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Abstract

This paper analyzes optimal debt structure when firms simultaneously choose the size of the project to

be financed (investment), and the composition of debt between intermediated debt (bank loans) and arm’s

length debt (bonds). The key distinction between the two forms of debt is that, when liquidation looms,

intermediated debt is easier to restructure. Absent deadweight losses in liquidation, debt structure is ir-

relevant to the investment choices of the entrepreneur. With liquidation losses, I show that investment is

financed by a combination of bank and market finance so long as 1) banks have higher intermediation costs

than markets and 2) internal resources of entrepreneurs are sufficiently small. The share of bank finance

in total investment then depends non-monotonically on internal resources: firms with very limited internal

resources are increasingly reliant on bank finance to expand investment, while medium-sized firms reduce

the contribution of bank finance as their internal resources increase. The model’s predictions finds support

in cross-sectional data on the debt structure of US manufacturing firms.
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1 Introduction

The most prominent feature of the corporate debt structure in the US is how dramatically it varies, both

in the cross-section of firms and over time. Firms use various types of debt instruments, issued to different

types of lenders, with diverse covenants and organized within rich priority structures. In the cross-section,

recent work by Rauh and Sufi (2010) analyzes the holdings of bank debt, bonds, program debt (such as

commerical paper) and mortgage debt of a sample of publicly traded firms. They find that 70% of firm-year

observations hold at least two different types of debt instruments on their balance sheets; moreover, the two

most prominently used types of debt are bonds (convertible and non-convertible), and bank debt.1 Over

time, aggregates of corporate debt also display dramatic variation. Adrian, Colla, and Shin (2012), echoing

the findings of Kashyap, Stein, and Wilcox (1993) on bank debt and commercial paper, document the fact

that over the course of the 2007-2009 recession, the fall in aggregate bank debt outstanding was mirrored by

a rise in the issuance of corporate bonds. This suggests that the overall debt structure of firms also changes

with business cycle conditions.

Little attention has however been paid to the interaction between debt heterogeneity and the real decisions

of firms. On the one hand, the litterature on the link between financial constraints and firm-level invest-

ment typically treats all corporate debt as homogeneous. Empirical work on the topic (Fazzari, Hubbard,

and Petersen (1988), Hoshi, Kashyap, and Scharfstein (1991), Whited (1992), Kaplan and Zingales (1997),

Hubbard (1998)) focuses on measures of total leverage. Likewise, theoretical work on financial constraints

and firm-level investment (Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and

Hopenhayn (2006)) explores single borrower-lender relationships, thereby also abstaining from issues of debt

heterogeneity. On the other hand, there is an extensive literature on debt heterogeneity (Diamond (1991),

Diamond (1993), Rajan (1992), Bolton and Scharfstein (1996), Bolton and Freixas (2000), Park (2000),

DeMarzo and Fishman (2007)). This literature explores optimal capital structure with multiple potential

lenders, but typically in the context of a firm that must finance a project of fixed size. Each of these strands

of the literature is silent on the question of whether, or how, the scale of borrowing and investment could be

related to the forms of debt financing that are available to a firm.

The goal of this paper is to provide a simple theoretical framework in which to analyze this question.

Specifically, I ask how access to different forms of debt financing affects the borrowing and investment choices

of firms. I study a static model in which an entrepreneur can finance investment by borrowing from two

potential sources, which I label “bank” and “market” lenders. The entrepreneur uses her own internal

finance, in combination with these sources of debt, to finance investment in fixed capital. Production

1See the first column of their table 1.
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possibilities are standard. Capital is the input into a decreasing returns to scale technology. This technology

is subject to idiosyncratic productivity risk, which is realized only after the entrepreneur has raised debt. The

entrepreneur has limited liabity; she can default on any debt claims, in which case the project is liquidated.

Borrowing is constrained by the fact that liquidation entails inefficient losses.

The model postulates two main differences between bank and market debt. On the one hand, I assume

that bank debt can be easily renegotiated in times of financial distress, while market debt cannot. The view

that bank debt is more flexible than market debt underlies much of the literature on debt heterogeneity.

Gertner and Scharfstein (1991) and Bolton and Scharfstein (1996) provide microfoundations for this view,

building on the idea that dispersed holding of market debt creates a hold-out problem in which individual

debt holders have limited incentives to agree to a debt restructuring plan.2 In the model, this flexibility

implies that bank debt typically commands a smaller liquidation risk premium than market debt. On the

other hand, I assume that the marginal cost of debt issuance is larger for banks that for market lenders. The

debt structure chosen by the entrepreneur balances the benefit of bank debt flexibility with the difference in

marginal cost of debt issuance between banks and market lenders.

The first prediction of the model is that the optimal debt structure of most firms features a mix of

bank and market finance. This is consistent with the fact documented by Rauh and Sufi (2010) that firms

simultaneously use different types of debt instruments, but it stands in contrast with much of theoretical

literature on debt heterogeneity, which typically finds that the optimal debt structure involves borrowing

either from one source or from the other, depending on firms’ characteristics. Here, the fact that investment

and scale are endogenous is crucial. Indeed, the very largest firms, which have sufficient internal finance

relative to the optimal investment scale and face little liquidation risk, do not find it beneficial to combine

bank with market debt, and instead prefer to use only market debt. For the other firms, with more limited

internal resources and higher liquidation risk, the marginal benefit of bank flexbility is not negligible relative

to the ”spread” between bank and market marginal lending costs. This leads to an interior solution for the

debt structure.

The second prediction of the model is that the share of bank debt as a fraction of total debt is a non-

monotonic function of firms’ internal ressources. Among those firms that use a mixed debt structure, the

share of bank debt is increasing when internal finance is very small, but starts decreasing when internal finance

becomes sufficiently large (and eventually drops to 0 for the largest firms). This non-monotonic pattern arises

because the very smallest firms choose an investment policy which exhausts their bank borrowing capacity.

For these firms, any marginal increase in internal finance expands their bank borrowing capacity, and leads

2Empirical evidence in support of the view that bank debt is easier to restructure than bonds is discussed in detail in section
2.
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to an expansion in bank debt issuance. On the other hand, when firms have accumulated sufficient internal

finance, their bank borrowing constraint need not bind. These firms choose an interior debt structure. In

that case, a marginal increase in internal finance results in a substitution away from bank debt, and into

market debt.

The third prediction relates to comparative statics. Specifically, the model helps to distinguish between

parameters that leave that affect overall borrowing, but leave the composition of borrowing unchanged, from

parameters that affect borrowing composition. For example, an increase in the spread between bank and

market lending costs causes firms with large internal finance to substitute market debt for bank debt. These

firms therefore increase market debt issuance, but reduce bank debt issuance, when the spread increases.

For smaller firms, with less internal finance, the increase in the spread leads to a decline in issuance of both

market and bank debt. By contrast, a fall in average productivity lowers the overall level of borrowing

of all firms, small and large, and leaves the composition of borrowing mostly unchanged. This provides a

rationale for the intuition underlying much of the empirical work on the identification of monetary policy

shocks through their differential effects on debt choices of small vs. large firms, such as Kashyap, Stein, and

Wilcox (1993) and Gertler and Gilchrist (1994).

Finally, I use evidence from the balance sheet of US manufacturing firms, both in the cross-section and

over time, to shed light the key predictions of the model.3 In the cross-section of this sample of firms,

much as in the model, the bank share of total debt is non-monotonic in firm size: it increases for the very

smallest firms, and decreasing thereafter.4 Additionally, over the last three recessions, and especially over

the most recent one, the level and composition of debt of small and large firms evolved in very different ways.

The stock of outstanding debt of small firms declined substantially, mostly due to a decline in the stock of

oustanding bank debt, while large firms substituted market debt for bank debt and did not experience a

significant fall in their overall liabilities. From the standpoint of the model, this pattern is consistent with

the view that asymmetric shocks afffecting banks’ lending costs played an important role in the in the early

stages of the 2007-2009 recession.

This paper contributes to the theoretical literature on debt heterogeneity in two ways. First, while it

builds on the ”trade-off” theory of debt structure (Gertner and Scharfstein (1991), Rajan (1992), Bolton and

Scharfstein (1996)), the paper extends it by endogenizing the choice of investment scale. In this respect, the

closest setup to this paper is Hackbarth, Hennessy, and Leland (2007), who likewise rely on the assumption

that bank debt is more flexible than market debt in restructuring, but do not allow for an endogenous

3This evidence, which I document in a sample including both private and publicly traded firms, echoes and supplements the
findings of Rauh and Sufi (2010) and Adrian, Colla, and Shin (2012), who focus on publicly traded, and therefore large firms.

4The data I use focuses on total assets as a measure of size, rather than internal finance; I discuss this issue in more detail
in section 3.
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determination of investment scale. Second, it shows that debt heterogeneity can help explain why credit

supply shocks have different effects on the investment behavior of small and large firms, as documented by

Kashyap, Stein, and Wilcox (1993) or Gertler and Gilchrist (1994).

The rest of the paper is organized as follows. Section 2 describes the model and derives the set of feasible

debt structures for a firm with a given level of internal resources. Section 3 studies the optimal debt structure.

Section 4 studies some comparative statics of the model. Section 5 relates the findings of section 3 and 4

to data on the debt composition of a sample of US manufacturing firms during the last three recessions.

Finally, section 6 concludes.

2 A model of bank and market financing

This section describes a static model in which an entrepreneur with internal funds e finances a project by

borrowing from two lenders: a bank, and the market. The only friction of the model is that there is limited

liability; the entrepreneur can choose to default on her debt obligations. However, doing may involve output

losses, if the project is liquidated. This motivates the key distinction between bank and market lenders:

bank loans can be restructured in times of financial distress, in order to avoide inefficient liquidation losses.

Market debt, on the other hand, cannot. I come back to the interpretation of the model’s assumptions below

after describing the key elements of the model.

2.1 Production structure and timing

The entrepreneur owns the firm and operates a technology which takes physical assets k as an input, and

produces output:

y = φkζ

Here, φ, the productivity of the technology employed by the entrepreneur, is a random variable, the realization

of which is unknown to both the entrepreneur and the lenders at the time when investment in physical assets

is carried out. In what follows, I denote the CDF of φ by F (.). ζ governs the degree of returns to scale of

the technology operated by the entrepreneur. Assets depreciate at rate δ ∈ [0, 1]. After production has been

carried out and depreciation has taken place, the following ressources are available to the entrepreneur to

either consume or repay creditors:

π(φ) = φkζ + (1− δ)k (1)

I make the following assumptions about the production structure:
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Figure 1: Timing of model.

Assumption 1 The firm’s production technology has the following characteristics:

- Production has decreasing returns to scale: ζ < 1;

- The productivity shock φ is a positive, continuous random variable with density f . Moreover, f(0) = 0

and the hazard rate of φ is strictly increasing.

The first part of the assumption is standard in models of firm investment, and guarantees that firms have a

finite optimal scale of operation. The second part of the assumption consists in restrictions on the distribution

of productivity shocks. Restricting the shock φ to be a postive random variable implies that there is a

positive lower bound on ressources, (1 − δ)k, so that riskless lending may occur, to the extent that δ < 1.

The increasing hazard rate is a technical assumption which guarantees the unicity of lending contracts.5

The entrepreneur finances investment in physical assets, k, from three sources: internal finance e, with

which it is initially endowed; bank debt, b, and market debt m. The resulting balance sheet constraint is

thus simply:

k = e+ b+m.

The timing of actions and events, for an entrepreneur with internal finance e, is summarized in figure 1.

The model has two periods. At t = 0, the entrepreneur, the bank lender and the market lender agree about a

debt structure (b,m), and promised repayments, Rb to the bank, and Rm for the market lender. Investment

in k then takes place, and the productivity of the firm, φ, is realized. At time t = 1, debt payments are

settled; that is, the firm can choose to make good on promised repayments, restructure its debt, or proceed

to bankruptcy.

Finally, in this section, I only assume that all agents are utility maximizers and have preferences that are

weakly increasing in their monetary payoffs. In the next section, I will focus on optimal choices in the case

of a risk-neutral entrepreneur; however, all the results presented in this section on the settlement of debt are

entirely independent of the assumption of risk-neutrality, and hold for general preference specifications so

long as preferences are increasing in payoffs. In particular, the set of feasible debt structures characterized

in this section is identical across preference specifications.

5See appendix A for details.
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Figure 2: Debt settlement.

2.2 Debt settlement

The debt settlement stage takes place once the productivity of the firm has been observed by all parties.

I model the debt settlement process as a two-stage game. In the first stage, the entrepreneur can choose

between three alternatives, summarized in figure 2: repay in full both its bank and market creditors; make

a restructuring offer to the bank; or file for bankruptcy. If the entrepreneur chooses to repay in full both its

creditors, her payoff is:

πP (φ) = π(φ)−Rm −Rb (2)

while the payoff to the bank and market lender are, respectively, Rb and Rm, as initially promised. I next

turn to describing each party’s payoff under the two other alternatives, bankruptcy and restructuring.

2.2.1 Bankruptcy

If the entrepreneur chooses to file for bankruptcy, the project is terminated and liquidated, and the

proceeds from liquidation are distributed to creditors. Once bankruptcy is declared, the entrepreneur has no

claim to liquidation proceeds; that is, her liquidation payments are assumed to be 0, so that the monetary

payoff to the entrepreneur in bankruptcy is:6

πB(φ) = 0. (3)

6This is without loss of generality. Allowing for the entrepreneur to be a residual claimant in bankruptcy would not alter
the results, since in the debt settlement stage, bankruptcy would never be declared in states in which the entrepreneur has
sufficient resources to repay both lenders. I omit this possibility to alleviate notation.
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I make the following assumption about the impact of liquidation on output:

Assumption 2 (Liquidation losses) Under bankruptcy, the proceeds π̃(φ) to be distributed to creditors

and the entrepreneur are a fraction χ of the project’s value:

π̃(φ) = χπ(φ) , 0 ≤ χ < 1.

Liquidation leads to inefficient losses of output; that is, the liquidation value of the project is strictly

smaller than the value of the project under restructuring or repayment. Specifically, liquidation losses are

equal to (1 − χ)π(φ). Consistent with the evidence in Bris et al. (2006) discussed below, this assumption

captures fact that bankruptcy proceedings are typically costly, both administratively and because they halt

production activities. Moreover, asset values of firms after cash auction proceedings are typically only a

fraction of pre-bankruptcy values. This is the key friction in the static model with risk-neutrality: absent

bankruptcy losses, lending would be unconstrained, as I will discuss below.

I assume that bankruptcy proceeds are distributed among creditors according to an agreed-upon priority

structure, in line with the Absolute Priority Rule (APR) that governs chapter 7 proceedings in the US.7 In

this section, I assume that bank debt is senior to market debt.8 Under this priority structure, the payoff to

bank lenders and market lenders, are:

R̃Kb (φ) = min (Rb, χπ(φ)) , (4)

R̃Km(φ) = max (χπ(φ)−Rb, 0) . (5)

The first line states that the bank’s payoff in bankruptcy is at most equal to its promised repayment Rb.

The second payoff states that market lenders are residual claimants. Note that this formulation does not,

a priori, preclude cases in which R̃m(φ) ≥ Rm, that is, market lenders receiving a residual payment larger

than their initial claim. I will however show that this never occurs in the equilibrium of the debt settlement

game.

2.2.2 Restructuring

Instead of filing for bankruptcy, I assume that the entrepreneur can enter a private workout process

with her creditors. Because going bankrupt implies losses of output, it may sometimes be in the interest of

7See White (1989) for institutional details on the APR.
8I come back to the issue of the optimality of bank seniority in conclusion. It is likely that, in this model, bank seniority is

the optimal priority structure from the standpoint of the firm; numerically, it is the case for all the versions of the model which
I have explored.
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creditors and the entrepreneur to arrive at a compromise. I make the following restriction to the workout

process.

Assumption 3 (Bank debt flexibility) The entrepreneur may only restructure debt payments owed to

the bank, Rb; payments to the market lender, Rm, cannot be renegotiated.

This is the key distinction between bank and market lending in the model; I delay its discussion to the

next paragraph, and first describe its implications for the debt settlement process. I assume that the private

workout operates as follows: the entrepreneur makes a one-time offer to the bank which takes the form of

a reduction in promised repayments lb ≤ Rb. In case the offer is accepted, the bank obtains lb, and the

entrepreneur obtains:

πR(φ) = π(φ)−Rm − lb(φ). (6)

If, on the other hand, the bank refuses the entrepreneur’s offer, the private workout fails, and the project is

liquidated. In this case, the payoff to the bank is given by equation (4). The participation constraint of the

bank is thus:

lb ≥ R̃Kb (φ).

The entrepreneur will choose her restructuring offer to maximize her net payoff under restructuring, subject

to the participation constraint of the bank. Formally:

πR(φ) = max
lb

π(φ)−Rm − lb s.t. lb ≥ R̃Kb (φ)

=

 π(φ)−Rb −Rm if Rb ≤ χπ(φ)

(1− χ)π(φ)−Rm if Rb > χπ(φ)
(7)

Intuitively, this result indicates that the entrepreneur will choose to make a restructuring offer only when

its cash on hand is small enough, relative to promised repayments to the bank. Note that the larger the

value of χ, the higher the restructuring threshold; that is, potential bankruptcy losses effectively allow the

entrepreneur to extract concessions from the bank.

2.2.3 Debt settlement equilibria

Given the realization of φ, the entrepreneur chooses whether to repay, restructure or file for bankrucpy,

by comparing her payoffs πP (φ), πB(φ) and πR(φ) under each option. The following proposition describes

the resulting perfect equilibria in pure strategies of the debt settlement game described in figure 2. There

is a unique equilibrium for each realization of φ; however, the set of possible equilibria, parametrized by φ,
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depends on the terms of the debt contracts.

Proposition 1 (Debt settlement equilibria)

If Rm
1−χ < Rb

χ (R-contracts), there are some realizations of φ for which the entepreneur chooses to use

her restructuring option. Specifically, the entrepreneur chooses to repay her creditors when π(φ) ≥ Rb
χ ; to

restructure debt when Rm
1−χ ≤ π(φ) < Rb

χ ; and to file for bankruptcy when π(φ) < Rm
1−χ .

If Rm
1−χ ≥

Rb
χ (K-contracts), there are no realizations of φ such that the entrepreneur attempts to

restructure debt with the bank. Instead, she chooses to repay her creditors when π(φ) ≥ Rm + Rb, and

otherwise, she files for bankruptcy.

Moreover, in bankruptcy or restructuring, market and bank lenders never obtain more than their promised

repayments: R̃m(φ) ≤ Rm and R̃b(φ) ≤ Rb, regardless of whether the debt contract is an R − contract or a

K − contract.

The proof for this and all following propositions are reported in appendix A. Figure 3 illustrates sets of

equilibria for each type of contract. In the case of a K-contract (Rbχ < Rm
1−χ ), no restructuring ever occurs,

and bankruptcy losses cannot be avoided when the cash on hand of the firm, π(φ), falls below the threshold

at which the firm prefers declaring bankruptcy over repayment, Rm +Rb. This occurs because the stake of

the flexible creditors, Rb, is too small for restructuring to bring about sufficient gains for the entrepreneur

to avoid default on market debt.

On the other hand, in the case of an R-contract, (Rbχ ≥
Rm
1−χ ), the flexibility of bank debt sometimes

allows the entrepreneur to make good on its payments on market debt (this corresponds to restructuring

region below Rm +Rb in figure 3). Some R-equilibria will see the entrepreneur exert a degree of bargaining

power over the bank: indeed, the bank will be forced to accept a settlement, even though the firm has

enough cash on hand to make good on both its promises (this corresponds to the restructuring region above
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Rm + Rb in figure 3). This region corresponds to strategic restructurings on the part of the entrepreneur,

who takes advantage of the fact that the bank can never extract from her more than its reservation value

under restructuring, χπ(φ), in any private workout.

2.3 Discussion

The model’s fundamental distinction between bank lending and market lending is that bank lenders are

capable of flexibility in times when the firm is not able (or willing) to repay her debt. A natural question

is then whether this assumption is borne out in the data. Gilson, Kose, and Lang (1990) examine a sample

of 169 financially distressed firms. They show that about half (80 or 47% of the total) firms successfully

restructure outside of formal judicial proceedings, while the other half (89, or 53% of the total) file for

bankruptcy. They show that successful restructurings out of court involve, in 90% of cases, a firm that has

outstanding bank loans, while only 37.5% of successful restructuring involves firms with oustanding public

debt. Moreover, they show that the existence of bank loans is the single most important determinant of

whether firms successfully restructure out of court, more so than other firm characteristics such as firm

size, age or leverage. A theoretical justification of the observation that bank debt is easier to restructure is

developped by Gertner and Scharfstein (1991), who argue that when coordination problems among dispersed

holders of public debt lead to a failure to efficiently restructure that debt. Bolton and Scharfstein (1996) also

study how free-riding problems can lead to inefficiencies during debt restructuring involving a large number

of creditors. The assumption of bank debt flexibility can thus be thought of as a reduced-form manner of

capturing the coordination and free-riding problems discussed elsewhere in the literature.

Additionally, the model makes the assumption that the formal liquidation of a project – which occurs

only if restructuring has failed – leads to inefficient losses. In the model, this occurs when χ < 1; when

χ = 1, liquidation leads to a transfer of ownership but not losses in values. Bris, Welch, and Zhu (2006)

study a sample of 61 chapter 7 and 225 chapter 11 filings between 1995 and 2001. In particular, they

report measures of the ratio of pre to post-bankruptcy asset values (excluding legal fees). For chapter 11

proceedings, which provides a legal framework for debt restructuring but does not involve liquidation, the

mean of the ratio of pre to post-bankruptcy asset values in their sample is 106.5%; that is, on average, this

ratio increases after chapter 11 proceedings. For chapter 7 proceedings, this is not the case: asset values

decline as a result after the bankruptcy. Here, Bris, Welch, and Zhu (2006) offer two measures of post-

bankruptcy asset values. The first measure is liquidation value of the firm after collateralized lenders have

seized the assets to which they had a lien outside of bankruptcy proceedings. With this measure, asset values

post-bankruptcy are 17.2% of pre-bankruptcy asset values, on average. The second measure tries attempts
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to include the value of collateralized assets; average post-bankruptcy values are then estimated to represent

80.0% of pre-bankruptcy values; the median ratio is 38.0%.

While the model’s debt settlement stage does not clearly distinguish between private and formal (chapter

11) workouts, it assumes that they are costless, whereas liquidation (chapter 7) is assumed to be costly. In

this respect, the model’s assumptions are thus consistent with the results of Bris, Welch, and Zhu (2006). In

general, assuming that debt renegotiation (private or under a chapter 11 filing) is costly should not alter the

key qualitative results of the model. So long as renegotiation costs are strictly smaller than those associated

to liquidation, renegotiation will be beneficial to the firm provided that promised repayment to bank lenders

are sufficiently large, as in figure 3.

2.4 Debt pricing and the lending menu

I now turn to describing the pricing of bank and market debt contracts at t = 0, before the realization

of the shock φ and the ressources π(φ).

2.4.1 Expected lending returns

Let:

E [Πi (e, b,m,Rb, Rm)] =

∫ +∞

0

R̃i(φ)dF (φ), i = b,m

denote the gross expected returns for each lender (market or bank) at time t = 0. Appendix A details the

expressions of lenders’ payoff functions R̃b(φ) and R̃m(φ) for the debt settlement equilibrium associated to

each realization of φ. They depend on π(φ) = φkζ + (1− δ)k = φ(e+ b+m)ζ + (1− δ)(e+ b+m). Moreover,

their expression also depends on whether the debt contract is an R- or a K-contract. For example, assume

that the contract is a K-contract, that is, Rbχ < Rm
1−χ . In this case, the bank will face three possible outcomes,

conditional on the realization of π(φ):

• If φ ≥ φ ≡ Rb+Rm−(1−δ)(e+b+m)
(e+b+m)ζ

, that is, above the bankruptcy threshold, the bank will be repayed in

full;

• if φ > φ ≥ φ ≡ Rb−(1−δ)(e+b+m)
χ(e+b+m)ζ

, the entrepreneur will file for bankruptcy; but the bank, because of

its seniority in the priority structure of the bank, will still be repayed in full (market lenders will only

receive partial repayments);

• if φ > φ, the bank is only partially repayed, and the market lenders receive no payments.

11



Thus, the expected return function of the bank lender will be given by:

E [Πb (e, b,m,Rb, Rm)] =
(
1− F

(
φ
))
Rb︸ ︷︷ ︸

no bankruptcy

+ Rb

∫ φ

φ

dF (φ)︸ ︷︷ ︸
bankruptcy, full repayment

+ χ

∫ φ

0

π(φ)dF (φ)︸ ︷︷ ︸
bankruptcy, partial repayment

Expressions of the expected returns functions of both types of lenders for each type of contract are also

reported in appendix A. Importantly, expected lending returns for the bank are independent of Rm, and

thus independent of whether the contract is an R- or a K- contract. This result follows from the assumption

that the bank may only accept or reject the offer of the firm. Because of this, the bank always accepts

its reservation value, the bankruptcy payoff, as restructuring settlement. When the bank is senior in the

priority structure, the bankruptcy payoff is therefore independent of Rm, so that the expected returns from

bank lending are independent of the value of Rm, and therefore of the condition Rm
1−χ ≷ Rb

χ .

2.4.2 The lending menu

I make the assumption that both kinds of financial intermediaries are perfectly competitive, so that debt

is priced by equating the gross expected return from lending to the lenders’ gross cost of funds.

I assume that lenders have constant marginal costs of funds, and I denote lender i’s cost of funds by

1 + ri, with ri > 0. For now, I make no assumptions on which type lender has the higher cost of funds; I

come back to this issue in the next section.

A contract (Rm, Rb) corresponding to debt structure (b,m) will be available to a firm with internal finance

e if it satisfies the zero profit condition of both lenders.

Definition 1 (Lending contracts) The set of lending contracts proposed to a firm with internal finance

e that desires to implement a debt structure (b,m) is the set:

L(b,m, e) ≡

 (Rb, Rm) ∈ R2
+

∣∣∣∣∣∣∣
E [Πb (e, b,m,Rb, Rm)] = (1 + rb)b

E [Πm (e, b,m,Rb, Rm)] = (1 + rm)m


Since L(b,m, e) is a subset of R2, it is a partially ordered set when endowed by the product order ≤×.9

(L(b,m, e),≤×) therefore has at most one least element.10. This justifies the following definition:

Definition 2 (The dominating contract) The dominating contract for debt structure (b,m) and internal

finance e is the least element of the partially ordered set (L(b,m, e),≤×) (if it exists).

9This is the partial order defined by (x1, y1) ≤× (x2, y2) ⇐⇒ x1 ≤ y1 and x2 ≤ y2.
10This is (Rb, Rm) ∈ L(b,m, e) such that ∀(R̃b, R̃m) ∈ L(b,m, e), (Rb, Rm) ≤× (R̃b, R̃m).
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Finally, the lending menu for a firm with internal finance e is the set of all debt structures (b,m) such that

there exists a dominating contract at (b,m) for equity e:

Definition 3 (The lending menu) The lending menu for a firm with internal finance e is the set:

S(e) ≡

 (b,m) ∈ R2
+

∣∣∣∣∣∣∣
L(b,m, e) 6= ∅

(L(b,m, e),≤×) has a least element


Several intuitive elements of these formal definitions are worth emphasizing. First, the lending menu S(e)

of definition 3 is the set of feasible debt structures for the entrepreneur with internal finance e. There are two

requirements for a debt structure to be part of the lending menu: first, there must exist lending contracts

for that debt structure; second, one of them must be a dominating contract, in the sense of definition

2. Intuitively, the dominating contract has the property that it is (weakly) cheaper, in both dimensions

(Rb, Rm), than any other contract that satisfies the lenders’ zero-profit conditions.

Note that, a priori, there is no reason to think that (L(b,m, e),≤×) generically has a least element. It

could well be that, for a certain level of internal finance e and a certain debt structure (b,m), the set of

lending contracts contains two elements (Rb, Rm) and (R
′

b, R
′

m) such that Rb > R
′

b but Rm < R
′

m, which

cannot be ordered by ≤×. In that case, (L(b,m, e),≤×) would have no least element. Definition 3 would

then exclude (b,m) from the firms’ feasible set, the lending menu S(e), despite the fact that L(b,m, e) would

be non-empty. This would seem to arbitrarily restrict the set of feasible contracts.

Fortunately, this is never the case: (L(b,m, e),≤×) always has a least element when L(b,m, e) 6= ∅, so

that the lending menu never contains debt structures associated to several possible contracts.11 I discuss

this further in the next subsection.

Finally, while the definition of competitive contracts only require promised repayments to be positive,

they in fact also satisfy Rm ≥ (1 + rm)m and Rb ≥ (1 + rb)b; that is, lenders never ask for promised

repayments which imply a yield below their marginal cost of funds. Intuitively, since the expected value

of total (bankruptcy and non-bankruptcy) claims has to equal the cost of funds for each lenders, it cannot

be the case that both are strictly smaller or strictly larger that that cost of funds. As bankruptcy claims

are strictly smaller than non-bankruptcy claims, it must therefore be the case that non-bankruptcy claims

exceed the costs of funds.

11This result is proved in appendix A, as part of the proof of proposition 2.
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2.4.3 Some general properties of the lending menu

The following proposition describes in more detail the structure of the lending menu, emphasizing the

fact that it can be explicitly partitioned betwen contracts leading to K-equilibria and contracts leading to

R-equilibria.

Proposition 2 (A partition of the lending menu in the general case) The lending menu S(e) can

be partitioned as:

S(e) = SR(e) ∪ SK(e) , SR(e) ∩ SK(e) = ∅,

where:

SR(e) = S̃R(e) , SK(e) = S̃K(e) \
(
S̃R(e) ∩ S̃K(e)

)
,

and

S̃K(e) ≡

 (b,m) ∈ R2
+

∣∣∣∣∣∣∣
0 ≤ (1+rb)b+(1+rm)m

(e+b+m)ζ
≤ M̂(e+ b+m) + (1− δ)(e+ b+m)1−ζ (c− joint)

Rl(b,m, e) >
Rb(b,m,e)

χ (frontier−K)

 ,

S̃R(e) ≡

 (b,m) ∈ R2
+

∣∣∣∣∣∣∣∣∣∣
0 ≤ (1+rb)b

χ(e+b+m)ζ
≤ E(φ) + (1− δ)(e+ b+m)1−ζ (c− bank)

0 ≤ (1+rm)m
(1−χ)(e+b+m)ζ

≤ Î(e+ b+m) + (1− δ)(e+ b+m)1−ζ (c−market)

Rm,l(b,m,e)
1−χ ≤ Rb(b,m,e)

χ (frontier− R)

 .

The sets SR(e) and SK(e) are non-empty, compact and connected subsets of R2
+. Moreover, for a firm with

internal finance e:

• The dominating contract associated to (b,m) is an R-contract, if and only if, (b,m) ∈ SR(e);

• The dominating contract associated to (b,m) is a K-contract, if and only if, (b,m) ∈ SK(e);

Expressions for the functions M̂(e+ b+m), Î(e+ b+m), Rl(b,m, e), Rm,l(b,m, e) and Rb(b,m, e) are given

in appendix A.

There are two important elements in this proposition. First, the lending menu is the union of two subsets,

S̃K(e) and S̃R(e), which correspond, respectively, with the set of debt structures for which there exists a

K-contract (the set S̃K(e)) and the set of debt structures consistent for which there exists an R-contract

(the set S̃R(e)). The intersection of these two sets is however not empty; that is, there are debt structures

for which there exists both a K- and an R-contract. However, the proposition establishes that for such debt

structures, the R-contract is always the dominating contract. The intuition for this result is straightforward.
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Imagine that there are two contracts, (Rb, Rm) and (R̃b, R̃m), associated to a debt structure (b,m): an R-

contract, Rb
χ ≥

Rm
1−χ , and a K-contract, R̃b

χ < R̃m
1−χ . As discussed previously, because of bank debt seniority,

banks’ gross expected returns from lending are the same for both contracts, so that so Rb = R̃b. Therefore,

R̃m
1−χ >

R̃b
χ = Rb

χ ≥
Rm
1−χ , so that the two contracts can be ordered, and the R-contract dominates.

Second, each of the two subsets S̃K(e) and S̃R(e) can be described as the intersection of the sets defined

by three inequality constraints. The inequalities (c− bank), (c−market) and (c− joint) correspond, re-

spectively, to borrowing constraints with respect to market, bank lending and total lending. The borrowing

constraint with respect to bank lending, for example, can be rewritten as:

0 ≤ (1 + rb)b ≤ χ
(
E(φ)(e+ b+m)ζ + (1− δ)(e+ b+m)

)
= χ

∫ +∞

0

π(φ)dF (φ).

The first inequality states that firms are note allowed to lend. The second inequality states that gross

lending costs (1 + rb)b cannot exceed the maximum expected return which the bank can achieve by lending

to the firm. This maximum is attained when the threshold for φ below which the firm renegotiates, which

is implicitly defined by Rb
χ = π(φ) as per proposition 1, goes to infinity. This implies that when the bank

borrowing constraint is binding (that is, when the debt structure is such that (c− bank) holds with equality),

the entrepreneur always renegotiates her loan with the bank, so that the banks’ effective repayment is χπ(φ),

for all φ. The banks’ expected repayment is then a fraction χ of total expected output. Thus, when the firm

is at her bank borrowing constraint, the bank effectively holds a claim to a constant fraction of the project’s

value – an equity-like stake.

This is in contrast to the market borrowing constraint (c−market). This borrowing constraint also

states that gross lending costs of markets cannot exceed the maximum expected repayment which market

lenders can achieve. Contrary to the banks’ case, this expected repayment is not monotonic in the threshold

for φ below which the entrepreneur goes bankrupt, which is implicitly defined by Rm
1−χ = π(φ). This is a

direct consequence of the fact that there are losses associated with going bankrupt, that is, χ < 1. These

losses (along with the technical part of assumption 1) imply that expected returns of market lenders are

increasing in Rm when Rm is small (so that bankruptcy probability and bankruptcy losses are small), but

decreasing in Rm when Rm is large (so that bankruptcy probabilities and bankruptcy losses are large).12

The value Ĩ(e + b + m) < E(φ) correspond to the bankrucpy threshold which maximizes expected returns

for market lenders, which trades off bankruptcy losses with higher promised repayments. If, instead, there

were no bankruptcy losses, χ = 1, expected returns would never decrease in promised repayments Rm,

and the market borrowing constraint would take the same form as the banks’; that is, we would have

12Appendix A contains a detailed proof of this statement.
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Î(e + b + m) = E(φ). Likewise, in the case of a K-contract, renegotiation is never used for any realization

φ; bankruptcy losses are therefore unavoidable. For the same reasons as in the case of the R-contract, this

implies that the total surplus from lending has an interior maximum in the bankruptcy threshold, which

corresponds to the value M̂(e+ b+m) < E(φ). Thus, the ability to renegotiate debt is a crucial determinant

of borrowing constraints in this model.

Proposition 2 does not provide a full characterization of the lending menu. However, some general results

can be established about the type of debt structures which are to be found in each of the subsets SK(e) and

SR(e). This is the object of the following corollary to proposition 2.

Corollary 1 (Debt structure and the lending menu) For a given level of internal finance e and a debt

structure (b,m) ∈ S(e), let s = b
b+m denote bank debt as a fraction of total debt. Define:

sR =
1

1 + 1−χ
χ

1+rb
1+rm

,

and let sK(e), 1 ≥ sK(e) ≥ sR, be defined as in appendix A. Then:

• if 1 ≥ s ≥ sK(e), then (b,m) ∈ SR(e);

• if sR > s ≥ 0, then (b,m) ∈ SK(e).

This corollary indicates that the set of debt structures SR(e) contains no debt structures (b,m) with an

excessively low fraction of bank debt s = b
b+m : there can indeed be no debt structures such that s < sR in

that set. In particular, when s = 0 (a pure market contract), the associated contract must be a K-contract.

This is intuitive: in that case, there can be no renegotiation from the part of the entrepreneur, since no bank

has taken part in lending. The interesting result, however, is that the debt structure of firms must contains a

sufficient fraction of bank debt for renegotiation to be a possibility in the equilibrium of the debt settlement

game. Otherwise, the gains associated with the renegotiation of bank liabilities are never sufficient to repay

in full the market lenders in case of bankruptcy, so that bankruptcy can never be avoided. Accordingly, the

threshold sR below which the debt structure ceases to allow for renegotiation is increasing in χ: the larger

the bankruptcy losses (the smaller χ), the larger the renegotiation gains, and the more market debt the firm

can take on as a fraction of total debt. On the contrary, in the limit where χ = 1, there are no renegotiation

gains, and sR = 1, so that there are no debt structures associated with R-contracts.

Likewise, the corollary also indicates that the set SK(e) contains no debt structures particularly tilted

towards bank debt; a pure bank contract, s = 1, must be associated to an R-contract, since in the absence

of market debt, it is always beneficial for the entrepreneur to renegotiate down debt payments (provided her
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productivity φ is sufficiently low). Thus, the model indicates that debt structures tilted towards bank debt

tend to be associated with contracts leading to debt renegotiations, whereas debt structures tilted towards

market debt tend to be associated with contracts where debt renegotiations are not an equilibrium outcome.

2.4.4 An analytical characterization of the lending menu when δ = 1

I next turn to a particular case in which the lending menu can be characterized analytically.

Figure 4: The lending menu S(e) when δ = 1.

Proposition 3 Let (d, s) ∈ R+ × [0, 1] denote the debt structure, with d = b + m and s = b
b+m . The sets

SR(e) and SK(e) can be parametrized as:

SR(e) =
{

(d, s) ∈ R+ × [sR, 1]
∣∣ 0 ≤ d ≤ dR(s, e)

}
,

SK(e) =
{

(d, s) ∈ R+ × [0, sK ]
∣∣ dK(s, e) ≤ d ≤ dK(s, e)

}
.

Here, sR is defined as in corollary 1, and:

sB =
1

1 +
(

1
χυ − 1

)
1+rb
1+rm
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Expression for the borrowing limits dR(s, e), dK(s, e) and dK(s, e) and the constant υ > χ are given in

appendix A.

Moreover, ∂dK
∂s (s, e) < 0, while ∂dR

∂s (s, e) ≥ 0, if and only if, sR ≤ s ≤ sR,M < 1, where:

sR,M =
1

1 + 1−χ
χ

1+rb
1+rm

Î
E(φ)

.

Figure 3 depicts the lending menu S(e) when δ = 1, using the results of proposition 6.13 The lending

menu is plotted in (b,m) rather than (d, s) space, but there is a simple correspondence between the two:

each value of s corresponds to a straight line passing through 0 and with slope 1−s
s , and along each of these

lines, total debt d increases.

Note first that the bank share of external liabilities s = b
b+m spans the lending menu, as it varies from

s = 0 (which corresponds to the the vertical axis) to s = 1 (which corresponds to the horizontal axis). As

emphasized in the general case, the lending menu contains only elements in SK(e) if s ≤ sR, that is, to the

left of the solid black line with slope 1−sR
sR

); and only elements in SR(e) is s > sK(e), that is, to the right of

the solid black line with slope 1−sK
sK

).

The set SK(e) corresponds to the light gray area of the graph. This set comprises debt structures such

that the bank share of external liabilities s = b
b+m ranges from 0 to sK (corresponding to the solid black

line with slope 1−sK
sK

). For this range of bank shares, the upper bound on borrowing using a K-contract,

dR(s, e), is the dotted line at the boundary of SK(e). This frontier corresponds to the pairs (b,m) such

that condition (c− joint) is binding, and it is downward sloping. Intuitively, this indicates that bank and

market borrowing, for this type of contract, are “substitutes”, in the sense that a marginal increase in bank

borrowing tightens the market borrowing constraint (and conversely). This is because for K-contracts, given

the seniority of bank debt, a marginally larger amount of bank liabilities makes it less likely that market

liabilities will be repayed. Note that for s < sR, the lower bound on total debt for debt structures belonging

to SK(e) is 0, while for sR ≤ s ≤ sK , it coincides with the upper bound on total debt of the other set of

debt structures, SR(e). Appendix A shows that this boundary corresponds to the conditions (frontier− R)

and (frontier−K), which exactly coincide in the range sR ≤ s ≤ sK . For this range of debt structures, a

particular bank share s can therefore correspond to either a K-contract (if total borrowing is small enough,

ie below dR(s, e)), or to an R-contract (if total borrowing is large enough, ie above dR(s, e)).

The set SR(e) corresponds to the dark gray area of the graph. In this region, the upper bound on total

borrowing is associated to the dashed blacked line dR(s, e). For debt structures such that sK ≤ s ≤ sR,M ,

13Other model parameters, and in particular the shock distribution, are identical to those of the baseline calibration of the
model, discussed in section 4. In this example, e = 10; model parameters are choosen in such a way that a firm with internal
finance e = 100 is indifferent between borrowing from market lenders and having no debt.
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this dotted line corresponds to cases in which the constraint (c−market) is binding, while for debt structures

such that s ≥ sR,M , this line corresponds to the bank borrowing constraint (c− bank). The slope of the

frontiers thus indicate that and increase in the bank share loosens the market borrowing constraint so long as

the bank borrowing constraint is not binding, and thus leads to higher total borrowing limits. In that region,

the lending menu thus exhibits ”complementarity”, contrary to the part of the lending menu associated with

K-contracts.

In this section, I have proposed a model of market and bank debt pricing based on the view that bank

debt is easier to renegotiate than market debt, and I have derived the set of feasible debt contracts for an

entrepreneur with internal finance e implied by the model. This set was derived under the relatively weak

assumptions that credit markets were perfectly competitive and that entrepreneurs’ utility was increasing

in monetary payoffs. The key insight from the analysis of feasible debt structures is that, regardless of

entrepreneur’s internal ressources e, renegotiation of debt in times of financial distress is only desirable for

firms that choose to hold a sufficient amount of bank debt relative to market debt. I next turn to drawing

the implications of these findings for the optimal choice of debt structure.

3 The optimal choice of debt structure

This section adresses the question of which debt structure, among those that are feasible, an entrepreneur

with internal finance e will choose to finance investment. Furthermore, I explore how both the optimal share

of borrowing financed by banks s = b
b+m as well as the optimal total amount of borrowing b+m vary with

own equity e.

Throughout the section, I maintain the two following assumptions:

Assumption 4 The enterpreneur is risk-neutral, and her assets completely depreciate after productivity is

realized and output is produced: δ = 1.

I first assume that assets fully depreciate at the end of period 1, that is, δ = 1. Given the static nature

of the model, this is a natural assumption, and it furthermore simplifies the analytical characterization of

the optimal debt structure. It is however is not crucial to any of the results below. The second assumption

I maintain in this section is that the entrepreneur is risk-neutral. While risk-neutrality can be viewed as a

benchmark case, it influences strongly the results, by linking closely profit maximization and maximization

of total surplus from investment, as I analyze below.
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3.1 The entrepreneur’s profit function

Under assumption 4, the optimal debt structure of an enterpreneur with own equity e solves:

π̂(e) = max
b,m∈S(e)

E [π̃(φ; e, b,m)] ,

where π̃(φ; e, b,m) denotes the profits accruing to the entrepreneur, conditional on the debt structure (b,m)

and therefore the associated contract (Rb, Rm), and the realization of the shock φ.

Proposition 4 For (b,m) ∈ S(e), the objective function of the entrepreneur is given by:

E [π̃(φ; e, b,m)] = E(π(φ))− (1 + rb)b− (1 + rm)m︸ ︷︷ ︸
total expected surplus from investment

− (1− χ)

∫ φ(e,b,m)

0

π(φ)dF (φ)︸ ︷︷ ︸
expected liquidation losses

, (8)

where:

φ(e, b,m) =


RK(b,m,e)
(e+b+m)ζ

if (b,m) ∈ SK(e)

Rm,l(b,m,e)
(1−χ)(e+b+m)ζ

if (b,m) ∈ SR(e)

This result is a consequence of risk-neutrality of the lenders and the entrepreneur: under risk-neutrality,

profit maximization for the entrepreneur is equivalent to the maximization of total expected surplus, net of

the losses incurred in case liquidation is carried out. In particular, in the absence of bankruptcy costs (that

is, when χ = 1), profit maximization for the firm is equivalent to maximization of total surplus. In this case,

it is clear that the optimal debt structure is always a corner solution, with the entrepreneur borrowing only

from the lender with the smallest cost of funds, as described in the lemma below.

Lemma 2 (The optimal debt structure in the absence of liquidation losses) Assume there are no

liquidation losses, that is: χ = 1. Then, the solution to the entrepreneur’s problem is given by:

∀e, k̂i ≡
(

E(φ)

1 + ri

) 1
1−ζ

, π̂(e) = (1 + rmin)

(
1− ζ
ζ

k∗ + e

)
,

where rmin = min (rb, rm). Moreover:

• If rb < rm, the optimal debt structure is entirely bank-financed: ∀e, b̂(e) = k̂b − e, m̂(e) = 0.

• If rb > rm, the optimal debt structure is entirely market-financed: ∀e, b̂(e) = 0, m̂(e) = k̂m − e.

• If rb = rm = r, the entrepreneur is indifferent between all debt structures such that ∀e, b̂(e)+m̂(e)+e =

k̂m = k̂b.
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3.2 Lenders’ cost of funds

Lemma 2 emphasizes that the relative cost of funds of lenders is a crucial determinant of the optimal

debt structure; when χ = 1, the entrepreneur only borrows from the lender with the smallest cost of funds.

When χ < 1, the entrepreneur’s expected profits depend not only on the relative cost of funds, but also

on the magnitude of expected liquidation losses, the second term in the right hand side of equation (8). Debt

structure plays a role in determining the magnitude of these losses, because it affects how often the project

must be liquidated at the debt settlement stage. Generically, for a comparable total amount of lending

b+ m, debt structures (b,m) ∈ SR(e) will be liquidated less often. Indeed, the very point of an R-contract

is that, by restructuring bank debt, it offers the entrepreneur a means of avoiding liquidation even when her

ressources fall below ”natural” liquidation threshold, that is, when productivity is such that π(φ) < Rm+Rb

(see figure 1). Thus, by choosing an R-contract, the entrepreneur will reduce expected liquidation losses. At

the same time, corollary 1 indicates that debt structures (b,m) ∈ SR(e) typically feature more bank debt;

that is, s = b
b+m is closer to 1. By borrowing more from bank lenders, the entrepreneur thus reduces her

expected liquidation losses.

Thus, intuitively, the optimal debt structure should limit expected liquidation losses, while at the same

time it should feature as much debt as possible from the lender that has the smallest cost of funds, as

suggested by lemma 2. It is clear that these objectives need not conflict with one another. If rb ≤ rm,

borrowing more from bank lenders allows the entrepreneur both to minimize her liquidation losses, and to

gain from the smaller cost of funds of banks. Given a particular scale of total borrowing b+m, when rb ≤ rm,

the entrepreneur should always try to use as much bank finance as possible. This intuition is formalized in

the following proposition.

Proposition 5 ( The optimal debt structure when rb ≤ rm ) Assume that banks have a lower

marginal cost of funds than markets, that is, rb ≤ rm. Then, the optimal debt structure of an entrepreneur

with internal finance e either features no borrowing from markets, m∗(e) = 0, or, is such that the bank

borrowing constraint, (c− bank), is binding.

Thus, when rb ≤ rm, the only reason for which an entrepreneur would want to issue liabilities to market

lenders is that she has already exhausted her borrowing capacity from bank lenders. In that case, only

firms with little internal finance e will issue market liabilities, since for large levels of e, the bank borrowing

constraint is less likely to bind. In turn, this would imply that larger firms are less likely to issue market

debt; in particular, the very largest firms would issue only bank debt. When rb ≤ rm, the model thus leads

to a counterfactually negative relationship between internal finance and size, on the one hand, and bank

debt’s fraction of total external liabilities, on the other. This motivates the following assumption.
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Assumption 5 (Lending costs) Bank lenders have a larger marginal cost of funds:

rb > rm.

A possible interpretation for this assumption is the following. Lenders both have the same marginal

cost of funds, 1 + r, but banks incur an additional costs c(b) per dollar lent. This cost could arise for two

reasons. First, there might be due diligence costs associated to obtaining information that allows the bank to

restructure the entrepreneur’s liability when profits are low, as in Rajan (1992). Although this information

acquisition, and the problems of information revelation associated with it, are not modelled here, the cost

function c(b) could be seen as a reduced-form way of modelling them. Second, the bank may face different

balance sheet restrictions than market lenders; in particular, banks may face tighter capital requirement.

The function c(b) may then stand for the costs of issuing additional bank equity in order to meet those

capital requirements when making a additional loan in the amount b. With these additional lending costs

c(b), the bank’s cost of funds becomes (1 + r)b + c(b)b. In particular, if c(b) = c, this formulation of the

model is equivalent to the one developed above, with rm = r and rb = r + c. Overall, assumption 5 is not

only necessary for the model to deliver relevant comparative statics; it is also consistent with the view that

bank loans is more costly process, per unit of debt issue, than the issuance of market debt.

3.3 Which type of debt structure does the entrepreneur choose?

With the assumption that rb > rm, there is tension between the two objectives that an optimally chosen

debt structure should pursue, that is, limiting liquidation losses while at the same time borrowing as much

as possible from lenders with the smallest possible cost of funds. The optimal debt structure chosen by an

entrepreneur with internal finance e reflects this tension.

The trade-off between flexibility and cost does not necessarily lead to a debt structure in which the

entrepreneur borrows both from market lenders and from bank lenders. The following proposition emphasizes

that this depends on the extent of her internal funds. When the entrepreneur has sufficiently large e, the

gains associated to bank debt flexibility are always outweighed by the gains from borrowing from the cheaper

source of funds, the market.

Proposition 6 (Market finance vs. mixed finance) Assume that banks have a larger marginal cost of

funds than markets, that is, rb > rm. Let (b̂(e), m̂(e)) denote the optimal debt structure of an entrepreneur

with equity e. There exists e∗ > 0 such that:
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• if e > e∗, (b̂(e), m̂(e)) ∈ SK(e); moreover, the optimal debt structure features ”pure market finance”:

m̂(e) > 0 , b̂(e) = 0;

• if e < e∗, (b̂(e), m̂(e)) ∈ SR(e); moreover, the optimal debt structure features ”mixed finance”:

m̂(e) ≥ 0 , b̂(e) > 0.

This proposition states that there exists a switching point e∗ in equity e, which dictates the type of debt

structure that the entrepreneur will choose. For those entrepreneurs with e < e∗, it is optimal to choose a

debt structure in SR(e), which allows for restructuring. On the other hand, for entrepreneurs with e ≥ e∗,

it is optimal to choose a debt structure in SK(e); and in fact, it is optimal to choose a debt structure with

only market debt.

There are two intuitions behind this proposition. First, among debt structures (b,m) ∈ SK(e), the

entrepreneur always prefers those with no bank debt at all. This is because, under a K-contract, restructuring

never occurs; so the additional costs of borrowing from banks come with no added benefits of flexibility in

restructuring. The two types of debt are equivalent in terms of their effect on liquidation losses, so that part

of the trade-off is irrelevant, and the entrepreneur simply issues all her liabilities with whichever lender has

the smallest marginal cost of funds. Under assumption 5, market lenders have the cheapest cost of funds,

so that the optimal debt structure always has b = 0, that is, lies on the y-axis in the lending menu depicted

in figure 3. If instead rb ≤ rm, then the optimal debt structure within SK(e) would have been located at

the frontier between the two sets SK(e) and SR(e), and would be locally dominated by some debt structure

(b,m) ∈ SR(e) allowing for restructuring.

The second aspect of the proposition is the fact that entrepreneurs with small e prefer debt structures

which allow for restructuring, that is, prefer debt structure (b,m) ∈ SR(e). Here, the assumption of de-

creasing returns to scale plays an important role. To understand this, it is useful to think of the case of no

liquidation costs. In that case, decreasing returns imply that projects have an optimal size e+ b+m = k̂m,

using the notation of lemma 3. In that case, leverage ratios b+m
e = k̂m−e

e are decreasing with e. In turn,

a higher leverage ratio implies a higher probability of liquidation. This is because, for two different levels

of equity e and e′ > e, the distribution of profits is identical (and given by the distribution of φ(k̂m)ζ), but

promised repayment Rb and Rm are larger for e than for e′, because more total borrowing is needed to with

less internal funds, that is, k̂m − e > k̂m − e′. Thus, absent liquidation costs, the smaller an entrepreneur’s

internal funds, the higher her probability of being liquidated.
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Figure 5: Cross section of the profit function. Two different levels of internal funds e and total investment k are represented:
small e and k (left), large e and k (right).

With liquidation costs, the optimal investment scale k̂m cannot necessarily be reached for any level of e,

so that two entrepreneurs with different levels of e need not choose the same total scale k = e + b + m; in

particular, entrepreneurs with smaller e may be limited to debt structures allowing only total a maximum

total scale smaller than k̂m. However, to the extent that the elasticity of total borrowing to internal funds

e is sufficiently small (in particular, strictly smaller than 1), it will still be the case that leverage ratios

decrease with e. Thus, a logic similar to the case without liquidation costs applies, and an entrepreneur with

little internal funds has a higher probability of being liquidated at the debt settlement stage.

Thus, for entrepreneurs with small e, the gains from choosing a debt structure that allows for debt

restructuring, that is, a debt structure which is an element of SR(e), are large, relative to the costs of using

this type of debt structure (which arise because rb > rm). On the contrary, with large e, the entrepreneur

needs little ouside funding; lending is therefore close to risk-free, the benefits of debt flexibility are negligible,

and debt structures allowing for restructuring become unappealing to the firm. The switching point e∗ thus

corresponds to the level of internal funds such that the optimal debt structure within SR(e) (which allows

for restructuring) and the optimal debt structure within SK(e) (which does not) leave the entrepreneur

indifferent.

This logic is further illustrated in figure 5. The left panel represents a section of the profit function of the

entrepreneur along a line corresponding to the optimal total borrowing d̂(e) = b̂(e) + m̂(e) associated with

equity level e. This corresponds, graphically, to a line with slope −1 in the lending menu depicted in figure

3. The region marked with a K corresponds to debt structures in SK(e). In this region, debt structures are

tilted towards market debt, and the optimum π̂B(e) within that region is attained for b = 0, the leftmost

point on the graph; this corresponds to the first point discussed above. However, the global maximum of

the entrepreneur’s profit function, π̂B(e) corresponds to the local maximum in region marked with an R,

which contains the debt structures in SR(e) along the line b + m = d̂(e). In this case, e is sufficiently
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small that the benefits of flexiblity outweigh the costs of borrowing from banks rather than markets; the

resulting debt structure is mixed, between bank and market finance. The right panel of the figure looks at

a similar cross-section, for a value of internal funds e′ > e. In this case, the leftmost point in the region of

K-contracts is the global optimum; the firm then chooses a pure market debt structure. The switching point

e∗ corresponds to the case in which the two local maxima of the regions associated with K and R contracts

are equal: π̂K(e) = π̂R(e).

Summarizing, the first important prediction of the model is that firms with large amounts of internal

funds e will choose to finance themselves through market debt, while firms with small amounts of internal

finance will rely on a mix of market and bank debt dominated by bank debt.

3.4 The optimal debt structure under R-contracts

Next, I turn to characterizing more precisely the optimal debt structure when e < e∗. In that case,

following proposition 6, the optimal debt structure (b̂(e), m̂(e)) is an element of SR(e), and is therefore

associated to an R-contract. The key results are summarized in the following proposition.

Proposition 7 (The optimal debt structure when e ≤ e∗) Assume rb > rm. Consider an en-

trepreneur with internal funds e < e∗ and let ŝ(e) = b̂(e)

b̂(e)+m̂(e)
denote the fraction of total liabilities that

are bank debt in her optimal debt structure, and let d̂(e) = b̂(e) + m̂(e) denote total borrowing. Then, there

exists ẽ < e∗ such that:

• For 0 ≤ e < ẽ, the bank borrowing constraint is binding at the optimal debt structure, ∂ŝ
∂e > 0 and ∂d̂

∂e ;

• For ẽ ≤ e ≤ e∗, the optimal debt structure of the firm satisfies:

ŝ(e) = 1− Γ

1 + rm

(k̂int)
ζ

k̂int − e
, d̂(e) = k̂int − e (9)

where the expression of Γ and k̂int are given in appendix B. In particular, ∂ŝ
∂e ≤ 0 and ∂d̂

∂e ≤ 0.

3.4.1 The bank share

Proposition 7 states that the optimal debt structure is such that the optimal bank share ŝ(e) is non-

monotonic in the entrepreneur’s own equity, e. This is illustrated in figure 6, which plots ŝ(e) as a function

of e.14

14Parameter values corresponding to the solution depicted in figure 6 are identical to those of the baseline calibration explored
in the next section; see table 1 for details.
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Figure 6: Optimal bank share of total debt.

To understand why the banking share of liabilities has a non-monotonic relationship with internal funds,

it is useful to note that the derivative of the objective function of the entrepreneur with respect to the share

of bank debt, s = b
b+m , using equation (8), is given by:

∂E(π̃)

∂s
= (1− χ)π

(
φ
)
f(φ)

(
−
∂φ

∂s

)
− (rb − rm)

The first term in this expression, (1 − χ)π
(
φ
)
f(φ)

(
−∂φ∂s

)
, represents the marginal decrease in expected

liquidation losses associated with an increase in the share of bank borrowing, keeping total borrowing fixed.

Note that
∂φ

∂s < 0, that is, an increase in bank borrowing keeping total borrowing fixed leads to a reduction

in expected liquidation losses, as previously discussed. The second term in this expression, (rb − rm),

represents the increase in lending costs associated with a marginal increase in bank borrowing, again keeping

total borrowing fixed. By borrowing one dollar more from banks and one less from markets, the firm incurs

an additional cost of (rb − rm) > 0.

When internal funds are sufficiently small (e < ẽ), the bank share is increasing in e because the bank

borrowing constraint binds at the optimal debt structure; an increase in e, by loosening the bank borrowing

constraint, will necessarily lead to more bank borrowing. The bank borrowing constraint itself is binding be-

cause, when e is small, marginal reductions in expected liquidation losses associated to more bank borrowing
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are large. In particular, when e < ẽ, any debt structure (b,m) ∈ SR(e) is such that:

(1− χ)π
(
φ
)
f(φ)

(
−
∂φ

∂s

)
> rb − rm.

Under this condition, at any debt structure, the marginal value of more bank debt is strictly larger than the

associated costs, rb − rm.The internal funds level ẽ in fact solves (rb − rm) = −(1 − χ)π
(
φ
)
f(φ)

∂φ

∂s , with

the right hand side is evaluated at s = sR,M and d = dR(sR,M , ẽ); see appendix B for details. However, note

that this need not imply that s = 1; even though the firm exhausts it bank borrowing capacity, it may still

find it profitable to borrow from the market.

Note that, as discussed previously, when the bank borrowing constraint is binding, bank debt is always

renegotiated by the firm, regardless of the realization of the productivity φ. In this case, the bank always

receives a fraction χ of the output produced by the firm. Thus, the optimal debt structure, when e is

sufficiently small, is such that the bank contract essentially has the feature of an equity contract. Namely,

the bank effectively agrees to receive a constant fraction of the firms’ output. This contract is beneficial to

the entrepreneur because it allows her to avoid very frequent liquidation, given her high leverage.

For a sufficiently large level of internal funds, e ≥ ẽ, the bank borrowing constraint becomes loose at the

optimal debt structure. This is the second case described in the proposition. In that case, the optimal debt

structure of the firm satisfies:

(1− χ)π
(
φ
)
f(φ)

(
−
∂φ

∂s

)
= rb − rm

The marginal benefits of bank and market lending are exactly equalized, and the optimal debt structure is

an interior point of the set SK(e). Expression (9) is the analytical solution to this first order condition; in

particular, it indicates that bank’s share of total debt is decreasing, as a function of internal funds. This

result comes from the fact that an increase in internal funds reduces the marginal impact of bank lending on

total expected liquidation losses; formally,
∂2φ

∂e∂s < 0. As internal funds increase, gains from bank borrowing

relative to market borrowing thin out, as the optimal leverage ratio falls and liquidation becomes less likely.

Note, additionally, that for a given level of internal funds e, the bank’s share of total borrowing is increasing

in rm.

3.4.2 Total borrowing

The second important result from proposition 7 is that total borrowing, d̂(e), is non-monotonic in own

equity e. This is reported in the two top panels of figure 7, which plot optimal bank borrowing b̂(e) and

optimal market borrowing m̂(e). The two middle panels of figure 7 plot total borrowing d̂(e) = b̂(e) + m̂(e)
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Figure 7: Optimal borrowing and investment policies.

and total investment k̂(e) = e + b̂(e) + m̂(e) as a function of e, while the two bottom ones report leverage

ratios.

For small values of e, total borrowing is increasing, so that total assets are also increasing. Like in

the case of the bank share, total borrowing is increasing for small values of internal funds because in that

range, the bank borrowing constraint binds. Total borrowing increases mostly as a result of the increase in

bank borrowing associated to the loosening of the borrowing constraint. In that range of e, most borrowing

originates from the bank. Moreover, since total borrowing increases with e, total assets also do. In that

region, the leverage ratio of the firm is increasing with e.

On the other hand, for ẽ ≤ e ≤ e∗, borrowing falls one for one with equity, so total assets are constant

and equal to k̂int. On this range, for every dollar increase in own equity, the firm chooses to retire one dollar

of bank debt; the amount of borrowing from market lenders, on the other hand, is unchanged. The leverage

ratio of the firm is now decreasing with internal funds. Using the results of proposition 7, the amount of
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market borrowing is constant, and given by:

∀e, m̂(e) =
Γ(χ)

1 + rm
(k̂int)

ζ

This result, as others reported in this section, does not depend on whether there is full depreciation of assets

or not; that is, when δ = 1, total borrowing is still constant over a certain range of equity. However, there

is no simple analytical characterization of borrowing and the debt structure in that case.

Summarizing, I have shown that the model outlined in section 2, in which debt structure is the result of

a trade-off between bank flexibility and the relative cost of funds of lenders, predicts a broadly decreasing

relationship between a entrepreneur’s internal funds e and the share of bank debt employed in her optimal

debt structure. The bank share is in fact increasing for the very smallest firms, after which the entrepreneur

retires bank debt as her internal ressources increase, first progressively, then – as e reaches the threshold e∗

– abruptly switching to market debt only.

I next turn to analyzing the dependence of debt structure and borrowing on other factors than internal

funds, and in particular, the cost of funds of borrowers, and the distribution of entrepreneur’s productivity

shocks, F (.).

4 Comparative statics of the debt structure

In this section, I ask how the optimal debt structure of firms changes in response to changes in funda-

mentals. I focus, in particular, on the effects of changes in the cost of funds of lenders, rb and rm, and of

changes in the distribution of productivity shocks F (.).

While I provide some general results on these comparative statics, most of the discussion focuses on the

comparison between numerical solutions to the model. In all calibrations, the baseline case is as follows.

First, I assume full depreciation, δ = 1. Second, I choose a degree of returns to scale of ζ = 0.92, in line with

the gross output estimates of Basu and Fernald (1997) for the US manufacturing sector. Third, I use the

estimates of Bris et al. (2006) for the gap between pre and post-bankruptcy asset values. Their mean and

median estimates of post- to pre-bankruptcy asset values, are, respectively, 38.0% and 80.0%; I choose an

intermediate value and set χ = 0.60, implying a post- to pre-bankruptcy value of assets of 60.0%. Finally,

I assume that φ follows a Weibull distribution.15 In the baseline calibration, the location parameter of the

distribution is normalized so that a firm with internal finance e = 100 is indifferent between borrowing from

15Unlike the log-normal distribution commonly used in the literature, this distribution has the advantage of having an
increasing hazard rate, in accordance with assumption 1.
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Figure 8: The effect of an increase in the spread rb − rm on bank share’s of total debt. The black line is the bank share in the
baseline calibration; the grey line is the bank share after an increase in the spread rb − rm.

the market and using only its internal funds to invest in physical assets. Finally, in the baseline calibration,

the cost of funds of bank and market lenders are set to rm = 5% and rb = 6%, respectively. This calibration

is summarized in 1, along with the other calibrations discussed in this section.

4.1 The effect of an increase in banks’ cost of lending

I first ask what patterns of change in debt structure the model predicts, when banks’ cost of funds increase

relative to market lenders’. The following proposition provides a general result on the effect of an increase

in the spread rb − rm.

Proposition 8 (The threshold between mixed and market finance) The threshold e∗ is a decreas-

ing function of the lending cost of banks rb and of the spread rb − rm.

This proposition implies that any reduction in the spread between bank and market will induce a switch

from mixed to market finance for firms with sufficiently high e. Specifically, for any (rb, rm) and (r̂b, r̂m)

such that rb − rm < r̂b − r̂m, all firms with e∗r̂b−r̂m < e < e∗rb−rm will choose a mixed debt structure under

the spread rb − rm, but will move to borrowing only from market lenders under the higher spread r̂b − r̂m.

To illustrate this, figure 8 reports the optimal bank share as a function of internal finance, in the baseline

case rm = 5% and rb = 6%, and in a case where r̂m = rm = 5% but r̂b = 7%. The red line corresponds

to the optimal debt structure under the high spread, while the green line corresponds to the optimal debt

structure under the low spread. In this case, the increase in spread occurs because of an increase in banks’

cost of funds; the markets’ cost of funds, however is unchanged. For this reason, any firm with e > e∗rb−rm
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Figure 9: The effect of an increase in the spread rb − rm on borrowing. The black line corresponds to the baseline calibration;
the grey line corresponds to a higher lending spread (see table 1 for details on the calibrations used).

is unaffected by the change in borrowing costs. For firms with e < e∗rb−rm , several features of the change in

optimal debt structure are noticeable.

First, as indicated by proposition 8, the threshold for switching to bank finance decreases and conse-

quently, firms with a sufficently large internal funds switch to a debt structure with only market debt.

Second, for firms with internal finance below er̂b−r̂m , the main effect of the increase in spreads is a large

reduction in bank borrowing. This is visible in figure 9, which reports the borrowing policy functions of

firms under the low and high spread calibrations. Firms that are not at their bank borrowing constraint

reduce significantly there is very little change in market debt. In fact, market borrowing somewhat falls.

Constrained firms, however, experience a smaller reduction in bank credit. Market borrowing changes very

little. It increases slightly for firms that are not at their bank borrowing constraint, while, for firms whose

borrowing constraint tightens as a result of the increase in banks’ borrowing costs, it falls.

It is natural to ask whether the model predicts that a joint increase in the lending costs of both types of

lenders has similar consequences. Figures 13 and 14 in appendix C adress this question. There, I document

the effect of an increase of rm from 5% to 6% and of rb from 6% to 7%. Figure 13 corresponds to the

calibration reported under ”High cost levels (1)” in table 1. In this calibration, to keep things comparable

to the baseline case, I also reduce the location parameter of the productivity distribution in such a way that

the largest internal finance level is unchanged under the new calibration.16 In this case, the joint increase in

the level of borrowing costs leaves borrowing and the bank share almost completely unchanged. By contrast,

figure 14 reports the debt structure when the location parameter of productivity is kept fixed, according to

the calibration reported under ”High cost levels (2)” in table 1. In this case, the maximum level of internal

16That is, the level of internal finance at which firms are indifferent between borrowing from the market and lending risk-free.
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Figure 10: The effect of a fall in average productivity on borrowing. The black line corresponds to the baseline calibration; the
grey line corresponds to lower average productivity (see table 1 for details on the calibrations used).

finance falls substantially, as the unconstrained size of the entrepreneur’s project declines (see lemma 2). As

a result, borrowing in both types of debt falls. Particularly, overall borrowing falls for the largest firms – in

contrast with both fact 3 and with the model’s prediction in the case of an increase in the spread rb − rm.

This exercise suggests that while joint increases in lenders’ costs of fund depresses the level of overall

borrowing, it does not alter its composition. This is furthermore true across the spectrum of internal finance

levels. Some degree of asymmetry in the increase in lending costs, that is, some variation in the spread

rb − rm, is thus needed to account for changes in the composition as well as the scale of borrowing in the

cross-section of firms.

4.2 The effect of changes in the distribution of firms’ productivity

I next turn to discussing the relationship between the distribution of productivity shocks, F (.), and the

optimal debt structure.

4.2.1 A fall in average productivity

I first look at the impact of a fall in the average productivity of firms, E(φ). Specifically, I consider a

change in the location and scale parameters of Weibull distribution such that average productivity, E(φ),

falls by 1% relative to the baseline calibration, while the second moment of productivity is unchanged.17

The resulting changing in the optimal debt structure is reported in figure 10.18 Much as a joint increase

in lenders’ cost of funds, the fall in average productivity has similar effects on borrowing both from banks

and from the markets: optimal borrowing in both types of debt is strictly smaller, at all levels of internal

17The corresponding calibration is reported in table 1, under the column ”Low average productivity”.
18Figure 15 in appendix C reports changes in borrowing in more detail.
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Figure 11: The effect of an increase in the dispersion of productivity. The black line corresponds to the baseline calibration;
the grey line corresponds to higher productivity dispersion (see table 1 for details on the calibrations used).

funds. Note, additionally, that the switching threshold e∗ moves to the left, since the maximum size of the

firm also falls. As a result, the change in average productivity has a pure scale effect, but does not alter the

composition of debt across firms, similarly to joint changes in lending costs.19

4.2.2 An increase in the dispersion of productivity

Next, I look at the impact of an increase in the second central moment of the distribution of productivity,

keeping the first moment constant. In figure 11, I report the result of increasing the coefficient of variation

of the distribution by 10 %, relative to the baseline calibration, while keeping the first moment constant.

The corresponding calibration is reported in table 1, under the column ”High productivity dispersion”.

Note that, contrary to the change in the first moment of the distribution, this change does not affect the

maximum size of the firm, so that the range of relevant levels of internal funds for the firm is unchanged.

The result of the increase in dispersion is different for market and bank lending: market lending decreases

uniformly, across values of e, while bank debt is relatively unchanged. As higher dispersion generically

increases expected liqudation losses, the threshold for switching towards market finance increases. The

model thus suggests that an increase in the dispersion of productivity should lead to a shift toward more

bank-financing for firms with small and intermediate levels of internal finance, mirroring the results on debt

composition obtained for the spread between bank and market finance. Note, however, that in both cases,

total borrowing and total investment of firms is lower than in the baseline calibration.

19This point is made even clearer in figure 15, which reports the optimal bank share as a function of the level of internal
funds. This schedule shifts left, but its shape is unchanged.
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Summarizing, I have shown the comparative statics of the optimal debt structure are markedly different

depending on whether one focuses on parameters that affect symmetrically the two types of debt (common

lending costs, average productivity), or on parameters that have asymmetric effects on their costs or on their

return to the firm (the lending spread, productivity dispersion). With a higher spread or higher productivity

dispersion, small firms borrow less but remain bank-dependent. Medium-sized firms are more likely to use

purely market-financed debt structures with a higher spread, while they are less likely to do to so with

higher productivity dispersion. These parameters thus have effects on both borrowing scale and borrowing

composition. By contrast, higher lending costs and lower average productivity are associated with changes

in the scale of borrowing, but not in borrowing composition.

5 An empirical assessment of the model

I now relate the findings of sections 4 and 5 with empirical evidence on the debt structure of US firms. In

particular, I ask to what extent the cross-sectional relationship between size and debt composition described

in section 4 is borne out in the data, and explore whether the comparative statics of section 5 can help shed

light on changes in debt structure of US firms in recent recessions.

5.1 Data

I focus on data from the Quarterly Financial Report of Manufacturing firms (QFR). The QFR is a survey

of manufacturing firms that reports aggregates of balance sheets and income statements across size bins. The

QFR’s measure of size is assets at book value. One important advantage of the QFR is that it contains

information on firms of all sizes, and in particular smaller, privately owned companies. Moreover, it is a

quarterly dataset. The drawback is that data is only available in semi-aggregated form. An alternative is to

use firm-level data, such as Compustat. The Compustat sample contains more detailed information on all

debt instruments used by firms. It is also not restricted to manufacturing firms. However, it contains only

annual balance sheet information for publicly traded companies. Thus, it excludes most smaller, non-traded

companies, and has lower frequency of observation.20 More information on the QFR, as well as a description

of the construction of the data used below, is given in appendix D.2.

20The Compustat sample is focus of the empirical work of Rauh and Sufi (2010), for cross-sectional variation, and Adrian,
Colla, and Shin (2012) for business-cycle changes. My results are in line with their findings, and extend them to the sample of
private and smaller firms included in the QFR.

34



1 2 3 4 5 6 7 8
0

20

40

60

80

100

Asset size class

%
 o

f 
fi

n
a
n

c
ia

l 
li

a
b

il
it

ie
s

Current financial liabilities

 

 

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Asset size class

%
 o

f 
fi

n
a
n

c
ia

l 
li

a
b

il
it

ie
s

Total financial liabilities

 

 

Bank loans

Non−bank credit

Bank loans

Non−bank credit

(a) The composition of debt in the cross-section
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(b) The debt structure of small firms during recent recessions
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Figure 12: Key features of the debt structure of firms in the QFR. In figure 12(a), the left panel graphs current liabilities: the
ratios CB/CFIN (bank loans, green line) and CNB/CFIN (non-bank credit, red line). The right panel plots total liabilities:
the ratios TB/TFIN and TNB/TFIN . In figures 12(b) and 12(c), the right panels plot current liabilities and the left panels
plot total liabilities; see text for details. Series in figures 12(b) and 12(c) are smoothed with a 2 by 4 MA smoother before
computing growth rates.
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5.2 The composition of debt in the cross-section

Figure 12(a) illustrates the differences in debt structure between small and large firms, by reporting the

average bank share of total (bank and non-bank) debt across different asset size bins. Roughly 70% of the

debt of small firms is held in the form of bank loans, while 80% of the debt of the largest firms is held in

the form of non-bank credit. Of these 80%, on average over the last 5 years, 60% were held in the form of

commercial paper and bonds. This holds whether one focuses on total or current debt. Thus, the majority

of the debt of small firms are bank loans, while the majority of the debt of large firms are non-bank credit

instruments. Note, however, that the relationship between size and the bank share is not strictly monotonic;

for the very smallest firms, the bank share is slightly increasing in size.

In the model, the bank share is, broadly speaking, high for entrepreneurs with little internal funds, and

low for firms with large internal funds. However, for firms with internal funds below e ≤ e∗, the bank share

is non-monotonic, but overall relatively large, and in fact sufficiently so for the bank borrowing constraint to

bind for entrepreneurs with very small e. When e > e∗, on the other hand, any debt issuance takes the form

of market borrowing, as entrepreneurs find that the costs associated to borrowing from banks completely

outweigh benefits of debt flexibility.

This paints a picture which is, at first glance, consistent with the cross-sectional debt structure reported

in figure 12(a). However, the model predicts a relationship between internal finance e and the bank share of

liabilities, while that figure relates total assets to the bank share of liabilities. As discussed previously, the

model does not predict a strictly monotonic relationship between size k(e) = e + b̂(e) + m̂(e) and internal

funds e. One cannot therefore infer from the predicted relationship between internal funds and the bank

share, that a similar link between total assets and the bank share exists in the model.

This need not be viewed as a shortcoming of the model. First, in this model b and m represent new

debt issuance, which are to be retired after a single period. In particular, the entrepreneur does not inherit

legacy assets or long-lived debt that needs to be serviced. In reality, much of the balance sheet of the firms

in the sample analyzed in section 5 is made up of liabilities maturing over long periods of time. It is also

this lack of history-dependence which accounts for the fact that above the level e∗, the firm switches to a

debt structure entirely composed of market borrowing. On the face of it, this is not a realistic feature of the

model, but it should be interpreted as indicating that new debt issuances will take the form of market debt

once internal funds have reached the threshold e∗.

Second, the assumption of risk neutrality is crucial to obtain the result that total borrowing is constant.

With risk aversion, a marginal increase in internal funds would not necessarily need to a marginal fall in bank

borrowing, to the extent that bank lending not only reduces expected liquidation losses, but also reduces
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the variance of the payoff to the entrepreneur. In a general version of the model with risk aversion, the fact

that borrowing is constant on a range of levels is internal funds is likely to disappear.

Third, the patter of figure 12(a) concerns the complete distribution of firms across asset sizes. The

fact that firms are distributed across different asset sizes may originate from other reasons than initial

differences in internal funds. Besides history-dependence, one source of firm size heterogeneity that has

received particular attention in the literature are differences in the (average) marginal productivity of capital,

E(φ). Firms with different long-run productivity levels both operate at different scales, and face different

borrowing constraints. Taking these long-run differences into account in the model may help shed better

light on the asset size / debt structure link, as opposed to the internal funds / debt structure link.

5.3 Understanding cyclical changes in debt structure

The comparative statics reported in section 4 emphasizes that size is a key determinant of the relationship

between debt structure and aggregate conditions. In studying how debt structure changed during the most

recent recessions, I will therefore focus on the differences between small and large firms. For creating

aggregates of small and large firms, I directly use the fixed bins provided by the QFR. I define small firms

as those with 1bn$ in assets or less (the first seven size bins of the QFR sample; see table 2), and large firms

as those with more than 1bn$ in assets (the last bin of the QFR sample).21

The series reported in figures 12(b) and 12(c) show averages of cumulative growth rates of total financial

liabilities of small and large firms, broken down between bank and non-bank debt, over the three recessions

in the sample. Cumulative growth rates are computed around NBER recession troughs. I focus on a window

of 1 year before the recession trough to 2 years after the recession trough.22

Figure 12(b) graphs the growth rate in bank loans and non-bank credit for small firms.23 For these firms,

outstanding bank debt falls and non-bank debt does not change, resulting in a fall in total liabilities. This

holds regardless of whether one focuses on total liabilities (left panel) or only current liabilities (right panel).

Figure 12(c) reports the same series as figure 12(b), for ”large” firms (the last asset size bin of the QFR).

The left panel of figure 12(c) shows that for large firms, total outstanding banks debt falls, while non-bank

21This definition of small and large firm categories is transparent, but does not adress the fact that, because of trend growth
in the book value of assets, large firm bins become more populated over time. In appendix D.3, I consider an alternative
definition of small and large firm groups, proposed by Gertler and Gilchrist (1994), which keeps the fraction of total sales
accounted for by the small firm group category constant. I show that these facts, which contrast changes in debt structure of
small and large firms, are robust to this alternative definition of size classes.

22Appendix D.4 reports the levels of all the series used.
23For each type of liability, the growth rate reported is weighted by its share as a fraction of total liabilities at the recession

trough. For example, for total bank loans, the series reported is the average of γTB,t = TB0
TB0+TNB0

(
TBt
TB0

− 1
)

over the three

recessions, where the time index is 0 for the quarter corresponding to the trough of a recession. Weighting the growth rates in
this fashion conserves additivity: for example, for small firms, γTB,t + γTNB,t = γTFIN,t, where γTFIN,t is the growth rate of
total financial liabilities of small firms around the recession trough.
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debt increases.24 Note, importantly, that this pattern is driven by new and/or long-dated liabilities. Indeed,

no increase in non-bank current liabilities (those maturing in one year or less) is visible, as reported in the

right panel of figure 12(c).

Since this sample contains only three recessions, one of which, 2007-2009, was substantially larger in

magnitude than the others, it is natural to ask whether the patterns documented here are driven mostly by

the Great Recession. This question is adressed in appendix D.3.3, where I report figures similar to 12(b)-

12(c), excluding the last recession. There are two differences: first, the overall reduction in bank lending is

smaller over these recessions, both for small and large firms; second, substitution towards non-bank credit

for large firms is more muted than when including the last recession. It is during the 2007-2009 recession

that the changes in the debt structure of large firms were most different from changes in the debt structure

of small firms.

The comparative statics of section 6 indicate that only variation in the lending spread and in productivity

dispersion can account for changes in both the scale and composition of borrowing. Moreover, increases in

productivity dispersion are associated with a substitution toward bank borrowing. The model thus suggests

that the patterns documented in figures 12(b)-12(c) are a telltale sign of an asymmetric change in banks’

lending cost, an result implicitly underlying much of the empirical work on the bank lending channel, such

as for example Kashyap, Stein, and Wilcox (1993) and Gertler and Gilchrist (1994).

There is some tension between the model and the patterns of debt substitution for large firms documented

in figure 12(c). In the model, in response to an increase in the spread, total borrowing for these firms falls;

the substitution between bank and market debt is less than one for one. Figure 12(c), on the other hand,

suggests that the substitution of bank for market credit is at least one for one. As discussed section 5,

it is likely that, in the data, the magnitude of debt substitution for large firms is overstated by upwards

reclassification. Additionally, the model omits important alternative forms of financing than could also serve

as substitutes to bank debt, in particular short-term instruments such as commercial paper, which is an

important channel of adjustement for firms in times of tight money (see Acharya and Schnabl (2010)), and

are therefore likely to account for a share of substitution away from bank debt.25

24Note that, since the increase in non-bank debt is larger than that of bank debt, total financial liabilities are in fact slightly
increasing. The increase in total assets may be the artifact of the accumulation of firms in the larger size bins over time; in fact,
as reported in appedix D.3, total liabilities for large firms do not increase for alternative definitions of the large firm category,
but the debt substitution pattern remains.

25Because commercial paper is no separated from other non-bank liabilities for all asset size classes in the QFR, it was included
in non-bank liabilities in the construction of the previous graphs. Excluding commercial paper from non-bank liabilities does
not alter these graphs substantially; see appendix D.3 for details.
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6 Conclusion

In this paper, I proposed a static model of the joint determination of investment and debt structure for

a firm with access to both bank debt and market debt. The model builds on the trade-off theory of the

debt structure, according to which a firm’s debt structure reflects a trade-off between the flexibility afforded

by bank debt in times of financial distress, and the higher marginal costs of lending of banks. The model

extends existing studies by allowing the entrepreneur to choose the scale of the project she operates, and

thus explicitly modelling the link between investment and debt structure choices.

I showed that this model is consistent with the fact that small firms borrow mostly from banks, while the

debt structure of large firms consists predominantly of market debt. Additionally, the model predicts that

in response to an increase in banks’ cost of funds, relative to market lenders’, firms with sufficient internal

finance should optimally substitute their bank liabilities for market debt, while firms with less access to

internal finance reduce bank borrowing without increasing market liabilities. This pattern is consistent with

changes in the debt structure of US firms, small and large, over the last three recessions, and particularly

after the 2007-2009 recession.

This paper suggests three avenues for future research. First, the model emphasizes the importance of

lenders’ costs of funds rb and rm as determinants of the debt structure in the cross-section, and suggests

that an increase in the spread rb − rm may account well for changes in the debt structure of US firms. An

important question is then whether it is possible to construct an empirical counterpart to this spread, and

whether it changes substantially over the business cycle. As emphasized by the model, interest rates on loans

or bond yields are clearly only upper bounds on these costs since they incorporate premia (liquidation risk

premia, in the case of the model). Second, the model postulates that bank debt is senior to market debt.

While, empirically, bank debt tends to be placed on top of firms’ priority structures, the rationale for this

a subject of debate in much of the literature on debt heterogeneity; in fact, in some setups, such as Rajan

(1992), the optimal debt structure makes bank debt junior to non-monitored debt. In the context of the

model developed in this paper, numerical results suggest the alternative priority structure, whereby bank

debt is junior, would not be preferred by the firm, if it were it be given the ability to choose. An important

question is whether this result can be generally established, and in particular whether it always holds for any

level of internal funds.26 Third, because of the generality of the results on set of feasible debt structures, the

model I developed in this paper can be used to study the dynamic implications of debt heterogeneity for firm

investment and growth, as well as to trace out the aggregate effects of shocks on borrowing and investment

26Hackbarth, Hennessy, and Leland (2007), in the context of their model with fixed investment size, prove that bank debt
seniority is generally preferable.

39



in an economy with different types of financial institutions.27 I leave all three topics to future research.
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A Appendix to section 2

A.1 Proof of proposition 1

Proof of proposition 1. Note first that the payoff to the entrepreneur under the optimal restructuring

offer, given by equation (7), can be rewritten as:

πR(φ) = π(φ)−min(χπ(φ), Rb)−Rm. (10)

First, assume that the repayments promised to the bank and market lenders satisfy:

Rb
χ
>

Rm
1− χ

. (11)

Since:

Rm +Rb = χ
Rb
χ

+ (1− χ)
Rm

1− χ
,

condition (11) implies that:

Rb
χ
> Rm +Rb >

Rm
1− χ

.

The threshold Rb
χ is the one where restructuring becomes profitable relative to repayment for the en-

trepreneur, while the threshold Rm +Rb is the ”natural” bankrupcy threshold – the one that would obtain

absent the possibility of private workouts with the bank. Given condition (11), consider the three following

possibilities:

• if π(φ) ≥ Rb
χ , using equation (10), the payoff of the entrepreneur under restructuring is indentical to

that under repayments; that is, the firm cannot lower its repayments in a private workout. Moreover,

as π(φ) > Rb
χ > Rm + Rb, repayment is preferable to bankrupcy. Thus, the entrepreneur chooses full

repayment.

• if Rb
χ > π(φ) ≥ Rm

1−χ , the entrepreneur prefers restructuring to repayment since:

πR(φ) = π(φ)− χπ(φ)−Rm > π(φ)−Rb −Rm.
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Moreover, the entrepreneur also prefers restructuring to bankrupcy, since when π(φ) > Rm
1−χ ,

πR(φ) > 0 = πB(φ).

Thus, the entrepreneur chooses to restructure her debt with the bank,

• if Rm
1−χ > π(φ), the entrepreneur now prefers bankrupcy to restructuring, as the gains achieved under

restructuring would still not be sufficient to repay market creditors in full and end up with a strictly

positive amount of cash on hand. Furthermore, since under condition (11), π(φ) < Rm
χ < Rm + Rb,

the entrepreneur also prefers bankrupcy to repayment. Thus, in this case, the entrepreneur chooses to

file for bankrupcy.

This establishes the first part of the proposition on the structure of R-equilibria. Additionally, note that

in this type of equilibrium, the payoff to market lenders under bankrupcy is always 0, because bankrupcy

occurs only when π(φ) < Rm
1−χ <

Rb
χ .

Next, consider the case:

Rb
χ
≤ Rm

1− χ
, (12)

which implies that:

Rb
χ
< Rm +Rb <

Rm
χ
.

Under condition (12), consider the three following possibilities:

• if π(φ) ≥ Rm + Rb, repayment is preferable to bankrupcy. Moreover, because in this case π(φ) ≥

Rm + Rb >
Rb
χ , restructuring cannot lead to any gains for the entrepreneur. Thus, the entrepreneur

chooses repayment.

• if Rm + Rb > π(φ) ≥ Rb
χ , bankrupcy is preferable to repayment, and moreover, restructuring still

cannot achieve any gains relative to repayment; thus, the entrepreneur chooses bankrupcy.

• if Rb
χ > π(φ), restructuring can now achieve gains relative to repayment. However, because Rm

1−χ >

Rb
χ > π(φ) the payoff under restructuring satisfies:

πR(φ) = (1− χ)π(φ)−Rm < 0 = πB(φ).

Thus, the entrepreneur still chooses bankrupcy.

This establishes the second part of the proposition. Additionally, note that unde the seniority structure

assumed, bankrupcy payments to market lenders are χπ(φ)−Rb if Rm +Rb > π(φ) ≥ Rb
χ , and 0 otherwise.
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In the latter case, this is obviously smaller than Rm. In the former case, since bankrucpy only occurs when

π(φ) < Rm +Rb, we have that

π(φ) < Rm +Rb <
Rm +Rb

χ
,

so that:

χπ(φ)−Rb < Rm.

Therefore, under the assumed priority structure, market lenders never obtain a repayment under bankrupcy

that exceeds the promised repayment Rm.

A.2 Debt pricing

In this section, I describe the payoff and the expected gross return functions of lenders that were omitted

from the main text.

A.2.1 Payoff functions

Given the description of the equilibria in proposition 1, the payoffs to the lenders and the entrepreneur

can be expressed as a function of φ. I denote them R̃b(φ) and R̃b(φ) for the bank and market lenders,

respectively, and π̃(φ) for the entrepreneur.

In B-equilibria
(
Rb
χ < Rm

1−χ

)
, payoffs are given by:

R̃b(φ) =

 Rb if Rb
χ ≤ π(φ)

χπ(φ) if π(φ) < Rb
χ

R̃m(φ) =


Rm if Rm +Rb ≤ π(φ)

χπ(φ)−Rb if Rb
χ ≤ π(φ) < Rm +Rb

0 if π(φ) < Rb
χ

π̃(φ) =

 π(φ)−Rb −Rm if Rm +Rb ≤ π(φ)

0 if π(φ) < Rm +Rb
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In R-equilibria
(
Rb
χ ≥

Rm
1−χ

)
, payoffs are given by:

R̃b(φ) =

 Rb if Rb
χ ≤ π(φ)

χπ(φ) if π(φ) < Rb
χ

R̃m(φ) =

 Rm if Rm
1−χ ≤ π(φ)

0 if π(φ) < Rm
1−χ

π̃(φ) =


π(φ)−Rb −Rm if Rb

χ ≤ π(φ)

(1− χ)π(φ)−Rm if Rm
1−χ ≤ π(φ) < Rb

χ

0 if π(φ) < Rm
1−χ

A.2.2 Gross expected returns

I now turn to the gross expected return functions of lenders. Throughout, I use the same change of

variables as in the text:

b = ds

m = d(1− s)

d thus denotes the total amount borrowed, s denotes the fraction borrowed from the bank, and 1−s denotes

the fraction borrowed from market lenders; clearly s ∈ [0, 1] and d ≥ 0. I use the notation:

Ẽi(Rb, Rm; d, s, e) = E [Πi (e, ds, d(1− s), Rb, Rm)]

for the associated gross return of lenders.

Lemma 3 (Gross expected return functions) The gross expect return of bank lenders is given by:

Ẽb(Rb; e+ d) =

 Rb if Rb
χ < (1− δ)(e+ d)

χ
(
(e+ d)ζG(φb) + (1− δ)(e+ d)

)
if Rb

χ ≥ (1− δ)(e+ d)

where:

φb ≡
Rb − χ(1− δ)(e+ d)

χ(e+ d)ζ
and G(x) ≡ x(1− F (x)) +

∫ x

0

φdF (φ)
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When Rb
χ ≥

Rm
1−χ , the gross expected return of market lenders is given by:

Ẽm,R(Rm; e+ d) =

 Rm if Rm
1−χ < (1− δ)(e+ d)

(1− χ)
(
(e+ d)ζI(φm,R; e+ d) + (1− δ)(e+ d)

)
if Rm

1−χ ≥ (1− δ)(e+ d)

where:

φm,R ≡
Rm − (1− χ)(1− δ)(e+ d)

(1− χ)(e+ d)ζ
and I(x; e+ d) ≡ x(1− F (x))− F (x)(1− δ)(e+ d)1−ζ .

When Rb
χ < Rm

1−χ , the gross expected return of market lenders is given by:

Ẽm,B(Rb, Rm; e+ d) =


Rm if Rm +Rb < (1− δ)(e+ d)

(e+ d)ζM(φm,B ; e+ d) + (1− δ)(e+ d) if Rm +Rb ≥ (1− δ)(e+ d)

−Ẽb(Rb; e+ d)

where:

φm,B ≡
Rb +Rm − (1− δ)(e+ d)

(e+ d)ζ
and M(x; e+ d) ≡ (1− χ)I(x; e+ d) + χG(x).

Proof. In the case Rb
χ < Rm

1−χ , the entrepreneur never defaults when (1 − δ)(e + d) > Rm + Rb, since in

that case, the lower bound on her output is greater than the sum of her promised repayments. Expected

repayments for the bank and market lenders are therefore equal to promised repayments Rb and Rm. When

Rb
χ < (1−δ)(e+d) ≤ Rm+Rb, there may be default on market debt, but even in liquidation bank debt will be

repayed in full, so that Ẽb = Rb. Similarly, in the case Rb
χ < Rm

1−χ , there is no default when (1−δ)(e+d) > Rb
χ ,

and no default on market debt if Rm
1−χ < (1 − δ)(e + d) ≤ Rb

χ . The rest of the expressions follow from the

expressions of the payoff functions.

A.2.3 Zero profit conditions

Using the results of lemma 3, the zero profit condition (ZPC) of bank lenders can be written as:

G̃(Rb; e+ d) =
(1 + rb)ds

χ(e+ d)ζ
, with G̃(Rb; e+ d) ≡ Ẽb(Rb; e+ d)

χ(e+ d)ζ
. (13)

Lemma 4 (The zero profit condition of bank lenders) Let (d, s, e) be given. Then, there exists a
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unique solution Rb(d, s, e) to the ZPC of bank lenders, equation (13), if an only if,

0 ≤ (1 + rb)ds

χ(e+ d)ζ
≤ E(φ) + (1− δ)(e+ d)1−ζ . (14)

Moreover, Rb(d, s, e) is given by:

Rb(d, s, e) =


(1 + rb)ds if 0 ≤ (1+rb)ds

χ(e+d)ζ
< (1− δ)(e+ d)1−ζ

χ(1− δ)(e+ d) if (1− δ)(e+ d)1−ζ ≤ (1+rb)ds
χ(e+d)ζ

+χ(e+ d)ζG−1 (yG(d, s, e)) ≤ E(φ) + (1− δ)(e+ d)1−ζ

Here, yG(d, s, e) ≡ (1+rb)ds−χ(1−δ)(e+d)
χ(e+d)ζ

, and G−1(.) denotes the inverse of G(.), defined on [0,E(φ)] with the

abuse of notation that G−1(E(φ)) = +∞.

Proof. Note that G̃(.; e+d) is strictly increasing on R+, that G̃(0; e+d) = 0 and limRm→+∞ G̃(Rm; e+d) =

E(φ) + (1− δ)(e+ d)1−ζ . Similarly, G(.) is strictly increasing on R+, G(0) = 0, and limx→+∞G(x) = E(φ).

Likewise, in the case Rb
χ ≥

Rm
1−χ , the zero profit condition of market lenders can be written as:

Ĩ(Rb; e+ d) =
(1 + rm)d(1− s)
(1− χ)(e+ d)ζ

, with Ĩ(Rb; e+ d) ≡ Ẽm,R(Rm; e+ d)

(1− χ)(e+ d)ζ
. (15)

Lemma 5 (The zero profit condition of market lenders when Rb
χ ≥

Rm
1−χ) Let (d, s, e) be given.

Then, there exist exactly two solutions, Rm,l(d, s, e) ≤ Rm,L(d, s, e), to equation (15), if and only if,

0 ≤ (1 + rm)d(1− s)
(1− χ)(e+ d)ζ

≤ Î(e+ d) + (1− δ)(e+ d)1−ζ , (16)

where Î(e+ d) = I(φI(e+ d); e+ d) is the maximum of I(.; d+ e), attained at φI(e+ d), the unique (strictly

positive) solution to:

1− F (φI(e+ d))− f(φI(e+ d))
(
φI(e+ d) + (1− δ)(e+ d)1−ζ) = 0.

Moreover, Rm,l(d, s, e) is given by:

Rm,l(d, s, e) =


(1 + rm)d(1− s) if 0 ≤ (1+rm)d(1−s)

(1−χ)(e+d)ζ
< (1− δ)(e+ d)1−ζ

(1− χ)(1− δ)(e+ d) if (1− δ)(e+ d)1−ζ ≤ (1+rm)d(1−s)
(1−χ)(e+d)ζ

+(1− χ)(e+ d)ζI−1 (yI(d, s, e); e+ d) ≤ Î(e+ d) + (1− δ)(e+ d)1−ζ
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Here, yI(d, s, e) ≡ (1+rm)d(1−s)−(1−χ)(1−δ)(e+d)
(1−χ)(e+d)ζ

, and I−1(.; e+ d) denotes the mapping from
[
0, Î(e+ d)

]
to

[0, φI(e+ d)] such that I(I−1(y; e+ d); e+ d) = y, ∀y ∈
[
0, Î(e+ d)

]
.

Proof. Note that Ĩ(0; e + d) = 0 and limR→+∞ Ĩ(R; e + d) = 0. Moreover, ∂Ĩ
∂Rb

= 1
(1−χ)(e+d)ζ

> 0

when Rb < (1 − χ)(1 − δ)(e + d)1−ζ , so that Ĩ(., e + d) is increasing in Rb on that range. For Rb ≥

(1 − χ)(1 − δ)(e + d)1−ζ , note that ∂Ĩ
∂Rb
≥ 0, if and only if, h(φm,R) =

f(φm,R)
1−F (φm,R) ≤

1
φm,R+(1−δ)(e+d)1−ζ

,

with φm,R defined as in lemma 3. Fix e and d and let ∆(x) = h(x) − 1
x+(1−δ)(e+d)1−ζ

. h is strictly

increasing by assumption 1. As the sum of two strictly increasing functions, ∆ is therefore strictly increasing

on ]0; +∞[. Moreover, ∆(0) = − 1
(1−δ)(e+d)1−ζ

and limx→+∞∆(x) = limx→+∞ h(x). Since h(0) = 0 (as

f(0) = 0 by assumption 1) and h is strictly increasing, limx→+∞ h(x) > 0. Thus ∆(x) has a unique

strictly positive root at φm,R = φI(e + d). In turn, because φm,R is a strictly increasing function of Rm,

R̂I(e + d) ≡ (1 − χ)
(
φI(e+ d)(e+ d)ζ + (1− δ)(e+ d)

)
is the global maximum of Ĩ(.; e + d). There are

moreover no local maxima, so that Ĩ(.; d, e) is strictly increasing to the left of R̂I(e+d) and strictly decreasing

to the right. (Note however that I(.; e+ d) and Ĩ(.; e+ d) need not be concave). This proves that there are

exactly two solutions R̃m,l(d, s, e) ≤ R̂I(e+d) ≤ R̃m,L(d, s, e) to equation (15) under the conditions given in

the lemma. The expression for Rm,l(d, s, e) follows from recognizing that, for the same reasons as Ĩ(.; e+ d),

I(.; e+ d) is strictly increasing on [0, φI(e+ d)] and strictly decreasing thereafter.

Finally, when Rm
1−χ > Rb

χ , when the zero profit condition of the bank holds, the zero profit condition of

market lenders can be rewritten as:

M̃(Rb +Rm; e+ d) =
(1 + rm(1− s) + rb)d

(e+ d)ζ
, (17)

where:

M̃(R; e+ d) =


R

(e+d)ζ
if R < (1− δ)(e+ d)

M(φm,B ; e+ d) + (1− δ)(e+ d)1−ζ if R ≥ (1− δ)(e+ d)

and φm,B ≡ R−(1−δ)(e+d)
(e+d)ζ

.

Lemma 6 (The zero profit condition of market lenders when Rb
χ < Rm

1−χ) Let (d, s, e) be given.

Then, there exist exactly two solutions, Rl(d, s, e) ≤ RL(d, s, e), to equation (17), if and only if,

χE(φ) + (1− δ)(e+ d)1−ζ ≤ (1 + rm(1− s) + rbs)d

(e+ d)ζ
≤ M̂(e+ d) + (1− δ)(e+ d)1−ζ , (18)

where M̂(e+ d) = M(φM (e+ d), e+ d) is the maximum of M(.; e+ d), attained at φM (e+ d) > φI(e+ d),
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which is the unique (strictly positive) solution to:

1− F (φM (e+ d)− (1− χ)f(φM (e+ d))
(
φM (e+ d) + (1− δ)(e+ d)1−ζ) = 0.

There exists exactly one solution Rl(d, s, e) to equation (17), if and only if:

0 ≤ (1 + rm(1− s) + rbs)d

(e+ d)ζ
< χE(φ) + (1− δ)(e+ d)1−ζ ,

Moreover, Rl(d, s, e) is given by:

Rl(d, s, e) =


(1 + rm(1− s) + rbs)d if 0 ≤ (1+rm(1−s)+rbs)d

(e+d)1−ζ
< (1− δ)(e+ d)1−ζ

+(1− δ)(e+ d) if (1− δ)(e+ d)1−ζ ≤ (1+rm(1−s)+rbs)d
(e+d)1−ζ

(e+ d)ζM−1 (yM (d, s, e); e+ d) ≤ M̂(e+ d) + (1− δ)(e+ d)1−ζ

Here, yM (d, s, e) ≡ (1+rm(1−s)+rbs)d−(1−δ)(e+d)
(e+d)ζ

, and M−1(.; e + d) denotes the mapping from
[
0, M̂(d+ e)

]
to [0, φM (e+ d)] such that M(M−1(y; e+ d); e+ d) = y ∀y ∈

[
0, M̂(e+ d)

]
.

A.3 The lending menu in the general case

This subsection contains the proof of proposition 2. This proposition states that the set S(e) can be

separated into two subsets, S̃R(e) and S̃B(e). S̃K(e) roughly correspond to debt structures associated with

dominating contracts with Rb
χ ≥

Rm
1−χ , while S̃K(e) corresponds to debt structures associated with dominating

contracts such that Rb
χ < Rm

1−χ . The main difficulty of this proof is that when a debt structure (d, s) is such

that L(d, s, e) 6= ∅, L(d, s, e) will typically contain multiple pairs (Rb, Rm) (up to four pairs), each of which

satisfy the zero profit conditions of lenders. The multiplicity of contracts comes from two sources. First,

zero profit conditions of lenders generically have two solutions, as established in lemmas 5-6. Second, there

are debt structures for which the zero profit conditions of lenders have solutions with Rb
χ < Rm

1−χ as well as

solutions with Rb
χ ≥

Rm
1−χ (that is, S̃R(e)∩S̃K(e) 6= ∅). All this multiplicity creates the potential for contracts

that cannot be ordered using the product order. The main contribution of the lemma is to show that these

contracts can in all instances be ordered, so that there is always a unique dominating contract, even when

the contract menu contains multiple elements.

Proof. The proof draws heavily upon the results of lemmas 4-6 and proceeds in three steps:

Step 1 : Any (d, s) ∈ S̃(e) must be an element of either S̃K(e) or S̃R(e), so that S̃(e) ⊂
(
S̃K(e) ∪ S̃R(e)

)
;

Step 2-a : ∀(d, s) ∈ S̃R(e), L(d, s, e) has a least element (Rb, Rm) (for the product order ≥×), so that S̃R(e) ⊂
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S̃(e); moreover, this element satisfies Rb
χ ≥

Rm
1−χ ;

Step 2-b : ∀(d, s) ∈ S̃K(e) \
(
S̃R(e) ∩ S̃K(e)

)
, L(d, s, e) has a least element (Rb, Rm) (for the product order ≥×),

so that
(
S̃K(e) \

(
S̃R(e) ∩ S̃K(e)

))
⊂ S̃(e); moreover, the least element satisfies Rb

χ < Rm
1−χ .

Step 1 Let (d, s) ∈ S(e) and let (Rb, Rm) be the associated dominating contract, that is, the least element

of L(d, s, e) for ≥×. It must be the case that either Rb
χ < Rm

1−χ or Rb
χ ≥

Rm
1−χ .

Assume that Rb
χ < Rm

1−χ . Then (Rb, Rm) ∈ L(d, s, e), so that L(d, s, e) 6= ∅. Moreover, (Rb, Rm) must

solve the zero profit conditions (ZPC) of the lenders in the case Rb
χ < Rm

1−χ , equations (13) and (17). Using the

results of lemmas 4 and 6, conditions (c− bank) and (c− joint) are necessary for the existence of solutions

to (13) and (17). Thus, (d, s, e) must satisfy these two conditions; moreover, by lemma 4, Rb = Rb(d, s, e).

If (1+rm(1−s)+rbs)d
(e+d)ζ

< χE(φ), the solution to equation (17) is unique, according to lemma 6. Therefore

we must have Rm = Rl(d, s, e)−Rb(d, s, e). Since, by assumption, Rb
χ < Rm

1−χ , we also have Rb
χ < Rm +Rb.

Therefore, it must also be the case that Rb(d,s,e)
χ < Rl(d, s, e), so that condition (frontier− B) must hold.

If, on the other hand, (1+rm(1−s)+rbs)d
(e+d)ζ

≥ χE(φ), there are exactly two solutions to equation

(17), which satisfy 0 ≤ Rl(d, s, e) ≤ RL(d, s, e). However, (Rb(d, s, e), RL(d, s, e)−Rb(d, s, e)) ≥×

(Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)). Since (Rb, Rm) is the least element of L(d, s, e), it must be therefore be

the case that Rm = Rl(d, s, e) − Rb(d, s, e). The fact that condition (frontier− B) holds then follows from

the same steps as above. This finishes the proof that if Rm
1−χ >

Rb
χ , then (d, s) ∈ S̃K(e).

Assume that Rb
χ ≥

Rm
1−χ . Similar to the other case, this implies that L(d, s, e) 6= ∅ and therefore that

conditions (c− bank) and (c−market), which are necessary for the existence of a solution to the ZPC of

lenders when Rb
χ ≥

Rm
1−χ , must hold. Moreover, by lemma 4, Rb = Rb(d, s, e).

Under condition (c−market), there exist exactly two solutions Rm,l(d, s, e) ≤ Rm,L(d, s, e), once of

which Rm must be equal to. Since (Rb, Rm) is the least element of L(d, s, e), it must be the case that

Rm = Rm,l(d, s, e). Since Rb
χ ≥

Rm
1−χ , this in turn imply that condition (frontier− B) holds. This finishes the

proof that if Rm
1−χ ≤

Rb
χ , then (d, s) ∈ S̃R(e).

Thus, S(e) ∈
(
S̃K(e) ∪ S̃R(e)

)
.

Step 2-a : Let (d, s) ∈ S̃R(e). We need to prove that (d, s) ∈ Se, that is, that L(d, s, e) is non-empty and has

a least element. First, under conditions (c− bank) and (c−market), (Rb(d, s, e), Rm,l(d, s, e)) ∈ L(d, s, e),

so that L(d, s, e) 6= ∅. If L(d, s, e) contains only (Rb(d, s, e), Rm(d, s, e)), then it is the least element and we

are done. Otherwise, let (Rb, Rm) ∈ L(d, s, e), (Rb, Rm) 6= (Rb(d, s, e), Rm,l(d, s, e)). If (Rb, Rm) is such that

Rb
χ ≥

Rm
1−χ , then, since (Rb, Rm) 6= (Rb(d, s, e), Rm,l(d, s, e)), it must be the case that Rb = Rb(d, s, e) and

Rm = Rm,L(d, s, e); therefore, (Rb, Rm) ≥× (Rb(d, s, e), Rm,l(d, s, e)). If, on the other hand, Rb
χ < Rm

1−χ , it
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must still be the case that Rb = Rb(d, s, e); hence,

Rm
1− χ

>
Rb
χ

=
Rb(d, s, e)

χ
≥ Rm,l(d, s, e)

1− χ
.

Therefore, (Rb, Rm) ≥× (Rb(d, s, e), Rm,l(d, s, e)) in the case Rb
χ < Rm

1−χ as well. Thus, L(d, s, e) has a least

element, (Rb(d, s, e), Rm,l(d, s, e)), so that (d, s) ∈ S(e). Hence, S̃R(e) ⊂ S̃(e). Note that since the least

element is always unique, I have also established the proposition’s claim that the dominating contract (least

element) (Rb = Rb(d, s, e), Rm = Rm,l(d, s, e)) associated to (d, s) ∈ S̃R(e) satisfies Rb
χ ≥

Rm
1−χ .

Step 2-b : Let (d, s) ∈ S̃B(e) \
(
S̃B(e) ∩ S̃R(e)

)
. First, under conditions (c− bank) and (c− joint), we

have that (Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)) ∈ L(d, s, e), so L(d, s, e) 6= ∅. Consdier (Rb, Rm) ∈ L(d, s, e),

(Rb, Rm) 6= (Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)). If (Rb, Rm) are such that Rb
χ ≥ Rm

1−χ , then, as in

step 1, it must be that (d, s) ∈ S̃R(e); but we ruled this out by assumption. So, Rb
χ < Rm

1−χ . In

this case, since (Rb, Rm) 6= (Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)), it must be that Rb = Rb(d, s, e) and

Rm = RL(d, s, e) − Rb(d, s, e) (and additionally that (1+rm(1−s)+rbs)d
(e+d)ζ

> χE(φ), since otherwise the solu-

tion to the ZPC of market lenders is unique). So, (Rb, Rm) ≥× (Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)), and

so (Rb(d, s, e), Rl(d, s, e)−Rb(d, s, e)) is the least element of L(d, s, e). This proves that (d, s) ∈ S̃(e), and

therefore that: (
S̃B(e) \

(
S̃B(e) ∩ S̃R(e)

))
⊂ S̃(e).

Note that again because of unicity of the least element, I have also established the lemma’s claim that

the dominating contract (Rb = Rb(d, s, e), Rm = Rl(d, s, e)−Rb(d, s, e)) associated to (d, s) ∈ S̃B(e) \(
S̃B(e) ∩ S̃R(e)

)
satisfies Rb

χ < Rm
1−χ .

A.4 The lending menu when δ = 1

I next turn to characterizing the set SR(e) = S̃R(e) in more detail, in the special case δ = 1, where an

analytical characterization can be obtained.

Proposition 9 (A parametrization of the set S̃R(e)) The set S̃R(e) can be described as:

S̃R(e) =
{

(d, s) ∈ R+ × [sR, 1]
∣∣ 0 ≤ d ≤ dR(s, e)

}
,
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where:

dR(s, e) =


dR,F (s, e) if sR ≤ s < sR,1

dR,m(s, e) if sR,1 ≤ s < sR,2

dR,b(s, e) if sR,2 ≤ s ≤ 1

The thresholds sR < sR,1 < sR,2 < 1 are given by:

sR =
1

1 + 1−χ
χ

1+rb
1+rm

sR,1 =
1

1 + 1−χ
χ

1+rb
1+rm

I(φI)
G(φI)

sR,2 =
1

1 + 1−χ
χ

1+rb
1+rm

I(φI)
E(φ)

while the functions dR,F (s, e), dR,m(s, e) and dR,b(s, e) are implicitly defined by:

G−1

(
(1 + rb)sdR,F (s, e)

χ(e+ dR,F (s, e))ζ

)
= I−1

(
(1 + rm)(1− s)dR,F (s, e)

(1− χ)(e+ dR,F (s, e))ζ

)
(1 + rm)(1− s)dR,m(s, e)

(1− χ)(e+ dR(s, e))ζ
= I(φI)

(1 + rb)sdR,b(s, e)

χ(e+ dR(s, e))ζ
= E(φ)

Proof. For this proof, I proceed in four steps:

Step 1: If (d, s) ∈ S̃R(e), then sR ≤ s ≤ 1;

Step 2: If sR ≤ s < sR,1, then, (d, s) ∈ S̃R(e), if and only if, condition (frontier− R) is verified;

Step 3: If sR,1 ≤ s < sR,2, then, (d, s) ∈ S̃R(e), if and only if, condition (c−market) is verified;

Step 4: If sR,2 ≤ s ≤ 1, then, (d, s) ∈ S̃R(e), if and only if, condition (c− bank) is verified.

Step 1: First, I prove that when s < sR, condition (frontier− R) does not hold, so that S̃R(e) cannot

containt debt structures with s < sR. To see this, first note that ∀0 ≤ x ≤ φI , G(x) ≥ I(x), so that

∀0 ≤ y ≤ I(φI), G
−1(y) ≤ I−1(y) (with equality only at y = 0). Note moreover that:

s < sR =⇒ (1 + rb)ds

χ(e+ d)ζ
<

(1 + rm)(1− s)d
(1− χ)(e+ d)ζ
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Thus,

s < sR =⇒ G−1

(
(1 + rb)ds

χ(e+ d)ζ

)
< G−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
=⇒ G−1

(
(1 + rb)ds

χ(e+ d)ζ

)
< I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
.

Therefore, (d, s) ∈ S̃R(e) =⇒ s ≥ sR.

Step 2: Next, I prove that when (d, s) ∈ S̃R(e), sR ≤ s < sR,1, then only condition (frontier− R) is

relevant to the definition of S̃R(e); that is,

(
(d, s) ∈ S̃R(e) and sR ≤ s < sR,1

)
=⇒

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

< I(φI) and
(1 + rb)ds

χ(e+ d)ζ
< E(φ)

)
. (19)

I establish this by proving the contraposition. First, if (1+rb)ds
χ(e+d)ζ

> E(φ), then (d, s) /∈ S̃R(e). If (1+rb)ds
χ(e+d)ζ

=

E(φ), then:

E(φ) =
(1 + rb)ds

χ(e+ d)ζ
<

(1 + rb)sR,1d

χ(e+ d)ζ

=
(1 + rm)(1− sR,1)d

(1− χ)(e+ d)ζ
G(φI)

I(φI)

<
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

G(φI)

I(φI)

Therefore:

(1 + rm)(1− sR,1)d

(1− χ)(e+ d)ζ
>

E(φ)

G(φI)
I(φI) > I(φI) =⇒ (d, s) /∈ S̃R(e).

Second, if (1+rm)(1−s)d
(1−χ)(e+d)ζ

> I(φI), then (d, s) /∈ S̃R(e). If (1+rm)(1−s)d
(1−χ)(e+d)ζ

= I(φI), then:

I(φI) =
(1 + rb)(1− s)d
(1− χ)(e+ d)ζ

>
(1 + rm)(1− s1,R)d

(1− χ)(e+ d)ζ

=
(1 + rb)sR,1d

χ(e+ d)ζ
I(φI)

G(φI)

>
(1 + rb)sd

χ(e+ d)ζ
I(φI)

G(φI)

Therefore,

(1 + rb)ds

χ(e+ d)ζ
< G(φI) =⇒ G−1

(
(1 + rb)ds

χ(e+ d)ζ

)
< φI = I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
=⇒ (d, s) /∈ S̃R(e),
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which finishes proving statement (19). It is then straightforward to show that condition (frontier− R) is

equivalent to 0 ≤ d ≤ dR,F (s, e).

Step 3: Next, I prove that when (d, s) ∈ S̃R(e), sR,1 < s < sR,2, then only condition (c−market) is

relevant to the definition of S̃R(e); that is,

(
(d, s) ∈ S̃R(e) and sR,1 < s < sR,2

)
=⇒(

(1 + rb)ds

χ(e+ d)ζ
< E(φ) and G−1

(
(1 + rb)ds

χ(e+ d)ζ

)
> I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)) (20)

Assume that sR,1 < s < sR,2 and (d, s) ∈ S̃R(e), then:

(1 + rb)sd

χ(e+ d)ζ
=

1− χ
χ

1 + rb
1 + rm

s

1− s
(1 + rm)(1− s)d

(e+ d)ζ

≤ 1− χ
χ

1 + rb
1 + rm

s

1− s
I(φI)

<
1− χ
χ

1 + rb
1 + rm

sR,2
1− sR,2

I(φI) = E(φ)

so that condition (c− bank) is satisfied with strict inequality. I next prove that when (d, s) ∈ S̃R(e)

and sR,1 < s, then condition (frontier− R) holds with strict inequality. As a first step, define ∆(x) =

G(φI)
I(φI) I(x)−G(x). Note that ∆(0) = ∆(φI) = 0. Moreover, ∆′(x) =

(
G(φI)
I(φI) − 1

)
(1−F (x))− G(φI)

I(φI) xf(x), so

that, following steps similar to the proof of lemma 3, ∆(.) is increasing on
[
0, φ
]

and decreasing on
[
φ, φI

]
,

where φ < φI is the unique solution to ∆′(x) = 0. Thus,

0 ≤ x ≤ φI =⇒ G(φI)

I(φI)
I(x) ≥ G(x),

so that:

0 ≤ y ≤ I(φI) =⇒ G−1

(
G(φI)

I(φI)
y

)
≥ I−1(y)

Moreover, using the definition of sR,1, note that:

s > sR,1 =⇒ (1 + rb)sd

χ(e+ d)ζ
>
G(φI)

I(φI)

(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

Thus,

s > sR,1 =⇒ G−1

(
(1 + rb)sd

χ(e+ d)ζ

)
> G−1

(
G(φI)

I(φI)

(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
≥ I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
,
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This finishes establishing statement (20). It is then straightforward to show that condition (c−market) is

equivalent to 0 ≤ d ≤ dR,m(s, e).

Step 4: Finally, I prove that when (d, s) ∈ S̃R(e), sR,2 < s ≤ 1, then only condition (c− bank) is relevant

to the definition of S̃R(e); that is,

(
(d, s) ∈ S̃R(e) and sR,2 < s < 1

)
=⇒(

(1 + rm)d(1− s)
(1− χ)(e+ d)ζ

< I(φI) and G−1

(
(1 + rb)ds

χ(e+ d)ζ

)
> I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)) (21)

This is straightforward: note that s > sR,2 immediately implies the first part of statement (21), while the

second part obtains because s > sR,2 > sR,1. It is then straightforward to show that condition (c− bank) is

equivalent to 0 ≤ d ≤ dR,b(s, e).

For the thresholds sR,1 and sR,2, it is simple to establish that when s = sR,1, conditions (c−market) and

(frontier− R) coincide, and both imply condition (c− bank); while, when s = sR,2, conditions (c−market)

and (c− bank) coincide, and imply condition (frontier− R). This concludes the proof of the proposition.

I next turn to the structure of the set S̃K(e).

Proposition 10 (A parametrization of the set S̃K(e)) The set S̃K(e) can be parametrized as:

S̃K(e) =
{

(d, s) ∈ R+ × [0, sK ]
∣∣ dK(s, e) < d ≤ dK(s, e)

}
,

where:

dK(s, e) =

 0 if 0 ≤ s < sR

dK,F (s, e) if sR ≤ s ≤ sK

The threshold sK is given by:

sK =
1

1 +
(

1
χ
M(φM )
G(φM ) − 1

)
1+rb
1+rm

while the functions dK,F (s, e) and dK(s, e) are implicitly defined by:

G−1

(
(1 + rb)sdK,F (s, e)

χ(e+ dK,F (s, e))ζ

)
= M−1

(
(1 + (1− s)rm + srb) dK,F (s, e)

(e+ dK,F (s, e))ζ

)
(1 + (1− s)rm + srb) dK(s, e)

(e+ dK(s, e))ζ
= M(φM )
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Proof. For this proof, I proceed in three steps:

Step 1: If (d, s) ∈ S̃B(e), then 0 ≤ s ≤ sK ;

Step 2: Let (d, s) ∈ R+ × [0, sK ]; then if condition (c− joint) holds, condition (c− bank) also holds;

Step 3: Let (d, s) ∈ R+ × [0, sK ]; then conditions (frontier− R) and (c− joint) are equivalent to, respectively,

lower and upper bounds on d.

Step 1: I prove the contraposition. Assume that s > sK . Note that in this case,

(1 + rb)s

χ

d

(e+ d)ζ
>

G(φM )

M(φM )
[(1 + rm)(1− s) + (1 + rb)s]

d

(e+ d)ζ
,

for any d, e > 0. Moreover, using steps analogous to the proof of proposition 7, one can establish that,

∀0 ≤ y ≤M(φM ), G−1
(
G(φM )
M(φM )y

)
≥M−1(y). Thus,

G−1

(
(1 + rb)sd

χ(e+ d)ζ

)
> G−1

(
G(φM )

M(φM )
[(1 + rm)(1− s) + (1 + rb)s]

d

(e+ d)ζ

)
≥ M−1

(
[(1 + rm)(1− s) + (1 + rb)s]

d

(e+ d)ζ

)
,

where the first line uses the second result above, and the second line uses the first result. This is a violation

of (frontier− R), so (d, s) /∈ S̃K(e). This proves the result of announced.

Step 2: This result follows from using the fact that, when s ≤ sK ,

(1 + rb)s

χ

d

(e+ d)ζ
≤ G(φM )

M(φM )
[(1 + rm)(1− s) + (1 + rb)s]

d

(e+ d)ζ
.

When condition (c− joint) holds, we therefore have:

(1 + rb)s

χ

d

(e+ d)ζ
≤ G(φM ) < E(φ)

where the last inequality follows from the facts that G(.) is strictly increasing. This shows that condition

(c− bank) holds. Condition (c− bank) is therefore irrelevant to the definition of S̃B(e); only conditions

(frontier− R) and (c− joint) matter.
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Step 3: I first show that the condition (frontier− R) is tantamount to a lower bound on d. First, note

that if 0 ≤ sB , then for any d, e > 0:

(1 + rb)sd

χ(e+ d)ζ
≤ (1 + rm(1− s) + rbs)d

χ(e+ d)ζ

This implies that, when (1+rm(1−s)+rbs)d
χ(e+d)ζ

≤M(φM ), ie condition (c− joint), then:

G−1

(
(1 + rb)sd

χ(e+ d)ζ

)
≤ G−1

(
(1 + rm(1− s) + rbs)d

(e+ d)ζ

)
< M−1

(
(1 + rm(1− s) + rbs)d

(e+ d)ζ

)

Thus, condition (frontier− R) is automatically verified. When sB ≤ s ≤ sK , it is straightforward to check

that condition (frontier− R) is equivalent to d ≥ dK,F (s, e), where dK,F (s, e) is defined in the statement

of the proposition. Finally, it is also straightforward to show that condition (c− joint) corresponds to is

equivalent to the upper bound dK(s, e) given in the proposition.

The two previous propositions are useful to characterize the two sets that we are actually interested in,

that is, the sets SR(e) and SK(e). Recall that SR(e) = S̃R(e), so that the parametrization established in

proposition 7 is also characterizes S̃R(e). We are left with the task of describing the intersection S̃R(e)∩S̃K(e).

This is the object of the following proposition.

Proposition 11 (A parametrization of the intersection S̃R(e) ∩ S̃K(e)) The intersection S̃R(e) ∩

S̃K(e) can be parametrized as:

S̃R(e) ∩ S̃K(e) =
{

(d, s) ∈ R+ × ]sR, sK [
∣∣ dK(s, e) ≤ d ≤ dR∩K(s, e)

}
,

where:

dR∩K(s, e) =

 dR(s, e) if sR ≤ s < sR∩K

dK(s, e) if sR∩K ≤ s ≤ sK

where the threshold sR∪K is given by:

sR∪K =
1

1 + 1
M(φM )

(1−χ)I(φI )
−1

1+rb
1+rm

,

and satisfies sR < sR∪K < sR,1.
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Proof. Note first that the intersection S̃K(e) ∩ S̃R(e) may only contain debt structures with sR ≤ s ≤ sK .

Given this, the proof of this proposition proceeds in three steps:

Step 1: If sR ≤ s ≤ sR,1, then dR(s, e) = dK(s, e), so that S̃K(e) ∩ S̃R(e) contains no elements such that

sR ≤ s ≤ sR,1;

Step 2: If sR,1 ≤ s ≤ sK , then dR(s, e) > dK(s, e), so that S̃K(e) ∩ S̃R(e) contains debt structures (d, s) for

each sR,1 ≤ s ≤ sK ;

Step 3: There is a unique sR,1 < sR∪K < sK such that dK(s, e) ≥ dR(s, e), if and only if, s ≤ sR∪K .

Step 1: When sR ≤ s ≤ sR,1, using proposition 7, dR(s, e) solves:

I−1

(
(1 + rm)(1− s)dR(s, e)

(1− χ)(e+ dR(s, e))ζ

)
= G−1

(
(1 + rb)sdR(s, e)

χ(e+ dR(s, e))ζ

)
.

This implies that:

x1 ≡
(1 + rm)(1− s)dR(s, e)

(1− χ)(e+ dR(s, e))ζ
≤ I(φI)

x2 ≡
(1 + rb)sdR(s, e)

χ(e+ dR(s, e))ζ
≤ G(φI)

Therefore,

(1− χ)x1 + χx3 =
(1 + rm(1− s) + rbs) dR(s, e)(

e+ dR(s, e)
)ζ ≤ (1− χ)I(φI) + χG(φI)

= M(φI)

< M(φM )

Thus, M−1 ((1− χ) + x1 + χx2) is well-defined. Furthermore:

I−1(x1) = G−1(x2) =⇒ x2 = G
(
I−1(x1)

)
=⇒ x2 = x1 +

∫ I−1(x1)

0

φdF (φ)

=⇒ χx2 + (1− χ)x1 = M
(
I−1(x1)

)
=⇒ M−1 (χx2 + (1− χ)x1) = I−1(x1) = G−1(x2)
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Therefore, dR(s, e) also solves:

M−1

(
(1 + rm(1− s) + rbs) dR(s, e)(

e+ dR(s, e)
)ζ

)
= G−1

(
(1 + rb)sdR(s, e)

χ(e+ dR(s, e))ζ

)
,

so that dR(s, e) = dK(s, e). This concludes the proof of step 1.

Step 2: For sR,1 ≤ s ≤ sK , dK(s, e) solves:

M−1

(
(1 + rm(1− s) + rbs) dK(s, e)

(e+ dK(s, e))
ζ

)
= G−1

(
(1 + rb)sdK(s, e)

χ(e+ dK(s, e))ζ

)
,

while dR(s, e) solves one of the two conditions:

(1 + rm)(1− s)dR(s, e)

(1− χ)(e+ dR(s, e))ζ
= I(φI)

or

(1 + rb)sdR(s, e)

χ(e+ dR(s, e))ζ
= E(φ).

In order to show that dR(s, e) > dK(s, e), we need to prove that at d = dK(s, e), we have:

(1 + rm)(1− s)dK(s, e)

(1− χ)(e+ dK(s, e))ζ
< I(φI)

and

(1 + rb)sdK(s, e)

χ(e+ dK(s, e))ζ
< E(φ).

The second condition follows from the fact that because of the definition of dK(s, e), it must be the case

that:

x2 ≡
(1 + rb)sdK(s, e)

χ(e+ dK(s, e))ζ
≤ G (φM ) < E(φ).

Furthermore, let:

x3 =
(1 + rm(1− s) + rbs)dK(s, e)

(e+ dK(s, e))
ζ

= M
(
G−1(x2)

)
Then:

x1 ≡
(1 + rm)(1− s)dK(s, e)

(1− χ)(dK(s, e) + e)ζ
=

1

1− χ
(x3 − χx2)

=
1

1− χ
(
M
(
G−1(x2)

)
− χx2

)
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Note that ∀0 ≤ x ≤ φM , M(x) = χG(x) + (1− χ)x(1− F (x)). Therefore:

M
(
G−1(x2)

)
= χx2 + (1− χ)G−1(x2)

(
1− F

(
G−1(x2)

))
M
(
G−1(x2)

)
− χx2 = (1− χ)G−1(x2)

(
1− F

(
G−1(x2)

))
x1 = G−1(x2)

(
1− F

(
G−1(x2)

))
< I(φI)

where the last inequality follows because I(x) = x(1− F (x)) is maximized at φI . This concludes the proof

of step 2.

Step 3: Define sR∩K as in the text of the proposition. I first prove that ŝR,1 < sR∩K < ŝR,2. Note that

sR,1 < sR∩K , if and only if:

M(φM ) > χG(φI) + (1− χ)I(φI).

This statement is true because M(φM ) > M(φI) = χG(φI) + (1− χ)I(φI). Next, sR∩K < sR,2, if and only

if,

M(φM ) > χE(φ) + (1− χ)I(φI).

To prove this inequality, define ∆(χ) = M(φM )− χE(φ)− (1− χ)I(φI) for χ ∈ [0, 1]. Note that:

∆(0) = ∆(1) = 0

∂∆

∂χ
=

∫ φM

0

xdF (x)− E(φ) + I(φI)

∂∆

∂χ
|χ=0 = G(φI)− E(φ) < 0

∂∆

∂χ
|χ=1 = I(φI) > 0

∂2∆

∂χ2
=

∂φM
∂χ

φMf(φM ) > 0

Taken together, these properties imply that ∆(χ) is strictly convex on [0, 1], and that ∀χ ∈ ]0, 1], ∆(χ) < 0,

so that the initial inequality holds, and sR∩K < sR,2.

Next, I prove that dK(s, e) ≥ dR(s, e), if and only if, s ≤ sR∪K . First note that by definition of sR∩K ,

dB(sR∩K) = dR(sR∩K). To prove the statement, it is therefore sufficient to show that dK(s, e)− dR(s, e) is

strictly decreasing in s. To show this, I establish that dK(s, e) is strictly decreasing in s, and that dR(s, e)

is strictly increasing in s. The implicit definition of dK(s, e) implies that:

∂dK(s, e)

∂s
=

−dK(s, e)(rb − rm)

1 + (1− s)rm + srb − ζM(φM )(e+ dK(s, e))ζ
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=
−dK(s, e)(e+ dK(s, e))(rb − rm)

(1 + (1− s)rm + srb)e+ (1− ζ)M(φM )(e+ dK(s, e))ζ
< 0,

where the last inequality follows from the fact that rb > rm. Likewise, using the implicit definition of dR(s, e),

one obtains that:

∂dR(s, e)

∂s
=

dR(s, e)(e+ dR(1 + rm)
(1+rm)(1−s)

1−χ e+ (1− ζ)I(φI)(e+ dR(s, e))ζ
> 0

This concludes the proof of step 3.

Step 3 shows that elements of S̃K(e) ∩ S̃R(e) with s < sR∪K are therefore exactly those with dK(s, e) ≤

s ≤ dR(s, e); while elements of S̃K(e) ∩ S̃R(e) with s ≥ sR∪K are all elements of S̃B(e), that is, those with

dK(s, e) ≤ s ≤ dK(s, e). This is the main statement of proposition 10.

B Appendix to section 3

Proof of proposition 4. Assume that (b = sd,m = (1 − s)d) ∈ SK(e) and that ((1 + rm)(1 − s) + (1 +

rb)s)d ≥ (1− δ)(e+ d); in that case, using the expression of the return function of the entrepreneur under a

K-contract reported in appendix A:

E [π̃(φ; e, sd, (1− s)d)] =

(∫ +∞

φK

φdF (φ)

)
(e+ d)ζ − φK(1− F (φK))(e+ d)ζ

where:

φK =
RK(d, s, e)− (1− δ)(e+ d)

(e+ d)ζ
.

Using the results of lemmas 4-6, we then have that:

E [π̃(φ; e, sd, (1− s)d)] + Ẽm,K(Rb, Rm; e+ d) + Ẽb(Rb; e+ d)

=
(∫ +∞

φK
φdF (φ)

)
(e+ d)ζ − φK(1− F (φK))(e+ d)ζ

+χ
(∫ φK

0
φdF (φ)

)
(e+ d)ζ − (1− χ)F (φK)(1− δ)(e+ d)

= E(π(φ))− (1− χ)
∫ φK

0
π(φ)dF (φ).
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Since Ẽm,K(Rb, Rm; e+ d) = (1 + rm)(1− s)d and Ẽb(Rb; e+ d) = (1 + rb)sd, this in turn implies that:

E [π̃(φ; e, sd, (1− s)d)] = E(π(φ))− (1− χ)

∫ φK

0

π(φ)dF (φ)− ((1 + rm)(1− s) + (1 + rb)s)d.

When instead ((1 + rm)(1− s) + (1 + rb)s)d < (1− δ)(e+ d), the entrepreneur never defaults, and moreover

Rb = (1 + rb)sd and Rm = (1 + rm)(1− s)d. Thus:

E [π̃(φ; e, sd, (1− s)d)] = E(π(φ))− (1 + rm)(1− s)d− (1 + rb)sd.

This proves the lemma’s claim in the case (b = sd,m = (1− s)d) ∈ SK(e), with:

φ(e, d, s) =
RK(d, s, e)− (1− δ)(e+ d)

(e+ d)ζ
,

where note that φ(e, b,m) = 0, if and only if, (1− δ)(e+ b+m) ≥ (1 + rb)b+ (1 + rm)m.

The proof is similar when (b = sd,m = (1− s)d) ∈ SR(e), with in that case:

φ(e, d, s) =
Rm,l(d, s, e)− (1− χ)(1− δ)(e+ d)

(1− χ)(e+ d)ζ
.

Proof of proposition 5.

Consider, first, the sub-problem of a firm with internal finance e restricted to use contracts in SR(e).

Abusing somewhat the notation of propositions 6 and 4, this problem can be written as:

max
(d,s)

OR(e, d, s) = E(π(φ))− (1 + rb)sd− (1 + rm)(1− s)d− (1− χ)

∫ φ(e,d,s)

0

π(φ)dF (φ)

s.t. sR ≤ s ≤ 1 and 0 ≤ d ≤ dR(s, e)

The Lagrangian associated with this problem is:

L = OR(e, d, s) + λ̄(d̄(s, e)− d) + λd+ µ(1− s) + µ(s− sR).

A first-order necessary conditions for optimality is:

∂OR
∂s

+
∂d̄R
∂s

λ = (µ− µ),
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where the derivative of the objective function with respect to s is given by:

∂OR
∂s

= (rm − rb)d+ φ(e, d, s)f(φ(e, d, s))(1 + rm)d(1− s)∂I
−1

∂y

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
.

Since ∂I−1

∂y > 0, we have that ∂OR
∂s > 0 if rb − rm < 0. Note, then, that if s ≤ s ≤ sR,M , then by theorem

6, ∂d̄R
∂s ≥ 0, so that µ > 0 and necessarily s = 1. This is a contradiction because sR,M < 1. So, when

rb − rm < 0, any solution to the restricted problem above must satisfy sR,M ≤ s ≤ 1.

Then, there are two possibilities:

- Either the bank borrowing constraint is binding, that is, λ > 0; in that case, it need not be that µ̄ > 0,

that is, the firm may still be borrowing from both sources although it is exhausting its bank borrowing

capacity;

- The bank borrowing constraint is loose, that is λ = 0. In that case, it must be that µ > 0, so that

s = 1 and the firm is borrowing only from banks.

This establishes that, provided that the solution of the firm’s problem is an element of SR(e), then the

firm is either entirely bank-financed, or its bank borrowing constraint is binding.

I next show that the solution to the firm’s problem is necessarily an element of SR(e). To establish this,

let d̃ be a scale of borrowing that is feasible in SK(e), that is, such that there exists s̃ ∈ [0, s̄K ] such that

(d̃, s̃) ∈ SK(e). First, note that, for any s such that d̃ is feasible in SK(e):

∂OK
∂s

(e, d̃, s) = (rm − rb)d̃

(
1 + (1− χ)φ(d̃, s̃, e)f

(
φ(d̃, s̃, e)

) ∂M−1

∂y

(
(1 + rm(1− s) + rbs)d̃

(e+ d̃)ζ

))
> 0, (22)

where the latter inequality holds because rb < rm.

Furthermore, using the results of proposition 2, the joint borrowing constraint defining SK(e) can be

written as:

0 ≤ (1 + rbs+ rm(1− s))d ≤ M̂(e+ d)ζ

When rb < rm, if (d̃, s̃) satisfy this constraint, then (d̃, s) also satisfy it for any s ≥ s̃. Therefore, all the

points on the line defined, in (d, s) space, by d = d̃ (that is, an anti-diagonal in (b,m) where b + m is a

constant) are in the set SK(e) so long as they satisfy condition (frontier-K) from proposition 2. On this line,

the objective function OK is increasing, as noted above. Finally, it is straightforward to show that, when

the condition (frontier-K) is binding:

φ
K

(e, d̃, s) = M−1

(
(1 + rbs+ rm(1− s))d̃

(e+ d̃)ζ

)
= I−1

(
(1 + rm(1− s))d̃
(1− χ)(e+ d̃)ζ

)
= φ

R
(e, d̃, s),
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so that at the frontier between the two sets, OK(d̃, s, e) = OR(d̃, s, e). Thus, the value of the firm at the

point (d̃, s) ∈ SR(e) at the intersection of the line d = d̃ and the frontier between the sets SK(e) and SR(e),

is weakly larger than at any point on that line within the set SK(e). Since I established this for any d̃ feasible

in SK(e), this shows that the global maximum to the firms’ problem is in SR(e), and concludes the proof.

Proofs of propositions 6 and 7

In order to establish the different claims of propositions 6 and 7, I first characterize the solution to the

two subproblems:

max
(d,s)

OK(e, d, s) = E(π(φ))− (1 + rb)sd− (1 + rm)(1− s)d− (1− χ)

∫ φ
K

(e,d,s)

0

π(φ)dF (φ)

s.t. 0 ≤ (1 + rb)sd+ (1 + rm)(1− s)d ≤ M̂(e+ d)ζ

G−1

(
(1 + rb)sd

χ(e+ d)ζ

)
< M−1

(
(1 + rbs+ rm(1− s))d

(e+ d)ζ

)
(23)

max
(d,s)

OR(e, d, s) = E(π(φ))− (1 + rb)sd− (1 + rm)(1− s)d− (1− χ)

∫ φ
R

(e,d,s)

0

π(φ)dF (φ)

s.t. 0 ≤ (1 + rb)sd ≤ χE(φ)(e+ d)ζ

0 ≤ (1 + rm)(1− s)d ≤ (1− χ)Î(e+ d)ζ

I−1

(
(1 + rm)(1− s)d
(1− χ)(e+ d)ζ

)
< G−1

(
(1 + rb)sd

χ(e+ d)ζ

)
(24)

Characterization of the solution to subproblem (23) Let (d, s) be a feasible debt structure in subproblem

(23) with s > 0. Then, note that G(0) < M−1
(

(1+rm)d
(e+d)ζ

)
, so that (d, 0) is also feasible. Furthermore,

OK(e, d, 0) > OK(e, d, s) because ∂OK
∂s > 0 when rb > rm, as indicated by equation (22). Thus, the

maximum of subproblem (23) necessarily satisfies ŝ = 0, that is, is entirely market-financed. Moreover, the

optimal amount of borrowing d̂ is necessarily an interior solution, i.e. satisfies (1+rm)d̂ < M̂(e+ d̂)ζ , so long

as e < k̂m, where k̂m is the unconstrained optimal size of the firm when liquidation is costless, as defined in

lemma 2. To establish this, note that when e < k̂m:

∂OK
∂d

(e, 0, 0) = ζE(φ)(e+ d)ζ−1 − (1 + rm) > 0.

Furthermore, the derivative of the objective function is give by:

∂OK
∂d

(e, d, 0) = ζE(φ)(e+ d)ζ−1 − (1 + rm)− (1− χ)ζ(e+ d)ζ−1

∫ φ
K

(e,d,s)

0

φdF (φ) (25)
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−(1 + rm)(1− χ)φ
K

(e, d, s)f
(
φ
K

(e, d, s)
) ∂M−1

∂y

(
(1 + rm)d

(e+ d)ζ

)[
1− ζ d

e+ d

]

In this last expression, all terms are bounded as d → dK(e), except the derivative ∂M−1

∂y , since

limy→M̂
∂M−1

∂y = +∞. Thus, limd→dK(e)
∂OK
∂d (e, d, 0) = −∞. This establishes that the maximum in sub-

problem (23) is always such that 0 < d̂ < dK(e), and furthermore that it is attained when the derivative in

equation (25) is equal to 0.

Characterization of the solution to subproblem (24) I start the analysis of subproblem (24) by characterizing

its unconstrained (”interior”) solution (dint, sint). Manipulating the necessary first-order condition ∂OR
∂s = 0,

the unconstrained solution must statisfy:

I−1

(
(1 + rm)sintdint

(1− χ)(e+ dint)ζ

)
= φint

where φint is the unique solution to:

φintf (φint)

1− F (φint)
=
rb − rm
1 + rm

.

Using this expression along with the necessary first-order condition ∂OR
∂d = 0, the interior solution is given

by:

ŝint(e) = 1− Γ

1 + rm

k̂ζint
k̂int − e

d̂int(e) = k̂int − e

ÔR,int(e) = Ξ(1− ζ)k̂ζint + (1 + rb)e

k̂int =

(
ζΞ

1 + rb

) 1
1−ζ

Γ = (1− χ)I (φint)

Ξ = E(φ) + (1− χ)

[
rb − rm
1 + rm

I (φint)−
∫ φint

0

φdF (φ)

]

Provided that the interior solution does not violate any of the constraints in subproblem (24), it is the

maximum of this problem. Note that, since φint < φ̂I , the second inequality in this problem (the market

borrowing constraint) always holds strictly, so we need only study the two other inequalities, the bank

borrowing constraint and the frontier with the set SK(e).28

By evaluating the bank borrowing constraint at the interior solution, one can establish that the bank

28The inequality φint < φ̂I is true so long as rb < 1 + 2rm, which it will under any reasonable calibration of the model.
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borrowing constraint is binding at the interior solution, if and only if, e ≤ ẽ, where:

ẽ = k̂int

1− 1

ζ

1

1 + (1−χ)(E(φ)−G(φint))

χE(φ)+(1−χ)
1+rb
1+rm

I(φint)

 (26)

Along similar lines, the third constraint in subproblem (24), the frontier condition, is binding at the

interior solution, if and only if e > ẽF , where:

ẽF = k̂int

1− 1

ζ

χG(φint)+(1−χ)
1+rb
1+rm

I(φint)

χE(φ)+(1−χ)
1+rb
1+rm

I(φint)

1 + (1−χ)(E(φ)−G(φint))

χE(φ)+(1−χ)
1+rb
1+rm

I(φint)

 > ẽ (27)

Then, there are three possible cases:

• If 0 ≤ e ≤ ẽ, then, at the optimum of subproblem (24), the bank borrowing constraint is binding.

(Indeed, note that, as long as a point satisfies the bank borrowing constraint, it also satisfies the third

constraint in subproblem (24), the frontier condition);

• If ẽ ≤ e ≤ ẽF , then the optimum of the subproblem is the interior solution described above;

• If e > ẽF , then at the optimum of the subproblem (24), the third constraint in subproblem (24), the

frontier condition, is binding.

Note that, as in the proof of proposition 4, it is straightforward to show that when rb > rm, ∂Or
∂s < 0

on the frontier defined by the third condition in subproblem (24). Thus, when e > ẽF , the solution to

subproblem (24) is dominated, locally, by a feasible point in subproblem (23), and therefore cannot be a

the global solution to the firm’s problem. This indicates that the threshold for switching from mixed to

market-finance e∗ must satisfy e∗ < ẽF .

The switching threshold e∗ In what follows, I prove that ÔR(0) > ÔK(0). Since, as established before,

ÔR
(
ẽF
)
< ÔK

(
ẽF
)
, and since both maximized functions are continuous in e, this establishes that there

exists a switching threshold e∗ such that: ÔR(e∗) = ÔK(e∗).

Note first that the objective function in the subproblem (23) can be written as:

OK(d, 0, 0) =
(
E(φ)−G

(
M−1

(
(1 + rm)d1−ζ))) dζ .
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This objective function is defined for 0 ≤ d ≤ dK(0), or:

0 ≤ d ≤

(
M̂

1 + rm

) 1
1−ζ

.

Alternatively, using the change of variable φK = M−1
(
(1 + rm)d1−ζ), this problem can reformulated as:

max
φK∈[0,φM ]

[∫ +∞

φK

(1− F (φ)) dφ

] [
1

1 + rm
M(φK)

] ζ
1−ζ

.

The first order necessary condition for this problem is:

ζ

1− ζ

[∫ +∞

φK

(1− F (φ)) dφ

] [
1− (1− χ)

φKf(φK)

1− F (φK)

]
= M(φK). (28)

In a similar manner, the objective function in the subproblem (24), when the bank borrowing constraint

binds, can be written as:

OR(d, 0, 0) = (1− χ)

(
E(φ)−G

(
I−1

(
1 + rm
1− χ

d1−ζ − 1 + rm
1 + rb

χ

1− χ
E(φ)

)))
dζ .

Given the results of proposition 9, this objective function is defined for 1 ≥ s ≥ sR,2, or (given that the

borrowing constraint binds):

(
χE(φ)

1 + rb

) 1
1−ζ

≤ d ≤
(
χE(φ)

1 + rb
+

(1− χ)I(φI)

1 + rm

) 1
1−ζ

.

Using the change of variable φR = I−1
(

1+rm
1−χ d

1−ζ − 1+rm
1+rb

χ
1−χE(φ)

)
, this problem can reformulated as:

max
φR∈[0,φI ]

(1− χ)

[∫ +∞

φR

(1− F (φ)) dφ

] [
χE(φ)

1 + rb
+

(1− χ)I(φR)

1 + rm

] ζ
1−ζ

.

The first order necessary condition for this problem is:

ζ

1− ζ
(1− χ)

[∫ +∞

φR

(1− F (φ)) dφ

] [
1− φRf(φR)

1− F (φR)

]
= (1− χ)I(φR) +

1 + rm
1 + rb

χE(φ). (29)

Given the assumption that F (.) has a strictrly increasing hazard rate, the left hand side of 29 is strictly

decreasing, and moreover it always strictly smaller than the left hand side of 28 (which is itself strictly

decreasing). Since M(φ) = (1− χ)I(φ) + χG(φ) ≤ (1− χ)I(φ) + χE(φ), the right hand side of 29 is always

strictly larger than the right hand side of 28; both are moreover strictly increasing. This implies that:
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φ̂K > φ̂R (ie, the optimal K-debt structure results in more frequent liquidation). Moreover, it also implies

that: (1− χ)I(φ̂R) + 1+rm
1+rb

χE(φ) > M(φ̂K) (the optimal R-debt structure involves firms operating at larger

scales). Combining the two facts and using the expressions of the objective functions then establishes that

ÔR(0) > ÔK(0).

C Appendix to section 4

C.1 Calibrations

Baseline
High cost

spread
High cost
levels (1)

High cost
levels (2)

Low average
productivity

High
productivity
dispersion

Parameters:
rm 0.05 0.05 0.06 0.06 0.05 0.05
rb 0.06 0.07 0.07 0.07 0.06 0.06
χ 0.60 0.60 0.60 0.60 0.60 0.60
ξ 1.60 1.60 1.60 1.60 1.60 1.37
λ 1.84 1.84 1.86 1.84 1.82 1.82
ζ 0.92 0.92 0.92 0.92 0.92 0.92

Moments of F (.):
E(φ) 1.65 1.65 1.67 1.65 1.63 1.65
σ(φ) 1.06 1.06 1.07 1.06 1.05 1.22
σ(φ)
E(φ)) 0.64 0.64 0.64 0.64 0.64 0.74

Shape of solution:
s∗(0) 0.78 0.78 0.78 0.78 0.78 0.79
ẽ 29.19 25.20 29.24 25.97 25.81 29.81

s∗(ẽ) 0.97 0.96 0.97 0.97 0.97 0.98
e∗ 71.90 55.87 72.08 64.18 64.03 74.85

s∗(e∗) 0.90 0.90 0.90 0.90 0.90 0.92
k∗ 88.94 79.31 89.04 79.28 79.09 88.90
e 100.00 100.00 100.00 88.83 88.40 100.00

Table 1: Calibrations of the model discussed in section 4. The parameters ξ and λ are the location and scale parameters of the
Weibull distribution. e∗ refers to the level of equity such that the firm will choose not to borrow from either sources.
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C.2 Comparative statics

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Internal funds (e)

s
∗
(e
)
(%

)

(a) Change in the bank share

0 20 40 60 80 100
0

10

20

30

40

50

60

Internal funds (e)

Bank debt b∗(e)

0 20 40 60 80 100
0

5

10

15

Internal funds (e)

Market debt m∗(e)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Internal funds (e)

Total debt d∗(e) = b∗(e) +m∗(e)

0 20 40 60 80 100
0

50

100

150

Internal funds (e)

Total investment k∗(e) = e+ d∗(e)

0 20 40 60 80 100
0

5

10

15

20

25

30

Internal funds (e)

Total leverage d∗(e)/e

0 20 40 60 80 100
0

5

10

15

20

25

Internal funds (e)

Leverage in bank and market debt

 

 
bank leverage

market leverage

(b) Changes in borrowing

Figure 13: The effect of an increase in lending costs: first case. Graphs 13(a) and 13(b) report the characteristics of the debt
structure in the ”Baseline” calibration (black line), and in the ”High cost levels (1)” calibration (grey line); see table 1 for
details.
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Figure 14: The effect of an increase in lending costs: second case. Graphs 14(a) and 14(b) report the characteristics of the
debt structure in the ”Baseline” calibration (black line), and in the ”High cost levels (2)” calibration; see table 1 for details.
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Figure 15: The effect of a fall in productivity. Graphs 15(a) and 15(b) report the characteristics of the debt structure in the
”Baseline” calibration (black line), and in the ”Low average productivity” calibration; see table 1 for details.
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Figure 16: The effect of an increase in productivity dispersion. Graphs 16(a) and 16(b) report the characteristics of the debt
structure in the ”Baseline” calibration (black line), and in the ”High productivity dispersion” calibration; see table 1 for details.
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D Appendix to section 5

D.1 Measures of the debt structure in the QFR

Breaking down the liability side of firms’ balance sheets Along with financial liabilities, the QFR

balance sheets contain information on non-financial items, such as accounts payables and various forms of

tax liabilities. I restrict my attention to financial liabilities, and more specifically to debt. This excludes, in

particular, stockholders’ equity and trade credit, an important component of liabilities, especially for smaller

firms. Within the category of financial liabilities, some are current (due in more than one year) and some

are non-current (due in one year or less). I construct measures of the composition of debt for both maturity

categories, as well as measures combining short with long debt maturities. For large firms, the behavior of

current debt during recessions differs substantially from that of non-current debt. The focus of this paper is

on the behavior of total liabilities of firms; I do not adress changes in the maturity structure.

Bank and non-bank liabilities The QFR sample contains two subsamples of firms, one of small and

medium-sized firms and one of large firms. Smaller firms report their liabilities with less detail than large

firms (appendix D.2 contains more information on the differences between short and long form samples).

In particular, small firms report as a group all their non-bank financial liabilities, whereas the large firm

samples reports separately commercial paper and long-term debt. Table 3 below provides a breakdown of

current and non-current financial liabilities in the short and long sample. To maintain comparability across

asset size classes, I focus on “non-bank” liabilities as whole. This includes, for largest firms, both commercial

paper and long-term debt. As reported below, the facts described in section 5 are robust to the exclusion of

commercial paper from measures of non-bank liabilities for large firms.

Aggregates of financial liabilities In the following discussion, I define two debt aggregates for each firm

category: bank liabilities, denoted by CB and TB; and non-bank financial liabilities, including commercial

paper and bonds (denoted by CNB and TNB). Variables beginning with a C denote aggregates computed

for current liabilities only, while variables beginning with a T denote aggregates computed for total liabilities.

I also contruct measures of total financial liabilities (CFIN and TFIN), eliminating non-financial liabilities

from the aggregate balance sheet measures. Table 4 in appendix D.2 summarizes the construction of these

variables.
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D.2 Variable definitions in the QFR

The QFR survey is constructed on a quarterly basis from two separate samples. The first sample (the

”short-form” sample) is a representative sample from the universe of manufacturing firms with assets less

than or equal to 25m$. The second sample (the ”long-form” sample) contains manufacturing firms with at

least 25m$. Firms with between 25m$ and 250m$ are sampled from the universe of manufacturing firms,

while all existing manufacturing firms with more than 250m$ in assets are included. For both samples, the

QFR contains a variety of information on firms’ real and financial variables. The samples differ in the detail

with which firms report their balance sheets, as detailed below.

Asset size class 1 2 3 4 5 6 7 8

Assets (m$) < 5 [5, 10[ [10, 25[ [25, 50[ [50, 100[ [100, 250[ [250, 1000[ ≥ 1000

Table 2: Definition of asset size brackets in the QFR.

Short form variables Long form variables
Name Description Name Description

Current liabilities

STBANK Short-term bank debt STBANK Short-term bank debt

INSTBANK Long-term bank debt
with maturity ≤ 1 year

INSTBANK Long-term bank debt
with maturity ≤ 1 year

STDEBTOTH Other short-term debt
(incl. commercial paper)

STDEBTOTH Other short-term debt
(excl. commercial paper)

COMPAPER Commercial paper

INSTOTH Other long-term debt
with maturity ≤ 1 year
(incl. bonds)

INSTOTH Other long-term debt
with maturity ≤ 1 year
(excl. bonds)

INSTBONDS Bonds maturing
in ≤ 1 year

Non-Current liabilities
LTBNKDEBT Long-term bank debt

with maturity > 1 year
LTBNKDEBT Long-term bank debt

with maturity > 1 year

LTOTHDEBT Other debt
with maturity > 1 year
(incl. bonds)

LTOTHDEBT Other debt
with maturity > 1 year
(excl. bonds)

LTBNDDEBT Bonds maturing
in > 1 year

Table 3: Financial liabilities reported in the QFR, short and long form samples.

Definition for short form sample Definition for long form sample

Current liabilities

CB STBANK + INSTBANK STBANK + INSTBANK

CNB STDEBTOTH + INSTOTH COMPAPER + INSTBONDS+STDEBTOTH+INSOTH

CNBX n.a. CNB - COMPAPER

CFIN CB + CNB CB + CNB

Total liabilities

TB CB + LTBNKDEBT CB + LTBNKDEBT

TNB CNB + LTOTHDEBT CNB + LTBNDDEBT + LTOTHDEBT

TNBX n.a. CNBX + LTBNDDEBT + LTOTHDEBT

TFIN TB + TNB TB + TNB

Table 4: Definitions of aggregates of financial liabilities.
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D.3 Robustness

D.3.1 Excluding commercial paper from non-bank liabilities
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(b) Debt structure of small firms during recessions
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(c) Debt structure of large firms during recessions

Figure 17: Robustness check 1: no commercial paper. Graphs 17(a), 17(b) and 17(c) report the same series as graphs 12(a),
12(b) and 12(c), but excluding commercial paper from non-bank debt in the case of long-form sample firms.
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D.3.2 An alternative definition of small and large firms

To examine whether the facts discussed in section 5 are robust to other groupings of ”small” and ”large”

firms, I use the definitions of Gertler and Gilchrist (1994). They use information on total sales of different

asset size brackets in order to determine a cutoff between small and large firms (in terms of asset size). The

(gross) growth rate of sales of small firms for a quarter is computed as a weighted average of the growth rate

of total sales in the two categories that straddle the thirtieth percentiles of cumulative sales. A series for

total sales in each size category is then constructed by taking the cumulative sum of the log of the quarterly

gross growth rates obtained in this fashion.

I describe this method more formally. Fix t. Let
{
x(1), ..., x(n)

}
denote the asset size brackets for quarter

t, and let si,t and xi,t denote sales and total assets of firm i at time t. First, let St =
∑
i si,t and define a

cutoff in terms of assets, xt, by:

xt = max

{
x ∈

{
x(1), ..., x(n)

}/∑
xi,t≤x si,t

St
≤ 0.3

}
.

Furthermore, let x+
t be the cutoff immediately above xt in the list

{
x(1), ..., x(n)

}
. The cumulative sales of

all firms with at most x+
t are less than 30 % of the total of sales of manufacturing firms. Second, compute

weights wt such that:

wt

∑
xi,t≤xt

si,t

St
+ (1− wt)

∑
xi,t≤x+

t
si,t

St
= 0.3.

Third, for any series yi,t, compute ”weighted” growth rates according to:

GyS,t−1,t = wt

∑
{i/xi,t≤xt} yi,t∑
{i/xi,t−1≤xt} yi,t−1

+ (1− wt)

∑
{i/xi,t≤x+

t } yi,t∑
{i/xi,t−1≤x+

t } yi,t−1
.

Roughly speaking, the goal of this approximation is to compute the growth rate of the variable y for a

synthetic size class which represents, on average, 30% of total sales. These weighted growth rates form the

basis of a synthetic series for small firms for variable y, yS,t, through:

yS,t =

t∑
j=0

log(GYS,j−1,j).

For large firms, Gertler and Gilchrist (1994) use29:

GL,t−1,t = wt

∑
{i/xi,t≥xt} yi,t∑
{i/xi,t−1≥xt} yi,t−1

+ (1− wt)

∑
{i/xi,t≥x+

t } yi,t∑
{i/xi,t−1≥x+

t } yi,t−1
,

29In the later part of the sample, the cutoff xt turns out to be 1b$, the largest asset class. For these years, I set the weight
wt in GL,t−1,t to be equal to 1.
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where wt is the same value as above, and likewise define a synthetic series for large firms, for the variable y,

yL,t, as:

yL,t =

t∑
j=0

log(GL,j−1,j).

The results are reported in figures 19(a) and 19(b), when y corresponds to the series CB, CNB, TB and

TNB defined above. Consistently with the facts discussed in section 5, these figures suggest that, while

the ”synthetic” small firm experiences a contraction in her liabilities driven entirely by a reduction in bank

loan, the large firm experiences a substitution of market credit for bank credit. Notably, the upward trend

in non-bank liabilities is less noticeable in definition of small and large firms; in turn, over the first year after

the recession, the substitution is less than one for one.
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(a) The debt structure of small firms during recessions
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Figure 18: Robustness check 2: broader definition of large firms. Graphs 19(a) and 19(b) report the same series as graphs
12(b) and 12(c), but for the definition of ”large” and ”small” developed by Gertler and Gilchrist (1994); see text for details.

77



D.3.3 Excluding the Great Recession

The following graph reports changes in the composition of liabilities of small and large firms in recessions,

excluding the 2007-2009 recession. The series are thus the average of the change in liabilities for the 1990-1991

and 2000 recession.
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(a) Debt structure of small firms during recessions
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(b) Debt structure of large firms during recessions

Figure 19: Robustness check 3: excluding the 2007 recession. Graphs 19(a) and 19(b) report the same series as graphs 12(b)
and 12(c), excluding the 2007-2009 recession.

78



D.4 Aggregate financial liabilities in levels
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Figure 20: Financial liabilities in levels, baseline small/large classification. All series are smoothed with a 2 by 4 MA smoother
to remove seasonal variation. Shaded areas indicate NBER recessions.
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Figure 21: Financial liabilities in levels, using the Gertler and Gilchrist (1994) definition of small and large firms. All series
are smoothed with a 2 by 4 MA smoother to remove seasonal variation. Shaded areas indicate NBER recessions. Units on the
y-axis are arbitrary, since the series are computed from synthetic growth rates; see text ofr details.
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