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Abstract

In this paper we analyze the impact of stair-step incentive schemes, commonly used
in the automotive industry, on both expected sales and sales variability. We model the
effect of stair-step incentives in two specific scenarios: an exclusive dealership selling
cars for only one manufacturer and a non-exclusive dealership selling cars for multiple
manufacturers. For an exclusive dealer we show that appropriate stair-step incentives,
with a positive bonus on crossing the threshold, not only increase the expected sales,
but more importantly, decrease the coefficient of variation of sales. We show that if the
manufacturer associates a positive cost with sales variance, a stair-step incentive, with
a positive bonus, is superior to the scheme without a bonus. We then show that manu-
facturers continuing to offer stair-step incentives to non-exclusive dealers experience an
increase in variance and a decrease in profits. This implies that when manufacturers
must compete for dealer effort, stair-step incentives can hurt manufacturers.

1. Introduction

In this paper we study the impact of two phenomenon, that are observed in the automotive

industry, on the variance of sales. We focus on the variance because most recent literature



has assumed the firm to be risk neutral and thus ignored variance. In this paper we take
the position that manufacturing and distribution costs increase with sales variability. Thus,
both the expected value and the variance of sales affect the manufacturer’s profits.

We consider the following stair-step incentive that is commonly used in the automotive
industry (such incentives have been used by Daimler Chrysler and Nissan among others. This
incentive structure is also used in several other industries where a principal sells through an
agent.): The dealer is paid an additional amount per unit when sales exceed a threshold
value; additionally, a fixed bonus may also be offered if sales exceed the threshold.

The goal of this paper is to understand how stair-step incentives and dealer structure
(exclusive or non-exclusive) affect the effort exerted by dealers and the resulting sales and
variance of sales. We do not focus on what the optimal incentive should be, but on the
impact of an incentive structure that is commonly observed in the automotive industry.
This is in the spirit of the study of "turn-and-earn" in the automotive industry by Cachon
and Lariviere (1999).

The Chrysler experience (St. Louis Post-Dispatch, 2001) motivated our study because
a change in incentives was followed by a fluctuation in sales that exceeded the average
fluctutation for the industry as a whole. Under the stair-step incentive plan, Chrysler gave
dealers cash based on the percent of a monthly vehicle sales target met. A dealer got no
additional cash for sales below 75% of the sales target, $150 per vehicle for sales between
75.1% and 99.9% of the sales target, $250 per vehicle for sales between 100% and 109.9%,
and $500 per vehicle for reaching 110% of the sales target. The downturn in the automobile
sector had an undesired effect. Chrysler’s sales fell 20% when the industry average fall was
between 8 to 12 %. Clearly, Chrysler observed a higher variability in sales than the industry.
This paper offers an explanation for this increase in variability observed that is linked to
stair-step incentives and the fact that many dealers have become non-exclusive and sell cars
for multiple manufacturers. Similar to Chen (2000), Taylor (2002), Krishnan et al (2004),
and Cachon and Lariviere (2005) we consider final sales to be affected by a market signal
and dealer effort. In our paper we assume that the market signal is not common knowledge
but is only visible to the dealer. The dealer then makes his effort decision after observing
the market signal based on the incentive offered. We investigate how stair-step incentives
and dealer structure (exclusive or non-exclusive) affect the effort decision by the dealer. This
allows us to understand how stair-step incentives and dealer structure affect the mean and

variance of manufacturer’s sales.



The contributions of this paper are twofold. First, for an exclusive dealer we show
that appropriate stair-step incentives, with a fixed bonus on crossing the threshold, can
decrease the variance as well as the coefficient of variation of sales. Next, we prove that if
the manufacturer associates a positive cost with sales variance, a stair-step incentive, with
a bonus payment, is superior to the scheme without a positive bonus. For a non-exclusive
dealer, however, we show that stair-step incentives reduce the variability of sales for the dealer
but increase the same for each manufacturer under reasonable conditions. Specifically, we
show that for a given market signal for a manufacturer, a non-exclusive may exert different
efforts depending on the signal for the second manufacturer. Thus, the presence of stair-step
incentives and non-exclusive dealers helps to partially explain the higher variability in sales
observed by Chrysler.

The rest of the paper is organized as follows. Section 2 provides a brief literature
review. Section 3 presents the basic models and related assumptions for the exclusive and
non-exclusive dealer scenarios. In Section 4 we identify the optimal effort exerted by an
exclusive dealer and characterize the expected sales and variance of sales functions with and
without bonus payments. The main result for the manufacturer’s problem is highlighted
in Section 4.2, where we show that the providing a positive bonus reduces the coefficient of
sales variation and reduces the cost associated with sales variance. We proceed to discuss
the non-exclusive dealer’s model in Section 5 and in Section 5.1 we show how dealers benefit
from non-exclusivity. In Section 5.2 we analyze the effect of incentive parameters on the sales
variance and coefficient of variation for the dealer and manufacturer. We compare the optimal
threshold for a manufacturer under both scenarios, exclusive dealer and non-exclusive dealer,
and show that under reasonable conditions the optimal threshold is lower in the non-exclusive
dealer scenario. This implies that the manufacturer’s profits decrease when dealers become
non-exclusive; especially when a manufacturer has a high cost of variation. We provide a
numerical example to validate our findings in Section 6. Finally, we conclude the paper
in Section 7. Proofs for some of the important propositions and claims are provided in

Appendix A.

2. Literature Review

Related research can be broadly classified into three areas: economics, marketing, and
marketing—operations interface. In the economics domain, seminal work by Harris and Ra-

viv (1979) and Holmstrom (1979) addresses the issue of information asymmetry between the
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principal and the agent. In particular, Holmstrém shows that any additional information
about the agent’s action (effort) can be used to design better contracts for both entities.

In the marketing literature, Farley (1964) laid the analytic foundation with determinis-
tic demand functions. Weinberg (1975) shows that when salespeople are paid a commission
based on gross margin and are allowed to control prices, they set prices to maximize their own
income and the company profits simultaneously. Other references, which assume determin-
istic sales response functions, include Weinberg (1978) and Srinivasan (1981). Chowdhury
(1993) empirically tests the motivational function of quotas. The results indicate that as
quota levels increase the effort expended increases only up to a certain point, beyond which
any increase in the quota level decreases the effort expended. Basu et al. (1985) were the
first to apply the agency theory framework to characterize optimal compensation. They
model compensation contracts as a Stackelberg game where both the firm (principal) and
the agent (salesperson) are symmetrically informed about the sales response function. The
risk-neutral firm declares a compensation plan and the agent decides on the effort level which
influences the final sales level. Based on the response of the salesperson, to a given com-
pensation contract, the firm chooses a compensation plan which maximizes its profits. The
moral hazard problem arises because the relationship between effort and sales is stochas-
tic. The salesperson does not influence costs and has no authority to set prices. Lal and
Staelin (1986) extend this by presenting an analysis that relaxes the symmetric information
assumption. Rao (1990) provides an alternate approach to the problem by analyzing the
issue using a self-selection framework with a heterogeneous salesforce, wherein the salesper-
son picks a commission level and a quota by maximizing a utility function. Holmstrém and
Milgrom (1987) show that, under certain assumptions, linear compensation schemes devel-
oped earlier can indeed be optimal. Lal and Srinivasan (1993) use this framework to model
salesforce compensation and gain some interesting insights into single-product and multi-
product salesforce compensation. They apply the Holmstrom Milgrom model and show that
the commission income goes up in effectiveness of effort functions. All these papers have pri-
marily focussed on the agency theory and a few studies, such as Coughlan and Narasimhan
(1992) and John and Weitz (1989), have found empirical evidence to support this theory.
Coughlan and Sen (1989) and Coughlan (1993) provide a comprehensive review on studies in
marketing literature. Bruce et al (2004) study a two period model, with trade promotions
(incentives) for durable goods, where an active secondary market (e.g. used cars) is present.

They study an exclusive dealer setting.



Several recent papers in Operations Management have used agency models to study the
marketing-operations interface. The influential paper by Porteus and Whang (1991) stud-
ied coordination problems between one manufacturing manager (MM) and several product
managers (PM) where the PMs make sales efforts while the MM makes efforts for capacity
realization and decides inventory levels for different products. They develop incentive plans
that induce the managers to act in such a way that owner of the firm can attain maximum
possible returns. Plambeck and Zenios (2000) develop a dynamic principal-agent model and
identify an incentive-payment scheme that aligns the objectives of the owner and manager.
Chen (2000) (2005) considers the problem of salesforce compensation by considering the im-
pact of salesforce incentives on a firm’s production inventory costs. Taylor (2002) considers
the problems of coordinating a supply chain when the dealer exerts a sales effort to affect
total sales. He assumes that the dealer’s effort decision is made before market demand is
realized. Krishnan et al. (2004) discuss the issue of contract-induced moral hazard arising
when a manufacturer offers a contract to coordinate the supply chain and the dealer exerts
a promotional effort to increase sales. Their paper assumes that the dealer’s effort decision
is made after observing initial sales. Our paper makes a similar assumption. Cachon and
Lariviere (2005) also discuss the situation when revenue sharing contracts do not coordinate
a supply chain if a dealer exerts effort to increase sales. They develop a variation on revenue
sharing for this setting. Overall, this line of literature mainly focuses on maximizing the
manufacturer’s profits when they are assumed to be risk neutral. Our focus, however, is on

understanding the impact on the variance of sales.

3. Model Basics and Assumptions

We consider sales to be the sum of a stochastic market signal and a function of the dealer
effort. The manufacturer’s total sales, s, are determined by the dealer’s selling effort (b)
and the market signal (z) by the following additive form: s = x + g (b). The market signal
is observed by the dealer but not the manufacturer. The manufacturer only observes the
total sales s. The dealer bases the effort decision on the observed signal and the incentive
offered by the manufacturer. We assume that the dealer observes the market signal x before
he makes his effort decision b. As commonly assumed in the literature (see Chen, 2000), the
growth of sales ¢ (b) with respect to the dealer effort b is concave and the cost of the effort
c(b) is convex and increasing.  The input market signal, z, follows a continuous and twice

differential cumulative distribution function, F', with a bounded probability density function



f. We also assume that probability distributions are log-concave, f (y) =0 for all y < 0,
f(y) >0 for y > 0, and F (0) = 0.

The stair-step incentive is organized as follows: The dealer makes a standard margin
(excluding cost of effort) p for every unit sold up to the threshold K. For every additional
unit sold above, K, the manufacturer pays an additional A to the dealer. Thus, the dealer’s
margin (excluding the cost of effort) increases to p+ A for every unit sold above the threshold
K. In addition, the manufacturer offers a fixed bonus of D > 0, if sales reach the threshold
of K. We assume that the distribution of the market signal is independent of the incentive
parameters K, D and A. We analyze the impact of incentives on sales variability under
two specific scenarios: an exclusive dealership scenario where a dealer sells product for a
single manufacturer and a non-exclusive dealership scenario where the dealer sells products
for two manufacturers.

In Section 4, we study the sale of a manufacturer’s product through an exclusive dealer.
We study the dealer’s optimal response to a given incentive. This allows us to characterize
how the expected value and variance of sales changes with the threshold K and bonus D.
We show that, for certain values of K, the introduction of a positive bonus, D, increases
the manufacturer’s expected sales and decreases the variance. Our analysis shows that a
manufacturer, whose costs increase with sales variability, can improve profits by offering a
positive bonus D to an exclusive dealer.

In Section 5, we study the case when two manufacturers sell products through a non-
exclusive dealer. Each manufacturer offers a stair-step incentive to the dealer. The dealer
observes market signals x;, ¢ = 1, 2, and then decides on the effort levels b;, i = 1, 2,
across the two manufacturers. Our analysis assumes the market signals across the two
manufacturers to be independent. The sales for each manufacturer are s; = z; + g (b;). The
cost of the effort is assumed to be 2¢ (@) It is reasonable to assume that the dealer’s
cost is a function of the total effort because common resources are used by the dealer to spur
sales across all the products (cars) they sell. Our results indicate that manufacturers offering
stair-step incentives observe higher sales variability with non-exclusive dealers compared to
exclusive dealers. Numerical simulations indicate that in case of non-exclusive dealers, a

positive bonus may not be as helpful in reducing the manufacturer’s sales variance.



4. The Exclusive Dealer

Our first objective is to identify an exclusive dealer’s optimal response when facing a stair
step incentive. Assume that an exclusive dealer exerts effort b given an input market signal
x. Given a stair-step incentive, the dealer makes one of the following three profit levels

depending on the sales = + ¢ (b).

M (o, B) =p (+g(0) — c(b) iFa+g(0) <K,
Iy (z, b)) = (p+A) (x+9g((b)+ D —AK —¢(b) if x + g (b) > K, and
Ok (z, b) =p K+ D — ¢(b) where =+ g(b) = K. (1)

I1; is the profit realized when the total sale is less that K, Il is the profit when the sale
exceeds K, and Ilg is the dealer’s profit when the sale equals K. 1II;, Il,, and IIx are
concave functions with respect to b because ¢ is concave and c is convex. Let b} and b} be
the optimal efforts that maximize II; and Il respectively. Let B¥ represent the set of effort
levels defined by BX = {b¥ :b% = g7'(K — z)}. First order KKT optimality conditions
imply that b7 and b5 must satisfy the following conditions: ¢'(b}) = cl(;ﬁ), g(b3) = (;:Efi).
The dealer compares the profits on exerting effort b%, b3, and b® and exerts the effort that

results in the highest profit. With a slight abuse of notation we can represent the optimal
effort chosen by the exclusive dealer as
b*(x) = arg  max {H1 (z, b)), Iy (x, b3), i (w, bK)} (2)
{b;, b3, bK }

Notice that ITy (z, b}) and II, (z, b}) are linear in z and Ilx (z, b™) is a concave function
of z. The slope of I, (z, b3) is greater than that of II; (z, b7). The plot to the left, in
Figure 1, shows the optimal-effort profits, as a function of x, when K > ¢ (b3) and D is
such that IT; (0, b7) > II5 (0, b3). For low market signals, the dealer exerts effort b} and
resulting sales are below K. At some point it is optimal for the dealer to exert enough
effort b to raise the sales to K. For higher market signals, the dealer exerts effort b5 and
the resulting sales exceed K. The two cutoff points, d,; and .9, represent the level of the
market signals at which the dealer switches optimal effort levels. For market signals below
0,1, the dealer exerts effort that keeps sales below K. Between 6,1 and d,5, the dealer exerts
effort such that sales are exactly K. For a market signal above d,o, the dealer exerts effort

such that sales exceed K.



Figure 1: Exclusive dealer optimal profit functions when D > 0 and D = 0.

When the bonus D = 0, [Ix is now equivalent to II, and can be eliminated. As shown
in the second plot in Figure (1), the only transition point for the dealer’s effort is denoted by
0. The exclusive dealer’s problem can be expressed as an equivalent non-linear optimization

problem (EDP).

g1: Ii(x, b)) —O <0 (ug) (3)
g2t (2, b2) —© <0 (ug) (4)
g3: x+g(z, V) =K =0 (u3) (5)
ga: Mgz, b%) =0 <0 (ug) (6)

by, by, B, © € R, (7)

For a given x and b, I1;(z,b) > I(x,b) when x + g(b) < K and Ily(x,b) > II;(z,b) when
x4+ g(b) > K. Further, if D > 0 and = + g(b) = K, then II3(z,b) = Ily(x,b) > II;(z,b).
Constraint (5) models the fact that the dealer may put a different effort, b, if the bonus D
is strictly positive, so that the threshold sales is just achieved. The values uy, us, ug,and uy,
shown in brackets next to the constraints (3), (4), (5), and (6), are the lagrangian multipliers.
Claim 1 characterizes the optimal cutoff points, where the dealer changes effort levels, when
the manufacturer offers a positive bonus D > 0. Recall that the effort levels b7 and b are
as follows:

c(b3)

b o 07) = O and b+ (1) = T )
D p+A




Claim 1 When D > 0 the exclusive dealer’s optimal effort levels are

bT IO§$<5I1
b* =< b5 16, <2< 040 and b5 = g7 (K — 1)
b; :5332S'T

where the cutoff 0.0 = K — g(b3), and the cutoff 0,1 = K — ;. 7. is defined by p v, —
clg™ ()] + D = p g(b7) — c(b).

Proof. The proof uses the first order optimality conditions. The cutoffs are can be
calculated using the dominance of one profit function over the other. See Appendix A for
the proof. m

Claim 2 characterizes the optimal cutoff point when the bonus D = 0.

Claim 2 When D = 0, the exclusive dealer’s optimal efforts are b, when 0 < x < §,, and
by when x > 8,. The cutoff 6, = K — g(b3) + x([pg(b7) — c(0})] — [pg(b5) — c(b3)])-

Proof. The proof uses the first order optimality conditions. See Appendix A for a detailed
proof. m
Define

v = 5 (po(8) — (b)) — g (t5) — ) 9

Using the fact that ;—Z is an increasing function it is easy to show that b} < b3. Further, if

D = 0 then using simple convexity arguments it can be shown that ¢'(b%)(b5 —07) > e, > 0.
Claims 1 and 2 imply that if total sales are below K, it is always more profitable to
exert the lower effort b] rather than the higher effort level b5. Claims 1 and 2 are illustrated
in Figure 2. The plot to the left in Figure 2, shows the optimal effort levels when D = 0
for different input market signals. If the market signal = is below J,, the dealer exerts an
effort, b}, with resulting sales below the threshold limit, K. If the market signal is at least
0., the dealer exerts an higher effort, b3, and the resulting sales exceed K. The plot to the
right in Figure 2 shows the optimal effort levels when D > 0. For market signals below d,1,
the dealer spends an effort, b7, and the resulting sales are less than K. When the market
signal x is such that 6,; < z < 0,9, the dealer exerts an effort, b* = g~ }(K — z), to push
sales to the bonus limit K and capture the bonus payment D). For all market signals x that
are at least 0,9, the dealer exerts an effort, b5 with resulting sales above K. The important
fact to note is that the introduction of a bonus D > 0 induces the dealer to exert additional

effort to reach the threshold K when market signals are between ¢§,; and 5.
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Figure 2: Optimal effort levels for an exclusive dealer when D = 0 and D > 0.

Remark 3 When the bonus is small, i.e. D < Ae,, the dealer behaves as if D = 0 ( has

only two optimal effort levels, by and b}).

This remark follows from the values of §,; and d,9 in Claim 1. When the bonus D is not
large enough, d,; > .0 in Claim 1 and there is no region where the dealer spends effort b*
to just reach the threshold K.

Having characterized the exclusive dealer’s optimal response, we next compute the ex-

pected sales and variance in Section 4.1.

4.1 Impact of D and K on the Dealer’s Sales

Our goal in this section is to understand how the mean and variance of sales is affected by
the threshold K and bonus D in the stair-step incentive. We first compute the expected

sales and variance when D > 0. The expected sales, F (s), can be expressed as

02

01 0o
E@wié (@ 90) fla) do+ | wawm+ll@+ﬂ@nﬂ@dm

= B(x) + g(b2) + F(51) [9(b) — ] + (82 — 62)
+/ @—@af@ww—/ (z—bn) flz) de (10)

6362 630 1

The variance of sales is given by V (s) = E (s?) — [E (s)]°. Before we show how F (s) and
V (s) vary with K for log-concave distributions in Claim 4 we define the function ¢ (K) =
F(K—g(b5))-F(K—7.)
f(K_’Yac) )

Claim 4 If K > ~,, f is log-concave and bounded, and o = (v, — g (b7)) > 1 then

1. 3a K>, suchthatandag—[((s)zo V. < KK} andag[((s) <0V K2>Kj.
If a <t () then t (KY) = a; Otherwise, Kf = ~,, and
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2. V (s) is an inverted-U shaped function; i.e. 3 a K3 such that 8‘3/[((5) >0Vy, < K<K;
and 55 <0 V K > Kj.

Proof. See Appendix A. =

The condition on « is not very restrictive. It is satisfied for reasonable values of incentive
parameters for uniform and normal distributions.

In Proposition 5 we characterize the expected sales and variance of sales relative to E (z)
and V (z) for different values of K when D > 0. We show the existence of threshold values

for which the variance of sales is less than the variance of the market signal.

Proposition 5 If D >0, f is log-concave and bounded, and oo = (7, — g (b})) > 1 then

g (63) if 0 < K < g(b3)
1. E(s)— E(xz) =< monotonically increases with K if g (b3) < K < K
monotonically decreases with K if K < K

0 if 0 < K <g(b3)
monotonically decreases with K if g (b5) < K <,
inverted-U shaped with .
mazximum above V (x) e <K

2. V(s)=V(x)=

3. E(s) is maximized and V (s) is minimized at K = 7,

Proof. See Appendix A. =
From Proposition 5 observe that if K is between ¢ (b3) and ~,, the variance of sales is
less than the variance of the market signal. In other words, the manufacturer can select a
threshold K and a bonus D > 0, such that the exclusive dealer finds it optimal to absorb some
of the market variance by adjusting effort, thus lowering sales variance for the manufacturer.
In Proposition 6, we characterize the expected sales, F (s), and variance of sales, V' (s),
for different values of K when D = 0. We show that in the absence of a positive bonus D,

the sales variance is never below the variance of the market signal.

Proposition 6 If D =0, f is log-concave and bounded, and oo = (y, — g (b7)) > 1 then

N _J g(®3) fO< K <g(b;) e
L E(s) -~ E(z) = { monotonically decreases with K if g (b3) — e, < K

0 if0<K <g(by) — e,
2. V(s)=V(x) = inverted-U shaped with o
mazimum above V (x) ifg(03) —ex < K

11



D=0 ; D>0
* E - E « H
E(s)- B(x) o6") Expected sales O7E ob) /\

i Expected sales

g(b*z)- e, K g(b*z) |I<*1 K

Variance of sales/\
gf) .qx/

V(s)- V(X) V(s)- V()

Variance of sales

96:) e, K ‘

K

Figure 3: Expected profit and variance functions for an exclusive dealer when D = 0 and
D > 0.

3. The expected sales is mazximized and variance is minimized for K < g (b3) — e,

Proof. See Appendix A. =

Figure 3 summarizes the results of Propositions (5) and (6). As shown in the plot to
the left in Figure 3, when D = 0, expected sale is constant until K < ¢ (b3) — €, and starts
decreasing (though never falls below the expected market signal F (z)) when K > ¢ (b)) —¢,.
For D = 0 the variance of sales curve is never below the variance of the market signal and is
higher than of the input market signal for values of K beyond ¢ (b3)—e,. The plot to the right
shows that when D > 0 the expected sales are maximized at K = K{and variance minimized
at K = ,. The variance of sales is below that of the market signal at this point. This implies
that, with exclusive dealers, the manufacturer can offer a positive bonus, D > 0, and choose
an appropriate threshold, K, such that the dealer exerts effort levels that increase expected
sales and reduce variance below the market signal. The reduction in variance is driven by
the fact that the presence of a positive bonus D > 0 leads the dealer to exert effort such that
sales are raised exactly to K over a range of market signals. In other words, with a positive
bonus, an exclusive dealer reduces the variance of sales for the manufacturer by varying his
effort to absorb some of the market signal variance. For a manufacturer with a high cost
of operational sales variance, this fact is significant while designing an appropriate stair-
step incentive plan. We discuss how the manufacturer can select an appropriate incentive

structure in Section 4.2.
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4.2 How Should a Manufacturer Structure Stair-Step Incentives
for an Exclusive Dealer

In Section 4.1 we described the impact of incentive parameters on the expected sales and
variance of sales. In this section we consider the manufacturer’s problem of designing the
stair-step incentive and describe the structure of such incentives that maximizes manufac-
turer profits when the manufacturer’s costs increase with sales variance. Our main result
shows that if the manufacturer has a high operational cost associated with sales variance,
it is preferable for the manufacturer to offer a positive bonus that encourages the exclusive
dealer exert effort in a way that reduces sales variance.

Assume that the manufacturer’s margin per unit is p,, when the dealer’s margin is p per
unit, and the manufacturer’s cost of variance is v. Given a sales variance of V' and market
signal x the manufacturer’s profit is evaluated as

pm(x+g(b)—ovV ifx+g(b) <K

T K =Dt (py—A)(z+g(b)— K)—vV ifz+g(b)> K (11)

Using Propositions 5 and 6 we can thus structure the manufacturer’s optimal incentive for

an exclusive dealer.

Proposition 7 When designing a stair-step incentive with D = 0, the manufacturer maxi-
mizes his profits either by setting K = g (b5) — €., where b is defined by equation 8 and &,
is defined by equation 9, or by setting K to be extremely large such that F (6,) — 1; i.e. the

market signal is guaranteed to be below the cutoff J,.

Proof. The proof uses Proposition 6. See Appendix A for a detailed proof. =

Next, we characterize the optimal stair-step incentive for the case when D > 0.

Proposition 8 When designing a stair-step incentive with D > 0, the manufacturer maxi-
mizes profits by either setting K > y,, where v, is defined in Claim 1, or by setting a large
enough K = g (b3).

Proof. The proof uses Proposition 5. See Appendix A for a detailed proof. m
We now show that for a high enough operational cost of variance, the manufacturer is

better off by offering a stair-step incentive with D > 0 compared to the case when D = 0.

Proposition 9 For a high enough value of v the manufacturer can increase profits by setting

a positive bonus payment D > 0.

13



Proof. See Appendix A. =

Proposition 9 shows that a manufacturer with a high cost of sales variance is better off
offering a stair-step incentive with a positive bonus. The positive bonus encourages the
dealer to exert effort in a way that reduces sales variance. In the next section we show
that as dealers become non-exclusive, manufacturers face a greater sales variance than when

dealers are exclusive.

5. The Non-Exclusive Dealer

In this section, we study the effect of stair-step incentives when the dealer is no longer
exclusive and sells products for multiple manufacturers. In the automotive industry in the
United States, most dealers today are non-exclusive. Auto malls, for example, sell cars from
multiple manufacturers from the same lot. In our model, dealers that sell cars for different
manufacturers from different lots are also non-exclusive as long as they can shift effort across
manufacturers. This often occurs in practice because a dealer selling for two manufacturers
is likely to shift advertising effort and cost across the manufacturers depending upon market
conditions. Our goal is to understand how the loss of exclusivity affects sales variance for
manufacturers offering stair-step incentives. Consider two manufacturers (1 and 2) selling
their products (also denoted by index 1 and 2) through a single non-exclusive dealer. We
assume that both manufacturers offer similar stair-step incentives, in terms of p, A, D, and
K. While maintaining symmetry simplifies the analysis and exposition, most of the results
can be extended to the asymmetric case.

The sequence of events is as follows. The dealer observes market signals x;, i = 1, 2,
then decides on the efforts, b;, resulting in sales x; 4+ g(b;) for i = 1, 2. Our analysis assumes
the market signals to be independent. The dealer’s cost of effort is based on total effort and
is given by 2 c(@) which is convex and increasing. Observe that when b; = by the cost

of effort for the non-exclusive dealer is equal to the sum of the cost of efforts for the two

exclusive dealers. Next, we study the dealer’s optimal response function when D = 0.

5.1 The Non-Exclusive Dealer’s Problem for D =0

For D = 0 there are four possible profit outcomes for the dealer, I1; (i =1, ..., 4) with four
distinct effort levels by; (k =1, ...,4) for each manufacturer i = 1, 2 (see Table 1). Each

profit function, II; in Table 1, is concave in the effort levels b;; and b;s.
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Profit

M | p(a1+g(b11) +p(a2 + g(b12)) — 2 e(PLEM2) i 2y +g(bi1) < K, and
x2 + g(blz) < K

T2 p(r1 4+ g(b21)) + (p + A)(z2 + g(ba2)) t21 + g (b21) < K, and
—AK —2 (gt w3 +g(ba2) > K

I3 (p+ A)(z1 + g(bs1)) +P(12 + g(bs2)) tz1+g(bs1) > K, and
~AK — 2 c(bsfba2) w24 g (b3a) < K

Oy | (p+A)(@1+g(bar)) + P+ A)(w2 +g(baz)) @1 +g(bar) > K, and
—2AK-2 (M) z2 + g (baz) > K

Table 1: The four possible profit outcomes for a non-exclusive dealer.

Let b}, and b}, denote the optimal effort levels that maximize the dealer’s profit functions
II; (i=1,...,4). Observe that the profit functions II;(x;, xs, bl, b)), 1 =1,...,4, are a

linear in z; and z5. The non-exclusive dealer chooses optimal efforts such that
(b1 bjp) = arg max {II;} (12)

In order to characterize the optimal effort levels and compute the cutoff ranges for x; and x»
we express the non-exclusive dealer’s problem as an equivalent non-linear profit maximization
model. The values in the brackets to the right of the constraints are the corresponding

lagrangian multipliers.

NEDP : min © (13)
gl : Iy (21, 9, b11,b12) — O <0 (uq)
92 : Ta(x1, 9, b91,b92) — O <0 (uz)
93 : U3(x1, 9, b31,b32) — O <0 (u3)
g4 Ty(x1, 9, b41,042) — O <0 (uy)

We define ¢4, e, €3, and ¢4 as follows:

ploi) — g(b3))] + pla(biy) — g(bsy)] + 2 (P2lin) — 9 o(Piitiz)

€1 = A (14)

o, = PIo0i0) ~ 905+ plg(a) — 03] + 2 Ai) — 2 o) (15)
_ (p+A) [g(651) — g(05)] + plg(bga) — 9(bia)] + 2 c(52) — 2 o(Piifliz)

g3 = A (16)
_ plo3) — 9] + (0 + A) [g(bgp) — g(ba)] + 2 c(Bi2) — 2 o(Paiflin)

£4 = A (17)

Claim 10 summarizes the optimal efforts and cutoff values for a non-exclusive dealer.
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Claim 10 The non-exclusive dealer exerts the following effort levels to mazximize profits

) IO<.T1<52 and O<SL’2<(51

) : 0<x1 <8y and & <
b3, 05) @ 0a <z <9y and o < 1y

) : 52§I1<(54 and Ty > T

) <z and 0 < x9 < I3

) 0 <z and I3 < xo

/(b21;b32) :
2. g (b5) = » , g (b3,) = A
s b31+b39 o ( bA1tb3n
* 2 ! 1%
3. g (b5) = (p+A )7 g (b3,) = P )7
o bzl“’fm)
/ * / * 2 .
4. 9" (b)) = 9" (i) = YN

b. 61 = K_g(b;2)+517 52 = K_g(bgl) + €9, 53 = K_g(bjb) + €3, 54 = K_g(bz‘ll) + &4.

Proof. These results are proved using first order optimality conditions. The cutoffs are
computed by finding the points of intersection of the various profit functions. See Appendix

A for a sketch of the proof. =

Corollary 11 The following equalities hold: by, = bj,, by, = b}, and g,(bél) =9 (b§2) = P4,
g (622) g (b31) p

Proof. These relationships follow immediately from Claim 10. =

Notice that for our problem the four levels of optimal effort exerted by the non-exclusive
dealer are symmetric across the two manufacturers. That is to say b3, = b3,, b5, = b3,
bjy = bi, and by, = bj,.

Rearranging the terms in equations (14), (15), (16 ), and (17) we get d4 — 62 = 03 — I1.
Figure 4 shows the cutoffs and optimal dealer efforts as the input market signals vary. For
a value of z; between d, and J4, the optimal effort exerted by the dealer for manufactuer
1 fluctuates from b3, to b3;depending upon the value of x5. For a market signal zo > x4,
the dealer exerts a lower effort b3, for manufacturer 1. For a market signal x5 < 1, the

dealer exerts a higher effort b3; for manufacturer 1. Unlike the case of the exclusive dealer,
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where each market signal resulted in a specific effort by the dealer, the non-exclusive dealer
may exert different effort levels for the same market signal for a manufacturer. This result
may partially explain the Chrysler experience mentioned at the beginning of the paper.
With non-exclusive dealers and manufacturers that offer stair step incentives, Chrysler may
have seen a large drop in sales because their market signal was lower than that of other

manufacturers and dealers shifted their effort away from Chrysler to other manufacturers.

X, . .
d ba, b b*41, b
3
o
P ba, b
b, b e
dy dy %

Figure 4: Optimal effort levels and cutoff values for a non-exclusive dealer.

Before comparing the optimal effort levels for the exclusive dealer and non-exclusive
dealer, we compute the bounds on ¢; (i = 1,...,4). These bounds can be easily proved
using convexity arguments for the effort and cost functions, and the conditions on the optimal

efforts from Claim 10. We summarize these results in Claim 12.

Claim 12 The following inequalities hold for a non-exclusive dealer: 0 < g1 < ¢'(bdy) (b5y —

1), 0 < ey < ¢( 31)( 31— 1), 0 <e3 < g'(b1,)(bis — 32); and 0 < g4 < g'(b;) (b3 — b5y).

Proof. These results are proved using simple convexity arguments. See Appendix A for

technical details. =

Corollary 13 The effort levels are nested as follows: by > by, by > bi, bl > b3y, and
i = 03

Proof. Follows from Claim 12. =

These relationships help us compare the effort levels exerted by an exclusive dealer and
a non-exclusive dealer. Suppose an exclusive dealer exerts optimal effort levels b7 and b} for
manufacturer 1. If the same dealer becomes non-exclusive to manufacturer 1, the expected
effort levels change to b}; (i = 1,...,4) depending on the market signals (zjand z5). To

understand how this will affect the expected sales and variance of sales, for both the dealer
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and the manufacturers, we need to understand the relationship between these effort levels.

Claim 14 summarizes the nesting relationship between these effort levels.

Claim 14 If A > 0 then the effort levels for an exclusive and non-exclusive dealer are nested

as follows: by, > by, = by > WF% > pr — pr > by

Proof. The nested relationship is proved using the fact that ;—: is an increasing function and

other convexity arguments. See Appendix A for technical details of the proof. m
Claim 15 For any given K the following relationship holds: 64 > 6, > 3.

Proof. These results are proved using simple convexity arguments. See Appendix A for
technical details. m
Using Claim 15 we show that the non-exclusive dealer’s expected profit is strictly greater

than the sum of expected profits of two exclusive dealers.

Proposition 16 When D = 0, and the stair-step incentives are the same, a non-exclusive
dealer’s expected profits are larger than the sum of the expected profits of the two exclusive

dealers.

Proof. The proof uses Claim 15 and the fact that for market signals such that 6, > x;
> x5 > 0y the non-exclusive dealer makes more profits by adjusting effort between the
manufacturers. See Appendix A for the detailed proof. m

Proposition 16 shows that dealers benefit from becoming non-exclusive. Next, we analyze
the situation for the manufacturers selling through a non-exclusive dealer in Section 5.2 and

show that dealer non-exclusivity hurts the manufacturer’s.

5.2 Impact of a Non-Exclusive Dealer on a Manufacturer’s Sales
when D =0

In this section we show that the expected sales of a manufacturer decreases and the variance
increases with an increase in K. We identify values of K when the manufacturer has lower
expected sales and a higher variance of sales with a non-exclusive dealer when compared
to having an exclusive dealer.  After identifying the optimal threshold for a non-exclusive
dealer we also characterize the effect of A on the manufacturer’s sales variability. To proceed

with our analysis we define h (b) = i'l((zf)) and m (b) = ‘;l,/—((bb)). Observe that h (b) > 0, m (b) <0

and are continuous. We also impose the following conditions on h, m, and g.
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C1: h is non-decreasing or h non-increasing such that i (z) > th(y) V2 <y < z

C2: m is non-decreasing

by

C3: g and A are such that b31_ e > 2 and 2 < 1.

These conditions, imposed on the cost function ¢ and impact of effort function g, are
not very restrictive. Condition C1 is satisfied by cost functions of the form c(z) = €% ,
with 3 > 0, or by polynomial cost functions of the form c(z) = 2%, with 3 > 1. For such
polynomials h (z) = £ ;1

effort functions of the form ¢ (z) = 2* with 0 < o < 1 satisfy conditions C2.  For these

4> % for all (z, y) such that < y < z. Impact of

a —1

polynomials m (z) = . Notice that m (z) increases with z since it is negative. Condition

C3 implies 241 < jj,%l
p 11

g' (b31) (b71 — b3y).
In Claim 10 we defined the effort levels exerted by the non-exclusive dealer for various

Wthh further implies gzmg < 21311:21211 Hence ¢’ (b3,) (b5, — b3y) >

input market signals. Since the problem is symmetric the probability that x5 > x1, when
04 > x1 > 09 and 04 > 19 > 09, is the same as the probability when x; > x5 in the same

region. The expected sales function, E (s), for the non-exclusive dealer can be written as:

E(s) = E (x1) + F (82)* g (b7,) + [1 = F (82)] F (82) g (b3,)
+ [F(04) = F (2)] F (02) g (b31) + ; [F (82) = F (82)] [g (b31) + 9 (b3,)]
+ [ (02) = F(02)] [1 = F (04)] g (b31) + [1 = F (04)] " (04) g (b31)
+ 1= F (82)] g (bi) (18)

Notice the first term on the right hand side is simply the expected level of the input signal.
The next two terms are the expected effort exerted when x; is below d,. The next three
terms correspond to the expected effort when 0, > x; > d3. Observe that when both
signals are between 0, and d, we assume that z; and x5 dominate each other with the same
probability. Finally, the last two terms correspond to the expected effort when z; > dy.

Proposition 17 identifies the optimal threshold with a non-exclusive dealer.

Proposition 17 If condition C3 holds, then the optimal K that maximizes a manufacturer’s

profit with a non-exclusive dealer is g (b},) — €4.

Proof. See Appendix A. m
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Denote the optimal threshold for a manufacturer selling through a non-exclusive dealer
as Kypp- Similarly, let K7, denote the optimal threshold when the dealer is exclusive
(Proposition 7). Proposition 18 compares the expected sales and variance of sales for
the manufacturer for the cases with exclusive and non-exclusive dealers. The proposition
identifies values of K for which the manufacturer has lower expected sales and a higher

variance of sales with non-exclusive dealers.

Proposition 18 For a manufacturer selling through a non-exclusive dealer, if condition C3

holds, then

1. The optimal threshold for the non-exclusive dealer is less than the optimal threshold for

y ; * *
the exclusive dealer, i.e. Kypp < Kgp,

2. ¥V K such that K < K{pp the manufacturer’s expected sales, and variance of sales,

are the same as selling through an exclusive dealer,

3.V K such that Kypp, < K < K the manufacturer’s expected sales is lesser than

when the dealer is non-exclusive.

Proof. See Appendix A. =

Now consider any K such that Ky p, < K < Kpp. The non-exclusive dealer exerts 3
effort levels g (b3,), ¢ (b%;) and ¢ (b};) depending on the other manufacturer’s market signal
level. Consider two market signals z1 and =¥ for manufacturer 1 such that z¥ < zf. For
any K within the specified region, the expected effort exerted by the non-exclusive dealer

when the market signal for manufacturer 1 is y is

L Pr{zy >z | x1 =y} b3,
E{b |z =y} = F(04) [+Pr{x2§x1 | 1 =y} b5,

B Pr{xz > 04 | I = y} bfﬂ
+ (1= F(0)) [ +Pr{zy <64 | 11 =y} b3 )

So the difference, E{b | 21 = 2{'} — E{b| 21 = 2]}

= F (64) b3y [Pr{zo > af' | 21 =2’} = Pr{azs > af | 21 = a7 }]
+ F(04) V% [Pr{zs <zf |z =2} —Pr{azs <af |21 =al}]

] Pr{ao > ot oy =2} + Pri{z, <o |2y =2f}
>F(54)b21[—Pr{x2>xf|a:1:a:f}—Pr{x2§a:1L|x1:xf}
_ R B 1—Pr{zs <af |z =2} +Pr{o, <af | 2y =2f}
N YV 14 Pr{m <ol |a=at} —Pri{z <al |2 =at
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The expected effort exerted by the non-exclusive dealer increases as the manufacturer’s
market signal increases. This implies that expected effort exerted is positively correlated to
the corresponding market signal. Given this fact, we conjecture that the variance of sales for
the manufacturer is larger than V (x) for a non-exclusive dealer. For an exclusive dealer’s
case the variance of sales is simply V' (z) in this region (Proposition 6). Hence, it is likely
that the manufacturer’s sales variance increases with a non-exclusive dealer. Computational
experiments in Section 6 validate our conjecture. Computational experiments in Section 6
also show that the manufacturer’s sales variance may be higher with a non-exclusive dealer
even when K > K7j,,. This fact, together with Proposition 18, imply that, under certain
conditions, a manufacturer’s profits will be lower with a non-exclusive dealer if there is high
cost associated with sales variance.

Next, in Claim 19, we characterize the effect of A on the sales variability of a manufacturer

selling through a non-exclusive dealer.

Claim 19 If conditions C1 and C2, hold, and the effort function, g, is such that g (b%;) —
g (b3,) increases with A, then increasing A expands the range over which the dealer changes
effort level based on the market signals of the other manufacturer.  Furthermore, if the
two manufacturers offer different As, the one offering a higher A (say As) has a smaller
range over which the dealer changes his effort level based on the other manufacturer’s market

signal.

Proof. See Appendix A for the proof. =

Claim 19 shows that increasing A for both manufacturer’s may increase their sales
variance resulting in greater reduction in a manufacturer’s profits. In contrast, if one of the
manufacturer maintains the same A, the other manufacturer can decrease his sales variance

by increasing A to As.

5.3 Impact of D > 0 with Non-Exclusive Dealers

As shown in Table 2 there are 9 possible profit functions when D > 0.
In Claim 20 we show that the last five profit functions in Table 2 are dominated by the

first four profit functions.

Claim 20 Il ¢ > g, llgr > g, lge > Uge, llae > llgp, and llgg > Ilgg.  Further,
if D > Aey then g —pp > 0 for zg > K — g(b3,)
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Profit

Mo | pan+g(b3)) + (s + 9(05) = 2 «(PHE22) a1+ g (bu) < K, and
z2 + g (b12) < K

e p(z1+9(b5)) + (0 + A) (z2 + g(b3,)) t21+g(b21) < K, and
—AK + D —2¢ () w2 +g(b22) > K

gL (p+ A) (w1 +g(b31)) + p (z2 + g(b3,)) 121+ g (bs1) > K, and
—AK+D—2c(% z2 + g (b32) < K

Ooe | (p+A)(x1+9(b5) +(@+A)(x2 +9(bfy)) 2149 (ba1) > K, and
+2D - 20K — 2¢ (Hiptiz 23+ g (bas) > K

M. p(z1 +g(b°)) + p (22 + g(b5)) cx1+g (V) < K, and
+D —2¢ by° by ;bl; 149 (bl;) =K

Mgy p (@1 +g(®s")) + p (x2 + g(bg")) cx1 4+ g (0") =K, and
+D —2c % z1+g () <K

gE p(z1 + g(b5°%)) + p (z2 + g(b5°)) :x1 +g (b5°) = K, and
+2D - 2¢ (U550) o149 (b5°) = K

e (p+8) (z1 + g(b]%)) + p (x2 + g(b3")) cx1+g(b]%) > K, and
—AK +2D —2¢ % z1+g(b5°) =K

e p(z1+901") + (p+ A) (x2 + g(b57)) cm1+ g (b)) = K, and
7AK+2D72c(w o1+ (b) > K

Table 2: The nine possible profit outcomes for a non-exclusive dealer when D>0.

Proof. These results are proved using simple convexity arguments. See Appendix A for
technical details of the proof. m

Claim 20 implies that offering a bonus does not change the structure of the effort levels
of the non-exclusive dealer. The only effect a positive bonus has is to lower cut off ds; i.e.
the non-exclusive dealer exerts a higher effort level earlier. Thus, unlike the case of an
exclusive dealer, the non-exclusive dealer makes no effort to absorb portions of the market
signal variance and keep total sales constant even when offered a positive bonus D. We

demonstrate these results using numerical experiments in Section 6.

6. Numerical Experiments

The two scenarios studied are denoted as ED (exclusive dealer) and NED (non-exclusive
dealer).

manufacturers profit p,,. The exclusive dealer’s effort function is defined as g (b) = v/b and

Table 3 shows the incentive parameters (p, A, D) for both scenarios and the
cost function, associated with the sales effort, is defined as ¢ (b) = b%. The input market
signal x is assumed to uniformly distributed between 0 and 150. For NED, similar effort
functions and market signal distribution parameters are assumed for the for each product

(1 =1, 2). However, the non-exclusive dealer’s cost function depends on the effort exerted

across both products and hence is assumed to be square of the sum of exerted efforts. The
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market input signals for the individual products are assumed to be uniformly distributed
between 0 and 150. The manufacturer’s profit (p,,) is considered only for the scenario ED

to demonstrate the effect of offering a non-zero bonus.

P pm_ | A D 90 ()
ED ~U(0, 150) | 1500 | 1000 | 250 | 10000 | +/b 0.001 b2
2
NED ~U(0, 150) | 1500 | — | 250 | 10000 | +/&; | 0.002 (%)
i=1, 2

Table 3: Experiment setting for ED and NED.

First, we analyze scenario ED. The optimal efforts are shown in Table 4 under two
situations, i.e. when D = 0 and D = 10000. When the threshold is fixed at 90, notice that
bE > b5 > bt and 0,0 > 0,1 when D = 10000.

by b3 1 at Oz2 at Yz= ¢ (bK) €z
K=90 | K=90
D=0 5200.21 | 5763.045 15.95 - - 1.87
D = 10,000 | 5200.21 | 5763.045 1.28 14.09 88.71 -

Table 4: Dealer’s optimal efforts, in scenario ED, when D =0 and D > 0.

Figure 5 shows the plot of expected total sales and sales variance , for an exclusive dealer,

as K varies.

155.6 N 2000 7
. D=(10000 8 1960 - DED -
£ 155.2 g —
g ! £ 1920 —
S 154.8 4 — = 1850 4 DI=10000
g DEO "~ — _ 8
LE154/k = 51840

154 — 5 1800 ; ; ‘ S
70 75 80 85 90 95 100 60 70 80 90 100 110

Figure 5: Expected sales and variance, for an exclusive dealer, when D = 0 and D = 10, 000.

The plot to the left shows that when D = 10,000, the expected sales increases when
g(05) < K < #,, i.e. when 75.91 < K < 88.71.  The plot to the right shows that the
variance of sales dips in the same range when D = 10, 000.

Figure 6 compares the coefficient of sales variation with and without a bonus offering for
scenario ED. The coefficient of sales variation dips when D = 10,000 and 75.91 < K < 88.71.

Figure 7 compares a manufacturer’s objective function when a penalty for variance of
sales, v, is included. In this particular case v = 0.0018. As can be seen in the plot to the

left, if no penalty is included, the manufacturer makes lesser profit by offering a bonus. The

23



0.29 7
0.288
0.286 D=0 -

@ 0.284 1
-

0.282 -
0.28 4

CV(sales)
A

0.278 1 DI=10000

0.276 K
0.274 T T T 1
60 70 80 90 100

Figure 6: Comparing coefficient of sales variation when D = 0 and D = 10, 000.
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Figure 7: Comparison of manufacturer’s profit functions when a penalty for sales variance
is included in the objective.

plot to the right shows that, if such a penalty is included, offering a bonus of D = 10000,
increases the operational profit for 75.91 < K < 88.71.
Next we study the effect of varying the bonus payment on the expected sales and variance

of sales for an exclusive dealer. We consider 4 values of D: 468, 10000, 15000, and 30000.

400
79 - wnrnnnrnnn D=468
wwwwww D=468 ’
78 4 300 | - - - = D=10000
77 1 . - = = = D=10000 — — D=15000
O D=15000 & 2
a 75 4 NI - b= Z o —D=30000
—~ N = 100 4
Z 74 Yo\ ——D=30000 ’\‘@ wwwﬂj‘j‘_‘/-;
73 A B > o ‘ = o ‘ K
72 4 i 40 60 80 100 20 140
71 ; ; ; ; ; . K -100 1
0 50 100 150 200 250 300 -200 J

Figure 8: Effect of varying D on E(s) and V(s) for an exclusive dealer.

The plot to the left in Figure 8 shows that the maximal value of the expected sales, E(s),
increases as D increases. Furthermore, the value of K for which E(s) is maximal, i.e. K7,
increases as D increases. The plot to the right depicts the effect of on variance of sales

increasing K for different values of D. As D increases the minimum value of the variance of
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sales decreases. Also, the value of K at which variance is minimal, i.e. v, increases. This

implies the range for which V' (s) is below V' (x) also increases.

765 - 150 7 — — cv=0.433

100 -

----cv=0.6
cv=0.7

50 A

V() V()

E@) B

-50 -

-100 4

-150 -

70 80 90 100 110

Figure 9: The effect of input signal coeffecient of variance on sales through an exclusive
dealer when D = 10000.

In Figure 9 we study the effect of the coeffecient of variation of the input signal on the
expected sales and variance of sales when D = 10,000. For these experiments we use a
normally distributed input signal such that x > 0 and the mean is 150. We study 4 cases
with the input signal coeffecient of variation set to 0.433, 0.5, 0.6 and 0.7. The plot to
the left, in Figure 9, shows that the point at which expected sales E(s) peaks, i.e. K7, is
constant irrespective of the coeffecient of variation of the input signal (denoted by cv in the
plots). Furthermore, as cv increases the maximum expected sales also increases and rate
of decreases beyond K7 is sharper for higher values of cv. The plot to the right shows the
effect on the variance of sales V'(s). The minimum value of V (s) is lower of higher values
of cv and always happens at K = v; = 88.71.

Next, we compare scenario NED with scenario ED. For this experimental setting b7, =

5200.2, b, = 4655.4, b, = 6336.6, and b}, = 5763.04.

1584 2260 - NED withD =10000 _ » =— -
- -
- "~

158.25

u% 158.35 @ 2170 .- .
" 2 2uo NED with D =0
2 @ 2110

$ 2080 —_
n %] -

1583 0 —

3 e e -
2 8 ED with D=0
[ =4
X 8
w 3

>

158.2
60 63 66 69 72 75 78

Figure 10: Comparing manufacturer’s expected sales and variance with exclusive and non-
exclusive dealers.
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Figure 10 compares the expected sales and sales variation between the scenarios NED and
ED for values of K between 60 and 130. The plot to the left shows that the manufacturer’s
expected sales is higher when dealing with an exclusive dealer (ED) and is lower with an non-
exclusive dealer (NED). These results support our conjecture in Section 5.2. Figure 10 also
shows that the variance of sales increase with the threshold K. As conceded by Daimler-
Chrysler executives, high target values also contributed to the increased sales variability
observed by them. As seen in the plot to the left, the optimal K} 5 is lesser than K7j;p.
The plot to the right shows that a manufacturer’s sales variation is much lower with an
exclusive dealer (ED) than with a non-exclusive dealer. We also compare the variance of
a manufacturer’s sales when a positive bonus (D = 10000) is offered to the non-exclusive
dealer. The plot to the right shows that a manufacturer’s sales variability is the highest when
D = 10000 and the dealer is non-exclusive. The variance reduces with a non-exclusive dealer
when D = 0 though it is still higher than the sales variance when the dealer is exclusive.
These plots also imply that the manufacturer’s coefficient of variation for sales is higher with

a non-exclusive dealer as compared to an exclusive dealer.

7. Conclusions

We analyze the impact of stair-step incentives on sales variability under two specific scenarios:
an exclusive dealership scenario and a non-exclusive dealership scenario. In the case of an
exclusive dealership we show that, if the manufacturer associates a positive cost with sales
variance, a stair-step incentive with a bonus payment may be superior to the scheme without
a fixed bonus. The presence of a positive bonus encourages the exclusive dealer to change
his effort level with the market signal in a way that the manufacturer’s sales has a lower
variance than the variance of the market signal. In other words, a positive bonus leads the
exclusive dealer to absorb some of the market signal variance by varying his effort.

Our study of stair step incentives for non-exclusive dealers shows two main results. The
first is that non-exclusivity of dealers increases the sales variance observed by the manufac-
turer’s. Even though the dealer observes a lower sales variance in terms of aggregate sales
than an exclusive dealer, the variance of sales observed by each manufacturer goes up. Our
second result is that in the case of non-exclusive dealers, a positive bonus does not lead to
the dealer absorbing any market signal variance. In other words, a positive bonus is not

helpful in reducing variance when dealers are non-exclusive.
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The experience of Daimler Chrysler described at the beginning of the paper can partially
be explained by the presence of non-exclusive dealers and stair step incentives. Overall our
results indicate that manufacturers should rethink offering stair step incentives as dealers

become non-exclusive, especially if they have a high cost associated with sales variance.
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8. Appendix A: Proofs

Proof. The constraints (5) and (6), in model EDP, imply that a separate profit is made
on just reaching K. First order KKT optimality conditions imply w; + us + uy = 1,
un [pg (67) = € ()] = 0, us [(p + A)g (55) — ¢ (b3)] +us ' (b) = 0, ua [pg (b5) — ¢ (b)) =
0, u1 91 =0,up92=0,u3g93=0,us g4 =0. To calculate the cutoff between II; and
II,, we check when the condition when u; > 0, ugy > 0, and us = 0. This implies that
the profit functions are equal (i.e. the corresponding constraints are tight). Thus, we have
p(K — ) — g Y (K — x)] = pg(b}) — c(b;) — D. The value of z satisfying this equation
gives the first cutoff, §,;. To obtain the second cutoff, d,2, between I, and Il3, we check
when u; = 0, uy > 0, and ug > 0. Observe that uy > 0 = (p+ A) K + D — c(b¥) =
© and us > 0 = uy [p g (b%) — ' (b%)] + uzg'(b") = 0. Thus equating the two we get

c(by)—c(b® * *
=K — g(b}) + %. Further, us >0 = (p+ A)(z + g(b3)) — AK + D — ¢(b}) =
cl(bK)

g (bK)
no longer binding, we must have us — 1. In this case us — p+ A —

bX — b3. Hence, 0,2 reduces to K — g(b3). =

©. This also implies ug = us [p +A— } Now as uy — 0, i.e. when constraint 6 is

¢ (%)
g (bK)

which implies

Claim 2. In this particular case constraints (6) and (5) are absent in EDP. The optimal

effort vectors are obtained by applying the first order KK'T conditions. Now if u; =1, us =0
¢ (b))
g D)’

constraint g1 is tight, the optimal effort decision is b5 such that (p+ A) =

[fu, =0,us =1, 1.

¢ (b3)
g (b3)"

(i.e. constraint g1 is tight), the optimal effort is b} such that p =

Suppose
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u; > 0 and uy > 0, i.e. g; and g, are both tight, then we have IT;(b7) = II5(b35). Thus, we
get the cutoff for x, when Il exceeds II; is 6, = K — g(b}) + p[g(bi)_g(bz)]+[C(b§)_c(bm

A
Claim 4. The partial derivative of the expected sales with respect to K is given by = OB( S)
6102
= f(K —7)[g(}) — 7] + /f () dz. So setting a = 7, — ¢ (b}) and simplifying we get
6w1
851(;) = f(K — ) (t(K)—a). Observe that,
t (K) _ 1 |: f(K - %ﬂ) (f (K (b )) f(K - '72:))
FIK—7)? [ = (K =) (F(K—=g() - F(K-7))
S(E—g(b3))—f(K—z) F1 (K = .
Now ' (K) < 0 < FEKggbgggF(Kw) = f((K—vl))' Further, notice that f = F’ and

' =F". Define =, —¢g(b}) and y = K —,. Therefore K — g (b%) = y + 5.
Cauchy’s Mean Value Theorem states the following. Suppose functions ¢; and ¢, are
differentiable on the open interval (a, b) and continuous on the closed interval [a,b]. If

¢5(y) # 0 for any y in (a, b), then there is at least one point ¢ in (a, b) such that (¢ (c))/(¢5(c))

(p1(b) —p1(a))/(¢2(b) — p2(a)). So, we must have a 6, € (y, y+/3) such that % =

r ((0 )) . Since f is assumed to be log-concave f7/ is monotonically decreasing. Hence, we

must have ;Egig;:gg) = f}((‘;@;)) < f}((z)) . This implies ¢’ (K) < 0 which further implies that

t (K) is a decreasing function. So, t (K) <t (7v,) = W. If @ > t(v,), we must have
aE (S) < 0 for all K > ~,. Now suppose that #(,) > a .Observe that, for very large values

of K, t (K) approaches 0 since f(K —~,) > 0. So there exists a K > v, such that ¢ (K7)

= «. This proves the first part of the claim which also implies that F (s) is a decreasing
function for all K > K7.

For any continuous cumulative distribution the following condition must hold: 0 <
F(K—g(b)—F(K~7)<1<a. Defininge, =a— (F(K—g(b3))—F(K—7,)) we
rewrite the ﬁrst derivative of the variance of sales as 6(\9/[(; ) — agg) — 2E(s)8§—[((s).
= f(K — %) a?+2 e, (E (s) — K). From equation 10 it is clear that

E(s)>K When K =~,. ) > 0at K =~,. From the first part of the

Simpli-

claim we know that E (s) continuously increases until K < K7 beyond which it decreases

as K increases further. So , av(s) > 0 for all v, < K < Kj. For K > K{ we know that

(E(s) — K)isa monotonically decreasmg function K. Now, we consider two cases. When
E (s) > K > K7 notice that ¢, is always positive for any value of K, since & > 1. Fur-
thermore, the first term is also positive for the entire region of K. Thus, 8‘8/—](;) > 0. When
E(s) < K, E(s) — K is always negative for any value of K. As K increases, (F (s) — K)
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increases in the negative direction. We know that 6‘/(5) <0 <~ m + FE(s) < K.

Hence, if f is a bounded function we can always increase K to a large value such that the

inequality holds. Thus, there exists K5 > K7 > 7,
flips sign, V (s) is inverted-U shaped when f is bounded. =

Proposition 5. K < g (b3) implies 6,7 < 0 and 0,2 < 0. From equation (10) the
expected sales, E (s), reduces to E(z) + g(b5). Therefore, for K < g (b3) we have E (s) =
E(z) + ¢g(b5). For values of K satisfying ¢ (b3) < K < 7, we must have J,; = 0 and
dz2 > 0. Hence, F'(s) = K + fg; (x — 042) f(z)de =K + f;?ig(b;) [1 — F(z)] dz. Notice
that 851((8) = F (K — g(b5)) > 0. This implies that E (s) monotonically increases beyond
K = g (b3), because 6,0 = K — g(b5) > 0. Further, observe that F (s) > K because

dz2 > 0. In Claim 4 we have already shown that E(s) continues to increase until K <

K7} and starts decreasing beyond for all values of K > K;. This proves the first part of
the proposition. When K < g (b3) we know that E (s) = E (x) + ¢(b3). variance of sales
V' (s) =V (z) for these values of K. Before we evaluate the expression for the derivative of
V (s) relative to K, for 7, > K > g (b3) we note that E (s*) = K*F (3,2) + [; 2* f (2) dz +
g (03)° [1 = F (6,2)] 4+ 2 (b%) f;o x f(z) dr. The derivative of the variance of sales, V (s),
on sunphﬁcatlon reduces to ‘W(s) =2 F(0s2) (K — E(s)). Since K < E (s), this implies
that 2 ) < 0 in this region. Hence the variance of sales, V' (s), decreases below the signal
variance V (x) in this region. In other words, the dealer absorbs some of the signal variance
by changing the effort level, thus reducing the sales variance observed by the manufacturer.
Now consider the case when K > ~,. This implies 0z1 >0, 00 > 0, and K> 5$2 From
Claim 4 we know that when K > ,, V (s) i ) >0

at K = ~,. This proves part 2 of the proposition.

Now as K becomes very large, the dealer may find it cost prohibitive to reach K by
putting additional effort. So for very large values of K, the value of F (s) approaches
E (z) + g (b}). Thus, the expected sales are maximized when K = ~,. Further observe
that once the partial derivative of the variance of sales (when K > ~,) falls below zero it
always remains non-positive. For large values of K the dealer exerts only a constant effort
g (b7) because it is impossible to reach K. Hence ag_}gs)

implying that V (s) = V (x) for large values of K. The fact that the derivative of V (s)

approaches 0 for large values of K

remains non-positive, after switching signs, and approaches 0 for large values of K implies
that V' (s) never falls below V' (z) after reaching its maximum value. This implies maximum

value of the variance of sales V' (s) > V (x) (part 2 of the Proposition). This further implies
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that the minimum sales variance occurs at K = 7, (when the V' (s) is below V (z) and the
derivative of V' (s) becomes positive). This proves part 3. =
Proposition 6. When D = 0 we have only one cutoff §, = K — g (b3) + €., where €, is a

positive constant given by equation 9. Note that ¢, is a linear function of K with ‘3‘;? =1.

The expected values for sales and its square reduce to
E(s) = E(x) + g(b3) + F(d:) [9(b7) — 9(b3)] (20)
Oz 0z
E(s*) = /0 22 f(x)dw + g(b7)*F(5,) + 2g(bi)/0 z f(z)dx
b [ s+ g0 1 F@))+2009) [ o fa)da
0z

We now evaluate the two cases, K < g (b}) —e, and K > g (b)) —e,. If K < g(b3) — e,
then 9, < 0. So we have only one effort strategy, b5 for the dealer. The expected value
reduces to F(s) = E(x) + g(b}). Further, E(s?) = E(x?) + g(b3)? + 29(b3) E(z) implying
Vi(s)=V(x). If K> g(b5)— e, then 6, > 0. When the cutoff is strictly positive there
are the two dealer effort levels, b and b5 (by Claim 2), and E(s) is given by equation (20).
Observe that 855 by (6:)9 [g(bt) — g(b3)] < 0. This implies that E(s) is a monotonically

decreasing function of K. Further,

mﬁ)=A%u+g@fﬂmdx+lf@+M@fﬂmdm
= B(s?) + F(5,) [9(6])? — g(t5)’]
+g@9”+ﬂﬂ%)—ﬂ@ﬂ4%xf@Mx+2m@ﬂ%@

and variance of sales
V(s) = B + F(@.) [9(b)? — 9(63)°]

+w@V+2wwD—wﬁﬂéixﬂ@dm+%®9E@%%E@»2

= V(x) + F(8:) [1 = F(8,)] (9(b7) — 9(b3))”

+2@@D—gw9yé%@r—Ew»f@wm. (1)

The partial derivative of the variance of sales with respect to K can be expressed as

VL) — 16 19(03) — 9B — 27 (52) 5(60) [o(85) — o)

~2(405) - 90) 1(2.) 6 — E)
_ o a2 |1 — 0 — E(z)
= 762 lo05) — o) [1 -2 (P + = EWLY
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Define (d,) = F(d,) + W. Observe that [(d,) is a monotonic increasing function of

0, and hence K. At 6, =0, we have F'(d,) = 0, and hence [(J,) = %(;()b*) < 0. Further,

1 — 2[(0,) > 0 which implies ag}(; ) > 0. Since (J,) monotonically increases with d,, there
exists a 0%, such that for J, < 0%, we have F(d,) + gbe;—E(gc < 1/2 and 8 S) > 0, and for
0y > 0%, 8‘8/—1((5) < 0. At d, = 0* we have t(6*) = 0. For symmetric dlstrlbutlons, such as
the normal or uniform distribution, §* = E (z). Thus, V' (s) — V (z) is inverted-U in shape

for all K > g(b3) — e, and O for all K < g(b3) — ;. This proves parts 1 and 2 of the

Proposition.
It is easy to show that V (s) = V (z) and E(s) = E(x) + ¢ (b}) for large values of
K. Observe that when K = ¢ (b}) — e, we must have §, = 0. Therefore, 6(\9/[(; ) > 0 at

K = g (b}) —e,. Hence, V (s) must have a maximum strictly greater than V (z). Part 3 can
be proved using arguments similar to those in Proposition 5. =

Proposition 7. The proof follows from Proposition 6. First we observe that the man-
ufacturer should not set K < g (b3) — €, because it results in lower expected profit than
setting K = ¢ (b5) — ¢,. Expected sales monotonically decrease as K increases beyond
g (b3) — e,.  The variance of sales for K > ¢ (b)) — ¢, is at least as large as the vari-
ance of sales when K = ¢ (b}) — ¢,. Thus, if the manufacturer were to set a reason-
able K it is best to set K = g (b5) — €,. Finally, the manufacturer should should com-
pare the profit earned at this value of K to the profit earned at a threshold level that is
never reached by the dealer. This follows from the manufacturer’s profit function 11. If
Pm (x+ g (b)) > pK — D+ (p, — A) (xr — K) then the manufacturer should set a threshold
that is very large. Otherwise, K = g (b5) — ¢, is the best threshold level. =

Proposition 8. From Proposition 5 observe that when K = K} > ~, the manufacturer’s
expected sales, F (s), is maximal. The variance of sales, V (s), is minimal at K = ~,.
Thus the manufacturer’s profit is maximized when K > 7, among all values of K. Finally,
the manufacturer should should compare the profit earned at this value of K, say K , to
the profit earned at a threshold level that is never reached by the dealer. This follows
from the manufacturer’s profit function 11. Let V;, be the variance of sales when K
— K and Spay be the corresponding expected sales.  If pp, (E (z) +g(b5) — oV (z) >
(Pm — A) Smax — D — v Vi then the manufacturer should set K = g(b3). Otherwise, K =
K>~ =

Proposition 9. Let I[Ip_g and Ilp-y be the manufacturer’s profits respectively in the

cases when D = 0 and D > 0. Let V;, be the variance of sales when K = ~, and
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Smax be the corresponding expected sales. Recall that Vi, < V (z) and Spax > E (z) +
g(b3). Thus, for a high enough v, it must be the case that (p,, — A) Smax — D — v Vigin >
Pm (B (x) +g(b3)) —vV (z). In such a situation it is optimal for the manufacturer to set
D>0and K >7v,. =m

Claim 10. Any optimal solution © for N EDP is the maximum of the four profit functions
and the effort levels correspond to the values that maximize the particular profit function.
At any stationary solution, the lagrangian multipliers uy, ..., u4 (shown in brackets next to
the constraints) must satisfy the convexity constraint 24_1 u; = 1. When u; and u; are non-
zero, the profit functions must be equal since at optimality since u;.g;(b};, bj5) = 0. The first
order KKT optimality conditions also imply wu; ab*l = 0 and u; (%J = 0. The cutoff for x; and
x2 can be found when u; > 0 and w; > 0. Thus, using the first order optimality conditions

for NEDP we have % =pg (b} — 5(@) = 0 and 2,?; =p g (biy) — Cl(@) = 0.

Simplifying, we have Z (b* ; = 1. This proves the first part. Similarly, using the first order
11
KKT conditions and solving for other constraints, we can easily show parts 2, 3 and 4. The

cutoffs for the profit function are calculated as follows. Cutoffs are defined when II; = II;

Vi # 7. We start with the base case II; and compute the cutoffs represented by the following

diagram:
I
/0y N\ 0y
I, — NS
N\ Oy /03
114

Cutoff §; represents the value of xo when profit function Ils(z1, 22, 03y, 05,) = 111 (21, 22,
i1, bf5). Observe that for both II; and II; the non-exclusive dealer does not reach K for
manufacturer 1. Cutoff 0, is the value of z; for which II3(xy, xe, b3, bly) = II1(x1, x9, biy,
b%,). Notice that in this case the non-exclusive dealer exceeds K for manufacturer 1 only.
Cutoff 3 represents the value of xo such that II3(z1, xo, b3, 05,) = I4(21, 29, b}, b),) and
cutoff 0, corresponds to the value of z; such that I3(xy, o, 05, bdy) = a(x1, 22, by, biy)-
n
Claim 12. We illustrate the proof for 5. The bounds for the rest are computed using

similar steps. We know that

p [9(b31) — g(b3))] + p lg(bhy) — g(bsy)] + 2 c(Fitiy — o o(Pilia)
A

E9 =

* * * * * * by, +b7 bx. +b%,—bt, —b*
Thus, 2 > 3 [p g/ (03) (0, = 05,) + p ¢ (bF,) (b, — D3)] + X [¢/(PH572) (P2,
The right hand side of this inequality is always non-negative (Corollary 11 and Claim 10).
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The upper bound is computed as follows. We know that e < + [p ¢/(b3;) (b3 — b3;) +
P g (W) (bhy — b8y)] + 2 [¢/(Battia)(Bat¥e PLba)) © The right hand side can be simplified
to g'(b3,) (b5, — b1;). =

Claim 14. Notice that ;—: is a monotonically increasing function. Since bj; = b, we have

= Cl(bZl). So

g (b3) =4 (bf,) = @. Similarly since bj; = b}, we have ¢’ (b};) = ¢’ (b3,)

CI(bL) — c,<b11) 3 3 3 * * c'(b;) — _ cl(bfu) . .
7o)~ o (on) + A which implies that b}, > bj;. Further o) p+A= 7 (o) implies
g (b3) _ ptA

by = b3,. Since = > 1 we must have b3, < b3, which also implies b3, <

, b1 bsp
I P 2

on) _ o) ()
Now suppose bj; < b3;.  Then we would have — (”b <3 (bzi) < = CARR This leads
C/(b§1;’b§2> _ Cl(b 1)

to a contradiction since - = % = p. Clearly bj; # b3, and hence b}; > b3;.
g’(b21) gl(bfl)

This also implies that ¢’ (b3,) > ¢’ (b7;). Hence ¢ <%> > ¢ (b%;) which then implies

bx +b* . b¥ +b* % gl(b* ) o +A ’ * o * . . .
22 = o2l > by . We know that ng) ==, So g (b5) = 559 (b3,). This implies

. o [ bA1tb3s

that b5, > b5,. We know that p + A = C(bil) = ( - ) Now suppose b}, > b3;.
7 (bh) 7' (b51)

[ b5q+b3

(i) o ¢(n) (fs)

g(bi) () T ()

b, # bs,. Hence b3, > b},. Thus ¢’ (b3,) > ¢’ (b%;) which then implies ¢ (%) < (by)-

This further implies that bgl;b§2 = bgl;bgl < by,. To prove that b] = bj; we use the fact that

() o (bty)

. /. . . . .
p= 200~ 7o) Since 5 isa monotonically increasing function we must have b7 = b7;.
g 9 \O11

Then we must have leading to a contradiction. It is clear that

Claim 15. From Claim 2, and using the facts that b3, = b5 and bj; = b}, we have

s s 1 [ 1 (g(b5) — g (b1) + (p+ A) (g (b3,) — g (b))
CTETA el +e(b) — 20 (BgR)

< 1| pg (b31) (b3, —b1;) + (p+A) ¢ (b3;) (b5, — bly)
A I + (%) (bz‘u - %) 4+ (bsl‘;‘bm) (bil _ b31;b21>

On simplication the right hand side reduces to 0. Similarly, using the fact that b}, < w,
we have
5, 6y g (b)) — g (b + 1 | p(g(b3)—g (i) +p (9(b11) — g (b5,))
PR T I T IRa T R e (by) + e () — 2 (Mgt )

(p+A) g (b3) (b5, — b3y) +pg (b)) (b7, — b5;)

/[ b31+b3, « b3 +b3,
+ ¢ 5 bi, 5

1
= A
L (bglgbsl) (bh _ b&;b&)

35



2 2
+ c’(%) (bt — %)] which is greater than> )£ ) > 0. Hence we have 04 >

6x > 52.

On simplification the right hand side reduces to x [ pg (b3)) (b5, —b3) + /(Btbiy (Bath)
¢ (¥

Proposition 16. For the market signals the non-exclusive dealer exerts one of the two
effort levels b7 and b3 the resulting profit is at least as large as the sum of corresponding
exclusive dealer profits. Thus, the impact of the effort is the same in both cases (i.e. ¢ (b})
and g (b3) are the same) and the total cost incurred by the non-exclusive dealer, 2 ¢ (%) ,
is no greater than the sum of the costs, ¢ (b7) + ¢ (b%), incurred by the exclusive dealers. To
show that the profits are strictly larger for a non-exclusive dealer we show that there exist
market signals for individual manufacturers when the exclusive dealer only exerts effort b}
while the non-exclusive dealer exerts different effort levels to make higher profits. Consider
two market signals, x; and x5, such that d; < x9 < x; < §,. Claim 15 guarantees the
existence of such market signals. From Claim 2 we know that the exclusive dealers exert
efforts b] for both the manufacturers. From Claim 10 we know that, by exerting effort
b3, for manufacturer 1 and b3, = b3, for manufacturer 2, the non-exclusive dealer makes
a higher combined profit than exerting b7, = b7 effort for both manufacturers. Thus, the
non-exclusive dealer makes strictly greater profit all such market signals resulting in a higher
expected profit. m

Proposition 17. Observe that the cutoffs 65 and (54 vary linearly with K. We now compute

(s)
7TOK

the derivative the expected sales (equation 18),%2

ﬁgl((s): 2 £ (5y) F (85) [g (1) — g (05)] + f (62) g (by)

(F(64) — F(82)) f (92) + (f (04) — f (d2)) F (02)] g (b3)
(F'(04) = F'(62)) (f (1) — f(62))] [9(b31) + g (b3,)]
(f (05) — [ (02)) (1 = F (04)) — [ (64) (F (ds) — F (02))] g (b3)
(04) (L= F (04)) — f (0a) F (04)] g (b31) —2(L = F'(04)) f (d4) g (b1y)

++++

[
[
[
[/

Simplifying, we get 221 = f (8y) F (32) [2 g (b%y) — g (by) — g (b31)] — £ (54) (1 — F (54))
2 g (b)) —g (b)) — g (1)21)]. Since b}, > Lbz (Claim 14) we have g (b};) > ¢ ( 1J2rb2 ) >

w. This implies that the second term of the derivative is always negative. Observe
that g (b7;) — g (b31) < g’ (03;) (b1; — b5;) and g (b3,) — g (b71) > ¢’ (b31) (b5, — biy). We now
evaluate the following three cases. When K < g (e};) — 4 we have 6, < 0. Since 64 > Jy
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this also implies 65 < 0. In this case the non-exclusive dealer only exerts one effort level,

i.e. b}, and the F (s) reduces to E (x1) + g (b};). So, aE = 0. When g(e};) —e4 <

K < g(e}) — €2 then only d < 0. Hence effort level b}, is never exerted. The derivative
reduces to —f (04) (1 — F' (04)) [2 g (b5,) — g (b51) — g (b31)] which is non-positive. The last
case is when K > g (e},) —e2. In this situation the derivative is always negative if condition
C3 holds implying that E (s) is a decreasing function. This proves the Proposition. =
Proposition 18. For any K we must have ¢, > &,, where ¢, is defined by equation 9,
because 64 > d, by Claim 15. Part 1 follows immediately from Claim 2 and Proposition 17.
For K < K3} 5p the manufacturer’s expected sales with either a non-exclusive dealer or an
exclusive dealer is F (x)4g (b3) (since b}; = b3). The variance of sales is equal to V' (x) in this
case. So the manufacturer’s profits are the same under both scenarios. This proves part 2
of the proposition. For the exclusive dealer we have already shown that when K < K7, the
expected sales is F () + g (b3). Since the derivative of the expected sales is negative in this
region the expected sales for the manufacturer is lower than F (z) + g (bf;,) = E (x) + g (b3).
This proves part 3 of the proposition. =

Claim 19. First we show that b3, decreases, b}, increases, and b}, increases as A increases.

(%12”32) (b31;b32) B
We know that ————% =p+ A and ———+% = p. Now suppose we increase A to A.
g'(v%) 9'(b5)
Further, suppose 03, changes to bss such that b5, < bsa. This implies ¢’ (bs2) < ¢’ (b5,). If

b3, changes to bgl} t&en we have the following possibilities. Suppose b3; > b5;. Then 1’31%
( 31 32)

increases and g(b—2> > p leading to a contradiction. Now suppose bs; < b3, which implies
32

b31+b32
"(bgy) > ¢ (b%,). If 31+ 32 also increases or remains the same then we have c(5) >

g g (031 p (b ) p

32

c/(b31;b32)
g'(b31)
leading to a contradiction. So bsy # b%,. Suppose b, = bsa. Suppose bg; < b3, implying

baq+b
C/( 3142r 32)

g’ (b31)

leading to a contradiction. On the other hand if b31;b32 < b;’l;bj";? then <p+A

< p + A which leads to a contradiction. Hence, bs; > b3;. DBut this in turn
C/(’J31+b32)

implies that T;) > p which leads to a contradiction. Hence b3, # bss. The only

possibility is b3y < b3,. Since b3, decreases it must be the case that b3, increases with

A. Since :'&3 =p+ A and ;—i is an increasing function b}; must also increase with A.
Given that conditions C1 and C2 hold, consider an effort function g such that g (y) = y°,
0 < a < 1. We define the gap q (A) = ¢y —co = g (b%;) — g (b5;) +€4— 2. We now show the
following: 1) b3, increases at a faster rate than b}, 2) There exists a w > 0 such that, for all
a€[l—logy (14+w), 1), g(bs)—g(b;) increases with A, and 3) If g (b3,) — g (b};) increases
with A then ¢ (A) increases with A until 5 > 0. Further, J, decreases with A. Notice

37



o [ bA1tb3o o
that gl(fi)) =p+A = ;El;l%_ Equating the derivative on both sides we get ﬁ
31 41 9 \ba1
% % % db (b3 by, +b% X b3, +b%y \1db
o (81 < (bh) = 9" (b5 ¢ (b)) = sy (£G0) rtistiny — g o) (it 20+
31
1 1 (b3, +b3, dbsz 3 3 _db§2 1
> 7 () (=1522) 2. Since b3, decreases as A increases, i.e. -2 < 0, we must have SO

% * * « 7 db} g'(b5 b%, +b% « bl b5y \1 db3
o () (i) — o (bi) ()] 9 < ot (50 (gt — g o) (Mgt 4.

s implies [©0i) g0 () angy (B (o) (R, any -
This implies [9’(1711) S on)? ] T <[ I TN ] Z2. Notice that

the terms in brackets, on both sides of the inequality, are strictly positive. On further

simplification we get

L ) oot ) [20) _ o'0m)
7 g (i) g (v3)" B g(bn) | () o(oh)
d;il C//<b§1;b§2) g//(bgl) ’

2 gl(bgl) B g (b§1)2 gl(bgl)
) —m )
i (55) )
Since %1 < % < by < b%, + b5, we have h (b};) > lh( 31+b32> (by C1). Furthermore

m (b5y) < m (bly) < 0. Thus, h (b)) — m (by) > h (%) —m(by) > 0. So L > i
This proves the first part. Observe that as long as b3, = b3, > 0 the effort levels b3, > b}, >

* *
db3 db3

( 31‘“’32 ) o (b§1‘§b§2 ) o
2 c

%1. We know that 52- > 1. Solet 42~ =1+ w where w > 0. Since g (z) = 2%, ¢’ (z) =
dA dA
/ P 11—«
az@~V. Therefore, for £ < y < z, we must have z,gg = ga_i — <§> < 21 Thus,
Z,EZ?; <217 If a =1 —1log, (1 + w) + d, then for some log, (1 +w) > § > 0 we must have
31
db3 (1%
ology (14+w)—5 _ 1+_5w < 14w. Thisimplies, for a € [1—log, (1 +w), 1), dgﬂ% > Z’EI;—;;WhiCh fur-
dA

ther implies that - Zl g (b5)— d;zl g (b3;) > 0. Hence g (b%;)—g (b};) increases with A as long
as b3, = b3, > 0. This proves the second part. Using b3, = b3,, b5, = b3, and rearranging
the terms we write the gap as q (A) = X [plg (b5) — g (b11)] + (p+ A)[g (05;) — g (03)]] +
Zle(byy) + c(by) — 2c ( 21+b31) Let us define the sum of terms in the bracket as A.
Therefore q (A) = QKA. Observe that the gap is increasing if A’A > A.

db® dabi bx. + b* db%
/ ) by, [0y 1 03y /s 31
A= dA g’ (b51) dAC < 5 )+<p+A)g(b31)_dA

dbs / by, + b ! (1% dbj ! (1% b} * *
— dglc ( 2l 5 31) —(p+A)g (bi) d_gl +c (b11) d_gl +9(b31) — g (bi)

=g (bgl) —g(by)
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So the gap is increasing only if A g (b%,) — g (b5,)] > A, i.e. pg(b]y) —c(byy) — [pg(b5)
— c(%)] > pg(by) — c(%) — [pg(b3) — c(b;)]. At A = 0 both sides of the
inequality are the same. If we show that for every A > 0 the derivative of the left hand side
is strictly greater than the derivative for the right hand side then the inequality holds and

the claim is proved. The derivative of the left hand side is
dL . b5, + b3 dbvy, dby
PN 2C< > )(dA+dA
L (W) (dby _dby
2 2 dA  dA
and the derivative of the right hand side is

dR by AUy 1, (05 05\ (dby  d by
da =~ B) g ) - 50 5 dA TdA

d b, d b d b d by
—A g (bs) o T+ A) g (b)) 0 — ¢ () o A g (05)
iA dA dA dA

_ 1 / b;1+b31 db:;;l d b;l d b;l * d bZI
_26( 2 in " aa ) A\ Ty — e ) Ty

So 4L > 4B only if ¢ (b3,) Cilbil — g (b%) ddbzl > 0, i.e. g(b) — g (b)) is an increasing
function. So, 2% > 4% which implies that ¢ (A) is increasing as long as d, > 0. It is easy to
show that AL&2te, = Ag' (b3,) Cilbgl So 422 = ¢ (b,) ddbil —2. Hence 2% = —2 < 0. Sod,

decreases as A increases and eventually may reach 0. This proves the third part. Together,
this implies that if conditions C1 and C2, hold, and the effort function, g, is such that g (b%;)
— g (b};) increases with A, then increasing A expands the range (¢(A)) over which the dealer
changes effort level based on the market signals of the other manufacturer. This proves the
first part of the claim. Next, we analyze the situation when both the manufacturers offer
a different per unit payment on exceeding the threshold. Suppose manufacturer 1 offers
an additional payment of A; on crossing the threshold and the other manufacturer offers
As on crossing the threshold. Under these conditions the e’s change accordingly: ¢, = ALZ
plo(b1a) — 9(63)) + (pg(bia) — 9(B3))+ 2 M) — 9 (2], e = 2 [pg(by) —
9(5,)) + Pla(bi) — g(bi) + 2 o(tinstiay — 2 o(*hE¥ia)) oy = L[(p+ AL)(g(b3,) — g(b5))

+ p(g(b3) — g(biz)) + 2 h 42) 2 o B 32)]7 and g4 = %[p(g(bm) —g(by)) + (p +
Ag)(g(b5y) — g(bsy)) + 2 ¢ 41+b42) -2 c(%)] In this case it is easy to verify that ﬁ—f
= Z :IZ Eb;’l; Z Egi;; = gijgf. If manufacturer 2 increases A, then the gap for manufacturer

1 increases. At the same time ¢; decreases. As a result manufacturer 1 will experience

sales fluctuations for wider range of market signals. At the same time the range over

39



which manufacturer 2 experiences fluctuations decreases. Furthermore, the fluctuations are
experienced at lower values of x; than before. This proves the second part of the Claim. m
Claim 20. We show the steps to prove the first inequality. The remaining inequalities can

be proved using similar steps and convexity arguments. Notice that

Mg — T =p (g(blle) . g(b21)) +p (g(blze) _ g(b22)) — 2c ( 1 : 2 ) + 2¢ ( 21 : 22)
— Afzy +g(bp) — K).

We know that g(b) — g(b3;) < g (b3;) (b — b%,), g(bk) — g(b3,) < g (b3) (b5 — b3,), and
. (b;1;b§2> . (bie ;b’;) < <b§1;b§2> (bzlgb;2 _ e ;rblze > Hence
g — e < pg/(b§1) (ble - b;) —|—pg/(b;2) (bl2€ - bSZ)
b5 +b * * e e *
( 2 ) b21+b22_b11 _blz)_A($2+9(b22)_K)
=Py (bzl) ble 531) (p+A)g I )(ble b§2)
b, + b b,
( o1 T ) ble _631 < 21 1+ ) ble _ b;2)
— Az + g(b§2 K) - Ag (b;2> ble 632)
= A (2 + g(b3) + o (b) (o —b3) — K) <0

This proves that I, > Il g. Similarly, by symmetry we must have I, > Ilg;. To prove
the last part let us suppose D > Aey.Then

Hpg — Ui =p (9(b3) — +p ( ) 9(bis))

()

+ A (zg + g(bsy) — K) :—A82+D+A(x2+g(b22) K)

So ;g —1y, >0 for xg > K — g(bl,). m
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