, the

hedgers are in at least some cases made better off by a greater presence of sophisticated investors,

since they then have greater hedging opportunities.

However, like the noise traders, it is possible to show that the hedgers are helped by an infor-

mation subsidy in at least one sense:

lim
f−1avg→∞

EUH
(
f−1
avg

)
> EUH (0) (57)

where EUH is the expected utility of the hedgers. Hedgers are better off when prices are fully

informative (where limf−1avg→∞ a1 = 1 and limf−1avg→∞ a2 = 0) compared to when they are uninfor-

mative (a1 = 0). Between those two cases, though, the effect of information subsidies is ambiguous.

The appendix also shows, though, that the sign of dEUH
(
f−1
avg

)
/df−1

avg is positive as f
−1
avg → ∞,

indicating that more information eventually makes hedgers better off, just like the noise traders.

5 Conclusion

The aim of this paper is to understand the effects of policies aimed at reducing “short-termism”in

financial markets. It develops results on the effects on price informativeness and investor welfare

of restrictions on investment and information acquisition at different frequencies. In order to study

those questions, we develop a model in which investors can make meaningful decisions about the

31See also Savov (2014) for a related model in which households trade in order to hedge outside income.
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horizon of their investment strategies, and in which they face endogenous information choices.

We obtain three main results:

1. Restricting short-term investment affects short-run but not long-run price informativeness

and return volatility.

2. Restricting short-term investment hurts both short- and long-term investors, but helps noise

traders.

3. Taxing or restricting the availability of short-term information helps long-term investors,

hurts short-term investors and noise traders, and reduces short-term price effi ciency.

The first result is a natural consequence of the statistical independence of the model across

frequencies. The second result shows that while the entry of short-term investors reduces the

utility and profits of long-term investors, restricting short-term investment in response to that

entry does not make long-term investors better off. A buy-and-hold investor is able to provide the

market short-term liquidity —a person with a price target of $50 should be willing to accommodate

transitory demand shocks that drive the price above their target. Short-term investors are better at

such liquidity provision; that is why their entry makes long-term investors worse off. But eliminating

all short-term investment does not solve the problem. In fact, it makes it worse by eliminating the

earnings from liquidity provision for all investors. However, the results for noise traders are reversed

—they benefit from restrictions on investment and are hurt by limits on information.

Finally, the third result shows that information policies have distributional effects. If one’s goal

is to both maximize price informativeness and limit the impact of speculation by noise traders,

subsidizing information acquisition can potentially (if the subsidy is suffi ciently strong) solve both

of those problems. However, since there is not a single accepted model of noise trading, the third

result is relatively more delicate. We also examine an alternative specification in which noise traders

are replaced by investors with time-varying hedging demand. In that case, it is more diffi cult to

obtain clear predictions for welfare, but the first two main results continue to hold. Furthermore,

price effi ciency may have positive externalities that are not modeled here, as discussed in Bond,

Edmans, and Goldstein (2012).

We do not make normative claims about what the right objective is. There are many external-

ities not considered here. For example, price informativeness is important to many agents in the
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economy who are not represented in our model. We also have a specific model of noise traders as

irrational agents, but the role of noise trader demand in facilitating trade can also be played by

agents who simply have exogenous liquidity needs, in which case the optimal policy response would

more clearly tilt towards information subsidies. It is also not obvious whether short- or long-term

investors should necessarily be supported. The goal of the paper is not to resolve the question of

which policy is best, but rather simply to provide a general analysis of the effects of the various

policies.
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A Noise trader demand

We assume that noise traders have preferences similar to those of sophisticates, but they have

different information. They receive signals about fundamentals, and believe that the signals are

informative, although the signals are actually random. The signals are also perfectly correlated

across the noise traders, so that they do not wash out in the aggregate. They can be therefore

thought of as common sentiment shocks among noise traders. Furthermore, the noise traders

assume that prices contain no information about fundamentals.

The noise traders optimize

max
{Nt}Tt=1

T−1
T∑
t=1

βtNtE0,N [Dt − Pt]−
1

2
(ρT )−1 V ar0,N

[
T∑
t=1

βtNt (Dt − Pt)
]

(58)

where Nt is the demand of the noise traders and E0,N and V ar0,N are their expectation and variance

operators conditional on their signals.

We model the noise traders as being Bayesians who simply misunderstand the informativeness

of their signals, and ignore prices. Their prior belief, before receiving signals, is that

D ∼ N
(

0,Σprior
N

)
. (59)

They then receive signals that they believe (incorrectly) are of the form

S ∼ N
(
D,Σsignal

N

)
. (60)

The usual Bayesian update then yields the distribution of D conditional on S,

D | S ∼ N
(

ΣN

(
Σsignal
N

)−1
S,ΣN

)
(61)

where ΣN ≡
((

Σsignal
N

)−1
+
(

Σprior
N

)−1
)−1

. (62)
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So we have

E0,N [D] = ΣN

(
Σsignal
N

)−1
S (63)

V ar0,N [D] = ΣN (64)

Define Ñt ≡ βtNt and Ñ = [N1, ..., NT ]′. The optimization problem then becomes

max
Ñ

T−1Ñ ′
(

ΣN

(
Σsignal
N

)−1
S − P

)
− 1

2
(ρT )−1 Ñ ′ΣN Ñ . (65)

This has the solution:

Ñ = ρ−1Σ−1
N

(
ΣN

(
Σsignal
N

)−1
S − P

)
(66)

= ρ−1

((
Σsignal
N

)−1
S − Σ−1

N P

)
. (67)

For the sake of simplicity, we assume that ΣN = k−1I, where I is the identity matrix and k is a

parameter. (This can be obtained, for instance, by assuming that Σsignal
N = Σprior

N = 2kI). We

then have

Ñ = ρ−1
(

Σsignal
N

)−1
S − kP, (68)

so that the vector Z = (Z1, ..., ZT )′ from the main text is:

Z ≡ ρ−1
(

Σsignal
N

)−1
S, (69)

and the true variance of S, ΣS , can always be chosen to yield any particular ΣZ ≡ V ar (Z) by

setting

ΣS = ρ2Σsignal
N ΣZΣsignal

N . (70)

B Time horizon and investment

At first glance, the assumption of mean-variance utility over cumulative returns over a long period

of time (T →∞) may appear to give investors an incentive to primarily worry about long-horizon
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performance, whereas a small value of T would make investors more concerned about short-term

performance. In the present setting, that intuition is not correct —the T → ∞ limit determines

how detailed investment strategies may be, rather than incentivizing certain types of strategies.

The easiest way to see why the time horizon controls only the detail of the investment strategies

is to consider settings in which T is a power of 2 . If T = 2k, then the set of fundamental frequencies

is {
2πj/2k

}2k−1

j=0
(71)

For T = 2k−1, the set of frequencies is

{
2πj/2k−1

}2k−2

j=0
=
{

2π (2j) /2k
}2k−2

j=0
(72)

That is, when T falls from 2k to 2k−1, the effect is to simply eliminate alternate frequencies.

Reducing T does not change the lowest or highest available frequencies (which are always 0 and π,

respectively). It just discretizes the [0, π] interval more coarsely; or, equivalently, it means that the

matrix Λ is constructed from a smaller set of basis vectors.

When T is smaller — there are fewer available basis functions —Q and its frequency domain

analog q ≡ Λ′Q have fewer degrees of freedom and hence must be less detailed. So the effect of a

small value of T is to make it more diffi cult for an investor to isolate particularly short or long run

fluctuations in fundamentals (or any other narrow frequency range). But in no way does T cause

the investor’s portfolio to depend more on one set of frequencies than another.
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C Results on the frequency solution

C.1 Proof of lemma 1

The proof here follows “Time Series Analysis” lecture notes of Suhasini Subba Rao. The broad

idea of the proof is as follows. Let Σ be any matrix of the form:

Σ =



σ0 σ1 ... ... σT−1

σ1 σ0 σ1 ... σT−2

... ... ... ... ...

σT−1 ... ... ... σ0


(73)

where x0 > 0. Matrices of this type contain all the variance-covariance matrices of order T of

arbitrary weakly stationary processes. The lemma follows from “approximating”Σ by the circulant

matrix:

Σcirc = circ(σcirc) , σ ≡ (σ0, σ1 + σT−1, σ2 + σT−2, ..., σT−2 + σ2, σT−1 + σ1)′ , (74)

where, for any real vector {xi}T−1
i=0 ,

circ(x) ≡



x0 · · xT−1

xT−1 x0 · xT−2

·

x1 · · x0


. (75)

In order to obtain this approximation, we first need the following result.

Appendix lemma 4 For any matrix Σ of the form given above, and associated circulant matrix

Σcirc, the family of vectors Λ defined in the main text exactly diagonalizes Σcirc:

ΣcircΛ = Λdiag
({
fΣ

(
ωbj/2c

)}T
j=1

)
, (76)
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where each distinct eigenvalue in
{
fΣ

(
ωbj/2c

)}T
j=1

is given by:

fΣ(ωh) = σ0 + 2
T−1∑
t=1

σtcos(ωht), ωh ≡ 2πh/T, (77)

for some h = 0, ..., T2 .

Given that Λ is orthonormal,

Λ′ΣcircΛ = diag (fΣ) . (78)

The approximate diagonalization of the matrix Σ consists in writing:

Λ′ΣΛ = diag (fΣ) +RΣ, (79)

where the T × T matrix RΣ is given by:

RΣ ≡ Λ′ (Σ− Σcirc) Λ. (80)

This is an approximation in the sense that RΣ is generically small. Specifically, it is of order T−1

element-wise. The following lemma proves the first result stated in lemma 1 of the main text.

Appendix lemma 5 For any T ≥ 2, we have:

|RΣ| ≤
4√
T

T−1∑
j=1

|jσj |, (81)

where |M | denotes the weak matrix norm, as in the main text.

Proof. Define ∆Σ = Σcirc − Σ. First note that since:

Σ(i,j) =

 σ0 if i = j

σ|i−j| otherwise
, (82)

Σ
(i,j)
circ =

 σ0 if i = j

σ|i−j| + σT−|i−j| otherwise
, (83)
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we have:

∆Σ(i,j) =

 0 if i = j

σT−|i−j| otherwise
(84)

where Σ(i,j) is the (i, j) element of Σ. This means that the matrix ∆Σ has constant and symmetric

diagonals. Moreover, the first subdiagonals both contain σT−1, the second contain σT−2, and so

on. That is,

∆Σ =



0 σT−1 σT−2 σ2 σ1

σT−1
. . . . . . . . . σ2

σT−2
. . . . . . . . . . . .

. . . . . . . . . . . . σT−2

σ2
. . . . . . . . . σT−1

σ1 σ2 σT−2 σT−1 0


(85)

Therefore,
T∑
i=1

T∑
j=1

|∆σi,j | = 2
T−1∑
j=1

|jσj |. (86)

Let λk denote the k-th column of the matrix Λ. For any (l,m) ∈ [1, T ]2, we have:

∣∣∣R(l,m)
Σ

∣∣∣ =
∣∣λ′l∆Σλm

∣∣
=

∣∣∣∣∣∣
T∑
i=1

T∑
j=1

λi,lλj,m∆σi,j

∣∣∣∣∣∣
≤

T∑
i=1

T∑
j=1

|λi,l| |λj,m| |∆σi,j |

≤
T∑
i=1

T∑
j=1

√
2√
T

√
2√
T
|∆σi,j |

= 4
T

T−1∑
j=1

|jσj |.

(87)

This implies that:

||RΣ||∞ ≤
4

T

T−1∑
j=1

|jσj |, (88)
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where ||.||∞ is the element-wise max norm. The inequality for the weak norm follows from the fact

that the weak norm and the element-wise max norm satisfy |.| ≤
√
T ||.||∞.

C.2 Derivation of solution 1

To save notation, we suppress the j subscripts indicating frequencies in this section when they

are not necessary for clarity. So in this section fD, for example, is a scalar representing the

spectral density of fundamentals at some arbitrary frequency (rather than vectors, which is what

the unsubscripted variables represent in the main text).

In this section we solve a general version of the model that allows for a constant component

of the supply, denoted s. This can be thought of as the mean aggregate supply of the underlying.

The main results implicitly set s = 0, but the analysis of equity returns uses nonzero s. We assume

that the noise traders’demand curve depends on prices relative to their mean, so that supply does

not enter. This is without loss of generality as it is simply a normalization.

C.2.1 Statistical inference

We guess that prices take the form

p = a1d+ a2z + a3s (89)

where s is nonstochastic. The joint distribution of fundamentals, signals, and prices is then


d

yi

p− a3s

 ∼ N
0,


fD fD a1fD

fD fD + fi a1fD

a1fD a1fD a2
1fD + a2

2fZ


 (90)
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The expectation of fundamentals conditional on the signal and price is

E [d | yi, p] =

[
fD a1fD

] fD + fi a1fD

a1fD a2
1fD + a2

2fZ


−1  yi

p− a3s

 (91)

= [1, a1]

 1 + fif
−1
D a1

a1 a2
1 + a2

2fZf
−1
D


−1  yi

p− a3s

 (92)

and the variance satisfies

τ i ≡ V ar [d | yi, p]−1 = f−1
D

1−
[

1 a1

] 1 + fif
−1
D a1

a1 a2
1 + a2

2fZf
−1
D


−1  1

a1



−1

(93)

=
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (94)

We use the notation τ to denote a posterior precision, while f−1 denotes a prior precision of one

of the basic variables of the model. The above then implies that

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z (p− a3s)

)
(95)

C.2.2 Demand and equilibrium

The agent’s utility function is (where variables without subscripts here indicate vectors),

Ui = max
{Qi,t}

ρ−1E0,i

[
T−1Q̃′i (D − P )

]
− 1

2
ρ−2V ar0,i

[
T−1/2Q̃′i (D − P )

]
(96)

= max
{Qi,t}

ρ−1E0,i

[
T−1q̃′i (d− p)

]
− 1

2
ρ−2V ar0,i

[
T−1/2q̃′i (d− p)

]
(97)

= max
{Qi,t}

ρ−1T−1
∑
j

q̃i,jE0,i [(dj − pj)]−
1

2
ρ−2T−1

∑
j

q̃2
i,jV ar0,i [dj − pj ] , (98)

where the last line follows by imposing the asymptotic independence of d across frequencies (we

analyze the error induced by that approximation below). The utility function is thus entirely

separable across frequencies, with the optimization problem for each q̃i,j independent from all

others.
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Taking the first-order condition associated with the last line above for a single frequency (with

q̃i, d, etc. again representing scalars, for any j), we obtain

q̃i = ρτ iE [d− p | yi, p] (99)

= ρ

(
f−1
i yi +

a1

a2
2

f−1
Z (p− a3s)− τ ip

)
(100)

= ρ

(
f−1
i yi +

a1

a2
2

f−1
Z (a1d+ a2z)− τ i (a1d+ a2z + a3s)

)
(101)

Summing up all demands and inserting the guess for the price yields

−z + k (a1d+ a2z) + s =

∫
i
ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
(a1d+ a2z)− τ ia3s

)
di (102)

=

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z − τ i

)
(a1d+ a2z)− τ ia3s

)
di, (103)

where the second line uses the law of large numbers. Matching coeffi cients on d, z, and s then

yields

∫
i
ρ

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (1− ka2) (104)∫
i
ρf−1
i a−1

1 + ρ

(
a1

a2
2

f−1
Z − τ i

)
di = k (105)

a3 =
−1

ρ
∫
i τ idi

(106)

and therefore

k −
∫
i
ρf−1
i a−1

1 = a−1
2 (ka2 − 1) (107)∫

i
ρf−1
i =

a1

a2
(108)

Now define aggregate precision to be

f−1
avg ≡

∫
i
f−1
i di (109)
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We then have

τ i =
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (110)

τavg ≡
∫
τ idi =

(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (111)

Inserting the expression for τ i into (104) yields

a1 =
τavg − f−1

D

τavg + ρ−1k
(112)

a2 =
a1

ρf−1
avg

(113)

a3 =
−1

ρτavg
(114)

The expression for a1 can be written more explicitly as:

a1 =
τavg − f−1

D

τavg + ρ−1k
=

a21
a22
f−1
Z + f−1

avg + f−1
D + ρ−1k − ρ−1k − f−1

D

a21
a22
f−1
Z + f−1

avg + f−1
D + ρ−1k

(115)

= 1− ρ−1k + f−1
D(

ρf−1
avg

)2
f−1
Z + f−1

avg + ρ−1k + f−1
D

. (116)

The expression for a2 is invalid in the case when f−1
avg = 0. In that case, we have

a2 =
1

ρf−1
D + k

. (117)

C.3 Proof of Proposition 1

This section considers the case where supply is set to zero, so that s = 0.

We use the notation Ō to mean that, for any matrices A and B,

|A−B| = Ō
(
T−1/2

)
⇐⇒ |A−B| ≤ bT−1/2 (118)

for some constant b and for all T . This is a stronger statement than typical big-O notation in that

it holds for all T , as opposed to holding only for some suffi ciently large T . Standard properties of
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norms yield the following result. If |A−B| = Ō
(
T−1/2

)
and |C −D| = Ō

(
T−1/2

)
, then

|cA− cB| = Ō
(
T−1/2

)
(119)∣∣A−1 −B−1

∣∣ = Ō
(
T−1/2

)
(120)

|(A+ C)− (B +D)| = Ō
(
T−1/2

)
(121)

|AC −BD| = Ō
(
T−1/2

)
(122)

In other words, convergence in weak norm carries through under addition, multiplication, and

inversion. Following the time domain solution (8), A1 and A2 can be expressed as a function of the

Toeplitz matrices ΣD, ΣZ and Σavg using those operations. it follows that |A1 − Λdiag (a1) Λ′| ≤

c1T
− 1
2 for some constant c1, and the same holds for A2 for some constant c2.

For the variance of prices, we define

R1 ≡ A1 − Λdiag (a1) Λ′, (123)

R2 ≡ A2 − Λdiag (a2) Λ′. (124)

In what follows, we use the strong norm ‖·‖, defined as:

‖A‖ = max
x′x=a

(
x′A′Ax

) 1
2 . (125)

Finally, we use the following property of the weak norm: for any two square matrices A, B of size

T × T ,

|AB| ≤
√
T |A| |B| . (126)

The proof for this inequality is standard and reported at the end of this section. We then have the
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following:

|V ar [P − Λp]| =
∣∣V ar [(A1 − Λa1Λ′)D + (A2 − Λa2Λ′)Z

]∣∣ (127)

≤
∣∣R1ΣDR

′
1

∣∣+
∣∣R2ΣZR

′
2

∣∣ (128)

≤
√
T (|R1ΣD| |R1|+ |R2ΣZ | |R2|) (129)

≤
√
T
(
‖ΣD‖ |R1|2 + ‖ΣZ‖ |R2|2

)
(130)

≤
√
TK

(
|R1|2 + |R2|2

)
. (131)

The second line follows from the triangle inequality. The third line comes from property (126). The

fourth line uses the fact that for any two square matrices G,H, ||GH|| ≤ ‖G‖ |H|; for a proof, see

Gray (2006), lemma 2.3. The last line follows from the assumption that the eigenvalues of ΣD and

ΣZ are bounded. Indeed, since ΣD and ΣZ are symmetric and real, they are Hermitian; following

Gray (2006), eq. (2.16), we then have ‖ΣZ‖ = maxt |αZ,t| and ‖ΣD‖ = maxt |αD,t|, where αX,t

denotes the eigenvalues of the matrix X.

Given that |R1| ≤ c1T
− 1
2 and |R2| ≤ c2T

− 1
2 , this implies:

|V ar [P − Λp]| ≤ K
√
T
(
c2

1 + c2
2

)
T−1 (132)

= cPT
− 1
2 . (133)

A similar proof establishes the result for
∣∣∣V ar [Q̃− Λq̃

]∣∣∣.
To prove inequality (126), note that:

|AB|2 = 1
T

∑
m,n

(
T∑
t=1

amtbtn

)2

≤ 1
T

∑
m,n

(
T∑
t=1

a2
mt

)(
T∑
t=1

b2tn

)

= 1
T

(∑
m,t

a2
mt

)(∑
n,t

b2nt

)

= T

(
1
T

(∑
m,t

a2
mt

))(
1
T

(∑
n,t

b2nt

))
= T |A|2 |B|2 ,

(134)
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so that |AB| ≤
√
T |A| |B| . In this sequence of inequalities, going from the second to the third line

uses the Cauchy-Schwarz inequality.

C.4 Proof of lemma 2

First, since the trace operator is invariant under rotations,

tr
(
Σ−1
i

)
=
∑
j

f−1
i,j . (135)

The information constraint is linear in the frequency-specific precisions. Investors also face a

technical constraint that the elements of fi,j corresponding to paired sines and cosines must have

the same value. That is, if bj/2c = bk/2c, then fi,j = fi,k; this condition is necessary for εi,t to be

stationary.

Inserting the optimal value of qi,j into the utility function, we obtain

E−1 [Ui,0] ≡ 1

2
E

T−1
∑
j

τ i,jE [dj − pj | yi,j , pj ]2
 (136)

Ui,0 is utility conditional on an observed set of signals and prices. E−1 [Ui,0] is then the expectation

taken over the distributions of prices and signals.

V ar [E [dj − pj | yi,j , pj ]] is the variance of the part of the return on portfolio j explained by

yi,j and pj , while τ−1
i,j is the residual variance. The law of total variance says

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (137)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is

V ar(rj) = V ar [dj − pj ] = (1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j . (138)

63



So then

E−1 [Ui,0] =
1

2
T−1

∑
j

[(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τ i,j − 1

]
. (139)

We thus obtain the result that agent i’s expected utility is linear in the precision of the signals that

they receive (since τ i,j is linear in f−1
i,j ; see equation 110). Now define

λj

(
f−1
avg,j

)
≡ (1− a1,j)

2fD,j +

(
a1,j

ρf−1
avg,j

)2

fZ,j = V ar(rj). (140)

From equations (111)-(112), when f−1
avg,j > 0, λj can be re-written as:

λj

(
f−1
avg,j

)
=
fD,j

(
f−1
D,j + ρ−1k

)2
+ (ρf−1

avg,j)
2f−1
Z,j + fZ,jρ

−2(
(ρf−1

avg,j)
2f−1
Z,j + f−1

D,j + ρ−1k + f−1
avg,j

)2 , (141)

which can be further decomposed as:

λj

(
f−1
avg,j

)
= 1

((ρf−1avg,j)
2f−1Z,j+f

−1
D,j+ρ

−1k+f−1avg,j)
2

+
fZ,j−

f−1
avg,j
ρ

((ρf−1avg,j)
2f−1Z,j+f

−1
D,j+ρ

−1k+f−1avg,j)
2

+
ρ−1k(1+f−1D,jρ

−1k)

((ρf−1avg,j)
2f−1Z,j+f

−1
D,j+ρ

−1k+f−1avg,j)
2

(142)

Each of these three terms is decreasing in f−1
avg,j , so that the function λj (·) is decreasing.

E−1 [Ui,0] =
1

2
T−1

∑
j

[
a2

1

a2
2

f−1
Z + f−1

D

]
(143)

D Results on price informativeness with restricted frequencies

D.1 Result 1 and corollaries 1.1 and 1.5

When there are no active investors and just exogenous supply, we have that 0 = zj + kpj and so:

pj = k−1zj , (144)

rj = dj − k−1zj . (145)
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Because of the separability of information choices across frequencies, the coeffi cients a1,j and a2,j

are unchanged at all other frequencies. Moreover, it is clear that V ar(dj |pj) = V ar(dj) at the

restricted frequencies, since prices now only carry information about supply, which is uncorrelated

with dividends.

Note that for any j ∈ R,

V ar(rj) = fD,j +
fZ,j
k2

. (146)

Additionally, if investors were allowed to hold exposure at those frequencies, but the endogenously

chose not to allocate any attention to the frequency, the return volatility would be:

V arunrestr.(rj) = λj(0) = fD,j +
fZ,j(

k + ρf−1
D,j

)2 < V ar(rj). (147)

D.2 Corollary 1.2 and result 1.4

Under the diagonal approximation, we have:

D | P ∼ N
(
D̄,Λdiag

(
τ−1

0

)
Λ′
)

(148)

where τ0 is a vector of frequency-specific precisions conditional on prices, as of time 0. Given the

independence of prices across frequencies, the j-th element of τ0 is:

τ−1
0,j = V ar(dj | pj). (149)

Using this expression, we can compute:

V ar (Dt | P ) = 1′tΛdiag
(
τ−1

0

)
Λ′1t (150)

=
(
Λ′1t

)′
diag

(
τ−1

0

) (
Λ′1t

)
(151)

=
∑
j

λ2
t,jV ar(dj | pj) (152)

= λ2
t,0V ar(d0|p0) + λ2

t,TV ar(dT
2
| pT

2
) +

T/2−1∑
k=1

(
λ2
t,2k + λ2

t,2k+1

)
V ar(dk | pk)(153)
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where 1t is a vector equal to 1 in its t-th element and zero elsewhere, and λt,j is the t, j element of

Λ. The last line follows from the fact that the spectrum has fX,2k = fX,2k+1 for 0 < k < T/2− 1.

Furthermore, note that for 0 < k < T/2− 1,

λ2
t,2k + λ2

t,2k+1 =
2

T
cos (ωk (t− 1))2 +

2

T
sin (ωk (t− 1))2 (154)

=
2

T
(155)

which yields equation (34). Result 3 immediately follows from this expression and the fact that

λ2
t,0 = λ2

t,T = 1
T .

Result 1.4 uses the fact that

V ar (Dt −Dt−1 | P ) = (λt,1 − λt−1,1)2 τ−1
0,1 + (λt,T − λt−1,T )2 τ−1

0,T
2

(156)

+

T/2−1∑
k=1

[
(λt,2k − λt−1,2k)

2 + (λt,2k+1 − λt−1,2k+1)2
]
τ−1

0,k, (157)

and the fact that (cos(x)− cos(y))2 + (sin(x)− sin(y))2 = 4 sin
(

1
2(x− y)

)2
= 2 (1− cos(x− y)).

E Results on investor outcomes

E.1 Result 2

Expression (41) in the main text follows from the steps used in appendix D.2. Recall from (100)

that, omitting the j notation,

q̃i = ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
(158)

= ρf−1
i εi + ρ

(
f−1
i +

(
a1

a2
2

f−1
Z − τ i

)
a1

)
d+ ρ

(
a1

a2
2

f−1
Z − τ i

)
a2z (159)

Recall also that:

τ i =

(
a1

a2

)2

f−1
Z + f−1

D + f−1
i , (160)
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so that:

q̃i = ρ

(
τ i −

(
a1

a2

)2

f−1
Z − f

−1
D

)
εi + ρ

(
f−1
i +

(
a1

a2
2

f−1
Z − τ i

)
a1

)
d+ ρ

(
a1

a2
2

f−1
Z − τ i

)
a2z (161)

Moreover,

f−1
i − a1τ i +

(
a1

a2

)2

f−1
Z = τ i −

(
a1

a2

)2

f−1
Z − f

−1
D − a1τ i +

(
a1

a2

)2

f−1
Z (162)

= (1− a1)τ i − f−1
D . (163)

Therefore

ρ−1q̃i =

(
τ i −

(
a1

a2

)2

f−1
Z − f

−1
D

)
εi +

(
(1− a1)τ i − f−1

D

)
d+

(
a1

a2
f−1
Z − a2τ i

)
z, (164)

so that

ρ−2V ar (q̃i) =

(
τ i −

(
a1

a2

)2

f−1
Z − f

−1
D

)
+
(
(1− a1)τ i − f−1

D

)2
fD +

(
a1

a2
f−1
Z − a2τ i

)2

fZ . (165)

(where the first term uses the fact that V ar
(
f−1
i εi

)
= f−1

i ). The derivative of this expression with

respect to τ i is:

ρ−2∂V ar (q̃i)

∂τ i
= 2τ i

(
(1− a1)2fD + a2

2fZ
)
− 1

≥ 2

(
f−1
D +

(
a1
a2

)2
f−1
Z

)(
(1− a1)2fD + a2

2fZ
)
− 1

= 2

(
(1− a1)2 + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD + a2

1

)
− 1

= 2

(
1− 2a1(1− a1) + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD

)
− 1

= 2

(
−2a1(1− a1) + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD

)
+ 1

= 2
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(f−1

Z fD)−
1
2

)2
+ 1

> 0,

(166)
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where to go from the first to the second line, we used the fact that τ i ≥
(
a1
a2

)2
f−1
Z +f−1

D , and where

we also used the fact that a1 ≤ 1. Since τ i is a monotonic transformation of f−1
i , this establishes

equation (42) from the main text.

For result 2, first note that E−1

[
Q̃′iR

]
= E−1 [q̃′iΛ

′Λr] = E−1 [q̃ir] =
∑

j E−1 [q̃i,jrj ] , where

the last equality follows from the diagonal approximation. Moreover, straightforward but tedious

algebra shows that:

f−1
i +

(
a1

a2
2

f−1
Z − τ i

)
a1 = ρ(f−1

i − f
−1
avg)(1− a1) + ka1, (167)(

a1

a2
2

f−1
Z − τ i

)
a2 = −ρ(f−1

i − f
−1
avg)a2 + (ka2 − 1). (168)

We can use these expressions, and the fact that r = (1− a1)d− a2z to re-write q̃i as:

q̃i = ρf−1
i εi + ρ

(
f−1
i − f

−1
avg

)
r + ka1d+ (ka2 − 1) z. (169)

Therefore,

E−1 [q̃ir] = ρ
(
f−1
i − f

−1
avg

)
V ar (r) + ka1E−1 [rd] + (ka2 − 1)E−1 [rz] , (170)

which is the decomposition from result 2.

The result that expected profits are nonnegative is a simple consequence of the investors’ob-

jective:

max
{q̃i,j}

ρ−1T−1
∑
j

E0,i [q̃i,j (dj − pj)]−
1

2
ρ−2T−1

∑
j

V ar0,i [q̃i,j (dj − pj)] (171)

Since the variance is linear in q̃2
i,j , if E0,i [q̃i,jrj ] < 0, utility can always be increased by setting

q̃i,j = 0 (or, even more, by reversing the sign of q̃i,j). In order for E−1 [q̃i,jrj ] = 0, it must be the

case that V ar−1,i [E0,i [dj − pj ]] = 0, since any deviation of E0,i [dj − pj ] will cause the investor to
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optimally take a nonzero position. We have, from above,

a1 =
τavg − f−1

D

τavg + ρ−1k
=

(
ρf−1
avg

)2
f−1
Z + f−1

avg(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D + ρ−1k

(172)

a2 =
a1

ρf−1
avg

(173)

τavg ≡
(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (174)

The expression for a2 is invalid in the case when f−1
avg = 0. In that case, we have

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z p

)
(175)

E [d− p | yi, p] = τ−1
i f−1

i yi +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)
(a1d+ a2z) (176)

V ar [E [d− p | yi, p]] =

(
τ−1
i f−1

i +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)
a1

)2

fD +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)2

a2
2fZ(177)

Now first we must have τ−1
i

a1
a22
f−1
Z − 1 = 0 in order for the third term to be zero. But if that

is true, then for the first term to be zero we must have f−1
i = 0 (since τ−1

i is always positive).

Combining f−1
i = 0 with τ−1

i
a1
a22
f−1
Z − 1 = 0, we obtain

f−1
D = ρf−1

avgf
−1
Z k. (178)

E.2 Corollary 2.1

Assume that long-term investors are initially uninformed about the frequency; then f−1
i = 0, for

all i so:

τ i =

(
a1

a2

)2

f−1
Z + f−1

D . (179)

Using expression (164), we then have

ρ−1q̃LF,i =

(
(1− a1)

(
a1

a2

)2

f−1
Z − a1f

−1
D

)
d+

(
a1(1− a1)

a2
f−1
Z − a2f

−1
D

)
z. (180)
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Given that r = (1− a1)d− a2z and that z and d are independent,

ρ−1E−1 [q̃LF,ir] =

(
(1− a1)

(
a1
a2

)2
f−1
Z − a1f

−1
D

)
(1− a1)fD −

(
a1(1−a1)

a2
f−1
Z − a2f

−1
D

)
a2fZ

= (1− a1)2
(
a1
a2

)2
f−1
Z fD − 2a1(1− a1) + a2

2fZf
−1
D

=
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(fZf

−1
D )

1
2

)2

(181)

(f−1
Z fD)

(
(1− a1)

(
a1

a2

)
− a2fZf

−1
D

)2

(182)

From the equilibrium condition for f−1
avg,j stated in the text, a marginal reduction in αj at αj =

λj (0) /ψ leads to a marginal increase in f−1
avg,j , so the signs of the derivatives with respect to αj are

simply the reverse of the signs of the derivatives with respect to f−1
avg,j . We now calculate derivatives

with respect to f−1
avg,j .

For any f−1
avg > 0, where a1/a2 = ρf−1

avg, the derivative of this expression with respect to f
−1
avg is

ρ−1 dE−1[q̃LF,ir]
df−1avg

= 2
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(fZf

−1
D )

1
2

)
×
{
ρ
[
(1− a1)(f−1

Z fD)
1
2 − a1(fZf

−1
D )

1
2

]
−
[
(f−1
Z fD)

1
2 + (fZf

−1
D )

1
2

]
ρ ∂a1
∂f−1avg

f−1
avg

}
(183)

Moreover, when f−1
avg > 0,

∂a1

∂f−1
avg

f−1
avg = a1(1− a1) + (1− a1)

(ρf−1
avg)

2f−1
Z

(ρf−1
avg)2f−1

Z + f−1
avg + f−1

D + ρ−1k
. (184)

The following limits follow from the discussion in Appendix C.2.2:

lim
f−1avg→0+

a1 = 0, lim
f−1avg→0+

a2 =
1

ρf−1
D + k

. (185)

Using these limits and the expressions just derived, we arrive at

lim
f−1avg→0+

∂E−1 [q̃LF,ir]

∂f−1
avg

= −2ρ
(fZf

−1
D )

1
2 (f−1Z fD)

1
2

f−1D +ρ−1k
< 0. (186)
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Re-introducing the notation j, for the frequency at which entry takes place, we then have

d

df−1
avg,j

E−1

[∑
t

Q̃LF,t (Dt − Pt)
]

=
d

df−1
avg,j

∑
k

E−1 [q̃LF,krk] =
d

df−1
avg,j

E−1 [q̃LF,jrj ] < 0; (187)

that is, all the effect of entry on total profits is concentrated on frequency j, where entry reduces

profits, as just established.

For the last result, we again use the frequency separability,

d

df−1
avg,j

E−1 [ULF,0] =
d

df−1
avg,j

E−1 [uLF,0,j ] , (188)

where

E−1[uLF,0,j ] ≡
1

2
T−1

[(
(1− a1,j)

2 fD,j + a2
2,jfZ,j

)
τ i,j − 1

]
(189)

is the component of utility from fluctuations at at frequency j. This latter definition uses expression

(139), derived in Appendix C.4. Omitting the j notation for clarity, the derivative of this expression

with respect to favg assuming that f−1
i = 0 is:

2T
dE−1[uLF,0]

df−1avg
=
(
(1− a1)2fD + a2

1(ρf−1
avg)

2fZ
)

2ρ2f−1
Z f−1

avg

+
(
−2(1− a1) ∂a1

∂f−1avg
fD + 2a1

∂a1
∂f−1avg

(
ρf−1
avg

)2
fZ + 2a2

1ρ
2fZf

−1
avg

)((
ρf−1
avg

)2
f−1
Z + f−1

D

)
(190)

Given that:

lim
f−1avg→0+

a1 = 0, (191)

the only term in this expression for which the limit may not be 0 as f−1
avg → 0+ is:

−2(1− a1)
∂a1

∂f−1
avg

fD + 2a1
∂a1

∂f−1
avg

ρf−1
avgfZ . (192)

However, given equation (184), we have that:

lim
f−1avg→0+

∂a1

∂f−1
avg

f−1
avg = 0, (193)

and so the second term in (192) goes to 0 as f−1
avg → 0+. For the second term, note that, using
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(184) we have that:

∂a1

∂f−1
avg

=
a1

f−1
avg

+ o(1) =
1 + (ρf−1

avg)f
−1
Z

(ρf−1
avg)2f−1

Z + f−1
D + f−1

avg + ρ−1k
+ o(1). (194)

Therefore,

lim
f−1avg→0+

2T
dE−1[uLF,0]

df−1
avg

= −2
fD

f−1
D + ρ−1k

= −2fDa2 < 0, (195)

which proves the last statement of corollary 2.1.

E.3 Corollary 2.2

The second inequality follows immediately from the facts proved above that d
df−1avg,j

λj

(
f−1
avg,j

)
< 0

and λj
(
f−1
avg,j

)
= V ar (rj). The first inequality follows from the fact proved above that

V ar [dj | pj ] =
(
ρf−1
avg

)2
f−1
Z + f−1

D (196)

F Explanation of numerical calibration

Our goal is to calibrate the model to be consistent with the behavior of aggregate stock market

dividends at the annual frequency, and also use information about other major economic time

series to provide reasonable values for the spectrum at higher frequencies. The reason that we use

the annual frequency for dividends is that there are seasonal effects within the year, in that most

dividends are paid quarterly, but in different months.

We first calculate the spectrum of annual dividend growth by calculating the periodogram —

the squared Fourier transform —of annual data obtained from CRSP.

To obtain information about high frequencies, we use weekly initial unemployment claims. That

series is obviously somewhat removed from dividends, but has the advantage of being perhaps the

only economic indicator that is available at such high frequencies. It is used, for example, by the

Federal Reserve Bank of Philadelphia’s real-time business conditions index. It is strongly cyclical,

and closely related to the unemployment rate, so we use it is as general measure of economic

activity. It also has the advantage that its sample periodogram has a highly similar shape to that

of dividend growth at the frequencies where they overlap.
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To estimate the spectrum we first shift the level of the periodogram for initial claims so that it

has the same mean as that of dividend growth at the frequencies where they overlap.

We estimate the true spectrum as a latent variable. We model it with a Gaussian prior for its

log such that the covariance between any pair of frequencies is proportional to exp (−φ |ω1 − ω2|),

where φ is a parameter determining the smoothness of the estimated spectrum. The factor of

proportionality, denoted σ2
P , is the prior variance for the level of the log spectrum (we use the log

because the log periodogram is homoskedastic).

The two periodograms yield a pair of samples, {X1, F1} and {X2, F2}, where the X vectors are

the sample Fourier frequencies and the F vectors are the values of the log periodogram. Those two

samples are stacked into a pair of large vectors, X̄ and F̄ . The prior covariance matrix is then Σ,

where the i, j entry is σ2
P exp

(
−φ
∣∣X̄i − X̄j

∣∣). Denote the estimate of the true spectrum as F̂ + b,

where b is a constant.

Technically, the log periodogram is not normal —it is distributed as the log of a χ2
2/2. We treat

it as normal for simplicity, following a quasi-maximum likelihood approach. Denote the estimated

spectrum with the vector F̂ . Then the quasi-log-likelihood, taking into account the prior and the

data likelihood, is

−F̂Σ−1F̂ −
(
F̂ + b− F̄

)
Σ−1
samp

(
F̂ + b1− F̄

)
(197)

where 1 is a vector of 1’s and Σsamp is the variance matrix of the log spectrum. This is, given basic

properties of the periodogram, the variance of a χ2
2/2 (see, e.g., Brillinger (1981)).

The first-order condition for b is

0 = 1′Σ−1
samp

(
F̂ + b1− F̄

)
(198)

b =
(
1′Σ−1

samp1
)−1

1′Σ−1
samp

(
F̂ − F̄

)
(199)

Inserting that into the optimization, the first-order condition for F̂ is

max
F̂
−F̂Σ−1F̂−

(
F̂ + 1

(
1′Σ−1

samp1
)−1

1′Σ−1
samp

(
F̂ − F̄

)
− F̄

)
Σ−1
samp

(
F̂ + 1

(
1′Σ−1

samp1
)−1

1′Σ−1
samp

(
F̂ − F̄

)
− F̄

)
(200)
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Yielding

F̂ =
(
Σ−1 + V

)−1
V F̄ (201)

where V ≡
(
I + 1

(
1′Σ−1

samp1
)−1

1′Σ−1
samp

)
Σ−1
samp

(
I + 1

(
1′Σ−1

samp1
)−1

1′Σ−1
samp

)
(202)

Because the set of frequencies, X̄, at which we have data is not the same as the set of frequencies

in the numerical example, we linearly interpolate from F̂ + b to obtain fD.

F.1 Calculating returns on dividend strips and equity

As noted in the text, the numerical example uses the case where fundamentals (dividends, in this

case) are stationary in first differences (see section H for the derivations in that case). Since the

model is calibrated to the weekly frequency, a claim on the level of dividends at the end of the first

year is a claim to
∑52

t=1 ∆Dt, where ∆ is the first-difference operator. The futures claims are in

this case claims to ∆Dt, with prices Pt. The price of the 1-year dividend strip is then
∑52

t=1 Pt. An

n-year dividend future, giving claims to the level of dividends at the end of year n is then a claim to∑52n
t=1 ∆Dt with price

∑52n
t=1 Pt. Equity is a claim to dividends in each period. It is straightforward

to show that its final payoff is
∑T

t=1 (T + 1− t) ∆Dt.

A diffi culty with interpreting the returns on these contracts is that they all have different

maturities. Note that an individual futures return is a single-period return. The per-period return

on a dividend strip is then just the average return on the individual futures,

Rperiodn =

∑52n
t=1 (∆Dt − Pt)

52n
(203)

The analogous calculation for equity is

RperiodEquity =

∑T
t=1 (T + 1− t) (∆Dt − Pt)∑T

t=1 (T + 1− t)
(204)

74



We calculate per-period return variances similarly. Specifically,

σ2
period,n ≡

var
(∑52n

t=1 (∆Dt − Pt)
)

52n
(205)

σ2
period,Equity ≡

var
(∑T

t=1 (T + 1− t) (∆Dt − Pt)
)

∑T
t=1 (T + 1− t)

(206)

These values are all multiplied by 52 to put them into annual terms.

To account for the positive average returns on dividend strips and equity, we give them a

positive supply in the model (since the sophisticated investors bear that supply, they drive the

price down and returns up). We assume that there is a unit supply of equity. Since equity has a

payoff of
∑T

t=1 (T + 1− t) ∆Dt, that means that the supply of the claim to date-t dividend growth

is T + 1− t.

F.2 Variance of dividend strip returns

In the nonstationary model, the variance of dividend growth in a single period is

V ar (∆Dt − Pt) = 1′tΛdiag (fR) Λ′1t (207)

=
(
Λ′1t

)′
diag (fR)

(
Λ′1t

)
(208)

=
∑
j

λ2
t,jV ar(dj − pj) (209)

= λ2
t,0V ar(d0 − p0) + λ2

t,T/2V ar(dT
2
− pT

2
) +

T/2−1∑
j=1

(
λ2
t,2j + λ2

t,2j+1

)
V ar(dj − pj)(210)

where fR is the spectrum of returns, fR ≡ V ar (dj − pj), 1t is a vector equal to 1 in its tth element

and zero elsewhere, and λt,j is the jth trigonometric transform evaluated at t. This takes advantage

of the fact that the variance at the cosine and sine associated with a given frequency must be the

same. From here on, we write rj ≡ dj − pj .
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More generally, then

V ar

(
1

s

s−1∑
m=0

Rt+m

)
=

1

s2

(
s−1∑
m=0

1t+m

)′
Λdiag (fR) Λ′

(
s−1∑
m=0

1t+m

)
(211)

=
1

s2

(
s−1∑
m=0

λt+m,0

)2

fR,0 +
1

s2

(
s−1∑
m=0

λt+m,T/2

)2

fR,T/2 (212)

+
1

s2

T/2−1∑
j=1

( s−1∑
m=0

λt+m,2j

)2

+

(
s−1∑
m=0

λt+m,2j+1

)2
 fR,j (213)

For 0 < j < T/2

(
s−1∑
m=0

λt+m,j

)2

+

(
s−1∑
m=0

λt+m,j

)2

=

s−1∑
m=0

s−1∑
k=0

2

T

 cos (2πj (t+m− 1) /T ) cos (2πj (t+ k − 1) /T )

+ sin (2πj (t+m− 1) /T ) sin (2πj (t+ k − 1) /T )


(214)

Now note that

2 cos (x) cos (y) + 2 sin (x) sin (y) = 2 cos (x− y) (215)

So we have

(
s−1∑
m=0

λt+m,j

)2

+

(
s−1∑
m=0

λt+m,j

)2

=
2

T

s−1∑
m=0

s−1∑
k=0

cos

(
2πj

T
(m− k)

)
(216)

= 2
s

T

s−1∑
m=−(s−1)

s− |m|
s

cos

(
2πj

T
m

)
(217)

= 2
s

T
Fs

(
2πj

T

)
(218)

where Fs denotes the sth-order Fejér kernel. Note that when s = T , the above immediately reduces

to zero, since cos (2πj) = 0 . That is the desired result, as an average over all dates should be
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unaffected by fluctuations at any frequency except zero. For j = 0,

(
s−1∑
m=0

ft+m,0

)2

=

(
s−1∑
m=0

√
1/T

)2

(219)

=

(
s

1

T 1/2

)2

(220)

=
s

T
Fs (0) , (221)

since Fs (0) = s (technically, this holds as a limit: limx→0 Fs (x) = s). For j = T/2,

(
s−1∑
m=0

ft+m,T/2

)2

=
1

T

(
s∑

m=1

(−1)m
)2

=


1
T for odd s

0 otherwise
(222)

=
s

T

1

s

(
sin (sπ/2)

sin (π/2)

)2

=
s

T
Fs (π) (223)

So we finally have that

V ar

(
1

s

s−1∑
m=0

Rt+m

)
=

1

sT

Fs (0) fR,0 +

T/2−1∑
j=1

Fs (ωj) fR,2j + Fs (π) fR,T/2

 (224)

In the case where fundamentals are difference-stationary, the return on a claim to the level of

fundamentals on date s is exactly
∑s

t=1Rt.

F.3 Further numerical results

Figures A.1, A.2, and A.3 give further detail in addition to the results reported in the main text.

Figure A.1 replicates figure 2, but replacing the case with frequency-specific information costs with

a case where information flows are measured by their entropy rather than precision. Appendix K.3

described the analysis for that case. Figures A.2 and A.3 report the mean, standard deviation,

and Sharpe ratio of the dividend strips and equity in the model with frequency-specific information

costs and entropy costs. They also report the average of the values reported for dividend strips

across four markets in Binsbergen and Koijen (2017).
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G Public release of information

This section considers a simple extension of the model in which there is a public signal that is

revealed on date 0. It has the same structure as the other signals in that it takes the form, at each

frequency,

ζ = d+ εζ (225)

V ar (εζ) = fζ (226)

This section examines the effects of varying the precision of that signal, f−1
ζ .

G.1 Statistical inference

We guess that prices take the form

p = a1d+ a2z + aζζ (227)

(p− aζζ) /a1 is a signal about the dividend with noise equal to (a2/a1) z, which has variance

(a2/a1)2 fZ . The posterior variance of dividends is then

τ i =
a2

1

a2
2

f−1
Z + f−1

i + f−1
ζ + f−1

D (228)

and the posterior mean is

E [d− p | yi, p− aζζ] = τ−1
i

a2
1

a2
2

f−1
Z (p− aζζ) a−1

1 + τ−1
i f−1

i yi + τ−1
i f−1

ζ ζ − p (229)

It will be useful later to calculate the variance of fundamentals conditional on just observing prices,

which is

V ar (d | p) =
a2

2

(a1 + aζ)
2 fZ +

a2
ζ

(a1 + aζ)
2 fζ (230)

78



G.2 Demand and equilibrium

Agent i’s demand is

q̃i = ρτ iE [d− p | yi, p] (231)

= ρ

(
a2

1

a2
2

f−1
Z (p− aζζ) a−1

1 + f−1
i yi + f−1

ζ ζ − τ ip
)

(232)

= ρ

((
a1

a2
2

f−1
Z − τ i

)
p+ f−1

i yi +

(
f−1
ζ −

a1

a2
2

aζf
−1
Z

)
ζ

)
(233)

Summing up all demands and inserting the guess for the price yields

−z + k (a1d+ a2z + aζζ) = ρ

∫
i

((
a1

a2
2

f−1
Z − τ i

)
p+ f−1

i yi +

(
f−1
ζ −

a1

a2
2

aζf
−1
Z

)
ζ

)
di (234)

= ρ

((
a1

a2
2

f−1
Z − τavg

)
(a1d+ a2z + aζζ) + f−1

avgd+

(
f−1
ζ −

a1

a2
2

aζf
−1
Z

)
ζ

)
(235)

where the second line uses the law of large numbers. Matching coeffi cients on d, z, and ζ then

yields

k = ρ

(
a1

a2
2

f−1
Z − τavg

)
+ ρf−1

avga
−1
1 (236)

−a−1
2 (1− ka2) = ρ

(
a1

a2
2

f−1
Z − τavg

)
(237)

k = ρ

(
a1

a2
2

f−1
Z − τavg

)
+ ρ

(
a−1
ζ f−1

ζ −
a1

a2
2

f−1
Z

)
(238)

aζ = f−1
ζ a1

(
f−1
avg +

a2
1

a2
2

f−1
Z

)−1

(239)

a1

a2
= ρf−1

avg (240)

a1 =

(
ρf−1
avg

)2
f−1
Z + f−1

avg

τavg + ρ−1k
(241)

which implies

aζ =
f−1
ζ

τavg + ρ−1k
(242)
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G.3 Utility and profits

Utility, as before, is equal to the variance of returns multiplied by precision,

E−1 [ui,0] = λj

(
f−1
avg, f

−1
ζ

)((
ρf−1
avg

)2
f−1
Z + f−1

i + f−1
D + f−1

ζ

)
− 1 (243)

where λj
(
f−1
avg, f

−1
ζ

)
is the variance of returns, and we write it as a function of f−1

ζ since that is a

choice variable of a regulator in this case.

It is straightforward to show that average profits are also linear in λj
(
f−1
avg, f

−1
ζ

)((
ρf−1
avg

)2
f−1
Z + f−1

i + f−1
D + f−1

ζ

)
,

so results on utility will map directly into results on profits (with appropriate adjustments for the

cost of information).

G.4 Results

G.4.1 Limits and noise trader profits

The main text considers a limit as the information of investors becomes infinite. Here, that would

correspond to setting f−1
ζ → ∞. That immediately implies τavg → ∞, a1 → 0, a2 → 0, and

aζ → 1. The analog to the first two limits from section 4.4.3 in this case is that prices are perfectly

informative in the sense that they depend just on fundamentals, since when f−1
ζ →∞, ζ = d, and

hence p = d.

Noise trader profits are,

E [(z − k ((a1 + aζ) d+ a2z + aζεζ)) ((1− a1 − aζ) d− a2z − aζεζ)] (244)

= −a2fZ − k (a1 + aζ) (1− a1 − aζ) fD + ka2
2fZ + ka2

ζfζ (245)

So when a1 = 0, a2 = 0, and aζ = 1, noise trader losses are zero, yielding the third limit from

section 4.4.3. Note, again, that this is the opposite of average profits of informed investors, so when

f−1
ζ →∞, the average profits of informed investors also go to zero.
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G.4.2 Information acquisition, profits, and utility

The profits and utility of uninformed investors —the long-term investors in the example in the text,

are linear in

λj

(
f−1
avg, f

−1
ζ

)((
ρf−1
avg

)2
f−1
Z + f−1

D + f−1
ζ

)
(246)

We are interested in changes in fζ , which will affect f−1
avg in equilibrium. When there is any positive

amount of information acquisition, we have λj
(
f−1
avg, f

−1
ζ

)
= ψj . Taking a total derivative with

respect to f−1
ζ (or just invoking the implicit function theorem) yields

df−1
avg

df−1
ζ

= −
λj,2

(
f−1
avg, f

−1
ζ

)
λj,1

(
f−1
avg, f

−1
ζ

) (247)

where λj,k denotes the derivative of λj with respect to its kth argument.

The derivative of profits when information is being acquired (λj
(
f−1
avg, f

−1
ζ

)
= ψj) is then

d

df−1
ζ

[
λj

(
f−1
avg, f

−1
ζ

)((
ρf−1
avg

)2
f−1
Z + f−1

D + f−1
ζ

)]
= ψj

(
2ρ2f−1

avgf
−1
Z

df−1
avg

df−1
ζ

+ 1

)
(248)

When information is not being acquired, f−1
avg = 0, the derivative becomes

λ
(

0, f−1
ζ

)
+
(
f−1
D + f−1

ζ

)
λj,2

(
0, f−1

ζ

)
(249)

We have the following results

1. Information acquisition is weakly decreasing in f−1
ζ .

—This result is obtained by simply showing that λj,2
(
f−1
avg, f

−1
ζ

)
< 0.

2. The profits and utility of passive investors increase in disclosure when f−1
avg > 0.

—This involves simply confirming that (248) is positive.

3. The utility of all sophisticated investors increase in f−1
ζ when f−1

avg > 0.

—This follows directly from the second result.

4. The average profits of sophisticated investors, and the losses of noise traders, decrease in f−1
ζ

when f−1
avg > 0.
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—The derivative of the profits of the average investor, who has signal precision f−1
avg, is

ψj

((
2ρ2f−1

avgf
−1
Z + 1

) df−1
avg

df−1
ζ

+ 1

)
(250)

which can be shown to be negative

5. The losses of noise traders and the utility of sophisticated investors converge to zero as

f−1
ζ →∞.

—See the previous section.

6. The total precision for fundamentals in public information —prices and the public signal —

increases in f−1
ζ .

—Public precision is
(
ρf−1
avg

)2
f−1
Z + f−1

D + f−1
ζ . The derivative with respect to f−1

ζ is

2ρ2f−1
avgf

−1
Z

df−1
avg

df−1
ζ

+ 1 (251)

which is the same as the derivative used for the second result. When f−1
avg = 0, the result holds

trivially.

G.5 Numerical example

We consider a simple numerical example with ρ = k = f−1
D = f−1

Z = 1 and ψ = 0.4757 and examine

how profits, utility, and price informativeness vary with f−1
ζ . The four panels of figure A.4 plot

results from a numerical solution, with f−1
ζ varying along the x-axis. Note that the scales are

generally in logs.

The top-left panel plots the profits of the various agents. The dotted line is the expected profits

for uninformed sophisticated investors. They initially benefit as information is released publicly

since it reduces their informational disadvantage compared to more highly informed agents (at

f−1
ζ = 0, their profits are not zero, just numerically very small). Eventually f−1

ζ rises suffi ciently

high that f−1
avg = 0. At that point, more precision for public signals just makes prices more infor-

mative and reduces the profits of all sophisticated investors.

The solid line in the top-left panel plots the average profits of a sophisticated investor with the

average level of precision, f−1
avg. Their profits fall as f

−1
ζ rises because they acquire less information
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—f−1
avg falls. Since profits are zero sum, as their average profits fall, the (negative) average profits

of the noise traders rise —they lose less money.

The bottom-left panel of figure A.4 plots f−1
avg. It shows that increases in the precision of the

public signal reduce incentives for agents to acquire information.

The top-right panel shows that utility initially increases with the public signal —agents are able

to trade with the noise traders facing less risk (since they are better informed about fundamentals)

without having to pay for private signals. Eventually, though, when there is suffi cient information,

prices become so effi cient that profits and hence utility fall, eventually to the point where there are

no profits to be earned.

Finally, the bottom-right panel of figure A.4 reports the information available to investors,

either purely from prices or from combining prices and the public signal. In both cases, we see that

they rise as the public signal becomes more precise.

H Results when fundamentals are difference-stationary

In the main text, we assume that the level of fundamentals is stationary. Here we examine an

extension in which fundamentals are stationary in terms of first differences and show that the results

go through nearly identically, with the primary difference being in how the long-term portfolio is

defined.

H.1 Informed investors under difference stationarity

We assume that D0 is known to investors when making decisions, and without loss of generality

normalize D0 = 0. Define ∆ to be the first difference operator so that

∆Dt = Dt −Dt−1 (252)

and define the vector ∆D ≡ [∆D1,∆D2, ...∆DT ]′. We assume that

∆D ∼ N (0,ΣD) . (253)
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For any given allocation to the futures contracts, there is an allocation to claims on ∆D that

gives an identical payoff. Specifically, an allocation Q′iD can be exactly replicated by

Q′iD = Q′iL1∆D (254)

=
(
L′1Qi

)′
∆D (255)

where L1 is a matrix that creates partial sums,

L1 ≡



1 0 0 · · ·

1 1 0

1 1 1

...
. . .


(256)

So an allocation of Qi to the futures is equivalent to an allocation of L′1Qi to claims on the first

differences of fundamentals, which we will call the growth rate futures. Define the notation

Q∆,i ≡ L′1Qi (257)

Furthermore, the prices of the growth rate futures are simply the vector ∆P (by the law of one

price). We can therefore rewrite the optimization problem equivalently as

maxT−1
T∑
t=1

βtQ∆,i,tE0,i [∆Dt −∆Pt]−
1

2

(
ρT−1

)
V ar0,i

[
T∑
t=1

βtQ∆,i,t (∆Dt −∆Pt)

]
(258)

Now suppose for the moment that we are able to solve the entire model in terms of first

differences (that is not obvious as we will need to ensure that noise trader demand is also difference

stationary). So we have an allocation Q∆D,i. An allocation to the first differences is then equivalent

to an allocation of (L′1)−1Q∆,i to the levels (which follows trivially from the definition of Q∆,i in

(257)).

Since our maintained assumption is that we will solve the model in first differences in the same

way we did in the main text for levels, that means that we will continue to use the rotation Λ, but

now in first differences. So the frequency domain allocations in terms of first differences will be
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Q̃∆D,i = Λq̃∆,i (259)

where Q̃∆D,i,t ≡ Q∆D,i,tβ
t. q̃∆,i now represents the allocations to different frequencies of growth in

fundamentals. The key question, then, is what that implies for the behavior of portfolios in terms

of levels. We have

Q̃i =
(
L′1
)−1

Q̃∆,i (260)

=
(
L′1
)−1

Λq̃∆,i (261)

So in terms of levels, the basis vectors, instead of being Λ, are (L′1)−1 Λ.

For (L′1)−1 we have

(
L′1
)−1 ≡



1 −1 0 · · · 0

0 1 −1
...

0 0 1
. . . 0

...
. . . −1

0 · · · 0 0 1


(262)

So the way that (L′1)−1 transforms a matrix is to take a forward difference of each column, and

then retaining the value of the final row. A way to see the implications of that transformation is to

approximate the finite differences of the sines and cosines as derivatives. The columns of (L′1)−1 Λ

are equal to (L′1)−1 cj and (L′1)−1 sj , which can be written using standard trigonometric formulas

as:

(
L′1
)−1

cj ≈

 2 sin
(

1
2ωj
)√

2
T

{
sin
(
ωj
(
t− 1

2

))}T
t=2√

2
T cos (ωj(T − 1))

 (263)

(
L′1
)−1

sj ≈

 −2 sin
(

1
2ωj
)√

2
T

{
cos
(
ωj
(
t− 1

2

))}T
t=2√

2
T sin (ωj(T − 1))

 (264)

The column cj represents a portfolio in terms of the first differences of fundamentals with weights

equal to a cosine fluctuating at frequency ωj . (L′1)−1 cj measures the loadings of that portfolio on
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claims to the level of fundamentals. These loadings also fluctuate at frequency ωj , with the only

difference being the replacement of the cosine with a sine function. (Intuitive, the loadings are

approximately equal to the derivative of the columns of Λ with respect to time; taking derivatives

does not affect the characteristic frequency of fluctuations.)

So consider a relatively short-term investor, whose portfolio weights are all close to zero except

for a large value in the vector q∆,i at some large value of j. By assumption, that investor holds a

portfolio whose loadings on the first differences of fundamentals fluctuate at frequency ωj . What

the approximations in (263—264) show, though, is that that investor’s positions measured in terms

of the level of fundamentals (i.e. Q̃i) has loadings that also fluctuate at frequency ωj .

One subtlety is in the lowest-frequency portfolio, (L′−1
1

(
1√
2
c0

)
. That portfolio puts equal

weight on growth in fundamentals on all dates — it is a bet on the sample mean growth rate. In

terms of levels, note that (L′1)−1
(

1√
2
c0

)
=
[
0, 0, 0, ...,

√
2/T

]
. A person who wants to bet on the

mean growth rate between dates 1 and T can do that by buying a claim to fundamentals only on

date T .32

H.2 Noise traders under difference stationarity

Last, we need to show that noise trader demand will also take a form such that the entire model can

be solved in terms of first differences (and then shifted back into levels for interpretation). First,

as above, since the model expressed in first differences is just a linear transformation of the levels,

the noise traders’optimization problem can be written in terms of first differences,

maxT−1
T∑
t=1

βtN∆,tE0,N [∆Dt −∆Pt]−
1

2

(
ρT−1

)
V ar0,N

[
T∑
t=1

βtN∆,t (∆Dt −∆Pt)

]
(265)

where N∆,t is the demand of the noise traders for the claims on first differences.

We assume that the noise traders understand that fundamentals have a unit root and that they

therefore have priors and signals that refer to the change in fundamentals. The analogs to (59) and

32The highest frequency portfolio, (L′−11

(
1√
2
cT
2

)
, is given by 1/

√
T (2,−2, ..., 2, 1)′, and therefore fluctuates at the

highest sample frequency.
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(60) are then

∆D ∼ N
(

0,Σprior
N∆

)
(266)

S ∼ N
(

∆D,Σsignal
N∆

)
(267)

and the Bayesian update is

∆D | S ∼ N
(

ΣN∆

(
Σsignal
N∆

)−1
S,ΣN∆

)
(268)

where ΣN∆ ≡
((

Σsignal
N∆

)−1
+
(

Σprior
N∆

)−1
)−1

(269)

I Quadratic trading costs

The restriction that investors have exactly zero exposure at certain frequencies is a natural one to

study in the model. But there are other ways of imposing limits on investors’ exposures across

frequencies. This appendix examines the equilibrium when there are quadratic costs of trading.

Relative to the frictionless benchmark, introducing these costs has analogous effects to the more

abstract restriction qi,j = 0 for j ∈ R. Changes in trading costs could be caused either by the

imposition of a quadratic tax on shares traded (i.e. a particular form of a Tobin tax), or by changes

in the trading technology. The proofs for this section follow in appendix J

The model does not literally have trade over time. However, the exposures that investors

choose in the futures market can be replicated through a commitment to trade (at a fixed price)

the fundamental on future dates. That is, define a date-t equity claim to be an asset that pays

dividends equal to the fundamental on each date from t+1 to T . Since the futures contracts involve

exchanging money only at maturity, the date-t cost of an equity claim is P equityt =
∑T−t

j=1 β
−jPt+j .

An investor’s exposure to fundamentals on date t, Qi,t can be acquired either by buying Qi,t units of

forwards on date 0 or by holding QEQi,t units of equity entering date t. In the latter case, the volume

of trade by investor i would be equal to the change in Qi,t over time. That is, ∆QEQi,t = ∆Qi,t.

87



We assume that investors now maximize the following objective:

U0,i = max
{Qi,t}

E0,i

[
T−1

T∑
t=1

Qi,t (Dt − Pt)
]
− 1

2
cT−2E0,i [QV {Qi}]−

1

2
bT−2E0,i

[
T∑
t=1

Q2
i,t

]
, (270)

where b > 0 is a cost of holding large positions in the assets, c ≥ 0 is a cost incurred from quadratic

variation in positions, with quadratic variation defined as:

QV {Qi} ≡
[

T∑
t=2

(Qi,t −Qi,t−1)2 + (Qi,1 −Qi,T )2

]
. (271)

The term involving b in (270) replaces the aversion to variance in the benchmark setting. That

change is made for the sake of tractability, but its economic consequences are minimal (see, e.g.,

Kasa, Walker, and Whiteman (2013)). We also set discount rates to zero here to maintain tractabil-

ity.

Appendix J shows that:

T−1QV {Qi} = 2
T∑
j=1

sin2
(
ωbj/2c/2

)
q2
i,j . (272)

Note that we have defined quadratic variation as the sum of the squared changes in Qi,t between

t = 2 and T plus (Qi,1 −Qi,T )2. Without the final term, there would be no cost to investors of

entering and exiting very large positions at the beginning and end of the investment period. This

term helps account for that, and has the added benefit of yielding the simple closed-form expression

in the frequency domain reported above. The right-hand side shows that the quadratic variation

in the volume induced by an investor depends on their squared exposures at each frequency scaled

by sin2
(
ωbj/2c/2

)
, which rises from 0 to 1 as j rises. Intuitively, when c > 0, holding exposure

to higher frequency fluctuations in fundamentals is more costly because it requires more frequent

portfolio rebalancing.

The equilibrium of the model is described in detail in Appendix J. Here, we highlight key results

and explain how they relate to the previous results on restricting trade frequencies.

Result 3 When c > 0, all else equal, investors’ equilibrium signal precision is higher at lower

frequencies.
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With the assumption of fixed quadratic trading costs, the marginal benefit of increasing precision

at frequency j is given by:

1

2
(c sin2

(
ωbj/2c/2

)
+ b)−1V ar [dj | pj , yi,j ]2 . (273)

In particular, it is declining with both the signal precision and the frequency of exposure. Given

that the marginal cost of information is the same across frequencies, investors choose higher signal

precisions at lower frequencies, all else equal.

The main result regarding the effect of the quadratic trading cost is the following.

Result 4 A small increase in trading costs, when starting from zero, reduces information acquisi-

tion at all frequencies except frequency 0. The effect is larger at higher frequencies. As a corollary,

the effect of an increase in trading costs on price informativeness is weaker at longer horizons.

The first part of this result suggests that if the goal is to reduce short-term investment, then

a quadratic tax is a more blunt instrument than placing an explicit restriction on investment at

targeted frequencies. A tax on volume affects all investors, regardless of the strategy that they

follow. However, the second part of the result says that trading costs affect short-term strategies

most strongly. The quadratic cost thus leads, endogenously, to the same changes in information

acquisition studied in the main model; namely, the variance of dividends conditional on prices,

V ar(dj |pj), rises more at higher frequencies. The corollary regarding price informativeness refers

to the fact that the variance of moving averages of the form:

V ar

(
1

n

n−1∑
m=0

Dt+m | P
)

(274)

increases less as a result of the increase in trading costs for longer horizons n. In the extreme case

of n = T , which corresponds to the frequency 0 component of the signals, the increase in trading

costs has in fact no effect on equilibrium signal precision and thus price informativeness. This can

be seen from the expression for the marginal benefit of signal precision above, which is independent

of c when j = 0.

Finally, to examine the effects of trading costs on noise trader profits, we have
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Result 5 Prices continue to take the form

pj = a1,jdj + a2,jzj (275)

At all frequencies, increases in trading costs weakly reduce a1,j and strictly increase a2,j (except at

frequency zero, where they have no effect).

Again, an increase in trading costs is broadly similar to a restriction on investment in the sense

that it makes markets less liquid and prices less informative. By liquid what we mean is that an

exogenous demand shock —an increase in zj —has a larger effect on prices when trading costs are

larger. This policy can therefore reduce the losses of noise traders by reducing their overall trade

with the informed investors, but again at the cost of less informative prices. As above, if one has

evidence that fZ is large relative to fD at high frequencies, then this trade-off may be favorable.

There is not much to learn about, so losing information has relatively low costs, and since the

sentiment shocks are large, inhibiting them is particularly valuable.

Thus, overall, the message of the model with quadratic costs is consistent with the previous

analysis. Increasing trading costs leads to less informed trading and the effect is tilted toward high

frequencies; at lower frequencies, information acquisition decisions are less impacted. As a result,

the effect of the increase on the informativeness of prices for fundamentals in the long run is limited.

J Quadratic costs proofs

J.1 Frequency domain expressions for trading costs

Using Qi = Λqi, each agent’s position at time t can be written as

Qi,t =
∑
j

 qj cos (2πjt/T )

+qj′ sin (2πjt/T )

 . (276)

Trading costs are then written in terms of (Qi,t −Qi,t−1)2 as:

QV {Qi} ≡
T∑
t=2

(Qi,t −Qi,t−1)2 + (Qi,1 −Qi,T )2 . (277)
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We can write that as

QV {Qi} = (DQ)′ (DQ) (278)

where D is a matrix that generates first differences,

D ≡



−1 1 0 · · · 0

0 −1 1 0 · · ·
...

...
...

...
...

0 0 · · · −1 1

1 0 · · · 0 −1


. (279)

Using again the fact that Qi = Λqi,

QV {Qi} = q′Λ′D′DΛq (280)

In what follows, we will need to evaluate the matrix Λ′D′DΛ. The m,n element of that matrix is

the inner product of the m and n columns of DΛ. Each column of DΛ contains the first difference

of the corresponding column of Λ, with the exception of the last element, (DΛ)m,T , which is equal

to Λm,t − Λn,T . We have the following standard trigonometric results: for m 6= n:

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (cos (ωnt)− cos (ωn (t− 1))) = 0, (281)

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (sin (ωnt)− sin (ωn (t− 1))) = 0, (282)

T∑
t=1

(sin (ωmt)− sin (ωm (t− 1))) (sin (ωnt)− sin (ωn (t− 1))) = 0, (283)
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where recall that ωm = 2πm
T , and:

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1)))2 = 2T sin2 (ωm/2) , (284)

T∑
t=1

(sin (ωmt)− sin (ωm (t− 1)))2 = 2T sin2 (ωm/2) , (285)

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (sin (ωmt)− sin (ωm (t− 1))) = 0. (286)

These results immediately imply that the off-diagonal elements of Λ′D′DΛ are equal to zero and

the jth element of the main diagonal is 2T sin2
(
ωbj/2c/2

)
.

We then have

QV {Qi} = qΛ′D′DΛq (287)

=
T∑
j=1

2T sin2
(
ωbj/2c/2

)
q2
i,j (288)

Total holding costs can be written as:

T∑
t=1

Q2
t =

T∑
j=1

q2
j , (289)

which is just Parseval’s theorem.

J.2 Equilibrium of the trading cost model

Throughout the analysis, unless it is necessary, we omit the index j of the particular frequency in

order to simplify notation.
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J.2.1 Investment and equilibrium

The first-order condition for frequency j is

0 = E [dj − pj | yi,j , pj ]− 2c sin2
(
ωbj/2c/2

)
qj − bqj (290)

q =
E [dj − pj | yi,j , pj ]

γj
(291)

= γ−1
j τ−1

i

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
(292)

where

γj ≡ 2c sin2
(
ωbj/2c/2

)
+ b (293)

is the marginal cost of qj . We can then solve for the coeffi cients a1 and a2 as before.

Inserting the formula for the conditional expectation and integrating across investors yields

∫
i
γ−1
j τ−1

i

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di = zj (294)∫

i
γ−1
j τ−1

i

(
f−1
i d+

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di = zj (295)

Matching coeffi cients then yields

∫
i
γ−1
j τ−1

i

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (296)∫
i
γ−1
j τ−1

i

(
f−1
i +

(
a1

a2
2

f−1
Z − τ i

)
a1

)
di = 0 (297)

Combining those two equations, we obtain

∫
i
γ−1
j τ−1

i f−1
i di =

a1

a2
(298)

Now put the definition of τ i into that equation for f−1
i
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∫
i
γ−1
j τ−1

i

(
τ i −

a2
1

a2
2

f−1
Z − f

−1
D

)
di =

a1

a2
(299)

γ−1
j

∫
i
1−

(
a2

1

a2
2

f−1
Z − f

−1
D

)
τ−1
i di =

a1

a2
(300)

J.2.2 Expected utility

At any particular frequency,

Ui,j = qi,jE0,i [dj − pj ]−
1

2
q2
i,j2c sin2

(
ωbj/2c/2

)
− 1

2
bq2
i,j (301)

=
1

2

E [dj − pj | yi,j , pj ]2

γj
(302)

Expected utility prior to observing signals is then

EUi,j ≡
1

2
E

[
E [dj − pj | yi,j , pj ]2

γj

]
(303)

E
[
E [dj − pj | yi,j , pj ]2

]
is the variance of the part of the return on portfolio j explained by yi,j

and pj , while τ i,j is the residual variance. We know from the law of total variance that

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (304)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is simply

V ar [dj − pj ] = V ar [(1− a1) dj + a2zj ] (305)

= (1− a1,j)
2 fD,j + a2

2fZ,j (306)

So then

EUi,j =
1

2

V ar [dj − pj ]− τ−1
i,j

γj
(307)
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What we end up with is that utility is decreasing in τ−1
i,j . That is,

EUi,j = −1

2

τ−1
i,j

γj
+ constants. (308)

J.2.3 Information choice

With the linear cost on precision, agents maximize

−1

2

τ−1
i,j

γj
− ψf−1

i,j (309)

= −1

2

(
a2

1

a2
2

f−1
Z,j + f−1

i,j + f−1
D,j

)−1

γ−1
j − ψf

−1
i,j (310)

The FOC for f−1
i,j is

ψ =
1

2
τ−2
i,j γ

−1
j (311)

τ i,j =
1√
2
ψ−1/2γ

−1/2
j (312)

But τ has a lower bound of a
2
1

a22
f−1
Z + f−1

D , so it’s possible that this has no solution. That would be

a state where agents do no learning. Formally,

τ i,j = max

(
a2

1

a2
2

f−1
Z + f−1

D ,
1√
2
ψ−1/2γ

−1/2
j

)
(313)

Note that, unlike in the other model, the equilibrium is unique here —all agents individually

face a concave problem with an interior solution.

Frequencies with no learning Now using the result for a1/a2 from above, at the frequencies

where nobody learns, f−1
i = 0, we have

a1

a2
=

∫
i
γ−1
j τ−1

i f−1
i di (314)

= 0 (315)
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which then implies

τ i,j = max

(
f−1
D ,

1√
2
ψ−1/2γ

−1/2
j

)
(316)

To get a2, we have

∫
i

(
cj2 + b

)
τ−1
i

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (317)

γj = a2 (318)

So the sensitivity of the price to supply shocks is increasing in the cost of holding inventory, b,

and the trading costs, c. It is also higher at higher frequencies —it is harder to temporarily push

through supply than to do it persistently.

Frequencies with learning At the frequencies at which there is learning, where

f−1
D <

1√
2
ψ−1/2γ

−1/2
j (319)

we have, just by rewriting the τ equation,

f−1
i = τ i −

a2
1

a2
2

f−1
Z − f

−1
D (320)

Using the second equation from above,

∫
i
γ−1
j τ−1

i

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (321)∫
i
γ−1
j τ−1

i

(
a1

a2
f−1
Z − a2τ i

)
di = −1 (322)∫

i
γ−1
j

(
τ−1
i

a1

a2
f−1
Z − a2

)
di = −1 (323)

Under the assumption of a symmetric strategy, this is

τ−1a1

a2
f−1
Z − a2 = −γj (324)

a1

a2
= τfZ

(
−γj + a2

)
(325)
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Using the other equilibrium condition, we have

∫
i
γ−1
j τ−1

i

(
τ i −

a2
1

a2
2

f−1
Z − f

−1
D

)
di =

a1

a2
(326)∫

i
γ−1
j

(
1− τ−1

i

a1

a2
f−1
Z

a1

a2
− τ−1

i f−1
D

)
di =

a1

a2
(327)

1−
(
−γj + a2

) a1

a2
− τ−1

i f−1
D =

(
cj2 + b

) a1

a2
(328)

1− τ−1
i f−1

D = a1 (329)

Plugging in the formula for τ i when there is learning,

1−
√

2ψ1/2γ
1/2
j f−1

D = a1. (330)

The expression for a2 can be obtained from:

a1

τfZ
=
(
−γj + a2

)
a2. (331)

Since a1/τfZ > 0, we know that there is only one solution to this equation for a2 > 0. The positive

root is

a2 =
γj +

√
γ2
j + 4 a1

τfZ

2
(332)

K Alternative information cost specifications

This section considers alternative specifications for information costs. In each case, we examine

the robustness of all of the paper’s theoretical results. The following results hold regardless of the

information cost structure:

- Corollaries 1.3 and 1.4 depend only on the properties of the frequency transformation

- Result 2, corollaries 2.3 and 2.4, and the limits for a1,j and a2,j under information subsidies

depend only on the properties of the date-0 rational expectations equilibrium (REE).
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K.1 Frequency-specific linear costs

This section reports results for the case where the total cost of information is
∑T

j=1 ψjf
−1
i,j instead

of
∑T

j=1 ψf
−1
i,j . Expected utility is the same, so it is simple to show that the equilibrium information

choices are

f−1
avg,j =


0 if ψj > λj(0)

λ−1
j

(
ψj
)

if ψj ≤ λj(0)

(333)

where, as before λj(0) = fD,j +
fZ,j

(ρf−1D,j+k)
2 .

K.1.1 Result 1 and corollaries 1.1 and 1.2

These results rely on the fact that the equilibrium information choices are independent across

frequencies. Since that holds in this case, corollaries 1.1 and 1.2 are unchanged.

K.1.2 Corollary 1.5

This result depends primarily on the date-0 REE. The only change is that at the unrestricted

frequencies, the variance of returns is min
(
ψj , λj (0)

)
—the cost now has a frequency index.

K.1.3 Corollary 2.1 and 2.2

These results are derived in appendix E.

K.1.4 Corollary 2.5

This result again follows from the separability of the information choice across frequencies and

continues to hold with ψ replaced by ψj .

K.2 Information capacity constraint

This section examines the case where investors are constrained in the total information they can

acquire, rather than facing a linear cost of adding more precision. These problems mathematically
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are duals of each other, meaning that they coincide holding the parameters fixed. The comparative

statics, however, are different in some cases.

K.2.1 Information cost structure

The constraint specification is

max
{f−1i,j }

T∑
j=1

λj

(
f−1
avg,j

)
f−1
i,j s.t.

T∑
j=1

ψjf
−1
i,j ≤ C (334)

for some C. Denoting the Lagrange multiplier on the information constraint by µ, the equilibrium

information choices are

f−1
avg,j =


0 if µ > λj(0)

ψj

λ−1
j

(
µψj

)
if µ ≤ λj(0)

ψj

, (335)

where µ is the solution to ∑
j s.t. µ≤λj(0)

ψj

λ−1
j

(
µψj

)
= C. (336)

K.2.2 Result 1

The equation for prices at restricted frequencies continues to hold since it depends only on the date-

0 REE. The values of a1,j and a2,j at unrestricted frequencies shift in response to the restriction,

unlike in the baseline case, due to the lack of complete separability. a1,j weakly rises, while the

effect on a2,j is ambiguous.

K.2.3 Corollary 1.1

It remains the case that prices at the restricted frequencies become completely uninformative. At

the unrestricted frequencies price informativeness weakly increases, depending on whether attention

is reallocated to those frequencies. Specifically, we have the following result.

Lemma 3 (Corollary 1.1, modified) When investors are restricted from holding portfolios with

weights that fluctuate at some set of frequencies j ∈ R, the prices at those frequencies, pj, become

completely uninformative about dividends. The informativeness of prices for j ∈ R about dividends
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weakly increases. More formally, V ar[dj |pj ] for j /∈ R weakly increases following the restriction.

For j ∈ R, V ar[dj |pj ] = V ar[dj ].

Proof. First we have:

V ar[dj |pj ] =
1

f−1
D,j + (ρf−1

avg,j)f
−1
Z,j

,

so price informativeness is strictly increasing in f−1
avg,j . Moreover, at any restricted frequency,

f−1
avg,j = 0 so V ar[dj |pj ] = fD = V ar[dj ].

Let µunr be the marginal value of capacity in the unrestricted case. If
{
j s.t. µunrψj ≤ λj(0)

}
∪

R = ∅, then the restriction has no effect on information choices, and µres = µunr, where µres is the

marginal value of capacity under the restriction.

Consider the case where
{
j s.t. µunrψj ≤ λj(0)

}
∩ R 6= ∅. We next show that in that case,

µres < µunr.

Assume otherwise, i.e. µres ≥ µunr. Then ∀j, λ−1
j (µresψj) ≤ λ−1

j (µunrψj). Moreover, if

λj(0) ≥ µresψj , then λj(0) ≥ µunrψj . So:

∑
j s.t. λj(0)≥µresψj ,j /∈R

λ−1
j (µresαj) ≤

∑
j s.t. λj(0)≥µresψj ,j /∈R

λ−1
j

(
µunrψj

)
≤

∑
j s.t. λj(0)≥µunrψj ,j /∈R

λ−1
j

(
µunrψj

)
<

∑
j s.t. λj(0)≥µunrψj

λ−1
j

(
µunrψj

)
= C.

(337)

This contradicts optimality in the restricted case (the investors are not exhausting their information

budget). Therefore µres < µunr.

So the restriction implies that µres ≤ µunr, with equality if and only if no restricted frequencies

where being learned about before the restriction. In turn, µres ≤ µunr implies that learning at all

unrestricted frequencies weakly increases, using the first-order condition (346).

So by contrast with the fixed marginal cost case, where learning is unchanged at unrestricted

frequencies, here it goes up weakly, as attention is reallocated toward unrestricted frequencies.
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K.2.4 Corollary 1.2

This result changes under the constraint. The properties of the frequency transformation yield

V ar(Dt|P ) =
1

T

T∑
j=1

V ar[dj |pj ] (338)

the effect of the restriction is now to increase V ar[dj |pj ] but to weakly reduce it at other frequencies.

The net effect on the informativeness of the vector of prices then becomes ambiguous. It remains

the case, though, that informativeness on all dates is affected equally.

K.2.5 Corollary 1.5

This result continues to hold but with the modification at the unrestricted frequencies ofmin(µresψj , λj(0)),

where µres is the Lagrange multiplier in the constrained case. Note that since f
−1
avg,j weakly increases

at the unrestricted frequencies, return variance weakly decreases at those frequencies.

K.2.6 Corollary 2.1

In the case of a constraint, a change in the cost of information acquisition at a particular has both

an income and a substitution effect. The substitution effect will cause agents to shift attention

from the frequencies whose costs have not fallen to those that fall. The income effect causes agents

to (weakly) increase attention on all frequencies, since the constraint relaxes. The consequence is

that the first part of the result,

d

dψj
E−1 [q̃LF,jrj ]

∣∣∣∣
ψj=λj(0)−

> 0 (339)

continues to hold, since it does not depend on anything about the other frequencies. However, the

two other inequalities no longer hold.

This corollary gives the clearest motivation for the use of the cost specification instead of the

constraint. The constraint specification means that a decline in information acquisition costs does

not lead investors to acquire information (other than mechanically) since, by assumption, they

cannot.
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K.2.7 Corollary 2.5

This result is also unchanged except that “λj(0) ≤ ψ”is replaced by “λj(0) ≤ µresψj”.

K.3 Entropy cost for information

This section examines a specification where instead of the cost of information being measured in

terms of total precision, it is measured in terms of the joint entropy of the prior and posterior, as

in Sims (2003). Specifically, the information flow contained in the signals can be measured by the

difference between the prior entropy, which is equal to 1
2 log |ΣD| plus a constant, and the posterior

entropy, 1
2 log

∣∣∣(Σ−1
D + Σ−1

i

)−1
∣∣∣. As in Kacperczyk, van Nieuwerburgh, and Veldkamp (2016), we

exponentiate the entropy. Using the frequency transformation (and ignoring approximation error)

and ignoring constants, total information flow is then measured by

∏
j=1

(
f−1
i,j + f−1

D,j

)
(340)

K.3.1 Information cost structure and equilibrium

The attention allocation problem with an entropy cost function can be written as:

max
{f−1i,j }

T∑
j=1

λj

(
f−1
avg,j

)
f−1
i,j − κ

T∏
j=1

(
f−1
i,j + f−1

D,j

)
(341)

Assume that there exists j such that:

λj > κ
∏
k 6=j

f−1
D,k. (342)

Then the problem is unbounded (a value of +∞ can be reached by setting f−1
i,k = 0 for k 6= j and

f−1
i,j = +∞). Therefore, it must be the case in equilibrium that

λj ≤ κ
∏
k 6=j

f−1
D,k ∀j. (343)

It is straightforward to confirm that optimization requires that investors only allocate attention
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to a single frequency that achieves the maximum value across all frequencies of

λj − κ
∏
k 6=j

f−1
D,k (344)

It is possible that there are multiple frequencies with this property. Regardless, each investor only

allocates attention to a single frequency. Define

ξ ≡ κ
∏
k

f−1
D,k (345)

The equilibrium information choices are then given by:

f−1
avg,j =


0 if λj(0)

fD,j
< ξ

λ−1
j (fD,jξ) if λj(0)

fD,j
≥ ξ

. (346)

As in the baseline case, the allocation of precision across investors is indeterminate, up to the fact

that investors must learn about at most one frequency.

This version of the model is very similar to the linear cost with heterogeneous frequency-specific

cost case, with fD,j playing the role of ψj . The model retains the linearity of utility with respect

to precision, and the information decisions remain completely separable across frequencies. Those

facts mean that all the results go through without any changes except corollary 2.1.

For corollary 2.1, we modify the entropy constraint to make the cost of precision frequency

dependent, as

max
{f−1i,j }

T∑
j=1

λj

(
f−1
avg,j

)
f−1
i,j − κ

T∏
j=1

(
ψjf

−1
i,j + f−1

D,j

)
(347)

Then the equilibrium information allocation is

f−1
avg,j =


0 if ξ > λj(0)

fD,jψj

λ−1
j

(
fD,jξψj

)
if ξ ≤ λj(0)

fD,jψj

, (348)

At that point, the analysis from the baseline version applies. The only changes are thatmin (ψ, λj(0))

must be replaced by min (fD,jξ, λj(0)), where ξ ≡ κ
∏
k f
−1
D,k in corollary 1.5 and λj(0) ≤ ψ should
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be replaced by λj(0) ≤ fD,jξ, with ξ ≡ κ
∏
k f
−1
D,k in corollary 2.5.

L Hedging model

This section provides the full derivation for an alternative model of “noise traders”. The key feature

that the model needs in order for there to be trade —i.e. for prices to not be fully revealing —is that

there must be shocks to demand for the fundamental that are uncorrelated with the realization

of the fundamental. In the main text, those shocks are driven by uninformative signals that a

subset of investors erroneously treat as informative. Here, we study an alternative case in which

the demand shocks represent hedging demands from a subset of investors. The analysis is similar

to that of Wang (1994), and extended to account for the information structure in this paper.

The analysis in this section takes place entirely in the frequency domain and applies to a

representative frequency, so we drop the j subscripts.

Suppose there is a set of investors who have a private technology that they can invest in. It

has payoffs that are correlated with the fundamental, so that trading the fundamental is useful for

hedging purposes. For simplicity, we assume that these investors do not have any other signals

about fundamentals. We call these investors the hedgers.

The hedgers have investment opportunities that are imperfectly correlated. Each individual

hedger, indexed by h, has an investment opportunity zh, where the distribution of zh across the

hedgers is N
(
z, σ2

z

)
, with z ∼ N (0, fZ). z and zh are both random variables drawn on date 0, z

is not directly observed by any investor, while zh is observed by hedger h, but not by any other

investors.

Investing a quantity kh in the project yields a random payoff of khxh, where xh = zh + d+ εx,h,

with εx,h ∼ N
(
0, σ2

x

)
. The inclusion of d as part of the payoff means that the agent can hedge

the project by trading the fundamental. zh is the expected payoff in the absence of any other

information, while εx,h represents uninsurable risk that investor h faces.

We guess that prices follow

p = a1d− a2z (349)

The hedgers’optimization is then over both their investment in the private opportunity, kh, and
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their investment in the fundamental, qh.

max
kh,qh

E [khxh + qh (d− p) | p, zh]− ρ−1
H

2
var [khxh + qh (d− p) | p, zh] (350)

= max
kh,qh

E [khxh + qh (E [d | p, zh]− p)]− ρ−1
H

2

(
(kh + qh)2 var [d | p, zh] + k2

hσ
2
x

)
(351)

L.1 Beliefs

The optimization involves means and variances conditional on zh and p. It is possible to obtain them

in general, but a useful simplification is to assume that hedgers only forecast d using p, not their

private investment opportunity, zh. That corresponds to the limiting case where σz → ∞, since

then each hedger’s investment opportunity is minimally informative about the average investment

opportunity. So in what follows all expectations and variances condition only on p. We have

var (d | p) = fD

(
1− a2

1fD
a2

1fD + a2
2fZ

)
= fD

 fZ
a21
a22
fD + fZ

 (352)

E [d | p] =
a1fD

a2
1fD + a2

2fZ
p (353)

L.2 Optimization

Note that

khxh + qh (d− p) = khzh + (kh + qh) (d− p) + khεx,h + khp (354)

The optimization problem is then

max
kh,qh

E [khxh + qh (d− p) | p]− ρ−1
H

2

(
(kh + qh)2 var [d | p] + k2

hσ
2
x

)
(355)

= max
kh,qh

khzh + khp+ E [(kh + qh) (d− p) | p]− ρ−1
H

2
(kh + qh)2 var [(d− p) | p]− ρ−1

H

2
k2
hσ

2
x(356)

The two first-order conditions (FOCs) are

ρH (zh + E [d | p, zh]) = (kh + qh) var (d− p | p, zh) + khσ
2
x (357)

ρHE [d− p | p, zh] = (kh + qh) var (d− p | p, zh) (358)
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Subtracting the second equation from the first yields

kh =
ρH (zh + p)

σ2
x

(359)

So, naturally, agents invest more in their private project when its expected return is higher or its

risk is lower. zh + p is the expected return on an investment that is long one unit of the private

investment and short one unit of the fundamental, and σ2
x is its variance, so this is the standard

mean-variance optimal quantity invested.

Combining that result with the FOC for qh, we have

qh =
ρHE [d− p | p, zh]

var (d− p | p, zh)
− ρH (zh + p)

σ2
x

(360)

= ρH

(
a1fD − a2

1fD − a2
2fZ
)
p

fDa2
2fZ

− ρH (zh + p)

σ2
x

(361)

= ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
p− ρHσ−2

x zh (362)

where τH is the precision of the hedgers’beliefs,

τH ≡ var (d | p)−1 =
a2

1

a2
2

f−1
Z + f−1

D (363)

L.3 Expected utility

From above, expected utility conditional on prices and zh is

khzh + khp+ E [(kh + qh) (d− p) | p]− ρ−1
H

2
(kh + qh)2 var [(d− p) | p, zh]− ρ−1

H

2
k2
hσ

2
x (364)

Multiplying the kh and qh FOCs by kh and qh then using them to substitute out the variances,

then inserting the solutions for kh and kh + qh, utility becomes

1

2
(khzh + E [khd+ qh (d− p) | p]) =

1

2
(kh (zh + p) + (kh + qh)E [d− p | p]) (365)

=
1

2

(
ρHE [d− p | p]2

var (d− p | p) +
ρH (zh + p)2

σ2
x

)
(366)
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The second term represents the utility gained from exposure to x, which is obtained by going

long the private investment and short an equal amount of the fundamental, leaving pure exposure

to εh,x. The first term is the usual utility gained from investing in the fundamental. These two

investments are completely independent of each other.

The law of total variance, as in the main results, gives us

var [d− p] = var [E [d− p | p]] + E [var [d− p | p]] (367)

= E
[
E [d− p | p]2

]
+ var (d− p | p) (368)

which we can substitute in for the first term. For the second term, we have

E
[
(zh + p)2

]
= var (zh + p) (369)

= var ((zh − z) + z + a1d− a2z) (370)

= σ2
z + (1− a2)2 fZ + a2

1fD (371)

Substituting back into the equation for expected utility,

E

[
1

2

(
ρHE [d− p | p]2

var (d− p | p) +
ρH (zh + p)2

σ2
x

)]
=

1

2
ρH

(
var [d− p]− var (d− p | p)

var (d− p | p) +
σ2
z + (1− a2)2 fZ + a2

1fD
σ2
x

)
(372)

=
1

2
ρH

(1− a1)2 fD + a2
2fZ − τ−1

H

τ−1
H

+
1

2
ρH

σ2
z + (1− a2)2 fZ + a2

1fD
σ2
x

(373)

=
1

2


(
τH (1− a1)2 + σ−2

x a2
1

)
fD+(

τHa
2
2 + σ−2

x (1− a2)2
)
fZ − 1 + ρHσ

−2
x σ2

z

 (374)

L.4 Equilibrium

Now suppose there are unit masses of both the informed investors and the hedgers. This is without

loss of generality as their influence can be controlled by shifting ρH and ρ (where the latter remains

the risk tolerance of the sophisticated investors from the main analysis). The equilibrium condition
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is

0 = ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
(a1d− a2z)−ρH

∫
h
zhσ

−2
x dh+

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z − τavg

)
(a1d− a2z)

)
di

(375)

Matching coeffi cients on z and d and using the law of large numbers so that
∫
h zhdh = z,

0 = ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
+ ρHσ

−2
x a−1

2 + ρ

(
a1

a2
2

f−1
Z − τavg

)
(376)

0 = ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
+ ρf−1

avga
−1
1 + ρ

(
a1

a2
2

f−1
Z − τavg

)
(377)

Equating the right hand sides of those two equations yields

ρf−1
avg

ρHσ
−2
x

=
a1

a2
(378)

Inserting that formula into the second equation yields

0 = ρH

(
a−1

1

a2
1

a2
2

f−1
Z − τH − σ

−2
x

)
+ ρf−1

avga
−1
1 + ρa−1

1

a2
1

a2
2

f−1
Z − ρτavg (379)

a1 =
(ρH + ρ)

(
ρf−1avg
ρHσ

−2
x

)2

f−1
Z + ρf−1

avg

ρH
(
τH + σ−2

x

)
+ ρτavg

(380)

L.5 Restricting speculators

The main text refers to the agents able to gather information as “sophisticates”as opposed to the

unsophisticated noise traders. Here we describe them as speculators, who are making pure bets on

the fundamental, as opposed to hedgers, who hold the fundamental (partly) to hedge their private

investments.

The main text considers the experiment of restricting trading by the sophisticates. Here, if only

the hedgers can trade, and not the speculators, the market clearing condition is

0 = ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
(a1d− a2z)− ρHziσ−2

x (381)
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Again matching coeffi cients,

0 = ρH

(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
a1 (382)

0 = −ρH
(
a1

a2
2

f−1
Z − τH − σ

−2
x

)
a2 − ρHσ−2

x (383)

This immediately implies a1 = 0, and hence

a2 =
σ−2
x

f−1
D + σ−2

x
(384)

So we again get that result, not surprisingly, that prices are uninformative when the investors who

have access to information about fundamentals are no longer allowed to invest.

That does not mean, though, that the welfare benefits in this case go to zero, since the hedgers

can still trade with each other. In fact, in both cases, they can always perfectly hedge the idiosyn-

cratic part of zi, since prices depend only on aggregate z —each individual agent has no effect on

prices.

Expected utility when speculators cannot trade is

1

2

{
f−1
D σ−2

x

f−1
D + σ−2

x
fZ + ρHσ

−2
x σ2

z

}
(385)

More generally, expected utility is

EUH ≡
1

2


(
τH (1− a1)2 + σ−2

x a2
1

)
fD+(

τHa
2
2 + σ−2

x (1− a2)2
)
fZ − 1 + ρσ−2

x σ2
z

 (386)

L.6 Speculator profits

The formulas for utility and expected profits go through in this case unchanged since they depend

just on the optimization of the speculators, taking a1 and a2 as given.
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L.7 Results

This section describes how the results from the main text are affected by the replacement of the

noise traders with hedgers.

L.7.1 Solution 1

There continues to be a linear solution, but in this case the coeffi cients are

a1 =
(ρH + ρ)

(
ρf−1avg
ρHf

−1
x

)2

f−1
Z + ρf−1

avg

ρH
(
τO + σ−2

x

)
+ ρτavg

(387)

a2 = a1
ρHσ

−2
x

ρf−1
avg

(388)

L.7.2 Lemma 2

The derivation of this result depends only on the information structure and the existence of a linear

equilibrium, so the utility of the speculators is the same here as in the main text.

L.7.3 Solution 2

The solution follows directly from the linearity of utility. As before, tedious algebra confirms that

λ′ (·) < 0.

L.7.4 Result 1

The fact that the trade restrictions affect only targeted frequencies follows directly from the sepa-

rability of the model across frequencies, so is unchanged here. The formula for prices in the case

where speculators cannot trade is

pj = − σ−2
x

f−1
D + σ−2

x
zj (389)

L.7.5 Corollary 1.1

The lack of informativeness at restricted frequencies follows trivially from the pricing function at

those frequencies. The lack of any change in informativeness at unrestricted frequencies follows

from the fact that the pricing function at those frequencies is unaffected.
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L.7.6 Corollaries 1.2—1.4

These results all are driven entirely by the properties of the frequency transformation and are

therefore unaffected by the choice of noise traders versus hedgers.

L.7.7 Corollary 1.5

The volatility of returns in the absence of speculators is

fD +

(
σ−2
x

f−1
D + σ−2

x

)2

fZ (390)

When speculators are present but uninformed, the pricing function is

p =
fDρH

fDρH + (ρ+ ρH)σ2
x

z (391)

var (r) = fD +

(
fDρH

fDρH + (ρ+ ρH)σ2
x

)2

fZ (392)

Straightforward algebra shows that fDρH
fDρH+(ρ+ρH)σ2x

< σ−2x
f−1D +σ−2x

, which implies that return volatility

is lower with uninformed speculators than with a trading restriction.

L.7.8 Result 2

The exact form of the formula for profits of speculators no longer holds. However, the nonnegativity

does hold. The specific corollaries are more important and are discussed further below.

L.7.9 Corollary 2.1

d

dψj
E−1 [q̃LF,jrj ]

∣∣∣∣
ψj=λj(0)−

> 0 (393)

d

dψj
E−1

[∑
t

Q̃LF,t (Dt − Pt)
]∣∣∣∣∣
ψj=λj(0)−

> 0 (394)

d

dψj
E−1 [ULF,0]

∣∣∣∣
ψj=λj(0)−

> 0 (395)

The problem faced by the sophisticated investors is the same in the sense that they continue
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to acquire information to the point that λj
(
f−1
avg,j

)
= ψj , unless λj (0) ≤ ψj , in which case they

acquire no information. A marginal decline in ψj then leads to a marginal increase in f
−1
avg,j .

To obtain the derivative of E−1 [q̃LF,jrj ], simply use the formulas for speculator profits from

the main analysis. That result then immediately implies the derivative in the second line, due to

the separability across frequencies. Similarly, it remains the case that speculator utility is equal to∑
j V ar (rj) τ i,j , and differentiation of V ar (rj) τ i,j with respect to f−1

avg,j yields the desired result.

L.7.10 Corollary 2.2

From above, we have

var [dj | pj ] =

(
ρf−1
avg,j

ρHσ
−2
x
f−1
Z,j + f−1

D,j

)−1

, (396)

which is obviously decreasing in f−1
avg. It is also possible to confirm that return volatility is decreasing

in f−1
avg,j .

L.7.11 Corollary 2.3

This result follows from the fact that each frequency independently contributes nonnegatively to

the profits and utility of speculators, so it continues to hold here.

Similarly, the profits and utility of the hedgers must weakly fall under an investment restriction

since they always have the option of not investing at any particular frequency.

L.7.12 Corollaries 2.4 and 2.5

The formula for the earnings of noise traders does not apply to the hedgers. Moreover, their

earnings are not simply the negative of those of the speculators since they also have their private

investment opportunity.

It remains the case that at any frequency where λj (0) ≤ ψ, there is no information acquisition

in equilibrium. That immediately implies that restricting speculators from trading still has no

impact on price informativeness, since prices are uninformative in any case.

However, there is an important change in the result for utility. We now have, in the case where
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prices are already uninformative

when f−1
avg = 0,

d

dρ
EUH > 0 (397)

That is, when the speculators are acting purely to provide insurance to the hedgers, any increase

in their risk-bearing capacity increases the expected utility of the hedgers. So whereas in the case

of noise traders, restricting trade at a frequency where no information was being acquired was

beneficial, with hedgers it actually is socially harmful.

L.7.13 Section 4.4.3

It remains the case that

lim
f−1avg

a1 = 1 (398)

lim
f−1avg

a2 = 0 (399)

Furthermore, straightforward algebra shows that, writing the expected utility of the hedgers as a

function of f−1
avg, we have

lim
f−1avg→∞

EUH
(
f−1
avg

)
> EUH (0) (400)

which shows that the hedgers are better off in a fully informative equilibrium than in the alternative

uninformative case.
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Table 1. Information losses relative to benchmark
Short-term rest. Low-freq. cost

Equity price 0.00 4.06

1-week difference 1.59 0.00

1-month difference 0.46 1.08

1-year difference 0.05 2.89

Monthly second difference 0.61 -0.11
Note: log differences in precision of functions of equity prices for fundamentals between the baseline

model and the short-term restriction or alternative cost function that is high at low frequencies. The first

row is for the level of the equity price on date 1. The second is for the difference in the price of equity in

week 1 and week 2 (which isolates just the dividend in the first week). The third and fourth rows are for

the difference between the price of equity on the first date and one month and one year later, respectively.

Finally, the bottom row is the effi ciency of P equity9 −2P equity5 +P equity1 , which measures the change in price

growth across the first and second months.
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Figure 1: Portfolio weights

Notes: Portfolio weights for the cosing frequency portfolios c1 and c10, as defined in the main text. The horizontal
axis is time, or the maturity of the corresponding futures contract. The vertical axis is the weight which each
portfolio puts on that futures contract.
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Figure A.2: Details of dividend strips returns, frequency-specific information cost case
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Binsbergen and Koijen (2017) data (left)
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Notes: The three panels report per-period characteristics of dividend strip returns in the model with the frequency-
specific cost specification along with empirical moments reported by Binsbergen and Koijen (2017) (averaged across
the four markets they examine). All values are annualized.
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Figure A.3: Details of dividend strips returns, entropy cost case
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Notes: See figure A.2. This figure reports results for the case where information flow is measured by entropy instead
of precision.
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pu
bl
ic
si
gn
al
.
A
ve
ra
ge
in
fo
rm
at
io
n
ac
qu
is
it
io
n
in
th
e
b
ot
to
m
-l
ef
t
pa
ne
l

is
f
−
1

a
v
g
.
U
ti
lit
y
in
th
e
to
p-
ri
gh
t
pa
ne
l
is
ne
t
of
in
fo
rm
at
io
n
ac
qu
is
it
io
n
co
st
s
(p
si
j
f
−
1

i
).
In
fo
rm
at
io
n
flo
w
s
in
th
e
b
ot
to
m
-r
ig
ht
pa
ne
l
ar
e
th
e
pr
ec
is
io
n
ob
ta
in
ed

fr
om

co
nd
it
io
ni
ng
ei
th
er
on
pr
ic
es
al
on
e
or
pr
ic
es
an
d
th
e
pu
bl
ic
si
gn
al
.
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