# Can the cure kill the patient? Corporate credit interventions and debt overhang

Nicolas Crouzet and Fabrice Tourre

Northwestern University and Copenhagen Business School

Sudden, large contraction  $\implies$  increase in corporate default risk.

Sudden, large contraction  $\implies$  increase in corporate default risk.

Novel policy response: business credit programs.

\$750bn Corporate Credit Facilities ("CCF")\$600bn Main Street Lending Program ("MSLP")

Sudden, large contraction  $\implies$  increase in corporate default risk.

Novel policy response: business credit programs.

\$750bn Corporate Credit Facilities ("CCF")\$600bn Main Street Lending Program ("MSLP")

Sudden, large contraction  $\implies$  increase in corporate default risk.

Novel policy response: business credit programs.

\$750bn Corporate Credit Facilities ("CCF")\$600bn Main Street Lending Program ("MSLP")

Q1 Impact of lending programs on real decisions of firms?

reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)

#### Leverage in the run-up to the crisis



[Net leverage] [Interest coverage ratios] [Day of cash on hand] [Projected firms with zero cash]

Sudden, large contraction  $\implies$  increase in corporate default risk.

Novel policy response: business credit programs.

\$750bn Corporate Credit Facilities ("CCF")\$600bn Main Street Lending Program ("MSLP")

Q1 Impact of lending programs on real decisions of firms?

reduce bankruptcies and support investment (short-run) vs. debt overhang (long-run)

Q2 Benefits from alternative program designs?

new loans vs. forebearance on existing debt vs. equity injections vs. ...

Structural model:

Structural model: Q - theory + trade-off theory

Structural model: Q - theory + trade-off theory

Crisis:

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

Structural model:Q - theory+ trade-off theoryCrisis:cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets:

Structural model: Q - theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

Structural model: Q - theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect capital markets: lending programs have ambiguous effects on investment

• any funding at market rates: neutral (irrelevance result)

Structural model: Q - theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- · intervention reducing cost of equity capital: positive ( $\uparrow$  Tobin's q,  $\uparrow$  investment)

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- · intervention reducing cost of equity capital: positive ( $\uparrow$  Tobin's q,  $\uparrow$  investment)

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- · intervention reducing cost of equity capital: positive ( $\uparrow$  Tobin's q,  $\uparrow$  investment)
- 2. Sudden stop:

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- · any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- · intervention reducing cost of equity capital: positive ( $\uparrow$  Tobin's q,  $\uparrow$  investment)
- 2. Sudden stop: short-run positive effects on investment dominate

Structural model: Q -theory +trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- · any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- · intervention reducing cost of equity capital: positive ( $\uparrow$  Tobin's q,  $\uparrow$  investment)
- 2. Sudden stop: short-run positive effects on investment dominate
  - $\cdot \;$  weak debt overhang channel

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- · any funding at market rates: neutral (irrelevance result)
- · debt at subsidized prices: negative ( $\uparrow$  leverage,  $\downarrow$  investment)
- intervention reducing cost of equity capital: positive (↑ Tobin's *q*, ↑ investment)
- 2. Sudden stop: short-run positive effects on investment dominate
  - · weak debt overhang channel
  - $\cdot\,$  second-order gains from alternative designs

# 1. Model

 $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$ 

(Hayashi, 1982)

 $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$ 

· (permanent, Brownian) shocks to efficiency units of capital  $k_t^{(j)}$ 

(Hayashi, 1982)

(Brunnermeier and Sannikov, 2014)

 $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$ 

(Hayashi, 1982)

· (permanent, Brownian) shocks to efficiency units of capital  $k_t^{(j)}$  (Figure 6.1)

(Brunnermeier and Sannikov, 2014)

· financing via either tax-advantaged exponentially amortizing debt  $b_t^{(j)}$  or equity

- $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$
- · (permanent, Brownian) shocks to efficiency units of capital  $k_t^{(j)}$

(Brunnermeier and Sannikov, 2014)

- · financing via either tax-advantaged exponentially amortizing debt  $b_t^{(j)}$  or equity
- · no commitment over bond issuances  $I_t$  or default policy

(DeMarzo and He, 2020)

(Hayashi, 1982)

- · *ak* production with convex adjustment cost function  $\Phi$
- · (permanent, Brownian) shocks to efficiency units of capital  $k_{\iota}^{(j)}$ (Brunnermeier and Sannikov, 2014)
- · financing via either tax-advantaged exponentially amortizing debt  $b_{i}^{(j)}$  or equity
- · no commitment over bond issuances  $I_t$  or default policy
  - at default, bankruptcy costs and firm restructuring with debt haircut

(Hayashi, 1982)

(DeMarzo, He and Tourre, 2021)

(DeMarzo and He, 2020)

- $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$
- (permanent, Brownian) shocks to efficiency units of capital  $k_t^{(j)}$  (Brunnermeier and Sannikov, 2014)

(Hayashi, 1982)

- · financing via either tax-advantaged exponentially amortizing debt  $b_t^{(j)}$  or equity
- no commitment over bond issuances  $I_t$  or default policy (DeMarzo and He, 2020)
- at default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)
- $\cdot \ exogenous \ SDF(s) \rightarrow "industry" (partial) equilibrium$

- $\cdot \,$   $\mathit{ak}$  production with convex adjustment cost function  $\Phi$
- (permanent, Brownian) shocks to efficiency units of capital  $k_t^{(j)}$  (Brunnermeier and Sannikov, 2014)

(Hayashi, 1982)

- · financing via either tax-advantaged exponentially amortizing debt  $b_t^{(j)}$  or equity
- $\cdot$  no commitment over bond issuances  $I_t$  or default policy (DeMarzo and He, 2020)
- at default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)
- $\cdot \ exogenous \ SDF(s) \rightarrow "industry" (partial) equilibrium$
- · partially idiosyncratic, partially aggregate shock  $\rightarrow$  cross-sectional distribution over (b, k) [math]

· leverage x := b/k sufficient statistic for a given firm

 $E(k,b) = ke(x) \qquad D(k,b) = d(x) \qquad G(k,b) = kg(x) \qquad I(k,b) = k\iota(x)$ 

· leverage x := b/k sufficient statistic for a given firm

 $E(k,b) = ke(x) \qquad D(k,b) = d(x) \qquad G(k,b) = kg(x) \qquad I(k,b) = k\iota(x)$ 

· defaults when leverage reaches cutoff  $\bar{x}$ 

· leverage x := b/k sufficient statistic for a given firm

 $E(k,b) = ke(x) \qquad D(k,b) = d(x) \qquad G(k,b) = kg(x) \qquad I(k,b) = k\iota(x)$ 

- · defaults when leverage reaches cutoff  $\bar{x}$
- · firm-level growth rate g(x) satisfies *q*-theory rule  $\Phi'(g(x)) = \partial_k E := q(x)$

· leverage x := b/k sufficient statistic for a given firm

 $E(k,b) = ke(x) \qquad D(k,b) = d(x) \qquad G(k,b) = kg(x) \qquad I(k,b) = k\iota(x)$ 

- · defaults when leverage reaches cutoff  $\bar{x}$
- firm-level growth rate g(x) satisfies *q*-theory rule  $\Phi'(g(x)) = \partial_k E := q(x)$
- · debt overhang: g'(x) < 0 and  $g(x) < g^*$

# Debt overhang



### Key model outcomes

· leverage x := b/k sufficient statistic for a given firm

 $E(k,b) = ke(x) \qquad D(k,b) = d(x) \qquad G(k,b) = kg(x) \qquad I(k,b) = k\iota(x)$ 

- · defaults when leverage reaches cutoff  $\bar{x}$
- · firm-level growth rate g(x) satisfies *q*-theory rule  $\Phi'(g(x)) = \partial_k E := q(x)$
- $\cdot \;$  debt overhang: g'(x) < 0 and  $g(x) < g^*$
- · debt issuance rate (per unit of capital): trade-off theory with a twist

$$\iota(x) = \underbrace{\frac{\Theta \kappa}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}}$$

·  $\tilde{R}_d(x) - R_d(x)$ : debt expected return wedge (between equity and credit market investors)

# **Financing policies**



• Aggregate capital stock  $K_t := \int k_t^{(j)} dj$ 

• Aggregate capital stock  $K_t := \int k_t^{(j)} dj$ 

· Capital-share weighted distribution  $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I}\left(x_t^{(j)} \le x\right) dj$ 

• Aggregate capital stock  $K_t := \int k_t^{(j)} dj$ 

- · Capital-share weighted distribution  $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I}\left(x_t^{(j)} \le x\right) dj$
- · Aggregate capital-share-weighted moments

Default rate 
$$\hat{\lambda}_t^d = -\frac{1}{2}\sigma^2 \bar{x}^2 \partial_x \hat{f}_t(\bar{x})$$
 Average growth  $\hat{g}_t = \int g(x) \hat{f}_t(x) dx$ 

• Aggregate capital stock  $K_t := \int k_t^{(j)} dj$ 

- Capital-share weighted distribution  $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I}\left(x_t^{(j)} \le x\right) dj$
- · Aggregate capital-share-weighted moments

Default rate 
$$\hat{\lambda}_t^d = -\frac{1}{2}\sigma^2 \bar{x}^2 \partial_x \hat{f}_t(\bar{x})$$
 Average growth  $\hat{g}_t = \int g(x) \hat{f}_t(x) dx$ 

· Aggregate growth  $\mu_{K,t} := \hat{g}_t - (1 - \alpha_k)\hat{\lambda}_t$  and aggregate capital stock dynamics

 $dK_t = \mu_{K,t} K_t dt + \rho \sigma K_t dZ_t$ 

### Long run distribution



· Calibrate 4 parameters:

$$r = \kappa = 5\%, \quad \delta = 10\%, \quad \Theta = 35\%, \quad 1/m = 10 \text{ years.}$$

· Calibrate 4 parameters:

 $r = \kappa = 5\%$ ,  $\delta = 10\%$ ,  $\Theta = 35\%$ , 1/m = 10 years.

#### · Estimate 3 parameters:

[GMM details]

- *a* (average product of capital)
- $\sigma$  (TFP shock vol.)
- $\gamma$  (curv. of investment adjustment costs)

· Calibrate 4 parameters:

 $r = \kappa = 5\%$ ,  $\delta = 10\%$ ,  $\Theta = 35\%$ , 1/m = 10 years.

#### · Estimate 3 parameters:

- *a* (average product of capital)
- $\sigma$  (TFP shock vol.)
- $\gamma$  (curv. of investment adjustment costs)

| Moment                                 | Description                     | Targeted?    | Data  | Model |
|----------------------------------------|---------------------------------|--------------|-------|-------|
| $\hat{\Phi}$                           | average investment rate         | $\checkmark$ | 9.48  | 9.47  |
| ź                                      | average debt/ebitda             | $\checkmark$ | 2.71  | 2.71  |
| $\frac{cov(\Phi(x), z(x))}{var(z(x))}$ | slope of inv. w.r.t debt/ebitda | $\checkmark$ | -3.66 | -3.66 |

[GMM details]

| Moment                                 | Description                               | Targeted?    | Data  | Model |
|----------------------------------------|-------------------------------------------|--------------|-------|-------|
| $\hat{\Phi}$                           | average investment rate                   | $\checkmark$ | 9.48  | 9.47  |
| ź                                      | average debt/ebitda                       | $\checkmark$ | 2.71  | 2.71  |
| $\frac{cov(\Phi(x), z(x))}{var(z(x))}$ | slope of inv. w.r.t debt/ebitda           | 1            | -3.66 | -3.66 |
| κź                                     | average (inverse) interest coverage ratio | ×            | 11.61 | 13.53 |
| $\hat{\pi}$                            | average dividend issuance rate            | ×            | 3.32  | 3.49  |
| $\hat{\iota} - m\hat{x}$               | average net debt issuance rate            | ×            | 0.96  | 1.06  |
| var(z(x))                              | variance of debt/ebitda                   | ×            | 3.08  | 0.90  |
| $\hat{F}(z(x) \le 1)$                  | total asset share, debt/ebitda $\leq 1$   | ×            | 9.21  | 0.00  |
| $\hat{F}(z(x) > 3)$                    | total asset share, debt/ebitda > 3        | ×            | 32.53 | 22.06 |

# 2. The crisis as a temporary aggregate shock

- Transient aggregate shock with exponentially distributed length (1 year expected length)

- Transient aggregate shock with exponentially distributed length (1 year expected length)
- Productivity drop during crisis, from *a* to  $\underline{a} = 0.75a$ 
  - $\cdot\,$  approx similar to ebit da drop in Compustat from Q4 2019 to Q2 2020

- Transient aggregate shock with exponentially distributed length (1 year expected length)
- Productivity drop during crisis, from *a* to  $\underline{a} = 0.75a$ 
  - $\cdot\,$  approx similar to ebit da drop in Compustat from Q4 2019 to Q2 2020
- Increase in risk prices, from  $\nu=0$  to  $\underline{\nu}=85\%$ 
  - · S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
  - $\cdot\,$  IG credit spreads went from 133bps to 488bps between Feb 20 and March 23  $\,$
  - $\cdot~$  HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23

- Transient aggregate shock with exponentially distributed length (1 year expected length)
- Productivity drop during crisis, from *a* to  $\underline{a} = 0.75a$ 
  - $\cdot\,$  approx similar to ebit da drop in Compustat from Q4 2019 to Q2 2020
- Increase in risk prices, from  $\nu=0$  to  $\underline{\nu}=85\%$ 
  - · S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
  - $\cdot\,$  IG credit spreads went from 133bps to 488bps between Feb 20 and March 23  $\,$
  - · HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23
- Perfect financial markets or sudden stop in financial markets

- Transient aggregate shock with exponentially distributed length (1 year expected length)
- Productivity drop during crisis, from *a* to  $\underline{a} = 0.75a$ 
  - $\cdot\,$  approx similar to ebitda drop in Compustat from Q4 2019 to Q2 2020
- Increase in risk prices, from  $\nu=0$  to  $\underline{\nu}=85\%$ 
  - · S&P 500 dropped 34% between Feb 20, 2020 and March 23, 2020
  - · IG credit spreads went from 133bps to 488bps between Feb 20 and March 23
  - $\cdot\,$  HY credit spreads went from 362bps to 1,087bps between Feb 20 and March 23
- Perfect financial markets or sudden stop in financial markets
- Outcomes of focus: expected future macroeconomic aggregates

$$\mathbb{E}\left[K_t\right] = \mathbb{E}\left[\int_j k_t^{(j)} dj\right] \qquad \mathbb{E}\left[Y_t\right] = \mathbb{E}\left[\int_j a_t k_t^{(j)} dj\right] \qquad \mathbb{E}\left[C_t\right] = \mathbb{E}\left[\int_j \left(a_t - \Phi\left(g_t^{(j)}\right)\right) k_t^{(j)} dj\right]$$

Aggregate capital response during crisis

# Aggregate capital response during crisis



# Aggregate investment response during crisis

# Aggregate investment response during crisis



# 3. Theoretical results with perfect financial markets

# **Result 1: irrelevance theorem**

### **Result 1: irrelevance theorem**

#### Result

*Suppose that (a) the government offers funding at (private) market prices and (b) the intervention does not alter any investors' SDF.* 

Then, relative to the laissez-faire, all outcomes are unchanged.

### **Result 1: irrelevance theorem**

#### Result

*Suppose that (a) the government offers funding at (private) market prices and (b) the intervention does not alter any investors' SDF.* 

Then, relative to the laissez-faire, all outcomes are unchanged.

Funding program can

- · consist of debt, equity, any hybrid instrument
- $\cdot$  be implemented via (fairly priced) government-backed credit guarantees
- $\cdot$  be unconditional or conditional on leverage

#### Result

Suppose that the government intervention decreases the required return on debt  $R_d(x)$ , without altering equity markets' SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

#### Result

Suppose that the government intervention decreases the required return on debt  $R_d(x)$ , without altering equity markets' SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$\tilde{\iota}(x) = \underbrace{\frac{\Theta_{\kappa}}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}} > \iota(x)$$

#### Result

Suppose that the government intervention decreases the required return on debt  $R_d(x)$ , without altering equity markets' SDF.

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$\tilde{\iota}(x) = \underbrace{\frac{\Theta \kappa}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}} > \iota(x)$$

More issuance  $\implies$  distribution  $\hat{f}_t(x)$  shifts right  $\implies$  lower investment

Aggregate leverage when  $\tilde{R}_d - R_d = 2\%$ 

Aggregate leverage when  $\tilde{R}_d - R_d = 2\%$ 



# **Result 3: expansionary announcement effects**

# **Result 3: expansionary announcement effects**

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms.

Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms.

Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Intervention: either conventional MP ( $\downarrow r_e$ ), or unconventional via announcement ( $\downarrow \nu_e$ ).

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact. Intervention: either conventional MP ( $\downarrow r_e$ ), or unconventional via announcement ( $\downarrow \nu_e$ ).

Caveat: with segmented markets, if  $\downarrow$  in  $R_d(x)$  is larger than  $\downarrow$  in  $\tilde{R}_d(x)$ ...

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact. Intervention: either conventional MP ( $\downarrow r_e$ ), or unconventional via announcement ( $\downarrow \nu_e$ ).

Caveat: with segmented markets, if  $\downarrow$  in  $R_d(x)$  is larger than  $\downarrow$  in  $\tilde{R}_d(x)$ ...

$$\iota(x) = \underbrace{\frac{\Theta \kappa}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}}$$

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact. Intervention: either conventional MP ( $\downarrow r_e$ ), or unconventional via announcement ( $\downarrow \nu_e$ ).

Caveat: with segmented markets, if  $\downarrow$  in  $R_d(x)$  is larger than  $\downarrow$  in  $\tilde{R}_d(x)$ ...



· On impact, so long as  $R_e(x)$  falls, investment stimulated as Tobin's *q* jumps up;

#### Result

Suppose that the government intervention decreases the effective cost of equity capital for firms. Then, relative to the laissez-faire, aggregate investment and growth is higher on impact. Intervention: either conventional MP ( $\downarrow r_e$ ), or unconventional via announcement ( $\downarrow \nu_e$ ).

Caveat: with segmented markets, if  $\downarrow$  in  $R_d(x)$  is larger than  $\downarrow$  in  $\tilde{R}_d(x)$ ...



- · On impact, so long as  $R_e(x)$  falls, investment stimulated as Tobin's *q* jumps up;
- · Over time, corporate leverage increases, pushing down investment.

# Aggregate investment with expansionary announcement effects

## Aggregate investment with expansionary announcement effects



# 4. Disruption in financial markets

• Two possible sudden stop being examined

- Two possible sudden stop being examined
  - Shut down in equity markets only ( $\pi_t \ge 0$ )

- Two possible sudden stop being examined
  - Shut down in equity markets only ( $\pi_t \ge 0$ )
  - Shut down in all financial markets ( $\pi_t \ge 0, \iota_t \le 0$ )

- Two possible sudden stop being examined
  - Shut down in equity markets only ( $\pi_t \ge 0$ )
  - Shut down in all financial markets ( $\pi_t \ge 0, \iota_t \le 0$ )
- Large increase in corporate default rate (default boundary  $\bar{x} \downarrow$ )

- Two possible sudden stop being examined
  - Shut down in equity markets only ( $\pi_t \ge 0$ )
  - Shut down in all financial markets ( $\pi_t \ge 0, \iota_t \le 0$ )
- Large increase in corporate default rate (default boundary  $\bar{x} \downarrow$ )
- Investment curtailed due to lack of external financing available

- Two possible sudden stop being examined
  - Shut down in equity markets only ( $\pi_t \ge 0$ )
  - Shut down in all financial markets ( $\pi_t \ge 0, \iota_t \le 0$ )
- Large increase in corporate default rate (default boundary  $\bar{x} \downarrow$ )
- Investment curtailed due to lack of external financing available
- Credit market intervention are uncontroversially beneficial for expected future aggregate capital and output, even if they increase corporate leverage (relative to laissez-faire)

## Why are debt overhang effects of credit market interventions so small?



BCP loans move the debt/ebitda ratio:

$$z_{t} = \frac{b_{t}}{ak_{t}} \rightarrow z'_{t} = \frac{b_{t}}{b_{t}} + \underbrace{(1/\chi)(a-\underline{a})k_{t}}_{ak_{t}}$$

$$\approx 2.20 \qquad \qquad = z_{t} + \frac{1}{\chi}\left(1 - \frac{\underline{a}}{a}\right)$$

$$= z_{t} + 0.25 \approx 2.45$$

## Why are debt overhang effects of credit market interventions so small?



BCP loans move the debt/ebitda ratio:

$$z_{t} = \frac{b_{t}}{ak_{t}} \rightarrow z'_{t} = \frac{b_{t} + \overbrace{(1/\chi)(a-\underline{a})k_{t}}^{\text{amount borrowed}}}{ak_{t}}$$
$$\approx 2.20 \qquad \qquad = z_{t} + \frac{1}{\chi} \left(1 - \frac{\underline{a}}{a}\right)$$
$$= z_{t} + 0.25 \approx 2.45$$

Small move, in a region where the slope of investment is not steep.

## Other interventions

- -~ Debt funding extended at price  $d_g < 1$ 
  - In that case, firms with leverage  $x < x^*(d_g)$  do not take loan
  - · Close proxy to Main Street Lending Program (loans @L + 300)

## Other interventions

- Debt funding extended at price  $d_g < 1$ 
  - In that case, firms with leverage  $x < x^*(d_g)$  do not take loan
  - · Close proxy to Main Street Lending Program (loans @L + 300)
- · Debt funding with dividends/share buy-back restrictions
  - · Conditions required for participation in Main Street Lending Program
  - $\cdot\,$  Constraint that addresses commitment problem at the same time

## Other interventions

- Debt funding extended at price  $d_g < 1$ 
  - In that case, firms with leverage  $x < x^*(d_g)$  do not take loan
  - · Close proxy to Main Street Lending Program (loans @L + 300)
- · Debt funding with dividends/share buy-back restrictions
  - · Conditions required for participation in Main Street Lending Program
  - $\cdot\,$  Constraint that addresses commitment problem at the same time
- · Debt forbearance program
  - · Similar to what US implemented in connection with agency mortgages
  - · Difficult to implement in practice given required lender compensation

# Key take-aways

Fed + Treasury providing credit to firms during the crisis.

1. What will the *net* economic impact of these programs be?

Fed + Treasury providing credit to firms during the crisis.

#### 1. What will the *net* economic impact of these programs be?

 $\leq 0$  w perfect capital markets and no impact on pricing of aggregate risk

Fed + Treasury providing credit to firms during the crisis.

#### 1. What will the *net* economic impact of these programs be?

 $\leq$  0 w perfect capital markets and no impact on pricing of aggregate risk > 0 w perfect capital markets and decrease in risk prices

Fed + Treasury providing credit to firms during the crisis.

#### 1. What will the *net* economic impact of these programs be?

 $\leq 0$  w perfect capital markets and no impact on pricing of aggregate risk > 0 w perfect capital markets and decrease in risk prices  $\gg 0$  w capital markets' disruptions

Fed + Treasury providing credit to firms during the crisis.

#### 1. What will the *net* economic impact of these programs be?

≤ 0 w perfect capital markets and no impact on pricing of aggregate risk
 > 0 w perfect capital markets and decrease in risk prices
 ≫ 0 w capital markets' disruptions
 Weak debt overhang effects during the recovery

Fed + Treasury providing credit to firms during the crisis.

#### 1. What will the *net* economic impact of these programs be?

≤ 0 w perfect capital markets and no impact on pricing of aggregate risk
> 0 w perfect capital markets and decrease in risk prices
≫ 0 w capital markets' disruptions
Weak debt overhang effects during the recovery

#### 2. Would there be large gains to doing things differently?

Not really! Unless  $\partial g / \partial x$  is much larger ...

# More

## Secondary market corporate credit facilities' ("SMCCF") purchases



## Leverage in the run-up to the crisis: net debt



[Back]

#### Interest coverage ratios in the run-up to the crisis



## Days of cash on hand in the run-up to the crisis



[Back]

## Projected firms with zero cash



#### [Back]

· Technology with adjustment costs:  $\Phi(g_t) k_t dt$  spent allows capital to grow by  $g_t k_t dt$ 

$$dk_t^{(j)} = k_{t-}^{(j)} \left[ g_{t-}^{(j)} dt + \sigma \left( \rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]$$

· Technology with adjustment costs:  $\Phi(g_t) k_t dt$  spent allows capital to grow by  $g_t k_t dt$ 

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[ g_{t-}^{(j)} dt + \sigma \left( \rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

• Financing via long term debt with notional  $b_t^{(j)}$  that satisfies:  $db_t^{(j)} = \left(\iota_t^{(j)}k_t^{(j)} - mb_t^{(j)}\right)dt$ 

· Technology with adjustment costs:  $\Phi(g_t) k_t dt$  spent allows capital to grow by  $g_t k_t dt$ 

$$dk_t^{(j)} = k_{t-}^{(j)} \left[ g_{t-}^{(j)} dt + \sigma \left( \rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]$$

• Financing via long term debt with notional  $b_t^{(j)}$  that satisfies:  $db_t^{(j)} = \left(\iota_t^{(j)}k_t^{(j)} - mb_t^{(j)}\right)dt$ 

· Dividends to shareholders of firm j

$$\pi_t^{(j)}k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right)k_t^{(j)}}^{\text{ebitda} - \text{capex}} + \underbrace{\iota_t^{(j)}k_t^{(j)}D_t^{(j)} - (\kappa + m)b_t^{(j)}}_{\text{pet debt issuance}} - \overbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}^{\text{taxes}}$$

· Technology with adjustment costs:  $\Phi(g_t) k_i dt$  spent allows capital to grow by  $g_t k_i dt$ 

$$dk_t^{(j)} = k_{t-}^{(j)} \left[ g_{t-}^{(j)} dt + \sigma \left( \rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]$$

• Financing via long term debt with notional  $b_t^{(j)}$  that satisfies:  $db_t^{(j)} = \left(\iota_t^{(j)}k_t^{(j)} - mb_t^{(j)}\right)dt$ 

· Dividends to shareholders of firm j

$$\pi_t^{(j)} k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right) k_t^{(j)}}^{\text{ebitda} - \text{capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)} - (\kappa + m) b_t^{(j)}}_{\text{net debt issuance}} - \overbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}^{\text{taxes}}$$

• Investor n ( $n \in \{e, d\}$ ) with SDF  $\xi_{n,t}$  that satisfies  $\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_n dt - \nu_n dZ_t$ 

· Technology with adjustment costs:  $\Phi(g_t) k_i dt$  spent allows capital to grow by  $g_t k_i dt$ 

$$dk_t^{(j)} = k_{t-}^{(j)} \left[ g_{t-}^{(j)} dt + \sigma \left( \rho dZ_t + \sqrt{1 - \rho^2} dZ_t^{(j)} \right) + (\alpha_k - 1) dN_t^{(j)} \right]$$

• Financing via long term debt with notional  $b_t^{(j)}$  that satisfies:  $db_t^{(j)} = \left(\iota_t^{(j)}k_t^{(j)} - mb_t^{(j)}\right)dt$ 

· Dividends to shareholders of firm j

$$\pi_t^{(j)} k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right) k_t^{(j)}}^{\text{ebitda} - \text{capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)} - (\kappa + m) b_t^{(j)}}_{\text{net debt issuance}} - \overbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}^{\text{taxes}}$$

- Investor n ( $n \in \{e, d\}$ ) with SDF  $\xi_{n,t}$  that satisfies  $\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_n dt \nu_n dZ_t$
- · Shareholder problem and debt valuation

$$E(k_t, b_t) = \sup_{g, \iota, \tau} \mathbb{E}^{\mathbb{Q}_e} \left[ \int_t^{+\infty} e^{-r_e(s-t)} \pi_s k_s ds \right] \qquad D(k_t, b_t) = \mathbb{E}^{\mathbb{Q}_d} \left[ \int_t^{+\infty} e^{-(r_d+m)(s-t)} \alpha_b^{N_t}(\kappa+m) ds \right]$$

[Back]

· HJB equation for shareholders

$$0 = \max_{\iota,g} \left[ -(r-g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + [\iota - (g + m)x]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· HJB equation for shareholders

$$0 = \max_{\iota,g} \left[ -(r-g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

· HJB equation for shareholders

$$0 = \max_{\iota,g} \left[ -(r-g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

· First order conditions for optimality

$$d(x) + e'(x) = 0 \Rightarrow \iota(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(R_d(x) - \tilde{R}_d(x)\right)d(x)}{-d'(x)}, \qquad q(x) := e(x) - xe'(x) = \Phi'(g(x))$$

· HJB equation for shareholders

$$0 = \max_{\iota,g} \left[ -(r-g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

· First order conditions for optimality

$$d(x) + e'(x) = 0 \Rightarrow \iota(x) = \frac{\Theta \kappa}{-d'(x)} + \frac{\left(R_d(x) - \tilde{R}_d(x)\right)d(x)}{-d'(x)}, \qquad q(x) := e(x) - xe'(x) = \Phi'(g(x))$$

• Expected debt returns ( $R_d$  and  $\tilde{R}_d$ ) and equity returns ( $R_e$ )

$$R_d(x) = r_d - \rho \nu_d \sigma \frac{xd'(x)}{d(x)}, \qquad \qquad \tilde{R}_d(x) = r_e - \rho \nu_e \sigma \frac{xd'(x)}{d(x)}, \qquad \qquad R_e(x) = r_e - \rho \nu_e \sigma \left[1 - \frac{xe'(x)}{e(x)}\right]$$

# GMM (exactly identified case)

| Parameter | Description                         | Point estimate | Standard error | [5, 95] <b>normal CI</b> |
|-----------|-------------------------------------|----------------|----------------|--------------------------|
| а         | average product of capital          | 0.223          | 0.001          | [0.231, 0.235]           |
| $\sigma$  | volatility of idiosyncratic shock   | 0.236          | 0.010          | [ 0.219, 0.253]          |
| $\gamma$  | curvature of capital adjustment cos | st 2.550       | 0.643          | [ 1.493, 3.608]          |

[Back]

# GMM (exactly identified case)

| Moment                                            | Description                                | Targeted?    | Data  | Model |
|---------------------------------------------------|--------------------------------------------|--------------|-------|-------|
| $100 \times \hat{\Phi}$                           | average investment rate                    | ~            | 9.48  | 9.47  |
| ź                                                 | average debt-to-ebitda                     | 1            | 2.71  | 2.71  |
| $100 \times \frac{cov(\Phi(x), z(x))}{var(z(x))}$ | slope of inv. w.r.t debt-to-ebitda         | $\checkmark$ | -3.66 | -3.66 |
| $100 \times \kappa \hat{z}$                       | average (inverse) interest coverage ratio  | ×            | 11.61 | 13.53 |
| $100 \times \hat{\pi}$                            | average dividend issuance rate             | ×            | 3.32  | 3.49  |
| $100 \times \hat{\iota}$                          | average gross debt issuance rate           | ×            | 10.21 | 7.38  |
| $100 \times (\hat{\iota} - m\hat{x})$             | average net debt issuance rate             | ×            | 0.96  | 1.06  |
| var(z(x))                                         | variance of debt-to-ebitda                 | ×            | 3.08  | 0.90  |
| $var(100 \times \Phi(x))$                         | variance of investment rate                | ×            | 23.36 | 13.32 |
| $100 \times \hat{F}(z(x) \le 1)$                  | total asset share, debt-to-ebitda $\leq 1$ | ×            | 9.21  | 0.00  |
| $100 \times \hat{F}(z(x) \le 2)$                  | total asset share, debt-to-ebitda $\leq 2$ | ×            | 43.00 | 19.89 |
| $100 \times \hat{F}(z(x) \le 3)$                  | total asset share, debt-to-ebitda $\leq 3$ | ×            | 67.47 | 77.94 |

[Back]

## The strength of the debt overhang channel

Average growth:

Growth rate of all-equity firm = 2.8%Aggregate growth rate of  $K_t = 0.9\%$ 

#### Marginal effects:

| $\partial (i/k)_t / \partial x_t$ | $(i/k)_t = \text{Gross}$<br>investment | $(i/k)_t = Net$ investment |
|-----------------------------------|----------------------------------------|----------------------------|
| Model                             | -0.094                                 | -0.106                     |
| Lang, Ofek, Stulz (1996)          |                                        | -0.105                     |
| An, Denis, Denis (2006)           |                                        | -0.086                     |
| Cai, Zhang (2011)                 | -0.038                                 |                            |
| Wittry (2020)                     | -0.038                                 |                            |