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Abstract

In this paper we analyze the impact of stair-step incentive schemes, commonly used
in the automotive industry, on both expected sales and sales variability. We model the
e¤ect of stair-step incentives in two speci�c scenarios: an exclusive dealership selling
cars for only one manufacturer and a non-exclusive dealership selling cars for multiple
manufacturers. For an exclusive dealer we show that appropriate stair-step incentives,
with a positive bonus on crossing the threshold, not only increase the expected sales,
but more importantly, decrease the coe¢ cient of variation of sales. We show that if the
manufacturer associates a positive cost with sales variance, a stair-step incentive, with
a positive bonus, is superior to the scheme without a bonus. We then show that manu-
facturers continuing to o¤er stair-step incentives to non-exclusive dealers experience an
increase in variance and a decrease in pro�ts. This implies that when manufacturers
must compete for dealer e¤ort, stair-step incentives can hurt manufacturers.

1. Introduction

In this paper we study the impact of two phenomenon, that are observed in the automotive

industry, on the variance of sales. We focus on the variance because most recent literature
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has assumed the �rm to be risk neutral and thus ignored variance. In this paper we take

the position that manufacturing and distribution costs increase with sales variability. Thus,

both the expected value and the variance of sales a¤ect the manufacturer�s pro�ts.

We consider the following stair-step incentive that is commonly used in the automotive

industry (such incentives have been used by Daimler Chrysler and Nissan among others. This

incentive structure is also used in several other industries where a principal sells through an

agent.): The dealer is paid an additional amount per unit when sales exceed a threshold

value; additionally, a �xed bonus may also be o¤ered if sales exceed the threshold.

The goal of this paper is to understand how stair-step incentives and dealer structure

(exclusive or non-exclusive) a¤ect the e¤ort exerted by dealers and the resulting sales and

variance of sales. We do not focus on what the optimal incentive should be, but on the

impact of an incentive structure that is commonly observed in the automotive industry.

This is in the spirit of the study of "turn-and-earn" in the automotive industry by Cachon

and Lariviere (1999).

The Chrysler experience (St. Louis Post-Dispatch, 2001) motivated our study because

a change in incentives was followed by a �uctuation in sales that exceeded the average

�uctutation for the industry as a whole. Under the stair-step incentive plan, Chrysler gave

dealers cash based on the percent of a monthly vehicle sales target met. A dealer got no

additional cash for sales below 75% of the sales target, $150 per vehicle for sales between

75.1% and 99.9% of the sales target, $250 per vehicle for sales between 100% and 109.9%,

and $500 per vehicle for reaching 110% of the sales target. The downturn in the automobile

sector had an undesired e¤ect. Chrysler�s sales fell 20% when the industry average fall was

between 8 to 12 %. Clearly, Chrysler observed a higher variability in sales than the industry.

This paper o¤ers an explanation for this increase in variability observed that is linked to

stair-step incentives and the fact that many dealers have become non-exclusive and sell cars

for multiple manufacturers. Similar to Chen (2000), Taylor (2002), Krishnan et al (2004),

and Cachon and Lariviere (2005) we consider �nal sales to be a¤ected by a market signal

and dealer e¤ort. In our paper we assume that the market signal is not common knowledge

but is only visible to the dealer. The dealer then makes his e¤ort decision after observing

the market signal based on the incentive o¤ered. We investigate how stair-step incentives

and dealer structure (exclusive or non-exclusive) a¤ect the e¤ort decision by the dealer. This

allows us to understand how stair-step incentives and dealer structure a¤ect the mean and

variance of manufacturer�s sales.
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The contributions of this paper are twofold. First, for an exclusive dealer we show

that appropriate stair-step incentives, with a �xed bonus on crossing the threshold, can

decrease the variance as well as the coe¢ cient of variation of sales. Next, we prove that if

the manufacturer associates a positive cost with sales variance, a stair-step incentive, with

a bonus payment, is superior to the scheme without a positive bonus. For a non-exclusive

dealer, however, we show that stair-step incentives reduce the variability of sales for the dealer

but increase the same for each manufacturer under reasonable conditions. Speci�cally, we

show that for a given market signal for a manufacturer, a non-exclusive may exert di¤erent

e¤orts depending on the signal for the second manufacturer. Thus, the presence of stair-step

incentives and non-exclusive dealers helps to partially explain the higher variability in sales

observed by Chrysler.

The rest of the paper is organized as follows. Section 2 provides a brief literature

review. Section 3 presents the basic models and related assumptions for the exclusive and

non-exclusive dealer scenarios. In Section 4 we identify the optimal e¤ort exerted by an

exclusive dealer and characterize the expected sales and variance of sales functions with and

without bonus payments. The main result for the manufacturer�s problem is highlighted

in Section 4.2, where we show that the providing a positive bonus reduces the coe¢ cient of

sales variation and reduces the cost associated with sales variance. We proceed to discuss

the non-exclusive dealer�s model in Section 5 and in Section 5.1 we show how dealers bene�t

from non-exclusivity. In Section 5.2 we analyze the e¤ect of incentive parameters on the sales

variance and coe¢ cient of variation for the dealer and manufacturer. We compare the optimal

threshold for a manufacturer under both scenarios, exclusive dealer and non-exclusive dealer,

and show that under reasonable conditions the optimal threshold is lower in the non-exclusive

dealer scenario. This implies that the manufacturer�s pro�ts decrease when dealers become

non-exclusive; especially when a manufacturer has a high cost of variation. We provide a

numerical example to validate our �ndings in Section 6. Finally, we conclude the paper

in Section 7. Proofs for some of the important propositions and claims are provided in

Appendix A.

2. Literature Review

Related research can be broadly classi�ed into three areas: economics, marketing, and

marketing�operations interface. In the economics domain, seminal work by Harris and Ra-

viv (1979) and Holmström (1979) addresses the issue of information asymmetry between the
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principal and the agent. In particular, Holmström shows that any additional information

about the agent�s action (e¤ort) can be used to design better contracts for both entities.

In the marketing literature, Farley (1964) laid the analytic foundation with determinis-

tic demand functions. Weinberg (1975) shows that when salespeople are paid a commission

based on gross margin and are allowed to control prices, they set prices to maximize their own

income and the company pro�ts simultaneously. Other references, which assume determin-

istic sales response functions, include Weinberg (1978) and Srinivasan (1981). Chowdhury

(1993) empirically tests the motivational function of quotas. The results indicate that as

quota levels increase the e¤ort expended increases only up to a certain point, beyond which

any increase in the quota level decreases the e¤ort expended. Basu et al. (1985) were the

�rst to apply the agency theory framework to characterize optimal compensation. They

model compensation contracts as a Stackelberg game where both the �rm (principal) and

the agent (salesperson) are symmetrically informed about the sales response function. The

risk-neutral �rm declares a compensation plan and the agent decides on the e¤ort level which

in�uences the �nal sales level. Based on the response of the salesperson, to a given com-

pensation contract, the �rm chooses a compensation plan which maximizes its pro�ts. The

moral hazard problem arises because the relationship between e¤ort and sales is stochas-

tic. The salesperson does not in�uence costs and has no authority to set prices. Lal and

Staelin (1986) extend this by presenting an analysis that relaxes the symmetric information

assumption. Rao (1990) provides an alternate approach to the problem by analyzing the

issue using a self-selection framework with a heterogeneous salesforce, wherein the salesper-

son picks a commission level and a quota by maximizing a utility function. Holmström and

Milgrom (1987) show that, under certain assumptions, linear compensation schemes devel-

oped earlier can indeed be optimal. Lal and Srinivasan (1993) use this framework to model

salesforce compensation and gain some interesting insights into single-product and multi-

product salesforce compensation. They apply the Holmström Milgrom model and show that

the commission income goes up in e¤ectiveness of e¤ort functions. All these papers have pri-

marily focussed on the agency theory and a few studies, such as Coughlan and Narasimhan

(1992) and John and Weitz (1989), have found empirical evidence to support this theory.

Coughlan and Sen (1989) and Coughlan (1993) provide a comprehensive review on studies in

marketing literature. Bruce et al (2004) study a two period model, with trade promotions

(incentives) for durable goods, where an active secondary market (e.g. used cars) is present.

They study an exclusive dealer setting.
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Several recent papers in Operations Management have used agency models to study the

marketing-operations interface. The in�uential paper by Porteus and Whang (1991) stud-

ied coordination problems between one manufacturing manager (MM) and several product

managers (PM) where the PMs make sales e¤orts while the MM makes e¤orts for capacity

realization and decides inventory levels for di¤erent products. They develop incentive plans

that induce the managers to act in such a way that owner of the �rm can attain maximum

possible returns. Plambeck and Zenios (2000) develop a dynamic principal-agent model and

identify an incentive-payment scheme that aligns the objectives of the owner and manager.

Chen (2000) (2005) considers the problem of salesforce compensation by considering the im-

pact of salesforce incentives on a �rm�s production inventory costs. Taylor (2002) considers

the problems of coordinating a supply chain when the dealer exerts a sales e¤ort to a¤ect

total sales. He assumes that the dealer�s e¤ort decision is made before market demand is

realized. Krishnan et al. (2004) discuss the issue of contract-induced moral hazard arising

when a manufacturer o¤ers a contract to coordinate the supply chain and the dealer exerts

a promotional e¤ort to increase sales. Their paper assumes that the dealer�s e¤ort decision

is made after observing initial sales. Our paper makes a similar assumption. Cachon and

Lariviere (2005) also discuss the situation when revenue sharing contracts do not coordinate

a supply chain if a dealer exerts e¤ort to increase sales. They develop a variation on revenue

sharing for this setting. Overall, this line of literature mainly focuses on maximizing the

manufacturer�s pro�ts when they are assumed to be risk neutral. Our focus, however, is on

understanding the impact on the variance of sales.

3. Model Basics and Assumptions

We consider sales to be the sum of a stochastic market signal and a function of the dealer

e¤ort. The manufacturer�s total sales, s, are determined by the dealer�s selling e¤ort (b)

and the market signal (x) by the following additive form: s = x+ g (b). The market signal

is observed by the dealer but not the manufacturer. The manufacturer only observes the

total sales s. The dealer bases the e¤ort decision on the observed signal and the incentive

o¤ered by the manufacturer. We assume that the dealer observes the market signal x before

he makes his e¤ort decision b. As commonly assumed in the literature (see Chen, 2000), the

growth of sales g (b) with respect to the dealer e¤ort b is concave and the cost of the e¤ort

c (b) is convex and increasing. The input market signal, x; follows a continuous and twice

di¤erential cumulative distribution function, F , with a bounded probability density function
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f . We also assume that probability distributions are log-concave, f (y) = 0 for all y < 0,

f(y) > 0 for y > 0, and F (0) = 0.

The stair-step incentive is organized as follows: The dealer makes a standard margin

(excluding cost of e¤ort) p for every unit sold up to the threshold K. For every additional

unit sold above, K, the manufacturer pays an additional � to the dealer. Thus, the dealer�s

margin (excluding the cost of e¤ort) increases to p+� for every unit sold above the threshold

K. In addition, the manufacturer o¤ers a �xed bonus of D � 0, if sales reach the threshold
of K. We assume that the distribution of the market signal is independent of the incentive

parameters K, D and �. We analyze the impact of incentives on sales variability under

two speci�c scenarios: an exclusive dealership scenario where a dealer sells product for a

single manufacturer and a non-exclusive dealership scenario where the dealer sells products

for two manufacturers.

In Section 4, we study the sale of a manufacturer�s product through an exclusive dealer.

We study the dealer�s optimal response to a given incentive. This allows us to characterize

how the expected value and variance of sales changes with the threshold K and bonus D.

We show that, for certain values of K, the introduction of a positive bonus, D, increases

the manufacturer�s expected sales and decreases the variance. Our analysis shows that a

manufacturer, whose costs increase with sales variability, can improve pro�ts by o¤ering a

positive bonus D to an exclusive dealer.

In Section 5, we study the case when two manufacturers sell products through a non-

exclusive dealer. Each manufacturer o¤ers a stair-step incentive to the dealer. The dealer

observes market signals xi, i = 1; 2, and then decides on the e¤ort levels bi, i = 1; 2,

across the two manufacturers. Our analysis assumes the market signals across the two

manufacturers to be independent. The sales for each manufacturer are si = xi+ g (bi). The

cost of the e¤ort is assumed to be 2 c
�
b1+b2
2

�
. It is reasonable to assume that the dealer�s

cost is a function of the total e¤ort because common resources are used by the dealer to spur

sales across all the products (cars) they sell. Our results indicate that manufacturers o¤ering

stair-step incentives observe higher sales variability with non-exclusive dealers compared to

exclusive dealers. Numerical simulations indicate that in case of non-exclusive dealers, a

positive bonus may not be as helpful in reducing the manufacturer�s sales variance.
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4. The Exclusive Dealer

Our �rst objective is to identify an exclusive dealer�s optimal response when facing a stair

step incentive. Assume that an exclusive dealer exerts e¤ort b given an input market signal

x. Given a stair-step incentive, the dealer makes one of the following three pro�t levels

depending on the sales x+ g (b).

�1 (x; b) = p (x+ g(b))� c(b) if x+ g (b) < K;

�2 (x; b) = (p+�) (x+ g(b)) +D ��K � c(b) if x+ g (b) � K, and

�K (x; b) = p K +D � c(b) where x+ g(b) = K: (1)

�1 is the pro�t realized when the total sale is less that K, �2 is the pro�t when the sale

exceeds K, and �K is the dealer�s pro�t when the sale equals K. �1; �2; and �K are

concave functions with respect to b because g is concave and c is convex. Let b�1 and b
�
2 be

the optimal e¤orts that maximize �1 and �2 respectively. Let BK represent the set of e¤ort

levels de�ned by BK �
�
bK : bK = g�1(K � x)

	
. First order KKT optimality conditions

imply that b�1 and b
�
2 must satisfy the following conditions: g

0(b�1) =
c0(b�1)
p
, g0(b�2) =

c0(b�2)
p+�

.

The dealer compares the pro�ts on exerting e¤ort b�1, b
�
2, and b

K and exerts the e¤ort that

results in the highest pro�t. With a slight abuse of notation we can represent the optimal

e¤ort chosen by the exclusive dealer as

b�(x) = arg max
fb�1; b�2; bKg

�
�1 (x; b

�
1) ; �2 (x; b

�
2) ; �K

�
x; bK

�	
(2)

Notice that �1 (x; b�1) and �2 (x; b
�
2) are linear in x and �K

�
x; bK

�
is a concave function

of x: The slope of �2 (x; b�2) is greater than that of �1 (x; b
�
1). The plot to the left, in

Figure 1, shows the optimal-e¤ort pro�ts, as a function of x, when K > g (b�2) and D is

such that �1 (0; b�1) > �2 (0; b
�
2). For low market signals, the dealer exerts e¤ort b�1 and

resulting sales are below K. At some point it is optimal for the dealer to exert enough

e¤ort bK to raise the sales to K. For higher market signals, the dealer exerts e¤ort b�2 and

the resulting sales exceed K. The two cuto¤ points, �x1 and �x2, represent the level of the

market signals at which the dealer switches optimal e¤ort levels. For market signals below

�x1, the dealer exerts e¤ort that keeps sales below K. Between �x1 and �x2, the dealer exerts

e¤ort such that sales are exactly K. For a market signal above �x2, the dealer exerts e¤ort

such that sales exceed K.
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Figure 1: Exclusive dealer optimal pro�t functions when D > 0 and D = 0.

When the bonus D = 0, �K is now equivalent to �2 and can be eliminated. As shown

in the second plot in Figure (1), the only transition point for the dealer�s e¤ort is denoted by

�x. The exclusive dealer�s problem can be expressed as an equivalent non-linear optimization

problem (EDP ).

EDP : min �

g1 : �1(x; b1)�� � 0 (u1) (3)

g2 : �2(x; b2)�� � 0 (u2) (4)

g3 : x+ g(x; bK)�K = 0 (u3) (5)

g4 : �3(x; b
K)�� � 0 (u4) (6)

b1; b2; b
K ; � 2 R+ (7)

For a given x and b, �1(x; b) > �2(x; b) when x+ g(b) < K and �2(x; b) > �1(x; b) when

x + g(b) > K. Further, if D > 0 and x + g(b) = K, then �3(x; b) = �2(x; b) > �1(x; b).

Constraint (5) models the fact that the dealer may put a di¤erent e¤ort, bK , if the bonus D

is strictly positive, so that the threshold sales is just achieved. The values u1; u2; u3;and u4,

shown in brackets next to the constraints (3), (4), (5), and (6), are the lagrangian multipliers.

Claim 1 characterizes the optimal cuto¤ points, where the dealer changes e¤ort levels, when

the manufacturer o¤ers a positive bonus D > 0. Recall that the e¤ort levels b�1 and b
�
2 are

as follows:

b�1 : g
0(b�1) =

c0(b�1)

p
and b�2 : g

0(b�2) =
c0(b�2)

p+�
(8)
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Claim 1 When D > 0 the exclusive dealer�s optimal e¤ort levels are

b� =

8<:
b�1 : 0 � x < �x1
bK : �x1 � x < �x2 and bK = g�1(K � x)
b�2 : �x2 � x

where the cuto¤ �x2 = K � g(b�2), and the cuto¤ �x1 = K � 
x. 
x is de�ned by p 
x �
c[g�1(
x)] +D = p g(b

�
1)� c(b�1).

Proof. The proof uses the �rst order optimality conditions. The cuto¤s are can be

calculated using the dominance of one pro�t function over the other. See Appendix A for

the proof.

Claim 2 characterizes the optimal cuto¤ point when the bonus D = 0.

Claim 2 When D = 0, the exclusive dealer�s optimal e¤orts are b�1, when 0 � x < �x, and
b�2 when x � �x. The cuto¤ �x = K � g(b�2) + 1

�
([p g(b�1) � c(b�1)] � [p g(b�2) � c(b�2)]).

Proof. The proof uses the �rst order optimality conditions. See Appendix A for a detailed

proof.

De�ne

"x �
1

�
([p g(b�1)� c(b�1)]� [p g(b�2)� c(b�2)]) (9)

Using the fact that c
0

g0 is an increasing function it is easy to show that b
�
1 < b

�
2. Further, if

D = 0 then using simple convexity arguments it can be shown that g0(b�2)(b
�
2� b�1) � "x � 0 .

Claims 1 and 2 imply that if total sales are below K, it is always more pro�table to

exert the lower e¤ort b�1 rather than the higher e¤ort level b
�
2. Claims 1 and 2 are illustrated

in Figure 2. The plot to the left in Figure 2, shows the optimal e¤ort levels when D = 0

for di¤erent input market signals. If the market signal x is below �x, the dealer exerts an

e¤ort, b�1, with resulting sales below the threshold limit, K. If the market signal is at least

�x, the dealer exerts an higher e¤ort, b�2, and the resulting sales exceed K. The plot to the

right in Figure 2 shows the optimal e¤ort levels when D > 0. For market signals below �x1,

the dealer spends an e¤ort, b�1, and the resulting sales are less than K. When the market

signal x is such that �x1 � x < �x2, the dealer exerts an e¤ort, bK = g�1(K � x), to push
sales to the bonus limit K and capture the bonus payment D. For all market signals x that

are at least �x2, the dealer exerts an e¤ort, b�2 with resulting sales above K. The important

fact to note is that the introduction of a bonus D > 0 induces the dealer to exert additional

e¤ort to reach the threshold K when market signals are between �x1 and �x2.
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Figure 2: Optimal e¤ort levels for an exclusive dealer when D = 0 and D > 0.

Remark 3 When the bonus is small, i.e. D < � "x, the dealer behaves as if D = 0 ( has

only two optimal e¤ort levels, b�1 and b
�
2).

This remark follows from the values of �x1 and �x2 in Claim 1. When the bonus D is not

large enough, �x1 > �x2 in Claim 1 and there is no region where the dealer spends e¤ort bK

to just reach the threshold K.

Having characterized the exclusive dealer�s optimal response, we next compute the ex-

pected sales and variance in Section 4.1.

4.1 Impact of D and K on the Dealer�s Sales

Our goal in this section is to understand how the mean and variance of sales is a¤ected by

the threshold K and bonus D in the stair-step incentive. We �rst compute the expected

sales and variance when D > 0. The expected sales, E (s), can be expressed as

E(s) =

Z �x1

0

(x+ g(b�1)) f(x) dx+

Z �x2

�x1

K f(x) dx+

Z 1

�x2

(x+ g(b�2)) f(x) dx

= E(x) + g(b�2) + F (�x1) [g(b
�
1)� 
x] + (�x2 � �x1)

+

Z 1

�x2

(x� �x2) f(x) dx�
Z 1

�x1

(x� �x1) f(x) dx (10)

The variance of sales is given by V (s) = E (s2)� [E (s)]2. Before we show how E (s) and
V (s) vary with K for log-concave distributions in Claim 4 we de�ne the function t (K) �
F(K�g(b�2))�F (K�
x)

f(K�
x) .

Claim 4 If K � 
x, f is log-concave and bounded, and � = (
x � g (b�1)) > 1 then

1. 9 a K�
1 � 
x such that and

@E(s)
@K
� 0 8 
x � K � K�

1 and
@V (s)
@K
� 0 8 K � K�

1 .

If � < t (
x) then t (K�
1) = �; Otherwise, K

�
1 = 
x, and
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2. V (s) is an inverted-U shaped function; i.e. 9 aK�
2 such that

@V (s)
@K
� 0 8 
x � K � K�

2

and @V (s)
@K
� 0 8 K � K�

2 .

Proof. See Appendix A.

The condition on � is not very restrictive. It is satis�ed for reasonable values of incentive

parameters for uniform and normal distributions.

In Proposition 5 we characterize the expected sales and variance of sales relative to E (x)

and V (x) for di¤erent values of K when D > 0. We show the existence of threshold values

for which the variance of sales is less than the variance of the market signal.

Proposition 5 If D > 0, f is log-concave and bounded, and � = (
x � g (b�1)) > 1 then

1. E (s)� E (x) =

8<:
g (b�2) if 0 � K � g (b�2)
monotonically increases with K if g (b�2) � K � K�

1

monotonically decreases with K if K�
1 < K

2. V (s)� V (x) =

8>><>>:
0 if 0 � K � g (b�2)
monotonically decreases with K if g (b�2) � K � 
x
inverted-U shaped with
maximum above V (x)

if 
x < K

3. E (s) is maximized and V (s) is minimized at K = 
x

Proof. See Appendix A.

From Proposition 5 observe that if K is between g (b�2) and 
x, the variance of sales is

less than the variance of the market signal. In other words, the manufacturer can select a

thresholdK and a bonusD > 0, such that the exclusive dealer �nds it optimal to absorb some

of the market variance by adjusting e¤ort, thus lowering sales variance for the manufacturer.

In Proposition 6, we characterize the expected sales, E (s), and variance of sales, V (s),

for di¤erent values of K when D = 0. We show that in the absence of a positive bonus D,

the sales variance is never below the variance of the market signal.

Proposition 6 If D = 0, f is log-concave and bounded, and � = (
x � g (b�1)) > 1 then

1. E (s)� E (x) =
�
g (b�2) if 0 � K � g (b�2)� "x
monotonically decreases with K if g (b�2)� "x � K

2. V (s)� V (x) =

8<:
0 if 0 � K � g (b�2)� "x
inverted-U shaped with
maximum above V (x)

if g (b�2)� "x � K
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Figure 3: Expected pro�t and variance functions for an exclusive dealer when D = 0 and
D > 0.

3. The expected sales is maximized and variance is minimized for K � g (b�2)� "x

Proof. See Appendix A.

Figure 3 summarizes the results of Propositions (5) and (6). As shown in the plot to

the left in Figure 3, when D = 0, expected sale is constant until K � g (b�2)� "x and starts
decreasing (though never falls below the expected market signal E (x)) whenK � g (b�2)�"x:
For D = 0 the variance of sales curve is never below the variance of the market signal and is

higher than of the input market signal for values ofK beyond g (b�2)�"x. The plot to the right
shows that when D > 0 the expected sales are maximized at K = K�

1and variance minimized

atK = 
x. The variance of sales is below that of the market signal at this point. This implies

that, with exclusive dealers, the manufacturer can o¤er a positive bonus, D > 0, and choose

an appropriate threshold, K, such that the dealer exerts e¤ort levels that increase expected

sales and reduce variance below the market signal. The reduction in variance is driven by

the fact that the presence of a positive bonus D > 0 leads the dealer to exert e¤ort such that

sales are raised exactly to K over a range of market signals. In other words, with a positive

bonus, an exclusive dealer reduces the variance of sales for the manufacturer by varying his

e¤ort to absorb some of the market signal variance. For a manufacturer with a high cost

of operational sales variance, this fact is signi�cant while designing an appropriate stair-

step incentive plan. We discuss how the manufacturer can select an appropriate incentive

structure in Section 4.2.
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4.2 How Should a Manufacturer Structure Stair-Step Incentives
for an Exclusive Dealer

In Section 4.1 we described the impact of incentive parameters on the expected sales and

variance of sales. In this section we consider the manufacturer�s problem of designing the

stair-step incentive and describe the structure of such incentives that maximizes manufac-

turer pro�ts when the manufacturer�s costs increase with sales variance. Our main result

shows that if the manufacturer has a high operational cost associated with sales variance,

it is preferable for the manufacturer to o¤er a positive bonus that encourages the exclusive

dealer exert e¤ort in a way that reduces sales variance.

Assume that the manufacturer�s margin per unit is pm when the dealer�s margin is p per

unit, and the manufacturer�s cost of variance is v. Given a sales variance of V and market

signal x the manufacturer�s pro�t is evaluated as

� = f pm (x+ g (b))� v V if x+ g (b) < K
pmK �D + (pm ��) (x+ g (b)�K)� v V if x+ g (b) � K (11)

Using Propositions 5 and 6 we can thus structure the manufacturer�s optimal incentive for

an exclusive dealer.

Proposition 7 When designing a stair-step incentive with D = 0, the manufacturer maxi-

mizes his pro�ts either by setting K = g (b�2) � "x, where b�2 is de�ned by equation 8 and "x
is de�ned by equation 9, or by setting K to be extremely large such that F (�x)! 1; i.e. the

market signal is guaranteed to be below the cuto¤ �x.

Proof. The proof uses Proposition 6. See Appendix A for a detailed proof.

Next, we characterize the optimal stair-step incentive for the case when D > 0.

Proposition 8 When designing a stair-step incentive with D > 0, the manufacturer maxi-

mizes pro�ts by either setting K � 
x, where 
x is de�ned in Claim 1, or by setting a large

enough K = g (b�2).

Proof. The proof uses Proposition 5. See Appendix A for a detailed proof.

We now show that for a high enough operational cost of variance, the manufacturer is

better o¤ by o¤ering a stair-step incentive with D > 0 compared to the case when D = 0.

Proposition 9 For a high enough value of v the manufacturer can increase pro�ts by setting

a positive bonus payment D > 0.

13



Proof. See Appendix A.

Proposition 9 shows that a manufacturer with a high cost of sales variance is better o¤

o¤ering a stair-step incentive with a positive bonus. The positive bonus encourages the

dealer to exert e¤ort in a way that reduces sales variance. In the next section we show

that as dealers become non-exclusive, manufacturers face a greater sales variance than when

dealers are exclusive.

5. The Non-Exclusive Dealer

In this section, we study the e¤ect of stair-step incentives when the dealer is no longer

exclusive and sells products for multiple manufacturers. In the automotive industry in the

United States, most dealers today are non-exclusive. Auto malls, for example, sell cars from

multiple manufacturers from the same lot. In our model, dealers that sell cars for di¤erent

manufacturers from di¤erent lots are also non-exclusive as long as they can shift e¤ort across

manufacturers. This often occurs in practice because a dealer selling for two manufacturers

is likely to shift advertising e¤ort and cost across the manufacturers depending upon market

conditions. Our goal is to understand how the loss of exclusivity a¤ects sales variance for

manufacturers o¤ering stair-step incentives. Consider two manufacturers (1 and 2) selling

their products (also denoted by index 1 and 2) through a single non-exclusive dealer. We

assume that both manufacturers o¤er similar stair-step incentives, in terms of p, �, D, and

K. While maintaining symmetry simpli�es the analysis and exposition, most of the results

can be extended to the asymmetric case.

The sequence of events is as follows. The dealer observes market signals xi, i = 1; 2,

then decides on the e¤orts, bi, resulting in sales xi+g(bi) for i = 1; 2. Our analysis assumes

the market signals to be independent. The dealer�s cost of e¤ort is based on total e¤ort and

is given by 2 c( b1+b2
2
) which is convex and increasing. Observe that when b1 = b2 the cost

of e¤ort for the non-exclusive dealer is equal to the sum of the cost of e¤orts for the two

exclusive dealers. Next, we study the dealer�s optimal response function when D = 0.

5.1 The Non-Exclusive Dealer�s Problem for D = 0

For D = 0 there are four possible pro�t outcomes for the dealer, �i (i = 1; : : : ; 4) with four

distinct e¤ort levels bki (k = 1; : : : ; 4) for each manufacturer i = 1; 2 (see Table 1). Each

pro�t function, �i in Table 1, is concave in the e¤ort levels bi1 and bi2.
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Pro�t
�1 p(x1 + g(b11)) + p(x2 + g(b12))� 2 c( b11+b122

) : x1 + g (b11) < K, and
x2 + g (b12) < K

�2 p(x1 + g(b21)) + (p+�)(x2 + g(b22)) : x1 + g (b21) < K, and
��K � 2 c( b21+b22

2
) x2 + g (b22) � K

�3 (p+�)(x1 + g(b31)) + p(x2 + g(b32)) : x1 + g (b31) � K, and
��K � 2 c( b31+b32

2
) x2 + g (b32) < K

�4 (p+�)(x1 + g(b41)) + (p+�)(x2 + g(b42)) : x1 + g (b41) � K, and
�2 �K � 2 c( b41+b42

2
) x2 + g (b42) � K

Table 1: The four possible pro�t outcomes for a non-exclusive dealer.

Let b�i1 and b
�
i2 denote the optimal e¤ort levels that maximize the dealer�s pro�t functions

�i (i = 1; : : : ; 4). Observe that the pro�t functions �i(x1; x2; b�i1; b
�
i2), i = 1; : : : ; 4, are a

linear in x1 and x2. The non-exclusive dealer chooses optimal e¤orts such that

(b�i1; b
�
i2) = arg max

i=1;:::;4
f�ig (12)

In order to characterize the optimal e¤ort levels and compute the cuto¤ ranges for x1 and x2

we express the non-exclusive dealer�s problem as an equivalent non-linear pro�t maximization

model. The values in the brackets to the right of the constraints are the corresponding

lagrangian multipliers.

NEDP : min � (13)

g1 : �1(x1; x2; b11; b12)�� � 0 (u1)

g2 : �2(x1; x2; b21; b22)�� � 0 (u2)

g3 : �3(x1; x2; b31; b32)�� � 0 (u3)

g4 : �4(x1; x2; b41; b42)�� � 0 (u4)

We de�ne "1, "2, "3, and "4 as follows:

"1 �
p [g(b�11)� g(b�21)] + p [g(b�12)� g(b�22)] + 2 c(

b�21+b
�
22

2 )� 2 c( b
�
11+b

�
12

2 )

�
(14)

"2 �
p [g(b�11)� g(b�31)] + p [g(b�12)� g(b�32)] + 2 c(

b�31+b
�
32

2 )� 2 c( b
�
11+b

�
12

2 )

�
(15)

"3 �
(p+�) [g(b�31)� g(b�41)] + p [g(b�32)� g(b�42)] + 2 c(

b�41+b
�
42

2 )� 2 c( b
�
31+b

�
32

2 )

�
(16)

"4 �
p [g(b�21)� g(b�41)] + (p+�) [g(b�22)� g(b�42)] + 2 c(

b�41+b
�
42

2 )� 2 c( b
�
21+b

�
22

2 )

�
(17)

Claim 10 summarizes the optimal e¤orts and cuto¤ values for a non-exclusive dealer.
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Claim 10 The non-exclusive dealer exerts the following e¤ort levels to maximize pro�ts

b� =

8>>>>>><>>>>>>:

(b�11; b
�
12) : 0 < x1 < �2 and 0 < x2 < �1

(b�21; b
�
22) : 0 < x1 < �2 and �1 � x2

(b�31; b
�
32) : �2 � x1 < �4 and x2 < x1

(b�21; b
�
22) : �2 � x1 < �4 and x2 > x1

(b�31; b
�
32) : �4 � x1 and 0 < x2 < �3

(b�41; b
�
42) : �4 � x1 and �3 � x2

where the e¤ort levels and cuto¤s satisfy the following conditions:

1. g0 (b�11) = g
0 (b�12) =

c0
�
b�11+b

�
12

2

�
p

;

2. g
0
(b�21) =

c0
�
b�21+b

�
22

2

�
p

; g
0
(b�22) =

c0
�
b�21+b

�
22

2

�
p+�

;

3. g
0
(b�31) =

c0
�
b�31+b

�
32

2

�
p+�

; g
0
(b�32) =

c0
�
b�31+b

�
32

2

�
p

;

4. g0 (b�41) = g
0 (b�42) =

c0
�
b�41+b

�
42

2

�
p+�

;

5. �1 = K � g(b�22) + "1, �2 = K � g(b�31) + "2, �3 = K � g(b�42) + "3, �4 = K � g(b�41) + "4.

Proof. These results are proved using �rst order optimality conditions. The cuto¤s are

computed by �nding the points of intersection of the various pro�t functions. See Appendix

A for a sketch of the proof.

Corollary 11 The following equalities hold: b�11 = b
�
12, b

�
41 = b

�
42, and

g
0
(b�21)

g0 (b�22)
=

g
0
(b�32)

g0 (b�31)
= p+�

p
.

Proof. These relationships follow immediately from Claim 10.

Notice that for our problem the four levels of optimal e¤ort exerted by the non-exclusive

dealer are symmetric across the two manufacturers. That is to say b�31 = b�22, b
�
32 = b�21,

b�11 = b
�
12 and b

�
41 = b

�
42.

Rearranging the terms in equations (14), (15), (16 ), and (17) we get �4 � �2 = �3 � �1.
Figure 4 shows the cuto¤s and optimal dealer e¤orts as the input market signals vary. For

a value of x1 between �2 and �4, the optimal e¤ort exerted by the dealer for manufactuer

1 �uctuates from b�31 to b
�
21depending upon the value of x2. For a market signal x2 > x1,

the dealer exerts a lower e¤ort b�21 for manufacturer 1. For a market signal x2 < x1, the

dealer exerts a higher e¤ort b�31 for manufacturer 1. Unlike the case of the exclusive dealer,
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where each market signal resulted in a speci�c e¤ort by the dealer, the non-exclusive dealer

may exert di¤erent e¤ort levels for the same market signal for a manufacturer. This result

may partially explain the Chrysler experience mentioned at the beginning of the paper.

With non-exclusive dealers and manufacturers that o¤er stair step incentives, Chrysler may

have seen a large drop in sales because their market signal was lower than that of other

manufacturers and dealers shifted their e¤ort away from Chrysler to other manufacturers.
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Figure 4: Optimal e¤ort levels and cuto¤ values for a non-exclusive dealer.

Before comparing the optimal e¤ort levels for the exclusive dealer and non-exclusive

dealer, we compute the bounds on "i (i = 1; : : : ; 4). These bounds can be easily proved

using convexity arguments for the e¤ort and cost functions, and the conditions on the optimal

e¤orts from Claim 10. We summarize these results in Claim 12.

Claim 12 The following inequalities hold for a non-exclusive dealer: 0 � "1 � g0(b�22) (b�22�
b�12), 0 � "2 � g0(b�31)(b�31 � b�11), 0 � "3 � g0(b�42)(b�42 � b�32), and 0 � "4 � g0(b�41)(b�41 � b�21):

Proof. These results are proved using simple convexity arguments. See Appendix A for

technical details.

Corollary 13 The e¤ort levels are nested as follows: b�22 � b�12, b�31 � b�11, b�42 � b�32, and
b�41 � b�21.

Proof. Follows from Claim 12.

These relationships help us compare the e¤ort levels exerted by an exclusive dealer and

a non-exclusive dealer. Suppose an exclusive dealer exerts optimal e¤ort levels b�1 and b
�
2 for

manufacturer 1. If the same dealer becomes non-exclusive to manufacturer 1, the expected

e¤ort levels change to b�i1 (i = 1; : : : ; 4) depending on the market signals (x1and x2). To

understand how this will a¤ect the expected sales and variance of sales, for both the dealer
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and the manufacturers, we need to understand the relationship between these e¤ort levels.

Claim 14 summarizes the nesting relationship between these e¤ort levels.

Claim 14 If � > 0 then the e¤ort levels for an exclusive and non-exclusive dealer are nested

as follows: b�31 > b
�
41 = b

�
2 >

b�31+b
�
21

2
> b�11 = b

�
1 > b

�
21

Proof. The nested relationship is proved using the fact that c
0

g0 is an increasing function and

other convexity arguments. See Appendix A for technical details of the proof.

Claim 15 For any given K the following relationship holds: �4 > �x > �2.

Proof. These results are proved using simple convexity arguments. See Appendix A for

technical details.

Using Claim 15 we show that the non-exclusive dealer�s expected pro�t is strictly greater

than the sum of expected pro�ts of two exclusive dealers.

Proposition 16 When D = 0, and the stair-step incentives are the same, a non-exclusive

dealer�s expected pro�ts are larger than the sum of the expected pro�ts of the two exclusive

dealers.

Proof. The proof uses Claim 15 and the fact that for market signals such that �x > x1

> x2 > �2 the non-exclusive dealer makes more pro�ts by adjusting e¤ort between the

manufacturers. See Appendix A for the detailed proof.

Proposition 16 shows that dealers bene�t from becoming non-exclusive. Next, we analyze

the situation for the manufacturers selling through a non-exclusive dealer in Section 5.2 and

show that dealer non-exclusivity hurts the manufacturer�s.

5.2 Impact of a Non-Exclusive Dealer on a Manufacturer�s Sales
when D = 0

In this section we show that the expected sales of a manufacturer decreases and the variance

increases with an increase in K. We identify values of K when the manufacturer has lower

expected sales and a higher variance of sales with a non-exclusive dealer when compared

to having an exclusive dealer. After identifying the optimal threshold for a non-exclusive

dealer we also characterize the e¤ect of� on the manufacturer�s sales variability. To proceed

with our analysis we de�ne h (b) � c00(b)
c0(b) andm (b) �

g00(b)
g0(b) . Observe that h (b) > 0, m (b) < 0

and are continuous. We also impose the following conditions on h, m, and g.
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C1: h is non-decreasing or h non-increasing such that h (z) > 1
2
h (y) 8 z

2
< y < z

C2: m is non-decreasing

C3: g and � are such that b�31�b�11
b�11� b�21

� 2 and �
p
< 1.

These conditions, imposed on the cost function c and impact of e¤ort function g, are

not very restrictive. Condition C1 is satis�ed by cost functions of the form c (z) = e�z ,

with � > 0, or by polynomial cost functions of the form c (z) = z�, with � > 1. For such

polynomials h (z) = ��1
z
and h(z)

h(y)
= y

z
> 1

2
for all (z; y) such that z

2
< y < z. Impact of

e¤ort functions of the form g (z) = z� with 0 < � < 1 satisfy conditions C2. For these

polynomialsm (z) = � �1
z
. Notice thatm (z) increases with z since it is negative. Condition

C3 implies �
p
+1 <

b�31�b�11
b�11� b�21

which further implies
g0(b�21)
g0(b�31)

<
b�31�b�11
b�11� b�21

. Hence g0 (b�31) (b
�
31 � b�11) �

g0 (b�21) (b
�
11 � b�21).

In Claim 10 we de�ned the e¤ort levels exerted by the non-exclusive dealer for various

input market signals. Since the problem is symmetric the probability that x2 > x1, when

�4 > x1 > �2 and �4 > x2 > �2, is the same as the probability when x1 > x2 in the same

region. The expected sales function, E (s), for the non-exclusive dealer can be written as:

E (s) = E (x1) + F (�2)
2 g (b�11) + [1� F (�2)]F (�2) g (b�21)

+ [F (�4)� F (�2)]F (�2) g (b�31) +
1

2
[F (�4)� F (�2)]2 [g (b�31) + g (b�21)]

+ [F (�4)� F (�2)] [1� F (�4)] g (b�21) + [1� F (�4)]F (�4) g (b�31)

+ [1� F (�4)]2 g (b�41) (18)

Notice the �rst term on the right hand side is simply the expected level of the input signal.

The next two terms are the expected e¤ort exerted when x1 is below �2. The next three

terms correspond to the expected e¤ort when �4 > x1 > �2. Observe that when both

signals are between �4 and �2 we assume that x1 and x2 dominate each other with the same

probability. Finally, the last two terms correspond to the expected e¤ort when x1 > �4.

Proposition 17 identi�es the optimal threshold with a non-exclusive dealer.

Proposition 17 If condition C3 holds, then the optimal K that maximizes a manufacturer�s

pro�t with a non-exclusive dealer is g (b�41)� "4.

Proof. See Appendix A.
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Denote the optimal threshold for a manufacturer selling through a non-exclusive dealer

as K�
NED. Similarly, let K�

ED denote the optimal threshold when the dealer is exclusive

(Proposition 7). Proposition 18 compares the expected sales and variance of sales for

the manufacturer for the cases with exclusive and non-exclusive dealers. The proposition

identi�es values of K for which the manufacturer has lower expected sales and a higher

variance of sales with non-exclusive dealers.

Proposition 18 For a manufacturer selling through a non-exclusive dealer, if condition C3

holds, then

1. The optimal threshold for the non-exclusive dealer is less than the optimal threshold for

the exclusive dealer, i.e. K�
NED < K

�
ED,

2. 8 K such that K � K�
NED the manufacturer�s expected sales, and variance of sales,

are the same as selling through an exclusive dealer,

3. 8 K such that K�
NED < K � K�

ED the manufacturer�s expected sales is lesser than

when the dealer is non-exclusive.

Proof. See Appendix A.

Now consider any K such that K�
NED < K � K�

ED. The non-exclusive dealer exerts 3

e¤ort levels g (b�21), g (b
�
31) and g (b

�
41) depending on the other manufacturer�s market signal

level. Consider two market signals xL1 and x
H
1 for manufacturer 1 such that x

L
1 < x

H
1 . For

any K within the speci�ed region, the expected e¤ort exerted by the non-exclusive dealer

when the market signal for manufacturer 1 is y is

E fb j x1 = yg = F (�4)
�
Pr fx2 > x1 j x1 = yg b�21
+Pr fx2 � x1 j x1 = yg b�31

�
+ (1� F (�4))

�
Pr fx2 > �4 j x1 = yg b�41
+Pr fx2 � �4 j x1 = yg b�31

�
(19)

So the di¤erence, E
�
b j x1 = xH1

	
� E

�
b j x1 = xL1

	
= F (�4) b

�
21

�
Pr
�
x2 > x

H
1 j x1 = xH1

	
� Pr

�
x2 > x

L
1 j x1 = xL1

	�
+ F (�4) b

�
31

�
Pr
�
x2 � xH1 j x1 = xH1

	
� Pr

�
x2 � xL1 j x1 = xL1

	�
> F (�4) b

�
21

�
Pr
�
x2 > x

H
1 j x1 = xH1

	
+ Pr

�
x2 � xH1 j x1 = xH1

	
�Pr

�
x2 > x

L
1 j x1 = xL1

	
� Pr

�
x2 � xL1 j x1 = xL1

	 �
= F (�4) b

�
21

�
1� Pr

�
x2 � xH1 j x1 = xH1

	
+ Pr

�
x2 � xH1 j x1 = xH1

	
�1 + Pr

�
x2 � xL1 j x1 = xL1

	
� Pr

�
x2 � xL1 j x1 = xL1

	 � = 0
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The expected e¤ort exerted by the non-exclusive dealer increases as the manufacturer�s

market signal increases. This implies that expected e¤ort exerted is positively correlated to

the corresponding market signal. Given this fact, we conjecture that the variance of sales for

the manufacturer is larger than V (x) for a non-exclusive dealer. For an exclusive dealer�s

case the variance of sales is simply V (x) in this region (Proposition 6). Hence, it is likely

that the manufacturer�s sales variance increases with a non-exclusive dealer. Computational

experiments in Section 6 validate our conjecture. Computational experiments in Section 6

also show that the manufacturer�s sales variance may be higher with a non-exclusive dealer

even when K � K�
ED. This fact, together with Proposition 18, imply that, under certain

conditions, a manufacturer�s pro�ts will be lower with a non-exclusive dealer if there is high

cost associated with sales variance.

Next, in Claim 19, we characterize the e¤ect of� on the sales variability of a manufacturer

selling through a non-exclusive dealer.

Claim 19 If conditions C1 and C2, hold, and the e¤ort function, g, is such that g (b�31) �
g (b�41) increases with �, then increasing � expands the range over which the dealer changes

e¤ort level based on the market signals of the other manufacturer. Furthermore, if the

two manufacturers o¤er di¤erent �s, the one o¤ering a higher � (say �2) has a smaller

range over which the dealer changes his e¤ort level based on the other manufacturer�s market

signal.

Proof. See Appendix A for the proof.

Claim 19 shows that increasing � for both manufacturer�s may increase their sales

variance resulting in greater reduction in a manufacturer�s pro�ts. In contrast, if one of the

manufacturer maintains the same �, the other manufacturer can decrease his sales variance

by increasing � to �2.

5.3 Impact of D > 0 with Non-Exclusive Dealers

As shown in Table 2 there are 9 possible pro�t functions when D > 0.

In Claim 20 we show that the last �ve pro�t functions in Table 2 are dominated by the

�rst four pro�t functions.

Claim 20 �LG � �LE, �GL � �EL, �GG � �EG, �GG � �GE, and �GG � �EE. Further,
if D � � "2 then �LG � �LL � 0 for x2 � K � g(b�22)
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Pro�t

�LL p(x1 + g(b�11)) + p(x2 + g(b
�
12))� 2 c(

b�11+b
�
12

2
) : x1 + g (b11) < K, and

x2 + g (b12) < K
�LG p (x1 + g(b�21)) + (p+�) (x2 + g(b

�
22)) : x1 + g (b21) < K, and

��K +D � 2 c
�
b�21+b

�
22

2

�
x2 + g (b22) � K

�GL (p+�) (x1 + g(b�31)) + p (x2 + g(b
�
32)) : x1 + g (b31) � K, and

��K +D � 2 c
�
b�31+b

�
32

2

�
x2 + g (b32) < K

�GG (p+�) (x1 + g(b�41)) + (p+�) (x2 + g(b
�
42)) : x1 + g (b41) � K, and

+2D � 2�K � 2 c
�
b�41+b

�
42

2

�
x2 + g (b42) � K

�LE p (x1 + g(ble1 )) + p (x2 + g(b
le
2 )) : x1 + g

�
ble1
�
< K, and

+D � 2 c
�
ble1 +ble2

2

�
x1 + g

�
ble2
�
= K

�EL p (x1 + g(bel1 )) + p (x2 + g(b
el
2 )) : x1 + g

�
bel1
�
= K, and

+D � 2 c
�
bel1 +bel2

2

�
x1 + g

�
bel2
�
< K

�EE p (x1 + g(bee1 )) + p (x2 + g(b
ee
2 )) : x1 + g

�
bee1
�
= K, and

+2D � 2 c
�
bee1 +bee2

2

�
x1 + g

�
bee2
�
= K

�GE (p+�) (x1 + g(b
ge
1 )) + p (x2 + g(b

ge
2 )) : x1 + g

�
bge1
�
� K, and

��K + 2D � 2 c
�
b
ge
1 +b

ge
2

2

�
x1 + g

�
bge2
�
= K

�EG p (x1 + g(b
eg
1 )) + (p+�) (x2 + g(b

eg
2 )) : x1 + g

�
bge1
�
= K, and

��K + 2D � 2 c
�
b
eg
1 +b

eg
2

2

�
x1 + g

�
bge2
�
� K

Table 2: The nine possible pro�t outcomes for a non-exclusive dealer when D>0.

Proof. These results are proved using simple convexity arguments. See Appendix A for

technical details of the proof.

Claim 20 implies that o¤ering a bonus does not change the structure of the e¤ort levels

of the non-exclusive dealer. The only e¤ect a positive bonus has is to lower cut o¤ �2; i.e.

the non-exclusive dealer exerts a higher e¤ort level earlier. Thus, unlike the case of an

exclusive dealer, the non-exclusive dealer makes no e¤ort to absorb portions of the market

signal variance and keep total sales constant even when o¤ered a positive bonus D. We

demonstrate these results using numerical experiments in Section 6.

6. Numerical Experiments

The two scenarios studied are denoted as ED (exclusive dealer) and NED (non-exclusive

dealer). Table 3 shows the incentive parameters (p, �, D) for both scenarios and the

manufacturers pro�t pm. The exclusive dealer�s e¤ort function is de�ned as g (b) �
p
b and

cost function, associated with the sales e¤ort, is de�ned as c (b) � b2. The input market

signal x is assumed to uniformly distributed between 0 and 150. For NED, similar e¤ort

functions and market signal distribution parameters are assumed for the for each product

(i = 1; 2). However, the non-exclusive dealer�s cost function depends on the e¤ort exerted

across both products and hence is assumed to be square of the sum of exerted e¤orts. The
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market input signals for the individual products are assumed to be uniformly distributed

between 0 and 150. The manufacturer�s pro�t (pm) is considered only for the scenario ED

to demonstrate the e¤ect of o¤ering a non-zero bonus.

p pm � D g() c()

ED ~U(0, 150) 1500 1000 250 10000
p
b 0:001 b2

NED ~U(0, 150) 1500 � 250 10000
p
bi

i=1; 2
0:002

�
b1+b2
2

�2
Table 3: Experiment setting for ED and NED.

First, we analyze scenario ED. The optimal e¤orts are shown in Table 4 under two

situations, i.e. when D = 0 and D = 10000. When the threshold is �xed at 90, notice that

bK > b�2 > b
�
1 and �x2 > �x1 when D = 10000.

b�1 b�2 �x1 at �x2 at 
x= g
�
bK
�

"x
K = 90 K = 90

D = 0 5200.21 5763.045 15.95 � � 1.87
D = 10; 000 5200.21 5763.045 1.28 14.09 88.71 �

Table 4: Dealer�s optimal e¤orts, in scenario ED, when D = 0 and D > 0.

Figure 5 shows the plot of expected total sales and sales variance , for an exclusive dealer,

as K varies.
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Figure 5: Expected sales and variance, for an exclusive dealer, when D = 0 and D = 10; 000.

The plot to the left shows that when D = 10; 000, the expected sales increases when

g (b�2) � K � 
x, i.e. when 75:91 � K � 88:71. The plot to the right shows that the

variance of sales dips in the same range when D = 10; 000.

Figure 6 compares the coe¢ cient of sales variation with and without a bonus o¤ering for

scenario ED. The coe¢ cient of sales variation dips whenD = 10; 000 and 75:91 � K � 88:71.
Figure 7 compares a manufacturer�s objective function when a penalty for variance of

sales, v, is included. In this particular case v = 0:0018. As can be seen in the plot to the

left, if no penalty is included, the manufacturer makes lesser pro�t by o¤ering a bonus. The
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Figure 7: Comparison of manufacturer�s pro�t functions when a penalty for sales variance
is included in the objective.

plot to the right shows that, if such a penalty is included, o¤ering a bonus of D = 10000,

increases the operational pro�t for 75:91 � K � 88:71.
Next we study the e¤ect of varying the bonus payment on the expected sales and variance

of sales for an exclusive dealer. We consider 4 values of D: 468, 10000, 15000, and 30000.
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Figure 8: E¤ect of varying D on E(s) and V (s) for an exclusive dealer.

The plot to the left in Figure 8 shows that the maximal value of the expected sales, E(s),

increases as D increases. Furthermore, the value of K for which E(s) is maximal, i.e. K�
1 ,

increases as D increases. The plot to the right depicts the e¤ect of on variance of sales

increasing K for di¤erent values of D. As D increases the minimum value of the variance of
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sales decreases. Also, the value of K at which variance is minimal, i.e. 
1, increases. This

implies the range for which V (s) is below V (x) also increases.
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Figure 9: The e¤ect of input signal coe¤ecient of variance on sales through an exclusive
dealer when D = 10000.

In Figure 9 we study the e¤ect of the coe¤ecient of variation of the input signal on the

expected sales and variance of sales when D = 10; 000. For these experiments we use a

normally distributed input signal such that x � 0 and the mean is 150. We study 4 cases

with the input signal coe¤ecient of variation set to 0.433, 0.5, 0.6 and 0.7. The plot to

the left, in Figure 9, shows that the point at which expected sales E(s) peaks, i.e. K�
1 , is

constant irrespective of the coe¤ecient of variation of the input signal (denoted by cv in the

plots). Furthermore, as cv increases the maximum expected sales also increases and rate

of decreases beyond K�
1 is sharper for higher values of cv. The plot to the right shows the

e¤ect on the variance of sales V (s). The minimum value of V (s) is lower of higher values

of cv and always happens at K = 
1 = 88:71.

Next, we compare scenario NED with scenario ED. For this experimental setting b�11 =

5200:2, b�21 = 4655:4, b
�
31 = 6336:6, and b

�
41 = 5763:04.
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Figure 10: Comparing manufacturer�s expected sales and variance with exclusive and non-
exclusive dealers.
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Figure 10 compares the expected sales and sales variation between the scenarios NED and

ED for values of K between 60 and 130. The plot to the left shows that the manufacturer�s

expected sales is higher when dealing with an exclusive dealer (ED) and is lower with an non-

exclusive dealer (NED). These results support our conjecture in Section 5.2. Figure 10 also

shows that the variance of sales increase with the threshold K. As conceded by Daimler-

Chrysler executives, high target values also contributed to the increased sales variability

observed by them. As seen in the plot to the left, the optimal K�
NED is lesser than K

�
ED.

The plot to the right shows that a manufacturer�s sales variation is much lower with an

exclusive dealer (ED) than with a non-exclusive dealer. We also compare the variance of

a manufacturer�s sales when a positive bonus (D = 10000) is o¤ered to the non-exclusive

dealer. The plot to the right shows that a manufacturer�s sales variability is the highest when

D = 10000 and the dealer is non-exclusive. The variance reduces with a non-exclusive dealer

when D = 0 though it is still higher than the sales variance when the dealer is exclusive.

These plots also imply that the manufacturer�s coe¢ cient of variation for sales is higher with

a non-exclusive dealer as compared to an exclusive dealer.

7. Conclusions

We analyze the impact of stair-step incentives on sales variability under two speci�c scenarios:

an exclusive dealership scenario and a non-exclusive dealership scenario. In the case of an

exclusive dealership we show that, if the manufacturer associates a positive cost with sales

variance, a stair-step incentive with a bonus payment may be superior to the scheme without

a �xed bonus. The presence of a positive bonus encourages the exclusive dealer to change

his e¤ort level with the market signal in a way that the manufacturer�s sales has a lower

variance than the variance of the market signal. In other words, a positive bonus leads the

exclusive dealer to absorb some of the market signal variance by varying his e¤ort.

Our study of stair step incentives for non-exclusive dealers shows two main results. The

�rst is that non-exclusivity of dealers increases the sales variance observed by the manufac-

turer�s. Even though the dealer observes a lower sales variance in terms of aggregate sales

than an exclusive dealer, the variance of sales observed by each manufacturer goes up. Our

second result is that in the case of non-exclusive dealers, a positive bonus does not lead to

the dealer absorbing any market signal variance. In other words, a positive bonus is not

helpful in reducing variance when dealers are non-exclusive.
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The experience of Daimler Chrysler described at the beginning of the paper can partially

be explained by the presence of non-exclusive dealers and stair step incentives. Overall our

results indicate that manufacturers should rethink o¤ering stair step incentives as dealers

become non-exclusive, especially if they have a high cost associated with sales variance.

Acknowledgements

The second author�s research is supported by NSF Grant number DMI-0457503. The �rst

author wishes to thank the Kellogg School of Management for their support during this

research e¤ort. We thank Martin A. Lariviere for valuable comments on the paper.

References

[1] Basu, Amiya, Rajiv Lal, V. Srinivasan, Richard Staelin. 1985. Salesforce compensation

plans: An agency theoritic perspective. Marketing Science 4(4) 267�291.

[2] Bruce, Norris, Preyas Desai, Richard Staelin. 2004. Trade promotions of consumer

durables. Forthcoming in Marketing Science.

[3] Cachon, Gérard P., Martin A. Lariviere. 1999. Capacity allocation using past sales:

When to turn and earn. Management Science 45(4) 685�703.

[4] Cachon, Gérard P., Martin A. Lariviere. 2005. Supply chain coordination with revenue-

sharing contracts: Strengths and limitations. Management Science 51(1) 30�44.

[5] Chen, Fangruo. 2000. Sales-force incentives and inventory management. Manufacturing

& Service Operations Management 2(2) 186�202.

[6] Chen, Fangruo. 2005. Salesforce incentives, market information, and produc-

tion/inventory planning. Management Science 51(1) 60�75.

[7] Chowdhury, Jhinuk. 1993. The motivational impact of sales quotas on e¤ort. Journal

of Marketing Research 30(1) 28�41.

[8] Coughlan, Anne T., Chakravarthi Narasimhan. 1992. An empirical analysis of sales-

force compensation plans. The Journal of Business 65(1) 93�121.

[9] Coughlan, Anne T., Sen K. Subrata. 1989. Salesforce compensation: Theory and man-

agerial implications. Marketing Science 8(4) 324�342.

27



[10] Eliashberg, J., G. L. Lilien, eds. 1993. Handbooks in OR & MS , vol. 5, chap. 13. Elsivier

Science Publishers B. V., 611�651.

[11] Farley, J. 1964. An optimal plan for saleman�s compensation. Journal of Marketing

Research 1(2) 39�43.

[12] Harish, Krishnan, Roman Kapuscinski, David A. Butz. 2004. Coordinating contracts

for decentralized supply chains with retailer promotional e¤ort. Management Science

50(1) 48�63.

[13] Harris, M., A. Raviv. 1979. Optimal incentive contracts with imperfect information.

Journal of Economic Theory 20 231�259. April.

[14] Holmström, Bengt. 1979. Moral hazard and observability. The Bell Journal of Eco-

nomics 10(1) 74�91.

[15] Holmström, Bengt, P. Milgrom. 1987. Aggregation and linearity in the provision of

intertemporal incentives. Econometrica 55 20�30. March.

[16] John, George, Barton Weitz. 1989. Salesforce compensation: An empirical investigation

of factors related to use of salary versus incentive compensation. Journal of Marketing

Research 26(1) 1�14.

[17] Lal, Rajiv, V. Srinivasan. 1993. Compensation plans for single- and multi-product

salesforces: An application of the holmstrom-milgrom model. Management Science

39(7) 777�793.

[18] Lal, Rajiv, Richard Staelin. 1986. Salesforce compensation plans in environments with

asymmetric information. Marketing Science 5(3) 179�198.

[19] Plambeck, Erica L., Stefanos A. Zenios. 2000. Performance-based incentives in a dy-

namic principal-agent model. Manufacturing & Service Operations Management 2(3)

240�263.

[20] Porteus, Evan, Seungjin Whang. 1991. On manufacturing/marketing incentives. Man-

agement Science 9(9) 1166�1181.

[21] Rao, Ram C. 1990. Compensating heterogeneous salesforces: Some explicit solutions.

Marketing Science 9(4) 319�341.

28



[22] Srinivasan, V. 1981. An investigation of the equal commission rate policy for a multi-

product salesforce. Management Science 27(7) 731�756.

[23] St. Louis Post-Dispatch. 2001. Chrysler eases unpopular dealer subsidy program blamed

for poor sales. New York Times, Business, Pg. F7.

[24] Taylor, Terry A. 2002. Supply chain coordination under rebates with sales e¤ort e¤ects.

Management Science 48(8) 992�1007.

[25] Weinberg, Charles B. 1975. An optimal commission plan for salesmen�s control over

price. Management Science 21(8) 937�943.

[26] Weinberg, Charles B. 1978. Jointly optimal sales commissions for nonincome maximizing

sales forces. Management Science 24(12) 1252�1258.

8. Appendix A: Proofs

Proof. The constraints (5) and (6), in model EDP , imply that a separate pro�t is made

on just reaching K. First order KKT optimality conditions imply u1 + u2 + u4 = 1,

u1
�
p g

0
(b�1)� c

0
(b�1)

�
= 0, u2

�
(p+�)g

0
(b�2)� c

0
(b�2)

�
+u3 g

0 �bK� = 0, u4 �p g0(bK)� c0(bK)� =
0, u1 g1 = 0, u2 g 2 = 0, u3 g 3 = 0, u4 g 4 = 0. To calculate the cuto¤ between �1 and

�2, we check when the condition when u1 > 0; u4 > 0; and u2 = 0. This implies that

the pro�t functions are equal (i.e. the corresponding constraints are tight). Thus, we have

p(K � x) � c[g�1(K � x)] = p g(b�1) � c(b�1) � D. The value of x satisfying this equation

gives the �rst cuto¤, �x1. To obtain the second cuto¤, �x2, between �2 and �3, we check

when u1 = 0; u2 > 0; and u4 > 0. Observe that u4 > 0 =) (p + �) K + D � c(bK) =
� and u4 > 0 =) u2

�
p g

0
(bK)� c0(bK)

�
+ u3g

0
(bK) = 0. Thus equating the two we get

x = K � g(b�2) +
c(b�2)�c(bK)

p+�
. Further, u2 > 0 =) (p +�)(x + g(b�2)) � �K +D � c(b�2) =

�. This also implies u3 = u2
h
p+�� c

0
(bK)

g0 (bK)

i
. Now as u4 ! 0, i.e. when constraint 6 is

no longer binding, we must have u2 ! 1. In this case u3 ! p + � � c
0
(bK)

g0 (bK)
which implies

bK ! b�2. Hence, �x2 reduces to K � g(b�2).
Claim 2. In this particular case constraints (6) and (5) are absent in EDP . The optimal

e¤ort vectors are obtained by applying the �rst order KKT conditions. Now if u1 = 1; u2 = 0

(i.e. constraint g1 is tight), the optimal e¤ort is b�1 such that p =
c
0
(b�1)

g0 (b�1)
. If u1 = 0; u2 = 1, i.e.

constraint g1 is tight, the optimal e¤ort decision is b�2 such that (p +�) =
c
0
(b�2)

g0 (b�2)
: Suppose
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u1 > 0 and u2 > 0, i.e. g1 and g2 are both tight, then we have �1(b�1) = �2(b
�
2). Thus, we

get the cuto¤ for x, when �2 exceeds �1 is �x = K � g(b�2) +
p[g(b�1)�g(b�2)]+[c(b�2)�c(b�1)]

�
.

Claim 4. The partial derivative of the expected sales with respect to K is given by @E(s)
@K

= f (K � 
x) [g (b�1)� 
x] +
�x2Z
�x1

f (x) dx. So setting � = 
x � g (b�1) and simplifying we get

@E(s)
@K

= f (K � 
x) (t (K)� �). Observe that,

t0 (K) =
1

f (K � 
x)2
�

f (K � 
x) (f (K � g (b�2))� f (K � 
x))
� f 0 (K � 
x) (F (K � g (b�2))� F (K � 
x))

�

Now t0 (K) � 0 () f(K�g(b�2))�f(K�
x)
F(K�g(b�2))�F (K�
x)

� f 0(K�
x)
f(K�
x) . Further, notice that f = F 0 and

f 0 = F 00. De�ne � � 
x � g (b�2) and y = K � 
x. Therefore K � g (b�2) = y + �.
Cauchy�s Mean Value Theorem states the following. Suppose functions �1 and �2 are

di¤erentiable on the open interval (a; b) and continuous on the closed interval [a; b]. If

�02(y) 6= 0 for any y in (a; b), then there is at least one point c in (a; b) such that (�01(c))=(�02(c))
= (�1(b)��1(a))=(�2(b)��2(a)). So, we must have a �y 2 (y; y+�) such that f(y+�)�f(y)

F (y+�)�F (y) =
f 0(�y)
f(�y)

. Since f is assumed to be log-concave f 0

f
is monotonically decreasing. Hence, we

must have f(y+�)�f(y)
F (y+�)�F (y) =

f 0(�y)
f(�y)

� f 0(y)
f(y)

. This implies t0 (K) � 0 which further implies that

t (K) is a decreasing function. So, t (K) � t (
x) =
F(
x�g(b�2))

f(0)
. If � � t (
x), we must have

@E(s)
@K
� 0 for all K � 
x. Now suppose that t(
x) > � :Observe that, for very large values

of K, t (K) approaches 0 since f(K � 
x) > 0. So there exists a K�
1 > 
x such that t (K

�
1)

= �. This proves the �rst part of the claim which also implies that E (s) is a decreasing

function for all K � K�
1 .

For any continuous cumulative distribution the following condition must hold: 0 �
F (K � g (b�2))� F (K � 
x) � 1 < �. De�ning "v = �� (F (K � g (b�2))� F (K � 
x)) we
rewrite the �rst derivative of the variance of sales as @V (s)

@K
= @E(s2)

@K
� 2E(s)@E(s)

@K
. Simpli-

fying we get @V (s)
@K

= f (K � 
x) �2 + 2 "v (E (s)�K). From equation 10 it is clear that

E (s) > K when K = 
x. This implies that
@V (s)
@K
� 0 at K = 
x. From the �rst part of the

claim we know that E (s) continuously increases until K � K�
1 beyond which it decreases

as K increases further. So , @V (s)
@K
� 0 for all 
x � K � K�

1 . For K � K�
1 we know that

(E (s) � K) is a monotonically decreasing function K. Now, we consider two cases. When
E (s) � K > K�

1 notice that "v is always positive for any value of K, since � � 1. Fur-

thermore, the �rst term is also positive for the entire region of K. Thus, @V (s)
@K
� 0. When

E (s) < K, E(s) � K is always negative for any value of K. As K increases, (E (s) �K)
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increases in the negative direction. We know that @V (s)
@K

< 0 () �2 f(K�
x)
2 "v

+ E (s) � K.
Hence, if f is a bounded function we can always increase K to a large value such that the

inequality holds. Thus, there exists K�
2 > K

�
1 � 
x such that

@V (s)
@K

< 0. Since the derivative

�ips sign, V (s) is inverted-U shaped when f is bounded.

Proposition 5. K � g (b�2) implies �x1 � 0 and �x2 � 0. From equation (10) the

expected sales, E (s), reduces to E(x) + g(b�2). Therefore, for K � g (b�2) we have E (s) =
E (x) + g (b�2). For values of K satisfying g (b�2) � K � 
x we must have �x1 = 0 and

�x2 > 0. Hence, E (s) = K +
R1
�x2
(x� �x2) f(x) dx = K +

R1
K�g(b�2)

[1� F (x)] dx. Notice

that @E(s)
@K

= F (K � g(b�2)) > 0. This implies that E (s) monotonically increases beyond

K = g (b�2), because �x2 = K � g (b�2) > 0. Further, observe that E (s) > K because

�x2 > 0. In Claim 4 we have already shown that E(s) continues to increase until K �
K�
1 and starts decreasing beyond for all values of K � K�

1 . This proves the �rst part of

the proposition. When K � g (b�2) we know that E (s) = E (x) + g(b�2). variance of sales
V (s) = V (x) for these values of K. Before we evaluate the expression for the derivative of

V (s) relative to K, for 
x � K � g (b�2) we note that E (s2) = K2F (�x2) +
R1
�x2
x2 f (x) dx +

g (b�2)
2 [1� F (�x2)] + 2 g (b�2)

R1
�x2
x f (x) dx. The derivative of the variance of sales, V (s),

on simpli�cation reduces to @V (s)
@K

= 2 F (�x2) (K � E(s)). Since K < E (s), this implies

that @V (s)
@K

< 0 in this region. Hence the variance of sales, V (s), decreases below the signal

variance V (x) in this region. In other words, the dealer absorbs some of the signal variance

by changing the e¤ort level, thus reducing the sales variance observed by the manufacturer.

Now consider the case when K � 
x. This implies �x1 > 0, �x2 > 0, and _K � �x2. From
Claim 4 we know that when K � 
x, V (s) is an inverted-U shaped function and @V (s)

@K
� 0

at K = 
x. This proves part 2 of the proposition.

Now as K becomes very large, the dealer may �nd it cost prohibitive to reach K by

putting additional e¤ort. So for very large values of K, the value of E (s) approaches

E (x) + g (b�1) : Thus, the expected sales are maximized when K = 
x. Further observe

that once the partial derivative of the variance of sales (when K � 
x) falls below zero it
always remains non-positive. For large values of K the dealer exerts only a constant e¤ort

g (b�1) because it is impossible to reach K. Hence @V (s)
@K

approaches 0 for large values of K

implying that V (s) = V (x) for large values of K. The fact that the derivative of V (s)

remains non-positive, after switching signs, and approaches 0 for large values of K implies

that V (s) never falls below V (x) after reaching its maximum value. This implies maximum

value of the variance of sales V (s) � V (x) (part 2 of the Proposition). This further implies
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that the minimum sales variance occurs at K = 
x (when the V (s) is below V (x) and the

derivative of V (s) becomes positive). This proves part 3.

Proposition 6. When D = 0 we have only one cuto¤ �x = K � g (b�2) + "x, where "x is a
positive constant given by equation 9. Note that �x is a linear function of K with @�x

@K
= 1.

The expected values for sales and its square reduce to

E (s) = E(x) + g(b�2) + F (�x) [g(b
�
1)� g(b�2)] (20)

E(s2) =

Z �x

0

x2f(x)dx+ g(b�1)
2F (�x) + 2g(b

�
1)

Z �x

0

x f(x)dx

+

Z 1

�x

x2f(x)dx+ g(b�2)
2 [1� F (�x)] + 2g(b�2)

Z 1

�x

x f(x)dx

We now evaluate the two cases, K � g (b�2) � "x and K > g (b�2) � "x. If K � g (b�2) � "x
then �x � 0. So we have only one e¤ort strategy, b�2 for the dealer. The expected value

reduces to E(s) = E(x) + g(b�2). Further, E(s2) = E(x2) + g(b�2)
2 + 2g(b�2) E(x) implying

V (s) = V (x). If K > g (b�2) � "x then �x > 0. When the cuto¤ is strictly positive there

are the two dealer e¤ort levels, b�1 and b
�
2 (by Claim 2), and E(s) is given by equation (20).

Observe that @E(s)
@K

= f(�x)
dcx

dK
[g(b�1)� g(b�2)] � 0. This implies that E(s) is a monotonically

decreasing function of K. Further,

E(s2) =

Z �x

0

(x+ g(b�1)
2f(x) dx+

Z 1

�x

(x+ g(b�2)
2f(x) dx

= E(x2) + F (�x)
�
g(b�1)

2 � g(b�2)2
�

+ g(b�2)
2 + 2 [g(b�1)� g(b�2)]

Z �x

0

x f(x)dx+ 2 g(b�2)E(x)

and variance of sales

V (s) = E(x2) + F (�x)
�
g(b�1)

2 � g(b�2)2
�

+ g(b�2)
2 + 2 [g(b�1)� g(b�2)]

Z 1

�x

x f(x) dx+ 2g(b�2)E(x)� (E(s))2

= V (x) + F (�x) [1� F (�x)] (g(b�1)� g(b�2))
2

+ 2(g(b�1)� g(b�2))
Z �x

0

(x� E(x)) f(x) dx. (21)

The partial derivative of the variance of sales with respect to K can be expressed as

@V (s)

@K
= f(�x) [g(b

�
2)� g(b�1)]

2 � 2F (�x) f(�x) [g(b�2)� g(b�1)]
2

� 2 (g(b�2)� g(b�1)) f(�x) [�x � E(x)]

= f(�x) [g(b
�
2)� g(b�1)]

2

�
1� 2

�
F (�x) +

�x � E(x)
g(b�2)� g(b�1)

��
:
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De�ne l(�x) � F (�x) + �x�E(x)
g(b�2)�g(b�1)

. Observe that l(�x) is a monotonic increasing function of

�x and hence K. At �x = 0; we have F (�x) = 0; and hence l(�x) =
�E(x)

g(b�2)�g(b�1)
< 0. Further,

1 � 2l(�x) > 0 which implies @V (s)
@K
� 0. Since l(�x) monotonically increases with �x, there

exists a ��, such that for �x < ��, we have F (�x) +
�x�E(x)
g(b�2)�g(b�1)

< 1=2 and @V (s)
@K

> 0, and for

�x > �
�, @V (s)

@K
< 0. At �x = �� we have t (��) = 0. For symmetric distributions, such as

the normal or uniform distribution, �� = E (x). Thus, V (s)� V (x) is inverted-U in shape
for all K > g (b�2) � "x and 0 for all K � g (b�2) � "x. This proves parts 1 and 2 of the

Proposition.

It is easy to show that V (s) = V (x) and E (s) = E (x) + g (b�1) for large values of

K. Observe that when K = g (b�2) � "x we must have �x = 0. Therefore, @V (s)
@K
� 0 at

K = g (b�2)� "x. Hence, V (s) must have a maximum strictly greater than V (x). Part 3 can
be proved using arguments similar to those in Proposition 5.

Proposition 7. The proof follows from Proposition 6. First we observe that the man-

ufacturer should not set K < g (b�2) � "x because it results in lower expected pro�t than
setting K = g (b�2) � "x. Expected sales monotonically decrease as K increases beyond

g (b�2) � "x. The variance of sales for K > g (b�2) � "x is at least as large as the vari-
ance of sales when K = g (b�2) � "x. Thus, if the manufacturer were to set a reason-

able K it is best to set K = g (b�2) � "x. Finally, the manufacturer should should com-

pare the pro�t earned at this value of K to the pro�t earned at a threshold level that is

never reached by the dealer. This follows from the manufacturer�s pro�t function 11. If

pm (x+ g (b)) > pmK�D+(pm ��) (x�K) then the manufacturer should set a threshold
that is very large. Otherwise, K = g (b�2)� "x is the best threshold level.
Proposition 8. From Proposition 5 observe that when K = K�

1 � 
x the manufacturer�s
expected sales, E (s), is maximal. The variance of sales, V (s), is minimal at K = 
x.

Thus the manufacturer�s pro�t is maximized when K � 
x among all values of K. Finally,
the manufacturer should should compare the pro�t earned at this value of K, say ~K, to

the pro�t earned at a threshold level that is never reached by the dealer. This follows

from the manufacturer�s pro�t function 11. Let Vmin be the variance of sales when K

= ~K and Smax be the corresponding expected sales. If pm (E (x) + g (b�2)) � v V (x) >
(pm ��) Smax �D � v Vmin then the manufacturer should set K = g(b�2). Otherwise, K =

~K � 
x.
Proposition 9. Let �D=0 and �D>0 be the manufacturer�s pro�ts respectively in the

cases when D = 0 and D > 0. Let Vmin be the variance of sales when K = 
x and
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Smax be the corresponding expected sales. Recall that Vmin < V (x) and Smax > E (x) +

g(b�2). Thus, for a high enough v, it must be the case that (pm ��) Smax �D � v Vmin >
pm (E (x) + g (b

�
2)) � v V (x). In such a situation it is optimal for the manufacturer to set

D > 0 and K � 
x.
Claim 10. Any optimal solution � for NEDP is the maximum of the four pro�t functions

and the e¤ort levels correspond to the values that maximize the particular pro�t function.

At any stationary solution, the lagrangian multipliers u1; : : : ; u4 (shown in brackets next to

the constraints) must satisfy the convexity constraint
P4

i=1 ui = 1. When ui and uj are non-

zero, the pro�t functions must be equal since at optimality since ui:gi(b�i1; b
�
i2) = 0. The �rst

order KKT optimality conditions also imply ui @�i@b�i1
= 0 and ui @�i@b�i2

= 0. The cuto¤ for x1 and

x2 can be found when ui > 0 and uj > 0. Thus, using the �rst order optimality conditions

for NEDP we have @�1
@b11

= p g
0
(b�11) � c

0
(
b�11+b

�
12

2
) = 0 and @�1

@b12
= p g

0
(b�12) � c

0
(
b�11+b

�
12

2
) = 0.

Simplifying, we have g
0
(b�12)

g0 (b�11)
= 1. This proves the �rst part. Similarly, using the �rst order

KKT conditions and solving for other constraints, we can easily show parts 2, 3 and 4. The

cuto¤s for the pro�t function are calculated as follows. Cuto¤s are de�ned when �i = �j

8 i 6= j. We start with the base case �1 and compute the cuto¤s represented by the following
diagram:

�1
. �1 & �2

�2  ! �3
& �4 . �3

�4

Cuto¤ �1 represents the value of x2 when pro�t function �2(x1, x2, b�21, b
�
22) = �1(x1, x2,

b�11, b
�
12). Observe that for both �1 and �2 the non-exclusive dealer does not reach K for

manufacturer 1. Cuto¤ �2 is the value of x1 for which �3(x1, x2, b�31, b
�
32) = �1(x1, x2, b

�
11,

b�12). Notice that in this case the non-exclusive dealer exceeds K for manufacturer 1 only.

Cuto¤ �3 represents the value of x2 such that �3(x1, x2, b�31, b
�
32) = �4(x1, x2, b

�
41, b

�
42) and

cuto¤ �4 corresponds to the value of x1 such that �3(x1, x2, b�21, b
�
22) = �4(x1, x2, b

�
41, b

�
42).

Claim 12. We illustrate the proof for "2. The bounds for the rest are computed using

similar steps. We know that

"2 =
p [g(b�11)� g(b�31)] + p [g(b�12)� g(b�32)] + 2 c(

b�31+b
�
32

2
)� 2 c( b

�
11+b

�
12

2
)

�

Thus, "2 � 1
�
[p g0 (b�11) (b

�
11 � b�31) + p g0 (b�12) (b

�
12 � b�32)] + 2

�
[c0(

b�11+b
�
12

2
) (

b�31+b
�
32�b�11�b�12
2

)].

The right hand side of this inequality is always non-negative (Corollary 11 and Claim 10).
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The upper bound is computed as follows. We know that "2 � 1
�
[p g0(b�31)(b

�
11 � b�31) +

p g0(b�32)(b
�
12 � b�32)] + 2

�
[c0(

b�31+b
�
32

2
)(
b�31+b

�
32�b�11�b�12
2

)]. The right hand side can be simpli�ed

to g0(b�31)(b
�
31 � b�11).

Claim 14. Notice that c0

g0 is a monotonically increasing function. Since b�11 = b
�
12 we have

g0 (b�11) = g
0 (b�12) =

c0(b�11)
p
. Similarly since b�41 = b

�
42 we have g

0 (b�41) = g
0 (b�42) =

c0(b�41)
p+�

. So
c0(b�41)
g0(b�41)

=
c0(b�11)
g0(b�11)

+ � which implies that b�41 > b
�
11. Further

c0(b�2)
g0(b�2)

= p +� =
c0(b�41)
g0(b�41)

implies

b�2 = b
�
41. Since g

0
(b�21)

g0 (b�22)
= p+�

p
> 1 we must have b�21 < b

�
22 which also implies b

�
21 <

b�21+b
�
22

2
.

Now suppose b�11 < b�21. Then we would have
c0(b�11)
g0(b�11)

<
c0(b�21)
g0(b�21)

<
c0
�
b�21+b

�
22

2

�
g0(b�21)

. This leads

to a contradiction since
c0
�
b�21+b

�
22

2

�
g0(b�21)

=
c0(b�11)
g0(b�11)

= p. Clearly b�11 6= b�21 and hence b
�
11 > b�21.

This also implies that g0 (b�21) > g0 (b�11). Hence c0
�
b�21+b

�
22

2

�
> c0 (b�11) which then implies

b�21+b
�
22

2
=

b�31+b
�
21

2
> b�11. We know that

g
0
(b�32)

g0 (b�31)
= p+�

p
. So g

0
(b�31) =

p
p+�

g0 (b�32). This implies

that b�31 > b�32. We know that p + � =
c0(b�41)
g0(b�41)

=
c0
�
b�31+b

�
32

2

�
g0(b�31)

. Now suppose b�41 > b�31.

Then we must have
c0(b�41)
g0(b�41)

>
c0(b�31)
g0(b�31)

>
c0
�
b�31+b

�
32

2

�
g0(b�31)

leading to a contradiction. It is clear that

b�31 6= b�41. Hence b�31 > b�41. Thus g0 (b�41) > g0 (b�31) which then implies c0
�
b�31+b

�
32

2

�
< c0 (b�41).

This further implies that b
�
31+b

�
32

2
=

b�31+b
�
21

2
< b�41. To prove that b

�
1 = b

�
11 we use the fact that

p =
c0(b�1)
g0(b�1)

=
c0(b�11)
g0(b�11)

. Since c0

g0 is a monotonically increasing function we must have b
�
1 = b

�
11.

Claim 15. From Claim 2, and using the facts that b�41 = b
�
2 and b

�
11 = b

�
1, we have

�4 � �x =
1

�

"
p (g (b�21)� g (b�11)) + (p+�) (g (b�31)� g (b�41))

+ c (b�41) + c (b
�
11)� 2 c

�
b�31+b

�
21

2

� #

>
1

�

"
p g0 (b�21) (b

�
21 � b�11) + (p+�) g0 (b�31) (b�31 � b�41)

+ c0
�
b�31+b

�
21

2

� �
b�41 �

b�31+b
�
21

2

�
+ c0

�
b�31+b

�
21

2

� �
b�11 �

b�31+b
�
21

2

� #

On simplication the right hand side reduces to 0. Similarly, using the fact that b�11 <
b�31+b

�
21

2
,

we have

�x � �2 = g (b�31)� g (b�41) +
1

�

"
p (g (b�31)� g (b�41)) + p (g (b�11)� g (b�21))

+ c (b�41) + c (b
�
11)� 2 c

�
b�31+b

�
21

2

� #

� 1

�

2664
(p+�) g0 (b�31) (b

�
31 � b�41) + p g0 (b�11) (b�11 � b�21)

+ c0
�
b�31+b

�
21

2

� �
b�41 �

b�31+b
�
21

2

�
+ c0

�
b�31+b

�
21

2

� �
b�11 �

b�31+b
�
21

2

�
3775
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On simpli�cation the right hand side reduces to 1
�
[ p g0 (b�11) (b

�
11 � b�21) + c0(

b�31+b
�
21

2
) (

b�31�b�21
2

)

+ c0(
b�31+b

�
21

2
) (b�11 �

b�31+b
�
21

2
)] which is greater than

2 c0(b�11) (b�11�b�21)
�

> 0. Hence we have �4 >

�x > �2.

Proposition 16. For the market signals the non-exclusive dealer exerts one of the two

e¤ort levels b�1 and b
�
2 the resulting pro�t is at least as large as the sum of corresponding

exclusive dealer pro�ts. Thus, the impact of the e¤ort is the same in both cases (i.e. g (b�1)

and g (b�2) are the same) and the total cost incurred by the non-exclusive dealer, 2 c
�
b�1+b

�
2

2

�
,

is no greater than the sum of the costs, c (b�1) + c (b
�
2), incurred by the exclusive dealers. To

show that the pro�ts are strictly larger for a non-exclusive dealer we show that there exist

market signals for individual manufacturers when the exclusive dealer only exerts e¤ort b�1
while the non-exclusive dealer exerts di¤erent e¤ort levels to make higher pro�ts. Consider

two market signals, x1 and x2; such that �2 < x2 < x1 < �x. Claim 15 guarantees the

existence of such market signals. From Claim 2 we know that the exclusive dealers exert

e¤orts b�1 for both the manufacturers. From Claim 10 we know that, by exerting e¤ort

b�31 for manufacturer 1 and b
�
32 = b�21 for manufacturer 2, the non-exclusive dealer makes

a higher combined pro�t than exerting b�11 = b�1 e¤ort for both manufacturers. Thus, the

non-exclusive dealer makes strictly greater pro�t all such market signals resulting in a higher

expected pro�t.

Proposition 17. Observe that the cuto¤s �2 and �4 vary linearly with K. We now compute

the derivative the expected sales (equation 18),@E(s)
@K

@E (s)

@K
= 2 f (�2) F (�2) [g (b

�
11)� g (b�21)] + f (�2) g (b�21)

+ [(F (�4)� F (�2)) f (�2) + (f (�4)� f (�2)) F (�2)] g (b�31)

+ [(F (�4)� F (�2)) (f (�4)� f (�2))] [g (b�31) + g (b�21)]

+ [(f (�4) � f (�2)) (1� F (�4))� f (�4) (F (�4)� F (�2))] g (b�21)

+ [f (�4) (1� F (�4))� f (�4) F (�4)] g (b�31)� 2 (1� F (�4)) f (�4) g (b�41)

Simplifying, we get @E(s)
@K

= f (�2) F (�2) [2 g (b
�
11) � g (b�31) � g (b�21)] � f (�4) (1 � F (�4))

[2 g (b�41)� g (b�31)� g (b�21)]. Since b�41 >
b�31+b

�
21

2
(Claim 14) we have g (b�41) > g

�
b�31+b

�
21

2

�
>

g(b�31)+g(b�21)
2

. This implies that the second term of the derivative is always negative. Observe

that g (b�11)� g (b�21) � g0 (b�21) (b�11 � b�21) and g (b�31)� g (b�11) � g0 (b�31) (b�31 � b�11). We now
evaluate the following three cases. When K < g (e�41) � "4 we have �4 � 0. Since �4 > �2
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this also implies �2 � 0. In this case the non-exclusive dealer only exerts one e¤ort level,

i.e. b�41, and the E (s) reduces to E (x1) + g (b
�
41). So, @E(s)

@K
= 0. When g (e�41) � "4 �

K < g (e�31) � "2 then only �2 � 0. Hence e¤ort level b�11 is never exerted. The derivative

reduces to �f (�4) (1� F (�4)) [2 g (b�41)� g (b�31)� g (b�21)] which is non-positive. The last
case is when K � g (e�31)� "2. In this situation the derivative is always negative if condition
C3 holds implying that E (s) is a decreasing function. This proves the Proposition.

Proposition 18. For any K we must have "4 > "x, where "x is de�ned by equation 9,

because �4 > �x by Claim 15. Part 1 follows immediately from Claim 2 and Proposition 17.

For K � K�
NED the manufacturer�s expected sales with either a non-exclusive dealer or an

exclusive dealer is E (x)+g (b�2) (since b
�
41 = b

�
2). The variance of sales is equal to V (x) in this

case. So the manufacturer�s pro�ts are the same under both scenarios. This proves part 2

of the proposition. For the exclusive dealer we have already shown that when K � K�
ED the

expected sales is E (x) + g (b�2). Since the derivative of the expected sales is negative in this

region the expected sales for the manufacturer is lower than E (x) + g (b�41) = E (x) + g (b
�
2).

This proves part 3 of the proposition.

Claim 19. First we show that b�32 decreases, b
�
31 increases, and b

�
41 increases as � increases.

We know that
c0
�
b�31+b

�
32

2

�
g0(b�31)

= p + � and
c0
�
b�31+b

�
32

2

�
g0(b�32)

= p. Now suppose we increase � to ��.

Further, suppose b�32 changes to b32 such that b
�
32 < b32. This implies g0 (b32) < g0 (b�32). If

b�31 changes to b31 then we have the following possibilities. Suppose b31 � b�31. Then b31+b32
2

increases and
c0( b31+b322 )
g0(b32)

> p leading to a contradiction. Now suppose b31 < b�31 which implies

g0 (b31) > g
0 (b�31). If

b31+b32
2

also increases or remains the same then we have
c0( b31+b322 )
g0(b32)

> p

leading to a contradiction. On the other hand if b31+b32
2

<
b�31+b

�
32

2
then

c0( b31+b322 )
g0(b31)

< p + ��

leading to a contradiction. So b32 6> b�32. Suppose b�32 = b32. Suppose b31 � b�31 implying
c0( b31+b322 )
g0(b31)

< p + �� which leads to a contradiction. Hence, b31 > b�31. But this in turn

implies that
c0( b31+b322 )
g0(b32)

> p which leads to a contradiction. Hence b�32 6= b32. The only

possibility is b32 < b�32. Since b�32 decreases it must be the case that b
�
31 increases with

�. Since
c0(b�41)
g0(b�41)

= p + � and c0

g0 is an increasing function b
�
41 must also increase with �.

Given that conditions C1 and C2 hold, consider an e¤ort function g such that g (y) � y�,
0 < � < 1. We de�ne the gap q (�) � c4� c2 = g (b�31)� g (b�41)+ "4� "2. We now show the
following: 1) b�31 increases at a faster rate than b

�
41, 2) There exists a ! > 0 such that, for all

� 2 [1� log2 (1 + !) ; 1), g (b�31)�g (b�41) increases with �, and 3) If g (b�31)�g (b�41) increases
with � then q (�) increases with � until �2 > 0. Further, �2 decreases with �. Notice
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that
c0
�
b�31+b

�
32

2

�
g0(b�31)

= p + � =
c0(b�41)
g0(b�41)

. Equating the derivative on both sides we get 1

g0(b�41)
2

[g0 (b�41) c
00 (b�41) � g00 (b�41) c

0 (b�41)
db�41
d�
] = 1

g0(b�31)
2 [

g0(b�31)
2

c00(
b�31+b

�
32

2
) � g00 (b�31) c0(

b�31+b
�
32

2
)]
db�31
d�
+

1

2 g0(b�31)
c00(

b�31+b
�
32

2
)
db�32
d�
. Since b�32 decreases as � increases, i.e.

db�32
d�

< 0, we must have 1

g0(b�41)
2

[g0 (b�41) c
00 (b�41) � g00 (b�41) c0 (b�41)]

db�41
d�

< 1

g0(b�31)
2 [

g0(b�31)
2

c00(
b�31+b

�
32

2
) � g00 (b�31) c0(

b�31+b
�
32

2
)]

db�31
d�
.

This implies [
c00(b�41)
g0(b�41)

� g00(b�41)c0(b�41)
g0(b�41)

2 ]
db�41
d�

< [
c00(

b�31+b
�
32

2
)

2 g0(b�31)
� g00(b�31)c0(

b�31+b
�
32

2
)

g0(b�31)
2 ]

db�31
d�
. Notice that

the terms in brackets, on both sides of the inequality, are strictly positive. On further

simpli�cation we get

db�31
d�
db�41
d�

>

c00(b�41)
g0(b�41)

� g00(b�41) c0(b�41)
g0(b�41)

2

c00
�
b�31+b

�
32

2

�
2 g0(b�31)

�
g00(b�31) c0

�
b�31+b

�
32

2

�
g0(b�31)

2

=

c0(b�41)
g0(b�41)

�
c00(b�41)
c0(b�41)

� g00(b�41)
g0(b�41)

�
c0
�
b�31+b

�
32

2

�
g0(b�31)

"
c00
�
b�31+b

�
32

2

�
2 c0

�
b�31+b

�
32

2

� � g00(b�31)
g0(b�31)

#

=
h (b�41)�m (b�41)

1
2
h
�
b�31+b

�
32

2

�
�m (b�31)

Since b�41
2
<

b�31+b
�
32

2
< b�41 < b

�
31 + b

�
32 we have h (b

�
41) >

1
2
h
�
b�31+b

�
32

2

�
(by C1). Furthermore

m (b�41) < m (b
�
31) < 0. Thus, h (b

�
41)�m (b�41) > 1

2
h
�
b�31+b

�
32

2

�
�m (b�31) > 0. So

db�31
d�

>
db�41
d�
.

This proves the �rst part. Observe that as long as b�32 = b
�
21 > 0 the e¤ort levels b

�
31 > b

�
41 >

b�31
2
. We know that

db�31
d�
db�41
d�

> 1. So let
db�31
d�
db�41
d�

= 1 + ! where ! > 0. Since g (x) = x�, g0 (x) =

�x(��1). Therefore, for x
2
< y < x, we must have g0(y)

g0(x) =
y��1

x��1 =
�
x
y

�1��
< 21��. Thus,

g0(b�41)
g0(b�31)

< 21��. If � = 1� log2 (1 + !) + �, then for some log2 (1 + !) > � > 0 we must have

2log2(1+!)�� = 1+!
2�
< 1+!. This implies, for � 2 [1�log2 (1 + !) ; 1),

db�31
d�
db�41
d�

>
g0(b�41)
g0(b�31)

which fur-

ther implies that db
�
31

d�
g0 (b�31)�

db�41
d�
g0 (b�41) > 0. Hence g (b

�
31)�g (b�41) increases with � as long

as b�32 = b
�
21 > 0. This proves the second part. Using b�21 = b

�
32, b

�
22 = b

�
31 and rearranging

the terms we write the gap as q (�) = 2
�
[p [g (b�21)� g (b�11)] + (p+�) [g (b�31)� g (b�41)]] +

2
�

h
c (b�11) + c (b�41) � 2 c

�
b�21+b

�
31

2

�i
. Let us de�ne the sum of terms in the bracket as A.

Therefore q (�) = 2A
�
. Observe that the gap is increasing if A0� > A.

A0 =
db�41
d�

pg0 (b�21)�
db�21
d�

c0
�
b�21 + b

�
31

2

�
+ (p+�) g0 (b�31)

db�31
d�

� db
�
31

d�
c0
�
b�21 + b

�
31

2

�
� (p+�) g0 (b�41)

db�41
d�

+ c0 (b�41)
db�41
d�

+ g (b�31)� g (b�41)

= g (b�31)� g (b�41)
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So the gap is increasing only if � [g (b�31)� g (b�41)] > A, i.e. p g (b�11) � c (b�11) � [p g (b�21)
� c(

b�21+b
�
31

2
)] > p g (b�31) � c(

b�21+b
�
31

2
) � [p g (b�41) � c (b�41)]. At � = 0 both sides of the

inequality are the same. If we show that for every � > 0 the derivative of the left hand side

is strictly greater than the derivative for the right hand side then the inequality holds and

the claim is proved. The derivative of the left hand side is

dL

d�
= �p g0 (b�21) +

1

2
c0
�
b�21 + b

�
31

2

��
d b�31
d �

+
d b�21
d �

�
=
1

2
c0
�
b�21 + b

�
31

2

��
d b�31
d �

� d b
�
21

d �

�
and the derivative of the right hand side is

dR

d�
= (p+�) g0 (b�31)

d b�31
d �

� 1
2
c0
�
b�21 + b

�
31

2

��
d b�31
d �

+
d b�21
d �

�
�� g0 (b�31)

d b�31
d �

+ (p+�) g0 (b�41)
d b�41
d �

� c0 (b�41)
d b�41
d �

+� g0 (b�31)
d b�31
d �

=
1

2
c0
�
b�21 + b

�
31

2

��
d b�31
d �

� d b
�
21

d �

�
��

�
g0 (b�31)

d b�31
d �

� g0 (b�41)
d b�41
d �

�
So dL

d�
> dR

d�
only if g0 (b�31)

d b�31
d �
� g0 (b�41)

d b�41
d �

> 0, i.e. g (b�31) � g (b�41) is an increasing
function. So, dL

d�
> dR

d�
which implies that q (�) is increasing as long as �2 > 0. It is easy to

show that�d "2
d�
+"2 = �g

0 (b�31)
d b�31
d�
. So d "2

d�
= g0 (b�31)

d b�31
d�
� "2
�
. Hence d �2

d�
= � "2

�
< 0. So �2

decreases as � increases and eventually may reach 0. This proves the third part. Together,

this implies that if conditions C1 and C2, hold, and the e¤ort function, g, is such that g (b�31)

� g (b�41) increases with �, then increasing � expands the range (q(�)) over which the dealer
changes e¤ort level based on the market signals of the other manufacturer. This proves the

�rst part of the claim. Next, we analyze the situation when both the manufacturers o¤er

a di¤erent per unit payment on exceeding the threshold. Suppose manufacturer 1 o¤ers

an additional payment of �1 on crossing the threshold and the other manufacturer o¤ers

�2 on crossing the threshold. Under these conditions the "�s change accordingly: "1 � 1
�2

[p(g(b�11) � g(b�21)) + (pg(b�12) � g(b�22))+ 2 c(
b�21+b

�
22

2
) � 2 c( b

�
11+b

�
12

2
)], "2 � 1

�1
[p(g(b�11) �

g(b�31)) + p(g(b
�
12) � g(b�32)) + 2 c(

b�31+b
�
32

2
) � 2 c( b

�
11+b

�
12

2
)], "3 � 1

�2
[(p +�1)(g(b

�
31) � g(b�41))

+ p(g(b�32) � g(b�42)) + 2 c(
b�41+b

�
42

2
) � 2 c( b

�
31+b

�
32

2
)], and "4 � 1

�1
[p(g(b�21) � g(b�41)) + (p +

�2)(g(b
�
22) � g(b�42)) + 2 c(

b�41+b
�
42

2
) � 2 c( b

�
21+b

�
22

2
)]. In this case it is easy to verify that �2

�1

=
"4�"2+g(b�31)�g(b�41)
"3�"1+g(b�22)�g(b�42)

= �4��2
�3��1 . If manufacturer 2 increases �2 then the gap for manufacturer

1 increases. At the same time �1 decreases. As a result manufacturer 1 will experience

sales �uctuations for wider range of market signals. At the same time the range over
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which manufacturer 2 experiences �uctuations decreases. Furthermore, the �uctuations are

experienced at lower values of x1 than before. This proves the second part of the Claim.

Claim 20. We show the steps to prove the �rst inequality. The remaining inequalities can

be proved using similar steps and convexity arguments. Notice that

�LE � �LG = p
�
g(ble1 )� g(b�21)

�
+ p

�
g(ble2 )� g(b�22)

�
� 2c

�
ble1 + b

le
2

2

�
+ 2c

�
b�21 + b

�
22

2

�
��(x2 + g(b�22)�K) :

We know that g(ble1 ) � g(b�21) � g
0
(b�21)

�
ble1 � b�21

�
, g(ble2 ) � g(b�22) � g

0
(b�22)

�
ble2 � b�22

�
, and

c
�
b�21+b

�
22

2

�
� c

�
ble1 +b

le
2

2

�
� c0

�
b�21+b

�
22

2

��
b�21+b

�
22

2
� ble1 +b

le
2

2

�
. Hence

�LE � �LG � p g
0
(b�21)

�
ble1 � b�21

�
+ p g

0
(b�22)

�
ble2 � b�22

�
+ c

0
�
b�21 + b

�
22

2

��
b�21 + b

�
22 � ble1 � ble2

�
�� (x2 + g(b

�
22)�K)

= p g
0
(b�21)

�
ble1 � b�21

�
+ (p+�) g

0
(b�22)

�
ble2 � b�22

�
� c0

�
b�21 + b

�
22

2

��
ble1 � b�21

�
� c0

�
b�21 + b

�
22

2

��
ble2 � b�22

�
��(x2 + g(b�22)�K)�� g

0
(b�22)

�
ble2 � b�22

�
= ��

�
x2 + g(b

�
22) + g

0
(b�22)

�
ble2 � b�22

�
�K

�
� 0

This proves that �LG � �LE. Similarly, by symmetry we must have �GL � �EL. To prove
the last part let us suppose D � � "2:Then

�LG � �LL = p (g(b�21)� g(b�11)) + p (g(b�22)� g(b�12))

� 2c
�
b�21 + b

�
22

2

�
+ 2c

�
b�11 + b

�
12

2

�
+D

+�(x2 + g(b
�
22)�K) = �� "2 +D +� (x2 + g(b

�
22)�K)

So �LG � �LL � 0 for x2 � K � g(b�22).
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