Can the cure kill the patient?
Corporate credit interventions and debt overhang

Nicolas Crouzet and Fabrice Tourre

Northwestern University and Copenhagen Business School
Business credit programs as countercyclical tools

Sudden, large contraction \Rightarrow increase in corporate default risk.

Novel policy response: business credit programs. $750bn Corporate Credit Facilities (“CCF”) $600bn Main Street Lending Program (“MSLP”)

Q1 Impact of lending programs on real decisions of firms? reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)

Q2 Benefits from alternative program designs? new loans vs. forebearance on existing debt vs. equity injections vs. ...
Business credit programs as countercyclical tools

Sudden, large contraction ⇒ increase in corporate default risk.
Business credit programs as countercyclical tools

Sudden, large contraction \implies increase in corporate default risk.

Novel policy response: business credit programs.

- $750bn Corporate Credit Facilities ("CCF")
- $600bn Main Street Lending Program ("MSLP")
Business credit programs as countercyclical tools

Sudden, large contraction \implies increase in corporate default risk.

Novel policy response: business credit programs.

750bn Corporate Credit Facilities (“CCF”)
600bn Main Street Lending Program (“MSLP”)

Q1 Impact of lending programs on real decisions of firms? reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)

Q2 Benefits from alternative program designs? new loans vs. forebearance on existing debt vs. equity injections vs. ...
Business credit programs as countercyclical tools

Sudden, large contraction \implies increase in corporate default risk.

Novel policy response: business credit programs.

$750bn$ Corporate Credit Facilities (“CCF”)

$600bn$ Main Street Lending Program (“MSLP”)

Q1 Impact of lending programs on real decisions of firms?

reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)
Leverage in the run-up to the crisis

[Net leverage] [Interest coverage ratios] [Day of cash on hand] [Projected firms with zero cash]
Business credit programs as countercyclical tools

Sudden, large contraction \implies increase in corporate default risk.

Novel policy response: business credit programs.

$750bn$ Corporate Credit Facilities (“CCF”)
$600bn$ Main Street Lending Program (“MSLP”)

Q1 Impact of lending programs on real decisions of firms?
reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)

Q2 Benefits from alternative program designs?
new loans vs. forebearance on existing debt vs. equity injections vs. ...
Overview

Structural model:

- Q-theory + trade-off theory

Crisis:

- Cash-flow shock + risk price shock + sudden stop

1. Perfect capital markets:

 - Lending programs have ambiguous effects on investment:
 - Any funding at market rates: neutral (irrelevance result)
 - Debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - Intervention reducing cost of equity capital: positive (↑ Tobin's q, ↑ investment)

2. Sudden stop:

 - Short-run positive effects on investment dominate:
 - Weak debt overhang channel
 - Second-order gains from alternative designs
Overview

Structural model:

1. Perfect capital markets:
 - Lending programs have ambiguous effects on investment:
 - Any funding at market rates: neutral (irrelevance result)
 - Debt at subsidized prices: negative (\uparrow leverage, \downarrow investment)
 - Intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)

2. Sudden stop:
 - Short-run positive effects on investment dominate:
 - Weak debt overhang channel
 - Second-order gains from alternative designs
Overview

Structural model: Q − theory + trade-off theory
Overview

Structural model: Q - theory + trade-off theory

Crisis:
Overview

Structural model: \(Q \) – theory + trade-off theory

Crisis: cash-flow shock + risk price shock
Overview

Structural model: \(Q \) – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]
Overview

Structural model: \(Q \) theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets:
Overview

Structural model: $Q - \text{theory} + \text{trade-off theory}$

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
Overview

Structural model: \(Q - theory + \text{trade-off theory} \)

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
Overview

Structural model: Q − theory $+$ trade-off theory

Crisis: cash-flow shock $+$ risk price shock $[+$ sudden stop$]$

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
 - debt at subsidized prices: negative (\uparrow leverage, \downarrow investment)
Overview

Structural model: $Q -\text{theory} + \text{trade-off theory}$

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
 - debt at subsidized prices: negative (\uparrow leverage, \downarrow investment)
 - intervention reducing cost of equity capital: positive (\uparrow Tobin’s q, \uparrow investment)
Overview

Structural model: \(Q - \) theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment

 · any funding at market rates: neutral (irrelevance result)
 · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 · intervention reducing cost of equity capital: positive (↑ Tobin’s \(q \), ↑ investment)
Overview

Structural model: \(Q - \) theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
 - debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - intervention reducing cost of equity capital: positive (↑ Tobin’s \(q \), ↑ investment)

2. Sudden stop:
Overview

Structural model: \(Q - \) theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
 - debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - intervention reducing cost of equity capital: positive (↑ Tobin’s \(q \), ↑ investment)

2. Sudden stop: short-run positive effects on investment dominate
Overview

Structural model: Q − theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 · any funding at market rates: neutral (irrelevance result)
 · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 · intervention reducing cost of equity capital: positive (↑ Tobin’s q, ↑ investment)

2. Sudden stop: short-run positive effects on investment dominate
 · weak debt overhang channel
Overview

Structural model: \(Q\) – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment
 - any funding at market rates: neutral (irrelevance result)
 - debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - intervention reducing cost of equity capital: positive (↑ Tobin’s \(q\), ↑ investment)

2. Sudden stop: short-run positive effects on investment dominate
 - weak debt overhang channel
 - second-order gains from alternative designs
1. Model
Model building blocks

- ak production with convex adjustment cost function Φ (Hayashi, 1982)

- Permanent, Brownian shocks to efficiency units of capital $k_j(t)$ (Brunnermeier and Sannikov, 2014)

- Financing via either tax-advantaged exponentially amortizing debt $b_j(t)$ or equity

- No commitment over bond issuances or default policy (DeMarzo and He, 2020)

- At default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)

- Exogenous SDF(s) \rightarrow “industry” (partial) equilibrium

- Partially idiosyncratic, partially aggregate shock \rightarrow cross-sectional distribution over (b, k)
Model building blocks

- ak production with convex adjustment cost function Φ \hfill (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $k_{t}^{(j)}$ \hfill (Brunnermeier and Sannikov, 2014)
Model building blocks

- ak production with convex adjustment cost function Φ (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $k^{(i)}_t$ (Brunnermeier and Sannikov, 2014)

- financing via either tax-advantaged exponentially amortizing debt $b^{(i)}_t$ or equity

- exogenous SDF(s) → "industry" (partial) equilibrium

- partially idiosyncratic, partially aggregate shock → cross-sectional distribution over (b_t, k_t)
Model building blocks

- \(ak \) production with convex adjustment cost function \(\Phi \) (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital \(k_{t}^{(j)} \) (Brunnermeier and Sannikov, 2014)

- financing via either tax-advantaged exponentially amortizing debt \(b_{t}^{(j)} \) or equity

- no commitment over bond issuances \(I_{t} \) or default policy (DeMarzo and He, 2020)

- exogenous SDF(s) → “industry” (partial) equilibrium

 → partially idiosyncratic, partially aggregate shock

 → cross-sectional distribution over \((b, k)\)
Model building blocks

- ak production with convex adjustment cost function Φ (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $k_{t}^{(j)}$ (Brunnermeier and Sannikov, 2014)

- financing via either tax-advantaged exponentially amortizing debt $b_{t}^{(j)}$ or equity

- no commitment over bond issuances I_{t} or default policy (DeMarzo and He, 2020)

- at default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)
Model building blocks

- ak production with convex adjustment cost function Φ (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $k_t^{(i)}$ (Brunnermeier and Sannikov, 2014)

- financing via either tax-advantaged exponentially amortizing debt $b_t^{(i)}$ or equity

- no commitment over bond issuances I_t or default policy (DeMarzo and He, 2020)

- at default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)

- exogenous SDF(s) \to ”industry” (partial) equilibrium
Model building blocks

- ak production with convex adjustment cost function Φ
 (Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$
 (Brunnermeier and Sannikov, 2014)

- financing via either tax-advantaged exponentially amortizing debt $b_t^{(j)}$ or equity

- no commitment over bond issuances I_t or default policy
 (DeMarzo and He, 2020)

- at default, bankruptcy costs and firm restructuring with debt haircut
 (DeMarzo, He and Tourre, 2021)

- exogenous SDF(s) → "industry" (partial) equilibrium

- partially idiosyncratic, partially aggregate shock → cross-sectional distribution over (b, k)
Key model outcomes

- leverage $x := b/k$ sufficient statistic for a given firm

$$E(k, b) = ke(x) \quad D(k, b) = d(x) \quad G(k, b) = kg(x) \quad I(k, b) = k\nu(x)$$
Key model outcomes

- leverage $x := b/k$ sufficient statistic for a given firm

 \[E(k, b) = ke(x) \quad D(k, b) = d(x) \quad G(k, b) = kg(x) \quad I(k, b) = k\iota(x) \]

- defaults when leverage reaches cutoff \bar{x}

\[
\tilde{R}_d(x) - R_d(x) < 0 \quad \text{debt issuance rate (per unit of capital): trade-off theory with a twist}
\]

\[
\Phi'(g(x)) = \partial_k E = q(x)
\]

\[
\rho^\bullet < 0 \quad \text{arbitrage motive}
\]

\[
\tilde{R}_d(x) - R_d(x)\quad \text{debt expected return wedge (between equity and credit market investors)}
\]
Key model outcomes

- leverage $x := b/k$ sufficient statistic for a given firm

 \[E(k, b) = ke(x) \quad D(k, b) = d(x) \quad G(k, b) = kg(x) \quad I(k, b) = k\iota(x) \]

- defaults when leverage reaches cutoff \bar{x}

- firm-level growth rate $g(x)$ satisfies q-theory rule $\Phi'(g(x)) = \partial_k E := q(x)$
Key model outcomes

- leverage \(x := \frac{b}{k} \) sufficient statistic for a given firm

\[
E(k, b) = ke(x) \quad D(k, b) = d(x) \quad G(k, b) = kg(x) \quad I(k, b) = k\iota(x)
\]

- defaults when leverage reaches cutoff \(\bar{x} \)

- firm-level growth rate \(g(x) \) satisfies \(q \)-theory rule \(\Phi'(g(x)) = \partial_k E := q(x) \)

- debt overhang: \(g'(x) < 0 \) and \(g(x) < g^* \)
Debt overhang

Investment rate $\Phi(g(x))$

Debt to ebitda $z = \frac{x}{a}$

$\bar{z} = \frac{\bar{x}}{\bar{a}}$
Key model outcomes

- leverage $x := b/k$ sufficient statistic for a given firm

\[E(k, b) = ke(x) \quad D(k, b) = d(x) \quad G(k, b) = kg(x) \quad I(k, b) = k\iota(x) \]

- defaults when leverage reaches cutoff \bar{x}

- firm-level growth rate $g(x)$ satisfies q-theory rule $\Phi' (g(x)) = \partial_k E := q(x)$

- debt overhang: $g'(x) < 0$ and $g(x) < g^*$

- debt issuance rate (per unit of capital): trade-off theory with a twist

\[\iota(x) = \frac{\Theta_K}{-d'(x)} + \frac{\left(\tilde{R}_d(x) - R_d(x) \right) d(x)}{-d'(x)} \]

\[\text{tax motive, arbitrage motive} \]

- $\tilde{R}_d(x) - R_d(x)$: debt expected return wedge (between equity and credit market investors)
Financing policies

Debt issuance rate $\nu(x)$

\[\bar{z} = \frac{x}{a} \]

Dividend issuance rate $\pi(x)$

\[\bar{z} = \frac{x}{a} \]
Aggregation

- Aggregate capital stock $K_t := \int k_t^{(j)} dj$
Aggregation

- Aggregate capital stock $K_t := \int k_t^{(j)} dj$

- Capital-share weighted distribution $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I}(x_t^{(j)} \leq x) dj$
Aggregation

- Aggregate capital stock $K_t := \int k_t^{(j)} dj$

- Capital-share weighted distribution $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I} \left(x_t^{(j)} \leq x \right) dj$

- Aggregate capital-share-weighted moments

 Default rate $\hat{\lambda}_t^d = -\frac{1}{2} \sigma^2 \bar{x}^2 \partial_x \hat{f}(\bar{x})$

 Average growth $\hat{g}_t = \int g(x) \hat{f}_t(x) dx$
Aggregation

- Aggregate capital stock \(K_t := \int k_t^{(j)}dj \)

- Capital-share weighted distribution \(\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I} \left(x_t^{(j)} \leq x \right) dj \)

- Aggregate capital-share-weighted moments

 Default rate \(\hat{\lambda}^d_t = -\frac{1}{2} \sigma^2 \bar{x}^2 \partial_x \hat{f}_t(\bar{x}) \)

 Average growth \(\hat{g}_t = \int g(x) \hat{f}_t(x)dx \)

- Aggregate growth \(\mu_{K,t} := \hat{g}_t - (1 - \alpha_k)\hat{\lambda}_t \) and aggregate capital stock dynamics

 \[dK_t = \mu_{K,t} K_t dt + \rho \sigma K_t dZ_t \]
Long run distribution

\[
\tilde{z} = \frac{x}{a}
\]

- Capital-weighted distribution \(\hat{f}(x) \) (rhs, \%)
- Investment rate \(\Phi(g(x)) \) (lhs, \%)

Debt to ebitda \(z = \frac{x}{a} \)
Estimation

Calibrate 4 parameters:
- $r = \kappa = 5\%$
- $\delta = 10\%$
- $\Theta = 35\%$
- $1/m = 10$ years

Estimate 3 parameters:
- a (average product of capital)
- σ (TFP shock vol.)
- γ (curv. of investment adjustment costs)

<table>
<thead>
<tr>
<th>Moment Description</th>
<th>Targeted?</th>
<th>Data Model</th>
<th>$\hat{\Phi}$ average investment rate</th>
<th>\hat{z} average debt/ebitda</th>
<th>$\text{cov}(\Phi(x), z(x))$</th>
<th>$\text{var}(z(x))$</th>
<th>slope of inv. w.r.t debt/ebitda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average investment rate</td>
<td>9.48%</td>
<td>9.47%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average debt/ebitda</td>
<td>2.71%</td>
<td>2.71%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope of inv. w.r.t debt/ebitda</td>
<td>-3.66</td>
<td>-3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimation

· Calibrate 4 parameters:

\[r = \kappa = 5\%, \quad \delta = 10\%, \quad \Theta = 35\%, \quad 1/m = 10 \text{ years}. \]
Estimation

- Calibrate 4 parameters:
 \[r = \kappa = 5\%, \quad \delta = 10\%, \quad \Theta = 35\%, \quad \frac{1}{m} = 10 \text{ years}. \]

- Estimate 3 parameters:

 \[a \quad \text{(average product of capital)} \]
 \[\sigma \quad \text{(TFP shock vol.)} \]
 \[\gamma \quad \text{(curv. of investment adjustment costs)} \]
Estimation

- Calibrate 4 parameters:

\[r = \kappa = 5\%, \quad \delta = 10\%, \quad \Theta = 35\%, \quad 1/m = 10 \text{ years}. \]

- Estimate 3 parameters:

\[a \quad \text{(average product of capital)} \]
\[\sigma \quad \text{(TFP shock vol.)} \]
\[\gamma \quad \text{(curv. of investment adjustment costs)} \]

<table>
<thead>
<tr>
<th>Moment</th>
<th>Description</th>
<th>Targeted?</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\Phi})</td>
<td>average investment rate</td>
<td>✓</td>
<td>9.48</td>
<td>9.47</td>
</tr>
<tr>
<td>(\hat{z})</td>
<td>average debt/ebitda</td>
<td>✓</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>(\frac{\text{cov}(\Phi(x),z(x))}{\text{var}(z(x))})</td>
<td>slope of inv. w.r.t debt/ebitda</td>
<td>✓</td>
<td>−3.66</td>
<td>−3.66</td>
</tr>
</tbody>
</table>
Estimation

\[\hat{\Phi} \] average investment rate
\[\hat{z} \] average debt/ebitda
\[\text{cov}(\hat{\Phi}(x), \hat{z}(x)) \] slope of inv. w.r.t debt/ebitda
\[\hat{\kappa} \] average (inverse) interest coverage ratio
\[\hat{\pi} \] average dividend issuance rate
\[\hat{\iota} - \hat{\mu} \] average net debt issuance rate
\[\text{var}(\hat{z}(x)) \] variance of debt/ebitda
\[\hat{F}(\hat{z}(x) \leq 1) \] total asset share, debt/ebitda \leq 1
\[\hat{F}(\hat{z}(x) > 3) \] total asset share, debt/ebitda > 3
<table>
<thead>
<tr>
<th>Moment</th>
<th>Description</th>
<th>Targeted?</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\Phi}$</td>
<td>average investment rate</td>
<td>✓</td>
<td>9.48</td>
<td>9.47</td>
</tr>
<tr>
<td>\hat{z}</td>
<td>average debt/ebitda</td>
<td>✓</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>$\frac{\text{cov}(\Phi(x), z(x))}{\text{var}(z(x))}$</td>
<td>slope of inv. w.r.t debt/ebitda</td>
<td>✓</td>
<td>−3.66</td>
<td>−3.66</td>
</tr>
<tr>
<td>$\kappa \hat{z}$</td>
<td>average (inverse) interest coverage ratio</td>
<td>x</td>
<td>11.61</td>
<td>13.53</td>
</tr>
<tr>
<td>$\hat{\pi}$</td>
<td>average dividend issuance rate</td>
<td>x</td>
<td>3.32</td>
<td>3.49</td>
</tr>
<tr>
<td>$\hat{i} - \hat{m}$</td>
<td>average net debt issuance rate</td>
<td>x</td>
<td>0.96</td>
<td>1.06</td>
</tr>
<tr>
<td>$\text{var}(z(x))$</td>
<td>variance of debt/ebitda</td>
<td>x</td>
<td>3.08</td>
<td>0.90</td>
</tr>
<tr>
<td>$\hat{F}(z(x) \leq 1)$</td>
<td>total asset share, debt/ebitda \leq 1</td>
<td>x</td>
<td>9.21</td>
<td>0.00</td>
</tr>
<tr>
<td>$\hat{F}(z(x) > 3)$</td>
<td>total asset share, debt/ebitda > 3</td>
<td>x</td>
<td>32.53</td>
<td>22.06</td>
</tr>
</tbody>
</table>
2. The crisis as a temporary aggregate shock
Economic and financial shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)
Economic and financial shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)

- Productivity drop during crisis, from a to $a = 0.75a$
 - approx similar to ebitda drop in Compustat from Q4 2019 to Q2 2020
Economic and financial shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)

- Productivity drop during crisis, from a to $a = 0.75a$
 - approx similar to ebitda drop in Compustat from Q4 2019 to Q2 2020

- Increase in risk prices, from $\nu = 0$ to $\nu = 85\%$
 - S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
 - IG credit spreads went from 133bps to 488bps between Feb 20 and March 23
 - HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23
Economic and financial shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)

- Productivity drop during crisis, from a to $a = 0.75a$
 - approx similar to ebitda drop in Compustat from Q4 2019 to Q2 2020

- Increase in risk prices, from $\nu = 0$ to $\nu = 85\%$
 - S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
 - IG credit spreads went from 133bps to 488bps between Feb 20 and March 23
 - HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23

- Perfect financial markets or sudden stop in financial markets
Economic and financial shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)

- Productivity drop during crisis, from \(a \) to \(a = 0.75a \)
 - approx similar to ebitda drop in Compustat from Q4 2019 to Q2 2020

- Increase in risk prices, from \(\nu = 0 \) to \(\nu = 85\% \)
 - S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
 - IG credit spreads went from 133bps to 488bps between Feb 20 and March 23
 - HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23

- Perfect financial markets or sudden stop in financial markets

- Outcomes of focus: expected future macroeconomic aggregates

\[
E[K_t] = E \left[\int_j k_t^{(j)} dj \right] \quad E[Y_t] = E \left[\int_j a_t k_t^{(j)} dj \right] \quad E[C_t] = E \left[\int_j (a_t - \Phi(g_t^{(j)})) k_t^{(j)} dj \right]
\]
Aggregate capital response during crisis
Aggregate capital response during crisis
Aggregate investment response during crisis
Aggregate investment response during crisis
3. Theoretical results with perfect financial markets
Result 1: irrelevance theorem

Suppose that (a) the government offers funding at (private) market prices and (b) the intervention does not alter any investors' SDF. Then, relative to the laissez-faire, all outcomes are unchanged. Funding program can consist of debt, equity, any hybrid instrument, be implemented via (fairly priced) government-backed credit guarantees, and be unconditional or conditional on leverage.
Result 1: irrelevance theorem

Result

Suppose that (a) the government offers funding at (private) market prices and (b) the intervention does not alter any investors’ SDF.

Then, relative to the laissez-faire, all outcomes are unchanged.
Result 1: irrelevance theorem

Result

Suppose that (a) the government offers funding at (private) market prices and (b) the intervention does not alter any investors’ SDF.

Then, relative to the laissez-faire, all outcomes are unchanged.

Funding program can

- consist of debt, equity, any hybrid instrument
- be implemented via (fairly priced) government-backed credit guarantees
- be unconditional or conditional on leverage
Result 2: subsidized loans are distortionary

Suppose that the government intervention decreases the required return on debt $R_d(x)$, without altering equity markets' SDF. Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$\tilde{\iota}(x) = \Theta \kappa - d'(x)$$

tax motive

$$\tilde{R}_d(x) - R_d(x)$$

arbitrage motive

More issuance \Rightarrow distribution $\hat{f}_t(x)$ shifts right $= \Rightarrow$ lower investment
Result 2: subsidized loans are distortionary

Result

Suppose that the government intervention decreases the required return on debt $R_d(x)$, without altering equity markets’ SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.
Result 2: subsidized loans are distortionary

Result

Suppose that the government intervention decreases the required return on debt $R_d(x)$, without altering equity markets’ SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

\[\tilde{\iota}(x) = \Theta \kappa \frac{\tilde{R}_d(x) - R_d(x)}{-d'(x)} d(x) > \iota(x) \]

- **Tax motive**: $\Theta \kappa \frac{\tilde{R}_d(x) - R_d(x)}{-d'(x)} d(x)$
- **Arbitrage motive**: $\frac{\tilde{R}_d(x) - R_d(x)}{-d'(x)} d(x)$
Result 2: subsidized loans are distortionary

Result

Suppose that the government intervention decreases the required return on debt $R_d(x)$, without altering equity markets’ SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$
\tilde{\iota}(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(\tilde{R}_d(x) - R_d(x)\right) d(x)}{-d'(x)} > \iota(x)
$$

More issuance \implies distribution $\hat{f}_t(x)$ shifts right \implies lower investment
Aggregate leverage when $\tilde{R}_d - R_d = 2\%$
Aggregate leverage when $\tilde{R}_d - R_d = 2\%$
Result 3: expansionary announcement effects

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP (↓\(r_e\)), or unconventional via announcement (↓\(\nu_e\)).

Caveat: with segmented markets, if ↓\(\in R_d(x)\) is larger than ↓\(\in \tilde{R}_d(x)\)...

\[\iota(x) = \Theta \kappa - d'(x)\]

\[\Rightarrow\]

\[\text{tax motive} + (\tilde{R}_d(x) - R_d(x))d(x) - d'(x)\]

\[\Rightarrow\]

\[\text{arbitrage motive} \cdot\]

On impact, so long as \(R_e(x)\) falls, investment stimulated as Tobin's \(q\) jumps up; Over time, corporate leverage increases, pushing down investment.
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP (\(\downarrow r_e\)), or unconventional via announcement (\(\downarrow \nu_e\)).
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP ($\downarrow r_e$), or unconventional via announcement ($\downarrow \nu_e$).

Caveat: with segmented markets, if \downarrow in $R_d(x)$ is larger than \downarrow in $\tilde{R}_d(x)$...
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP ($\downarrow r_e$), or unconventional via announcement ($\downarrow \nu_e$).

Caveat: with segmented markets, if \downarrow in $R_d(x)$ is larger than \downarrow in $\tilde{R}_d(x)$...

\[
\iota(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(\tilde{R}_d(x) - R_d(x)\right) d(x)}{-d'(x)}
\]

\text{tax motive} \quad \text{arbitrage motive}
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP ($\downarrow r_e$), or unconventional via announcement ($\downarrow \nu_e$).

Caveat: with segmented markets, if \downarrow in $R_d(x)$ is larger than \downarrow in $\tilde{R}_d(x)$...

$$\iota(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(\tilde{R}_d(x) - R_d(x) \right) d(x)}{-d'(x)}$$

- tax motive
- arbitrage motive

· On impact, so long as $R_e(x)$ falls, investment stimulated as Tobin’s q jumps up;
Result 3: expansionary announcement effects

Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP ($\downarrow r_e$), or unconventional via announcement ($\downarrow \nu_e$).

Caveat: with segmented markets, if \downarrow in $R_d(x)$ is larger than \downarrow in $\tilde{R}_d(x)$...

$$\tau(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(\tilde{R}_d(x) - R_d(x)\right)}{-d'(x)} d(x)$$

\begin{align*}
\text{tax motive} & \quad \text{arbitrage motive} \\
\frac{\Theta \kappa}{-d'(x)} & \quad \frac{\left(\tilde{R}_d(x) - R_d(x)\right)}{-d'(x)} d(x)
\end{align*}

- On impact, so long as $R_e(x)$ falls, investment stimulated as Tobin’s q jumps up;
- Over time, corporate leverage increases, pushing down investment.
Aggregate investment with expansionary announcement effects
4. Disruption in financial markets
External financing during the crisis period

- Two possible sudden stop being examined

- Shut down in equity markets only ($\pi_t \geq 0$)
- Shut down in all financial markets ($\pi_t \geq 0, \iota_t \leq 0$)
- Large increase in corporate default rate (default boundary \bar{x})
- Investment curtailed due to lack of external financing available
- Credit market intervention are uncontroversially beneficial for expected future aggregate capital and output, even if they increase corporate leverage (relative to laissez-faire)
External financing during the crisis period

- Two possible sudden stop being examined
 - Shut down in equity markets only \((\pi_t \geq 0)\)
External financing during the crisis period

- Two possible sudden stop being examined
 - Shut down in equity markets only ($\pi_t \geq 0$)
 - Shut down in all financial markets ($\pi_t \geq 0, \iota_t \leq 0$)
External financing during the crisis period

- Two possible sudden stop being examined
 - Shut down in equity markets only ($\pi_t \geq 0$)
 - Shut down in all financial markets ($\pi_t \geq 0, \iota_t \leq 0$)

- Large increase in corporate default rate (default boundary $\bar{x} \downarrow$)
External financing during the crisis period

- Two possible sudden stop being examined
 - Shut down in equity markets only ($\pi_t \geq 0$)
 - Shut down in all financial markets ($\pi_t \geq 0, \iota_t \leq 0$)

- Large increase in corporate default rate (default boundary $\bar{x} \downarrow$)

- Investment curtailed due to lack of external financing available
External financing during the crisis period

- Two possible sudden stop being examined
 - Shut down in equity markets only ($\pi_t \geq 0$)
 - Shut down in all financial markets ($\pi_t \geq 0, \iota_t \leq 0$)

- Large increase in corporate default rate (default boundary $\bar{x} \downarrow$)

- Investment curtailed due to lack of external financing available

- Credit market intervention are uncontroversially beneficial for expected future aggregate capital and output, even if they increase corporate leverage (relative to laissez-faire)
Why are debt overhang effects of credit market interventions so small?

Investment rate $\Phi(g(x))$

BCP loans move the debt/ebitda ratio:

$$z_t = \frac{b_t}{ak_t} \rightarrow z'_t = \frac{b_t + \left(\frac{1}{\chi} \right) (a - a) k_t}{ak_t}$$

$$\approx 2.20$$

$$= z_t + \frac{1}{\chi} \left(1 - \frac{a}{a} \right)$$

$$= z_t + 0.25 \approx 2.45$$
Why are debt overhang effects of credit market interventions so small?

BCP loans move the debt/ebitda ratio:

\[
z_t = \frac{b_t}{ak_t} \quad \rightarrow \quad z'_t = b_t + \left(\frac{1}{\chi} \right) \left(\frac{a - a}{ak_t} \right) \approx 2.20
\]

Small move, in a region where the slope of investment is not steep.
Other interventions

- Debt funding extended at price $d_g < 1$
 - In that case, firms with leverage $x < x^*(d_g)$ do not take loan
 - Close proxy to Main Street Lending Program (loans @ $L + 300$)
Other interventions

- Debt funding extended at price $d_g < 1$
 - In that case, firms with leverage $x < x^*(d_g)$ do not take loan
 - Close proxy to Main Street Lending Program (loans @ $L + 300$)

- Debt funding with dividends/share buy-back restrictions
 - Conditions required for participation in Main Street Lending Program
 - Constraint that addresses commitment problem at the same time

- Debt forbearance program
 - Similar to what US implemented in connection with agency mortgages
 - Difficult to implement in practice given required lender compensation
Other interventions

- Debt funding extended at price $d_g < 1$
 - In that case, firms with leverage $x < x^*(d_g)$ do not take loan
 - Close proxy to Main Street Lending Program (loans @ $L + 300$)

- Debt funding with dividends/share buy-back restrictions
 - Conditions required for participation in Main Street Lending Program
 - Constraint that addresses commitment problem at the same time

- Debt forbearance program
 - Similar to what US implemented in connection with agency mortgages
 - Difficult to implement in practice given required lender compensation
Key take-aways
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the \textbf{net} economic impact of these programs be?

2. Would there be large gains to doing things differently?
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the net economic impact of these programs be?
 \[\leq 0 \text{ with perfect capital markets and no impact on pricing of aggregate risk} \]

2. Would there be large gains to doing things differently?
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the net economic impact of these programs be?
 \[\leq 0 \] w perfect capital markets and no impact on pricing of aggregate risk
 \[> 0 \] w perfect capital markets and decrease in risk prices

2. Would there be large gains to doing things differently?
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the net economic impact of these programs be?

 \[\leq 0 \text{ with perfect capital markets and no impact on pricing of aggregate risk} \]
 \[> 0 \text{ with perfect capital markets and decrease in risk prices} \]
 \[\gg 0 \text{ with capital markets’ disruptions} \]

2. Would there be large gains to doing things differently?
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the net economic impact of these programs be?
 - ≤ 0 w perfect capital markets and no impact on pricing of aggregate risk
 - > 0 w perfect capital markets and decrease in risk prices
 - $\gg 0$ w capital markets’ disruptions
 - Weak debt overhang effects during the recovery

2. Would there be large gains to doing things differently?
Conclusion

Fed + Treasury providing credit to firms during the crisis.

1. What will the net economic impact of these programs be?
 - ≤ 0 with perfect capital markets and no impact on pricing of aggregate risk
 - > 0 with perfect capital markets and decrease in risk prices
 - $\gg 0$ with capital markets’ disruptions
 - Weak debt overhang effects during the recovery

2. Would there be large gains to doing things differently?
 - Not really! Unless $\partial g / \partial x$ is much larger ...
More
Secondary market corporate credit facilities’ ("SMCCF") purchases

- Purchases of single-name bonds (left axis)
- Purchases of bond ETFs (left axis)
- BBB spread (right axis)

Key dates:
- 3/23
- 4/9
- 5/12
- 6/15

Timeline:
- 1/1/20
- 3/1/20
- 5/1/20
- 7/1/20
- 9/1/20
- 11/1/20
Leverage in the run-up to the crisis: net debt

Percent of aggregate sales

1985q1 1990q1 1995q1 2000q1 2005q1 2010q1 2015q1 2020q1

Net debt/EBITDA ≥ 1
Net debt/EBITDA ≥ 2
Net debt/EBITDA ≥ 3
Interest coverage ratios in the run-up to the crisis

[Back]
Days of cash on hand in the run-up to the crisis

- Days of cash on hand ≤ 60
- Days of cash on hand ≤ 90
- Days of cash on hand ≤ 120

Percent of aggregate sales

1985q1 1990q1 1995q1 2000q1 2005q1 2010q1 2015q1 2020q1
Projected firms with zero cash

<table>
<thead>
<tr>
<th>Quarter</th>
<th>No shock</th>
<th>Shock + no payouts to equityholders</th>
<th>Shock + stop investing</th>
<th>Shock + all adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019Q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019Q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019Q4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020Q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020Q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020Q4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021Q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021Q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021Q4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022Q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022Q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022Q4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Model of the firm

- Technology with adjustment costs: $\Phi (g_t) k_t dt$ spent allows capital to grow by $g_t k_t dt$

$$dk_t^{(j)} = k_t^{(j)} \left[g_t^{(j)} dt + \sigma \left(\rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]$$
Model of the firm

- Technology with adjustment costs: \(\Phi (g_t) k_t dt \) spent allows capital to grow by \(g_t k_t dt \)

 \[
dk_t^{(j)} = k_t^{(j)} \left[g_t^{(j)} dt + \sigma \left(\rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]
 \]

- Financing via long term debt with notional \(b_t^{(j)} \) that satisfies: \(db_t^{(j)} = \left(t_t^{(j)} k_t^{(j)} - m b_t^{(j)} \right) dt \)
Model of the firm

· Technology with adjustment costs: \(\Phi (g_t) k_t dt \) spent allows capital to grow by \(g_t k_t dt \)

\[
dk_t^{(j)} = k_t^{(j)} \left[g_t^{(j)} dt + \sigma \left(\rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]
\]

· Financing via long term debt with notional \(b_t^{(j)} \) that satisfies: \(db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} - mb_t^{(j)} \right) dt \)

· Dividends to shareholders of firm \(j \)

\[
\pi_t^{(j)} k_t^{(j)} := ak_t^{(j)} - \Phi \left(g_t^{(j)} \right) k_t^{(j)} + \iota_t^{(j)} k_t^{(j)} D_t^{(j)} - (\kappa + m) b_t^{(j)} - \Theta \left(ak_t^{(j)} - \kappa b_t^{(j)} \right)
\]
Model of the firm

- Technology with adjustment costs: \(\Phi (g_t) k_t \) \(dt \) spent allows capital to grow by \(g_t k_t \) \(dt \)

\[
dk_t^{(j)} = k_t^{(j)} \left[g_t^{(j)} \, dt + \sigma \left(\rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) \, dN_t^{(j)} \right]
\]

- Financing via long term debt with notional \(b_t^{(j)} \) that satisfies: \(db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} - m b_t^{(j)} \right) \, dt \)

- Dividends to shareholders of firm \(j \)

\[
\pi_t^{(j)} = \underbrace{ak_t^{(j)} - \Phi \left(g_t^{(j)} \right) k_t^{(j)}}_{\text{ebitda - capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)}}_{\text{net debt issuance}} - \underbrace{(\kappa + m) b_t^{(j)}}_{\text{taxes}} - \underbrace{\Theta \left(ak_t^{(j)} - \kappa b_t^{(j)} \right)}_{\text{net debt issuance}}
\]

- Investor \(n \) (\(n \in \{e, d\} \)) with SDF \(\xi_{n,t} \) that satisfies \(\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_n \, dt - \nu_n \, dZ_t \)
Model of the firm

· Technology with adjustment costs: \(\Phi (g_t) k_t dt \) spent allows capital to grow by \(g_t k_t dt \)

\[
dk_t^{(j)} = k_t^{(j)} \left[g_t^{(j)} dt + \sigma \left(\rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]
\]

· Financing via long term debt with notional \(b_t^{(j)} \) that satisfies: \(db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} - mb_t^{(j)} \right) dt \)

· Dividends to shareholders of firm \(j \)

\[
\pi_t^{(j)} k_t^{(j)} := ak_t^{(j)} - \Phi \left(g_t^{(j)} \right) k_t^{(j)} + \iota_t^{(j)} k_t^{(j)} D_t^{(j)} - (\kappa + m) b_t^{(j)} - \Theta \left(ak_t^{(j)} - \kappa b_t^{(j)} \right)
\]

· Investor \(n \) (\(n \in \{e, d\} \)) with SDF \(\xi_{n,t} \) that satisfies \(\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_t dt - \nu_t dZ_t \)

· Shareholder problem and debt valuation

\[
E(k_t, b_t) = \sup_{g, \iota, \tau} \mathbb{E}^{Q_e} \left[\int_t^{+\infty} e^{-r_{(s-t)} \pi_s k_s} ds \right] \quad D(k_t, b_t) = \mathbb{E}^{Q_d} \left[\int_t^{+\infty} e^{-(r_d + m)(s-t)} \alpha_b N_t (\kappa + m) ds \right]
\]
Mathematical derivations

· HJB equation for shareholders

\[0 = \max_{\nu, g} \left[- (r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \nu d(x) - \Theta(a - \kappa x) \right. \]

\[+ \left. \left[\nu - (g + m)x \right] e'(x) + \frac{\sigma^2}{2} x^2 e''(x) \right] \]
Mathematical derivations

· HJB equation for shareholders

\[0 = \max_{\lambda, g} \left[- (r - g) e(x) + \lambda - \Phi (g) - (\kappa + m) x + \nu d(x) - \Theta (a - \kappa x) \right. \]
\[\left. + [\nu - (g + m) x] e'(x) + \frac{\sigma^2}{2} x^2 e''(x) \right] \]

· Feynman-Kac equation for debt price

\[(r + m) d(x) = \kappa + m + \left[\nu(x) - \left(g(x) + m - \sigma^2 \right) x \right] d'(x) + \frac{\sigma^2}{2} x^2 d''(x). \]
Mathematical derivations

· HJB equation for shareholders

\[0 = \max_{\iota, g} \left[- (r - g) e(x) + a - \Phi(g) - (\kappa + m) x + \iota d(x) - \Theta(a - \kappa x) \right. \]
\[\left. + [\iota - (g + m) x] e'(x) + \frac{\sigma^2}{2} x^2 e''(x) \right] \]

· Feynman-Kac equation for debt price

\[(r + m) d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2 \right) x \right] d'(x) + \frac{\sigma^2}{2} x^2 d''(x). \]

· First order conditions for optimality

\[d(x) + e'(x) = 0 \Rightarrow \iota(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{R_d(x) - \tilde{R}_d(x)}{-d'(x)} d(x), \quad q(x) := e(x) - xe'(x) = \Phi'(g(x)) \]
Mathematical derivations

· HJB equation for shareholders

\[0 = \max_{\nu, g} \left[-(r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \nu d(x) - \Theta(a - \kappa x) \right. \]
\[\left. + \left[\nu - (g + m)x \right] e'(x) + \frac{\sigma^2}{2} x^2 e''(x) \right] \]

· Feynman-Kac equation for debt price

\[(r + m)d(x) = \kappa + m + \left[\nu(x) - \left(g(x) + m - \sigma^2 \right) x \right] d'(x) + \frac{\sigma^2}{2} x^2 d''(x). \]

· First order conditions for optimality

\[d(x) + e'(x) = 0 \Rightarrow \nu(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(R_d(x) - \tilde{R}_d(x) \right)}{-d'(x)} d(x), \quad q(x) := e(x) - xe'(x) = \Phi'(g(x)) \]

· Expected debt returns \(R_d \) and \(\tilde{R}_d \) and equity returns \(R_e \)

\[R_d(x) = r_d - \rho \nu_d \sigma \frac{xd'(x)}{d(x)}, \quad \tilde{R}_d(x) = r_e - \rho \nu_e \sigma \frac{xd'(x)}{d(x)}, \quad R_e(x) = r_e - \rho \nu_e \sigma \left[1 - \frac{xe'(x)}{e(x)} \right] \]
GMM (exactly identified case)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Point estimate</th>
<th>Standard error</th>
<th>[5, 95] normal CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>average product of capital</td>
<td>0.223</td>
<td>0.001</td>
<td>[0.231, 0.235]</td>
</tr>
<tr>
<td>σ</td>
<td>volatility of idiosyncratic shock</td>
<td>0.236</td>
<td>0.010</td>
<td>[0.219, 0.253]</td>
</tr>
<tr>
<td>γ</td>
<td>curvature of capital adjustment cost</td>
<td>2.550</td>
<td>0.643</td>
<td>[1.493, 3.608]</td>
</tr>
</tbody>
</table>
GMM (exactly identified case)

<table>
<thead>
<tr>
<th>Moment</th>
<th>Description</th>
<th>Targeted?</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100 \times \hat{\Phi}$</td>
<td>average investment rate</td>
<td>✓</td>
<td>9.48</td>
<td>9.47</td>
</tr>
<tr>
<td>\hat{z}</td>
<td>average debt-to-ebitda</td>
<td>✓</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>$100 \times \frac{\text{cov}(\hat{\Phi}(x), z(x))}{\text{var}(z(x))}$</td>
<td>slope of inv. w.r.t debt-to-ebitda</td>
<td>✓</td>
<td>-3.66</td>
<td>-3.66</td>
</tr>
<tr>
<td>$100 \times \kappa \hat{z}$</td>
<td>average (inverse) interest coverage ratio</td>
<td>x</td>
<td>11.61</td>
<td>13.53</td>
</tr>
<tr>
<td>$100 \times \hat{\pi}$</td>
<td>average dividend issuance rate</td>
<td>x</td>
<td>3.32</td>
<td>3.49</td>
</tr>
<tr>
<td>$100 \times \hat{i}$</td>
<td>average gross debt issuance rate</td>
<td>x</td>
<td>10.21</td>
<td>7.38</td>
</tr>
<tr>
<td>$100 \times (\hat{i} - m\hat{x})$</td>
<td>average net debt issuance rate</td>
<td>x</td>
<td>0.96</td>
<td>1.06</td>
</tr>
<tr>
<td>$\text{var}(z(x))$</td>
<td>variance of debt-to-ebitda</td>
<td>x</td>
<td>3.08</td>
<td>0.90</td>
</tr>
<tr>
<td>$\text{var}(100 \times \Phi(x))$</td>
<td>variance of investment rate</td>
<td>x</td>
<td>23.36</td>
<td>13.32</td>
</tr>
<tr>
<td>$100 \times \hat{F}(z(x) \leq 1)$</td>
<td>total asset share, debt-to-ebitda ≤ 1</td>
<td>x</td>
<td>9.21</td>
<td>0.00</td>
</tr>
<tr>
<td>$100 \times \hat{F}(z(x) \leq 2)$</td>
<td>total asset share, debt-to-ebitda ≤ 2</td>
<td>x</td>
<td>43.00</td>
<td>19.89</td>
</tr>
<tr>
<td>$100 \times \hat{F}(z(x) \leq 3)$</td>
<td>total asset share, debt-to-ebitda ≤ 3</td>
<td>x</td>
<td>67.47</td>
<td>77.94</td>
</tr>
</tbody>
</table>
The strength of the debt overhang channel

Average growth:

- Growth rate of all-equity firm = 2.8%
- Aggregate growth rate of K_t = 0.9%

Marginal effects:

$$\frac{\partial (i/k)_t}{\partial x_t} \begin{array}{ll}
(i/k)_t = \text{Gross investment} & (i/k)_t = \text{Net investment} \\
\text{Model} & -0.094 & -0.106 \\
\text{Lang, Ofek, Stulz (1996)} & & -0.105 \\
\text{An, Denis, Denis (2006)} & & -0.086 \\
\text{Cai, Zhang (2011)} & -0.038 & \\
\text{Wittry (2020)} & -0.038 & \\
\end{array}$$