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Preface

Large Language Models (LLMs) such as ChatGPT are ridiculously powerful. To maximize your
productivity—and stay relevant—you should aim to offload as much of your workflow to these lan-
guage engines as possible. In practice, this means replacing mouse clicks with keyboard strokes, as
chatbots interact with your text, not your cursor. In particular, this means becoming comfortable
processing and analyzing data with a computer language, such as R, which LLMs excel at reading and
writing. Excel’s once-dominant point-and-click user interface is now obsolete (although most people
haven’t realized this yet).

For example, in the Alibaba lab, you will be asked to drop the data in the sample that correspond to
the customer orders with a “FAILURE” action. You can have ChatGPT tell you how to do this in R
by giving it the following prompt:

I have a table of order data. The column called ’order’ gives the order ID, and the column
called ‘action’ gives the actions that I observe for this order. I want to remove all the orders
that have any action values equal to “FAILURE.” How do I do this in R? Give me the
solution in one block of code, and suppose that I have already loaded the tidyverse package.
Do not provide commentary.

In response, ChatGPT yields the following:

order_data <- order_data %>%
group_by (order) %>%
filter(!any(action == "FAILURE")) %>%
ungroup ()

This answer is correct, and it’s easy to implement—simply copy and paste it into R. But now suppose
I wanted the solution in Excel. For this, I can modify the previous prompt, replacing everything after
and including “How do I do this in R?” with “How do I do this with Excel?” And to this, ChatGPT

answers with:

You can use Excel’s filter feature to remove rows containing “FAILURE” in the ‘action’

column. Follow these steps:
(1) Click on any cell within your data table.
(2) Go to the “Data” tab in the Excel ribbon.

(3) Click on “Filter” in the “Sort & Filter” group. This will add filter arrows to the headers
of your table.

(4) Click on the filter arrow in the “action” column header.

(5) In the drop-down menu, uncheck “Select All” and then check all the boxes except for
“FAILURE.” This will hide all rows with “FAILURE” in the ‘action’ column.



(6) To remove these hidden rows, select the visible data by clicking on the top-left corner
of the table (just below the header and to the left of the row numbers). Make sure not to
select the header row.

(7) Press Ctrl4+C or right-click and select “Copy” to copy the visible data.

(8) In a new worksheet or a new location, press Ctrl+Alt+V or right-click and select “Paste
Special.”

(9) In the ‘”“Paste Special” dialog box, select “Values” and click “OK.” This will paste only
the values of the visible data, excluding the hidden rows with “FAILURE.”

Now you have a new dataset with all orders containing “FAILURE” in the ‘action’ column
removed.

There are two problems with this response. First, implementing it would be tedious, far more so than
copy-and-pasting a short snippet of code. Second, this answer is incorrect. Indeed, I tried a dozen
times, and ChatGPT gave me the wrong answer each time I asked for an Excel solution, and gave me
the right answer each time I asked for an R solution. And this pattern persists: ChatGPT can solve
nearly every question in this book with R, but can solve barely a fifth of them with Excel.

There are three reasons that ChatGPT is smarter when you make it “think in R” than when you make
it “think in Excel” First, OpenAl can train its chatbot on a large corpus of R code, but not on a
large corpus of Excel mouse clicks, because R code is saved online, whereas mouse clicks are ephemeral.
Second, Excel solutions are more verbose, and all these extra words can trip up the chatbot, making it
lose sight of the objective. And, third, it’s easier to convey thoughts in R, because it’s a richer protocol,
with more abstract concepts built in. Just as it would be more difficult to convey a technical concept
when we restrict ourselves to the words understood by a first grader, it is more difficult to perform
a complicated analysis when we restrict ourselves to the functions that are understood by Excel. For
example, Excel can’t solve the problem above, because it has no analog to R’s group_by () function.

Not only is ChatGPT good at producing R code, but it is also good at explaining R code. Case in
point, when I ask it to “run a regression in R and use the broom package to get its coefficient estimates
and fitted values,” I get the following response:

Here is an example of how to run a linear regression in R using the 1m() function and the
broom package to get the coefficient estimates and fitted values:

# Import the necessary packages
library(broom)

# Create some example data
X <= rnorm(100)
y <= x + rnorm(100)

# Fit the linear regression model
model <- Im(y ~ x)

# Use the broom package to get the coefficient estimates
coefs <- tidy(model)
print(coefs)

# Use the broom package to get the fitted values

fitted_values <- augment(model)
print(fitted_values)
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In this example, the 1m() function is used to fit a linear regression model with y as the
response variable and x as the predictor variable. The tidy() function from the broom
package is then used to extract the coefficient estimates, and the augment () function is used
to extract the fitted values. The print() function is used to display the results.

Note that in this example, data is generated randomly, you should replace it with your own
data.

This is an incredibly good answer—I couldn’t have said it better myself. So, as you see, every R
programmer now has the software equivalent of a genie in a bottle that knows how to implement
almost every data transformation. Switching to R makes this Al genie your servent, but sticking with
Excel or Google Sheets is committing to make it your competitor. The chatbot assistant is a great
equalizer: as an MBA armed with an LLM can now do almost anything that an experienced data
engineer can do. The value of your MBA should thus rise, as you can now execute complex data
analytics on your own, without relying on a costly layer of data scientists.

Unfortunately, due to the vagaries of the English language, we can’t outsource all of the programming
to the chatbot. Just as you would never send an LLLM-generated email without first checking it, you
should never trust an LLM-generated program without checking it. And while debugging and validating
code is easier than writing it from scratch, these final touches will still require an intimate knowledge
of the computer language. Hence, we must learn R ourselves (or some analogous language). Learning
R is difficult, but the returns to doing so are now orders of magnitude higher than they were in 2021,
as the LLMs serve as an unprecedented force multiplier.

k%%

Chatbots aside, spreadsheets are simply not well-suited for serious empirical inquiry. Indeed, the
difference between manipulating data with R code and manipulating it with mouse clicks is like the
difference between typing and writing longhand. A pen is ideal for signing checks and writing notes
to loved ones but is wholly inappropriate for writing contracts or novels. Likewise, Google Sheets is
great for organizing the little scraps of data that garnish everyday life but is wholly inappropriate for
industrial-scale empiricism.

First, spreadsheets cannot handle the “big data” that companies increasingly rely on. For example,
doing section

refwrangleLab’s lab with a spreadsheet would be impossible, as its data set comprises 16.5 million rows,
whereas Excel workbooks permit only a little over a million rows, and Google Sheets permit only 40,000.
In contrast, R can accommodate tables of arbitrary size: e.g., I can easily manipulate tables with 200
million observations with my modest laptop, and I can stretch that to tens of billions of observations
if I migrate to an AWS server.

Second, spreadsheet analyses are difficult to automate. Whereas a well-coded statistical program can be
seamlessly executed by a different person with a different input dataset, a spreadsheet analysis usually
entails some manual labor, such as copying and pasting data from one sheet to another. These manual
steps are time-consuming, error-prone, and not easily transferable. For example, when I worked at
Intel, nearly every industrial engineer I encountered spent hours a week manually updating statistical
reports. It was a point-and-click dystopia: scores of high-level engineers mindlessly dragging data
around spreadsheets, like temps hired for data entry. And before an engineer could leave their position,
they had to spend weeks teaching their replacement their copy-and-paste regimen.

Third, spreadsheets cannot be read linearly. Instead, an Excel model tends to grow like crabgrass—
extending helter-skelter every which way until you’re left with an ensnarled knot of cells so thoroughly
linked and cross-referenced that you can’t easily tease out a loose end that you can call the “beginning.”
These overwrought spreadsheets resemble the wall of photos connected by a patchwork of strings that
you see in police procedurals. In contrast, code always flows linearly, laying bare your analysis in the
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sequence in which it was performed. Hence, no matter how complex your statistical analysis is, you
can always read it from start to finish. And R programs are especially easy to read—you’ll barely need
any comments, as the code generally speaks for itself.

For example, most of this book’s labs are academic studies I conducted in R several years ago. And
since R programs are so easy to follow, I could easily interpret what I did, despite the multi-year time
gap. Furthermore, since my analysis was automated, I could replicate all of my old results simply by
entering Cmd+Shift+S. Contrast this with the complex Excel model I created in my early twenties to
simulate the operations of the port of LA: A year after I finished it, my boss asked me to update the
simulation—Dbut I couldn’t. After not thinking about it for a year, the sheets of my Excel workbook
were as inscrutable as the sheets of a sudoku workbook. Moreover, running the simulation required
some ad-hoc mousing, and I couldn’t remember what data to copy where.

Granted, some Excel gurus can produce organized, automated reports with spreadsheets. But mastering
Excel is as misguided as mastering Windows 95. Indeed, most of the major design choices underlying
Excel were entrenched by 1995, so a commitment to Microsoft Office is a commitment to a 1990s design
sensibility. And this is true of most statistical software packages: they get stuck in the past as their
users grow accustomed to a particular way of doing things. Thus, Excel, VBA, SQL, STATA, SAS,
SPSS, and MATLAB are really just ossified '90s technologies gussied up with modern veneers.

In contrast, today’s R is completely different from the R of the ’90s. In fact, it’s completely different
from the R of the early 2010s. The language didn’t get locked into an antiquated scheme because it’s
free, decentralized, and open-source, which means that no customers or centralized authority could
veto potentially disruptive changes. Anyone with a better solution could upload it. For example, the
most important symbol in R—the piping operator, %>%, which enables data to pass from function to
function like a baton in a relay race—wasn’t introduced until 2014. And as soon as I finished the
first draft of this book, there was a new piping operator, |>. (This new pipe isn’t as convenient, so
I haven’t adopted it.) For a second example, there have been three fundamental paradigm shifts in
data pivoting since 2007: first with melt() and cast(), then with gather() and spread(), and now
with pivot_longer() and pivot_wider (). And for a third example, I wrote and formatted this entire
book in R. Since the whole point of data science is to communicate statistical findings, R enables you
to report your results in every possible medium, including books. Why have other statistical packages
not figured this out? Because most of them stopped innovating decades ago.

Being free has helped R remain dynamic: no one can hold the language back because it’s not indebted
to anyone. And R being free also means that there’s no red tape involved in using it. For example, I
can set up an R server on AWS in minutes without asking anyone’s permission. But doing the same
for MATLAB would be a headache: First, I'd have to secure funding from Northwestern University
(my employer). Then I’d have to figure out how to register the server with MATLAB so they can
bill me by the hour. (Yes, they charge by the hour.) And then I’d have to submit monthly expense
reports from MATLAB to Northwestern for reimbursement. Using for-profit software thus adds a layer
of bureaucracy to your life—it means extra paperwork every time you change computers, move jobs, or
hire someone. And these statistical licenses are expensive. For example, Alteryx costs $5,195 per user
per year. Hence, adopting Alteryx is equivalent to giving every data scientist on your team a $5,195
salary cut. And even if your current employer is willing to buy your team licenses, your next employer
probably won’t be (especially when most serious data scientists use a free option). So, a job change
would likely make your Alteryx expertise worthless. (Of course, this threat doesn’t exist for R, because
no employer would begrudge you a free product.)

k%%

In theory, baking cupcakes should be a wholesome and enriching activity for a toddler. In practice, it’s
a harrowing enterprise, comprised of flour stains, egg-white puddles, spilled sugar, spilled milk, a potty
accident, an outfit change, multiple bouts of crying, at least one full-blown tantrum, an unexpected
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FedEx delivery, a corresponding set of barking dogs, a second potty accident (this time requiring a
rinse-off in the shower), screaming when the toddler is accidentally sprayed with cold water, screaming
when the preferred towel is discovered to be in the washer, and, finally, over-done cupcakes.

Data science is like this: in theory, it’s a graceful exploration, but in practice, it’s a torturous slog. To
avoid explicitly writing a cliche, I'll put it this way: the devil of data science is not in the high-level
concepts. Unfortunately, most data science classes operate at the high-level plane, where all samples
are orderly and all variables are accessible. In other words, they use fake data. But the difference
between a real dataset and a fake dataset is like the difference between a tiger born in the jungle and
one born in the zoo. In contrast, I will have you do real data science with real data. You will replicate
published empirical studies, from initial data cleaning to final results. And you will soon learn that
real datasets bristle with inconvenient nuances, the management of which comprises the lion’s share of
the work. Indeed, every empirical project comprises two parts: (i) transform a disorderly and buggy
collection of raw input tables into a clean sample and (ii) apply a statistical tool to the clean sample
to translate it into a “significant” result. Most data science classes focus on the second step because it
is more fun, but I will focus on the first step because it is more important. This first step is called data
wrangling, and it comprises the overwhelming majority of the actual work. Since it will invariably be
the bottleneck, data wrangling is the step in your data-processing workflow that you should optimize.
Fast data wranglers test more hypotheses in less time, and they spend less time cleaning data and more
time analyzing it.
kkck

I have divided this book into lectures, commentaries, and labs. The lectures provide the information
you need to do the labs. The commentaries provide miscellaneous tips, tricks, gripes, and rants. And
the labs are where you do the real work. Most labs have both a guided part, which provides a clear
recipe for how to perform the analysis, and an unguided part, in which you are left to your own devices.
The guided sections will help you practice the low-level mechanics of writing code, and the unguided
sections will help you practice the high-level task of organizing and structuring the analysis. Whereas
you must execute the recipe in the guided sections, you must design the recipe in the unguided sections.
The recipes I provide are basically chatbot prompt sequences. In principle, you could copy these
prompts into ChatGPT to get the answers right away, but I expect you to first attempt the coding on
your own so that you make all the errors necessary to learn. For the unguided lab sections, you must
create your chatbot prompts. To learn how to do this, you can study how I wrote and sequenced the
prompts for the unguided sections. In this sense, the guided sections will serve as “training wheels” for
the unguided sections.

The labs study
e mishaps at nuclear power plants,
o case scheduling at the labor appellate court of Rome,
e JD.com, the “Amazon of China,”
« Alibaba’s package-delivery scores,
o Eversight, a company that uses Al to conduct pricing experiments,
o grocery-store inventory runs (the supply chain analog of bank runs),
e a company that bills itself as the “Uber of house cleaning,”
e auto part defects reported to the NHTSA,
e electronic price tags in supermarkets, and

o illegal fishing on the high seas.
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And in addition to these formal labs, we will casually analyze data from
o the Ultimate Fighting Championship (UFC),
o the City of Evanston Police Department,
e Netflix,
e lichess.org,
o Wine Spectator,
« the Citi Bike bicycle sharing program,
e Formula 1, and
o Jane Austen.

Most of the data science in this book relates to operations management. This is the discipline I
know best, and it pairs well with data analytics—an explosion of new logistical datasets gives us
unprecedented operational visibility. Accordingly, we can now study the intricate workings of business
processes like we never could in the past.

k%

I wrote this book because I believe teaching R is the most effective way for me to “level up” the MBA
students at my business school (the Kellogg School of Management). Statistical programming is a
concrete, marketable skill that can burnish any resume. More importantly, this skill can be put to
immediate use in most walks of business. It enables you to process data more quickly, consistently, and
reliably. And as capturing, storing, crunching, and transmitting information becomes ever easier, the
management of businesses inexorably progresses into the management of data.

Many of my business students think that analyzing data is for underlings. This is nonsense. Saying
“analyzing data is for underlings” is like saying “using the internet” is for underlings. Imagine how
frustrated—how impotent—you would be if you couldn’t go online. Suppose that every time you
wanted something looked up, you had to send a memo to a subordinate and wait an indeterminate
amount of time for an answer. You would be in the futile position of relying on your underlings to
explain the internet to you.

And yet many business students plan on having their underlings explain the data to them. Delegating
the empirical analysis in this fashion puts a level of remove between you and your company’s data. And
as being one level removed from the internet makes you essentially blind to the workings of the web,
being one level removed from your company’s data makes you essentially blind to the workings of the
business. So long as you avoid the data, the operation of your business will remain a vague abstraction
that’s in equal parts daunting and boring. Yes boring, because it’s impossible to satisfyingly engage
with something intangible, described to you second-hand, in jargon you barely understand.
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Chapter 1

Data Structures

1.1 Introduction

The R language comprises nouns, which are called objects, and verbs, which are called functions. We
will cover objects in this chapter and functions in the next chapter. Objects are “things” that we would
like the computer to represent. For example, the number 2 and the text string "There's time for
everything except the things worth doing" are objects. And functions are “actions” that we would
like to perform on objects. For example, the log() function takes the logarithm of a number and the
str_length() function counts the number of characters in a text string, so that log(2) = 0.6931472
and str_length("There's time for everything except the things worth doing") = 57.

R objects can have names. For example, the object 3.14159265358979 has the name pi and the object
c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec") has the
name month.abb. We’ll cover these named objects, which are known as variables, in section 1.2.2. And
in section 1.2.3 we’ll cover list objects called vectors. For example, month.abb is a vector that comprises
twelve character strings. A character string is a basic data type—an intrinsic sort of data. Examples
of other data types are integers, dates, and logicals (i.e., TRUE and FALSE). In sections 1.2.4 and 1.2.5
we’ll cover R’s primary data types: logicals, doubles, integers, character strings, factors, and Dates
(which we always write with a capital D). These are the basic building blocks of data in R—if there
were a period table of data elements it would comprise these six types. Finally, we’ll end the lecture,
in section 1.2.6, with a discussion of tibbles, which are tables of data (like Excel worksheets). Tibbles
are the primary data structures of R.

After the lecture, we have a lab in section 1.3. This lab will set up the work environments we’ll use
for the rest of the book. And finally I'll conclude, in section 1.4, with a few miscellaneous points. In
section 1.4.1 I'll discuss R’s two different assignment operators. In section 1.2.7 I'll cover the right way
to load and save tibbles. In section 1.4.2 I'll discuss the importance of writing self-sufficient code—
code that can be run in full without human intervention. And in section 1.4.3 I'll provide a glossary
of string-manipulation functions.

To prepare for the lecture in the next section, download and install R and RStudio on your computer.
Here’s! a good resource that will walk you through this. I will begin the lecture with a brief primer on
RStudio. But for more on this, see the “RStudio IDE Cheatsheet,” which you can find on this page?,
and see the additional links provided here?.

Thttps://learnr-examples.shinyapps.io/ex-setup-r/#section-welcome
Zhttps://rstudio.com/resources/cheatsheets/
3https://education.rstudio.com/learn/beginner/
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1.2 Lecture

1.2.1 RStudio

RStudio is different from R. The latter is the programming language and the former is the graphical
user interface that we use to program in this language. You could write and run R code without
RStudio, but that would be eccentric—the interface is so well-designed that almost all R programmers
use it.

The RStudio interface is composed of four boxes: the console pane, the files pane, the environment
pane, and the source pane (if any of these panes are collapsed use your mouse to expand them out).*
The console pane should have a “Console” tab written somewhere along the top. You can submit little
snatches of code here and R will execute them immediately. This pane isn’t for proper programming;
rather it’s for ephemera—quick and cheap queries that you don’t want saving. For example, run the
following in your console (while connected to the internet):

install.packages("tidyverse")

Now follow any prompts that come up and R will download the tidyverse to your computer. As the
name suggests, the tidyverse is a universe of tidy functions that streamline and simplify the mundane
aspects of data science. It is the heart of R. However, the code above simply downloaded these tidy
functions to your computer; it didn’t load them into your current workspace. The following code adds
these tidy functions to your workspace, so that you can use them:

library(tidyverse)

Henceforth, I will assume that you have the tidyverse loaded in your workspace. (And to ensure our
workspaces look the same, please do not load any other packages with 1ibrary() until I ask you to do
s0.)

For an example of a tidyverse function enter now() into your console. Or for another example enter
DOB <- "11/06/1983"; today() - mdy(DOB), except replace my birth date with your date of birth. For
a third example, enter str_which(letters, "[aeioul") to get the position of the vowels in the English
alphabet.

Now press the up arrow a few times (while your cursor is in the console pane). Doing so should summon
the commands that you just executed. (You’'ll soon find this up-arrow trick is indispensable.) Now
press Ctrl+Up, if you’re using Windows or Linux, or Cmd+Up, if you're using a Mac. Doing so should
bring up your entire command history.

The files pane should have the word “Files” written somewhere above it. This is where you can view
and access the files on your computer. This file navigation window is useful because most R projects
span multiple files. For example, I wrote this book in R and saved every section in a different file.?
The files pane also has a “Plots” tab, which is where any graphs you make will appear. Enter ggplot()
+ aes(x = rnorm(1075)) + geom_density() into your console and you’ll see what I mean. There
is also a “Help” tab, which is where R will fulfill your documentation requests. For example, enter
vignette("paper") in the console to get the tidyverse manual, and now enter ?str_count to see the
str_count() documentation (you can write ? in front of any function to see its documentation).

4T recommend moving your console from below the source pane to the right of the source pane, because these panes
both require much more vertical space than the environment and files panes. You can move the console pane by going to
RStudio/Preferences/Pane Layout.

5More technically, I wrote this book in R Markdown, which is a slick way to make reports that incorporate R code
and outputs. Even more technically, I used the bookdown package, which is a way to write books with R Markdown.



The environment pane has an “Environment” tab above it. This tab provides a brief snapshot of all
the R objects that are defined in your workspace. For example, one object in my environment is DOB
= "11/06/1983". Or for another example, enter x <- 1 into your console and you’ll see this variable
appear in the environment list. Now enter rm(x) to remove this variable from your workspace.

Finally the source pane is where you’ll write your serious source code—the code you want to save as
a formal program.® Code written in the source pane is easier to save, modify, and rerun than code
written in the console. Indeed, the difference between the source pane and the console pane is like the
difference between Microsoft Word and Twitter: you could execute your entire empirical analysis line
by line in the console, but that would be like writing a novel one tweet at a time.

Copy the following into your source pane:

library(tidyverse)

#I'll next create some raw data
ussr <-
tribble(

~socialist_republic, ~pop_1989, ~area_1991,
"Armenian Soviet S.R.", 3, 30,
"Azerbaijan Soviet S.R.", 7, 87,
"Byelorussian Soviet S.R.", 10, 208,
"Estonian Soviet S.R.", 2, 45,
"Georgian Soviet S.R.", 5, 70,
"Kazakh Soviet S.R.", 17, 2717,
"Kirghiz Soviet S.R.", 4, 199,
"Latvian Soviet S.R.", 3, 65,
"Lithuanian Soviet S.R.", 4, 65,
"Moldavian Soviet S.R.", 4, 34,
"Russian Soviet Federative S.R.", 147, 17075,
"Tajik Soviet S.R.", 5, 143,
"Turkmen Soviet S.R.", 4, 488,
"Ukrainian Soviet S.R.", 52, 604,
"Uzbek Soviet S.R.", 20, 447

ussr %>%
mutate(
pop_density = pop_1989/area_1991,
socialist_republic =
str_remove(socialist_republic, " Soviet")

%> %

ggplot(
aes(

X percent_rank(area_1991),
y = percent_rank(pop_density),

label = socialist_republic

5By default the source pane sits on top of the console, but I recommend going to RStudio/Preferences/Pane Layout
and putting it to the side of the console, so that they don’t compete for vertical space. The source pane and console both
need plenty of vertical space, but the environment and files panes do not.



) +
geom_point() +
geom_text(hjust=-.1)

We usually start a program with library(tidyverse) so it’ll work in workspaces that don’t have the
tidyverse functions loaded. Below these two lines of code is the comment #I'11 next create some
raw data. This line is not code—R ignores all text that follows a hashtag. Rather, it and the second
comment—#Remove "Soviet" to simplify plot—are just little notes I've added to help the (human)
reader understand what the code does. The block of code that follows the first comment defines a
table of data and names it ussr. To execute this code chunk, click anywhere on it (e.g., on the word
"Lithuanian") and then press either Ctrl+Enter or Cmd+Enter, depending on whether you're using a
Mac. After this, your “Environments” tab should list ussr as a table comprising “15 obs. of 3 variables.”
You can view this table by entering ussr in your console.

Now execute the second block of code by again clicking somewhere on it and pressing Ctrl+Enter
or Cmd+Enter. The result should be a weird Soviet plot. Now delete this plot by clicking on the
broom icon just above it. Now recreate this plot by typing Ctrl+Shift+P (Windows and Linux) or
Cmd+Shift+P (Mac). This keyboard shortcut tells R to rerun the bit of code you most recently
executed. It’s an essential hotkey—memorize it now or give up on learning R altogether.

Now let’s run our Soviet plot code from scratch. Delete the plot with the broom icon, click on Ses-
sion/Clear Workspace, and then click on Session/Restart R. Now click anywhere on the source pane
and press Ctrl4Shift+Enter (Windows and Linux) or Cmd+Shift4+Enter (Mac) to run the entire R
script. This is how you properly run an R program.

Finally, clear out your workspace and run the code again by copying it from the source pane to the
console pane. This is not how you should run your R code! However, you will get the same result
because R treats code executed from the console the same as code executed from the source pane. In
fact, the only real difference is that it’s harder to save what you’ve run in the console, whereas you can
save a program that you’ve written in the source panel with File/Save.

1.2.2 Variables

We can use R as a scientific calculator:
sqrt(100)

> [1] 10

cos (pi)

> [1] -1

2110

> [1] 1024

And we can add comments, which the computer ignores, with the pound sign:

sqrt(100) #everything following a hashtag is a comment



> [1] 10

#the cosine of 3.141593 1is:
cos (pi)

> [1] -1

278 #this equals 2 * 2 * 2 * 2 * 2 * 2 % 2 % 2

> [1] 256

In general, R executes one intelligible bit of code at a time. For example, the first code chunk, below,
yields an error, but the second and third do not:

#code chunk 1
1+ 2

#code chunk 2
1+ 2 *

#code chunk 3
(1 + 2

* 3)

The first code chunk yields an error because 1 + 2 is a comprehensible line of code; accordingly, when
it receives this code chunk, R first prints 1 + 2 = 3 to the screen, and then it attempts to execute
3, which is nonsense, since the multiplication sign needs a number on both the left and the right. In
contrast, the second code chunk does not yield an error because 1 + 2 * is not a comprehensible line
of code, due to the dangling *; accordingly, R interprets the second code chunk as 1 + 2 % 3, which
induces it to print 7 to the screen. Likewise, (1 + 2 isn’t a comprehensible line of code, due to the
unclosed parentheses; accordingly, R interprets the third code chunk as (1 + 2 % 3), which induces it
to print 7 to the screen.

We can give numbers names so we can refer to them in shorthand. For example, the US national debt
on 09/30/2012 was $16,066,241,407,385. The following uses assignment operator <- to give this number
the name debt_2012:7

debt_2012 <- 16066.241407385 #measured in billions

Using R parlance, we say that the code above creates a variable called debt_2012 that equals the number
16066241407385. The following code analogously defines variables debt_2016 and debt_2020 as the US
national debt on 09/30/2016 and 09/30/2020:

"We could have named it debt.2012, but you should never include a . in a variable name. There’s a technical reason
for this—R programmers usually reserve the . symbol for object methods. But there’s also a more practical reason: if you
double-click on debt_2012 the whole word always gets highlighted, but if you double-click on debt.2012 then sometimes
only debt or only 2012 gets highlighted.



debt_2016 <- 19573.444713936
debt_2020 <- 26945.391194615

Henceforth, we can use variables debt_2012, debt_2016, and debt_2026 and numbers 16066241407385,
19573444713936, and 26945391194615 interchangeably. For example, the following two expressions are
equivalent:

(debt_2020 - debt_2016) / (debt_2016 - debt_2012)

> [1] 2.101944

(26945.391194615-19573.444713936) / (19573.444713936-16066.241407385)

> [1] 2.101944

However, the former expression is easier to interpret, because descriptive labels such as debt_2016 are
more telling than long strings of digits such as 19573444713936.

The following defines pop_2012, pop_2016, and pop_2020 as the US population in 2012, 2016, and 2020:

pop_2012 <- .3138 #measured in billions
pop_2016 <- .3229
pop_2020 <- .3307

And the following redefines variables debt_2012, debt_2016, and debt_2026 to equal the per capita debt:

debt_2012 <- debt_2012 / pop_2012
debt_2016 <- debt_2016 / pop_2016
debt_2020 <- debt_2020 / pop_2020

For example, we now have debt_2020 = 81489.72. The code above illustrates two points. First, we can
redefine variables—their values are not permanent. And second, we can define a variable’s new values
in terms of its old values. For example, the third line of the code above has debt_2026 to both the left
and right of <-. And that’s allowed! Indeed, you should read this expression as “new debt_2020 equals
old debt_2020 divided by pop_2020.

The following exercise gives you some practice working with variables.

Exercise 1.1. Anticipate what the following three chunks of code will output and then execute the
code to confirm your answer.

#chunk 1:
X <= 1
X <— X + x + x

X

#chunk 2:
x <= 10



y <= x"2
z <- sqrt(y) #i.e., z equals the square root of y

z

#chunk 3:
X <= 2

X <— Xx™x
x <= x”"x
X

1.2.3 Vectors

Now instead of 2012, 2016, and 2020, suppose we wanted to record the national debt and population
every year going back to 1950. We could give each debt and population figure its own variable, defining

debt_1950 <- 257 #measured in billions of dollars
pop_1950 <- .1523 #measured in billions of people

debt_1951 <- 255
pop_1951 <- .1549

debt_1952 <- 259
pop_1952 <- .0792

debt_2020 <- 26950
pop_2020 <- .3299

But scattering the information across so many distinct variables makes it difficult to work with. For
example, reexpressing debt in per capita terms would require the following 71 transformations:

debt_1950 <- debt_1950 / pop_1950
debt_1951 <- debt_1951 / pop_1951

debt_2020 <- debt_2020 / pop_2020

A more practical solution is to store the debt and population data in vectors. A vector is an ordered
list. We can create such vectors with the concatenation function c():

debt <-
c(
257, 255, 259, 266, 271, 274, 273, 271,
276, 285, 286, 289, 298, 306, 312, 317,
320, 326, 348, 354, 371, 398, 427, 458,
475, 533, 620, 699, 772, 827, 908, 998,



1142, 1377, 1572, 1823, 2125, 2350, 2602, 2857,
3233, 3665, 4065, 4411, 4693, 4974, 5225, 5413,
5526, 5656, 5674, 5807, 6228, 6783, 7379, 7933,
8507, 9008, 10030, 11910, 13560, 14790, 16070, 16740,
17820, 18150, 19570, 20250, 21520, 22720, 26950

pop <-
c(

.1523, .1549, .1576, .1602, .1630, .1659, .1689, .1720,
.1749, .1778, .1807, .1837, .1865, .1892, .1919, .1943,
.1966, .1987, .2007, .2027, .2051, .2077, .2099, .2119,
.2138, .2160, .2180, .2202, .2226, .2251, .2272, .2295,
.2317, .2338, .2358, .2379, .2401, .2423, .2445, .2468,
.2496, .2530, .2565, .2599, .2631, .2663, .2694, .2726,
.2759, .2790, .2822, .2850, .2876, .2901, .2928, .2955,
.2984, .3012, .3041, .3068, .3093, .3116, .3138, .3160,
.3183, .3206, .3229, .3250, .3267, .3282, .3299

The code above defines debt as a vector comprising our 71 debt figures and defines pop as a vector
comprising our 71 population figures. Note that in addition to being vectors, debt and pop are variables.
A variable is any object we've assigned a name to with <-.® Storing all the debt values in the same
place enables us to transform them in one fell swoop. For example, we can now redefine all the debt
values in per-capita terms with a single <-:

debt <- debt / pop #divide nth value of debt by nth value of pop
And we can inspect the result in several ways:

head (debt) #first six values

> [1] 1687.459 1646.223 1643.401 1660.424 1662.577 1651.597
tail(debt, 20) #last 20 values

> [1] 20375.44 21655.08 23381.59 25201.50 26846.02 28508.71 29907.04 32982.57
> [9] 38820.08 43840.93 47464.70 51210.96 52974.68 55984.92 56612.60 60607.00
> [17] 62307.69 65870.83 69226.08 81691.42

pluck(debt, 50) #50th value

> [1] 20272.4

min(debt)

> [1] 1573.217

8The keyboard shortcut for writing the <- symbol is “Alt -” (Windows and Linux) or “Option -” (Mac).

8



mean (debt)

> [1] 17248.4

median(debt)

> [1] 7662.884

max (debt)

> [1] 81691.42

quantile(debt, probs = c(.25, .75)) #inter-quartile range

> 25% 75%
> 1710.695 22518.335

sd(debt) #standard deviation

> [1] 20556.64

In addition to using concatenation function c(), there are several other ways to create vectors:
-7:4 #integers between -7 and 4

> [1] -7 -6 -5 -4 -3 -2 -1 06 1 2 3 4

rep(pi, 5) #repeat pi 5 times

> [1] 3.141593 3.141593 3.141593 3.141593 3.141593

seq(l, 10) #sequence of numbers between 1 and 10

> [1] 1 2 3 4 5 6 7 8 910

seq(5, 100, by = 8) #numbers between 5 and 100, counting by 8
> [1] 5 13 21 29 37 45 53 61 69 77 85 93

seq(-.1, .3, length.out = 5) #5 evenly spaced numbers between -.1 and 3
> [1] -60.1 0.0 0.1 0.2 0.3

rep(seq(-.1, .3, length.out = 5), 3) #3 copies of previous vector

> [1] -6.1 0.6 0.1 0.2 0.3 -60.1 0.0 0.1 6.2 0.3 -0.1 0.0 0.1 0.2 0.3



Exercise 1.2. Anticipate what the following three chunks of code will output and then execute the
code to confirm your answer.

#Chunk 1
X <- 1:6
xN2

#Chunk 2
x <- 1:6
27X

#Chunk 3

x <- seq(l00, 200, by = 25)
y <- rep(c(OJ 1, 2, 3); 2)
pluck(x, 2) * pluck(y, 6)

Exercise 1.3. Use seq() to define fine_grid as a vector of a million equally spaced points between -1
and 1.

Exercise 1.4. Calculate the mean() of the log() of the integers between 1 and 100.

Exercise 1.5. Use prod() to determine which is larger: the product of all numbers between 1 and 100
(inclusive) or the product of all the numbers between 100 and 170 (inclusive).

Exercise 1.6. The lag() function shifts all the elements of a vector over by one position. For example,
lag(c(l, 2, 3, 4)) = c(NA, 1, 2, 3), where NA is a “not applicable” symbol that indicates an empty
slot. Use this function to define debt_change as the vector of year-over-year debt changes.

e The first three values of debt_change should be c(1687.459, 1646.223, 1643.401) - c(NA,
1687.459, 1646.223) = c(NA, -41.236, -2.822).
Exercise 1.7. Use lag() to define debt_growth as the vector of year-over-year fractional debt changes.

e If x and y are vectors of equal length, then x / y is a corresponding vector of ratios, calculated
element by element. For example: (1:3) / (11:13) = c(1/11, 2/12, 3/13).

e The first three values of debt_growth should be (c(1687.459, 1646.223, 1643.401) - c(NA,
1687.459, 1646.223)) / c(NA, 1687.459, 1646.223).

Exercise 1.8. Use lag() to transform rep(c(TRUE, FALSE), 10) from a vector with TRUE values in the
odd slots to a vector with TRUE values in the even slots (and an NA in the first slot).

Exercise 1.9. Use lead() to transform rep(c(TRUE, FALSE), 10) from a vector with TRUE values in
the odd slots to a vector with TRUE values in the even slots (and an NA in the last slot).

Exercise 1.10. Use lead(n = 6) to shift forward the elements of rep(c(TRUE, FALSE), 10) six spaces,
so that the vector ends with six NA values.

Exercise 1.11. Run the following to define x as a vector of ten normally distributed random variables:
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set.seed(0) #this line sets the random seed, so we all draw the same values

X <= rnorm(10)

Use lead() to test whether each element of x is larger than the subsequent element. Your answer
should be a vector of TRUE and FALSE values, that end with an NA.

Exercise 1.12. Use lead() and & to test whether each element of x is larger than the subsequent two
elements. Your answer should be a vector of TRUE and FALSE values, that end with an NA.

Exercise 1.13. A Cauchy random variable is one standard normal random variable divided by another
standard normal random variable. We will use this fact to generate and plot 30 Cauchy random
variables.

e Use rnorm(30) to define x and y as vectors of 30 standard normal random variables.
o Define z as a vector whose nth element equals the nth element of x divided by the nth element
of y.
e Use hist() to plot the distribution of z.
— The plot may look weird because the Cauchy distribution has very fat tails.

1.2.4 Logicals, Doubles, and Integers

Here’s a weird fact about R: the language has different types of numbers. Specifically, it has three
basic number types: integers, doubles, and logicals. An integer is a whole number like 0, 5, 3,000, or
-132,432,345. A double is a decimal number like 0.5, -10000.00001, or 3.141593. And a logical is either
TRUE or FALSE.

Now, in the normal universe TRUE and FALSE are not numbers, but in the R universe they are. Indeed,
you can plug values TRUE or FALSE into any mathematical expression and R will construe the TRUE terms
as ones and the FALSE terms as zeros. For example, TRUE + TRUE + FALSE evaluatesto1 + 1 + 0 = 2
and 7 * FALSEA2 + ((TRUE + FALSE) / (TRUE + TRUE))A(2 +TRUE) evaluates to 7 * 022 + ((1 + 0)
/ (1 + 1))~(2 + 1) = 0.125. The TRUE = 1 and FALSE = 0 convention is useful because it enables us
to apply sum() and mean() to vectors of logicals to get the number of elements that are TRUE and the
fraction of elements that are TRUE.

Let me illustrate with a concrete application: If debt_change <- debt - lag(debt) is a vector of year-
over-year debt changes (see exercise 1.6), then debt_increase <- debt_change > 0 is a vector of logicals
that indicates whether the debt increased in a given year (i.e., whether the debt change was positive).
For example, compare the first five values of debt_change with the first five values of debt_increase:

head(debt_change, 5)
> [1] NA -41.235593 -2.822355 17.023454 2.152218
head (debt_increase, 5)

> [1] NA FALSE FALSE TRUE TRUE

The NA terms indicate missing data: since we don’t observe what the debt was in 1949, we don’t know
how it changed in 1950. Now from debt_increase we can derive the number of years between 1951 and
2020 in which the per-capita debt increased and the proportion of years in which the debt increased:
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#Number of values in debt_increase that are TRUE:

sum(debt_increase, na.rm = TRUE)

> [1] 61

#Fraction of values in debt_increase that are TRUE:

mean (debt_increase, na.rm = TRUE)

> [1] 0.8714286

In the expressions above, the na.rm = TRUE option tells R to ignore the NA value at the beginning of
debt_increase.” The preceding example used the greater-than symbol > to convert numeric vector
debt_change to logical vector debt_increase. We can also create logicals with the greater-than-or-
equal-to symbol >=, exactly-equal-to symbol ==, less-than-or-equal-to symbol <=, less-than symbol <,
and not-equal-to symbol !=. For example, run the following in your console:

X <= 1:5

n v v
n nu
w w w

X X X X X X
N
I

Note that the exactly-equal-to symbol comprises two equals signs. Indeed, there’s a big difference
between = and ==: the former is used for assignments, much like <-, and the latter is used to test
whether two things are the same.

We can also determine whether all() or any() of a collection of logicals is TRUE:

#Are ANY of the values TRUE?
any(TRUE, FALSE, FALSE, FALSE)

> [1] TRUE
any (FALSE, FALSE, FALSE, FALSE)

> [1] FALSE

#Are ALL of the values TRUE?
all(FALSE, TRUE, TRUE, TRUE)

> [1] FALSE

9The na.rm = TRUE option tells R to remove the NA terms; it does not tell R to replace the NA terms with TRUE values.
For example, sum(c(TRUE, TRUE, NA), na.rm = TRUE) is equivalent to sum(c(TRUE, TRUE)), not to sum(c(TRUE, TRUE, TRUE)).
Hence, you should consider this TRUE as your answer to the question, “True or false: you would like me to remove the
missing terms before computing the sum?”, and not as the answer to the question, “What would you like me to replace
the NA terms with?” Use the replace_na() function if you’d like to replace NA terms with another value.
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all(TRUE, TRUE, TRUE, TRUE)

> [1] TRUE
Alternatively, we can combine logicals with the and, or, and not operators, &, |, and !:

e x & y = TRUE if both x = TRUE and y = TRUE, and otherwise equals FALSE.
e x | y = TRUE if x = TRUE or y = TRUE, and otherwise equals FALSE.
e !x = TRUE if x = FALSE, and otherwise equals FALSE.

Note that all(x, y, z) = x &y & zand any(x, y, z) = x | y | z

Another way to generate logicals is to test whether the elements of one vector are %in% another vector:

#Which values of c(-1, 0, 2) are in 1:30?
c(-1, 0, 2) %in% 1:30

> [1] FALSE FALSE TRUE

#Which elements of debt are the most extreme (either the largest or smallest)?
debt %in% c(min(debt), max(debt))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

vV V V V V VvV

Exercise 1.14. Which of the following expressions are TRUE?

%in% 0:10
(5 %in% 0:10) & all(3 < 0:9)
(2+2 !'=5) | ((5 %in% 0:10) & all(3 < 0:9))

1((2+#2 !'= 5) | ((5 %in% 0:10) & all(3 < 0:9)))

Exercise 1.15. Let x and y be numbers. The following code returns x if x equals y and returns o
otherwise:

(x==y) * x
Create an expression that return x if x equals y and returns x»2 otherwise.

Exercise 1.16. Let x and y be vectors. Create code that calculates the fraction of elements of x that
are in y.
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Exercise 1.17. Let x, y, and z be numbers. Write an expression that returns TRUE if any() of these
numbers equals zero and returns FALSE otherwise.

The other numerical types are doubles and integers. The primary difference between them is that a
double can have a fractional part, but an integer cannot. For example:

as.integer(2.6)

> [1] 2

By default, R sets all numbers to doubles:
is.double(2)

> [1] TRUE

is.integer(2)

> [1] FALSE

To define a number as an integer, use as.integer() or write an “L” after it:

is.double(2L)

> [1] FALSE
is.integer(2L)

> [1] TRUE

Admittedly, this “L” convention is a bit awkward: e.g., year <- 1914 appears more natural than year
<- 1914L. But expressing integers as doubles can expose you to rounding errors. For example, if you
tell the computer to save the number 10 as a double, then you’re really telling it to save something
like 10.0000000000000, and this long string of trailing zeros will get corrupted unless all mathematical
operations are performed to within a 0.00000000000001 tolerance (which isn’t always the case). For
example, consider the following:

number_killed <- 10 + 10 + .1 - 10 - .1
Variable number_killed should be exactly ten. And it looks like it is:
number_killed

> [1] 10

But it’s not:

number_killed > 10
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> [1] TRUE

The problem is that adding and subtracting by 16 + .1 introduces just enough of a rounding er-
ror to make number_killed distinguishable from ten. Specifically, number_killed exceeds ten by
0.000000000000001776:

number_killed - 10

> [1] 1.776357e-15

And this small error can lead to big problems. For example, suppose a vaccine is “in compliance” if it
kills ten or fewer people. In this case, our vaccine should be in compliance—having killed exactly ten
people—but will be flagged as out of compliance since number_killed <= 10 = FALSE.

Expressing number_killed as an integer solves the problem:

number_killed <-
as.integer(10 + 10 + .1 - 10 - .1)

number_killed > 10

> [1] FALSE

To avoid this rounding issue, you should save all whole numbers as integers, using doubles only when
you need the decimal expansion.'?

1.2.5 Character Strings, Dates, and Factors

So now we’re set for numbers, but not all data are numeric. For example, we may want the computer
to store the names of the first dozen Civil War battles recognized by the Civil War Sites Advisory
Commission (CWSAC):

battle_name <-
c(

"Battle of Fort Sumter",
"Battle of Sewell's Point",
"Battle of Aquia Creek",
"Battle of Philippi (West Virginia)",
"Battle of Big Bethel",
"Battle of Boonville (Missouri)",
"Battle of Hoke's Run",
"Battle of Carthage",
"Battle of Rich Mountain",
"Battle of Blackburn's Ford",
"First Battle of Bull Run or First Manassas",
"Battle of Wilson's Creek or Oak Hills"

10This is a do-as-I-say-not-as-I-do recommendation, as I violate this rule quite often.
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This code sets variable battle_name equal to a vector of twelve character strings. For example, the
third element of battle_name is character string "Battle of Aquia Creek". As you see, a character
string is just a bit of text. R has some useful built-in character-string vectors:

letters

> [1] llall llbll IICII |ldl| llell llfll llgll Ilhll ll-ill lljll llkll lllll llmll llnll |lOl| llpll llqll llr-ll IISII

> [20] Ilt" l|u|l lIVll |IWI| lell llyll ||Zl|
LETTERS

> [1] IIAII IIBII IICII |lDl| llEll llFll IIGII IIHII llIll llJll llKll llLll IIMII IINII |lol| llPll llQll IIRII IISII
> [20] IlTlI ’|U|’ llV" "Wll llxll llYIl llZ’l

month.abb
> [1] IlJanll IlFebll IlMarll IlAprll lIMayll lljunll llJu'Lll llAugll llsepll lloctll IINOVII IlDeCll
month.name

> [1] "January" "February" '"March" "April" "May" "June"
> [7] "July" "August" "September" "October" "November" '"December"

But really, a character string could be anything. For example, "Break any of these rules sooner
than say anything barbarous", "Population of China: 1.393 billion (2018), "x(&#S$S*x#r@x#()@)!",
and "123" are all character strings. The last expression looks like a number, but the quotation marks
tell the computer to treat it as non-numeric text. For example, the following yields an error:

"123" + 1

> Error 1in "123" + 1: non-numeric argument to binary operator

We can’t add one to "123" for the same reason that we can’t add one to "Battle of Carthage": character
strings are not numbers and are thus not compatible with algebraic operations. However, we could
perform this addition if we first turned the character string to an integer:

as.integer("123") + 1

> [1] 124

The %in% operator also applies to character strings:

c("Battle of Hoke's Run", "Battle of Carthage", "SHILOH") %in% battle_name

> [1] TRUE TRUE FALSE

battle_name %in% c("Battle of Hoke's Run", "Battle of Carthage", "SHILOH")

> [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
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Exercise 1.18. Which of the vectors below returns the longest vector of logicals?

#0ption 1
'Letters 96-in96 C(llkll’ lleH’ lllH, l|1|l’ l|o|l’ l|gll)

#Option 2
c(”kll, l|e|l, ll'Lll, ll'Lll’ ”O”’ |lgl|) 96-in96 'Le-tters

#Option 3
c("November'", "December") %in% month.name

#Option 4

month.name %in% c("November", "December")

Most string manipulation functions come from the stringr package (which you passively loaded when
you called library (tidyverse)). We will use the following stringr functions:!!

e str_c(),

e str_count(),

e str_detect(),

e str_extract(), str_extract_all(),
o str_flatten(),

e str_length(),

e str_locate(),

e str_remove(), str_remove_all(),

e str_replace(), str_replace_all(),
e str_to_lower (), str_to_upper(), str_to_title(),
e str_split(),

e str_squish(),

e str_sub(), and

e str_which().

Starting each function with “str” was a great design choice, as it unifies what would otherwise appear
a disjoint collection of functions. This unification is useful, because the notation is standardized across
stringr functions. Hence, the “str” prefix serves as a visual flag that indicates that all the usual stringr
conventions apply.

I’ll introduce these functions to you in a gradual, organic fashion over the course of the book. But I
also list their definitions in section 1.4.3, for quick reference.

I'll now give you some quick examples of stringr functions. First, the following replaces the NA terms

of a character-string vector with "", the character string that comprises zero characters:

str_replace_na(c("a", "b", NA, "d", NA), "")

> [1] llall llbll nmn Ildll nn

Second, the following outputs a logical vector that identifies the elements of battle_name that contain
the substring " or " (i.e., the battles with multiple names):

1 As you see, all the stringr functions begin with prefix str_.
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str_detect(
battle_name,

n or n

> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
Third, the following removes all the instances of "Battle of " from battle_name:
battle_name <-

str_remove_all(

battle_name,
"Battle of "

head (battle_name)

> [1] "Fort Sumter" "Sewell's Point"
> [3] "Aquia Creek" "Philippi (West Virginia)"
> [5] "Big Bethel" "Boonville (Missouri)"

And fourth, the following concatenates character string "Battle ", numeric vector 1:12, character string
": " and character-string vector battle_name:

battle_name <-
str_c(

"Battle ",
1:12,

ne n
: b

battle_name

head (battle_name, 3)

> [1] "Battle 1: Fort Sumter" "Battle 2: Sewell's Point"
> [3] "Battle 3: Aquia Creek"

Moving on, we could save the battle start and end dates as character strings:

battle_start <-
c(
"April 12, 1861", "May 18, 1861", "May 29, 1861",
"June 3, 1861", "June 10, 1861", "June 17, 1861",
"July 2, 1861", "July 5, 1861", "July 11, 1861",
"July 18, 1861", "July 21, 1861", "August 10, 1861"
)
battle_end <-
c(
"April 13, 1861", "May 19, 1861", "June 1, 1861",
"June 3, 1861", "June 10, 1861", "June 17, 1861",
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"July 2, 1861", "July 5, 1861", "July 11, 1861",
"July 18, 1861", "July 21, 1861", "August 10, 1861"

But it would be better to save them as Date variables, to make them compatible with R’s calendar
functions.'> We can convert these calendar string vectors to Date vectors with mdy ():

battle_start <-
mdy (battle_start)

battle_end <-
mdy (battle_end)

Note, we use mdy () because our initial character strings expressed dates with a month/day/year format;
in contrast, we would have used dmy () had they followed a day/month/year format, ymd() had they
followed a year/month/day format, etc.

And now that they represent Dates, we can perform all sorts of temporal operations on battle_start
and battle_end. For example, we can difference these vectors to calculate the battle durations:

battle_end + days(1l) - battle_start

> Time differences in days
> [1] 224111111111

We add days(1) to battle_end so that, e.g., a battle that starts and ends on August 10, 1861 is
recorded as lasting one day rather than zero days. Note we couldn’t perform the computation above
if battle_start and battle_end were character-string vectors—subtracting character string "May 29,
1861" from character string "June 1, 1861" makes as much sense as subtracting "Donald Duck" from
"Bugs Bunny".

Functions mdy () and days() are from the lubridate package, which is the calendar arm of the tidyverse.
This package a function for almost anything you would want to do with a Date. For example, we can
get the number of days since these battles ended with

today() - battle_end

> Time differences in days
> [1] 59896 59860 59847 59845 59838 59831 59816 59813 59807 59800 59797 59777

We can get the date of the first day of the week in which a battle took place with

floor_date(battle_start, "week")

> [1] "1861-04-07" "1861-05-12" "1861-05-26" '"1861-06-02" "1861-06-09"
> [6] "1861-06-16" "1861-06-30" "1861-06-30" "1861-07-07" "1861-07-14"
> [11] "1861-07-21" "1861-08-04"

12We refer to Date variables with a capital “D” so that we can use "D" as a shorthand for Dates and "d" as a shorthand
for doubles.
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And we can get the day of the week in which the battles ended with

day_of_week <-
wday (battle_end, label = TRUE)

day_of_week

> [1] Sat Sun Sat Mon Mon Mon Tue Fri Thu Thu Sun Sat
> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

All these functions are from lubridate.

In the last example above, day_of_week looks like a vector of character strings, but it’s actually a vector
of factors. A factor variable is a character variable that’s restricted to a specific set of values, or “levels.”
For example, day_of_week has seven valid levels:

levels(day_of_week)

> [l] llsunll llMonll llTuell Ilwedll IlThull IlFr--i n "Sat"

Constraining the elements of day_of_week to these seven values imposes a useful safeguard on our data.
For example, we could change the first element of day_of_week to "wed", which is a valid level, but not
to "wwed", which isn’t a valid level. Hence, the factor structure makes such spelling mistakes impossible.

The other benefit of factor variables is that they can have non-alphabetical orderings. For example,
the expression Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat in the output above indicates that
"Sun" is the first level, "Mon" is the second level, etc. And any plot we make with day_of_week will
honor this ordering:

ggplot() +
aes(x = day_of_week) +
geom_bar ()

3-
A
c
S
3

l-

O-

Mon

Tue Thu
day of week

Sun

In contrast, if we treat the elements of day_of_week as character strings, then R arranges the bars
alphabetically, which makes for a pretty lousy plot:

ggplot() +
aes(x = as.character(day_of_week)) +

geom_bar ()
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COUﬂt

3-
: “““““\ “““““\ |||||||||||| |||||||||||
Mon Sun Thu TUe

as.character(day_of_week)

While the United States, Canada, and Japan treat Sunday as the first day of the week, the international
standard ISO 8601 specifies Monday as the first day of the week. To make our plot ISO compliant,
we’ll use fct_relevel() to reorder its levels from "Sun", ..., "Sat" to "Mon", ..., "Sun":!3

day_of_week <-
fct_relevel(
day_of_week,
"Sun",
after = Inf

day_of_week

> [1] Sat Sun Sat Mon Mon Mon Tue Fri Thu Thu Sun Sat
> Levels: Mon < Tue < Wed < Thu < Fri < Sat < Sun

Thu Fr| Sun
day_of week

ggplot() +
aes(x = day_of_week) +
geom_bar ()

Mon Tue

Now the level ordering reads "Levels: Mon < Tue < Wed < Thu < Fri < Sat < Sun", and the "Mon" bar
is correspondingly presented first.

count

The fct_relevel() function comes from the forcats package (which got loaded when we loaded the
tidyverse). The forcats package provides functions for manipulating factors. The forcats functions we

13In the code above Inf stands for infinity, which is a valid concept in R. For example, 1/0 = Inf and 1/Inf = 0. In this
context, Inf is shorthand for the “last place in the line.” In general, writing fct_relevel(day_of_week, "Sun", after = n)

tells R to move "sun" to after the nth position—i.e., to the n+1th position. And if we set n = Inf, we're telling R to make
"sun" follow the infiniteith level, so that "sun" is always at the end, no matter how many levels day_of_week has.
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will use in this book are:!*

e fct_recode(),

e fct_relabel(),

e fct_relevel(), and
e fct_reorder().

I’ll define these in section 2.4.7, after I've more thoroughly discussed R functions. But here’s a quick
example:

day_of_week <-
fct_recode(
day_of_week,

Weekend = "Sun",
Weekend = "Sat"
)
day_of_week
> [1] Weekend Weekend Weekend Mon Mon Mon Tue Fri Thu
> [10] Thu Weekend Weekend

> Levels: Mon < Tue < Wed < Thu < Fri < Weekend

ggplot() +
aes(x = day_of_week) +
geom_bar ()

5 -
4 -
€ 3-
S
8 2-
O i 1 1 1 1 1
Mon Tue Thu Fri Weekend
day_of week

We’ve now covered most of the important data types. Indeed, we’ll store nearly all our data in vectors
that comprise logicals, doubles, integers, character strings, Dates, and factors. But to be clear: a given
vector may store only one of these types of data. For example, a vector can comprise numbers or
character strings, but not both numbers and character strings. Let’s see what happens when we try to
stuff both types of data into one vector:

C(l, 2’ 3, llall, llbll, IICII)

> [l] lllll l|2|l ||3l| llaH l|b|l IICII

In this case R downgrades numbers 1, 2, 3 into character strings "1", "2", "3" to make them compatible
with the rest of the vector. Hence, even if you try, R will not allow you to create vectors with multiple

14 As you see, all the forcats functions start with prefix fct_.
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data types.!?

Exercise 1.19. The following maps a vector with numbers to a vector without numbers:

str_remove_all(
c("CuT", "cApiTAL", "LlEttErS", "FROm", "thIs", "VECTor"),
n [A*Z] n

> [l] Hull I’Cpill lllttrll llmll llthsll llorll

Use str_remove_all() and "[aeiou]" to remove the vowels from character string vector c("remove",

"vowels", "from", "this", "vector").

Exercise 1.20. Use today() and mdy() to calculate the number of days old you are.
Exercise 1.21. What’s the date a million days() from today()?

Exercise 1.22. What’s the time a million seconds() from now()?

Exercise 1.23. How many weeks () are in a billion seconds()?

Exercise 1.24. What fraction of the next 100,000 days in are in November?

e Create a vector called vector_of_dates that includes the 100,000 days() that follow today ().
— Input the vector 1:1075 into days() and add that to today().
e Apply month(label = TRUE) to vector_of_dates to create a vector_of_months that comprises
100,000 character strings.
e Calculate the mean() fraction of elements in vector_of_months that equal "Nov".

1.2.6 Tibbles

In section 1.2.3 we saw the benefit of organizing a scattered collection of numbers in an orderly vector.
In this section we will see the benefit of organizing a scattered collection of vectors in an orderly table
of data. For example, suppose that in addition to battle_name, battle_start, and battle_end, we also
had the following;:

battle_casualties <-
c(
®, 10, 10, 30, 86, 87, 114,
244, 346, 151, 4690, 2549

battle_victor <-
c(
"Confederate", "Inconclusive", "Inconclusive", "Union",
"Confederate", "Union", "Union", "Confederate",
"Union", "Confederate", "Confederate", "Confederate"

15While we can’t store multiple data types in vectors, we can store multiple data types in lists, which we’ll cover in
chapter 5.
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battle_description <-
c(

"Beauregard takes Charleston Federal fort",
"Union gunboats fight Confederate artillery",
"Confederate artillery hit by naval bombardment",
"Small Confederate detachment rooted out of WV",
"Union attack near a church repelled",
"Union forces defeat Missouri State Guard",
"Patterson defeats Jackson, but squanders victory",
"Confederate victory in Missouri,
"Union forces divide Confederate forces; half surrender",
"Irvin McDowell's recon-in-force defeated at Manassas",
"Confederacy wins and Jackson earns the moniker 'Stonewall'",

"First major battle west of the Mississippi"

Since they’re not related to one another, it’s difficult to cross-reference the information stored in our
battle vectors. For example, there’s no easy way to get the description of the bloodiest battle. However,
we can execute such queries if we align our vectors as columns of a table:

battle_data <-

tibble( #combine vectors battle_start, battle_end, etc.
start = battle_start, #into a '"tibble" with columns start, end, etc.
end = battle_end,
casualty = battle_casualties,
victor = battle_victor,

name = battle_name,

description = battle_description

battle_data

> # A tibble: 12 x 6

> start end casualty victor name description
> <date> <date> <db1l> <chr> <chr> <chr>

> 1 1861-04-12 1861-04-13 0 Confederate Battle 1: Fort Sumter Beauregard~
> 2 1861-05-18 1861-05-19 10 Inconclusive Battle 2: Sewell's P~ Union gunb~
> 3 1861-05-29 1861-06-01 10 Inconclusive Battle 3: Aquia Creek Confederat~
> 4 1861-06-03 1861-06-03 30 Union Battle 4: Philippi (~ Small Conf~
> 5 1861-06-10 1861-06-10 86 Confederate Battle 5: Big Bethel Union atta~
> 6 1861-06-17 1861-06-17 87 Union Battle 6: Boonville ~ Union forc~
> 7 1861-07-02 1861-07-02 114 Union Battle 7: Hoke's Run Patterson ~
> 8 1861-07-05 1861-07-05 244 Confederate Battle 8: Carthage Confederat~
> 9 1861-07-11 1861-07-11 346 Union Battle 9: Rich Mount~ Union forc~
> 10 1861-07-18 1861-07-18 151 Confederate Battle 10: Blackburn~ Irvin McDo~
> 11 1861-07-21 1861-07-21 4690 Confederate Battle 11: First Bul~ Confederac~
> 12 1861-08-10 1861-08-10 2549 Confederate Battle 12: Wilson's ~ First majo~
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Storing our casualty and description data in the same table enables us to obtain an account of the
bloodiest battle:

bloodiest <-
slice_max( #select the row of battle_data with the maximum casualty
battle_data, #value and save that as a one-row tibble called bloodiest

casualty

select(bloodiest, description) #select the description column of bloodiest

> # A tibble: 1 x 1

> description

> <chr>

> 1 Confederacy wins and Jackson earns the moniker 'Stonewall'

The two snippets of code above introduce three functions: tibble(), slice_max() and select(). The
tibble() function converts a collection of vectors into a tibble. A tibble is just a table of data in R:
indeed, “tibbles” are to R as “spreadsheets” are to Excel.'® The tibble() call above defines battle_data
as a tibble with 12 rows and 5 columns. A tibble’s rows are also called “observations” and its columns
are also called “variables.” (Thus, the word “variable” has two different meanings: (i) an object that’s
been assigned a name with <- and (ii) a column of a tibble.) The slice_max() and select() calls above
winnow battle_data by row and then by column, to the desired cell of data. These functions belong
to a comprehensive suite of tibble-inspection tools that R offers. For example, we can view our tibble
in all it’s glory with view(battle_data). We can get a summary of its variables with:

glimpse (battle_data)

> Rows: 12

> Columns: 6

> $ start <date> 1861-04-12, 1861-05-18, 1861-05-29, 1861-06-03, 1861-06-1~
> $ end <date> 1861-04-13, 1861-05-19, 1861-06-01, 1861-06-03, 1861-06-1~
> § casualty <dbl> @, 10, 10, 30, 86, 87, 114, 244, 346, 151, 4690, 2549

> $ victor <chr> "Confederate", "Inconclusive", "Inconclusive", "Union", "C~
> $ name <chr> "Battle 1: Fort Sumter", "Battle 2: Sewell's Point", "Batt~
> $§ description <chr> "Beauregard takes Charleston Federal fort", "Union gunboat~
#or with

summary (battle_data)

start end casualty victor
Min. :1861-04-12 Min. :1861-04-13 Min. : 0.0 Length:12
1st Qu.:1861-06-01 1st Qu.:1861-06-02 1st Qu.: 25.0 Class :character
Median :1861-06-24 Median :1861-06-24 Median : 100.5 Mode :character
Mean :1861-06-20 Mean :1861-06-20 Mean P 693.1
3rd Qu.:1861-07-12  3rd Qu.:1861-07-12  3rd Qu.: 269.5
Max. :1861-08-10 Max. :1861-08-10 Max. :4690.0

vV V V V V V VvV

16The tibble is the modern incarnation of the now-obsolete data frame standard. We won’t use data frames in this book,
as they are clunkier way to represent tables. However, nothing substantive would change if we redefined all the tibbles in
this book to data frames.
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vV V V V V V VvV

name
Length:12
Class
Mode

:char
:char

description

Length:12
acter Class :character
acter Mode :character

We can get its top three rows with:

head (battle_data, 3)

>
>
>
>
>
>

We can get its bottom four rows with:

# A tibble:
start
<date>

1 1861-04-12

2 1861-05-18

3 1861-05-29

3 x6

end casualty
<date> <db1>
1861-04-13 0]
1861-05-19 10
1861-06-01 10

tail(battle_data, 4)

>
>
>
>
>
>
>

# A tibble:
start
<date>
1861-07-11
1861-07-18
1861-07-21
1861-08-10

AW N R

4 x 6
end casualty
<date> <dbl>
1861-07-11 346
1861-07-18 151
1861-07-21 4690
1861-08-10 2549

victor

<chr>
Confederate
Inconclusive

Inconclusive

victor
<chr>

Union
Confederate
Confederate
Confederate

name
<chr>
Battle 1:
Battle 2:
Battle 3:
name
<chr>
Battle 9:
Battle 10:
Battle 11:
Battle

We can get its fourth, eighth, ninth, and tenth rows with:

slice(battle_data, 4, 8:10)

>
>
>
>
>
>
>

# A tibble:
start
<date>
1861-06-03
1861-07-05
1861-07-11
1861-07-18

AW N R

4 x 6
end casualty
<date> <db1>
1861-06-03 30
1861-07-05 244
1861-07-11 346
1861-07-18 151

victor
<chr>

Union
Confederate

Union

name
<chr>

Battle
Battle
Battle

4:
8:
9:

Confederate Battle 10:

Fort Sumter

Sewell's Po~

Aquia Creek

Rich Mountain
Blackburn's~
First Bull ~

12: Wilson's Cr~

Philippi
Carthage

(We~

description
<chr>

Beauregard~
Union gunb~
Confederat~

description
<chr>

Union forc~
Irvin McDo~
Confederac~
First majo~

description
<chr>

Small Conf~
Confederat~

Rich Mountain Union forc~

Blackburn's~ Irvin McDo~

We can get its first two rows when it’s ordered alphabetically by description with:

slice_min(

battle_data,
order_by = d
n =2

escription,
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> # A tibble: 2 x 6

> start end casualty victor name

> <date> <date> <dbl> <chr> <chr>

> 1 1861-04-12 1861-04-13 0 Confederate Battle 1: Fort Sumter

> 2 1861-07-21 1861-07-21 4690 Confederate Battle 11: First Bull ~

We can get get its last three rows when it’s ordered by end with:

slice_max (
battle_data,
order_by = end,
n =3

description
<chr>

Beauregard~
Confederac~

> # A tibble: 3 x 6

> start end casualty victor name description
> <date> <date> <dbl> <chr> <chr> <chr>

> 1 1861-08-10 1861-08-10 2549 Confederate Battle 12: Wilson's Cr~ First majo~
> 2 1861-07-21 1861-07-21 4690 Confederate Battle 11: First Bull ~ Confederac~
> 3 1861-07-18 1861-07-18 151 Confederate Battle 10: Blackburn's~ Irvin McDo~

We can get a random two rows with:

slice_sample(
battle_data,

n =2
)
> # A tibble: 2 x 6
> start end casualty victor name
> <date> <date> <dbl> <chr> <chr>
> 1 1861-06-10 1861-06-10 86 Confederate Battle 5: Big Bethel
> 2 1861-04-12 1861-04-13 0 Confederate

We can get its name and casualty columns with:

select(
battle_data,
name, casualty

> # A tibble: 12 x 2

> name

> <chr>

> 1 Battle 1: Fort Sumter

> 2 Battle 2: Sewell's Point

> 3 Battle 3: Aquia Creek

> 4 Battle 4: Philippi (West Virginia)
> 5 Battle 5: Big Bethel

> 6 Battle 6: Boonville (Missouri)

> 7 Battle 7: Hoke's Run

casualty
<db1>

0

10

10

30

86

87

114

27

description
<chr>

Union attack~
Battle 1: Fort Sumter Beauregard t~



> 8 Battle 8: Carthage 244
> 9 Battle 9: Rich Mountain 346
> 10 Battle 10: Blackburn's Ford 151
> 11 Battle 11: First Bull Run or First Manassas 4690
> 12 Battle 12: Wilson's Creek or Oak Hills 2549
#or with
select(

battle_data,

5, 3 #column numbers
)
> # A tibble: 12 x 2
> name casualty
> <chr> <db1>
> 1 Battle 1: Fort Sumter (0]
> 2 Battle 2: Sewell's Point 10
> 3 Battle 3: Aquia Creek 10
> 4 Battle 4: Philippi (West Virginia) 30
> 5 Battle 5: Big Bethel 86
> 6 Battle 6: Boonville (Missouri) 87
> 7 Battle 7: Hoke's Run 114
> 8 Battle 8: Carthage 244
> 9 Battle 9: Rich Mountain 346
> 10 Battle 10: Blackburn's Ford 151
> 11 Battle 11: First Bull Run or First Manassas 4690
> 12 Battle 12: Wilson's Creek or Oak Hills 2549

We can get everything but its name and casualty columns with:

select(
battle_data,
-name, -casualty

O 0 N O U h W N -

# A tibble: 1

start
<date>
1861-04-12
1861-05-18
1861-05-29
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

2 x 4

end

<date>
1861-04-13
1861-05-19
1861-06-01
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

victor
<chr>
Confederate

Inconclusive

Inconclusive

Union
Confederate
Union
Union
Confederate
Union
Confederate
Confederate
Confederate

description

<chr>

Beauregard takes Charleston Federal fort
Union gunboats fight Confederate artillery
Confederate artillery hit by naval bombar~
Small Confederate detachment rooted out o~
Union attack near a church repelled

Union forces defeat Missouri State Guard
Patterson defeats Jackson, but squanders ~
Confederate victory in Missouri

Union forces divide Confederate forces; h~
Irvin McDowell's recon-in-force defeated ~
Confederacy wins and Jackson earns the mo~
First major battle west of the Mississippi
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#or with
select(
battle_data,

-c(

V V. V V V V V V V V V VvV
© 0 N O U b W N -

vV Vv
[
= ©

> 12

# A tibble:

5, 3)

12
start
<date>
1861-04-12
1861-05-18
1861-05-29
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

X 4

end

<date>
1861-04-13
1861-05-19
1861-06-01
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

victor
<chr>
Confederate

Inconclusive
Inconclusive

Union
Confederate
Union
Union
Confederate
Union
Confederate
Confederate
Confederate

description

<chr>

Beauregard takes Charleston Federal fort
Union gunboats fight Confederate artillery
Confederate artillery hit by naval bombar~
Small Confederate detachment rooted out o~
Union attack near a church repelled

Union forces defeat Missouri State Guard
Patterson defeats Jackson, but squanders ~
Confederate victory in Missouri

Union forces divide Confederate forces; h~
Irvin McDowell's recon-in-force defeated ~
Confederacy wins and Jackson earns the mo~
First major battle west of the Mississippi

We can get its victor column as a single-column tibble with:

select(
battle_data,
victor

V V V V V V V V V V V V

O© 0 N o U0 b W N -

vV Vv
[
= ©

> 12

# A tibble:

12
victor
<chr>
Confederate
Inconclusiv
Inconclusiv
Union
Confederate
Union

Union
Confederate
Union
Confederate
Confederate
Confederate

x 1

e
e

Or we can get its victor column as a vector with:

pull(

battle_data,
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victor

> [1] "Confederate" "Inconclusive" "Inconclusive" "Union" "Confederate"
> [6] "Union" "Union" "Confederate" "Union" "Confederate"
> [11] "Confederate" "Confederate"

Exercise 1.25. pull() the casualty vector and calculate its median() value.
Exercise 1.26. pull() the battle description vector and pluck() its third value.
Exercise 1.27. slice() out the third battle’s data, and select() its description.

Exercise 1.28. Use slice_min() to select() the description of the battle with the earliest start
date.

We can rename () the columns of a tibble. For example, the following changes the names start and end
to First_Day and Last_Day:

rename (

battle_data,

First_Day = start,

Last_Day = end
)
> # A tibble: 12 x 6
> First_Day Last_Day casualty victor name description
> <date> <date> <db1l> <chr> <chr> <chr>
> 1 1861-04-12 1861-04-13 0 Confederate Battle 1: Fort Sumter Beauregard~
> 2 1861-05-18 1861-05-19 10 Inconclusive Battle 2: Sewell's P~ Union gunb~
> 3 1861-05-29 1861-06-01 10 Inconclusive Battle 3: Aquia Creek Confederat~
> 4 1861-06-03 1861-06-03 30 Union Battle 4: Philippi (~ Small Conf~
> 5 1861-06-10 1861-06-10 86 Confederate Battle 5: Big Bethel Union atta~
> 6 1861-06-17 1861-06-17 87 Union Battle 6: Boonville ~ Union forc~
> 7 1861-07-02 1861-07-02 114 Union Battle 7: Hoke's Run Patterson ~
> 8 1861-07-05 1861-07-05 244 Confederate Battle 8: Carthage Confederat~
> 9 1861-07-11 1861-07-11 346 Union Battle 9: Rich Mount~ Union forc~
> 10 1861-07-18 1861-07-18 151 Confederate Battle 10: Blackburn~ Irvin McDo~
> 11 1861-07-21 1861-07-21 4690 Confederate Battle 11: First Bul~ Confederac~
> 12 1861-08-10 1861-08-10 2549 Confederate Battle 12: Wilson's ~ First majo~

We can also relocate() the columns of a tibble. For example, the following makes name the left-most

column:

relocate(
battle_data,

name,

.before =

1 #move before first column
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name
<chr>

Battle
Battle
Battle
Battle
Battle
Battle
Battle
Battle
Battle
Battle
Battle
Battle

>
>
>
>
>
>
>
>
>
>
>
>

O 0 N o 0 b W N -

> 10
> 11
> 12

# A tibble:

12 x 6

Fort Sumter
Sewell's Point

: Aquia Creek
Philippi (West V~
Big Bethel
Boonville (Misso~
Hoke's Run
Carthage

O o N o U b~ W N =

: Rich Mountain

10: Blackburn's Ford
11: First Bull Run ~
12: Wilson's Creek ~

start
<date>
1861-04-12
1861-05-18
1861-05-29
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

end

<date>
1861-04-13
1861-05-19
1861-06-01
1861-06-03
1861-06-10
1861-06-17
1861-07-02
1861-07-05
1861-07-11
1861-07-18
1861-07-21
1861-08-10

The following moves start and end to the right of victor:

relocate(

battle_data,
start, end,

.after =

victor

And the following makes casualty the right-most column:

relocate(

battle_data,

casualty,
.after =

Exercise 1.29. rename() victor to winner and made it the penultimate column (i.e., the second from

the right).

last_col()

e Refer to the last_col().

There are two basic ways to define a tibble: column-wise with tibble() or row-wise with tribble()
(you can remember that the latter corresponds to rows because it contains the letter r). For example,

casualty
<db1>
0

10

10

30

86

87
114
244
346
151
4690
2549

victor
<chr>
Confe~
Incon~
Incon~
Union
Confe~
Union
Union
Confe~
Union
Confe~
Confe~
Confe~

the following are two equivalent ways to define the same table:

char <-

c(

"Tantalus", "Pelops", "Atreus",

"Menelaus", "Electra",

)
dad <-

c(

”ZeUS”,

"Iphigenia",

"Tantalus",

"Pelops",

"Atreus",

"Agamemnon",

"Orestes"
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description
<chr>

Beauregard~
Union gunb~
Confederat~
Small Conf~
Union atta~
Union forc~
Patterson ~
Confederat~
Union forc~
Irvin McDo~
Confederac~
First majo~



"Atreus", "Agamemnon", "Agamemnon", "Agamemnon"
)
mom <-
c(
"Plouto", "Dione", "Hippodamia", "Aerope", "Aerope",
"Clytemnestra", "Clytemnestra", "Clytemnestra"
)
tibble(
character = char,
father = dad,
mother = mom
)
> # A tibble: 8 x 3
> character father mother
> <chr> <chr> <chr>
> 1 Tantalus Zeus Plouto
> 2 Pelops Tantalus Dione
> 3 Atreus Pelops Hippodamia
> 4 Agamemnon Atreus Aerope
> 5 Menelaus Atreus Aerope
> 6 Iphigenia Agamemnon Clytemnestra
> 7 Electra Agamemnon Clytemnestra
> 8 Orestes Agamemnon Clytemnestra
tribble(
~ character, ~ father, ~ mother,
"Tantalus", "Zeus", "Plouto",
"Pelops", "Tantalus", "Dione",
"Atreus", "Pelops", "Hippodamia",
"Agamemnon", "Atreus", "Aerope",
"Menelaus", "Atreus", "Aerope",
"Iphigenia", "Agamemnon", "Clytemnestra",
"Electra", "Agamemnon", "Clytemnestra",
"Orestes", "Agamemnon", "Clytemnestra"
)
> # A tibble: 8 x 3
> character father mother
> <chr> <chr> <chr>
> 1 Tantalus Zeus Plouto
> 2 Pelops Tantalus Dione
> 3 Atreus Pelops Hippodamia
> 4 Agamemnon Atreus Aerope
> 5 Menelaus Atreus Aerope
> 6 Iphigenia Agamemnon Clytemnestra
> 7 Electra Agamemnon Clytemnestra
> 8 Orestes Agamemnon Clytemnestra
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Of the two, we will more frequently use tibble(), since it constructs tibbles from vectors (e.g., char,
dad, and mom) rather from individual elements (e.g., "Tantalus", "Zeus", and "Plouto"), and almost all
the data we work with will be prepackaged in a vector.

Exercise 1.30. Use tibble() to organize the following data in a tibble:

e "Southernplayalisticadillacmuzik", 1994L, "Platinum",
e "ATLiens", 1996L, "2 x Platinum",

e "Aquemini", 1998L, "2 x Platinum",

e "Stankonia", 2000L, "4 x Platinum",

e "Speakerboxxx/The Love Below", 2003L, "Diamond",

e "Idlewild", 2006L, "Platinum".

Exercise 1.31. Use tribble() to organize the following data in a tibble:

e "This Is a Long Drive for Someone with Nothing to Think About", 1996L, "",
e "The Lonesome Crowded West", 1997L, "",

e "The Moon & Antarctica", 2000L, "Gold",

e "Good News for People Who Love Bad News", 2004L, "Platinum",

e "We Were Dead Before the Ship Even Sank", 2007L, "Gold"

e "Strangers to Ourselves", 2015L, "".

1.2.7 Saving and Loading Data

Rather than create our own tables with tibble() or tribble(), we’ll usually start with some data that’s
already provided. The input sample could come in several forms: e.g., a .txt file, a .csv file, an Excel
file, a SAS file, a STATA file, or an SPSS file. Fortunately, R can read all of these formats. To load
a sample of data in RStudio, simply go to File/Import Dataset and choose the option that suits your
file format (e.g., choose File/Import Dataset/From Text (readr) if your input file is comma separated
or tab delimited). A window will open where you can specify the file to open and some additional
options. Once you've finished with that, click “Import” and R will load the data into your workspace
and illustrate it in a new window. Moreover, R will print to your console the code that you could have
run to load and view these data.

For example, download the Civil War data here!” and load it into your workspace with File/Import
Dataset/From Text (readr). Doing so should print something like this to your workspace:

library(readr)
CWSAC_civil_war_data <- read_csv("~/Downloads/CWSAC_civil_war_data.csv'")

View(civil_war)

The first line is redundant because loading the tidyverse package implicitly loaded the readr package.
The second line reads the data from the file saved at "~/Downloads/CWSAC_civil_war_data.csv"—your
file path name will probably differ—and loads it into a tibble called CWSAC_civil_war_data. And the
third line tells R to show us this tibble.

At this point, I’d usually fine-tune the code above and rerun it. For example, I'd cut the needless
library(readr) and View(civil_war) expressions, shorten the name of the tibble created to civil_war,
and add a col_types option to specify the data type of each column:

"https://www.dropbox.com/s/56007hal 7fpfps5/CWSAC _civil _war_data.csv?dl=1
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civil_war <-
read_csv (
"~/Downloads/CWSAC_civil_war_data.csv",

col_types = "cDDcfcl"

In the code above, "cDDcfcl" is shorthand for “character, Date, Date, character, factor, character, and
logical.” Without the col_types = "cDDcfcl" option, read_csv() would make Significance a character
string (rather than a factor) and union_victory a double (rather than a logical).

The solution above required us to manually download the data to our computer. But we can skip this
step by passing the URL into our read_csv() call:

civil_war <-
read_csv (
"https://www.dropbox.com/s/56007hal7fpfps5/CWSAC_civil_war_data.csv?dl=1",
col_types = "cDDcfcl"

Now read_csv() downloads the data for us!

I could save a tibble as a .csv file with write_csv(). But exporting data as a .csv is slow. And, more
troubleshooting, .csv files don’t save our column data types. For example, the Significance column of
civil_war is a factor:

glimpse(civil_war)

But this column gets downgraded to a character string if I save the tibble as a .csv file and then reload
it:

write_csv(civil_war, '"~/Downloads/my_cw_data.rds") #save file in my Downloads folder
civil_war_2 <- read_csv('"~/Downloads/my_cw_data.rds")

glimpse(civil_war_2)

To save and load data quickly without sacrificing any metadata, we use write_rds() and read_rds().
For example, using these functions doesn’t change Significance from a factor to a character string:

write_rds(civil_war, "~/Downloads/my_cw_data.rds")
civil_war_2 <- read_rds("~/Downloads/my_cw_data.rds")

glimpse(civil_war_2)

For another example, the following saves the tibble save_me in the file "saved_tibble.rds":
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save_me <-
tibble(
X = 1:3,
y = c("a", "b", "c")

write_rds(
save_me,
"saved_tibble.rds"

And the following loads this tibble with read_rds():

loaded_tibble <- read_rds("saved_tibble.rds")

loaded_tibble

> # A tibble: 3 x 2
> Xy

> <int> <chr>

> 1 1 a

> 2 2 b

> 3 3 c

Note that I use <- to name the loaded data loaded_tibble. I must rename this tibble because its old
name, save_me, didn’t get saved in "saved_tibble.rds".

Now let me show you how not to save and load tibbles:

save (
save_me,
file = "saved_tib.rds"

#Delete tibble after saving it
rm(save_me)
load("saved_tib.rds")

#Now tibble is back, with original name

save_me

> # A tibble: 3 x 2
> Xy

> <int> <chr>

> 1 1l a

> 2 2 b

> 3 3 c
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So, as you see, save() and load() can also save and load the tibble. But you should never use these
functions. The problem is that load() not only loaded the tibble, it also loaded the old tibble name,
save_me. And this convention makes your code nearly impossible to follow. For example, if you write
load("saved_tib.rds") and load("other_tib.rds") at the top of your file and then reference save_me
100 lines later, the reader will have no clue where this tibble came from. To them, it’ll seem to have
appeared out of thin air. They’ll look for a definition by searching the document for "save_me <-",
but nothing will come up (assuming the tibble was defined and saved in a different script file); then
they’ll google “R save_me” thinking that it must be some built-in R thing, and nothing will come up;
and then they’ll finally realize that it stems from the evil load() function, but even then they won’t
know whether it came from "saved_tib.rds" or "other_tib.rds". In contrast, the reader knows exactly
where loaded_tibble comes from when you write loaded_tibble <- read_rds("saved_tibble.rds").

Exercise 1.32. We will now load and save a data set.

« Download the arrest data found at this website!® as a .csv file.
o Use “File/Import Dataset/From Text (readr)” to load the data set. This should execute
read_csv().
e Modify the read_csv() calls so that columns 1-3, 7-9, 11, and 14 are factor, columns 5, 6, and 12
are integers, and the rest are character strings.
— Specify col_types = c("fffciifffcficfc").
o (all your tibble arrests.
e Write glimpse(arrests) to confirm that the variables have reasonable data types.
— Unfortunately, we can’t easily convert Arrest Date into a Date variable because its dates
have an unconventional format. (We’'ll sort this out in the next chapter.)
e Use write_rds() to save this tibble as an .rds file.
e Use read_rds() to load file you just created into a tibble called evanston.
o glimpse() the result to confirm that evanston has the same column data types as arrest.

1.3 Lab: Workspaces

In this lab, you’ll download and load all the data you’ll use in this book. It’ll be good to get this out
of the way, so that there won’t be any data issues going forward.

First, we will download all the packages that we will use. Packages are collections of functions that
other R users have written and uploaded to a central repository for others to use. We already installed
the tidyverse package in section 1.2.1, but we will use a few more packages in addition to these two.
You can download all the required packages by running the code below in the console—while connected
to the internet—and following the given prompts:

install.packages('"janeaustenr™)
install.packages("tidytext")
install.packages ("broom")
install.packages('geosphere")
install.packages("tictoc")
install.packages('"chatgpt")
install.packages('"sf'")
install.packages('"spData")

You will save each batch of data in a separate R project folder. To create a new R project folder, go
to File/New Project/New Directory/New Project and then specify a name and location for the folder.

8https://data.cityofevanston.org/Police/Evanston- Arrests/25em-v4fn
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Doing so will create a new folder on your hard drive with a single .Rproj file inside it. Click on this
Rproj file to open the R project with RStudio. Now press Ctrl+Shift+N (Windows or Linux) or
Cmd+Shift+N (Mac) to create a new R script file. Write library(tidyverse) at the top of this file.
And press Ctrl+S or Cmd+S to save this R script file as code.R, in the project folder. You will do this
entire process for each exercise below.!”

Exercise 1.33. Download the R_projects folder here.?’ This folder contains all the project folders you
that will need for this book. If you manage to download R_projects then you can skip the remaining
exercises, but otherwise following the remaining exercises to create the R projects for yourself.

Exercise 1.34. Create an R project called “quartet” for the lecture in section 2.2. Run the following
from the project’s code.R file:

library(tidyverse)

netflix <-
"https://www.dropbox.com/s/brcz450ouuvgd3fc/netflix.csv?dl=1" %>%

read_csv

evanston <-
"https://www.dropbox.com/s/cfhitem7f4fnb7c/Evanston_Arrests.csv?dl=1" %>%
read_csv (

col_types = c("fffciifffcficfc"),
na = character()

(Recall that you downloaded evanston from the city of Evanston’s website in exercise 1.32.)

Exercise 1.35. Create an R project called “judges” for the lab in section 2.3. Run the following from
the project’s code.R file:

library(tidyverse)
court_data <-

"https://www.dropbox.com/s/h51bns987xqviic/court_data.csv?dl=1" %>%
read_csv(col_types = "dqcccllliccc")

Exercise 1.36. Create an R project called “ggplot” for the lecture in section 3.2. Run the following
from the project’s code.R file:

library(tidyverse)

ufc <-

9When closing a project, R will ask you whether you would like to “Save workspace image.” I recommend always
clicking “No” here, so that whenever you open the project (by clicking on the .Rproj file) you start with a clean slate.
Otherwise, clutter tends to accumulate in your workspace.

2https://www.dropbox.com/sh/q8zkf4bddkgb484/AABqYOOESEIeXX1zq QkT52Ua?dl=0
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"https://www.dropbox.com/s/le5qsv3ty5vk5hs/ufc.csv?dl=1" %>%

formula_1 <-
"https://www.dropbox.com/s/dn@0cwolrol04vw/f_1.csv?dl=1" %>%
read_csv

Exercise 1.37. Create an R project called “alibaba” for the lab in section 3.3. Run the following from
the project’s code.R file:

library(tidyverse)

alibaba_wide <-
"https://www.dropbox.com/s/fh25g7fulmjmiei/alibaba.csv?dl=1" %>%
read_csv (

col_types
cols(
order = col_factor(),

score col_factor(),

item = col_factor(),

brand = col_factor(),
category = col_factor(),
sub_category = col_factor(),
merchant = col_factor(),

quantity = col_integer()

Exercise 1.38. Create an R project called “wrangle” for the lecture in section 4.2. Run the following
from the project’s code.R file:

library(tidyverse)

superbowl_ads <-
str_c(
"https://www.dropbox.com/scl/fi/2o0g6umxkwgp3cd5jiy9y1l/",
"ads.csv?rlkey=pxvpmlx2xstj2byftllcocspl&dl=1"
%> %

read_csv

gradebook <-
"https://www.dropbox.com/s/js608elngzb9ptw/student_grades.csv?dl=1" %>%
read_csv

chess_panel <-

"https://www.dropbox.com/s/8dsrtmf019kkjep/chess_games.csv?dl=1" %>%
read_csv
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Exercise 1.39. Create an R project called “eversight” for the lab in section 4.3. Run the following
from the project’s code.R file:

library(tidyverse)

eversight_quantity <-

"https://www.dropbox.

read_rds

eversight_price <-

"https://www.dropbox.

read_rds

com/s/4uf6lagkuqtedrd/eversight_quantity.rds?dl=1" %>%

com/s/i45zedjyjnc3ed4l/eversight_price.rds?dl=1" %>%

Exercise 1.40. Create an R project called “rationing” for the lab in section 4.4. Run the following
from the project’s code.R file:

library(tidyverse)

category <-

"https://www.dropbox.

read_csv(col_types =

order_dates <-

"https://www.dropbox.

read_csv(col_types =

inv_DC <-

"https://www.dropbox.

read_csv(col_types =

inv_store <-

"https://www.dropbox.

read_csv(col_types =

order_store <-

"https://www.dropbox.

read_csv(col_types =

ship_store <-

"https://www.dropbox.

read_csv(col_types =

Exercise 1.41. Create an R project called “disintermediation” for the lab in section 4.5. Run

com/s/p2hkgz28w2hdevc/category.csv?dl=1" %>%
Ilfcll)

com/s/vprgd8ddo3e4bnf/order_dates.csv?dl=1" %>%
IID'LII)

com/s/uowsp5v7pqd6e6ng/inv_DC.csv?dl=1" %>%
llfD-i ll)

com/s/zncvifOy38wtetx/inv_store.csv?dl=1" %>%
DDA DY)

com/s/crlgxr2y4ngm7pa/order_store.csv?dl=1" %>%
"ffDcic")

com/s/512rjmj5jlgyfb8/ship_store.csv?dl=1" %>%
"ffDci")

following from the project’s code.R file:
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library(tidyverse)

Jobs <-
"https://www.dropbox.com/s/7z5zgjm8cau2v5j/disintermediation_orders.csv?dl=1" %>%
read_csv

Shortest_Distances <-
"https://www.dropbox.com/s/dgh6go372ah34oc/disintermediation_distances.csv?dl=1" %>%
read_csv

Exercise 1.42. Create an R project called “Im” for the lecture in section 5.2. Run the following from
the project’s code.R file:

library(tidyverse)
library(broom)

wine_Tlist <-
"https://www.dropbox.com/s/u87sdlbucws6ea2/winemag-data.rds?dl=1" %>%

read_rds

student_survey_data <-
str_c(
"https://www.dropbox.com/scl/fi/xv6xp46sd4ynbvomkdixrv/",
"end_of_year_survey.csv?rlkey=otphgh8c088sze3uw87eb2ph3&d1=1"
) %>%

read_csv

pokemon_raw <-
str_c(
"https://www.dropbox.com/scl/fi/2ye29cmeq68tmhg2vwjlo/"
"pokemon_battles.rds?rlkey=4wbalnlOmww9eh7zkg9tbha7g&d1l=1"
%>%

read_rds

Exercise 1.43. Create an R project called “cars” for the lab in section 5.3. Run the following from
the project’s code.R file:

library(tidyverse)
library (broom)
library(geosphere)

cars_raw <-

"https://www.dropbox.com/s/6jvg7nb4llgxtf5/car_data.csv?dl=1" %>%
read_csv(col_types = "fffiffddddd")

Exercise 1.44. Create an R project called “glm” for the lecture in section 6.2. Run the following from
the project’s code.R file:
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library(tidyverse)
library(broom)

bike <-
"https://www.dropbox.com/s/d91dnhph6zfqp6j/citi_bike.rds?dl=1" %>%

read_rds

time_use_data <-
str_c(
"https://www.dropbox.com/scl/fi/xojwooj8qfzi9impa7yyy/",
"health_data.rds?rlkey=mgwrlch8w60ozxy61ky5jv81fo&dl=1"
) %>%
read_rds

Exercise 1.45. Create an R project called “radiation” for the lab in section 6.3. Run the following
from the project’s code.R file:

library(tidyverse)
library(broom)

facility <-
"https://www.dropbox.com/s/2fw57ayxtgrja20/facility.csv?dl=1" %>%
read_csv(col_types = "ffffffD")

ler <-
"https://www.dropbox.com/s/f07kbtpudgk2cdc/ler.csv?dl=1" %>%
read_csv(col_types = "fDiiiiii")

power <-

"https://www.dropbox.com/s/zgsyt7zglodpkic/power.csv?dl=1" %>%
read_csv(col_types = "fDdd")

radiation <-
"https://www.dropbox.com/s/4s8shd41b4e220c/radiation.csv?dl=1" %>%
read_csv(col_types = "fidd")

shutdown <-

"https://www.dropbox.com/s/7j5yu6h3tehjm7z/shutdown.csv?dl=1" %>%
read_csv(col_types = "fDDf'")

Exercise 1.46. Create an R project called “menu_ cost” for the lab in section 6.4. Run the following
from the project’s code.R file:

library(tidyverse)
library(broom)

menu_cost <-
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str_c(
"https://www.dropbox.com/scl/fi/huvOb8wmhifc2febcdarh/",
"menu_cost.csv?rlkey=1peab9g53jbvdsrbyywmckxkx&d1=1"

) %>%

read_csv(col_types = "ffDddi")

Exercise 1.47. Create an R project called “gpt” for the lab in section 6.5. Run the following from
the project’s code.R file:

library(tidyverse)
library(chatgpt)

limerick_train <-
str_c(
"https://www.dropbox.com/scl/fi/myymv6fk4pmp53fimwxss/",
"limerick_train.csv?rlkey=9zpd35dsz154vdz3xplp6aypw&dl=1"
%> %

read_csv

limerick_test <-
str_c(
"https://www.dropbox.com/scl/fi/ecoi7v87nvscleryrexpw/",
"limerick_test.csv?rlkey=h48ffe60rx5p7rg2bf2fvka8j&dl=1"
) %>%

read_csv

Timerick_train_w_scores_clean <-
str_c(
"https://www.dropbox.com/scl/fi/rx19g6wo4280jsisnslp4/",
"limerick_train_w_scores.csv?rlkey=6ml3jav3y364jxhmy0ofoh7j4&d1=1"
) %>%
read_csv

Timerick_test_w_scores_clean <-
str_c(
"https://www.dropbox.com/scl/fi/7t4spOulypp2szu5jork8/",
"limerick_test_w_scores.csv?rlkey=j9q7rkgy0fi4h7ae3wsj8x25r&d1=1"
%> %

read_csv

limerick_train_w_gpt_predictions_clean <-
str_c(
"https://www.dropbox.com/scl/fi/bon9gdaunfl3wtblimhq70/",
"limerick_train_w_gpt_predictions.csv?rlkey=leuwo34b0d60qrifmullnoxad&dl=1"
) %>%

read_csv

limerick_test_w_gpt_predictions_clean <-
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str_c(
"https://www.dropbox.com/scl/fi/upcjxqgi4mj7dnihye3boh/",
"limerick_test_w_gpt_predictions.csv?rlkey=4x21gfi3glshzs3fanx@oOasz&d1=1"
) %>%

read_csv

prediction_evaluator_fn <-
str_c(
"https://www.dropbox.com/scl/fi/ylnkolcdfg2aokbukofv3d/",
"evaluation_fn.rds?rlkey=pbhysq8jdumchxc5x8jn3gkih&d1l=1"
) %>%

read_rds

Exercise 1.48. Create an R project called “fishing” for the lab in section 7.3. Save the illegal fishing
data found here?! to this project’s folder. However, do not attempt to load these data into your
workspace, as doing so will require some special spatial functions.

1.4 Commentary

1.4.1 <-vs. =

The <- and = operators are different, but the difference between them is highly technical (e.g., see this
thread?? and section 8.2.26 of the R Inferno book?®). And while we often can’t replace = with <-—e.g.,
mean(c(1l, 2, NA), na.rm <- TRUE) yields an error—we can almost always replace <- with =. For example,
we could have written debt_2012 = 16066241407385 instead of debt_2012 <- 16066241407385 in section
1.2.2. Therefore, you may be tempted to forego the <- symbol altogether, and use = for everything.
Unfortunately, that would be deemed poor coding etiquette. Instead, the standard practice is to use =
if and only if your code is inside a function’s parentheses, such as mean(c(1, 2, NA), na.rm = TRUE)
and to use <- otherwise. Admittedly, this is a rather ad hoc rule—in many circumstances, either <- or
= would do—but it’s now a deeply entrenched convention: e.g., it’s formally mandated by Google’s R
style guide.

Finally, to reiterate, the == symbol is completely different from = and <-. Whereas we use = and <- to
define new R objects or parameters, we use == to create logicals. That is, we use == to create TRUE or
FALSE values (see section 1.2.4).

1.4.2 Automating Code

I cleaned the code that got generated from the File/Import Dataset/From Text (readr) call at the
end of section 1.2.6 for two reasons. First, I wanted to incorporate the col_types = "cDDcfcl" option.
Second, and more importantly, I always want my entire empirical methodology—from loading the raw
data to saving the final plots—to be documented in code so that I have a full transcript of the data
science process. Since it’s so easy to load data with a mouse, you may be tempted to omit these
data-loading steps in your code. But you’ll be angry with yourself if you come back to your code in
a year’s time and find a gaping hole where you imported all your data, the details of which you may
have forgotten. To avoid having to remember idiosyncratic details of the data-cleaning process, it’s
best to make your code fully automated, with no manual overrides. Indeed, you should aim to write

Zhttps://www.dropbox.com/sh/hhdelcOty12nyqf/AAAviR01c8Wd_oVaUuOUZH7na?dl=0
22https:/ /stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators-in-r
23http://www.burns-stat.com/pages/Tutor/R__inferno.pdf
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all your programs in such a way that they can be executed in their entirety from a clean slate with a
simple Ctrl4Shift+Enter (or Cmd+Shift+Enter). The difference between fully automated code and
nearly fully automated code is like the difference between a job on your to-do list that’s completely
finished—you can cross it off and forget about it—and a job that’s finished except for one pesky detail
that you've got to keep lingering tabs on.?*

Initially it’ll be difficult to avoid manual overrides. But whenever you’re tempted to switch from the
keyboard to the mouse, take five minutes to Google the proper coding solution. R has a programming
answer for basically any data problem, and the fastest code-based solution is almost always faster to
implement than the fastest point-and-click alternative. Thus, you’ll ultimately become a faster data
scientist if you commit to doing everything with code. And, what’s more, updating a report that’s
based on a point-and-click process requires redoing all the pointing and clicking, whereas updating a
report that’s based on a computer program requires simply pressing Ctrl4+Shift+Enter. In short, if you
leave your code in a set-it-and-forget-it state, you can costlessly rerun it any number of times, after
any stretch of time.

1.4.3 Glossary of stringr Functions

The following examples illustrate the most common stringr functions. This list doesn’t include every
stringr function, but it includes all the ones we’ll use in this book.

str_c() concatenates character strings:

Str‘_C("a", C(”b”, l|cll)’ Sep = n ll)

> [l] Ha bll lla C"

str_count() counts character string elements:

str_count("How many spaces are here?", " ')

> [1] 4

str_count(
"How many words here start with a w?",

n \\bW\\W* n

> [1] 3

str_count(
"How many words here start with a capital w?",

n \\bW\\W* n

> [1] ©

In the code above, "\\bw\\wx" is shorthand for “a word that starts with w” and "\\bw\\wx" is shorthand
for “a word that starts with W.” Hence, the second call returns 3—for "words", "with", and "w"—the
third call returns @ because none of its words begin with a W.

24My friend Juan Serpa tells me that that I'm too doctrinaire about this point. He reminds me that a paper we wrote
together relied on quite a bit of manual data cleaning. So, I'm probably being a bit of a hypocrite here.
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str_detect() identifies whether a character string contains a specific substring:

str_detect(
"Do any words start with a w?",

"\ \bw\ \wx"

> [1] TRUE

str_detect(
"Do any words start with a capital w?",

n \\bW\\W* n

> [1] FALSE
str_extract() and str_extract_all() pull out substrings from a character string:
str_extract(

"Get the first word starting with a w",

n \\bW\\W* n

> [1] "word"

str_extract_all(
"Get all the words starting with a w",
n \\bW\\W*”

> [[1]]

> [1] "words" "with" "w"

str_flatten() compresses a character string vector into a single character string:

c("paste", "these", "words", "together") %>%
str_flatten(collapse = "___")

> [1] "paste___these___words___together"

str_length() counts the number of characters in a character string:

str_length("How many characters are here?")

> [1] 29

str_locate() and str_locate_all() report the location of substrings in a character string:
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str_locate(

"Find the first word starting with a w",

”\\bW\\W*"
)
> start end
> [1,] 16 19

str_locate_all(

"Find all the words starting with a w",

"\\bw\\wx"
)
> [[1]]
> start end
> [1,] 14 18
> [2,] 29 32
> [3,] 36 36

str_remove() and str_remove_all() delete substrings in a character string:

str_remove (
"Remove the first word starting with a w",

”\\bW\\W* n

> [1] "Remove the first starting with a w"

str_remove_all(
"Remove all the words starting with a w",

”\\bW\\W*"

> [1] "Remove all the starting a "
str_replace() and str_replace_all() delete substrings in a character string:
str_replace(

"Replace the first word starting with a w",

"\\bw\\wx",
ll***ll
> [1] "Replace the first *x*xx starting with a w"

str_replace_all(
"Replace all the words starting with a w",

"\\bw\\wx",
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l|***ll

> [1] "Replace all the **x starting **xx a xxx*"

str_to_lower (), str_to_upper(), and str_to_title() re-expresses a character string in lowercase, up-
percase, and title case:

str_to_lower ("lower UPPER Title")
> [1] "lower upper title"
str_to_upper ("lower UPPER Title")
> [1] "LOWER UPPER TITLE"

str_to_title("lower UPPER Title")

> [1] "Lower Upper Title"

str_squish() removes redundant white space in a character string:

str_squish(" remove extra spaces )

> [1] "remove extra spaces"
str_sub() returns a specified substring:
str_sub(

"Get 10th through 14th characters",

start = 10,
end = 14

> [1] "throu"
str_subset() returns the strings of a character string vector that contain a specific substring;:
str_subset(

c("which", "words", "contain'", "a", "w?"),

”W”

> [1] "which" "words" "w?"

str_which() is like str_subset(), except it returns the location of the strings rather than the strings
themselves:
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str_which(
c("which", "words", "contain", "a", "w?"),

"

>[1]1 125

1.5 Solutions

1.3

fine_grid <- seq(-1, 1, length.out = 106)
1.4

x <- log(1:100)
mean (x)

1.5

prod(1:100) / prod(100:170) #this is greater than one
1.6

debt_change <- debt - lag(debt)

1.7

debt_growth <- (debt - lag(debt)) / lag(debt)
1.8

lag(rep(c(TRUE, FALSE), 10))

1.9

lead(rep(c(TRUE, FALSE), 10))

1.10

lead(rep(c(TRUE, FALSE), 10), n = 6)

1.11

x > lead(x)
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1.12

(x > lead(x)) & (x > lead(x, 2))

1.13

30)
y <= rnorm(n = 30)
z <= x/y

hist(z)

X <= rnorm(n

1.15

(x==y) * x + (xi=y) * x"2

1.16

mean(x %in% y)

1.17

(X::@) I (y::@) | (z::@)
#or

any (x==0, y==0, z==0)

1.18 Option 1
1.19

str_remove_all(
c("remove", "vowels", "from", "this", "vector"),

"[aeiou]"

1.20
today() - mdy("11/06/1983")

1.21

today () + days(1076)

1.22

now() + seconds(1076)

1.23
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seconds (1079) /weeks (1)
1.24
vector_of_dates <- today() + days(1:1075)

vector_of_months <- month(vector_of_dates, label = TRUE)
mean(vector_of_months == "Nov'")

1.25

casualty_vec <-
pull(
battle_data,
casualty

median(casualty_vec)

1.26

desc_vector <-
pull(
battle_data,
description

pluck(desc_vector, 3)

1.27
third_battle <-
slice(

battle_data,
3

select(third_battle, description)

1.28
first <-
slice_min(

battle_data,
start

select(first, description)
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1.29

temp_tib <-
rename (
battle_data,
winner = "victor"

relocate(
temp_tib,
winner,
.before = last_col()

)
1.30
tibble(
album =
c(
"Southernplayalisticadillacmuzik",
"ATLiens", "Aquemini", "Stankonia",
"Speakerboxxx/The Love Below",
"Idlewild"
)’
year =
c(1994L, 1996L, 1998L, 2000L, 2003L, 2006L),
RIAA =
c(
"Platinum", "2 x Platinum", "2 x Platinum",
"4 x Platinum", "Diamond", "Platinum"
)
)
1.31
tribble(

~ album, ~ year, ~ RIAA,

"This Is a Long Drive for Someone with Nothing to Think About", 1996L,
"The Lonesome Crowded West", 1997L, "",

"The Moon & Antarctica", 2000L, "Gold",

"Good News for People Who Love Bad News", 2004L, "Platinum",

"We Were Dead Before the Ship Even Sank", 2007L, "Gold",

"Strangers to Ourselves", 2015L, ""

1.32

arrests <-
read_csv (

o1



"~/Downloads/Evanston_Arrests.csv", #change this to where you saved the file
col_types = c("fffciifffcficfc")
)
glimpse(arrests)
write_rds(arrests, '"~/Downloads/evanston_arrest_data.rds")
evanston <- read_rds('"~/Downloads/evanston_arrest_data.rds'")
glimpse (evanston)
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Chapter 2

Functions

2.1 Introduction

In this chapter, I cover the verbs of the R programming language: the functions that act upon data. I
begin, in section 2.2.1, by explaining how to apply functions (although you’ve probably already figured
most of this out). In section 2.2.2 I cover the special case of if-else statements, which, annoyingly,
follow a different notation. I then supercharge this discussion in section 2.2.3 by showing you how to
apply an entire sequence of functions. You do so by using conveyor belt symbol %>% to pass the data
through a functional assembly line. This technique will level up your data science game from craft
manufacturing to mass production.

In sections 2.2.4 and 2.2.5, I will explain how to format functional assembly lines, and how to turn
them into new, stand-alone functions. However, we won’t need to define many functions because R
already provides us with so many.

In section 2.2.6 I define the bracketed expression as a “universal connector” that allows us to attach
any block of R code to a functional assembly line. In short the bracketed expression turns a given
chunk of R code into a black box, which takes inputs from one conveyor belt and passes outputs
toanother conveyor belt. For example, we’ll use bracketed expressions to add to our assembly lines
old-fashioned functions, which wouldn’t otherwise be compatible with the %>% symbol due to their
outdated input-output conventions.

In sections 2.2.7-2.2.10 I cover the four most important functions in R: mutate(), filter(), summarise(),
and group_by(). Around 95% of R programming boils down to this functional quartet. However,
rather than functions, it’s better to think of the first three elements of this quartet as platforms:
mutate () being the platform for modifying tibble columns, filter() the platform for selecting tibble
rows, and summarise() the platform for deriving summary statistics. These platforms serve as vehicles
for applying other functions: e.g., will embed functions inside of mutate() to define new variables
and embed functions inside of filter() to remove observations. The last element of the quartet,
group_by (), modifies the other three. It partitions the sample into discrete chunks, which subsequent
mutate(), filter(), and summarise() calls get implemented by. Finally, in section 2.2.11 I will present
a new way to execute groupwise operations, which circumvents the group_by () function.

After this chapter’s lecture, you will be able to perform most common data manipulations. The lab
in section 2.3 will demonstrate this fact. In this lab you will do real data science, replicating the core
analysis of an empirical project published in an academic journal.

I conclude the chapter with some afterthoughts. In section 2.4.1 I discuss the standard layout of modern
R code: a sequence of tibble-input-tibble-output functions connected with %>% conveyor belts into a
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functional assembly line. However, the functions comprising this tibble-level assembly line will usually
contain assembly lines of their own, nested within their parentheses. These nested assembly lines
comprise a sequence of vector-input-vector-output functions that modify the tibble’s vector columns.
Hence, our code will contain one macro-level assembly line, which passes our tibble through a sequence
of tibble transforming functions, and a set of micro-level assembly lines, which pass the tibble columns
through a sequence of vector transforming functions. In section 2.4.2 I explain why it’s better to
arrange functions into an assembly line than it is to nest them inside one another (which is the old-
school approach). In section 2.4.4 I mention some specialized functions that we could have used to
streamline our analysis. In section 2.4.5 I explain how to define functions of multiple variables. In
section 2.4.6 1 provide a brief primer on downloading packages from the Comprehensive R Archive
Network (CRAN). In section 2.4.7 I provide examples of the four forcats functions I introduced in
section 1.2.5. And I conclude, in section 2.4.8, with a piece of high-level coding advice: try to make
different things the same to avoid writing multiple distinct sets of instructions.

For the lecture, you can work in the code.R file of the quartet project you created in exercise 1.34, and
for the lab you can work in the code.R file of the judges project you created in exercise 1.35.

2.2 Lecture

2.2.1 Calling Functions

Functions transform input objects into output objects. To indicate something is a function we write a
set of parentheses after it. For example, we refer to the sum function as sum() and the mean function
as mean(). To apply a function to an object, we place the object inside the function’s parentheses: e.g.,
sum(1:10) = 55 and mean(1:10) = 5.5. But not all functions require inputs: e.g., the time this sentence
was written is

now ()

> [1] "2025-04-09 11:13:10 CDT"

What is now() you may ask? Well, it’s a function that returns the current time (try it: it’s pretty fun).
But if you ever want to know what a function does—as you will often when reading this book—just
write ? and then the function’s name in your console. For example, running ?str_flatten in your
R console yields the documentation for function str_flatten(). This documentation can be a bit
daunting, but here’s a trick: start at the Examples section, which is at the bottom of almost every help
page. For example, we find the following at the bottom of the str_flatten() documentation:

str_flatten(letters)
> [1] "abcdefghijklmnopgrstuvwxyz"

str_flatten(letters, "-")

> [1] "a-b-c-d-e-f-g-h-i-j-k-1-m-n-o-p-q-r-s-t-u-v-w-x-y-z"

These two str_flatten() calls clearly illustrate what this function does. Indeed, the fastest way to
learn how a function works is to execute the examples provided in its help page.

For another case, the bottom of the ?str_replace_all documentation provides the following:
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fruits <- c("one apple", "two pears", "three

str_replace_all(fruits, "[aeiou]'", toupper)

> [1] "OnE ApplE" "twO pEArs" "thrEE
str_replace_all(fruits, "[aeiou]", "-")

> [1] "-n- -ppl-" "tw- p--rs" "thr--
str_replace(fruits, c("a", "e", "i"), "-")

> [1] "one -pple" "two p-ars" "three

bananas")

bAnAnAs"

b-n-n-s"

bananas"

These examples gives you a pretty good sense for how this function works.

When you’re finished with the Examples section, you can then read the Usage and Arguments sections,
which explain what the function expects as inputs. For the case of str_replace_all(), the documen-
tation reports that the function requires three inputs, or “arguments”. As always, these arguments are
ordered and named, with the first input called string, the second called pattern, and the third called
replacement. Hence, we can invoke this function with:

str_replace_all(

string = "Four legs good, two legs bad",

pattern = "bad",
replacement = "better"

> [1] "Four legs good, two legs better"

Or we can invoke it with

str_replace_all(
"Four legs good, two legs bad",
"bad",
"better"

> [1] "Four legs good, two legs better"

In the latter case, R uses the first string as the first argument, the second string as the second argument,
and the third string as the third argument.

Note that we give each input its own line. We do so for aesthetic purposes, as how we format the white
space between the parentheses doesn’t matter. So, for example, the following are equivalent (albeit

uglier) ways of calling this function:

str_replace("Four legs good, two legs bad", "bad", "better")

> [1] "Four legs good, two legs better"

55



str_replace(
"Four legs good, two legs bad",

"bad", "better'")

> [1] "Four legs good, two legs better"

str_replace(

"Four legs good, two legs bad",
llbadll q
"better"

> [1] "Four legs good, two legs better"

Some functions have default inputs. For example, the ?str_count documentation reports that this
function has arguments string and pattern = "". The = "" part after pattern indicates that R will
treat this input as "" unless we otherwise specify it. Thus, ignoring this input is equivalent to setting
it to an empty character string:

#count number of characters:
str_count("With public sentiment, nothing can fail; without it nothing can succeed")

> [1] 71

str_count(
string = "With public sentiment, nothing can fail; without it nothing can succeed",

pattern = ""

> [1] 71

But, of course, we are free to choose a different pattern:

#count number of times '"nothing'" appears

str_count(

string = "With public sentiment, nothing can fail; without it nothing can succeed",
pattern = "nothing"

)

> [1] 2

Exercise 2.1. Use str_detect() to create a vector of logicals that identify the elements of the
im_burning vector, defined below, that contain an exclamation mark.
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e Consult the examples provided in ?str_detect.

o Ignore the negate argument, and its value will default to FALSE.

e Your str_detect() call should output the vector c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE,
FALSE).

im_burning <-
c(

"Oh, I’m burning!",
"I wish I were out of doors!",
"I wish I were a girl again,",
"half savage and hardy, and free;",
"and laughing at injuries,",
"not maddening under them!",

"Why am I so changed?"

Exercise 2.2. Use str_detect() to identify the elements of im_burning that do not contain an excla-
mation mark.

o Use the negate argument.
e Your str_detect() call should output the vector c(FALSE, FALSE, TRUE, TRUE, TRUE, FALSE,
TRUE).

Exercise 2.3. We will count the number of weekend days over the next year.

e Let vector_of_dates comprise the 1:365 days() that follow today().

e Create a vector of logicals called date_is_weekend that specifies whether the wday (label = TRUE)
of each element in vector_of_dates is %in% c("Sat", "Sun"). The nth element of date_is_weekend
should be FALSE if the nth date in vector_of_dates is a weekday.

e sum() the number of TRUE elements in date_is_weekend.

Exercise 2.4. We will now pick a random 10 days over the next year.

e Create a vector that includes the 365 days() that follow today().
e sample() 10 random elements from this vector.
— Use the replace = FALSE option to ensure that you don’t pick the same day twice.

Exercise 2.5. We will now pick a random 10 weekend days over the next year.

e Create a vector called vector_of_dates that includes the 365 days() that follow today ().

e Create a second vector of logicals called vector_of_weights that specifies whether the wday (label
= TRUE) of each element in vector_of_dates is %in% c("Sat", "Sun"). The nth element of
vector_of_weights should be FALSE if the nth date in vector_of_dates is a weekday.

e sample() 10 random elements from vector_of_dates with replace = FALSE and prob = vec-
tor_of_weights. This last option makes the probability of selecting a weekday zero.

2.2.2 Conditional Statements

An important function that does not follow the standard notation is the if-else statement. The notation
for these expressions looks like this:
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if(logical_expression) output_if_TRUE else output_if_FALSE

Or we could add brackets to accommodate multiple lines of code:

if(logical_expression) {

output_if_TRUE #This could be a multi-line code chunk
} else {
output_if_FALSE #This could be a multi-line code chunk

The expressions above yield output_if_TRUE if logical_expression = TRUE, yield output_if_FALSE if
logical_expression = FALSE, and yield an error if logical_expression is neither TRUE nor FALSE. For
example, the following outputs a frowny face if it’s Friday the 13th and outputs a smiley face otherwise:

if(day(today()) == 13 & wday(today(), label=TRUE) == "Fri") ":(" else ":)"

The “else” portion of the conditional statement is optional. For example, the following returns "happy
hour" if it’s between 5:00 and 6:00PM, and otherwise it does nothing.

if(hour(now()) == 17) "happy hour"

Since the “else” portion is optional, it’s crucial that you do not write else on a new line. For example,
the following yields an error:

if(hour(now()) == 17) "happy hour"
else "not happy hour"

Error in parse(text = dinput): <text>:2:1: unexpected 'else'
1: if(hour(now()) == 17) "happy hour"
2: else

>
>
>
> A

The problem is that if(hour(now()) == 17) "happy hour" is a “complete thought” that R will dispatch
before getting to the else. Hence, from R’s perspective, this else will appear to be floating in mid-air

without an if() to support it.

Exercise 2.6. We will now count the days until the next Halloween (like in The Nightmare Before
Christmas).

e Define this_years_halloween <- mdy(str_c("10/31/", year(today()))).

e Define next_years_halloween <- mdy(str_c("10/31/", year(today()) + 1)).

e Use an if-else statement to return this_years_halloween - today() if this year’s Halloween has
yet to pass, and return next_years_halloween - today() otherwise.

The 1ifelse() function is a vectorized version of the if() { } else { } protocol. The notation looks
like this:
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ifelse(
logical_vector,
output_vector_if_TRUE,
output_vector_if_FALSE

The function creates a new vector by collating the elements of the output_vector_if_TRUE and out-
put_vector_if_FALSE vectors, based on the values of the logical_vector vector. Specifically, the nth
element of the output vector equals the nth element of output_vector_if_TRUE if the nth element of
logical_vector is TRUE and equals the nth element of output_vector_if_FALSE otherwise.

For example, setting logical_vector to a vector of alternating logicals, setting output_vector_if_TRUE
to the lower-cased alphabet, and setting output_vector_if_FALSE to the upper-cased alphabet yields
the following:

ifelse(
rep(c(FALSE, TRUE), 13),
letters,
LETTERS

> [l] IIAII llbll llCll |ldl| llEll llfll IIGII |lh|| llIll lljll llKll lllll llMll llnll |lol| llpll llQll llrll |ls||
> [20] |lt|| I|U|l lIVll |lwl| llxll llYIl ||Zl|

Here’s another example:
ifelse(-2:2 == 0, "can't divide by zero", 1/(-2:2))

> [1] "-0.5" "-1" "can't divide by zero"
> [4] lllll IIO-SII

In this case output_vector_if_TRUE is not a vector but the fixed value "can't divide by zero", which
is used whenever the logical is TRUE.

For a more elaborate example, define director_vector, cast_vector, and type_vector as the first eight
values of the director, cast, and type columns of the netflix tibble (which we loaded in exercise 1.34,
section 1.3):

director_vector <- pull(netflix, director)
director_vector <- head(director_vector, 8)
director_vector

cast_vector <- pull(netflix, cast)
cast_vector <- head(cast_vector, 8)
cast_vector

type_vector <- pull(netflix, type)

type_vector <- head(type_vector, 8)
type_vector

> [1] "Richard Finn, Tim Maltby" NA
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> [3] NA NA

> [5] "Fernando Lebrija" NA

> [7] "Gabe Ibafez" "Rodrigo Toro, Francisco Schultz"

> [1] "Alan Marriott, Andrew Toth, Brian Dobson, Cole Howard, Jennifer Camer..."
> [2] "Jandino Asporaat"

> [3] "Peter Cullen, Sumalee Montano, Frank Welker, Jeffrey Combs, Kevin Mic..."
> [4] "Will Friedle, Darren Criss, Constance Zimmer, Khary Payton, Mitchell ..."
> [5] "Nesta Cooper, Kate Walsh, John Michael Higgins, Keith Powers, Alicia ..."
> [6] "Alberto Ammann, Eloy Azorin, Verdénica Echegui, Lucia Jiménez, Claudia..."
> [7] "Antonio Banderas, Dylan McDermott, Melanie Griffith, Birgitte Hjort S..."
> [8] "Fabrizio Copano"

> [1] "Movie" "Movie" "TV Show" "TV Show" "Movie" "TV Show" "Movie"

> [8] "Movie"

Now the following defines notable_people as the Netflix program’s first two cast members, if the
program is a TV show, and defines it as the program’s director otherwise:

notable_people <-
ifelse(
type_vector == "TV Show",
str_extract(cast_vector, "[A,]*x,?2[A,]x"),

director_vector

notable_people

> [1] "Richard Finn, Tim Maltby" NA

> [3] "Peter Cullen, Sumalee Montano" "Will Friedle, Darren Criss"

> [5] "Fernando Lebrija" "Alberto Ammann, Eloy Azorin"

> [7] "Gabe Ibafiez" "Rodrigo Toro, Francisco Schultz"

In the code above "[#,]%,2[*,1x" is a reqular expression that is R shorthand for “everything before
the second comma” (write vignette("regular-expressions") in your console for more on regular ex-
pressions).

Exercise 2.7. Use ifelse() and is.na() to change the NA values in director_vector to "smissing
datax".

o In practice, we would solve this problem with the specialized replace_na()‘ function. (See section

2.4.4.)

Exercise 2.8. Use ifelse() and %in% to create a vector comprising the letters of the alphabet, with
every vowel capitalized.

Exercise 2.9. Use ifelse(), str_detect(), and “[aeiou]” to create a vector comprising the letters of
the alphabet, with every vowel capitalized.

Exercise 2.10. Use str_length(), month.abb, and month.name to create the following vector:

> [1] llJanll llFebll llMarChll llApr-'I'Lll llMayll |ljune|l llJu'Lyll llAugustll
> [9] Ilsep" lloctﬂ llNovll IlDeCll
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Note, this vector uses the full month names if these names are no more than six letters long, and
otherwise uses the month abbreviations.

Exercise 2.11. Let x and y be character string vectors with the same length. Use ifelse() to create a
vector whose nth element equals the the nth element of x if that element comes before the nth element
of y, lexicographically, and otherwise equals the nth element of y. For example, your code should
output the vector c("ant", "cat", "elephant", "guerilla") when x <- c("ant", "dog", "flamingo",
"guerilla") and y <- c("bear", "cat", "elephant", "horse").

2.2.3 Functional Assembly Lines

So far we’ve applied all our functions in one-off faction. But to do real data science we will need to
run functions at an industrial scale. Indeed, a proper empirical analysis is like a factory that turns raw
data into finished plots and tables. And translating the inputs into outputs in this case can require
hundreds of transformations performed by hundreds of functions.

To shepherd our data through all these functions we will align them in an assembly line and use a
conveyor belt to pass the data from function to function. For our conveyor belt we will use the symbol
%>%. The literature calls this symbol as the “pipe operator,” but I will refer to it as a “conveyor belt,”
because an assembly line is a better metaphor than a pipe. Conveyor belt %>%, is the most important
symbol in R; in fact, you will use it so frequently that you should learn its hot key now: the keyboard
shortcut for %>% is Ctrl+Shift+M with Windows and Linux and Cmd+Shift+M with a Mac.

Let’s start with a simple example. Suppose we want to evaluate cos(exp(sin(y/log(3)))). We could do
so with

cos(exp(sin(sqrt(log(3)))))

> [1] -0.7227508

However, nesting functions in this manner is generally impractical (see section 2.4.2), so we’d like
another approach. Here’s an alternative method:

log_3 <- log(x = 3)

sqrt_log_3 <- sqrt(x = log_3)

sin_sqrt_log_3 <- sin(x = sqrt_log_3)
exp_sin_sqrt_log_3 <- exp(x = sin_sqrt_log_3)
cos_exp_sin_sqrt_log_3 <- cos(x = exp_sin_sqrt_log_3)

cos_exp_sin_sqrt_log_3

> [1] -0.7227508

But this approach has a fundamental problem: it creates a new R object each time it invokes a function,
which creates a lot of clutter. Indeed, variables log_3, sqrt_log_3, sin_sqrt_log_3, exp_sin_sqrt_log_3,
and cos_exp_sin_sqrt_log_3 will now junk up our working environment until we explicitly delete them.
And this problem is not only aesthetic: e.g., instead of 3 we could have started with a 100Gb vector of
numbers, in which case this code would commandeer 500Gb of RAM.

We can avoid this problem by recycling the same variable. For example, the following performs the
same calculation, but with only one variable.
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current_val <- log(x = 3)

current_val <- sqrt(x = current_val)
current_val <- sin(x = current_val)
current_val <- exp(x = current_val)
current_val <- cos(x = current_val)

current_val

> [1] -0.7227508

In this case, current_val—which gets redefined from log(3) = 1.098612 to sqrt(1.098612) = 1.048147
t0 sin(1.048147) = 0.8664998 t0 exp(1.147203) = 2.378571 to cos(2.378571) = -0.7227508—acts like
a wheelbarrow, ferrying data from step to step. Unfortunately, to pass data from one operation to
the next we must first load the wheelbarrow with a current_val <- step and then unload it with x
= current_val step. However, we can circumvent these pesky loading and unloading operations if we
replace our wheelbarrow with conveyor belts:

3 %>% log %>% sqrt %>% sin %>% exp %>% cos

> [1] -0.7227508

The %>% conveyor belts integrate the five operations into a functional assembly line, where the output
of one function serves as the input to the next. In this case, 3 enters the line as raw materials and is
transformed by five work stations—1log(), sqrt(), sin(), exp(), and cos()—into the finished product
of -0.7227508. To accentuate the assembly line metaphor I have positioned the functions side by side,
but we usually arrange them vertically:

3 %>%
log %>%
sqrt %>%
sin %>%
exp %>%
cos

> [1] -0.7227508

Here’s another example:

c(
" venii Wy
" vidi "y
" vici "

) %>%
str_flatten %>%
str_squish %>%
str_to_upper

> [1] "VENI VIDI VICI"

This assembly line comprises three transformations: the first compresses the input vector into a single
character string, the second removes the excess white space from this string, and the third capitalizes
it. The following code yields the same result:
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c(
n Ven—l Il’
L vidi "
" vici "
)

my_value <- str_flatten(my_value)
my_value <- str_squish(my_value)
my_value <- str_to_upper(my_value)
my_value

> [1] "VENI VIDI VICI"

But this solution requires wheelbarrow variable my_value, and it’s less aesthetically pleasing, since
my_value <- is harder on the eye than %>%.

Exercise 2.12. Create a functional assembly line that evaluates {/ 1/ V/ V2. Confirm that your solution
yields the same output as sqrt(sqrt(sqrt(sqrt(2)))).

Exercise 2.13. We could calculate the geometric mean of the vector 1:100 with prod(1:160)4(1/100).
But we could also calculate this vector with some combination of exp(), log() and mean(). Combine
these three functions into a functional assembly line that calculates the geometric mean of 1:100.

Exercise 2.14. Create a functional assembly line that produces this output:

The assembly line should first express the first 25 integers as.roman() numerals. It should then
str_to_lower () case the character strings and str_sort() them alphabetically. And finally it should
str_flatten() the result into a single character string.

In general, the following two code chunks yield the same output:

#Chunk 1

X %>%
fun_1 %>%
fun_2 %>%

# ...
fun_n
#Chunk 2
y <= fun_1(x)
y <= fun_2(y)
# ...
y <= fun_n(y)
y

A functional assembly line could comprise any number of functions. If it comprises just one function
then x %>% f_1 is equivalent to f_1(x). For example, 9 %>% sqrt = 3. Going forward, we’ll implement
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most functions this way. And in English we will refer to the expression x %>% f_1 as “x piped into f_1.”
For example, if I ask you to “pipe 1:100 into sum()” then you should write 1:100 %>% sum.

Note that we can drop the parentheses after our functions when we string them into an assembly line.
For example, x %>% f_1 %>% ... %% f_nand x %% f_1() %% ... %% f_n() are equivalent.! However,
we could still use these parentheses to pass in additional variables. For example, the following are
equivalent:

"Is it alright to boil a lobster alive" %>%
str_replace(
"lobster",

"'sentient creature"

> [1] "Is it alright to boil a sentient creature alive"

str_replace(
"Is it alright to boil a lobster alive?",
"lobster",

"sentient creature"

> [1] "Is it alright to boil a sentient creature alive?"

Exercise 2.15. Three of the code snippets below yield the same output, but one of them yields an
error. Which snippet yields an error, and why?

#Version 1
3 %>% log %>% sqrt %>% sin %>% exp %>% cos

#Version 2

3 %>%
log %>%
sqrt %>% sin %>% exp %>%
cos

#Version 3

3 %>%
log %>%
sqrt %>% sin
%>% exp %>%

cos

#Version 4
3 %>% log %>%
sqrt %>%

sin %>% exp %>% cos

IThis isn’t true for the new pipe operator, |>, which is one of the reasons why I don’t like it as much.
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Exercise 2.16. What do the following three functional assembly lines output?

#Line 1

1:3 %>%
lag %>%
rep(2) %>%
sum(na.rm = TRUE)

#Line 2

1:100 %>%
head (3) %>%
rep(3) %>%
pluck(9)

#Line 3
c("1", "10", "100", NA) %>%
replace_na("1000") %>% #replace NA terms with 1000
as.integer %>%
is.integer %>%
all

By default, conveyor belts feed into the slot reserved for a function’s first argument. For example R
interprets "x" %>% str_c("y", "z") as str_c("x", "y", "z"), rather than str_c("y", "x", "z") or
str_c("y", "z", "x"). However, you can redirect the conveyor belt with the . symbol. For example,
R interprets "x" %>% str_c("y", ., "z") as str_c("y", "x", "z") and interprets "x" %>% str_c("y",
nz", L) as str_c("y", "z", "x"). For another example, the following code chunks all output "There's
time for everything except the things worth doing"

"There's time for nothing besides the things worth doing" %>%
str_replace(
"nothing besides",

"everything except"

"nothing besides" %>%
str_replace(
"There's time for nothing besides the things worth doing",
*

"everything except"

"everything except" %>%
str_replace(

string = "There's time for nothing besides the things worth doing",
pattern = "nothing besides",
replacement =
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The following exercises provide additional examples. These exercises use functions that you will not

be familiar with, but isn’t a problem because you don’t need to know how functions work to arrange
them into an assembly line.

Exercise 2.17. Which snippet of code yields an output that differs from the others?

#Version 1:
"There's time for nothing besides the things worth doing" %>%
str_replace(
"nothing besides",

"everything except"

#Version 2:
"There's time for nothing besides the things worth doing" %>%
str_replace(
)
"nothing besides",

"everything except"

#Version 3:
"nothing besides" %>%
str_replace(
"There's time for nothing besides the things worth doing",
"everything except"

#Version 4:
"nothing besides" %>%
str_replace(
"There's time for nothing besides the things worth doing",
°

"everything except"

#Version 5:
"everything except" %>%
str_replace(
"There's time for nothing besides the things worth doing",
"nothing besides",

Exercise 2.18. Create assembly-line versions of the following code. In other words, use conveyor belts
to replace wheelbarrow variable my_string:
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my_string <- "comrade Napoleon 1is always right"
my_string <- str_to_title(my_string)

my_string <- str_c("!!!", my_string, "!!!")

my_string <- str_replace(my_string, "Comrade", "Master'")
my_string <- rep(my_string, 2)

my_string <- str_flatten(my_string, collapse = " ")

my_string

> [1] "!!!Master Napoleon Is Always Right!!! !!!Master Napoleon Is Always Right!!!"
o Use the pattern = . option when you call str_count() to align the conveyor belt to the correct

input.

Exercise 2.19. The following code calculates the average number of times each character digit, from
"e" to "9", appears in the past ten thousand dates:

x <- tibble(date = today() + days(-1044:-1))

x <- mutate(x, date_char = str_remove_all(date, "-'"))

x <- group_by(x, date, date_char)

X <- summarise(x, digits = as.character(0:9))

x <- mutate(x, digit_count = str_count(date_char, digits))

X <- group_by(x, digits)

X <- summarise(x, m = mean(digit_count))

x <- pivot_wider(x, names_from = digits, values_from = m)

X

> # A tibble: 1 x 10

5 o e o 30 4 5 6 o g g
> <db1l> <db1l> <dbl> <db1l> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
>1 2.62 1.42 1.82 0.344 0.290 0.265 0.253 0.259 0.292 0.441

For example, the date "12-21-1999" has three "1" characters, two "2" characters, and three "9" char-
acters. Create an assembly-line version of this code, so that it has the following form:

tibble(date = today() + days(-1074:-1)) %>%
# transformation_1 %>%

transformation_2 %>%

transformation_3 %>%

transformation_4 %>%

transformation_5 %>%

transformation_6 %>%

T O™ O K B B

transformation_7

Exercise 2.20. The following code selects the longest name (in terms of the number of characters)
listed in either the director or cast columns of netflix.
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netflix %>%

replace_na(list(director = "", cast = "")) %>%
mutate(

director = str_split(director, ", "),

cast = str_split(cast, ", ")

) %>%
unnest(director) %>%
unnest(cast) %>%
summar-ise (
director =
last(
director,

order_by = str_length(director)
)
cast =
last(
cast,
order_by = str_length(cast)
)

) %>%

summar-ise (
longest_name =
ifelse(
str_length(director) > str_length(cast),
director,

cast

> # A tibble: 1 x 1

> longest_name

> <chr>

> 1 Gabrielle Susanne Solheim Leithaug

Perform this calculation without a functional assembly line. In other words, use a wheelbarrow variable
to remove the conveyor belts.

2.2.4 Formatting Code

Look at the code provided for exercise 2.20. Notice how every line starts at one of five columns: either
0, 1, 2, 3 or 4 tabs from the left, depending on how deeply it is nested. This formatting makes it
easy for our eye to scan down a column, to quickly see what’s going on. For example, by examining
the code that begins one tab in, it’s immediately apparent that it will apply six functions to our
data: replace_na(), mutate(), unnest(), unnest(), summarise(), and summarise(). And by examining
the code that begins two tabs in, it’s immediately apparent that that the first summarise() has two
arguments. Let me contrast the code above with how you may be tempted to write it:

netflix %>%

replace_na(list(director = "", cast = "")) %>%
mutate(director = str_split(director, ", "),
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cast = str_split(cast, ", ")
) %>%
unnest(director) %>% unnest(cast) %>%
summarise(director =
last(
director,
order_by = str_length(director)
), cast = last(cast,
order_by = str_length(cast)

) %>%

summarise(longest_name = ifelse(str_length(director) > str_length(cast), director, cast))

There are several things wrong with this formatting. First, it makes netflix looks like a function,
rather than an input tibble, because it has the same alignment as replace_na(), mutate(), etc. To
distinguish data from functions, you should always incorprate a tab after a %>%. Second, the code
inside the mutate() and the first summarise() do not start an integer number of tabs from the left.
For example, the two director = expressions are not aligned, because mutate is a shorter word than
summarise. There are two problems with this formatting: first, it requires the eye to jump a variable
distance to the right each time, which is tiring, and second, distance to the left margin no longer
determines how deeply code is nested. For example, that order_by = str_length(cast) is nested twice
is immediately obvious under the previous formatting, but not under the new formatting. The solution
to this problem is to go to a new line after opening the parentheses and then going to a new line before
closing the parentheses. This is a universal rule: whenever you put multiple lines of code inside a set of
parentheses, always put a line break after the ( and a line break before the ). The third problem is the
two unnest() operations sharing the same line: the reader will almost certainly miss the second one.
Accordingly, you should generally go to a new line after each %>%. The only exception to this is if the
entire functional assembly line is short enough to fit in a single line. For example, to get the first letter
of the alphabet, I would probably write letters %>% first without a linebreak after a pipe. The fourth
problem is that the second argument of the second summarise() is likely to get overlooked, as it’s not
given its own line. Accordingly, we usually go to a new line after a comma, unless the entire expression
fits in one line, like to the input to replace_na(), under the old formatting. The final problem is the
last line, which is simply too long. In general, you should try to avoid exceeding the faint vertical line
that RStudio provides in its coding pane.

Fortunately, RStudio makes correct formatting simple, because if you provide the correct line breaks
then it will provide the correct indenting. Also, if the indenting is incorrect then you can fix it by
highlighting the text and pressing Ctrl4+I, for Windows or Linux, or Cmd+I, for Mac. So, for example,
to fix the formatting above, I would add line breaks where they need to be, and then highlight the
entire text and press Cmd+I (since I use a Mac).

Exercise 2.21. Use Ctrl+I or Cmd+1I to fix the formatting in the example above.

Exercise 2.22. Use Ctrl+I, or Cmd+1I to fix the formatting of the following code. (Don’t worry about
what it does.)

"output/combined_experimental_sample.rds" %>% read_rds %>%
filter(!is.na(UNITCOST)) %>%
summarise(cv = sd(UNITCOST, na.rm = TRUE)/mean(UNITCOST, na.rm = TRUE),
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.by = product) %>%
na.omit %>%
summarise(probs = ¢(.25, .5, .75), quantile =
cv %>% quantile(probs = probs) %>%
format_fraction_same_length(3)
) %>%
pivot_wider (names_from = probs, values_from = quantile) %>%
Jwalk(
~.X %>%
as_tibble %>%
write_delim(str_c(stat_folder, "wholesale_cv_quartile_", .y , ".txt"),
col_names = FALSE

2.2.5 Defining Functions

So far we’ve constructed each of our functional assembly lines for a single use. For example, when we
write 1:10 %>% log %>% sum %>% exp, we're really telling R to do the following:

1. create an assembly line comprising log(), sum(), and exp() operations,
2. pass the vector 1:10 through this assembly line, and
3. destroy all traces of the assembly line.

This is analogous to creating an auto factory to produce a single car. And yet this is what we’ll usually
do as we’ll most often have just one sample of data to analyze. However, sometimes we’ll want to pass
multiple data sets through a functional assembly line. And in this case, it’s easier to save the assembly
line as a stand-alone function, which we can apply any number of times, than to reconstruct it for each
data set. For example, the following encapsulates the assembly line comprising four sqrt() operations
from exercise 2.12 in the new function sqrt_four_times():

sqrt_four_times <-
%> %
sqrt %>%
sqrt %>%
sqrt %>%
sqrt

Now sqrt_four_times(x), x %>% sqrt_four_times, and x %>% sqrt %>% sqrt %>% sqrt %>% sqrt are all
equivalent. For example, 3 %>% sqrt_four_times = 1.071075 and 3 %>% sqrt %>% sqrt %>% sqrt %>%
sqrt = 1.071075. Or for another example, define

weird_function <-
. %>%
log %>%
sqrt_four_times %>%
sum

Now weird_function(x), x %>% weird_function, x %>% log %>% sqrt_four_times %>% sum, and x %>%
s log %>% sqrt %% sqrt %>% sqrt %% sqrt %>% sum all yield the same output. For example
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weird_function(1:100) = 107.1425 and 1:100 %>% log %>% sqrt %>% sqrt %>% sqrt
= 107.1425.

In general, we can compress an assembly line comprising functions f_1(), f_2(),
function f() with the following:

o
S

>

o

f <= #go to a new line before putting the . %
. %>%
f_1 %>%
f_2 %>%
#...
f_n

N
[S)

In other words, running this code defines a function f() that satisfies f(x) = x %>%

%>% f_n. Note that we add a line break after the <-; the code looks nicer this way.

%>% sqrt %>% sum

.., and f_n() into

f_1 %>% f_2

Exercise 2.23. Use the <- . %>% notation to create an R function called RealSoftMax() that takes a
vector x and applies the exp(), sum(), and log() functions to it, in that order. Apply RealSoftMax to

vectors -4:4 and -64:64.

Exercise 2.24. Use the <- . %% notation to create a function called clean_text(), where

clean_text(x) equals the output of the following code:

y <- str_replace_na(x, replacement = "")
y <- str_flatten(y, collapse = " ")

y <- str_remove_all(y, "[[:punct:]]")

y <- str_squish(y)

y <- str_to_lower (y)

y

Apply clean_text() to the following two character string vectors:

#Vector 1
tasty_breakfast <-
c(
"If it's your job to eat a frog,",
"it's best to do it first thing in the morning.",
"And if dit's your job to eat two frogs,",
"it's best to eat the biggest one first."

)
#Vector 2
brotherly_love <-
c(
NA,
" When Ajax lifted his shield
Teucer would peer round, L
" and when he had hit any one 1in the throng,
the man would fall dead; L
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NA,
" then Teucer would hie back to Ajax as a
child to its mother, and again

duck down under his shield. "

Exercise 2.25. Use the <- . %>% notation to create an R function called itsy_counter () that takes
a character string, and returns the number of times that that character string appears in itsy_bitsy,
defined below. For example, itsy_counter("spider") = 3.

itsy_bitsy <-

"The +ditsy bitsy spider climbed up the waterspout.
Down came the rain and washed the spider out.
Out came the sun and dried up all the rain,

And the ditsy bitsy spider climbed up the spout again."

Exercise 2.26. Define double_string <- . %>% rep(2) as a function that doubles a vector. For
example, c("a", "b") %>% double_string = c("a", "b", "a", "b"). Given that, what would the
following code output?

f_1 <-
. %>%
double_string %>%
double_string

f_2 <-
. %>%
f_1 %>%
f_1

1:3 %>%

f_2 %>%

sum

2.2.6 Bracketed Expressions

We established in section 2.2.3 that the following three snippets of code yield the same output:

#Version 1
cos(exp(sin(sqrt(log(3)))))

> [1] -0.7227508

#Version 2
current_val <- log(3)
current_val <- sqrt(current_val)
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current_val <- sin(current_val)
current_val <- exp(current_val)
current_val <- cos(current_val)

current_val

> [1] -0.7227508

#Version 3
3 %>%
log %>%
sqrt %>%
sin %>%
exp %>%
cos

> [1] -0.7227508

But now suppose that we wanted to replace the sqrt() operation with a square operation. This change
would be trivial with the nested and wheelbarrow solutions:

cos(exp(sin(log(3)72)))
> [1] -0.827832

current_val <- log(3)
current_val <- current_val”2
current_val <- sin(current_val)
current_val <- exp(current_val)
current_val <- cos(current_val)

current_val

> [1] -0.827832

But the assembly line analog yields an error, because A2 is not a standard function:

3 %>%
log %>%
A2 %>%
sin %>%
exp %>%
cos

Error in parse(text = dinput): <text>:3:3: unexpected 'M'
2: log %>%
3: A

A

vV V V Vv

Here’s the fix:
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3 %>%
log %>%
{.1r2} %>%
sin %>%
exp %>%

cos

> [1] -0.827832

This code uses a bracketed expression to create an ad hoc squaring function. When the . symbol is
positioned inside of brackets, { }, it inherits the value from inflowing conveyor belt, which in this case
is log(3) = 1.098612. Hence, this bracketed expression turns 1.098612 into ‘1.098612/2 = 1.206948.

Here’s another example, suppose we wanted to create an assembly line version of the following equivalent
snippets of code:

#nested approach
str_to_upper (str_squish(c("are", " these'", "words"))) %in% c("IN", "THESE", "WORDS")

> [1] FALSE TRUE TRUE

#wheelbarrow approach

wheelbarrow_var <- c(" are", " these", " words")
wheelbarrow_var <- str_squish(wheelbarrow_var)

wheelbarrow_var <- str_to_upper (wheelbarrow_var)

wheelbarrow_var <- wheelbarrow_var %in% c('"IN", "THESE'", "WORDS'")

wheelbarrow_var

> [1] FALSE TRUE TRUE

As before, the basic assembly line solution yields an error, because %in% is not a standard function:

c(" are", " these", " words") %>%
str_squish %>%
str_to_upper %>%
%in% c("IN", "THESE", "WORDS")

> Error 1in parse(text = input): <text>:4:3: unexpected SPECIAL
> 3: str_to_upper %>%

> 4: %1n%

>

A

Again, the solution is a bracketed expression:
c(" are", " these", " words") %>%
str_squish %>%
str_to_upper %>%

{. %in% c("IN", "THESE", "WORDS")}

> [1] FALSE TRUE TRUE
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Here are a few more examples:

#R treats this:
c(TRUE, FALSE, TRUE) %>% {!.}

> [1] FALSE TRUE FALSE

#as this:
!c(TRUE, FALSE, TRUE)

> [1] FALSE TRUE FALSE

#R treats this:
1:10 %>%
{exp(.)/(1 + exp(.))}

> [1] 0.7310586 0.8807971 0.9525741 0.9820138 0.9933071 0.9975274 0.9990889
> [8] 0.9996646 0.9998766 0.9999546

#as this:
exp(1:10) /(1 + exp(1l:10))

> [1] 0.7310586 0.8807971 0.9525741 0.9820138 0.9933071 0.9975274 0.9990889
> [8] 0.9996646 0.9998766 0.9999546

#R treats this:
c(2, 5, 8) %>%
{max(.) - min(.)}

> [1] 6

#as this:
max(c(2, 5, 8)) - min(c(2, 5, 8))

> [1] 6

#R treats this:
c(
"how", "many", "times", "does", "the", "last", "word", "in", "this",
"character", "string", "vector", "appear", "in", "this", "vector"
) %>%
{
last_word <- last(.)
vector_of_logicals <- last_word ==
sum(vector_of_logicals)

> [1] 2
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#as this
last_word <-
last(
c(
"how", "many", "times", "does", "the", "last", "word", "in", "this",

"character", "string", "vector", "appear", "in", "this", "vector"

vector_of_logicals <-
last_word ==
c(
"how", "many", "times", "does", "the", "last", "word", "in", "this",

"character", "string", "vector", "appear", "in", "this", "vector"

sum(vector_of_logicals)

> [1] 2

Note that we add vertical space before and after the brackets when the bracketed expression spans
multiple lines.

We can remove the brackets when the . terms are nested in a common function. For example, the
following four chunks of code are equivalent:

#Chunk 1

x <= "How many characters are in each word of this question" %>%
str_split(" ") %>%
pluck(1)

str_c(x, str_length(x), sep = "=", collapse = " ")

> [1] "How=3 many=4 characters=10 are=3 in=2 each=4 word=4 of=2 this=4 question=8"

#Chunk 2

"How many characters are in each word of this question" %>%
str_split(" ") %>%
pluck(l) %>%
{ str_c(., str_length(.), sep = "=", collapse = " ") }

> [1] "How=3 many=4 characters=10 are=3 in=2 each=4 word=4 of=2 this=4 question=8"

#Chunk 3

"How many characters are in each word of this question" %>%
str_split(" ") %>%
pluck(l) %>%
str_c(., str_length(.), sep = "=", collapse = " ")

> [1] "How=3 many=4 characters=10 are=3 in=2 each=4 word=4 of=2 this=4 question=8"

76



#Chunk 4

"How many characters are in each word of this question" %>%

str_split(" ") %>%
pluck(l) %>%

str_c(str_length(.), sep = "=",

collapse = " ")

> [1] "How=3 many=4 characters=10 are=3 in=2 each=4 word=4 of=2 this=4 question=8"

In the latter two cases, the str_c() parentheses serve as the brackets. The fourth chunk uses the fact
that the conveyor belt feeds into the function’s first slot, unless explicitly redirected with a . (the .
inside of the str_length() doesn’t redirect the conveyor belt, because it’s nested within a function).

Exercise 2.27. Use bracketed expressions to rewrite the code below without wheelbarrow variable x.
This code tests whether the number y is prime. Specifically, it returns TRUE if y is not divisible by all()
the numbers between 2 (the smallest possible divisor of y) and sqrt(y) (the largest possible divisor of

y).

X <-y

X <= x [/ (2:sqrt(x))
x <= x != floor(x)

x <= all(x)

X

Exercise 2.28. Simplify the following code’s bracketed expression so that it fits in a single line and

doesn’t actually include brackets.

e Nest word() within str_replace_all().

"When a man is tired of London, he is tired of life" %>% {

input_string <- .

word_to_remove <- word(input_string, 5) #cut fifth word

str_replace_all(
string = dinput_string,
pattern = word_to_remove,

replacement = "understanding"

> [1] "When a man is understanding of London, he is understanding of life"

The bracketed expression notation,

%>% {.}, complements the function definition notation, <- . %>%.

(Note that the . symbol means different things under these different conventions.) For example, we
can use a bracketed expression to raise a number to its own power:

3 %>% {.A.} #calculate 373

> [1] 27
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And we can combine this bracketed expression with <- . %>% to create a function that raises a number
to its own power:

self_exponentiation <-

. %>%

{.~.}
3 %>% self_exponentiation

> [1] 27

For another example, the following creates a function that maps vector c(x_1, x_2) to vector c(x_2,
X_1 + x_2):

fib <-
%>%

{ c¢(pluck(., 2), sum(.)) }

c(1l, 2) %>% fib

c(l, 2) %>% fib %>% fib

c(l, 2) %>% fib %>% fib %>% fib

> [1] 5 8

The second letter of each output enumerates the Fibonacci sequence?.
For a third example, the following defines na_detector () as a function that returns "NA found" if the
input contains an NA term and returns the input otherwise:

na_detector <-
. 2%>%

{ if(any(is.na(.))) "NA found" else .}

c("a", "b", NA) %>%

na_detector

> [1] "NA found"

C(”a”, l|bll, llCll) %>%

na_detector

> [l] llall llbll llcll

2https://en.wikipedia.org/wiki/Fibonacci_number
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The if-else statement makes the function return "NA found" if the logical any(is.na(.)) is TRUE and
otherwise makes it return . (i.e., the input to the function).?

The last example below defines santas_calendar () as a function that takes a date and returns the word
"Christmas" if it’s December 25th, and otherwise appends the word "Eve" to the output of the function
evaluated under the following day.*

santas_calendar <-
%>% {

if(day(.) == 25 & month(.) == 12) "Christmas" else
c(santas_calendar (. + days(l)), "Eve')

mdy ("12/25/2021") %>%
santas_calendar

> [1] "Christmas"

mdy ("12/24/2021") %>%
santas_calendar

> [1] "Christmas" "Eve"

mdy ("12/23/2021") %>%

santas_calendar
> [1] "Christmas" "Eve" "Eve"

mdy ("09/15/2021") %>%

santas_calendar

> [1] "Christmas" "Eve" "Eve" "Eve" "Eve" "Eve"
> [7] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [13] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [19] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [25] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [31] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [37] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [43] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [49] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [55] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [61] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [67] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [73] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [T79] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [85] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"
> [91] "Eve" "Eve" "Eve" "Eve" "Eve" "Eve"

3See section 2.2.2 for more on if-else statements.
4Defining santas_calendar() in terms of santas_calendar() is an example of recursion®.
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> [97] |lEvell llEvell llEvell llEvell llEvell |lEvel|

Exercise 2.29. Which of the following paragraphs correctly describes the code below?

reverse_symmetric <-
. %>%
{. == rev(.)} %>%
all

e This code defines reverse_symmetric() as a function that returns a vector of logicals that specifies
which the elements of a vector that that remain unchanged when we reverse the vector. For
example, c("a", "b", "c", "a") %>% reverse_symmetric returns c(TRUE, FALSE, FALSE, TRUE),
since the first and fourth elements remain unchanged when we reverse the vector.

e This code defines reverse_symmetric() as a function that indicates whether a vector is a
palindrome—i.e., whether it equals the reverse of itself. For example, c("back", "to", "back")
%>% reverse_symmetric is TRUE whereas c("back", "to", "front") %>% reverse_symmetric is
FALSE.

e This code returns a vector of logicals that specify which of the elements of the reverse_symmetric
vector remain unchanged when we reverse it. For example, this code returns c(TRUE, FALSE,
FALSE, TRUE) when reverse_symmetric = c("a", "b", "c", "a").

e This code returns a logical that specifies whether reverse_symmetric is a palindrome—i.e.,
whether it equals the reverse of itself. For example, the code returns TRUE when re-
verse_symmetric = c("back", "to", "back") and returns FALSE when reverse_symmetric =

c("back"™, "to", "front").

Exercise 2.30. Use a bracketed expression to define euclid_length() as a function that transforms
a numeric vector into the square root of the sum of its squared elements. For example, 1:4 %>%
euclid_length should return v/12 + 22 + 32 + 42 = 5.48.

Exercise 2.31. Use a bracketed expression to define logical_not() as a pipe-compatible function
that applies the ! operator to its input. For example, c(TRUE, FALSE) %>% logical_not should yield
c(FALSE, TRUE). (Note, while ! is not pipe compatible, *!* is so; e.g., c(TRUE, FALSE) %>% ! =
c(FALSE, TRUE).)

Exercise 2.32. Use a bracketed expression to define smart_viewer () as a function that recieves a tibble
and returns its summary() of the tibble’s ncol() is less than five and otherwise returns its glimpse().
Pipe netflix into smart_viewer () and then pipe a tibble comprising the first three columns of netflix
into smart_viewer ().

2.2.7 mutate()

So we now know how to create our own functions. But, honestly, we won’t have much need to do
so because R already has a built-in function for almost everything. And despite the thousands of R
functions at our disposal, just four functions—mutate(), summarise(), group_by(), and filter ()—will
undergird most of our analysis. I will now cover this functional quartet one function at a time, starting
with mutate().

The mutate() function enables us to “get under the hood” of a tibble and muck about with its columns.
For example, we can use it to clean netflix, which we defined in section 1.3. This tibble looks like:
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netflix %>% glimpse

Rows: 6,223

Columns: 12

$ show_1id <dbl> 81145628, 80117401, 70234439, 80058654, 80125979, 8016389~

$ type <chr> "Movie", "Movie", "TV Show", "TV Show", "Movie", "TV Show~

$ title <chr> "Norm of the North: King Sized Adventure'", "Jandino: What~
g

$ director <chr> "Richard Finn, Tim Maltby", NA, NA, NA, "Fernando Lebrija~
Y ]

$ cast <chr> "Alan Marriott, Andrew Toth, Brian Dobson, Cole Howard, J~

$ country <chr> "United States, India, South Korea, China", "United Kingd~

g

$ date_added <chr> "September 9, 2019", "September 9, 2016", "September 8, 2~

$ release_year <dbl> 2019, 2016, 2013, 2016, 2017, 2016, 2014, 2017, 2017, 201~

$ rating <chr> "TV-PG", "TV-MA", "TV-Y7-FV", "TVy-Y7", "Tv-14", "TV-MA", ~

$ duration <chr> "90 min", "94 min", "1 Season", "1 Season", "99 min", "1 ~

$ listed_1in <chr> "Children & Family Movies, Comedies", "Stand-Up Comedy", ~

$

V V V VvV V V V V V V V V V VvV

description <chr> "Before planning an awesome wedding for his grandfather, ~

As you see, the show_id and release_year variables are tagged with <dbl>, which indicates that they’re
doubles. But these variables are whole numbers and should thus be saved as integers (see section 1.2.4).
We'll redefine them as such with mutate():

netflix <-
netflix %>%
mutate(
show_id = as.integer(show_id),
release_year = as.integer(release_year)

netflix %>%

glimpse #now show_1id and release_year are tagged with <int>

Rows: 6,223

Columns: 12

$ show_id <int> 81145628, 80117401, 70234439, 80058654, 80125979, 8016389~
$ type <chr> "Movie", "Movie", "TV Show", "TV Show", '"Movie", "TV Show~
$ title <chr> "Norm of the North: King Sized Adventure", "Jandino: What~
$ director <chr> "Richard Finn, Tim Maltby", NA, NA, NA, "Fernando Lebrija~
$ cast <chr> "Alan Marriott, Andrew Toth, Brian Dobson, Cole Howard, J~
$ country <chr> "United States, India, South Korea, China", "United Kingd~
$ date_added <chr> "September 9, 2019", "September 9, 2016", "September 8, 2~
$ release_year <int> 2019, 2016, 2013, 2016, 2017, 2016, 2014, 2017, 2017, 201~
$ rating <chr> "TV-PG", "TV-MA", "TV-Y7-FV", "TV-Y7", "TVy-14", "TV-MA", ~
$ duration <chr> "90 min", "94 min", "1 Season", "1 Season", "99 min", "1 ~
$ listed_1in <chr> "Children & Family Movies, Comedies", "Stand-Up Comedy", ~
$

V V V VvV VvV VvV V V V V V V V V

description <chr> "Before planning an awesome wedding for his grandfather, ~

This example illustrates three points. First, piping a tibble into mutate() enables us to reference its
columns: if we refer to show_id outside of mutate() then R will return "Error: object 'show_id' not
found", since show_id is not a variable in our environment. But if we pass netflix into mutate() and
refer to show_id within this function’s parentheses then R will know that we’re referencing a column
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of this tibble.

Second, mutate() takes a tibble as an input and returns a modified tibble as an output. It does not
change the variable storing the input tibble unless we explicitly overwrite this variable with <-. For
example, without the netflix <- line, mutate() would simply print the modified tibble to the screen,
leaving the value of netflix unchanged. And in this fashion mutate() behaves like any other tibble
function: e.g., writing netflix %>% head(3) does not modify netflix, but writing netflix <- netflix
%>% head(3) does.

Third, we use = expressions to articulate how our mutate() call should transform the input tibble to
the output tibble.5 These = expressions incorporate other functions, such as as.integer (), which do
the real work. Thus, rather than directly modify our columns, mutate() serves as a platform for other
functions to do so. Each = expression modifies or defines one column of the tibble. We can include any
number of = expressions (separated by commas) to modify any number of columns. And we can apply
multiple = expressions to one column: e.g., mutate(type = str_to_upper(type), type = str_c(type,
"1my) would first capitalize the type column and then add an exclamation mark to it.

Whereas the previous example used mutate() to modify old variables, the following example uses
mutate() to construct new variables.

netflix <- #use <- to "save" change
netflix %>%
mutate(
will_smith = str_detect(cast, "Will Smith"), #is Will Smith in movie?
cast_size = str_count(cast, ",") + 1, #num people = num commas +1
country_primary = str_remove(country, ",.x") #delete text after first comma
)

netflix %>%
select(country, cast, will_smith, cast_size, country_primary) %>%
slice(623:626) %>%

head
> # A tibble: 4 x 5
> country cast will_smith cast_size country_primary
> <chr> <chr> <lgl> <db1l> <chr>
> 1 United States Tommy Lee Jo~ TRUE 10 United States
> 2 Nigeria Omoni Oboli,~ FALSE 9 Nigeria
> 3 Belgium, Luxembourg, France Matthias Sch~ FALSE 9 Belgium
> 4 United States Junchen Guo,~ FALSE 6 United States

Now will_smith indicates whether this particular actor is listed in the cast; cast_size reports one
more than the number of commas in cast; and country_primary lists the text in country that comes
before the first comma. To define this last variable, we used the regular expressions ", .+", which is
shorthand for “the first comma everything after it.”

Exercise 2.33. Use %in% and mutate() to add a logical variable to netflix called restricted that is
TRUE if and only if the show’s rating is "R", "TV-MA", or "NC-17".

Exercise 2.34. Use ifelse(), %in%, and mutate() to add a variable to netflix called kid_rating that
equals rating if this value is "G", "PG", "TV-G", or "TV-PG", and otherwise equals "not child friendly".

SWe use = rather than <- within mutate() calls, since we never put the latter symbol inside a function’s parentheses
(see section 1.4.1).
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Exercise 2.35. Combine mutate() with ...

e mdy() to change the date_added column of netflix from a character string to a Date,
e month(label = TRUE) to add a new variable that reports the month the show was added, and
e wday(label = TRUE) to add a new variable that reports the day of the week the show was added.

Perform these three operations in one mutate() call.

We can embed functional assembly lines inside of mutate(). For example, the following defines
last_cast_member_is_director as a logical that is TRUE if the last person listed in the cast is also
listed as a director:

netflix %>%
mutate (
last_cast_member_is_director =

cast %>%

str_extract("\\b[",]*s") %>%

str_detect(director)
) %>%
select(cast, director, last_cast_member_is_director) %>%
slice (249, 250, 4328, 3862)

In the code above, "\\b[*,]x$" is shorthand for “everything after the last comma (besides any white
space that immediately follows it).”

Exercise 2.36. The duration values of netflix are text strings that comprise both a measurement,
which is a number, and a metric, which is either "min" or "Season". For example, the first six duration
values are:

netflix %>%
select(duration) %>%
head

# A tibble: 6 x 1
duration

<chr>

90 min

94 min

1 Season

1 Season

99 min

1 Season

vV V V V V V V V V

o b~ W N R

However, storing two values in one variable makes accessing either value difficult. For example, there’s
currently no easy way to calculate the median show duration. Accordingly, we will now separate
duration into two variables, one that captures the numeric value and the other that specifies the unit
of measure.

e Pipe netflix into mutate().
e Within the mutate() call, use word() to define duration_metric as the second word of duration,
which is always either "min" or "Season".
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— word("fee fi fo fum", 3) = "fo'".
e Within the same mutate() call redefine duration as the “first word” of duration expressed as an

integer.
— Use a functional assembly line that comprises word() and as.integer().
— The first observation should have duration = 90 and duration_metric = "min".
o In practice, we would solve this problem with the specialized separate() function. (See section
2.4.4.)

Exercise 2.37. The evanston tibble stores the Arrest Date values as character strings and the Arrest
Time values as integers. We will now convert the former into Dates and the latter into times. We will
do so by embedding the following two functional assembly lines inside a mutate() step.

#assembly line 1:

"Arrest Date =
"Arrest Date’ %>%
mdy_hm %>%

as_date

#assembly line 2:

"Arrest Time' =
"Arrest Time  %>%
as.character %>%
str_pad (4, "left", pad = 0) %>%
str_replace("(..)", "\\1:") %>%
hm

e Pipe evanston into mutate().
o Copy the first functional assembly line within the mutate() parentheses.

— Since it comprises two words, we must refer to the date variable as ‘Arrest Date' rather
than as Arrest Date. To avoid these “grave accents,” we usually make all variable names
one word long. For example, a better name for this variable would be Arrest_Date.

— The mdy_hm() function tells R to read each value in Arrest Date as a date and time. For
example, it tells R to interpret "10/12/21 0:00" as “October 12th, 2021 at midnight.” The
time values are junk, however, because they’re always midnight. So we pass the output of
mdy_hm() into as_date(), which tells R to keep only the date portion of these values.

— Note that we use = rather than <- when inside a mutate().

e Add a comma to the end of the first assembly line and then copy in the second assembly line,
starting from a new line within the mutate() call.

— The first two steps turn the time integers into four-digit character strings. For example, 713

%>% as.character %>% str_pad(4, "left", pad = 0) = "0713"
— The str_replace() step uses a regular expression” to insert a ": " after the first two characters.
For example, "0713" %>% str_replace("(..)", "\\1:") = "07:13".

— The hm() step tells R to read the resulting character strings as hours and minutes. For
example, "07:13" %>% hm returns 7:13 AM.
e Name the resulting tibble evanston, overwriting the previous version of this tibble.

Exercise 2.38. If you write evanston %>% distinct(City) %>% print(n = nrow(.)), you will see that the
City column has seven different spellings of Evanston: "EVANSTON", "EVNSTN", "EANSTON", "EVANTSTON",
"N EVANSTO", "EV/ANSTON", "EVSTON". We will now fix these spelling mistakes.

"https://en.wikipedia.org/wiki/Regular__expression
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e Pipe evanston into mutate().

e Within the mutate() call, write City = City %>% fct_recode(), and then write some additional
code inside the fct_recode() parentheses to tell this function to change all the misspelled versions
of Evanston to "EVANSTON".

— The city variable is a factor, not a character string, so we need the fancy fct_recode()
function to change its values.
— Follow the examples provided in the ?fct_recode documentation.
e Save the resulting tibble as evanston.

2.2.8 summarise()

The second quartet function is summarise(). As its name suggests, it computes summary statistics. For
example, we can we can use it to calculate the fraction of shows released on a Friday or Saturday (i.e.,
the mean() of the wday_added %in% c("Fri", "Sat") logical Vector):8

netflix %>%
summarise (weekend_release = mean(wday_added %in% c("Fri", "Sat")))

> # A tibble: 1 x 1
> weekend_release
> <db1l>
> 1 0.403

Unfortunately, it’s easy to mix up summarise() with summary(), which we saw in section 1.2.6. But the
former is far more powerful: whereas summary() always returns the same canned report, summarise()
can yield almost any function of the data.

For example, the following calculates the mean and median length of time since the show was added
to the platform:

netflix %>%
summarise (
mean_age = mean(today() - date_added),
median_age = median(today() - date_added)

)
> # A tibble: 1 x 2
> mean_age median_age
> <drtn> <drtn>
>

1 2473.35 days 2383 days

This example uses two = expressions to define two summary statistics. But in general a summarise() call
can incorporate any number of = expressions (separated by commas) to derive any number of summary
statitics.

For another example, the following returns the title of the 1000th show when the sample is ordered

byrelease_year@

8We added wday_added to netflix in exercise 2.35.
9The nth() function returns the nth observation of one vector when the data are sorted by another vector: e.g.,
nth(c("a", "b", "c"), n = 2, order_by = c(3, 1, 2)) = "c".
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netflix %>%
summarise(show_1000 = nth(title, n = 1000, order_by = release_year))

# A tibble: 1 x 1
show_1000
<chr>

1 Soul Eater

vV V V Vv

Exercise 2.39. Which of the following paragraphs correctly describes the code below?
?weighted.mean to see how the weighted.mean() function works.)

evanston %>%

summar-ise (
age_gun = weighted.mean(Age, w = "Weapon Code == "Handgun", na.rm = TRUE),
age_no_gun = weighted.mean(Age, w = "Weapon Code’ == "", na.rm = TRUE),

age_difference = age_no_gun - age_gun

(Use

e The code creates a tibble with three columns: age_gun, which is the weighted mean of logicals

‘Weapon Code® == "Handgun" when weighting by Age, age_no_gun, which is the weighted mean of
logicals “Weapon Code' == "" when weighting by Age, and age_difference, which is the difference
between the two.

The code adds three additional columns to the evanston tibble: age_gun, which is the weighted
mean of logicals "wWeapon Code® == "Handgun" when weighting by Age, age_no_gun, which is the
weighted mean of logicals “Weapon Code’ == "" when weighting by Age, and age_d1ifference, which
is the difference between the two.

The code creates a tibble with three columns: age_gun, which is the average Age for the observa-
tions with ‘Weapon Code’ = "Handgun", age_no_gun, which is the average Age for the observations
without a “Weapon Code’, and age_difference, which is the difference between the two.

The code adds three additional columns to the evanston tibble: age_gun, which is the average Age
for the observations with ‘Weapon Code' = "Handgun", age_no_gun, which is the average Age for
the observations without a ‘Weapon Code', and age_difference, which is the difference between
the two.

Exercise 2.40. We will now get the age of the youngest and oldest arrestees in evanston.

e Pipe evanston into summarise().

e Within the summarise() parentheses, use min() and max() to extract the extreme values of Age.

— Use the na.rm=TRUE option to tell R to disregard the Age = NA observations.

Exercise 2.41. We will now determine whether male arrestees in evanston are more likely to carry a

weapon.

e Pipe evanston into summarise().

e Within the summarise() parentheses, use cor() to calculate the correlation between the Sex ==

"Male" vector of logicals and the “Weapon Code® != "" vector of logicals.
— Recall that R will treat the TRUE elements as ones and the FALSE elements as zeros. For
example, if *Weapon Code' = "Club/Blackjack/Brass Knuckles" then Weapon Code' != "" ig

TRUE, which is evaluated as 1.
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Exercise 2.42. We will now calculate the fraction of days spanned by our netflix sample in which a
new show was released.

e Pipe netflix into summarise().
e Within this summarise() call, do the following;:
— Use max() and min() to define day_count as the number of days between the first and last
date_added.
— Use as.integer () to convert day_count to an integer data type. (By default, R saves the
difference between two dates as “difftime” data type.)
— Use n_distinct() to define show_day_count as the number of days in our sample in which a
new show was added (i.e., as the number of distinct date_added values).
— Define new_show_fraction = show_day_count / day_count as the fraction of days with a new
show.

Exercise 2.43. We will now calculate the difference between the average age of netflix movies and
TV shows.

e Pipe netflix into summarise().
e Within the summarise() call use weighted.mean() to define avg_year_movie as the average re-
lease_year of programs with type = "Movie".
— Weight by the type == "Movie" logical vector. Doing so tells R to give movies a weight of
TRUE = 1 and give TV shows a weight of FALSE = 0. In other words, it calculates the mean
release_year after disregarding the TV shows. For example, weighted.mean(c(1, 2, 100,

200)’ C("a"’ "a”’ "b”’ ”b”) == ”a") = 1.5.
e Within the same summarise() call use weighted.mean() to define avg_year_tv as the average
release_year of programs with type = "TV Show".

e Within the same summarise() call define age_difference = avg_year_tv - avg_year_movie.

summarise(), like mutate(), can incorporate functional assembly lines. For example, the following
summarise() call contains an assembly line that calculates the fraction of shows filmed in South Korea:

netflix %>%
summarise (
filmed_in_SK =
country %>%
str_detect("South Korea") %>%

mean(na.rm = TRUE)

> # A tibble: 1 x 1

> filmed_in_SK

> <dbl>

> 1 0.0282

The str_detect() function translates the character string vector country into a logical vector that
indicates whether the given country value contains the phrase "South Korea". For example, the first
element of the logical vector is TRUE because the first element of country is "United States, India,
South Korea, China". This logical vector then gets piped into mean(na.rm = TRUE), which computes
the fraction of elements that are TRUE (after the NA terms are dropped).

Exercise 2.44. We will now calculate the fraction of director values that are NA.
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e Pipe netflix into summarise().

e Within the summarise() call, use is.na() to create a vector of logicals that indicates which
director values are NA.

o Pipe this logical vector into mean() (while still within the summarise() call).

2.2.9 group_by()

Suppose we wanted to calculate the average release_year for each value of country_primary. We could
do so with the technique developed in exercise 2.43:

netflix %>%
summar-ise (
average_Argentina =
weighted.mean(
release_year,
country_primary == "Argentina'
)
average_Australia =
weighted.mean (
release_year,
country_primary == "Australia"

)

average_WestGermany =
weighted.mean(
release_year,

country_primary == "West Germany'"

But this solution is ungainly, comprising a weighted.mean () for each of the 72 values of country_primary.
A better approach is to first group_by() country_primary and then summarise():

netflix %>%
group_by (country_primary) %>%

summarise(mean_release_year = mean(release_year)) %>%

head (4)

> # A tibble: 4 x 2

> country_primary mean_release_year
> <chr> <db1>
> 1 Argentina 2015.
> 2 Australia 2015.
> 3 Austria 2017.
> 4 Bangladesh 2018

group_by () is the third member of the functional quartet. It groups the rows of a tibble into chunks.
For example, here’s what the raw netflix data look like:
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netflix %>%

glimpse

> Rows: 6,223

> Columns: 17

> $ show_id <int> 81145628, 80117401, 70234439, 80058654, 80125979, 8016~
> $ type <chr> "Movie", "Movie", "TV Show", "TV Show", "Movie", "TV S~
> $ title <chr> "Norm of the North: King Sized Adventure", "Jandino: W~
> $ director <chr> "Richard Finn, Tim Maltby", NA, NA, NA, "Fernando Lebr~
> $ cast <chr> "Alan Marriott, Andrew Toth, Brian Dobson, Cole Howard~
> $ country <chr> "United States, India, South Korea, China", "United Ki~
> $ date_added <date> 2019-09-09, 2016-09-09, 2018-09-08, 2018-09-08, 2017-~
> § release_year <int> 2019, 2016, 2013, 2016, 2017, 2016, 2014, 2017, 2017, ~
> $ rating <chr> "TV-PG", "TV-MA", "TV-Y7-FV'", "TV-Y7", "Ty-14", "TV-MA~
> $§ duration <chr> "90 min", "94 min", "1 Season", "1 Season", "99 min", ~
> $ listed_1in <chr> "Children & Family Movies, Comedies", "Stand-Up Comedy~
> $ description <chr> "Before planning an awesome wedding for his grandfathe~
> ¢ will_smith <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE~
> $ cast_size <db1l> 10, 1, 12, 8, 12, 5, 9, 1, NA, 11, 1, 8, 3, 4, 3, 3, 3~
> $§ country_primary <chr> "United States", "United Kingdom", "United States", "U~
> $ wday_added <ord> Mon, Fri, Sat, Sat, Fri, Fri, Fri, Fri, Fri, Fri, Fri,~
> $ month_added <ord> Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep,~

And here’s what these data

netflix %>%

look like when we group them by type and rating pairs:

group_by (type, rating) %>%

glimpse

> Rows: 6,223

> Columns: 17

> Groups: type, rating [27]

> $ show_1id <int> 81145628, 80117401, 70234439, 80058654, 80125979, 8016~
> $§ type <chr> "Movie", "Movie", "TV Show", "TV Show", "Movie", "TV S~
> $ title <chr> "Norm of the North: King Sized Adventure", "Jandino: W~
> $ director <chr> "Richard Finn, Tim Maltby", NA, NA, NA, "Fernando Lebr~
> $ cast <chr> "Alan Marriott, Andrew Toth, Brian Dobson, Cole Howard~
> $ country <chr> "United States, India, South Korea, China", "United Ki~
> $ date_added <date> 2019-09-09, 2016-09-09, 2018-09-08, 2018-09-08, 2017-~
> § release_year <int> 2019, 2016, 2013, 2016, 2017, 2016, 2014, 2017, 2017, ~
> $ rating <chr> "TV-PG", "TV-MA", "TV-Y7-FV", "TV-Y7", "Tv-14", "TV-MA~
> $ duration <chr> "90 min", "94 min", "1 Season", "1 Season", "99 min", ~
> $ listed_1in <chr> "Children & Family Movies, Comedies", "Stand-Up Comedy~
> $§ description <chr> "Before planning an awesome wedding for his grandfathe~
> $ will_smith <1gl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE~
> § cast_size <dbl> 10, 1, 12, 8, 12, 5, 9, 1, NA, 11, 1, 8, 3, 4, 3, 3, 3~
> $ country_primary <chr> "United States", "United Kingdom", "United States", "U~
> $ wday_added <ord> Mon, Fri, Sat, Sat, Fri, Fri, Fri, Fri, Fri, Fri, Fri,~
> $ month_added <ord> Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep, Sep,~
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Note, the only difference in these outputs is the Groups: type, rating [27] label at the top, which
indicates that the tibble is divided into 27 clusters that correspond to the 27 distinct (type, rating)
pairs. If you compare the outputs above, you’ll see that group_by () does not add a new column of data,
as it saves the groupings as metadata. In other words, the groupings are saved behind the scenes.

Once we’ve grouped our data, most subsequent operations will then be performed group-wise. For
example, the following calculates the mean and standard deviation of the number of characters in the
description text string, by type and rating:

netflix %>%
group_by (type, rating) %>%
summar-ise (
length_mean = description %>% str_length %>% mean,
length_sd = description %>% str_length %>% sd

%> %

head(3)

> # A tibble: 3 x 4

> # Groups: type [1]

> type rating length_mean length_sd
> <chr> <chr> <dbl> <dbl>
> 1 Movie G 144. 18.9
> 2 Movie NC-17 142. 9.19
> 3 Movie NR 145. 9.72

Usually we group a tibble by the distinct values of some collection of its variables. For example,

e group_by(wday_added) divides the tibble into the 7 combinations of wday_added,

e group_by(wday_added, type) divides the tibble into the 14 combinations of (wday_added, type),

e group_by(wday_added, type, rating) divides the tibble into the 154 combinations of (wday_added,
type, rating), and

e group_by(wday_added, type, rating, release_year) divides the tibble into the 1,555 combina-
tions of (wday_added, type, rating, release_year).

But we can also define more exotic groupings. For example, the following defines grouping scheme
year_added = year(date_added) within the group_by() operation, and uses summarise() to calculate
the mean release_year for each corresponding chunk:

netflix %>%
group_by(year_added = year(date_added)) %>%
summarise(mean_released = mean(release_year)) %>%
tail

> # A tibble: 6 x 2

> year_added mean_released
> <db1l> <db1>
> 1 2015 2014.
> 2 2016 2013.
> 3 2017 2013.
> 4 2018 2014.
> 5 2019 2014.
> 6 2020 2008.
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Netflix must have added a lot of old shows 2020.

Exercise 2.45. Which statements correctly describes the code below?

e This code first calulates the correlation between *Arrest Time' and the logical City == "EVANSTON",
by Sex and “Day of the Week'. It then extracts the maximum and minimum of these correlation,
by Sex.

o This code first calulates the correlation of Sex and ‘Day of the Week', by Arrest Time and the
logical City == "EVANSTON". It then extracts the maximum and minimum of these correlation, by
Sex.

e This code calculates the minimum and maximum correlation between Arrest Time and the logical
City == "EVANSTON" for each value of Sex and “Day of the Week'. None of the above.

Exercise 2.46. We will now count the number of shows added each month.

o Start with netflix and group_by () month_added (which we defined in exercise 2.35).

o Use summarise() and n() to define num_shows as the number of observations in each group.
— The function n() returns the number of observations in a given group_by() group.
— Your "Jan" group should have num_shows = 610.

o In practice, we would solve this problem with the specialized count() function. (See section
2.4.4.)

Exercise 2.47. We will now calculate the fraction of shows added in each month.

e Use summarise() to define num_shows, in the fashion of exercise 2.46.
e ungroup() the tibble produced by summarise().
e Use mutate() to define frac = num_shows / sum(num_shows).
— The value of frac should sum to 1 across all groups.
— The ungroup() step makes the sum(num_shows) step sum across the entire tibble, rather than
across the current month_added group.

Exercise 2.48. We found in section 2.2.8 that Netflix adds a disproportionately high number of shows
on Fridays and Saturdays. We will now demonstrate a related fact: a high proportion of the programs
added on Fridays and Saturdays are TV shows, as opposed to movies.

o Use group_by() to divide netflix into two groups: (i) the programs added on Fridays and Satur-
days and (ii) all other programs.

— Use logical vector wday_added %in% c("Fri", "Sat").

e Use summarise() to calculate for the two groups the fraction of observations in which type = "Tv
Show".

— Calculate the mean of the type == "Tv Show" logical vector.

Exercise 2.49. We will now show how the propensity for evanston arrestee to be armed decreases
with age.

e Use group_by() and ntile(n = 10) to divide evanston by the deciles'® of Age.
e Use summarise() to define weapon_frac as the mean() of “Weapon Code’ != "",
e plot() the result to show how the fraction of armed suspects varies with Age decile.

Exercise 2.50. An "on View" arrest is one where the police officer established probable cause to make
an arrest by directly “viewing” a criminal offense. We will now plot how the proportion of evanston
arrests made "On View" changes over the course of the day.

Ohttps:/ /en.wikipedia.org/wiki/Quantile
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e Start with evanston and group_by () hour (Arrest Time).

e Use summarise() and mean(na.rm = TRUE) to calculate the fraction of observations with ‘Arrest
Type® == "On View".

e plot() the result to show how the fraction of "on view" arrests changes by hour.

Exercise 2.51. Use mutate() to add a local = City == "EVANSTON" column to evanston, and then
calculate min_quantile = quantile(Age, probs = .25, na.rm = TRUE) and max_quantile = quantile(Age,

probs = .75, na.rm = TRUE) for both the local = TRUE and local = FALSE subsamples of the data.

Exercise 2.52. Repeat the exercise above without using mutate().

group_by () pairs well with summarise(), but it works with many other functions. For example, prefacing
a mutate() call with a group_by() step enables us to derive group-level variables. For example, the
following defines avg_release_year_by_rating as the average release_year across distinct rating values:

netflix %>%
group_by(rating) %>%
mutate(avg_release_year_by_rating = mean(release_year))

> # A tibble: 6,223 x 18
> # Groups: rating [15]

> show_id type title director cast country date_added release_year rating
> <int> <chr> <chr> <chr> <chr> <chr> <date> <int> <chr>
> 1 81145628 Movie Norm ~ Richard~ Alan~ United~ 2019-09-09 2019 TV-PG
> 2 80117401 Movie Jandi~ <NA> Jand~ United~ 2016-09-09 2016 TV-MA
> 3 70234439 TV Show Trans~ <NA> Pete~ United~ 2018-09-08 2013 TV-Y7~
> 4 80058654 TV Show Trans~ <NA> Will~ United~ 2018-09-08 2016 TV-Y7
> 5 80125979 Movie #real~ Fernand~ Nest~ United~ 2017-09-08 2017 TvV-14
> 6 80163890 TV Show Apach~ <NA> Albe~ Spain 2017-09-08 2016 TV-MA
> 7 70304989 Movie  Autom~ Gabe Ib~ Anto~ Bulgar~ 2017-09-08 2014 R

> 8 80164077 Movie Fabri~ Rodrigo~ Fabr~ Chile 2017-09-08 2017 TV-MA
> 9 80117902 TV Show Fire ~ <NA> <NA> United~ 2017-09-08 2017 TV-MA
> 10 70304990 Movie Good ~ Henrik ~ Jame~ United~ 2017-09-08 2014 R

> # i 6,213 more rows

> # i 9 more variables: duration <chr>, listed_in <chr>, description <chr>,

> #  will_smith <1gl>, cast_size <dbl>, country_primary <chr>, wday_added <ord>,
> # month_added <ord>, avg_release_year_by_rating <dbl>

And the following cp_directors as the number of distinct director values that correspond to the given

country_primary:

netflix %>%
group_by (country_primary) %>%
mutate(cp_directors = n_distinct(director, na.rm = FALSE))

For example, there are 30 distinct director values across the 48 rows with country_primary = "In-
donesia", and each of these rows is assigned cp_directors = 30.

Exercise 2.53. We will now add a variable to netflix called director_count that specifies the number
of times that a given director appears in the sample.
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e Start with netflix and group_by() director.

e Pipe the result into mutate().

Use n() to define director_count.

o Exit the mutate() step and ungroup() the tibble.

— You should always remove the grouping structure as soon as you’ve finished using it to ensure
that you don’t mistakenly apply the groups where they don’t belong (which is a common
error).

o In practice, we would solve this problem with the specialized add_count() function. (See section
2.4.4.)

Exercise 2.54. The observations with director = NA now have director_count = 1958, since there
are 1958 programs with missing director values. But we would prefer for these observations to have
director_count = NA.IJﬁamutate(),ifelse(),and.is.na() to set director_count = NA if director =
NA.

Exercise 2.55. We will now illustrate a third fact about the programs added on Fridays and Saturdays:
a higher proportion of them are made by inexperienced directors.

o Use group_by () to divide netflix into four groups: (i) TV shows added on Fridays and Saturdays,
(ii) TV shows added on Sundays-Thursdays, (iii) movies added on Fridays and Saturdays, and
(iv) movies added on Sundays—Thursdays.

e Pipe the result into summarise().

o For each group calculate the fraction of programs that have a unique director value (i.e., a
director that isn’t associated with any other show in the sample).

— Use the director_count == 1 logical
— Use the mean() function with na.rm = TRUE option.

Exercise 2.56. We will now add a variable to evanston called Daily_Arrest_Number, which is 1 for the
first arrest of the day, 2 for the second arrest, and so forth.

e Start with evanston and group_by() “Arrest Date’.

e Use mutate() and row_number() to define Daily_Arrest_Number as one more than the num-
ber of prior arrests made that day. In other words, the nth arrest of the day should have
Daily_Arrest_Number = n.

— Do not reorder the rows of the tibble.
— Consider the output of the following: c(30, -2, 0, 0) %>% row_number.

2.2.10 filter()

Exercises 2.48 and 2.55 illustrate that the netflix programs added on Fridays and Saturdays differ
systematically from those added on other days of the week. Suppose we wanted to create a tibble
comprising only the Friday and Saturday shows. We could create this tibble with filter(), the fourth
member of the functional quartet:

fri_sat_shows <-
netflix %>%
filter (wday_added %in% c("Fri'", "Sat"))

#Confirm that all shows are Fri or Sat

fri_sat_shows %>%
distinct(wday_added)
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# A tibble: 2 x 1
wday_added
<ord>

1 Fri

2 Sat

vV V V V Vv

As the name suggests, the filter () function filters (i.e., removes rows from) our sample. It takes one
or more conditions (separated by commas) and drops the observations that violate any of them. For
example, if you wanted to watch an R-rated, new-release, thriller or horror movie, filmed outside of
the United States, then you’d be limited to this set:

netflix %>%

filter(
type == "Movie",
rating == "R",

str_detect(listed_in, "Horror Movies|Thrillers"),
str_detect(country, "United States", negate = TRUE),
release_year >= 2018

) %>%

select(title, type, rating, listed_in, country, release_year)

> # A tibble: 4 x 6

> title type rating listed_din country release_year
> <chr> <chr> <chr> <chr> <chr> <int>
> 1 Domino Movie R International Mo~ Denmar~ 2019
> 2 Everybody Knows Movie R Dramas, Internat~ Spain,~ 2019
> 3 Between Worlds Movie R Thrillers Spain 2018
> 4 Day of the Dead: Bloodline Movie R Horror Movies, I~ Bulgar~ 2018

Note that the commas inside the filter() act like &s: a row survives the filter() if it satisfies the
first condition & it satisfies the second condition & it satisfies the third condition, etc. In fact, replacing
the commas with &s yields no change:

netflix %>%

filter(
type == "Movie" &
rating == "R" &

str_detect(listed_in, "Horror Movies|Thrillers") &
str_detect(country, "United States", negate = TRUE) &
release_year >= 2018

) %>%

select(title, type, rating, listed_in, country, release_year)

> # A tibble: 4 x 6

> title type rating listed_din country release_year
> <chr> <chr> <chr> <chr> <chr> <int>
> 1 Domino Movie R International Mo~ Denmar~ 2019
> 2 Everybody Knows Movie R Dramas, Internat~ Spain,~ 2019
> 3 Between Worlds Movie R Thrillers Spain 2018
> 4 Day of the Dead: Bloodline Movie R Horror Movies, I~ Bulgar~ 2018
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But now suppose rather than impose our program to be a movie and R rate and a horror/thriller and
foreign and a new release we wanted to impose our program to be a movie or R rate or a horror /thriller
or foreign or a new release. We could create such a filter() by replacing the &s with |s:

netflix %>%

filter(
type == "Movie" |
rating == "R" |

str_detect(listed_in, "Horror Movies|Thrillers") |
str_detect(country, "United States", negate = TRUE) |
release_year >= 2018

%> %

select(title, type, rating, listed_in, country, release_year)

> # A tibble: 5,769 x 6

> title type rating listed_in country release_year
> <chr> <chr> <chr> <chr> <chr> <int>
> 1 Norm of the North: King Sized Ad~ Movie TV-PG Children~ United~ 2019
> 2 Jandino: Whatever it Takes Movie TV-MA Stand-Up~ United~ 2016
> 3 #realityhigh Movie TV-14 Comedies United~ 2017
> 4 Apaches TV S~ TV-MA Crime TV~ Spain 2016
> 5 Automata Movie R Internat~ Bulgar~ 2014
> 6 Fabrizio Copano: Solo pienso en ~ Movie TV-MA Stand-Up~ Chile 2017
> 7 Good People Movie R Action &~ United~ 2014
> 8 Joaquin Reyes: Una y no mds Movie TV-MA Stand-Up~ <NA> 2017
> 9 Kidnapping Mr. Heineken Movie R Action &~ Nether~ 2015
> 10 Krish Trish and Baltiboy Movie TV-Y7 Children~ <NA> 2009

> # i 5,759 more rows
This filter() does not have commas between its conditions, because commas in a filter() are equiv-
alent to &s.

Exercise 2.57. Use filter() and str_detect() to list the programs directed by "Riri Riza".

Exercise 2.58. Use filter() and str_detect() to list the programs directed by "Riri Riza" and at
least one other person.

Exercise 2.59. Use filter() and str_detect() to select all the programs with just one person listed
in the cast.

e Remove the programs with a comma listed in the cast character string.
o Use the negate = TRUE option of str_detect() to identify the rows without a comma.

We can combine group_by() with filter() to create group-level filters. For example, the following
limits netflix to the programs that were made in countries that produced exactly two shows:

netflix %>%
group_by (country_primary) %>%
filter(n() == 2) %>% #n() == 2 is TRUE if the group comprises two rows
arrange (country_primary) #order the tibble by country_primary
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> # A tibble: 22 x 17
> # Groups: country_primary [11]

> show_id type title director cast country date_added release_year rating
> <int> <chr> <chr> <chr> <chr> <chr> <date> <int> <chr>
> 1 81048548 Movie Komol~ "Noor I~ Tauq~ Bangla~ 2019-01-07 2018 TV-14
> 2 81048551 Movie Since~ "Nuhash~ Most~ Bangla~ 2019-12-16 2018 TV-MA
> 3 80067522 Movie First~ "Angeli~ Srey~ Cambod~ 2017-09-15 2017 TV-MA
> 4 80990658 Movie Jailb~ "Jimmy ~ Jean~ Cambod~ 2018-05-02 2017 TV-MA
> 5 80085300 Movie You C~ "Ivona ~ Lana~ Croati~ 2016-07-01 2015 NR

> 6 80226864 TV Show The P~ <NA> Bran~ Croatia 2019-01-01 2018 TV-MA
> 7 80209006 Movie The T~ "Tamta ~ <NA> Georgia 2018-02-09 2018 TV-PG
> 8 80171247 Movie My Ha~ "Nana E~ Ia S~ Georgi~ 2017-12-01 2017 Tv-14
> 9 81044496 Movie The B~ "Sam \"~ Cynt~ Ghana,~ 2019-03-31 2018 TV-14
> 10 81213149 Movie Potat~ "Shirle~ 0.C.~ Ghana 2019-12-15 2017 TV-MA

> # 1 12 more rows

> # 1 8 more variables: duration <chr>, listed_in <chr>, description <chr>,

> #  will_smith <lgl>, cast_size <dbl>, country_primary <chr>, wday_added <ord>,
> # month_added <ord>

The filter() step throws out all country_primary groups, other than those with exactly n() == 2
observations.

The following filter() limits the sample to 21st century directors (i.e., those with an average re-
lease_year larger than 2000):

netflix %>%
group_by (director) %>%
filter(
!is.na(director),
mean(release_year) >= 2000

> # A tibble: 3,943 x 17
> # Groups: director [3,080]

> show_id type title director cast country date_added release_year rating
> <int> <chr> <chr> <chr> <chr> <chr> <date> <int> <chr>
> 1 81145628 Movie Norm of~ Richard~ Alan~ United~ 2019-09-09 2019 TV-PG
> 2 80125979 Movie #realit~ Fernand~ Nest~ United~ 2017-09-08 2017 Tv-14
> 3 70304989 Movie Automata Gabe Ib~ Anto~ Bulgar~ 2017-09-08 2014 R

> 4 80164077 Movie Fabrizi~ Rodrigo~ Fabr~ Chile 2017-09-08 2017 TV-MA
> 5 70304990 Movie Good Pe~ Henrik ~ Jame~ United~ 2017-09-08 2014 R

> 6 80169755 Movie Joaquin~ José Mi~ Joag~ <NA> 2017-09-08 2017 TV-MA
> 7 70299204 Movie Kidnapp~ Daniel ~ Jim ~ Nether~ 2017-09-08 2015 R

> 8 80182483 Movie Krish T~ Munjal ~ Dama~ <NA> 2017-09-08 2013 TV-Y7
> 9 80182596 Movie Krish T~ Munjal ~ Dama~ <NA> 2017-09-08 2016 TV-Y
> 10 80182482 Movie Krish T~ Tilak S~ Dama~ <NA> 2017-09-08 2012 TV-Y7

> # 14 3,933 more rows

> # i 8 more variables: duration <chr>, listed_in <chr>, description <chr>,

> # will_smith <lgl>, cast_size <dbl>, country_primary <chr>, wday_added <ord>,
> # month_added <ord>

For example, Robert Altman directed two programs in our sample: Popeye, which was released in 1980,
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and Gosford Park, which was released in 2001. Hence, the director == "Robert Altman" cluster has
mean(release_year) = (1980 + 2001)/2 = 1990.5 < 2000, and is thus eliminated. Thus, Gosford Park
is dropped even though it was filmed after 2000 because it belongs to the defunct director == "Robert
Altman" group.

For a more complex example, the following lists all shows that were not filmed in Mexico but whose
directors have filmed in Mexico:

netflix %>%

group_by (director) %>%

filter(
str_detect(country, "Mexico", negate = TRUE),
country %>% str_detect("Mexico") %>% any,
'is.na(director)

) 9%>%

select(title, director, country) %>%

tail
> # A tibble: 6 x 3
> # Groups: director [4]
> title director country
> <chr> <chr> <chr>
> 1 Ricardo Quevedo: Hay gente asi Raul Campos, Jan Suter Colombia
> 2 Arango y Sanint: Riase el show Raul Campos, Jan Suter Colombia
> 3 Chloe Atom Egoyan United States, Canad~
> 4 GoldenEye Martin Campbell United Kingdom, Unit~
> 5 Hellboy Guillermo del Toro United States
> 6 Todo lo que seria Lucas Lauriente Rall Campos, Jan Suter Argentina

The first condition, str_detect(country, "Mexico", negate = TRUE), is a row-level restriction. It
returns a vector of logicals, the FALSE values of which condemn select rows. Specifically, it boots the
shows with the word "Mexico" appearing in their country text strings (note the negate = TRUE option).
The second condition, country %>% str_detect("Mexico") %>% any, is a group-level restriction. It
returns a single logical, which gets applied to the entire group: if this logical is FALSE then every row of
this group is damned. This condition stipulates that the word "Mexico" must appear in at least one of
this group’s country text strings. For example, the movie Hellboy satisfies the first condition because
it was not filmed in Mexico, and it satisfies the second condition because its director, Guillermo del
Toro, filmed Pan’s Labyrinth in Mexico.

Since the the conditions of a filter() are evaluated independently of one another, the order that these

conditions are written doesn’t matter. For example, the following are equivalent:

netflix %>%
group_by (director) %>%

filter(
str_detect(listed_in, "Sci-Fi & Fantasy"),
n() >= 3

)

netflix %>%
group_by(director) %>%
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filter(
n() >= 3,
str_detect(listed_in, "Sci-Fi & Fantasy")

It doesn’t matter whether R evaluates str_detect(listed_in, "Sci-Fi & Fantasy") before or after n()
>= 3, because it will compute both of these vectors before removing any rows. In contrast, the order
of operations does matter when we split these conditions across two filter () steps:

netflix %>%
group_by(director) %>%
filter(n() >= 3) %>%
filter(str_detect(listed_in, "Sci-Fi & Fantasy")) %>%

nrow

netflix %>%
group_by(director) %>%
filter (str_detect(listed_in, "Sci-Fi & Fantasy")) %>%
filter(n() >= 3) %>%
nrow

The second example yields fewer rows because it imposes the n() >= 3 group-level filter after removing
the non-"Sci-Fi & Fantasy" shows. Hence, whereas any show can be used to meet the n() >= 3 quota
in the former case, only "Sci-Fi & Fantasy" shows can be used to meet this quota in the latter case.
Accordingly, the first filter() pair returns the "Sci-Fi & Fantasy" shows produced by directors that
created at least three shows of any ilk, whereas the latter filter () pair returns the "Sci-Fi & Fantasy"
shows produced by directors that created at least three "Sci-Fi & Fantasy" shows. For example,
director = "Sam Raimi" made The Gift, The Evil Dead, and Spider-Man 3, which are listed_in
"Dramas, Thrillers", "Classic Movies, Cult Movies, Horror Movies", and "Action & Adventure,
Sci-Fi & Fantasy", respectively. Spider-Man 3 contributes to the first row count, because in this case
n() is evaluated before The Gift and The Evil Dead are removed, but it does not contribute to the
second row count, because in this case n() is evaluated after The Gift and The Evil Dead are removed.

Here’s another example:

netflix %>%
filter(
release_year > median(release_year),
release_year > median(release_year),
release_year > median(release_year)
) %%

nrow
> [1] 2889
netflix %>%
filter(release_year > median(release_year)) %>%

filter(release_year > median(release_year)) %>%
filter(release_year > median(release_year)) %>%
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nrow

> [1] 25

The first snippet yields more results because the three conditions are redundant in this case. In the
first snippet, all four median(release_year) terms evaluate to 2016, which is the sample-wide median
release_year. In the second snippet, however, the first median(release_year) evaluates to 2016; the
second median(release_year) evaluates to 2018, which is the median release_year for shows released
after 2016; and the third median(release_year) evaluates to 2019, which is the median release_year
for shows released after 2018. Hence, the first snippet limits the sample to shows released after 2016,
whereas the second snippet limits the sample to shows released after 2019.

Exercise 2.60. Splitting one filter() into two can change the result. What’s the difference between
the following two snippets of code?

#snippet 1
netflix %>%
group_by (director) %>%
filter(
str_detect(country, '"Mexico", negate = TRUE),
country %>% str_detect('"Mexico") %>% any

#snippet 2
netflix %>%
group_by (director) %>%
filter (str_detect(country, "Mexico", negate = TRUE)) %>%

filter (country %>% str_detect("Mexico") %>% any)

Exercise 2.61. Which statements correctly describes the code below?

e This code limits the sample to the shows with non-NA cast values that were not released in the
first release_year.

e This code limits the sample to the shows whose cast members did not work in the first re-
lease_year (after disregarding the cast = NA observations).

e This code limits the sample to the shows whose cast members have all previously worked together
(after disregarding the cast = NA observations).

e None of the above.

netflix %>%
group_by (cast) %>%
filter(
release_year != min(release_year),
'is.na(cast)
) %>%

ungroup

Exercise 2.62. Select the programs filmed by the directors who at some point directed the actor
Forest Whitaker. For example, all of David Fincher’s films should be included since he directed Forest
Whitaker in Panic Room.
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e Start with netflix and group_by() director.
e Use filter() to select the groups in which you can str_detect() any() programs with "Forest
Whitaker" in the cast.

Exercise 2.63. We will now select the programs made by directors that are listed_in at least six
distinct genres.

e Start with netflix and group_by() director.

e Use filter() and is.na() to remove the observations with director = NA.

e Within the same filter() call use n_distinct() to drop the director values that correspond to
fewer than six different listed_in values.

Exercise 2.64. We will now filter evanston down to the days in which at least two handguns were
confiscated.

e Start with evanston and group_by() “Arrest Date’.
e filter() away the date groups with fewer than two “Weapon Code® == "Handgun" observations.
e ungroup() the data

2.2.11 Group .by

It is with a heavy heart that I pen this chapter’s postscript. The relentless advance of R sometimes
begets some sorrowful losses. And the February 2023 R update yielded an especially lamentable casualty,
as it rendered our beloved group_by () largely obsolete. Despite its charm, the group_by()—ungroup()
scheme has always been a bit pedantic, and we can now bypass this wordy construction by specifying
the variables to group .by in the corresponding function call. For example, instead of

netflix %>%
group_by(release_year, rating, country)
summarise (num_shows = n_distinct(title)) %>%
ungroup

we can now write

netflix %>%
summar-ise (
num_shows = n_distinct(title),

.by = c(release_year, rating, country)

And instead of

netflix %>%
group_by (director) %>%
mutate (
number_of_countries_director_has_filmed_in =
n_distinct(country)
) %>%

ungroup

we can now write
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netflix %>%
mutate (
number_of_countries_director_has_filmed_in =
n_distinct(country),
.by = director

And instead of

netflix %>%
group_by (director) %>%
filter(
row_number (release_year) > 3, #throw out oldest three shows
row_number (-release_year) > 3 #throw out youngest three shows
) %>%
summarise(avg_age_after_dropping_top_and_bottom_three = mean(release_year)) %>%
ungroup

we can now write

netflix %>%

filter(
row_number (release_year) > 3, #throw out oldest three shows
row_number (-release_year) > 3, #throw out youngest three shows
.by = director

) %>%

summarise (
avg_age_after_dropping_top_and_bottom_three = mean(release_year),
.by = director

This last example illustrates that group_by() operates like Caps Lock, whereas .by operates like Shift.
When you press Caps Lock, all subsequent text is capitalized until you undo the operation with another
press of the button. Likewise, when you group_by() a tibble, all subsequent operations are performed
groupwise until you undo the operation with ungroup(). However, you never have to “undo” a Shift,
as it applies only to the concurrent keystrokes. Similarly, you never have to “undo” a .by option, as it
applies only to the function that receives it. And just as you should use Shift far more frequently than
than Caps Lock, you should use .by more frequently than group_by().

Let me conclude with a few miscellaneous .by notes. First, you cannot apply a .by operation to grouped
data: e.g., the following yields an error, because the group_by (week_start) conflicts with the .by =
month_start:

date_tibble <-
tibble(
date = ymd("2025-01-01") + days(0:1000),
week_start = floor_date(date, '"week"),
month_start = floor_date(date, "month"),
year_start = floor_date(date, "month')
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date_tibble %>%
group_by (week_start) %>%

mutate(
first_monday_in_the_month =
subset(date, wday(date, label = TRUE) == "Mon'") %>%
min,

.by = month_start

> Error +in “mutate() " :
> | Can't supply " .by" when ".data’ is a grouped data frame.

Second, a .by operation return ungrouped data. For example, the following code snippets are equivalent

#with .by:
date_tibble %>%
mutate(
first_monday_in_the_month =
subset(date, wday(date, label = TRUE) == "Mon") %>%
min,
.by = month_start

#with group_by():
date_tibble %>%
group_by (month_start) %>%

mutate(
first_monday_in_the_month =
subset(date, wday(date, label = TRUE) == "Mon'") %>%
min
%> %
ungroup #<- this line 1is required to make them the same

Third, while you can group_by() columns that don’t exist, you can’t group .by columns that don’t
exist. For example, this doesn’t yield an error:

date_tibble %>%
group_by (floor_date(date, "quarter")) %>%

mutate(
first_monday_in_the_quarter =
subset(date, wday(date, label = TRUE) == "Mon'") %>%
min
)

But this does yield an error:
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date_tibble %>%
mutate (
first_monday_in_the_quarter =
subset(date, wday(date, label =

min,

TRUE) == "Mon") %>%

.by = floor_date(date, "quarter'")

> Error 1in “mutate() " :
> i In argument: "“floor_date(date, "quarter")"®
> Caused by error in “unsupported_date_time()"
> | Unsupported date-time class 'function'

Here’s how to correct the code above:

date_tibble %>%
mutate (quarter_start =

floor_date(date, '"quarter'")) %>%
mutate(
first_monday_in_the_quarter =
subset(date, wday(date, label =

min,

%> %

TRUE) == "Mon")

.by = quarter_start
However, while we can only group .by columns that already exist, we have a tremendous flexibility
in choosing these columns, because .by is compatible with the powerful tidy select convention we will

discuss in Section 4.2.2. For example, we can do things like group .by all columns that end in "start":

date_tibble %>%

summar-ise (
first_date = min(date),
last_date = max(date),
.by = ends_with("start'")
) %>%
head
> # A tibble: 6 x 5
> week_start month_start year_start first_date last_date
> <date> <date> <date> <date> <date>
> 1 2024-12-29 2025-01-01 2025-01-01 2025-01-01 2025-01-04
> 2 2025-01-05 2025-01-01 2025-01-01 2025-01-05 2025-01-11
> 3 2025-01-12 2025-01-01 2025-01-01 2025-01-12 2025-01-18
> 4 2025-01-19 2025-01-01 2025-01-01 2025-01-19 2025-01-25
> 5 2025-01-26 2025-01-01 2025-01-01 2025-01-26 2025-01-31
> 6 2025-01-26 2025-02-01 2025-02-01 2025-02-01 2025-02-01

Exercise 2.65.

Exercise 2.66.

Redo Exercise 2.48 with .by instead of group_by().

Redo Exercise 2.62 with .by instead of group_by().
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2.3 Lab: Italian Judiciary

2.3.1 Overview

The Roman Labor Court of Appeals has been struggling to keep up with demand: e.g., the median
judge had a backlog of over 500 open cases waiting for a verdict in 2010 (see figure 4.1). In an attempt
to reduce case completion times, the court teamed up with Bray et al. [2016] to develop a more efficient
docket scheduling policy. Whatever policy the consulting team proposed would have to be “fair,” as
the judges prized fairness over all else. In fact, the judges would bristle when the consultants lobbied
too hard for “efficiency”: they would explain that they are magistrates, not clerks—that their duty
was to fairly administer justice, not to close cases. Accordingly, the judges demanded a first-in-first-out
(FIFO) scheduling policy. However, Bray et al. pointed out that there are two equally fair ways to
implement FIFO in this context: at the case level, which arranges the docket based on when the cases
were filed, and at the hearing level, which arranges the docket based on when the cases were last seen.
Case-level FIFO mandates working on the first case until completion, and then the second case until
completion, and so forth, whereas hearing-level FIFO mandates holding the first hearing of each case,
and then holding the second hearing of each case, and so forth. For example, hearing-level FIFO is
analogous to giving everyone an appetizer, and then giving everyone a main course, and then giving
everyone a desert, whereas case-level FIFO is analogous to giving one diner a full three-course meal
before serving the next diner.

1,000 -
First quartile — Second quartile — Third quartile

750 -
0]
(@]
©
=3

2 500 -
[}
Q
[2])
®
O

250 -

0 -

2007 2008 2009 2010 2011 2012 2013
Year

Figure 2.1: Number of Open Cases Per Judge

Exercise 2.67. At first blush, do you expect one scheduling policy to always yield speedier trials
than another? If so, which would you expect to be faster? Or do you think that both policies will
have settings in which they are faster? Or do you believe that both policies necissarily yield the same
average case duration, by some “conservation of mass” principle?

We will now consider two simple models to gauge which which scheduling policy yields shorter cases.
Exercise 2.68. Suppose a judge has two cases and that each case comprises two hearings. If the judge

holds one hearing per day then what is the mean case duration under case-level FIFO and hearing-level
FIFO? To solve this, calculate the number of days required to finish each case when (i) the judge
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finishes the first case before starting the second case (case-level FIFO) and (ii) the judge finishes the
first hearing of both cases before starting the second hearing of either case (hearing-level FIFO).

Exercise 2.69. Suppose a judge has two cases, and that one case comprises two hearings and the other
case comprises 100 hearings. Further, suppose the judge can’t distinguish between the cases, so that
they have a 50% chance of starting with the shorter case and a 50% chance of starting withs the longer
case. If the judge holds one hearing per day then what is the mean case duration under case-level
FIFO and hearing-level FIFO? To solve this, calculate the number of days required to finish each case
under both case-level FIFO and hearing-level FIFO, both when the judge starts with the shorter case
and when they start with the longer case.

Your solutions to the previous two exercises should illustrate that neither policy dominates the other.
Indeed, both policies have relative strengths. The strength of hearing-level FIFO is exploration. If
there’s a short case then this policy will find and finish it sooner. In contrast, a short case can languish
behind a long case under case-level FIFO. The strength of case-level FIFO is dedication. This policy
will not leave partially finished cases waiting. In contrast, hearing-level FIFO will sometimes have
nearly completed cases, which the judge could easily get out the door, needlessly wait while cases that
are not nearly as advanced receive attention.

Since either scheduling policy could be theoretically faster, Bray et al. [2016] conducted an experiment
to determine which is actually faster. The convinced six judges to switch from hearing-level FIFO,
which the Roman labor court was previously using, to case-level FIFO on January 1, 2011. The
consultants then used a difference in difference research design, tracking how the scheduling efficiency
of these six “treated” judges changed after the intervention date, relative to the “control” judges who
did not adopt case-level FIFO. We will replicate the consultants’ analysis to determine for ourselves
which scheduling policy is faster.

This lab is real data science: every exercise will execute a data transformation the consultants actually
implemented. Hence, none of the problems in this assignment are make-work—each step was important
enough for the consultants to incorporate in their methodology.

2.3.2 Data

We will use the court_data tibble that you defined in section 1.3, exercise 1.35. It should have 12
variables:!!

e cidis a case ID number. Each row in the tibble corresponds to a hearing, and cid indicates which
case the given hearing belongs to. For example, there are four observations with cid = 152339,
and thus this case had four hearings.

e jidis a judge ID number. That is, the 71 jid values represent the court’s 71 judges.!?

o fdate records the date the case was filed, and hdate records the date the hearing was held.

o treated is a logical that indicates whether the judge received treatment (i.e., switched to case-
level FIFO). This value is constant for 68 judges. But three judges in our sample switched from

1 Cramming all this disparate data into one large tibble is a poor way to store it. For example, the tibble has a lot
of redundancy, as it needlessly repeats case-level attributes ptype, dtype, and ctype for each hearing. It would be more
efficient to store the case-level variables in one tibble and the hearing-level variables in another tibble. However, we won’t
cover joining tibbles until chapter 4 so we’ll stick to one tibble for this lab.

12More technically, jid identifies the judge who serves as the rapporteur for the case. As Bray et al. [2016] explain,
“Each case is assigned to a [three-judge] panel for adjudication, and to a rapporteur, a judge on the panel, for supervision.
The rapporteur analyzes the testimony, oversees the ruling, writes the opinion, and schedules the hearings. Since panels
are stable ... we treat a case’s rapporteur as its sole judge.”
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the control group to the treated group.'® So there are three jid values that have both treated =
TRUE and treated = FALSE observations.

e closed is a logical that indicates whether the case had concluded by the time that the sample
was collected.

e settled is a logical that indicates whether the case ended in a settlement. Note, settled = TRUE
implies closed = TRUE.

e party.count reports the number of interested parties.

o ptype classifies the plaintiff, dtype classifies the defendant, and ctype classifies the case (see Table
1 of Bray et al’s article).

e cassa is a logical that indicates whether the verdict was appealed to the Supreme Court of
Cassation.

2.3.3 Clean

We will start by removing the judges that moved between the treated and control groups midway
through the experiment.

Exercise 2.70. At a high level, how could you use n_distinct() to remove judges with both treated

= TRUE and treated = FALSE hearings?

e What functional quartet functions would you use?
e What would you group the data .by?
o What statistics would you compute?

Exercise 2.71. Implement the solution you sketched out in the previous exercise and save the result
as court_data (overwriting the previous object).

e court_data should have 193452 rows after this step.

Our tibble saves dates in two columns: fdate, which reports the dates cases were filed, and hdate,
which reports the dates hearings were held. There are two problems with this data structure. First,
it needlessly copies a case’s fdate value for each of its hearing observations. And second, it treats
similarly things differently, which we never want to do when coding. Indeed, one of the key principles
of programming is to recast analogous objects as special cases of a universal object, so that we can
cover all cases with the same code (see the discussion in section 2.4.8).

To see the benefit of making similar things the same, consider the following two tibbles:

tiny_tib_1 <-
tibble(
cid =
hid = 1:4,
fdate = today() - days(50),
hdate = today() + days(c(0, 20, 100, 200))

1
1

tiny_tib_2 <-

3More specifically, treated indicates whether the judge belongs to the collegio that received treatment. As Bray et
al. explain, the court is divided into five collegios, only one of which implemented our scheduling policy. Three judges
transferred into the treated collegio after the experiment was underway.
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tibble(

cid = 1,
hid = 0:4,
date = today() + days(c(-50, 0, 20, 100, 200))
)
tiny_tib_1
> # A tibble: 4 x 4
> cid hid fdate hdate
> <db1l> <int> <date> <date>
> 1 1 1 2025-02-18 2025-04-09
> 2 1 2 2025-02-18 2025-04-29
> 3 1 3 2025-02-18 2025-07-18
> 4 1 4 2025-02-18 2025-10-26
tiny_tib_2
> # A tibble: 5 x 3
> cid hid date
> <db1l> <int> <date>
> 1 1 0 2025-02-18
> 2 1 1 2025-04-09
> 3 1 2 2025-04-29
> 4 1 3 2025-07-18
> 5 1 4 2025-10-26

tiny_tib_1 comprises one case and four hearings, each with its own hearing ID number. tiny_tib_2
is the same, except it treats the case filing as the “zeroth hearing.” This reconfiguration enables us to
store all dates in a single column, which simplifies the following hearing wait_time calculation:

tiny_tib_1 %>%
mutate(

wait_time

ifelse(
hdate == min(hdate),
hdate - fdate,
hdate - lag(hdate)
)
)
> # A tibble: 4 x 5
> cid hid fdate hdate wait_time
> <dbl> <int> <date> <date> <db1l>
> 1 1 1 2025-02-18 2025-04-09 50
> 2 1 2 2025-02-18 2025-04-29 20
> 3 1 3 2025-02-18 2025-07-18 80
> 4 1 4 2025-02-18 2025-10-26 100
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tiny_tib_2 %>%
mutate(wait_time = date - lag(date))

> # A tibble: 5 x 4

> cid hid date wait_time
> <db1l> <int> <date> <drtn>

> 1 1 0 2025-02-18 NA days
> 2 1 1 2025-04-09 50 days
> 3 1 2 2025-04-29 20 days
> 4 1 3 2025-07-18 80 days
> 5 1 4 2025-10-26 100 days

As you see, it’s a lot easier to define wait_time when all dates are stored in one column than when
they are spread across two. And treating the file date as the zeroth hearing also allows us to avoid
needlessly copying the file date for each hearing.

To make similar things the same, we will treat the filing of a case as its “zeroth hearing,” as we did for
tiny_tib_2. More specifically, we will transform court_data from a tibble that looks like this:

example_tib

# A tibble: 8 x 3

cid
<db1l>

>
>
>
>
>
>
>
>
>
>
>

o N oo b~ WN R
W NN NN BB R

fdate
<date>
2021-06-09
2021-06-09
2021-06-09
2023-05-10
2023-05-10
2023-05-10
2023-05-10
2024-04-24

hdate
<date>
2023-12-09
2024-07-11
2025-01-25
2024-05-07
2024-08-24
2024-11-01
2025-02-19
2025-03-21

into a tibble that looks like this:

bind_rows(
example_tib %>%
select(-hdate) %>%
rename (date = fdate) %>%
distinct,
example_tib %>%
select(-fdate) %>%
rename (date = hdate)
) %>%
mutate(
hid = row_number (date) - 1,
.by = cid

> # A tibble: 11 x 3
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cid date hid
<dbl> <date> <dbl>
2021-06-09
2023-05-10
2024-04-24
2023-12-09
2024-07-11
2025-01-25
2024-05-07
2024-08-24
2024-11-01
2025-02-19
2025-03-21
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The code above uses bind_rows() to stack two tibble on top of one another. The bottom tibble
comprises the hdate values, created by dropping the fdate column of court_data and renaming the
hdate column to date. And the top tibble comprises the fdate values, created by dropping the hdate
column of court_data, renaming the fdate column to date, and taking the distinct() elements (so
that each case has one row). After vertically combining these tibbles, we then use row_number() to
created a new hearing ID variable, hid, which is zero for the case filings (i.e., each case’s earliest date),
one for the first hearings (i.e., each case’s second date), and so forth.

Note that the transformed tibble is out of order, with all the hid = 0 observations clustered at the top.
This is not a problem. In fact, you should always suppose that your data are out of order, as a common
bug is to assume your data are ordered in a particular way when they’re not. If you commit to never
relying on the data being nicely ordered then you will never make this mistake. For example, the code
above uses row_number (date) instead of row_number (), to avoid assuming that a case’s observations are
arranged by date.

Exercise 2.72. Modify the code above so that you can apply it to your court_data.

e Remove date = NA rows from your tibble before you define hid.
e Use dmy() to convert date from a character variable to a Date variable.
e Overwrite court_data with your final output. It should have 279542 rows.

Henceforth, we will consider the case filings as the zeroth hearings. Thus, for the rest of this lab, the
word “hearing” will refer both to traditional hearings and to case filings.

Exercise 2.73. We will next set closed = TRUE for all cases that didn’t have a hearing in the last two
years of our sample, since (i) the court sometimes fails to mark completed cases as closed and (ii) it’s
extremely unlikely for an active case to go two years without having a hearing.

e The last date in our sample is 2014-12-29, so the threshold you should use is 2012-12-29.
¢ Inequalities hold for Date variables. For example, today() < today() + days(1) = TRUE.
e Do not overwrite court_data with the resulting tibble, as we’ll slightly modify your solution.

Exercise 2.74. Your solution to the previous exercise likely violates a key principle in data science:
you should never treat the sample as fixed, as you will usually collect more data as time passes. For
example, I may one day revisit this judges study with an updated sample, and if I hard-code the date
2012-12-29 into my code base then it wouldn’t be flexible enough to accommodate a new horizon end
date. Update your solution to the previous exercise so that it does not hard-code the value of the cutoff
date. Instead, your code should calculate the date the lies two years before the end of the sample, so
that it would work even if you updated your court_data.
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e summarise() always outputs a tibble, but you can pull() out statistics from it. For exam-
ple, court_data %>% summarise(first_date_plus_a_century = first(date) + years(100)) %>%
pull(first_date_plus_a_century) outputs a Date.

e Overwrite court_data with the resulting tibble.

— 75.3% of the closed values in court_data should now be TRUE.

Exercise 2.75. Add a variable to court_data that indicates whether the given hearing concludes a
case.

e For example, the case with cid = 109211 has closed = FALSE and so all its hearings have
last_hearing = FALSE, whereas the case with cid = 78087 has closed = TRUE and so its last
hearing, held on 2010-07-22, has last_hearing = TRUE and its other hearings have last_hearing

= FALSE.
e Sometimes there are multiple hid values that correspond to a given date. So use hid == max(hid),
rather than date == max(date), to determine whether a given hearing is the case’ last.

e The last_hearing column of court_data should sum to 62742 after this step.

Exercise 2.76. Remove all cases that were filed more than 2,000 days before the January 1, 2011
intervention date, and remove all observations that correspond to before 2007.

e See what today() - days(2000) yields.

e Make sure you don’t recalculate the cutoff dates for each case, because that is slow.
— This step will only take a few seconds, if you code it properly.

e court_data should have 246453 rows after this step.

Exercise 2.77. Remove all judges that presided over fewer than 100 cases.

We have now finished cleaning our sample. We have six treated judges and 50 control judges. Bray et
al. had only 44 control judges, because they imposed a few more data filters than we have. (We’ll skip
these data filters because they have little effect on the overall results.)

2.3.4 Analyze

We will now measure how the efficiency of the treated judges changes relative to that of the control
judges after the intervention date. Since the goal is to reduce case adjudication times it seems the most
sensible test would be to compare the change in the treated and control judges’ case durations, before
and after January 1, 2011. Unfortunately, this comparison is impractical because cases last so long.
For example, 10% of cases last over four years, so directly measuring the new average case durations
would require around a decade of observation: say, three years to build up a cohort of new cases and
seven years to wait for the last of them to finish.

To get a more timely estimate, Bray et al. [2016] conducted a more subtle empirical test. They noted
that the average case duration is a function of two factors: the arrival rate of new cases and the number
of open cases.® And since their intervention can’t influence the arrival rate of new cases—which the
court has no control over—it can only reduce case durations by reducing the number of open cases.
And there are three ways to reduce the number of open cases: (i) decrease the rate at which new cases
arrive, (ii) increase the rate at which judges hold hearings, and (iii) increase the fraction of hearings that
conclude a case, otherwise known as the case-completion hazard rate. We've already established that
the intervention cannot influence the first mechanism, and it cannot influence the second mechanism

14In fact, a classic result from operations management establishes that the average case duration exactly equals the
average arrival rate of new cases times the average number of open cases. This result is known as (Little’s law)[https:
/ /en.wikipedia.org/wiki/Little%27s_ law].
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because re-prioritizing the cases has no bearing on the number of hearings a judge holds per day. Hence,
the only way the new scheduling policy can reduce case durations is by temporarily increasing the case-
completion hazard rate—i.e., by moving nearly completed cases to the front of the queue. Thus, we will
test whether switching to case-level FIFO decreased case durations by measuring whether it increased
case-completion hazard rates.

In the following exercise we will create a plot that demonstrates the relative change in the treated
judges’ hazard rates after the intervention.

Exercise 2.78. We will now plot the treated and control judges’ hazard rates, month by month. To
begin, we will calculate the hazard rates by month and treated:

e Remove the hid = 0 observations from court_data to focus on hearings, which involve judges,
and not on case filings, which do not involve judges.

e Add month = floor_date(date, "month") to court_data.

e Use summarise() to define hazard_rate as the fraction of hearings that completed a case, .by
(treated, month) pairs.

— The fraction of hearings that completed a case equals the fraction of hearings with
last_hearing = TRUE, which you can calculate with mean().

e Within the same summarise() call, use n() to define num_obs as the number of observations in the
current .by group, and likewise define sigma = sd(last_hearing). (We won’t use sigma until the
next exercise.)

e Remove the rows with num_obs < 50, since we need at least 50 observations to get a reasonable
estimate of the case-completion hazard rate.

e (all the resulting tibble data_to_plot, which should have 175 rows.

Exercise 2.79. data_to_plot tibble comprises two time series: one with treated = TRUE and one with
treated = FALSE. We will now plot these time series with the ggplot() package, which we will discuss
at length in the following chapter. This package enables you to define plots without data. For example,
the following object defines the parameters of the plot I would like you to make:

hazard_rate_plot <-
ggplot() +
aes (
X = month,
y = hazard_rate,
color = treated
) +
geom_point() +
geom_vline(xintercept = dmy("1/1/2011")) +
theme_bw ()

To turn hazard_rate_plot into a full-fledge plot, we must fill it with data. To do so, enter haz-
ard_rate_plot %+% data_to_plot into your console. You should receive a scatter plot in return.

Exercise 2.80. How should we interpret the plot you just created? Which policy does it suggest is
more efficient, case-level FIFO or hearing-level FIFO?

To further highlight the statistical difference between the treated = TRUE and treated = FALSE hazard
rate estimates, we will add 95% confidence intervals to each point estimate in our plot.
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Exercise 2.81. Each point in the plot we made in the previous exercise corresponds to mean value
of last_hearing across a collection of observations. Hence, each point in this plot reports a sample
average. And we can calculate the 95% confidence interval of any sample average. Specifically, the 95%
confidence interval of X = w is lower__limit to upper_ limit, where

e lower_limit =X —1.96 - Z,
e upper_limit = X +1.96 -

. o= \/(mle)2+-]-\-[+(a:NfX)2.

=

, and

2

We will add these 95% confidence intervals to our plot by adding a geom_errorbar() layer to our plot
blueprints:

hazard_rate_plot <-
hazard_rate_plot +
geom_errorbar (
aes(

ymin = lower_limit,

ymax = upper_Llimit

Now each dot in hazard_rate_plot has a corresponding vertical line, which runs from lower_limit to

upper_limit.

e Use mutate() to add these limit variables to data_to_plot, setting lower_limit = hazard_rate -
gnorm(.975) * sigma / sqrt(num_obs) and upper_limit = hazard_rate + gnorm(.975) * sigma
/ sqrt(num_obs).
— hazard_rate, gnorm(.975), sigma and num_obs correspond to X, 1.96, ¢, and N in the math-
ematical expressions above.
e Run hazard_rate_plot %+% data_to_plot to update your plot.

Now the figure should depict 187 point estimates (dots) embedded within 187 confidence intervals
(vertical bars). Roughly speaking, we can consider the difference between the treated = TRUE and
treated = FALSE hazard rates “statistically significant” if the corresponding error bars don’t overlap.
Hence, most of the treated = TRUE hazard rates are significantly higher than their treated = FALSE
counterparts after the intervention.

2.3.5 Explore
At the end of their study, Bray et al. [2016] explained that

About a year after our intervention, the treated judges reported a serendipitous side effect:
they forgot fewer case facts under case-level FIFO because of the reduced time between
hearings. They speculated that better remembering the cases led to fairer rulings.

To test whether the intervention lead to fairer rulings, the authors measured whether the rate at
which cases were appealed to the Supreme Court of Cassation decreased after the intervention. More
specifically, they measured a “difference in differences,” comparing the change in the appeals rate of the
treated judges, before and after the intervention, to the change in the appeals rate of the control judges,
before and after the intervention. They found that treated judges’ appeals rate dropped more than the
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control judges’ appeals rate, which suggests that switching to case-level FIFO improved the quality of
the rulings, because, as the authors explain, “Unjust rulings should be more frequently appealed.”

Exercise 2.82. Confirm the claim of Bray et al. [2016] that the rate of verdict appeals (i.e., fraction
of cases with cassa = TRUE) decreased more for the treated judges than for the control judges after the
intervention date. Perform a separate analysis for each ctype.

2.3.6 Reflect

After completing an analysis, you should take stock and document the work. Chronicling your analysis
will make it easier to follow in the future, and will give you a clearer idea of what you have accomplished.
Summarizing your work forces you to stand back and consider the larger picture. That said, we will
conclude this lab by recounting what we have done, to make sure the story is straight in our minds.

Exercise 2.83. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

2.4 Commentary

2.4.1 Data Factory Layout

We’ve now seen several examples of functional assembly lines. I’ll conclude this lecture by explaining
how arrange these assembly lines into a “data factory” that can process a statistical sample.

The vast majority of R functions either transform tibbles in to other tibbles or vectors into other
vectors. Of course, there are tibble-to-vector functions, such as pull(), and vector-to-tibble functions,
such as as_tibble(), but they are rare. Hence there are are two basic flavors of functional assembly
line: tibblewide lines, which exclusively comprise tibble-to-tibble functions, and vectorwide lines, which
exclusively comprise vector-to-vector functions. Since we’ll store nearly all our data in tibbles we’ll
perform nearly all our data analysis with tibblewide assembly lines. Thus, our data factories will
generally have the following form:

output_tibble <-
input_tibble %>%
tibble_fun_1 %>%
tibble_fun_2 %>%
tibble_fun_3

However, on closer inspection you’ll notice that many of these tibble-to-tibble functions contain vec-
torwide assembly lines in their parentheses. Thus, our data factory will actually look more like the
following:

output_tibble <-
input_tibble %>%
tibble_fun_1(
tibble_column %>%
vector_fun_1A %>%
vector_fun_1B %>%
vector_fun_1C
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) %>%
tibble_fun_2(
tibble_column %>%
vector_fun_2A %>%
vector_fun_2B %>%
vector_fun_2C
) %>%
tibble_fun_3(
tibble_column %>%
vector_fun_3A %>%
vector_fun_3B %>%

vector_fun_3C

For example, in the previous sections we embedded vectorwide assembly lines inside of tibblewide
assembly line functions whenever we nested the %>% symbol inside of summarise(), mutate(), and
filter () steps. For additional examples skim the solutions of the subsiquent chapters and you’ll find
most of the answers have this form: a master tibblewide assembly line connecting a set of nested
vectorwide assembly lines.

The data processing factories we will construct resemble the Intel computer chip factory I used to work
at. We make computer chips on round plates of silicon, 300-millimeters in diameter, called “wafers.
A given wafer could stores 148 computer chips. Since a speck of dust could destroy a chip, we keep
these wafers in air-tight boxes called Front-Opening, Unified Pods (FOUPs). A given FOUP stores 25
wafers, stacked vertically side by side. These FOUPs move down an assembly line from from station to
station via an Automated Material Handling System (AMHS) (which is basically a high-tech conveyor
belt). When a FOUP arrives at a work station—say a photolithography machine for etching, a diffusion
furnace for doping, or a wet bench for cleaning—it docks and creates an air lock with the tool. The
FOUP then passes its wafers into the air-tight machine, which processes them with a sequence of
operations. When the machine is done it passes the wafers back to the FOUP, which closes its “front-
opening” door and undocks. Finally, the FOUP hops back on the AMHS conveyor belt, headed for the
next work station.

9

In this analogy the computer chips represent individual units of data—e.g., single numbers or character
strings. Comprising 148 computer chips, the wafers thus correspond to vectors of length 148. And
comprising 25 wafers, the FOUPs correspond to tibbles with 25 columns and 148 rows. Finally, the
various work stations—the photolithography machines, diffusion furnaces, wet benches, etc.—represent
tibble-to-tibble functions, as they receive FOUP inputs and return FOUP outputs. However, although
they receive and return FOUPs, these machines work with the silicone wafers—like how tibble-to-
tibble functions work with the vector columns of a tibble. Hence, the processing these machines do
to the wafers is analogous to the processing the nested vectorwide assembly lines do to the vector
columns. And these vector columns ares always safely in a tibble or a function’s parentheses like how
the semiconductor wafers are always safely in a FOUP or air-tight toolset.

2.4.2 Nested Functions

Instead of arranging functions in an assembly line we could nest them one inside of one another, like
Matryoshka dolls. And from a computational perspective the nesting approach is equivalent to the
piping approach: f_n( ... f_3(f_2(f_1(x))) ... ) equals x %% f_1 %% f_2 %% f_3 %% ... %%
f_n. But from a design perspective, the piping approach is superior.
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For example, compare the following two solutions to exercise 2.19 (you won’t need to understand the
code to follow my argument):

#Assembly-1ine solution

tibble(date = today() + days(-1076:-1)) %>%
mutate(date_char = str_replace_all(date, "-", "")) %>%
group_by(date, date_char) %>%
summarise(digits = as.character(0:9)) %>%
mutate(digit_count = str_count(date_char, digits)) %>%
group_by (digits) %>%
summarise(m = mean(digit_count)) %>%

pivot_wider (names_from = digits, values_from = m)

#Nested solution
pivot_wider (

summarise(
group_by (
mutate (
summarise (
group_by (
mutate(
tibble(date = today() + days(-10%6:-1)),
date_char = str_replace_all(date, "-", "")

)
date, date_char
)
digits = as.character(0:9)
)5
digit_count = str_count(date_char, digits)
)
digits
)
m = mean(digit_count)
)
names_from = digits,
values_from = m

The nested solution is worse in three ways. First, it presents the functions in reverse-chronological order:
whereas the assembly-line solution arranges the functions by their order of operation, from tibble()
to pivot_wider(), the nested solution arranges them in the opposite order, from pivot_wider() to
tibble(). Hence, the nesting protocol forces us to read the code backwards (i.e., to move our eyes from
bottom-right to top-left). The reason is that R runs nested code inside out, starting with the innermost
operation and working its way backward to the outermost operation. Hence, the first function portrayed
is the last function executed, and vice versa.

Second, it’s harder to match functions with their inputs under the nested format: whereas the assembly-
line solution writes a function and its inputs in the same line, the nested solution puts space between
most function calls and their inputs. For example, 16 lines of code separate the outermost summarise()
call and its second input, m = mean(digit_count). For another example, try to quickly determine which
function the digit_count = str_count(date_char, digits) input belongs to.
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To compensate for the vertical distance between functions and their inputs, we’re compelled to use
indenting under the nested scheme, without which it would be nearly impossible to pair functions with
their inputs. For example, there are two indentations before m = mean(digit_count), which indicates
that this input corresponds to the second-outermost function, which is summarise(). However this
indenting technique leads to the third problem of nested code: the loss of horizontal space. Specifically,
since each nest introduces another indent, we can only nest so deeply before we “tab” away the entire
line. In contrast, the unnested code is fully left-justified, and thus has no reserved dead white space.

For these reasons, it’s better to arrange a long sequence of functions into an assembly line rather than
a nested stack. However, there is a time and a place for nesting. For example, we’ll use nesting in
chapter 4 to streamline our joins.

2.4.3 Computing Summary Statistic Vectors

Sometimes, we would like to compute more than one row of summary statistics per .by grouping. For
example, using summarise() to compute the deciles (i.e., 10th, 20th, .., 80th, and 90th percentiles) of
release_year for each show type is awkward, because doing so requires calling the quantile() function
nine times:

netflix %>%

summarise (
decile_1 = quantile(release_year, probs = .1),
decile_2 = quantile(release_year, probs = .2),
decile_3 = quantile(release_year, probs = .3),
decile_4 = quantile(release_year, probs = .4),
decile_5 = quantile(release_year, probs = .5),
decile_6 = quantile(release_year, probs = .6),
decile_7 = quantile(release_year, probs = .7),
decile_8 = quantile(release_year, probs = .8),
decile_9 = quantile(release_year, probs = .9),
.by = type
)
> # A tibble: 2 x 10
> type decile_1 decile_2 decile_3 decile_4 decile_5 decile_6 decile_7 decile_8
> <chr> <db1> <db1> <db1> <db1> <db1> <db1> <db1> <db1>
> 1 Movie 2002 2010 2013 2015 2016 2017 2017 2018
> 2 TV Sh~ 2011 2014 2016 2016 2017 2018 2018 2019
>

# i 1 more variable: decile_9 <dbl>

Fortunately, we can avoid this awkwardness with the more powerful reframe() function:

netflix %>%
reframe (
decile_val = seq(.1, .9, by = .1),
quant_val = quantile(release_year, probs = decile_val),
.by = type

> # A tibble: 18 x 3
> type decile_val quant_val
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> <chr> <dbl> <dbl>
> 1 Movie 0.1 2002
> 2 Movie 0.2 2010
> 3 Movie 0.3 2013
> 4 Movie 0.4 2015
> 5 Movie 0.5 2016
> 6 Movie 0.6 2017
> 7 Movie 0.7 2017
> 8 Movie 0.8 2018
> 9 Movie 0.9 2018
> 10 TV Show 0.1 2011
> 11 TV Show 0.2 2014
> 12 TV Show 0.3 2016
> 13 TV Show 0.4 2016
> 14 TV Show 0.5 2017
> 15 TV Show 0.6 2018
> 16 TV Show 0.7 2018
> 17 TV Show 0.8 2019
> 18 TV Show 0.9 2019

As you see, whereas summarise() requires each summary statistic to be an individual number (or
character string, Date, logical, etc.), reframe() allows each summary statistic to be an entire vector of
numbers (or character strings, Dates, logicals, etc.). For example, the code above defines two “summary
statistics” for each type: decile_val, which is the vector comprising .1, .2, ..., .9, and quant_val, which
is the quantile() vector of release_year, evaluated at probs = decile_val = c(.1, .2, ..., .9) (ie,
the vector comprising the 10th, 20th, ..., 80th, and 90th percentiles of release_year).

For another example, the following provides the first four values of rating and duration:

netflix %>%
reframe (
first_four_rating = head(rating, 4),

first_four_duration = head(duration, 4)

)
> # A tibble: 4 x 2
> first_four_rating first_four_duration
> <chr> <chr>
> 1 TV-PG 90 min
> 2 TV-MA 94 min
> 3 TV-Y7-FV 1 Season
> 4 TV-Y7 1 Season

In this case, the first “summary statistic” we calculate is the vector c("TV-PG", "TV-MA", "TV-Y7-FV",
"Tv-Y7") and the second “summary statistic” is the vector c("90 min", "90 min", "1 Season", "1
Season").

For a third example, the following lists all the country values that contain the word "Uruguay":

netflix %>%

reframe (country %>% keep(str_detect(., "Uruguay'")))
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A tibble: 9 x 1

“country %>% keep(str_detect(., "Uruguay"))®
<chr>

United States, Uruguay

Argentina, Uruguay, Spain, France

Uruguay

Spain, France, Uruguay

Uruguay, Spain, Mexico

Uruguay, Argentina, Spain

Argentina, Uruguay, Serbia

Uruguay

Australia, Armenia, Japan, Jordan, Mexico, Mongolia, New Zealand, Philippines~

In the example above, keep () is a function that selects the elements of a vector that correspond to the
TRUE values of another logical vector (in this case str_detect(country, "Uruguay")).

Exercise 2.84. We will now get all the people that are listed as the first director of a netflix show.

Pipe netflix into reframe().

Within the reframe() call pipe director into str_remove(",.x") to remove all the text after the
first comma (and thus extract the first person listed).

Pipe the output of str_remove() into unique %>% na.omit to get all the unique non-NA terms.

In practice, we would solve this problem with the specialized distinct() function. (See section
2.4.4.)

Exercise 2.85. We will now calculate the quartiles (i.e., the 25th, 50th, and 75th percentiles) of the
number of people listed in the cast.

2.4.

Pipe netflix into reframe().
Use str_count() to count the number of commas listed in each of the cast entries.
— "no, no, Hodge shall not be shot." %>% str_count(",") = 2.
The number of people in the cast is always one more than the number of commas, so add one to
each element of the vector outputted by str_count().
— Piping a vector into {. + 1} increases it by one. For example, 1:5 %>% {. + 1} = 2:6. (See
section 2.2.6.)
Pipe the result into quantile(probs = c(0.25, .5, .75), na.rm = TRUE)

4 Specialized Functions

mutate() and summarise() allow us to transform variables and derive summary statistics in a general
fashion. But some variable transformations and summary statistics are so common that R has tailor-
made functions for them. We’ll now use these specialized functions to streamline some of our exercise

solutions.

First, in exercise 2.36 we used mutate() and word() to separate the two “words” of duration into two
variables. But in practice we would do this with the built-in separate_wider_delim() function:

netflix <-
netflix %>%
separate_wider_delim(

duration,
names = c("duration", "duration_metric"),
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delim = " "

The opposite of separate_wider_delim() is unite(), which pastes two columns together. For example,
we can undo the separate() operation above, making duration revert back to its old definition, with:

netflix <-
netflix %>%
unite(
duration,
c("duration", "duration_metric"),

sep = non

Second, in exercise 2.84 we used summarise () and unique() to get the distinct values of the first directors.
But in practice we would do this with the built-in distinct() function:

netflix %>%
distinct(director %>% str_remove(",.x")) %>%
na.omit

> # A tibble: 3,209 x 1

> ‘director %>% str_remove(",.x")"
> <chr>

> 1 Richard Finn

> 2 Fernando Lebrija

> 3 Gabe Ibéfiez

> 4 Rodrigo Toro

> 5 Henrik Ruben Genz

> 6 José Miguel Contreras
> 7 Daniel Alfredson

> 8 Munjal Shroff

> 9 Tilak Shetty

> 10 Gaspar Noé

> # 14 3,199 more rows

Third, in exercise 2.47 we used summarise() and n() to count the number of shows in each month_added
group. But in practice we would do this with the built-in count() function:

netflix %>%
count (month_added)

Note, this function enables us to count the number of elements in rather general groupings. For example,
the last line in the output below indicates that there are 12 TV shows in netflix whose primary country
is either "Russia" or the "Soviet Union".

netflix %>%

count (
type,

119



USSR = country_primary %in% c("Russia'", "Soviet Union'")

Fourth, in exercise 2.53 we used mutate() and n() to add the number of programs the director has
directed as a new variable. But in practice we would do this with the built-in add_count() function:

netflix %>%
add_count (
director,

name = "director_count"

And fifth, in exercise 2.7 we used mutate(), ifelse(), and is.na() to turn the NA values in the director
column to "smissing datax". But in practice we would do this with the built-in replace_na() function:

netflix %>%

replace_na(list(director = "s«missing datax"))

2.4.5 Define Multivariate Functions

In section 2.2.3 we learned how to define functions with the <- . %>% notation. For example, the
following defines appender () as a function that appends the suffix "ing" to its input:

appender <-

. %>% str_c("ing")

"I love R code" %>% appender

> [1] "I love R codeing"

However, the <- . %>% approach only allows us to define functions of one variable. To define functions
of two or more variables we need to use the more cumbersome <- function(){} approach. For example,
the following defines appender () as a function of two variables, string and suffix:

appender <- function(string, suffix = "ing") {
string %>% str_c(suffix)

"T love R code'" %>% appender
> [1] "I love R codeing"
"T love R code" %>% appender('"rs'"

> [1] "I love R coders"

Note, when defining our function, we give suffix argument the default value of "ing". Thus, if we
don’t specify another suffix—i.e., if we only pass one input into the function—it’ll use "ing".
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Fortunately, you don’t have to remember the complex <- function(){} notation, because you can have
RStudio add it for you. For example, in an R coding window write:

string %>% str_c(suffix)

Now highlight this text and click on Code/Extract Function. A window should pop up asking you for
a “Function Name.” Input the word “appender” and RStudio should write the following in your coding
window:

appender <- function(string, suffix) {
string %>% str_c(suffix)

As you see, RStudio is smart enough to identify string and suffix as the arguments for this function.

Let’s do one more example. Write the following in a coding window:

all(vec_1 >= vec_2) | all(vec_2 >= vec_1)

Now highlight it, click Code/Extract Function, and input the name “is_one_vector_dominant.” Now
you should have the following in your coding window:

is_one_vector_dominant <- function(vec_1, vec_2) {
all(vec_1 >= vec_2) | all(vec_2 >= vec_1)

This is a function that takes two vectors and returns TRUE if all the elements of one vector are greater
or equal to all the elements of the other vector and returns FALSE otherwise. For example:

is_one_vector_dominant(1:3, c(-1, 0, 1))
> [1] TRUE
is_one_vector_dominant(1:3, c(-1, 0, 10))
> [1] FALSE

2.4.6 Download Packages from CRAN

In section 2.2.7 I alluded to the fact that we have “thousands of R functions at our disposal.” And
this is indeed the case: because the language is open-source—anyone can contribute packages to the
Comprehensive R Archive Network (CRAN)—almost any R function we could want has already been
written. We just have to find and download it.

For example, suppose we sought a function that computes the moving average of the past three values,
transforming vector c(x_1, x_2, x_3, ... x_20) to vector c(NA, NA, (x_1 + x_2 + 3)/3, (x_2 + x_3
+ x4)/3, ..., (x_18 + x_19 + x20)/3). To find such a function, google “Moving average tidyverse”.
(Searching by “tidyverse” tends to yield more up-to-date solutions than searching by “R”.) Your google
results will list several packages that include a moving average function: e.g., forecast, smooth, zoo,
and RcppRoll. And this is usually the case, as most functions have several competing versions online.
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Now you’ve got to pick one of these packages. There are several factors to consider when deciding
which package to choose:

Age: The R language has matured greatly in the past decade, so it’s crucial to choose a package
with a modern design sensibility (e.g., one that’s compatible with the tidyverse). Moreover, the
latest version is usually the best version.

Documentation. The R community has a tradition of excellent documentation. For example,
it’s not uncommon for a programmer to describe a package with a comprehensive Journal of
Statistical Software article or an elaborate vignette(). If you find a package with extremely
thorough documentation, you should probably go with it. Of course, a well-written manual is
useful, but more importantly the meticulous documentation signals the programmer’s competence
and effort.

Size: R packages generally comprise an entire suite of functions. And when we load a package
with library() we add all of them to our workspace. Hence, the more functions a package
comprises the more clutter it adds to our workspace. Thus, you should favor smaller packages.
Relevance: Try to avoid packages that focus on something other than what you're looking for.
For example, the abjutils package has an escape_unicode() function that “removes all accented
characters from the current file, replacing them by their equivalent Unicode-escaped values.” But
this package doesn’t specialize in text manipulation, as it provides general “Useful Tools for
Jurimetrical Analysis Used by the Brazilian Jurimetrics Association.” So escape_unicode() is
almost certainly not the best accent-removal function we can find.

Popularity: Give preference to more widely adopted packages. These packages are better vetted
and have more support—e.g., more blog posts and more stackoverflow'® answers.

For example, when deciding between the various moving average options, I found an article on tidy-
verse.org'® that recommends the RcppRoll package. And the imprimatur of the tidyverse is the
highest possible endorsement, so I choose this option. To install this package, I simply enter in-
stall.packages("RcppRoll") into the console, which downloads the package from CRAN to my com-
puter.

Once you’ve installed this package, you can load it into your workspace with library() to access its
functions. For example, the following calculates the moving average of 1:260:

library (RcppRoll)

roll_mean (

>

1:20,
n =3,

fill = NA,
align = "right"

[1] NANA 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19

Or you can execute this function without loading the ReppRoll package into your workspace with:

RcppRoll: :roll_mean(

1:10,
n=2>5,

5https:/ /stackoverflow.com/
6https://dplyr.tidyverse.org/articles/window-functions.html
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fill = NA,
align = "right"

> [1] NANNANANA 3 4 5 6 7 8

This package: : function() notation enables you to run any function from any package installed on your
computer but not loaded in your R workspace.

You should use this technique to keep your workspace streamlined. In fact, you should load a package
into your R workspace only if you intend to use it extensively. Otherwise, it’s better to keep it
unloaded and reference its functions with the package::function() notation. As I mentioned above,
loading packages clutters your workspace. But loading many packages can cause more serious problems
than an untidy working environment: as taking multiple medications can lead to undesirable drug
interactions loading multiple packages can lead to undesirable function interactions. The root of the
problem is that functions from different packages can share the same name. For example, both the
plyr and the dplyr packages have a function called summarise(). So if we run library(dplyr) and
then run library(plyr), the summarise() function of the latter package “masks” that of the former
package. Now, of course, you could still implement the masked version by calling dplyr::summarise(),
but chances are you wouldn’t even be aware that this function is masked. Instead, you would more
likely just write summarise() as usual and mistakenly apply the wrong version of the function.

This problem—having multiple variants of a given function—is quite common when you have, say, a
dozen different packages loaded. What’s more, these bugs are especially difficult to root out because
the code is technically correct, so there’s no blatant “error” that you can spot. And once you’ve gotten
burned by this a couple times you start to get paranoid, losing faith in the code you’re writing as you
incessantly ask yourself “Is this function masked?” Hence, it’s best to avoid this whole masking issue
by loading only the essential packages.

2.4.7 Glossary of forcats Functions

Having defined mutate() and functional assembly lines, I can now properly illustrate forcats’ factor-
manipulating functions. We will use four such functions: fct_recode(), fct_relabel(), fct_reorder(),
and fct_relevel(). I will use these functions to manipulate the following tibble:

mini_tib <-

tibble(
X = ¢(1, 5, -1, 0, -3, -2),
Y =
c(llall’ l|bll, ”C”, llall, llbll, |ldl|) 96>96
as.factor
)
mini_tib
> # A tibble: 6 x 2
> XY
> <db1l> <fct>
> 1 1 a
> 2 5b
> 3 -1 c
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> 4 0 a
> 5 -3 b
> 6 -2 d

The fct_recode() and fct_relabel() functions change the factor labels. fct_recode() allows us to
change the labels by hand:

mini_tib %>%

mutate(
Y_2 =
fct_recode(
Y)
A = "a",
C_or_D = "c",
C_or_D = "d"
)
)
> # A tibble: 6 x 3
> Xy Y_2
> <db1l> <fct> <fct>
> 1 1l a A
> 2 5b b
> 3 -1c C_or_D
> 4 0 a A
> 5 -3 b b
> 6 -2 d C_or_D
mini_tib
> # A tibble: 6 x 2
> Xy
> <db1l> <fct>
> 1 1 a
> 2 5b
> 3 -1c
> 4 0 a
> 5 -3 b
> 6 -2.d

And fct_relabel() allows us to change the labels by function (or functional assembly line):

mini_tib %>%
mutate(
Y_2 =
fct_relabel(
Y,
~ WX %>%
str_to_upper %>%
str_c("!")
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> # A tibble: 6 x 3

> Xy Y_2

> <dbl> <fct> <fct>
> 1 1 a Al

> 2 5b B!

> 3 -1 c C!

> 4 0 a Al

> 5 -3 b B!

> 6 -2.d D!

The fct_reorder() and fct_relevel() functions change the factor orderings. fct_reorder() allows us
to change the labels by hand:

mini_tib %>%
mutate(
Y_2 = fct_relevel(Y, "b", after = 3),
Y_2 fct_relevel(Y, "a", after Inf)

%> %

summar-ise (
levels(Y),
levels(Y_2)

)
> # A tibble: 4 x 2
> “levels(Y)® “levels(Y_2)"
> <chr> <chr>
>1 a b
>2b c
>3 c d
> 4 d a

And fct_reorder() allows us to change the labels by function:

mini_tib %>%
mutate(

Y 2

Y_3 = fct_reorder(Y, X, median), #order by mean(X)

%>%

fct_reorder (Y, X, min), #order by min(X)

summar-ise (
levels(Y),
levels(Y_2),
levels(Y_3)

> # A tibble: 4 x 3
> “levels(Y)®™ “levels(Y_2)" “levels(Y_3)"
> <chr> <chr> <chr>
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>1 a b d
>2b d ¢
>3 c c a
> 4 d a b

In general, fct_reorder () receives (i) a factor variable y, (ii) another variable x, and (iii) a function f.
It then evaluates f(x) across each y grouping, and arranges the levels of y so that the f(x) values are
in acceding order.

2.4.8 Standardize Objects to Standardize Code

Suppose you want to produce hot dogs, some of which must be kosher. You could operate kosher and
non-kosher assembly lines, with different lines following different rules, or you could make your entire
facility kosher, so that all lines follow the same rules. The later solution benefits from standardization,
as one process is generally easier to manage than two.

Standardization is analogously useful when coding. Indeed, a general principle of programming is to
make similar things the same, so that we can govern them with the same code—after all, it’s always
easier to work with one unified thing than two different things. For example, the initial court_data
sample we loaded in section 2.3.2 had two similar variables: fdate, which denoted when a case was
filed, and hdate, which denoted when a hearing was held. However, rather than discriminate between
these two types of dates, which necessitated us maintain two distinct variables, it’s easier to think of
them as two special cases of the same thing, so we can distill fdate and hdate down to one universal
date variable. To do so, we recast the filing of a case as “hearing zero” to make the one exceptional
case filing date the same as the rest.

For another example, consider the following code, from exercise 2.20:

netflix %>%

replace_na(list(director = "", cast = "")) %>%
mutate (

director = str_split(director, ", "),

cast = str_split(cast, ", ")

) %>%
unnest(director) %>%
unnest(cast) %>%
summar-ise (
director =
last(
director,
order_by = str_length(director)
)
cast =
last(
cast,
order_by = str_length(cast)
)
) %>%

summar-ise (

longest_name
ifelse(
str_length(director) > str_length(cast),
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director,
cast

> # A tibble: 1 x 1

> longest_name

> <chr>

> 1 Gabrielle Susanne Solheim Leithaug

This code violates the “make similar things the same” principle. The objective is to find the longest
name listed in either the director or cast columns of netflix. But for this query there’s no material
difference between directors and cast members, so there’s no reason to distinguish between them. Yet
the code does distinguish between them, applying each operation to the director and cast variables
separately, which leads to a lot of redundancy.

A more efficient solution starts by lumping directors and cast members into a common variable called
person, so that, e.g., a show with director = "Nia Dinata" and cast == "Surya Saputra, Cut Mini
Theo, Tora Sudiro" would have person = "Nia Dinata, Surya Saputra, Cut Mini Theo, Tora Sudiro".
By turning similar things (i.e., directors and cast members) into the same thing (i.e., people), this
change enables us to apply each operation only once, which makes for a simpler solution:

netflix %>%
unite( # Create person variable from director and cast
person,
c(director, cast),
sep = ", ",
na.rm = TRUE
9%>%
mutate(person = str_split(person, ", ")) %>%
unnest(person) %>%
summarise (
person = last(person, order_by=str_length(person))

# A tibble: 1 x 1
person
<chr>
1 Gabrielle Susanne Solheim Leithaug

vV V V Vv

2.5 Solutions

2.1

str_detect(im_burning, "!") #ignoring negate input implicitly makes it FALSE

2.2
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str_detect(im_burning, "!", negate = TRUE) #explicitly set negate to TRUE

24

vector_of_dates <- today() + days(1:365)
sample (vector_of_dates, 10)

2.3

vector_of_dates <- today() + days(1:365)
date_is_weekend <- wday(vector_of_dates, label = TRUE) %in% c("Sat", "Sun')
sum(date_is_weekend)

2.5

vector_of_dates <- today() + days(1:365)

vector_of_weights <-
wday (vector_of_dates, label = TRUE) %in% c("Sat", "Sun'")

sample (
vector_of_dates,
size = 10,
replace = FALSE,

prob = vector_of_weights

2.6

this_years_halloween <- mdy(str_c("10/31/", year(today())))
next_years_halloween <- mdy(str_c("10/31/", year(today()) + 1))

if(this_years_halloween >= today()) {
this_years_halloween - today()

} else {
next_years_halloween - today()

2.7

ifelse(
is.na(director_vector),
"xmissing datax",
director_vector

2.8
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ifelse(
'Letters 96-in96 c(llall, ||el|, Hj'll, lloll’ llull),
LETTERS,
letters

2.9

ifelse(
str_detect(letters, "[aeiou]"),
LETTERS,
letters

2.10

ifelse(
str_length(month.name) > 6,
month.abb,
month.name

2.11

ifelse(x <=y, x, y)

2.12

2%>%
sqrt %>%
sqrt %>%
sqrt %>%
sqrt

2.13

1:100 %>%
log %>%
mean %>%

exp

2.14

1:25 %>%
as.roman %>%
str_to_lower %>%
str_sort %>%
str_flatten
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2.15 Version 3 yields an error, because the following three lines comprise a “complete thought”:

3 %>%
log %>%
sqrt %>% sin

Accordingly, R will dispatch the three lines above before it confronts the two lines below:

%>% exp %>%

cos

R can’t run these two lines, because the first %>% has no input. Hence, it returns an error.
2.16 6, 3, and TRUE

2.17

Version 3

2.18

"comrade Napoleon 1is always right" %>%
str_to_title %>%
str_c("!IM, L, "IIIY) %%
str_replace("Comrade", "Master") %>%
rep(2) %>%
str_flatten(collapse = " ")

2.19

tibble(date = today() + days(-1074:-1)) %>%
mutate(date_char = str_remove_all(date, "-")) %>%
group_by(date, date_char) %>%
summarise(digits = as.character(0:9)) %>%
mutate(digit_count = str_count(date_char, digits)) %>%
group_by (digits) %>%
summarise(m = mean(digit_count)) %>%

pivot_wider (names_from = digits, values_from = m)

2.20

d <-
replace_na(
netflix,
list(director = "", cast = "")
)
d <-
mutate (
d,
director = str_split(director, ", "),
cast = str_split(cast, ", ")
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)
d <- unnest(d, director)
d <- unnest(d, cast)
d <-
summar-ise (
d’
director =
last(
director,
order_by = str_length(director)
)
cast =
last(
cast,

order_by = str_length(cast)

)
d <-
summar-ise (
d,
longest_name
ifelse(
str_length(director) > str_length(cast),

director,
cast

2.22

"output/combined_experimental_sample.rds" %>%
read_rds %>%
filter (!dis.na(UNITCOST)) %>%
summar-ise (
cv = sd(UNITCOST, na.rm = TRUE)/mean(UNITCOST, na.rm = TRUE),
.by = product
%>%
na.omit %>%
summar-ise (
probs = ¢(.25, .5, .75),
quantile =
cv %>%
quantile(probs = probs) %>%
format_fraction_same_length(3)
) %>%
pivot_wider (names_from = probs, values_from = quantile) %>%
dwalk (
~.X %>%
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as_tibble %>%
write_delim(

str_c(stat_folder, "wholesale_cv_quartile_",

col_names = FALSE

2.23

RealSoftMax <-
. %>%
exp %>%
sum %>%

log

-4:4 %>% RealSoftMax
-64:64 %>% RealSoftMax

2.24

clean_text <-

. %>%

str_replace_na(replacement = "") %>%

str_flatten(collapse = " ") %>%

str_remove_all("[[:punct:]]") %>%

str_squish %>%
str_to_lower

tasty_breakfast %>% clean_text

brotherly_love %>% clean_text

2.25

itsy_counter <- . %>% str_count(itsy_bitsy,

2.27

y %>%{
/ (2:sqrt(.))
T %>% {
I'= floor(.)
T %>%
all

2.28

)
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"When a man is tired of London, he 1is tired of life" %>%
str_replace_all(word(., 5), "understanding")

2.29 The second paragraph is correct.
2.30

euclid_length <-
. %>%
{.A2} %>%
sum %>%

sqrt

2.31

logical_not <-

%>% {!.}
2.31

self_exponentiation <-
. %>%

{.~3
2.32

smart_viewer <-

. %>%

{ if(ncol(.) < 5) summary(.) else glimpse(.) }
netflix %>% smart_viewer
netflix %>%

select(1:3) %>%
smart_viewer

2.33

netflix <-
netflix %>%
mutate(restricted = rating %in% c("R", "TV-MA", "NC-17"))

2.34
netflix <-
netflix %>%

mutate(
kid_rating =
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ifelse(
rating %in% c("G", "PG", "TV-G", "TV-PG"),
rating,
"not child friendly"

2.35

netflix <-
netflix %>%
mutate(
date_added = mdy(date_added),
month_added = month(date_added, label = TRUE),
wday_added = wday(date_added, label = TRUE)

2.36

netflix %>%
mutate(
duration_metric = word(duration, 2),
duration =
duration %>%
word (1) %>%
as.integer
) %>%
select(title, duration_metric, duration) %>%
head (4)

2.37

evanston <-
evanston %>%
mutate (
"Arrest Date’ =
mdy_hm( Arrest Date ) %>%
as_date,
"Arrest Time =
"Arrest Time  %>%
as.character %>%
str_pad(4, "left", pad = 0) %>%
str_replace("(..)", "\\1:") %>%
hm

2.38
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evanston <-
evanston %>%
mutate(
City =
City %>%
fct_recode(
EVANSTON =
EVANSTON =
EVANSTON =
EVANSTON =
EVANSTON =
EVANSTON =

"EVNSTN",
"EANSTON",
"EVANTSTON",
"N EVANSTO",
"EV/ANSTON",
"EVSTON"

2.39 The third paragraph is correct.

2.40

evanston %>%

summar-ise (
youngest = min
oldest = max(A

2.41

evanston %>%

summarise (cor (Se

2.42

netflix %>%

summar-ise (
day_count = ma
day_count = as
show_day_count
new_show_fract

2.43

netflix %>%

summar-ise (
avg_year_movie
avg_year_tv =
age_difference

(Age, na.rm=TRUE),
ge, na.rm=TRUE)

x == "Male'", "Weapon Code™ != ""))

x(date_added) - min(date_added),
.integer (day_count),

= n_distinct(date_added),

ion = show_day_count / day_count

= weighted.mean(release_year, type == "Movie'"),
weighted.mean(release_year, type == "TV Show'"),
= avg_year_tv - avg_year_movie
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2.44

netflix %>%
summar-ise (
fraction_na =
director %>%
is.na %>%

mean

2.84

netflix %>%
summarise (
director %>%
str_remove(",.x") %>%
unique %>%
na.omit

2.85

netflix %>%
summar-ise (
quantiles =
cast %>%
str_count(",") %>%
{. + 1} %>%
quantile(
probs = ¢(0.25, .5,
na.rm = TRUE

.75),

2.45 The first statement is correct.

2.46

netflix %>%
group_by (month_added) %>%
summarise (num_shows = n())

2.47

netflix %>%
group_by (month_added) %>%
summarise (num_shows = n())
ungroup %>%

%>%
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mutate(frac = num_shows / sum(num_shows)) %>%

head (4)

2.48

netflix %>%
group_by(Fri_Sat

2.49

evanston %>%

= wday_added %in% c("Fri'", "Sat")) %>%
summarise(fraction_tv = mean(type == "TV Show"))

group_by(ntile(Age, n = 10)) %>%

summarise (weapon_

plot

2.50

evanston %>%

frac = mean( Weapon

group_by (hour ( Arrest Time')) %>%

summar-ise (

on_view_frac =

%>%

plot

2.51

evanston %>%

mean( Arrest Type’

Code"

mutate(local = City == "EVANSTON") %>%

group_by(local) %>%

summarise (

min_quantile
max_quantile =

2.52

evanston %>%

group_by(local =
summarise (

min_quantile =

max_quantile

2.53

quantile(Age, probs

quantile(Age, probs =

City == "EVANSTON")

quantile(Age, probs
quantile(Age, probs

!= llll)) %>9%

== "On View", na.rm =
= .25, na.rm = TRUE),
.75, na.rm = TRUE)
%>%
= .25, na.rm = TRUE),
= .75, na.rm = TRUE)
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netflix <-
netflix %>%
group_by (director) %>%
mutate(director_count = n()) %>%

ungroup

2.54

netflix <-
netflix %>%
mutate(
director_count =
ifelse(
is.na(director),
NA,
director_count

2.55

netflix %>%
group_by (
type,
Fri_Sat = wday_added %in% c("Fri", "Sat")
%>%
summar-ise (
inexperienced_director =
mean(director_count == 1, na.rm = TRUE)

2.56
evanston %>%
group_by( Arrest Date’) %>%

mutate(Daily_Arrest_Number = row_number( Arrest Time )) %>%
ungroup

2.57
netflix %>%

filter(str_detect(director, "Riri Riza")) %>%
select(title, description)

2.58

netflix %>%
filter(
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str_detect(director, "Riri Riza"),
director != "Riri Riza"

) %>%

select(title, director)

2.59

netflix %>%
filter (str_detect(cast, ",", negate = TRUE)) %>%
select(title, cast) %>%
head

2.60 The first code snippet evaluates the two logicals before removing any data, whereas the second
code snippet imposes the str_detect(country, "Mexico", negate = TRUE) condition before evaluating
the country %>% str_detect("Mexico") %>% any logical. Hence, the first code snippet returns the shows
that were not filmed in Mexico but who were made by directors who have filmed there, and the second
code snippet returns no observations, since the first filter() removes all the shows that are filmed in
Mexico.

2.61 The third statement is correct.
2.62

netflix %>%
group_by (director) %>%
filter(
cast %>%
str_detect("Forest Whitaker") %>%
any
%> %

head (5)
2.63

netflix %>%

group_by (director) %>%

filter(
!is.na(director),
n_distinct(listed_in) >= 6
%> %

select(director, title, listed_in) %>%

head (5)

2.64

evanston %>%
group_by( Arrest Date’) %>%
filter (sum( Weapon Code’ == "Handgun") >= 2) %>%

ungroup
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2.65

netflix %>%

mutate(Fri_Sat = wday_added %in% c("Fri'",

summar-ise (
fraction_tv = mean(type == "TV Show"),
.by = Fri_Sat
)
2.66

netflix %>%
filter(
cast %>%
str_detect("Forest Whitaker") %>%
any,
.by = director
) %>%
head (5)

2.84

netflix %>%
reframe (
director %>%
str_remove(",.*x") %>%
unique %>%

na.omit

2.85

netflix %>%
reframe (
quantiles =

cast %>%

str_count(",") %>%

{. + 1} %>%

quantile(
probs = ¢(0.25, .5, .75),
na.rm = TRUE

"Sat")) %>%
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Chapter 3

Pivots and Plots

3.1 Introduction

We'll now learn how to make plots and pivot data. These topics are related because making just the right
plot usually requires some data pivoting. Pivoting a tibble means moving its data around. There are
two primary places to store information in a table: in a column (i.e., “inside” the tibble) and in a column
name (i.e., “above” the tibble). And thus there are two basic pivot functions: pivot_longer (), which
converts metadata stored above the tibble into formal data stored inside the tibble, and pivot_wider (),
which does the opposite. For example, compare the following three tibbles:

planet_1 <-
tribble(
~planet, ~radius, ~dist, ~year,
"Mercury", 1516, 193, 88,
"Venus", 3760, 361, 225,
"Earth", 3958, 499, 365,
"Mars", 2106, 760, 687
)
planet_2 <-
tribble(

~planet, ~stat, ~value,
"Mercury", "radius", 1516,
"Mercury", "dist", 193,

"Mercury", "year", 88,
"Venus", "radius", 3760,
"Venus", "dist", 361,

"Venus", "year", 225,
"Earth", "radius", 3958,
"Earth",  "dist", 499,

"Earth", "year", 365,
"Mars", "radius", 2106,
"Mars", "dist", 760,

"Mars", "year", 687
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planet_3 <-
tribble(
~stat, ~Mercury, ~Venus, ~Earth, ~Mars,
"radius", 1516, 3760, 3958, 2106,
"dist", 193, 361, 499, 760,
"year', 88, 225, 365, 687

These tibbles store the same data in different ways. None of these configurations is superior, as different
analyses call for different data arrangements. Accordingly, we would like to be able to convert one of
these tibbles into another without redefining the sample from scratch. Data pivoting will enable us to
do so.

In addition to pivot functions pivot_longer () and pivot_wider() we will study plotting function gg-
plot(). The plotting capability of R is stunning—it is one of the languages’ core competencies. In
fact, ggplot() is reason enough to use R. Learning ggplot() is like joining an exclusive visualization
fraternity—you will get excited when you see another ggplot() “in the wild”, like an expat who recog-
nizes fellow countrymen. But let me warn you: making plots in ggplot() will turn you into a graph
snob. Once you've grown accustomed to its beautiful graphs, you’ll never again look upon an Excel
figure without contempt. Once you’ve learned know how to make graphs with computer code, you’ll
view point-and-click plotting approaches as indecent, if not outright uncivilized.

After you've honed your plotting and pivoting skills, you’ll apply them to a real-world problem in
section 3.3. In this lab, you will follow the methodology of Bray (2020) to study how the track-package
activities that Alibaba reports to its customers affects how these customers view the company’s logistics
performance.

Finally, T conclude, in section 3.4, with some ad hoc remarks: In section 3.4.1 I explain how to
save a ggplot (long story short: use ggsave()). In section 3.4.2 I explain how you’ll probably use
pivot_longer () more than pivot_wider(), as it’s generally easier to manipulate information stored in
columns than information stored in column names. And in section 3.4.3 I explain how to collapse
vectors into summary statistics with pivot_wider().

For the lecture, you can work in the code.R file of the ggplot project you created in exercise 1.36, and
for the lab you can work in the code.R file of the alibaba project you created in exercise 1.37.

3.2 Lecture

3.2.1 Data

We will primarily study ufc, a sample of 4111 Ultimate Fighting Championship! (UFC) bouts that you
loaded in exercise 1.36 of section 1.3. Each bout has two combatants, and each combatant is assigned
to a corner of the octagonal ring. The favorite is usually assigned to the red corner and the underdog to
the blue corner. The variables corresponding to the red-corner fighter begin with R_ and the variables
corresponding to the blue-corner fighter begin with B_. I will use x_ to refer to the generic case: e.g.,
X_fighter means R_fighter or B_fighter. Here are the variables:

e fight_id: Distinct bout identification number.

e date, location: Date and location of the bout.

e red_win: A logical indicated whether the the boxer in the red corner wins.
e title: A logical indicating whether this was a championship title bout.

Thttps://en.wikipedia.org/wiki/Ultimate_ Fighting_ Championship
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weight_class: The weight class of the fighters.

gender: Fighter gender, either "MALE" or "FEMALE".

rounds: Maximum number rounds until decision, either three, four, or five.
result: Result of the bout.

— "U-DEC" denotes a unanimous decision.

— "M-DEC" denotes a majority decision, where two judges consider one fighter the winner and

the third judge considers the fight a tie.

— "S-DEC" denotes a split decision, where two judges considers one fighter the winner and the

third judge considers the other fighter the winner.

— "suB" denotes a submission, where the losing fighter “taps out” of the bout.

— "Ko/TKO" denotes a knockout or technical knockout.

— "pQ" denotes that a fighter was disqualified (e.g., for biting or pulling hair).
finish_details: The move that finished the fight, if it ended in a knockout or submission.
finish_round: The round the fight ended, a number between one and five.
finish_round_time: Duration of the final round, in seconds.
fight_time: Duration of the fight, in seconds.
audience: A logical indicating whether there was an audience in the arena.

X_fighter: Fighter name.

X_odds: The decimal odds that that this fighter will win, from bestfightodds.com. For example,
if R_odds = 1.5 and you place a $100 bet that the boxer in the red corner will win then you will
receive back $150 if this boxer does win (reaping a $50 profit) and you will receive nothing back
if this boxer loses (incurring a $100 loss).

X_stance: Fighting stance.

— "Orthodox" denotes a left-shoulder-forward stance.

— "Southpaw" denotes a right-shoulder-forward stance.

— "Switch" denotes a combination of left-shoulder-forward and right-shoulder-forward stances.
X_age, X_weight, X_height, X_reach: Fighter age (in years), weight (in pounds), and height and
arm span (in centimeters).

X_wins, X_losses, X_draw, X_rounds_fought: Total number of UFC wins, losses, draws, and rounds
fought prior to the current fight.

X_kd: Number of times this fighter knocked down the other fighter in this bout.
X_strong_attempt, X_strong_achieve, X_weak_attempt, X_weak_achieve: Number of strong strikes
attempted, strong strikes landed, weak strikes attempted, and weak strikes landed by this fighter
in this bout.

X_td_attempt, X_td_achieve: Number of take-downs attempted and achieve by this fighter in this
bout.

X_sub_attempt, X_sub_achieve: Number of submissions attempted and achieve by this fighter in
this bout.

We will also study formula_1, which reports the lap times of Formula One? car races, going back to
1996. The tibble looks like this:

formula_1 %>% glimpse

vV V V V VvV

Rows: 517,573

Columns: 10

$ date <date> 2008-03-16, 2008-03-16, 2008-03-16, 2008-03-16, 2008-03-16, 2~
$ circuit <chr> "Australian G.P.", "Australian G.P.", "Australian G.P.", "Aust~

$ driver <chr> "Lewis Hamilton", "Lewis Hamilton", "Lewis Hamilton", "Lewis H~

Zhttps://en.wikipedia.org/wiki/Formula_One
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> $ team <chr> "McLaren", "McLaren", "MclLaren", "McLaren", "McLaren", "MclLare~
> $ flag_d <chr> "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K."~
> $ flag_t <chr> "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K.", "U.K."~
> $ start <dbl»1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,~
> $ end <db1l>1, 1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
> $ lap <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,~
> $§ seconds <dbl> 121.465, 152.471, 89.257, 88.614, 88.556, 88.513, 88.442, 88.6~

Its variables are:

o date reports when the race took place. (There’s only one race on any given day.)

e circuit specifies the race, or “Grand Prix.”

e driver reports the driver’s name.

e team reports the name of the Formula 1 team, or “constructor.”

e flag_d and flag_t report the nationality of the driver and team.

e start reports the order on the starting grid. Since the track isn’t wide enough to accommodate
the cars side-by-side, they begin the race aligned one after another, with the car in “pole position”
at the front of the pack.

e end reports the sequence in which the cars completed the race.

e lap specifies the lap number. A car will drive around 50-70 laps around the course in a typical
race.

e seconds specifies the length of time it took the car to complete the given lap.

3.2.2 ggplot()

The key output of data science is the plot. And the key plotting function is ggplot(), from the ggplot2
package, a member of the tidyverse.®> Hence, most of our if our analyses will terminate in a ggplot()
step.

Here is a basic ggplot() example:

ufc %>%

ggplot +

aes(
x = R_reach,
y = B_reach,

color = weight_class
) +
geom_point(size = 0.1) +
facet_grid(
rows = vars(wday(date, lab = TRUE)),
cols = vars(gender, str_detect(location, "USA"))

3The “gg” in ggplot() stands for “grammar of graphics.”
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R_reach

The code above illustrates the four basic components of a ggplot. The first component is the data,
which we pass in with ufc %>%. We will usually input our data with a conveyor belt because most
of our ggplot() calls will be positioned at the end of longer functional assembly lines. That is, we’ll
usually want to process our tibble a bit before plotting it.

The second component is the set of “facets,” which we specify with the facet_grid() expression. A

facet is a mini-plot that corresponds to a specific group of data. We define our groups with the vars()
function, which can parse general expressions. For example, the rows = vars(wday(date, lab = TRUE))
option calls for a new row of facets for each distinct value of wday(date, lab = TRUE) and the cols =
vars(gender, str_detect(location, "USA")) option calls for a new column of facets for each distinct
(gender, str_detect(location, "USA")) pair. For example, the top-left facet corresponds to male
fights held on Sunday in a country other than the United States (i.e., gender = "MALE", wday (date, lab
= TRUE) = "Sun", and str_detect(location, "USA") = FALSE), and the bottom-right facet to female
fights held on Saturday in the United States (i.e., gender = "FEMALE", wday(date, lab = TRUE) = "Sat",
and str_detect(location, "USA") = TRUE). If we do not specify a faceting scheme, R squeezes all the
data into a single facet (i.e., a single plot).

The third component is the cast of characters, which we specify with aes(x = R_reach, y = B_reach,
color = weight_class). The cast of characters specifies the variables that comprise a facet’s plot and
the roles they play. For example, our cast of characters stipulates that R_reach will play the role of
the x-coordinate, B_reach will play the role of the y-coordinate, and weight_class will play the role of
color. We always define our cast of characters with aes(), which stands for “aesthetic.”

The final component is the “layer,” which we specify with geom_point(). There are many varieties of
graph we can make with our cast of characters—Iline plots, bar charts, histograms, boxplots, scatter
plots, etc. The geom_point() layer specifies that we want a scatter plot (and the size = 0.1 option tells
R to make the dots one-tenth their normal size). In other words, if the aes() call serves as the cast of
characters, specifying who acts in each role, then layer serves as the script, specifying what each role
actually does.

So putting this together, the code above tells R to scatter plot the R_reach and B_reach variables of ufc,
while coloring each point according to the weight_class variable, and to create separates mini-plots for
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each gender, day of the week, and USA /non-USA groupings.

Here’s a second example:

stance_plot <-
ufc %>%
mutate(
spread = B_odds - R_odds,
R_stance = str_c("Red: ", R_stance),
B_stance = str_c("Blue: ", B_stance)
) %>%
ggplot +
aes (
X = spread,
color = R_stance,
fill = R_stance

) +
geom_histogram(
bins = 40,
alpha = .4

) +

facet_wrap(vars(B_stance))

stance_plot

Blue: Orthodox Blue: Southpaw Blue: Switch

400~

300 - R_stance
e Red: Orthodox
3 200-
o |:| Red: Southpaw

100- Red: Switch

- E,‘n{mmlﬂh__‘m i ]
-5 0 5 10 -5 0 5 10 -5 0 5 10
spread

Let’s walk through the four elements of this plot:

e Data: The tibble inputted to ggplot() is the tibble outputted by mutate(). Hence, the sample
that ggplot() receives has a variable called spread that equals the difference between B_odds and
R_odds. The more positive this spread is, the more favored the red-cornered boxer is to win.

o Facets: We facet by B_stance by writing facet_wrap(vars(B_stance)). Note that we’ve switched
from facet_grid() to facet_wrap(). The only difference between these functions is how R lays out
the facets: under facet_grid() the computer arranges the facets as a grid and under facet_wrap()
the computer arranges them as a list. We usually use facet_wrap() when faceting by one variable
and facet_grid() when faceting by two variables.

o Cast of characters: The aes() call specifies that the x-coordinate role is played by spread and
the color and fill roles are played by R_stance. There is no y-coordinate role.

o Layers: The geom_histogram() call tells R to make the plot a histogram. And this is why didn’t
need to specify a variable for the y-coordinate: R knows to set the height of the bar to the number
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of observations in the given bin. The bins = 40 option tells R that we want this histogram to
comprise 40 vertical bars. And the alpha = .4 option tells R to make the bars 60% transparent
(so they have a pastel look to them).

The code above saves our ggplot as a variable called stance_plot. We can add extra options to this
variable with the + symbol to further customize the figure:

stance_plot +

facet_wrap(
vars(B_stance),
ncol = 1,
scales = "free"

) +

labs(
x = "Spread",
y = "Number of Fights"

) +
theme_bw() +
theme (
legend.position = "top",
legend.title = element_blank(),
strip.background = element_rect(color = "white", fill = "white")
)
D Red: Orthodox |:| Red: Southpaw I:' Red: Switch
Blue: Orthodox
400 -
300 A =
200 A ]
100 EEE
0- T — T T T
-5 0 5 10
2 Blue: Southpaw
= :
.LCI__” 80 1 —
w 601 -
S 40
8 201 = IZEI—I
E 0- T — 1 = - T T
> -5 0 5 10
Blue: Switch
20+
104
0- — ['q_'_‘_‘ —
-5 0 5 10
Spread

We’ve now modified our plot in four ways:

e The ncol = 1 and scales = "free" options we added to facet_wrap() tell R to stack the facets
in a single column and give each facet its own scaling, so that, e.g., one y-axis goes up to 400
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whereas another maxes out at 25.

e The labs() call modifies the axis labels.

e The theme_bw() call changes the background from gray to white.

e The theme() call moves the legend from the side to the top, removes the legend title, and turns
the facet labels from gray to white.

The preceding example illustrate the key feature of ggplots: their modularity. Rather than recreate
our histogram from scratch, we simply appended the additional options to the stance_plot variable. In
fact, a ggplot is really just a loose collection of features pasted together with + signs. Hence, a ggplot
is like a Christmas tree that we can attach any number of ornaments to.

Exercise 3.1. Define the following layerless ggplot:

layerless_height_plot <-
ufc %>%
ggplot +
aes(x = R_height, y = B_height) +
labs(
x = "Red Height",
y = "Blue Height"
) +
theme (panel.background = element_rect(fill = "white'"))

layerless_height_plot

210~

Blue Height
= - [ [ N
o)} ~ o5} (e} o
o o o o o

150 -, 1 1 1 1 1 1
150 160 170 180 190 200 210
Red Height

We must give layerless_height_plot a layer for it to actually plot anything:

e Use the + symbol to add a geom_point(size = .01) layer to layerless_height_plot and call the
result point_height_plot.

e Use the + symbol to add a geom_jitter(size = .01, height = 1, width = 1) layer to layer-
less_height_plot and call the result jitter_height_plot.

Note that jitter_height_plot is the same as point_height_plot, except its point positions are slightly
randomized to minimize overlap. As you see, introducing a bit of noise can yield a much more infor-
mative graphic.

Exercise 3.2. Use the + symbol to derive from jitter_height_plot an analogous plot called jit-
ter_reach_plot that illustrates the distribution of R_reach and B_reach. Label the axes "Red Reach"
and "Blue Reach"
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The ggplot paradigm is so flexible that it can produce almost any graph imaginable. You can find
many beautiful examples here*. And you can find an ugly example below:

ufc %>%
mutate(
R_weak_achieve = ntile(R_weak_achieve, 3),

R_weak_achieve
ifelse(
R_weak_achieve == 1,
"Few Weak Red Punches",
"Many Weak Red Punches"
)5
B_weak_achieve = ntile(B_weak_achieve, 2),
B_weak_achieve =
ifelse(
B_weak_achieve == 1,
"Few Weak Blue Punches",
"Many Weak Blue Punches"
)
) %>%
group_by (
R_weak_achieve,
B_weak_achieve
) %>%
mutate (
mean_R_strong = mean(R_strong_achieve),

mean_B_strong

) %>%

mean (B_strong_achieve)

na.omit %>%
ggplot +
aes(
x = R_strong_achieve,
y = B_strong_achieve
) +

geom_vline(

aes(xintercept = mean_R_strong),

color = "purple"

) +
geom_hline(
aes(yintercept = mean_R_strong),
color = "purple"
) +
geom_point(size = 0.1) +
geom_smooth(aes(color = gender)) +
geom_quantile(
quantiles = ¢(0.1, 0.9),
color = "pink"

“https://plotly.com/r/

149


https://plotly.com/r/

) +

facet_grid(
rows = vars(R_weak_achieve),
cols = vars(B_weak_achieve)

) +
theme_bw() +
labs(
x = "Number of Strong Red Punches",
y = "Number of Strong Blue Punches"
) +
theme (strip.background = element_rect(color = "white", fill = "white"))
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This plot has an absurd number of features. For example, it has five distinct layers: the purple lines
from geom_vline() and geom_hline(), the dots from geom_point(), the green and orange lines from
geom_smooth (), and the pink lines from geom_quantile(). Also, there are four character definitions made
by four aes() calls (but the latter three apply only within their respective geom_vline(), geom_hline(),
and geom_smooth() layers).

The last example illustrates the typical ggplot syntax, which in general looks like this

initial_data %>%
transformation_fun_1 %>%
transformation_fun_2 %>%
# ...
transformation_fun_n %>%
ggplot +
plot_fun_1() +
plot_fun_2() +
# ...
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plot_fun_n()

The transformation_fun_x() expressions represent functions like mutate() and filter(), which modify
the data, and the plot_fun_x() expressions represent functions like geom_vline() and theme_bw(),
which modify the plot. Note that we switch from %>% to + after the ggplot() line. Also, the function
parentheses are optional before the ggplot() line but mandatory after. For example, in the code for
the plot above we exclude the parentheses from na.omit() but not from geom_smooth().

Exercise 3.3. We will now create a heat map that depicts the joint distribution of R_weight and
B_weight.

e Pipe ufc into ggplot().

e Use aes() to set R_weight to the x-axis and B_weight to the y-axis.
e Add a geom_density2d_filled() layer.

e Add the option labs(x = "Red Weight", y = "Blue Weight").

e Save the plot as heat_map_plot, so we can modify it later.

Exercise 3.4. The following plot depicts the number of bouts that took place over time, by weight
class. We will now recreate this plot.

e Use mutate() to redefine weight_class = fct_reorder(weight_class, R_weight, mean). This
changes weight_class from a character string to a factor whose levels are ordered according to
mean (R_weight). For example, the "women's Strawweight" level would be first, since it comprises
the lightest fighters, and the "Heavyweight" level would be last, since it comprises the heaviest

fighters.
o Pipe the result into ggplot().
e Specify the cast of characters with aes(x = date, color = weight_class, Ulinetype =

weight_class).

e Add a geom_freqpoly(bins = 20) layer.

e facet_wrap() by gender with ncol = 1.

e Add options scale_color_grey(), theme_bw(), and theme(strip.background = element_rect(color
= "white", fill = "white")) to the ggplot.
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Exercise 3.5. The following plot—which depicts the fight_time as a function of abs(B_odds -
R_odds)—confirms that more mismatched fights end sooner. We will now recreate this plot.

e Use filter() to remove the weight_class = "Catch Weight" observations, since catch weight isn’t
actually a weight class.

e Pipe the result into mutate(). Within this mutate() call str_replace() the word "women's" in
weight_class with the initial "w." and str_remove() the word "weight". For example, these
operations should translate "women's Bantamweight" into "W. Bantam".

e Pipe the result into ggplot().

e Specify the cast of characters with aes(x = abs(B_odds - R_odds), y = fight_time).

o Add layers geom_point(size = .2) and geom_smooth(method = "1lm").

e facet_wrap() by weight_class. Set scales = "free" and ncol = 4.
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abs(B_odds — R_odds)

3.2.3 Case Study: Best Places to Gamble

We will now create the following plot, which depicts the plot the distribution of the casino’s commission
by country.
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Exercise 3.6. If you bet 1/R_odds dollars on the red fighter then you will receive R_odds * (1/R_odds)
= 1 dollar from the bookie if this fighter wins. Similarly, if you bet 1/B_odds dollars on the blue fighter
then you will receive $1 if this fighter wins. Hence, if you simultaneously bet 1/R_odds dollars on the
red fighter and 1/B_odds dollars on the blue fighter then you’ll be guaranteed to receive $1 from the
bookie after the fight. Now, if the market were perfectly efficient then the cost of placing these bets,
1/R_odds + 1/B_odds, would equal the reward from placing these bests, $1. But the casino always takes
a cut, so 1/R_odds + 1/B_odds will always exceed $1 by some margin, which we will call the house take.

e Use mutate() to add a house_take column to ufc.

e Within the same mutate() call use str_extract() to define country as the text that follows the
last comma in location, which is always the country of the bout. For example, location = "Abu
Dhabi, Abu Dhabi, United Arab Emirates" should yield country = "United Arab Emirates". And
after use fct_relevel(rev) to arrange the levels in reverse alphabetical order. (The plot will look
better with this ordering.)

— The regular expression "\\b[*,]+$" is R shorthand for “the text after the last comma.”

Exercise 3.7. ggplot() the result of the previous exercise.

e Use the + symbol to attach an aes() call that defines characters x = house_take and y = country.
e Use + to add a geom_violin() layer and look at the resulting plot.
e Confirm that the plot looks better with the country = fct_relevel(country, rev) step.

3.2.4 Case Study: Knockouts Occur Earlier than Submissions

Since it generally takes longer to ensnare someone in a choke hold than it does to bash them in the head,
submissions usually occur later in the round than do knockouts. For example, the median submission
happens 170 seconds into the final round whereas the median knockout happens 152 seconds into the
final round. To emphasize this point, we will create the following plot, which illustrates the distribution
of finish_round_time as a function of finish_details and result.
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Arm Triangle -

Time in Round

Exercise 3.8. We will begin with a few data tidying steps.

Use filter() and 4is.na() to remove the observations in ufc that have result = "DQ", fin-
ish_details = NA, or finish_round_time = NA.

group_by () finish_details.

Use mutate(), ifelse(), and n() to change the finish_details values that correspond to fewer
than 18 bouts to str_c(result, "Other", sep = " "). For example, the four finish_details
= "North-South Choke" values should change to finish_details = "SUB Other", the six fin-
ish_details = "Spinning Back Kick" values should change to "K0/TKO Other", but the but the
46 finish_details = "Triangle Choke" values should not change.

ungroup () the tibble.

Exercise 3.9. mutate() the result of the previous exercise to fct_reorder() finish_details so that
its levels are arranged according to the median() finish_round_time.

Exercise 3.10. ggplot() the result of exercise 3.9.

Let finish_round_time play the x-coordinate role, finish_details play the y-coordinate role, and
result playing the fill role.

Add a geom_boxplot() layer.

Tidy the plot as you see fit and save it as finish_details_plot (so we can modify it in a later
exercise)..

Confirm that the plot looks better with the fct_reorder (finish_details) step.

3.2.5 Updating ggplot() Data

We usually modify ggplots with the + symbol. For example, the following creates a black and white

versio

n of the plot we made in exercise 3.3:

heat_map_plot + scale_fill_grey()
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But to add new data rather than new options we use %+% rather than +. For example, the following
removes the gender = "MALE" observations from heat_map_plot and changes the graphs’ axes from
measuring pounds to measuring body mass index (BMI):

female_bmi_sample <-
ufc %>%
filter (gender == "FEMALE") %>%
mutate(
R_weight = 4535.92 * R_weight / R_height?2, #Redefine weight vars as BMI
B_weight = 4535.92 * B_weight / B_height?2

female_bmi_heatmat_plot <-
heat_map_plot %+%
female_bmi_sample

female_bmi_heatmat_plot
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Note, we must always position the new data to the right of the %+% sign, so that the code looks like
plot %+% data rather than data %+% plot.

We can extract a ggplot’s data by piping it into pluck("data"). This technique enables us to modify a
ggplot’s data without reconstructing it from the raw sample. For example, we can apply an additional
filter () to the sample that underlies female_bmi_heatmat_plot without starting over from ufc:

new_plot_data <-
female_bmi_heatmat_plot %>%
pluck('"data") %>%
filter (location == '"Las Vegas, Nevada, USA")

female_bmi_heatmat_plot %+%
new_plot_data
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Exercise 3.11. We will now facet finish_details_plot, from exercise 3.10, by whether or not there
was an upset.

e pluck() the "data" from finish_details_plot.
e Pipe the output of pluck() into mutate() to define winner as a variable that equals "Underdog
Won" or "Favored Fighter Won", depending on whether or not there was an upset.
— An upset happens either when the red fighter wins and R_odds > B_odds or when the blue
fighter wins and R_odds <= B_odds.
— The red_win variable indicates who won.
e Use <- to save the output of mutate() as new_plot_data.
e Add new_plot_data to finish_details_plot with %+%.
e Use + to facet_wrap() by winner.

Exercise 3.12. Use the %+% symbol and a bracketed expression to recreate stance_plot, from section
3.2.2, with the tibble generated by the following assembly line:

ufc %>%
group_by (location, weight_class, B_stance, R_stance) %>%
summarise(spread = min(B_rounds_fought - R_rounds_fought))

Exercise 3.13. Define make_stance_plot() as a function that receives a tibble, applies mutate (spread =
B_age - R_age) toit, and then recreates stance_plot with the result. For example, make_stance_plot(x)
should be equivalent to stance_plot %+% mutate(x, spread = B_age - R_age). Apply make_stance_plot
to the outputs of ufc %>% filter(R_stance != B_stance) and ufc %>% filter (R_age < 28).

Exercise 3.14. We will now add dots to heat_map_plot that depict the median() weight of each weight
class.

e pluck() the "data" from finish_details_plot.
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e group_by() weight_class.

e mutate() the result to add columns R_aggregate_weight = median(R_weight) and B_aggregate_weight
= median(B_weight).

e Use <- to save the result as new_plot_data.

e Use %+% to add new_plot_data to finish_details_plot.

e Use + to add a geom_point() layer. Within this function call embed aes(x = R_aggregate_weight,
y = B_aggregate_weight) to place the points at the median weights.

3.2.6 Case Study: Creating Interactive Dashboard

We will now work with ChatGPT to turn a static plot into a dynamic dashboard that we can access
over the internet.

Exercise 3.15. We will create our interactive dashboard with R’s Shiny package. All Shiny applica-
tions are saved in an app.R file, so create a new folder in your current R project called my_ shiny app
and within that folder create a file called app.R. After, ask ChatGPT to give you an example of an
app.R file that you could use as a Shiny template. Copy the code it gives you into your app.R file, and
then execute the code by clicking on the Run App button. A window should pop up with an interactive
plot.

Exercise 3.16. We will now create a more interesting Shiny app, based on the formula_1 tibble, which
you can find at "https://www.dropbox.com/s/dn@@cwolrol04vw/f_1.csv?d1l=1". Give ChatGTP the link
to this table, and explain that it has columns date, circuit, driver, team, flag_d, flag_t, start, end,
lap, and seconds. Ask it to build a Shiny app that

e removes observations with more than 300 seconds,

e scatterplots seconds by lap, with a corresponding regression line,

o tabulates the regression statistics below the plot, and

e provides a drop-down menu that enables you to filter by “driver’ and a slider that enables you
to filter by date.

Exercise 3.17. Formula 1 cars generally speed up over the course of the race. There are five reasons
for this. First, the cars start from a resting position, and it takes a few seconds to get up to speed.
Second, it can take some time for drivers to “get in the zone.” Third, cold tires are more slippery, and
hence more dangerous to drive at high speeds. Fourth, since the cars start in one big pack, the race
usually begins with a traffic jam, which gradually eases as the cars space out over the course of the
race. And fifth, the cars get lighter, and hence faster, as they as they burn their fuel. Create a Shiny
app that most convincingly demonstrates that race cars get faster and faster as the race progresses.

e You must control for the confounding fact that shorter courses have more laps. If you don’t
account for the number of laps in the race then you will get spurious results. For example, only
the very shortest courses have more than 75 laps, so lap 80 is driven on a shorter course, on
average, than lap 70.

Exercise 3.18. Ask ChatGPT how you can have ShinyApps.io host your shiny app, so that anyone
can interact with it over the web.
3.2.7 pivot_longer() and pivot_wider()

Suppose we wanted to combine jitter_height_plot and jitter_reach_plot, from exercise 3.2, into a
single ggplot, with one facet scatter plotting R_height and B_height and another facet scatter plotting
R_reach and B_reach, like this:

158



. . ::.. ) .a- .*
. 200- Tt - 3R O
3 o G . 200 gEZL
= Lop e E#' i e
=2 efa B s ngm o
LL 180- <3 s 180 - N L .
@ no® & E vie
E .. . T‘{-’ ¥ N i .
m . :.'! . ﬁé %) -.-3::- -.. . .
160~ M elawdB 2 160- =
b h: "L'..:.n '.. .
160 180 200 200
Red Fighter

Since different facets always plot the same tibble columns, it seems impossible to plot heights in one
facet and reaches in another: setting aes(x = R_height, y = B_height) breaks the right-hand facet
and setting aes(x = R_reach, y = B_reach) breaks the left-hand facet. However, we can create this
gegplot ()if we rearrange the data in our tibble. How would the tibble have to be structured to create
the ggplot() above? This is an important puzzle—think it over before proceeding.

OK, here’s the solution: pool the R_height and R_reach data in one column called R, pool the B_height
and B_reach data in another column called B, and introduce another column called stat that specifies
whether a given row reports a height or a reach. With this, we can can use R for the x-axis, B for the
y-axis, and stat for the facet. More specifically, here’s the reshaped tibble:

data_to_plot <-
ufc %>%
select(fight_id, R_height, B_height, R_reach, B_reach) %>%
pivot_longer (
cols = —-fight_id,
names_to = c("corner_color", "stat"),

names_sep = "_",

values_to = "val"

) %>%

pivot_wider (
names_from = corner_color,
values_from = val

) %>%

mutate(stat = str_to_title(stat))

data_to_plot

> # A tibble: 8,222 x 4

> fight_id stat R B
> <int> <chr> <dbl> <dbl>
> 1 1 Height 193. 193.
> 2 1 Reach 193. 198.
> 3 2 Height 186. 190.
> 4 2 Reach 188. 203.
> 5 3 Height 176. 165.
> 6 3 Reach 183. 168.
> 7 4 Height 173. 183.
> 8 4 Reach 180. 185.
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> 9 5 Height 178. 180.
> 10 5 Reach 190. 190.
> # i 8,212 more rows

And here’s the corresponding plot:

data_to_plot %>%
ggplot +
aes(x = R, y = B) +
geom_jitter(

size = .01,
height = 1,
width = 1

) +

facet_wrap(
vars(stat),

ncol = 2,
scales = "free"
) +
labs(x = "Red Fighter", y = "Blue Fighter") +
theme (
strip.background = element_rect(color = "white", fill = "white"),

panel.background = element_rect(fill = "white"),

strip.text.x = element_text(size = 12)
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Reconfiguring the tibble in this fashion is called pivoting. There are two basic pivot functions:
pivot_wider() and pivot_longer(). The former adds columns and the latter removes them. Data
pivots neither create nor destroy data, so a data pivot that creates columns must destroy rows, and
vice versa.? To create a column, we need two elements: the new column’s name and the new column’s
values. Hence, pivot_wider () has two key arguments:

e where to get the new columns’ names_from, and
e where to get the new columns’ values_from.

In contrast, when we kill a column, we're left with two orphans: the killed column’s names and the
killed column’s values. Hence, pivot_longer() has three key arguments:

e which cols to remove,

5Well, technically, pivot_wider () can destroy data, with the values_fn option, but we won’t consider these summarizing
pivots until section 3.4.3.
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e where to move the removed columns’ names_to, and
e where to move the removed columns’ values_to.

For example, define

long_tib <-
ufc %>%
group_by (R_fighter) %>%
summar-ise (
metric =
c(
"strong_att", "strong_ach",
"weak_att", "weak_ach"
)
measurement =
c(
TRUE),
mean (R_strong_achieve, na.rm = TRUE),

mean (R_strong_attempt, na.rm

mean (R_weak_attempt, na.rm = TRUE),
mean (R_weak_achieve, na.rm = TRUE)

)
) %>%

na.omit

long_tib

> # A tibble: 4,004 x 3
> # Groups: R_fighter [1,001]

> R_fighter metric measurement
> <chr> <chr> <db1l>
> 1 Aalon Cruz strong_att 12
> 2 Aalon Cruz strong_ach

> 3 Aalon Cruz weak_att

> 4 Aalon Cruz weak_ach 0
> 5 Aaron Phillips strong_att 54
> 6 Aaron Phillips strong_ach 38
> 7 Aaron Phillips weak_att 225
> 8 Aaron Phillips weak_ach 192
> 9 Aaron Riley strong_att 138
> 10 Aaron Riley strong_ach 36

> # 14 3,994 more rows

We can widen this tibble from 4004 x 3 to 1001 x 5 with:

wide_tib <-
long_tib %>%
pivot_wider (
names_from = metric,
values_from = measurement
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wide_tib

> # A tibble: 1,001 x 5
> # Groups: R_fighter [1,001]

> R_fighter strong_att strong_ach weak_att weak_ach
> <chr> <db1l> <db1l> <db1> <dbl>
> 1 Aalon Cruz 12 2 0 0

> 2 Aaron Phillips 54 38 225 192

> 3 Aaron Riley 138 36 40 39

> 4 Aaron Rosa 99 59 212 197

> 5 Aaron Simpson 90.7 48.7 37.7 32

> 6 Abdul Razak Alhassan 99 43 3 1

> 7 Abel Trujillo 72 39 13.5 13.5
> 8 Adam Milstead 21 10 13 12

> 9 Adam Yandiev 12 1

> 10 Aiemann Zahabi 112 44 1 1

> # i 991 more rows

This function’s first option tells R to get the new column names_from the data in the metric column and
the second option tells R to get the new column values_from the data in the measurement column. Hence,
this operation divides the old measurement column into the new strong_att, strong_ach, weak_att, and
weak_ach columns.

We can undo the pivot_wider () step with pivot_longer () to recover long_tib from wide_tib:
wide_tib %>%

pivot_longer (
cols = c(strong_att, strong_ach, weak_att, weak_ach),

names_to = "metric",
values_to = "measurement"
)

> # A tibble: 4,004 x 3
> # Groups: R_fighter [1,001]
> R_fighter metric measurement
> <chr> <chr> <dbl>
> 1 Aalon Cruz strong_att 12
> 2 Aalon Cruz strong_ach
> 3 Aalon Cruz weak_att
> 4 Aalon Cruz weak_ach 0
> 5 Aaron Phillips strong_att 54
> 6 Aaron Phillips strong_ach 38
> 7 Aaron Phillips weak_att 225
> 8 Aaron Phillips weak_ach 192
> 9 Aaron Riley strong_att 138
> 10 Aaron Riley strong_ach 36

> # i 3,994 more rows

This function’s first option tells R that the cols to eliminate are strong_att, strong_ach, weak_att,
and weak_ach; its second option tells R to move these columns’ names_to the new metric column; and
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its third option tells R to move these columns’ values_to the new measurement column. Hence, this
operation combines the old strong_att, strong_ach, weak_att, and weak_ach columns into the new
measurement column and stores the old column names in the new metric column.

Note that the variables passed in as names_to and values_to have quotation marks around them, but
the variables passed in as cols do not. Unfortunately, pivot_longer() and pivot_wider() can be a bit
persnickety about whether its input arguments are quoted or not, so if you get an error try adding or
removing some quotation marks.

Exercise 3.19. Use pivot_longer() to convert the planet_1 tibble, defined in section 3.1, into
planet_2.

Exercise 3.20. Use pivot_wider () to convert the planet_2 into planet_3.
Exercise 3.21. Use pivot_wider() to convert planet_2 into a new tibble called planet_4, which has

one row and 12 columns. The first column should be Mercury_radius and the last column should be

Mars_year.

Here’s a more slick pivot_longer () call:

long_tib_2 <-
wide_tib %>%
pivot_longer (
cols = -R_fighter,

names_to = c("strength", "outcome"),

names_sep = "_",
values_to = "measurement"
)
long_tib_2

> # A tibble: 4,004 x 4
> # Groups: R_fighter [1,001]

> R_fighter strength outcome measurement
> <chr> <chr> <chr> <dbl>
> 1 Aalon Cruz strong att 12
> 2 Aalon Cruz strong ach 2
> 3 Aalon Cruz weak att

> 4 Aalon Cruz weak ach

> 5 Aaron Phillips strong att 54
> 6 Aaron Phillips strong ach 38
> 7 Aaron Phillips weak att 225
> 8 Aaron Phillips weak ach 192
> 9 Aaron Riley strong att 138
> 10 Aaron Riley strong ach 36

> # 1 3,994 more rows

This function’s first option tells R to eliminate all cols besides R_fighter (the - symbol is shorthand
for “everything but”); its second option tells R to move these columns’ names_to the new strength
and outcome columns; its third option tells R to split the names at the underscore, allocating the text
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before the "_" to the strength column and the text after the "_" to the outcome column; and the fourth
option tells R to move the columns’ values_to the new measurement column.

We can derive wide_tib from long_tib_2:

long_tib_2 %>%
pivot_wider (
names_from = c(strength, outcome),
values_from = measurement

> # A tibble: 1,001 x 5
> # Groups: R_fighter [1,001]

> R_fighter strong_att strong_ach weak_att weak_ach
> <chr> <db1l> <db1l> <db1»> <dbl>
> 1 Aalon Cruz 12 2 0 0
> 2 Aaron Phillips 54 38 225 192
> 3 Aaron Riley 138 36 40 39
> 4 Aaron Rosa 99 59 212 197
> 5 Aaron Simpson 90.7 48.7 37.7 32
> 6 Abdul Razak Alhassan 99 43 3 1
> 7 Abel Trujillo 72 39 13.5 13.5
> 8 Adam Milstead 21 10 13 12
> 9 Adam Yandiev 12 1 0 0
> 10 Aiemann Zahabi 112 44 1 1

> # i 991 more rows

But we can also pivot_wider () long_tib_2 into other shapes:

#Example 1:
medium_tib_1 <-
long_tib_2 %>%
pivot_wider (
names_from = outcome,
values_from = measurement

)
medium_tib_1 %>%

head(3)
> # A tibble: 3 x 4
> # Groups: R_fighter [2]
> R_fighter strength att ach
> <chr> <chr> <db1> <dbl>
> 1 Aalon Cruz strong 12 2
> 2 Aalon Cruz weak 0 0
> 3 Aaron Phillips strong 54 38
#Example 2:

medium_tib_2 <-
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long_tib_2 %>%
pivot_wider (
names_from = strength,

values_from = measurement

medium_tib_2 %>%

head (3)

> # A tibble: 3 x 4

> # Groups: R_fighter [2]

> R_fighter outcome strong weak
> <chr> <chr> <db1l> <dbl>
> 1 Aalon Cruz att 12 0
> 2 Aalon Cruz ach 2 0
> 3 Aaron Phillips att 54 225

The first example gives every (R_fighter, strength) pair its own row and every outcome value its own
column and the second example gives every (R_fighter, outcome) pair its own row and every strength
value its own column.

Exercise 3.22. Use pivot_longer() to derive the following tibble from planet_1i:

> # A tibble: 8 x 4

> planet year stat value
> <chr> <dbl> <chr> <dbl>
> 1 Mercury 88 radius 1516
> 2 Mercury 88 dist 193
> 3 Venus 225 radius 3760
> 4 Venus 225 dist 361
> 5 Earth 365 radius 3958
> 6 Earth 365 dist 499
> 7 Mars 687 radius 2106
> 8 Mars 687 dist 760

Exercise 3.23. Use pivot_longer() to derive planet_2 from planet_4, which you created in exercise
3.21.

e Use cols = everything() to specify that we want to destroy every column.
e Use names_sep = "_" to split the planet names from the statistic names.

Our different tibble configurations permit different plots. For example, only long_tib_2 can yield this
plot:

long_tib_2 %>%
ggplot +
aes(x = measurement) +
geom_density() +
facet_grid(

165



rows = vars(strength),

cols = vars(outcome)
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Only wide_tib can yield this plot:
wide_tib %>%
mutate (weak_ratio = weak_ach / weak_att) %>%
ggplot +
aes(
X = strong_att,
y = strong_ach,
color = weak_ratio
) +
geom_point()
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Only medium_tib_1 can yield this plot:

medium_tib_1 %>%

ggplot +
aes(
x = att,
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y = ach
) +
geom_point() +
facet_wrap(vars(strength))
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And only medium_tib_2 can yield this plot:

medium_tib_2 %>%
ggplot +
aes (
x = strong,
y = weak
) +
geom_point() +
facet_wrap(vars(outcome))
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Exercise 3.24. We will now create a histogram that illustrates the distribution of the number of times
that a fighter appears in ufc. For example, Ben Nguyen appears in the sample seven times, as there
are two bouts with R_fighter = "Ben Nguyen" and five bouts with B_fighter = "Ben Nguyen"

e Use pivot_longer() to merge the names in R_fighter and B_fighter into a single column.
e count() the number of times each name appears.
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— The count() function returns the same thing as a group_by () step followed by summarise(n
= n()). See section 2.4.4 for more on count().
e ggplot() the result with a geom_histogram() layer.

If all roads lead to Rome then then you can travel between any two cities, by way of Rome. Pivoting
has a similar hub-and-spoke logic: all wide tibbles can transform into the longest tibble, and the longest
tibble can widen into all wide tibbles. Hence, all wide tibbles can transform into all other wide tibbles,
by way of the longest tibble. Accordingly, we can reconfigure a tibble from any shape to any other
shape with a pivot_longer() followed by a pivot_wider(). For example, the most straightforward
way to derive medium_tib_1 and medium_tib_2 from wide_tib is to fully lengthen the tibble and then
selectively widen it:

#Get medium_tib_1 from wide_tib:
wide_tib %>%
pivot_longer(
cols = —-R_fighter,
names_to = c("strength", "outcome"),
names_sep = "_",
values_to = "measurement"
9%>%
pivot_wider (
names_from = outcome,

values_from = measurement

)
> # A tibble: 2,002 x 4
> # Groups: R_fighter [1,001]
> R_fighter strength att ach
> <chr> <chr> <db1l> <dbl>
> 1 Aalon Cruz strong 12 2
> 2 Aalon Cruz weak 0 0
> 3 Aaron Phillips strong 54 38
> 4 Aaron Phillips weak 225 192
> 5 Aaron Riley strong 138 36
> 6 Aaron Riley weak 40 39
> 7 Aaron Rosa strong 99 59
> 8 Aaron Rosa weak 212 197
> 9 Aaron Simpson strong 90.7 48.7
> 10 Aaron Simpson weak 37.7 32

> # 4 1,992 more rows

#Get medium_tib_2 from wide_tib:
wide_tib %>%
pivot_longer(
cols = -R_fighter,
names_to = c("strength", "outcome"),

n n
b

names_sep =
values_to = "measurement"
) %>%
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pivot_wider (
names_from = strength,
values_from = measurement

> # A tibble: 2,002 x 4
> # Groups: R_fighter [1,001]

> R_fighter outcome strong weak
> <chr> <chr> <db1l> <dbl>
> 1 Aalon Cruz att 12 0

> 2 Aalon Cruz ach 2 0

> 3 Aaron Phillips att 54 225

> 4 Aaron Phillips ach 38 192

> 5 Aaron Riley att 138 40

> 6 Aaron Riley ach 36 39

> 7 Aaron Rosa att 99 212

> 8 Aaron Rosa ach 59 197

> 9 Aaron Simpson att 90.7 37.7
> 10 Aaron Simpson ach 48.7 32

> # 14 1,992 more rows

For another example, the following transposes wide_tib, converting its columns to rows and rows to
columns:

wide_tib %>%

pivot_longer(
cols = -R_fighter,
names_to = "measure",
values_to = "val"

) %>%

pivot_wider (
names_from = R_fighter,
values_from = val

) %>%

select(1:5) #View first 5 columns

> # A tibble: 4 x 5

> measure "Aalon Cruz® “Aaron Phillips® “Aaron Riley’ "Aaron Rosa’
> <chr> <db1l> <db1l> <dbl1> <db1>
> 1 strong_att 12 54 138 99
> 2 strong_ach 2 38 36 59
> 3 weak_att 0 225 40 212
> 4 weak_ach 0 192 39 197

Exercise 3.25. Translate planet_1 into planet_3, by way of planet_2.

e Use pivot_longer() to translate planet_1 into planet_2.
e Use pivot_wider () to translate planet_2 into planet_3.

Exercise 3.26. The shortest fight in UFC history is a sight to behold® (if you can stomach the violence).

Shttps://www.youtube.com/watch?v=z8L115lgWvg&ab_ channel=LuckyBtw
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We will now compile the fighter statistics for this bout.

Use filter() to identify the fight with the shortest fight_time.

— Don’t forget the na.rm = TRUE option, if you use the min() function.

— You should have finish_details = "Flying Knee".

Pipe the result into select(starts_with(c("R_", "B_")) & where(is.numeric)) to drop all but
the numeric columns that begin with either "R_" or "B_".

Use pivot_longer() to convert the tibble into one with columns corner_color, metric, and stat,
where the values of corner_color are "R" or "B" and the values of metric are "odds", "age",
"weight", "height", "reach", "wins", "losses", "draw", "rounds", or "sub".

— Use option cols = everything() to pull down all columns.

— Use option values_drop_na = TRUE to remove NA terms.

— Use option names_pattern = "(.)_(.+)" to tell R to split the names at the first "_".” You
can’t use names_sep = "_" in this case because some names, such as R_rounds_fought and
B_sub_achieve, have multiple underscores.

— Use names_to = c("corner_color", "metric") to send the first letter of the old column
names to a column called corner_color and to send the latter part of the old column names
to another column called metric.

Use pivot_wider() to convert the resulting tibble into one with columns metric, R, and B.

Exercise 3.27. Recreate the following plot, which we made at the beginning of this section.

Start with ufc and select() fight_id, R_height, B_height, R_reach, and B_reach.

Use pivot_longer () with names_sep = "_" to transform the tibble into one with columns fight_-id,
corner_color, stat, and val, where corner_color is either "R" or "B" and stat is either "height"
or "reach".

Use pivot_wider() to transform the tibble into one with columns fight_id, stat, R, and B.
ggplot () the result with a geom_jitter() layer and a stats facet_wrap().
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Exercise 3.28. Create the following geom_jitter () plot, which depicts B_wins and B_losses in the

left

facet and R_wins and R_losses in the right facet.

Tn(.)_(.+)"is a regular expression that defines two substrings within a given text string. The first substring corresponds

to the first set of parentheses and the second substring to the second set of parentheses. In R, .

stands for any single

character and .+ stands for any string of characters. Hence, the regular expression sets the first substring to the single
character immediately preceding the first "_" and sets the second substring to everything after the first "_".
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While most pivots neither create nor destroy data, it is sometimes convenient to use the id_cols option
of pivot_wider() to delete unwanted columns. For example, compare the following two pivots:

#without id_cols option:
formula_1 %>%

pivot_wider (

names_from = 1lap,
values_from = seconds
) %>%
head (3)
> # A tibble: 3 x 95
> date circuit driver team flag_d flag_t start end ‘1t t2° '3°
> <date> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
> 1 2008-03-16 Australia~ Lewis~ McLa~ U.K. U.K. 1 1 121. 152. 89.3
> 2 2008-03-16 Australia~ Nick ~ BMW ~ Germa~ Germa~ 5 2 126. 150. 92.0
> 3 2008-03-16 Australia~ Nico ~ Will~ Germa~ U.K. 7 3 125. 151. 91.7
> # 1 84 more variables: "4° <dbl>, 5 <dbl>, “6° <dbl>, 7' <dbl>, "8  <dbl>,
> # '9° <dbl>, "10° <dbl>, "11° <dbl>, "12° <dbl>, "13° <dbl>, 14 <dbl>,
> # 15 <dbl>, “16° <dbl>, “17' <dbl>, ‘18" <dbl>, ‘19' <dbl>, ‘20 <dbl>,
> # "21° <dbl>, "22° <dbl>, "23° <dbl>, 24" <dbl>, "25° <dbl>, "26° <dbl>,
> # ‘27 <dbl>, '28% <dbl>, "29° <dbl>, 30" <dbl>, "31° <dbl>, *32° <dbl>,
> # "33° <dbl>, "34° <dbl>, "35° <dbl>, "36° <dbl>, "37° <dbl>, 38" <dbl>,
> # 39" <dbl>, ‘40 <dbl>, ‘41" <dbl>, ‘42° <dbl>, ‘43 <dbl>, ‘44" <dbl>,
#with i1d_cols option:
formula_1 %>%
pivot_wider (
id_cols = c(date, driver),
names_from = lap,
values_from = seconds
) 9%>%
head (3)
> # A tibble: 3 x 89
> date driver ‘1" 2" 3> 4 5 e 70 '8 9t 1@
> <date> <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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> 1 2008-03-16 Lewis ~ 121. 152. 89.3 88.6 88.6 88.5 88.4 88.7 88.1 88.4
> 2 2008-03-16 Nick H~ 126. 150. 92.0 90.3 90.1 89.6 91.2 89.4 89.4 090.2
> 3 2008-03-16 Nico R~ 125. 151. 91.7 90.2 90.1 89.6 90.0 89.8 89.8 89.8
> # i 77 more variables: “11° <dbl>, '12° <dbl>, ‘13" <dbl>, "14° <dbl>,

> # 15 <dbl>, ‘16" <dbl>, “17° <dbl>, “18" <dbl>, ‘19 <dbl>, ‘20 <dbl>,

> # "21° <dbl>, "22° <dbl>, "23° <dbl>, 24" <dbl>, "25° <dbl>, "26° <dbl>,

> # ‘277 <dbl>, 28 <dbl>, "29° <dbl>, 30" <dbl>, "31° <dbl>, *32° <dbl>,

> # "33 <dbl>, 34" <dbl>, '35 <dbl>, "36° <dbl>, "37° <dbl>, "38° <dbl>,

> # "39° <dbl>, "40° <dbl>, “41° <dbl>, "42° <dbl>, "43° <dbl>, "44° <dbl>,

> # "45° <dbl>, 46" <dbl>, 47" <dbl>, 48" <dbl>, "49° <dbl>, "50° <dbl>,

Both pivots tabulate the number of seconds that a given driver took on a given lap on a given date, but
the former junks up the results with extra circuit, team, flag_d, flag_t, start, and end columns. The
id_cols = c(date, driver) option tells R to disregard these superfluous columns. Note, the id_cols
must uniquely identify the rows of the resulting tibble. For example, writing id_cols = c(circuit,
driver) wouldn’t work, because there are 11 observations with driver == "Sebastian Vettel", circuit
== "Singapore G.P.", and lap == 8, and we can’t cram 11 different seconds values into a single tibble
cell. (Well, we technically can, with the “aggregating pivots” discussed in section 3.4.3.)

If you’re uncomfortable with the id_cols option, then you can always manually select() away the
unwanted columns ahead of time:

formula_1 %>%
select(date, driver, lap, seconds) %>% #select() before pivot_wider(), not after
pivot_wider (
names_from = lap,
values_from = seconds

) %>%

head (3)
> # A tibble: 3 x 89
> date driver 1t t2° ch ‘4" '5° ‘6" T '8" ‘9t 10’
>  <date> <chr>  <dbl> <dbl> <db1l> <dbl> <db1> <dbl> <dbl> <db1l> <dbl> <db1l>
> 1 2008-03-16 Lewis ~ 121. 152. 89.3 88.6 88.6 88.5 88.4 88.7 88.1 88.4
> 2 2008-03-16 Nick H~ 126. 150. 92.0 90.3 90.1 89.6 91.2 89.4 89.4 90.2
> 3 2008-03-16 Nico R~ 125. 151. 91.7 90.2 90.1 89.6 90.0 89.8 89.8 89.8
> # i 77 more variables: "11° <dbl>, ‘12" <dbl>, '13° <dbl>, “14° <dbl>,
> #  715° <dbl>, "16° <dbl>, 17" <dbl>, 18" <dbl>, “19° <dbl>, "20° <dbl>,
> # '21° <dbl>, "22° <dbl>, 23" <dbl>, "24° <dbl>, "25° <dbl>, "26° <dbl>,
> # "27° <dbl>, 28" <dbl>, "29° <dbl>, 30" <dbl>, "31° <dbl>, *32° <dbl>,
> # "33 <dbl>, 34" <dbl>, '35 <dbl>, "36° <dbl>, "37° <dbl>, "38° <dbl>,
> # "39° <dbl>, "40° <dbl>, “41° <dbl>, "42° <dbl>, "43° <dbl>, "44° <dbl>,
> # ‘45 <dbl>, ‘“46° <dbl>, “47° <dbl>, ‘48 <dbl>, "49° <dbl>, ‘50 <dbl>,

Exercise 3.29. We will now create the tibble below, which records the teams that drove the five fastest
laps in the history of each Grand Prix. For example, the second row indicates that Renault drove the
fastest lap in Spanish Grand Prix history, and that Ferrari drove the second fastest lap.

e Use group_by() and mutate() to define speed_rank = row_number (seconds) for each circuit. For
example, the fastest lap of each circuit should have speed_rank = 1.

e filter() the sample down to the observations with speed_rank <= 5, and arrange() the tibble
by speed_rank. Arranging the tibble in this fashion will ensure that our final tibble columns are
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ordered from 1 to 5.

pivot_wider() the result with names_from = speed_rank. Use the id_cols option or a select()
operation to remove the unwanted columns. (Note that each row in the pre-pivoted tibble has a
unique circuit and speed_rank pair.)

> # A tibble: 41 x 6

> circuit 1 T2° ch 4" '5°

> <chr> <chr> <chr> <chr> <chr> <chr>

> 1 Japanese G.P. Ferrari Ferrari Ferrari Ferrari Ferrari
> 2 Spanish G.P. Renault Ferrari Renault MclLaren MclLaren
> 3 Turkish G.P. McLaren MclLaren MclLaren MclLaren MclLaren
> 4 Bahrain G.P. Ferrari Renault Ferrari Ferrari Williams
> 5 San Marino G.P. Ferrari Ferrari Ferrari Ferrari Ferrari
> 6 United States G.P. Ferrari Ferrari Ferrari Ferrari Ferrari
> 7 British G.P. Ferrari Ferrari Ferrari Ferrari Ferrari
> 8 German G.P. McLaren Ferrari Ferrari MclLaren Ferrari
> 9 Belgian G.P. McLaren MclLaren Ferrari McLaren Ferrari
> 10 Italian G.P. Ferrari Ferrari Ferrari Ferrari MclLaren
> # 1 31 more rows

Exercise 3.30. We will now create the tibble below, which reports the start and end values of the
2022 races.

e filter() formula_1 down to the observations with year(date) >= 2022.

e select() away the lap and seconds columns and extract the distinct() rows of the resulting
tibble. These operations remove the redundant values in start and end, which makes these
columns easier to work with.

e Pivot the result to transform columns start and end into columns measure and position, the
former of which has values "start" and "end" and the latter of which has values 1 to 20.

e arrange() the tibble by position. Arranging the rows in this fashion will ensure that the columns
of our final tibble are properly ordered.

e pivot_wider() the result to pull the position values into the column names. Use the id_cols
option or a select() operation to remove the unwanted columns. (Note that each row in the
pre-pivoted tibble has a unique circuit, measure, and position combination.)

> # A tibble: 6 x 22

> circuit measure "1° t2° ch ‘4" ‘5" ‘6" T 8" ‘9" ‘10°
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 Bahrain G~ start Char~ Max ~ Carl~ Serg~ Lewi~ Valt~ Kevi~ Fern~ Geor~ Pier~
> 2 Bahrain G~ end Char~ Carl~ Lewi~ Geor~ Kevi~ Valt~ Este~ Yuki~ Fern~ Guan~
> 3 Saudi Ara~ end Max ~ Char~ Carl~ Serg~ Geor~ Este~ Land~ Pier~ Kevi~ Lewi~
> 4 Saudi Ara~ start Serg~ Char~ Carl~ Max ~ Este~ Geor~ Fern~ Valt~ Pier~ Kevi~
> 5 Australia~ start Char~ Max ~ Serg~ Land~ Lewi~ Geor~ Dani~ Este~ Carl~ Fern~
> 6 Australia~ end Char~ Serg~ Geor~ Lewi~ Land~ Dani~ Este~ Valt~ Pier~ Alex~
> # 1 10 more variables: '11° <chr>, “12° <chr>, “13° <chr>, ‘14" <chr>,

> # ‘15 <chr>, “16° <chr>, "17' <chr>, '18' <chr>, ‘19 <chr>, ‘20" <chr>
3.2.8 Case Study: House Takes Have Increased

We will now create the following plot, which illustrates that the casino takes have generally increased
from around 0.02 to around 0.037.

173



0.05 -
date

2 2020
e -
5 004 2018
T
> 2016
o 2014
<

0034 2012

0.02

0.02 0.03 0.04 0.05
light_fights

Exercise 3.31. mutate() ufc as follows:

e Define house_take = 1/R_odds + 1/B_odds - 1.

e Define date_bucket = ntile(date, 200). Taking values 1 through 200, this variable divides ufc
into 200 equally sized subsamples based on the value of date. For example, the earliest half a
percent of fights have date_bucket = 1 and the latest half a percent of fights have date_bucket =
200.

e Use ntile() to create a variable that equals 1 when R_weight + B_weight is less than its me-
dian() value and equals 2 otherwise, and then use fct_recode() to turn this into a variable
that equals "light_fights" when R_weight + B_weight is less than its median() value and equals
"heavy_fights" otherwise. Call this variable weight_bucket.

Exercise 3.32. Start with the result of exercise 3.31 and group_by() date_bucket. Use mutate()
to redefine date as the median() date value across the given date_bucket grouping. Take the result-
ing tibble and group_by() date and weight_bucket. Use summarise() to define house_take_mean =
mean (house_take).

Exercise 3.33. pivot_wider() the result of exercise 3.32 from a tibble with columns date,
weight_bucket, and house_take_mean to one with columns date, heavy, and light. ggplot() the result,
with aes(x = light, y = heavy, color = date) and geom_path().

Exercise 3.34. While it’s quite striking, the geom_path() plot you created in the last exercise isn’t
the clearest way to depict the increase in house takes. Create a new ggplot that more plainly depicts
the change in house takes over time.

3.2.9 Case Study: Winners Punch More

We will now create the following plot, which shows that the winning fighter usually attempts and lands
more punches and takedowns.
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Exercise 3.35. We will begin by pivoting our tibble into the correct shape.

e Pipe ufc into select(fight_id, red_win, contains(c("attempt", "achieve"))) to limit the
columns to fight_id, red_win, and those that contain the words "attempt" or "achieve" (e.g.,
B_weak_attempt or R_sub_achieve).

e pivot_longer () the tibble into one with columns fight_id, red_win, corner_color, move, outcome,
and value, where the values of corner_color are "R" and "B", the values of move are "strong",
"weak", "td", and "sub", and the values of outcome are "achieve" and "attempt".

— Use names_sep = "_" and values_drop_na = TRUE.
e pivot_wider() the resulting tibble into one with columns fight_id, red_win, move, outcome, R,
and B.

— The mean() R value should be 19.88.

Exercise 3.36. mutate() the result of exercise 3.35 as follows:

e Convert red_win into a factor whose levels are "Red Win" and "Blue Win".

e Use fct_relevel() and fct_recode() to convert move into a factor whose levels are "Strong
Strike", "Weak Strike", "Takedown", and "Submission", in that order.

o Apply str_to_title() to outcome. (We don’t need to convert this variable to a factor because its
alphabetical ordering is sufficient.)

Exercise 3.37. ggplot() the result of exercise 3.36.

e Set x = R,y = B, color = red_win.

e Add a geom_point(size = .02) layer.

e facet_wrap() by vars(outcome, move).

e Label the x-axis "Red Fighter" and the y-axis "Blue Fighter".
e Tidy the plot and save it as red_blue_scatterplot.

Exercise 3.38. We have chosen to facet_wrap() red_blue_scatterplot by vars(outcome, move). How-
ever, we usually use facet_grid() when faceting by two variables. Modify red_blue_scatterplot so
that its panels are arranged according to facet_grid() rather than facet_wrap(). Can you see why
facet_wrap() is superior in this case?
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e Under facet_grid() an entire column of facets shares one horizontal axis and an entire row of
facets shares one vertical axis. In contrast, every facet has its own horizontal axis and vertical
axis under facet_wrap().

3.2.10 Semi-Lengthening Pivots

You can arrange a tibble into any configuration with the all-roads-lead-to-Rome technique: first
pivot_longer () the tibble to its narrowest form—the universally accesible “Rome” state—and then
pivot_wider() the tibble into its new desired form. But this lengthen-then-widen approach has a draw-
back: it can change our columns’ data types. For example, in exercise 3.26 we collated the statistics
of the shortest fight with the following;:

ufc %>%
filter(fight_time == min(fight_time, na.rm = TRUE)) %>%
select(starts_with(c("R_", "B_")) & where(is.numeric)) %>%
pivot_longer(
col = everything(),
names_to = c("corner_color", "metric"),
names_pattern = "(.)_(.+)",
values_to = '"stat",
values_drop_na = TRUE
) %>%
pivot_wider (
names_from = corner_color,

values_from = stat

)
> # A tibble: 10 x 3
> metric R B
> <chr> <db1l> <dbl>
> 1 odds 2.8 1.45
> 2 age 34 34
> 3 weight 170 170
> 4 height 180. 180.
> 5 reach 188. 185.
> 6 wins 15 1
> 7 losses 7 0
> 8 draw 0 0
> 9 rounds_fought 61 1
> 10 sub_achieve 0 0]

The where(is.numeric) condition restricts attention to numeric statistics. Removing this condition
yields an error:

ufc %>%
filter (fight_time == min(fight_time, na.rm = TRUE)) %>%
select(starts_with(c("R_", "B_"))) %>%
pivot_longer (
col = everything(),

names_to = c("corner_color", "metric"),
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names_pattern = "(.)_(.+)",
values_to = "stat",
values_drop_na = TRUE

) %>%

pivot_wider (
names_from = corner_color,
values_from = stat

> Error in “pivot_longer() :
> | Can't combine “R_fighter® <character> and "R_odds’ <double>.

The problem is that pivot_longer() can’t store the R_fighter character strings and the R_odds num-
bers in the same vector, since they have different data types. We can resolve this issue by adding
values_transform = list(stat = as.character) to the pivot_longer() call, which tells R to convert
all numbers into character strings:

ufc %>%
filter(fight_time == min(fight_time, na.rm = TRUE)) %>%
select(starts_with(c("R_", "B_"))) %>%
pivot_longer(
col = everything(),
names_to = c("corner_color", "metric"),
names_pattern = "(.)_(.+)",
values_to = "stat",
values_drop_na = TRUE,
values_transform = list(stat = as.character)
%> %
pivot_wider (
names_from = corner_color,

values_from = stat

)
> # A tibble: 12 x 3
> metric R B
> <chr> <chr> <chr>
> 1 fighter Jorge Masvidal Ben Askren
> 2 odds 2.8 1.45454545454545
> 3 stance Orthodox Orthodox
> 4 age 34 34
> 5 weight 170 170
> 6 height 180.34 180.34
> 7 reach 187.96 185.42
> 8 wins 15 1
> 9 losses 7 0
> 10 draw 0 0
> 11 rounds_fought 61 1
> 12 sub_achieve 0 0

The the R and B columns are now character string vectors. Accordingly, all the numbers in this tibble
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are saved at text strings, which isn’t ideal.

To save numbers as integers or doubles we must assign the numbers and character strings to different
columns. And we can do so by replacing names_from = corner_color with names_from = metric in our
pivot_wider () call:

ufc %>%

filter (fight_time == min(fight_time, na.rm
select(starts_with(c("R_", "B_"))) %>%
pivot_longer(

>
>
>
>
>
>

)

col = everything(),

names_to = c("corner_color", "metric"),
names_pattern = "(.)_(.+)",

values_to = "stat",

values_drop_na = TRUE,

values_transform = list(stat = as.charac

%>%

pivot_wider (

names_from = metric,
values_from = stat

# A tibble: 2 x 13

corner_color fighter odds stance age

<chr> <chr> <chr> <chr> <chr>
1R Jorge ~ 2.8 Ortho~ 34
2 B Ben As~ 1.45~ Ortho~ 34

# i 2 more variables: rounds_fought <chr>,

= TRUE)) %>%

ter)

weight height reach wins losses draw
<chr> <chr> <chr> <chr> <chr> <chr>
170 180.34 187.~ 15 7 (0]
170 180.34 185.~ 1 0] 0
sub_achieve <chr>

Unfortunately, the numeric columns—e.g., odds, age, weight, etc.—still have the character string data

type.

Here’s the problem: although the numeric and text-string data are segregated in both the

initial tibble and final tibble, they’re pooled in the intermediary tibble between pivot_longer() and
pivot_wider(). Specifically, pivot_longer () stacks all the statistics in a long character string column
called stat.

This is the fundamental problem of the lengthen-then-widen pivoting strategy: by pooling the data,
pivot_longer () gives each column the lowest-common-denominator data type. We can obviate this
problem with the semi-lengthening pivot, which is like a pivot_longer()-cum-pivot_wider() packed
into a single pivot_longer() call:

ufc %>%

filter(fight_time == min(fight_time, na.rm
select(starts_with(c("R_", "B_"))) %>%
pivot_longer(

>
>

col = everything(),
names_to = c("corner_color", ".value"),

names_pattern = "(.)_(.+)"

# A tibble: 2 x 21

corner_color fighter odds stance age

= TRUE)) %>%

weight height reach wins losses draw
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<chr> <chr> <dbl> <fct> <int> <int> <dbl> <dbl> <int> <int> <int>
1R Jorge ~ 2.8 Ortho~ 34 170 180. 188. 15 7 0
2 B Ben As~ 1.45 Ortho~ 34 170 180. 185. 1 0 0

>
>
>
> # i 10 more variables: rounds_fought <int>, kd <int>, strong_attempt <int>,
> # strong_achieve <int>, weak_attempt <int>, weak_achieve <int>,

> # td_attempt <int>, td_achieve <int>, sub_attempt <int>, sub_achieve <int>

The ".value" term in the names_to option makes this a semi-lengthening pivot. It is a special flag that
tells R not to pull down this portion of the column names. Previously, we moved the words fighter,
odds, stance, etc. from the column names to the metric column, only to immediatly hoist them back
above the tibble to serve as the names for our values_from columns. The semi-lengthening pivot doesn’t
bother creating and then destroying this metric column. Instead, it keeps the words fighter, odds,
stance, etc. above the tibble, as the names of our values_from columns, and it selectively pulls out of
the column names only what it needs: the corner_color values, "R" and "B". And since it never stacks
dissimilar variables, this semi-lengthening pivot does not corrupt our tibble’s data types.®

For another example, the following semi-lengthening pivot derives medium_tib_1 from wide_tib:

wide_tib %>%
pivot_longer(
-R_fighter,
names_to = c("strength", ".value"),

names_sep = "_"

> # A tibble: 2,002 x 4
> # Groups: R_fighter [1,001]

> R_fighter strength att ach
> <chr> <chr> <dbl> <dbl>
> 1 Aalon Cruz strong 12 2
> 2 Aalon Cruz weak 0 0
> 3 Aaron Phillips strong 54 38
> 4 Aaron Phillips weak 225 192
> 5 Aaron Riley strong 138 36
> 6 Aaron Riley weak 40 39
> 7 Aaron Rosa strong 99 59
> 8 Aaron Rosa weak 212 197
> 9 Aaron Simpson strong 90.7 48.7
> 10 Aaron Simpson weak 37.7 32

> # i 1,992 more rows

Previously, we needed both pivot_longer () and pivot_wider() to perform this transformation. But
now we can combine these two functions into one pivot_longer () call by using ".value" to specify the
component of the column names that should stay put. Specifically, this ".value" tells R to act as if
we applied an extra pivot_wider() to the data, using the text after the "_" in the old column names

as the names for the new values_from columns.

And the following semi-lengthening pivot derives medium_tib_2 from wide_tib, with the extra proviso
that outcome be a factor, strong be an integer, and weak be a double:

8 Also, since it doesn’t create the temporary stat column, this semi-lenghthening pivot does not need the values_to
option.

179



wide_tib %>%
pivot_longer (

-R_fighter,

names_to = c(".value", "outcome"),

names_sep = "_",

names_transform = list(outcome = as.factor),

values_transform =

list(

strong = as.integer,
weak = as.double

> # A tibble: 2,002 x 4
> # Groups: R_fighter [1,001]

> R_fighter outcome strong weak
> <chr> <fct> <int> <dbl>
> 1 Aalon Cruz att 12 0
> 2 Aalon Cruz ach 2 0
> 3 Aaron Phillips att 54 225
> 4 Aaron Phillips ach 38 192
> 5 Aaron Riley att 138 40
> 6 Aaron Riley ach 36 39
> 7 Aaron Rosa att 99 212
> 8 Aaron Rosa ach 59 197
> 9 Aaron Simpson att 90 37.7
> 10 Aaron Simpson ach 48 32

> # 4 1,992 more rows

Whereas the previous semi-lengthening pivot lengthens the tibble along the strength axis, this semi-
lengthening pivot lengthens it along the outcome axis.

Exercise 3.39. Define the following tibble:

wide_punch <-
ufc %>%
select(
fight_id,
contains(c("strong", "weak"))
) %>%

na.omit

wide_punch %>%

head (4)
> # A tibble: 4 x 9
> fight_id R_strong_attempt R_strong_achieve B_strong_attempt B_strong_achieve
> <int> <int> <int> <int> <int>
> 1 75 151 94 125 66
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> 2 76 272 137 268 102
> 3 77 309 194 157 83
> 4 78 205 71 235 82
> # 1 4 more variables: R_weak_attempt <int>, R_weak_achieve <int>,

> # B_weak_attempt <int>, B_weak_achieve <int>

Each variable name of wide_punch, besides fight_id, encodes three variables: a color, either "R" or
"B", a strength level, either "strong" or "weak", and an outcome, either "attempt" or "achieve". The
following code pivots the tibble so that the color and outcome components are “lowered” (i.e., expressed
inside the table) and the strength component is “raised” (i.e., expressed in the column names):

wide_punch %>%
pivot_longer(
-fight_did,
names_to = c("color", "strength", "outcome"),
values_to = "val'",
names_sep = "_"
) %>%
pivot_wider (
names_from = strength,
values_from = val

)

> # A tibble: 11,076 x 5

> fight_id color outcome strong weak
> <int> <chr> <chr> <int> <int>
> 1 75 R attempt 151 190
> 2 75 R achieve 94 169
> 3 75 B attempt 125 32
> 4 75 B achieve 66 22
> 5 76 R attempt 272

> 6 76 R achieve 137

> 7 76 B attempt 268

> 8 76 B achieve 102 9
> 9 77 R attempt 309 67
> 10 77 R achieve 194 64

> # i 11,066 more rows
Recreate this output without using a pivot_wider () call.
Exercise 3.40. Modify your solution to exercise 3.39 to create two additional tibbles. The first should

have the color and strength components lowered and the outcome component raised, and the second
should have the strength and outcome components lowered and the color component raised.

Exercise 3.41. Define the following tibble:

fight_counts <-
ufc %>%
count (
wday = wday(date, label = TRUE),
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month = month(date, label = TRUE),
year = year (date)

) %>%

pivot_wider (
names_from = c(wday, month, year),
values_from = n

Recreate the following semi-lengthening pivots with traditional pivot_longer() and pivot_wider()
calls:

#Example 1:
fight_counts %>%
pivot_longer (
everything(),
names_to = c(".value", "month", "year"),
names_sep = "_"

)

> # A tibble: 125 x 8

> month year Sun Tue Wed Thu Fri Sat
> <chr> <chr> <int> <int> <int> <int> <int> <int>
> 1 Jan 2015 11 NA NA NA NA 31
> 2 Jan 2016 13 NA NA NA NA 24
> 3 Jan 2017 12 NA NA NA NA 11
> 4 Jan 2018 10 NA NA NA NA 23
> 5 Feb 2015 9 NA NA NA NA 20
> 6 Feb 2016 12 NA NA NA NA 23
> 7 Feb 2017 10 NA NA NA NA 19
> 8 Feb 2018 11 NA NA NA NA 33
> 9 Feb 2019 11 NA NA NA NA 35
> 10 Mar 2010 11 NA 10 NA NA 10

> # i 115 more rows

#Example 2:
fight_counts %>%
pivot_longer(
everything(),
names_to = c(".value", "year"),
names_pattern = "(.+)_(["_]+)"

> # A tibble: 11 x 44

> year Sun_Jan Sun_Feb Sun_Mar Sun_Apr Sun_May Sun_Jun Sun_Jul Sun_Aug Tue_May
> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
> 1 2015 11 9 NA NA NA NA 11 12 NA
> 2 2016 13 12 NA 11 23 NA NA NA NA
> 3 2017 12 10 NA NA 11 11 12 NA NA
> 4 2018 10 11 NA NA 10 NA 13 NA NA
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Wed_Apr
Wed_Oct
Fri_Jan
Fri_Sep
Sat_Feb
Sat_Jul

NA
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NA
NA
NA
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11
NA
NA
NA
NA
NA
NA

NA
11
10
NA
NA
NA
NA
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NA
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NA
NA
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NA
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NA
NA

NA NA
NA NA
NA 9
10 NA
NA NA
NA NA
NA NA

variables: Wed_Jan <int>, Wed_Feb <int>, Wed_Mar <int>,
Wed_May <int>, Wed_Jul

<int>,
<int>,
<int>,
<int>,
<int>,
<int>,

Wed_Nov <int>,
Fri_Mar <int>,
Fri_Oct <int>,
Sat_Mar <int>,
Sat_Aug <int>,

3.3 Lab: Alibaba

3.3.1 Introduction

Nowadays, nearly all logistics companies offer package tracking, which enable customers to keep abreast
of the status of their delivery. This package tracking raises a natural business question: do shipping
action times influence customer satisfaction? That is, if we control for the final delivery time, then
does the timing of the shipping actions that constitute this delivery meaningfully affect the customer
experience? For example, consider the following track-package records that Alibaba shared with its

customers:

Shipment 15007307 began with an idle spell, between the 10th and 14th of March, and shipment

Shipment
15007307
15007307
15007307
15007307
15007307
15007307
15007307
15007307
15007307

3144672
3144672
3144672
3144672
3144672
3144672
3144672
3144672
3144672

Thu_Mar
Fri_Apr
Fri_Nov
Sat_Apr
Sat_Sep

Action
Order
Consign
Receive
Depart
Arrive
Depart
Arrive
Scan
Sign

Order
Consign
Receive
Depart
Arrive
Depart
Arrive
Scan
Sign

<int>,
<int>,
<int>,
<int>,
<int>,
<int>,

Facility

49199
49199
162115
162115
166957
166957
166957

105638
105638
65132
65132
29048
29048
29048

Timestamp
2017-03-08 13:15
2017-03-10 17:14
2017-03-14 19:27
2017-03-14 19:51
2017-03-14 20:48
2017-03-15 05:12
2017-03-15 06:29
2017-03-15 07:28
2017-03-15 10:04

2017-02-05 15:05
2017-02-05 17:37
2017-02-05 18:40
2017-02-05 21:52
2017-02-06 04:15
2017-02-06 05:20
2017-02-06 08:22
2017-02-06 08:44
2017-02-10 21:58

3144672 concluded with idle spell, between the 6th and 10th of February.
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Exercise 3.42. Which idle spell—the one that started the shipment or the one that ended it—would
you expect to more annoy the customer? Conditional on the delivery duration and the number of
intermediate shipping actions, do you believe it would be preferable to cluster these actions nearer the
time the customer placed the order or nearer the time the customer received the shipment? Why?

In this lab, we will follow the methodology developed by Bray [2020] to determine how Alibaba’s
customers respond to the timing of the track-package actions—whether they more harshly penalize
early idleness or late idleness.” However, we’ll use our ggplot() know-how to improve Bray’s graphs.
Mark Twain famously wrote “the difference between the right word and the almost right word is really
a large matter—it is the difference between the lightning and the lightning bug.” And the same goes for
plots: if the right picture is worth 1,000 words then the almost right picture is probably worth about
two sentences. The perfect plot concentrates a sprawling dataset to a singularity of illumination, like
a magnifying glass focuses diffuse sunlight to a point of fire. Whereas a very good plot encapsulates a
key facet of the data, an ideal plot brings it to life. The objective of this lab is to show you what it
takes to create just the right plot.

3.3.2 Roadmap

Before we engage with the messy, real-world data, we will use the clean simulated_sample below to
blueprint our primary plots. This simulated_sample has four columns: the order number, the corre-
sponding score, the action_num, and the corresponding action_time. This last variable takes values
between 0 and 1, as we measure the action_time as a fraction of the total shipping time. For example,
action_time = 0.5 indicates that the action happened halfway between when the customer placed the
order and when they received the good.

set.seed(0)

simulated_sample <-
expand_grid(
order = seq(l075),
action_num = seq(4)
) %>%
mutate(
action_time = rbeta(n(), 1/2, 1/2), #action times fraction of shipping time

action_num = row_number (action_time),

score =
sample (
x = seq(5),
size = 1,

prob = seq(5)”(mean(action_timer2))
)
.by = order
) %>%

arrange (order, action_num)

simulated_sample %>% glimpse

> Rows: 400,000
> Columns: 4

9You can find Bray’s article here!®, and you can find summaries of it here!! and here!2.
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order <int> 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5~
action_num <int> 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4~
action_time <dbl> 1.011177e-02, 1.309805e-02, 2.085475e-01, 7.400507e-01, 5.~
score <int> 5, 5, 5,5, 2,2,2,2,1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1~

vV V V Vv

Exercise 3.43. Design and create a plot that best illustrates the positive relationship between the
score and action_time columns of simulated_sample. The best plot is the one that conveys as much
detail from the raw sample as possible, subject to making the positive relationship apparent. Put
differently, your plot should have high fidelity—minimize the “compression” of the raw data. (Usually
the best plot is a scatterplot, but this won’t work, since the score only takes five values.)

Exercise 3.44. One of the best ways to illustrate the positive relationship between score and ac-
tion_time is to graph the geom_density() of action_time by color = as.factor(score). Create this
plot.

3.3.3 Data

We are now ready to work with the real data. We will study alibaba_wide, which you created in section
1.3, exercise 1.37. This sample is a streamlined version of the panel Bray [2020] studied. (I reduced
the sample size to shorten the computation time.) The tibble should have the following variables:

e order: Order ID number.

o score: Delivery logistics score left by the customer after receiving the package, rated from 1 (the
worst) to 5 (the best).

o item: ID number for the product purchased. (Orders comprising multiple product types have
been removed.)

e brand, category, sub_category: ID number for the brand, category, and sub-category of the
product purchased.

e merchant: Seller ID number.

e quantity: Number of products purchased in the given order. Orders may only comprise multiple
products if they have the same item number.

e action.l—action.15: The track-package actions reported to the customer. action.1 corresponds
to the first posted action, action.2 to the second posted action, etc. NA terms indicate no action:
e.g., order = 6350829 has NA values for action.6—action.15 because it had only five posted
actions. (Orders with more than 15 posted actions have been removed from the sample.) Besides
NA, variables action.l—action.15 can take seven other values:

— "ORDER": The customer places the order.

— "CONSIGN": The warehouse sends the package to the shipper.

— "GoT": The shipper receives the package.

— "DEPARTURE": The package departs a facility.

— "ARRIVAL": The package arrives at a facility.

— "SENT_SCAN": The package is scanned for final delivery.

— "SIGNED": The customer signs for the package.

— "FAILURE": The shipper made a failed attempt to deliver the package.

e time.1-time.15: The times associated with the corresponding action: time.1 pertains to action
action.1, time.2 to action action.2, etc. For the "ORDER" and "SIGNED" actions these timestamps
record when the actions occurred. However, for the other actions these timestamps record when
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the actions were reported to the customer (i.e., posted online), which can happen with a bit of a
time lag. Hence, all timestamps record when the customer was made aware of the given action
(since customers are involved in "ORDER" and "SIGNED" actions, they know about these actions the
moment they occur).

e facility.l—facility.15: The ID number of the facility the package was most recently recorded
being at when the corresponding track-package action was posted. Unfortunately, facility val-
ues are updated only sporadically, so these variables often don’t make sense. For example, an
"ARRIVAL" action won’t necessarily change the facility value.

e shipper.l—shipper.15: ID number for the shipper handling the package when the corresponding
track-package action was posted. Although it’s rare, a package is sometimes handed off from
shipper to another shipper. (For example, see order = 77359.)

3.3.4 Clean

Like most companies, Alibaba stores their data in a horribly wide fashion:

alibaba_wide %>% glimpse

V V V VvV vV vV vV vV VvV V VvV V V V V V V V V V V V V V V V V V V V V VvV

Rows: 24,808

time. <dttm> 2017-07-25 19:32:00, 2017-06-12 10:16:00, 2017-03-03 20:~

1

time.2 <dttm> 2017-07-26 10:16:00, 2017-06-12 15:48:00, 2017-03-04 10:~

time.3 <dttm> 2017-07-26 20:12:00, 2017-06-12 21:26:00, 2017-03-04 20:~

time.4 <dttm> 2017-07-26 20:13:00, 2017-06-14 09:50:00, 2017-03-05 06:~

time.5 <dttm> 2017-07-28 07:49:00, 2017-06-15 22:17:00, 2017-03-05 06:~
6 <dttm> 2017-07-28 10:58:00, 2017-06-16 08:11:00, 2017-03-05 09:~
7

<dttm> NA, 2017-06-16 08:29:00, 2017-03-05 10:30:00, 2017-03-15~

time.

Columns: 68

$ order <fct> 31, 212, 1151, 1352, 1522, 1648, 2388, 2427, 2636, 2752, ~
$ score <fct> 5, 3,5, 4,5,5,5,5,5,1,5,5,3,5,5,5,5, 5,5, ~
$ qtem <fct> 95537, 33546, 52101, 15450, 24751, 47333, 49097, 2266, 10~
$ brand <fct> 457, 890, 829, 889, 889, 713, 200, 829, 889, 460, 900, 45~
$ category <fct> 11, 53, 54, 1, 1, 8, 54, 54, 1, 53, 8, 11, 14, 1, 1, 11, ~
$ sub_category <fct> 299, 229, 7, 254, 254, 362, 140, 7, 254, 330, 171, 337, 1~
$ merchant <fct> 5476, 7804, 6731, 7042, 7042, 9, 5175, 6035, 7042, 2120, ~
$ quantity <int»1,1,1,1,1,1,1,1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ action.1 <chr> "ORDER", "ORDER", "ORDER", "ORDER", "ORDER", "ORDER", "OR~
$ action.2 <chr> "CONSIGN", "CONSIGN", "CONSIGN", "CONSIGN", "CONSIGN", "C~
$ action.3 <chr> "GOT", "GOT", "GOT", "ARRIVAL", "GOT", "ARRIVAL", "CONSIG~
$ action.4 <chr> "GOT", "DEPARTURE", "ARRIVAL", "GOT", "DEPARTURE", "GOT",~
$ action.5 <chr> "SENT_SCAN", "DEPARTURE", "DEPARTURE", "ARRIVAL", "DEPART~
$ action.6 <chr> "SIGNED", "ARRIVAL", "ARRIVAL", "DEPARTURE", "ARRIVAL", "~
$ action.7 <chr> NA, "SENT_SCAN", "SENT_SCAN", "SENT_SCAN", "DEPARTURE", "~
$ action.8 <chr> NA, "SENT_SCAN", "SIGNED", "SIGNED", "ARRIVAL", NA, "DEPA~
$ action.9 <chr> NA, "SIGNED", NA, NA, "SENT_SCAN", NA, "ARRIVAL", NA, NA,~
$ action.10 <chr> NA, NA, NA, NA, "SIGNED", NA, "SENT_SCAN", NA, NA, "SIGNE~
$ action.1ll <chr> NA, NA, NA, NA, NA, NA, "SIGNED", NA, NA, "SENT_SCAN", NA~
$ action.12 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "SIGNED", NA, NA, NA,~
$ action.13 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ action.14 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ action.15 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$

$

$

$

$

$

$

time.
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time.10
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time.12
time.13
time.14
time.15

facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.
facility.

shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
shipper.
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<dttm>
<dttm>
<dttm>
<dttm>
<dttm>
<dttm>
<dttm>
<dttm>
<dbl>
<dbl>
<dbl>
<db1l>
<dbl>
<db1>
<db1>
<dbl>
<db1>
<dbl>
<db1>
<dbl>
<db1l>
<dbl>
<db1l>
<dbl>
<db1>
<db1>
<dbl>
<db1>
<dbl>
<db1>
<dbl>
<db1l>
<dbl>
<db1l>
<dbl>
<db1l>
<dbl>
<dbl>

NA, 2017-06-17 16:29:00, 2017-03-05 17:56:00, 2017-03-15~
NA, 2017-06-17 19:10:00, NA, NA, 2017-04-04 08:46:00, NA~
NA, NA, NA, NA, 2017-04-04 10:11:00, NA, 2017-03-28 09:0~
NA, NA, NA, NA, NA, NA, 2017-03-28 12:04:00, NA, NA, 201~
NA, NA, NA, NA, NA, NA, NA, NA, NA, 2017-02-05 18:15:00,~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~

52676, 52676, 52676, 52676, 52676, 52676, 52676, 52676, 5~

52676, 52676, 52676, 52676, 52676, 52676, 30298, 52676, 5~

99952, 58641, 52676, 52676, 72889, 52676, 52676, 52676, 9~

99952, 52676, 52676, 52676, 31336, 52676, 30298, 52676, 7~

89328, 52676, 52676, 52676, 31336, 52676, 30298, 52676, 7~

89328, 35979, 52676, 52676, 12420, 52676, 69746, 52676, N~

NA,
NA,
NA,
NA,
NA,
NA,
NA,
NA,
NA,

35979, 52676, 52676, 12420, 99613, 69746, 52676, NA, ~
35979, 14066, 36206, 28272, NA, 70834, 32733, NA, 253~
35979, NA, NA, 28272, NA, 65471, NA, NA, 10181, NA, N~
NA, NA, NA, 28272, NA, 65471, NA, NA, 10181, NA, NA, ~
NA, NA, NA, NA, NA, 65471, NA, NA, 10181, NA, NA, NA,~
NA, NA, NA, NA, NA, NA, NA, NA, 10181, NA, NA, NA, NA~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~

2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, 1690, 265~
2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, 1690, 265~
2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, 1690, 265~
2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, 1690, 265~
2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, 1690, 265~
2658, 8858, 7073, 4024, 4471, 4024, 6174, 4024, NA, 2658,~

NA,
NA,
NA,
NA,
NA,
NA,
NA,
NA,
NA,

There are several drawbacks

8858, 7073, 4024, 4471, 4024, 6174, 4024, NA, 2658, 4~
8858, 7073, 4024, 4471, NA, 6174, 4024, NA, 2658, NA,~
8858, NA, NA, 4471, NA, 6174, NA, NA, 2658, NA, NA, N~
NA, NA, NA, 4471, NA, 6174, NA, NA, 2658, NA, NA, NA,~
NA, NA, NA, NA, NA, 6174, NA, NA, 2658, NA, NA, NA, N~
NA, NA, NA, NA, NA, NA, NA, NA, 2658, NA, NA, NA, NA,~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~

to this wide configuration: (i) there are too many columns to view all at
once, (ii) there are many needless NA terms, (iii) there are many columns to modify (e.g., changing all
shipper values to factors would require redefining 15 columns), and (iv) it’s difficult to cross-reference
data across columns (e.g., there’s no easy way to pull the data associated with the second "ARRIVAL"

action). Accordingly, we’ll now transform our data into a more workable configuration.

Exercise 3.45. Before looking ahead, design for yourself a better way to arrange the data. Your

configuration should make it easy to:

o access all the data that corresponds to an order’s third action,
e access all the data that corresponds to an order’s third action = "DEPARTURE", and
o modify all the facility variables.
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Roughly sketch out how you could perform these tasks with your reconfigured data. You do not need
to rearrange the data yet.

Exercise

3.46. Before grappling with the full alibaba_wide, we will first pivot the simpler example_tib

given below into a tibble with columns order, action_num, action, and facility.

e Pipe alibaba_wide into pivot_longer().

Eliminate the columns whose names contain a "." with cols = contains(".").

Use names_sep = "\\." to separate the column names at the period (e.g., to split action.3
into "action" and "3"). We need the double backslash here because the "." symbol has
a special meaning in the language of regular expressions. The double backslash tells R to
interpret this "." as a literal period rather than as this special symbol.

Send the first part of the old column names to a new column called stat, which has values
"action" and "facility", and send the second part to a new column called action_num,
which has values "1", "2", and "3".

Send the values to a column called value.

o pivot_wider() the result so that each row corresponds to a different (order, action_num) pair.

This step should convert the stat and value columns into action and facility columns.

example_tib <-
tribble(
~order, ~action.l, ~action.2, ~action.3, ~facility.l, ~facility.2, ~facility.3,

llaH q
llb” 5
IICH g
)
Exercise

IICONSIGNH’ IIGOT”’ |IARRIVALI|’ |l><l|’ llyll’ ”Z”’
"ARRIVAL", "DEPARTURE", NA, "x", "z", "y",
IICONSIGNH’ IIGOT”’ |ISEND_SCANII, I|le, llyll, ||Xl|

3.47. Use one of the two methods outlined below to pivot alibaba_wide—which has variables

order, score, item, brand, category, sub_category, merchant, quantity, action.l—action.15, time.1—
time.15, facility.1—facility.15, and shipper.1l—shipper.15—into alibaba_long—which has variables

order, score, item, brand, category, sub_category, merchant, quantity, action, time, facility, shipper,
and action_num, the last of which takes values in 1 to 15.

Method 1

: pivot_longer () then pivot_wider()

e Pipe alibaba_wide into pivot_longer().

Eliminate the columns whose names contain a "." with cols = contains(".").

Use names_sep = "\\." to separate the column names at the period (e.g., to split shipper.12
into "shipper" and "12"). We need the double backslash here because the "." symbol has
a special meaning in the language of regular expressions. The double backslash tells R to
interpret this "." as a literal period rather than as this special symbol.

Send the first part of the old column names to a new column called stat and send the
second part to a new column called action_num. Define the latter column as an integer with
names_transform = list(action_num = as.integer).

Send the values to a column called value.

Turn the new value column into a character string vector with values_transform =
list(value = as.character). Since R can’t store multiple data types in one column,
we must convert all values to the lowest common denominator data type—the character
string—before we can stack them vertically.

Disregard superflous NA terms with values_drop_na = TRUE.

o pivot_wider() the result so that each row corresponds to a different (order, action_num) pair.
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— This step should convert the stat and value columns into action, time, facility, and
shipper columns.
e mutate() the resulting tibble to apply ymd_hms() to the time column and apply as.factor() to
the action, facility, and shipper columns.
e <- the result into alibaba_long.
— This tibble should have 212305 rows and 13 columns. All but three of its columns should
be factors.

Method 2: Semi-lengthening pivot.

e Pipe alibaba_wide into pivot_longer().

— Eliminate the columns whose names contain a "." with cols = contains(".").

— Use names_sep = "\\." to separate the column names at the period (e.g., to split shipper.12
into "shipper" and "12"). We need the double backslash here because the "." symbol has
a special meaning in the language of regular expressions. The double backslash tells R to
interpret this "." as a literal period rather than as this special symbol.

— Set the first part of the old column names to the new ".value" columns, and send the
second part to a new column called action_num. Define the latter column as an integer with
names_transform = list(action_num = as.integer).

— Similarly use the values_transform option to define the action, facility, and shipper vari-
ables as factors.

— Use the values_drop_na option to disregard the NA values.

e <- the result into alibaba_long.

— This tibble should have 212305 rows and 13 columns. All but three of its columns should

be factors.

Exercise 3.48. Run alibaba_wide %>% summarise(levels(score)) and you will see that the factor
levels of score are not sequentially ordered. Use mutate() and fct_relevel() to order the score levels
from "1" to "s".

e Consult the examples under the “Relevel with a function” heading of the ?fct_relevel documen-
tation.

Exercise 3.49. Use ceiling() to define day_count as the shipment duration rounded up to the next
integer. For example, if a shipment lasts 2.3 days then it should have day_count = 3 for all its
observations. After, redefine time so that an order’s earliest action occurs at time = 0 and its latest
action occurs at time = 1. In other words, set time to measure the fraction of the total shipping time
that has elapsed.

e The difference of two times is a “difftime” object. You can use convert a difftime to a number
with as.numeric(units="days"). For example, consider ((now() + hours(1600)) - now()) %>%
as.numeric(units="days").

o This step should change the time values associated with order = 31 from 2017-07-25 19:32, 2017-
07-26 10:16, 2017-07-26 20:12, 2017-07-26 20:13, 2017-07-28 07:49, and 2017-07-28 10:58 to 0.00,
0.23, 0.39, 0.39, 0.95, and 1.00.

Following Bray [2020], we will now remove the extreme shipments to standardize our sample.

Exercise 3.50. We will now subject our sample to 10 data filters.

e Start with alibaba_long and group_by() order.
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« Use a single filter () operation to:'
— Remove the orders with any() "FAILURE" action. For example, you should remove all the
order = 87717 observations since this order’s 12th action was a "FAILURE".
— Remove orders without exactly one "ORDER" action, one "SIGNED" action, and one "CONSIGN"
action.
— Remove orders that have an action before the "ORDER" action or after the "SIGNED" action.
In other words, there should be an "ORDER" action at time = @ and a "SIGNED" action at time
= 1.
Remove orders that correspond to multiple shipper values.
— Remove orders with day_count > 8.
— Remove orders with more than 10 or fewer than 5 posted actions.
Remove observations with "ORDER" and "SIGNED" actions, because their time values are de-

generate (mechanically being either 0 or 1).
e ungroup() the filtered tibble and <- it into alibaba_long.
— alibaba_long should have 102331 rows after this step.

3.3.5 Analyze

We are now ready to analyze our sample. Our objective is to determine whether delaying actions in-
creases or decreases shipping scores—i.e., whether time and score are positively or negatively correlated.
Our empirical strategy is simple: we will plot the distribution of time for each value of score.

Exercise 3.51. Start with alibaba_long and plot the geom_density() of time conditional on each of
the five possible score values. Give each of the five conditional distributions a different color. Save the
plot as an R object called density_plot, so that we can modify it in later exercises.

Exercise 3.52. According to your plot, is it better expedite or postpone track-package activities (for
a fixed arrival time)?

Exercise 3.53. Use + to add day_count facets to density_plot.

e Instead of vars(day_count) use vars(str_c("Day Count: ", day_count)).

Exercise 3.54. Facet density_plot by the number of actions in a given order.

e pluck() the "data" from density_plot and pipe it into add_count() to create a new variable
called action_count that records the number of actions (i.e., observations) that corresponding to
a given order.

— The values of action_count should be between three and eight. Initially we limited our
sample to orders with between five and ten actions, but then we removed the "ORDER" and
"SIGNED" actions.

e <- the result into new_plot_data.
e %+% new_plot_data to density_plot and then facet_wrap() by action_count.

Exercise 3.55. We will now depict the time distributions with box plots.

e Use str_remove() and str_to_title() to change the action labels of alibaba_long from ARRIVAL,
CONSIGN, DEPARTURE, GOT, and SENT_SCAN to "Arrival", "Consign", "Departure", "Got", and "Scan".
e Use fct_reorder() to order the action labels by their corresponding mean(time).

13Using a sequence of filter() steps will yield the wrong answer, as filter(condition_a, condition_b) generally differs
from filter(condition_a) %>% filter(condition_b). For example, tibble(a = 1:3) %>% filter(a == 2) %>% filter(n() >
1) yields zero rows whereas tibble(a = 1:3) %>% filter(a == 2, n() > 1) yields one row.
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— See the ?fct_reorder documentation.
— This change will arrange the box plots in increasing order.
— The first label should be "Consign".
Pipe the result into ggplot().
Set x = time and y = score in your cast of characters.
Add a geom_boxplot() layer.
— The plot looks better if you use the outlier.shape = NA option.
facet_wrap() by action.
— Use the strip.position = "right" and ncol=1 options.
Call this plot box_plot.

Exercise 3.56. A convincing way to establish a pattern in your data is to chop the sample into many
independent groups and show that the pattern holds across nearly all of them. Adopting this strategy,
we will show that time and score are positively correlated across all large (shipper, category) pairs.

pluck() the "data" from box_plot and group_by() shipper and category.
filter () the result to groups with more than 1000 observations.
— You should have 23 distinct (shipper, category) pairs after this step.
<- the result into new_plot_data.
%+% new_plot_data to box_plot and then facet_grid() by shipper and category.
— Rather than rows = vars(shipper) and cols = vars(category), try using rows =
vars(str_c("Ship: ", shipper)) and cols = vars(str_c("Cat: ", category)).
— Most of the facets will be empty.
— Add theme(axis.text.x = element_text(angle = -90)) to your plot specification, to buy
more room on the horizontal axis.

Exercise 3.57. So far we’ve illustrated the positive correlation between score and time by showing
how the univariate distribution of time varies with score. We will now illustrate the effect by showing
how the bivariate distribution between the action = "ARRIVAL" and action = "DEPARTURE" time values
vary with score.

Start with alibaba_long and group_by() order, score, and action.
Use summarise() to calculate the number of observations in each group and the average time
value in each group. Call the first statistic n and call the second statistic time.

— The order = 3686434, score = 5, and action = "GOT" row should have n = 1 and time =

0.0388.

Use pivot_wider () to translate the tibble to one with names score, order, n_ARRIVAL, n_CONSIGN,
n_DEPARTURE, n_GOT, n_SENT_SCAN, time_ARRIVAL, time_CONSIGN, time_DEPARTURE, time_GOT, and
time_SENT_SCAN.

— Your tibble should have 17895 rows after this step.
Use filter() to impose n_ARRIVAL < 3 and n_DEPARTURE < 3. This step will limit the number of
facets in our plot.
ggplot() the tibble with a geom_density_2d_filled() layer evaluated under x = time_ARRIVAL
and y = time_DEPARTURE.
facet_grid() by str_c("Arrivals: ", n_ARRIVAL) and str_c("Departures: ", n_DEPARTURE) in
the columns and str_c("Score: ", score) in the rows.™

— Your plot should have 20 facets in total.

4 Faceting is a good way to control for potential confounding variables. For example, faceting by n_ARRIVAL and
n_DEPARTURE controls for these variables: none of the variation we plot in a facet is attributable to n_ARRIVAL or n_DEPARTURE
because every observation in a facet has the same n_ARRIVAL and n_DEPARTURE values.
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3.3.6 Reflect

Exercise 3.58. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

3.4 Commentary

3.4.1 Saving Plots

You can save a plot by clicking on the “Export” tab by the plot in RStudio. Or, alternatively, you
can use the ggsave() function. You don’t pipe into this function—you just call it immediately after
creating your plot. For example, the following saves a box plot picture to boxplot.png:

alibaba_long %>%
ggplot +
aes(
x = as.factor(action_num),
y
) +
geom_boxplot()

time

ggsave ("boxplot.png")

We could customize this output by adding options to ggsave(). (See ?ggsave.)

And in addition to the plot itself, we also save the code that underlies it. This code is like the DNA of
the plot—it specifies everything we need to regenerate it. So long as we have this code, we can update
the plot with ease. Indeed, since we don’t manually fine-tune a ggplot() we can update a graph every
day at essentially no cost, or we can wait a decade to update it and the new version will look as slick
as ever, even if we’ve forgotten nearly everything about the data. And even if you have forgotten how
a plot works, the code lays out the recipe in a straightforward linear fashion, with each option clearly
“plugged in” with a + sign.

3.4.2 Don’t Overburden Metadata
Long tibbles are generally more practicable than wide tibbles. There are several reasons for this.

First, lengthening a tibble transforms metadata—the column labels—to formal data—a column in the
tibble. And formal data are easier to work with than metadata. For example, suppose we wanted to
combine planet_1, from section 3.1, with the following tibble:

unit_of_measure <-

tribble(
~stat, ~unit,
"radius", "miles",
"dist", "light-seconds",
"year", "Earth days"
)

unit_of_measure
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# A tibble: 3 x 2
stat unit
<chr> <chr>
1 radius miles
2 dist  light-seconds

vV V V V V VvV

3 year Earth days

Unfortunately, merging unit_of_measure and planet_1 would be difficult, since the latter stores radius,
dist, and year in the column names metadata. However, if we convert these column labels to a proper
column in our tibble then the merge becomes tractable:

planet_long <-
planet_1 %>%
pivot_longer(
-planet,
names_to = "stat"

planet_merged <-
planet_long %>%

inner_join(unit_of_measure)

planet_merged

> # A tibble: 12 x 4

> planet stat value unit

> <chr> <chr> <dbl> <chr>

> 1 Mercury radius 1516 miles

> 2 Mercury dist 193 light-seconds
> 3 Mercury year 88 Earth days

> 4 Venus radius 3760 miles

> 5 Venus dist 361 light-seconds
> 6 Venus year 225 Earth days

> 7 Earth radius 3958 miles

> 8 Earth dist 499 light-seconds
> 9 Earth year 365 Earth days

> 10 Mars radius 2106 miles

> 11 Mars dist 760 light-seconds
> 12 Mars year 687 Earth days

planet_cleaned <-
planet_merged %>%
mutate(unit = str_c(" (", unit, ")")) %>%

unite(stat, c("stat", "unit"), sep = " ')

planet_cleaned

> # A tibble: 12 x 3

> planet stat value
> <chr> <chr> <db1l>
> 1 Mercury radius (miles) 1516
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> 2
> 3
> 4
> 5
> 6
> 7
> 8
> 9
> 10
> 11
> 12

As you see, moving data from above the tibble, in the column labels, to inside the tibble makes it
more accessible. Likewise, moving data from besides a tibble, in its row labels, to inside the tibble
This is why you should never refer to a tibble’s rownames() metadata;
instead, if these row names contain valuable information then you should add them as a column with

makes it more accessible.

rownames_to_column() or rowid_to_column().

Second, it’s usually harder to analyze data that are scattered across many variables than data that are
concentrated within a few variables. For example, had we not converted alibaba_wide to alibaba_long,
our solution to exercise 3.49 would have looked something like this:

Mercury dist (light-seconds)

Mercury year (Earth days)

Venus
Venus
Venus
Earth
Earth
Earth
Mars
Mars
Mars

radius (miles)
dist (light-seconds)
year (Earth days)

radius (miles)
dist (light-seconds)
year (Earth days)

radius (miles)
dist (light-seconds)
year (Earth days)

alibaba_wide %>%

mu

tate(
time_mi

n

193
88
3760
361
225
3958
499
365
2106
760
687

pmin( #Note: use pmin() instead of min()

time.1l, time.2, time.3, time.4, time.5,

time.6, time.7, time.8, time.9, time.10,

time.1l1l, time.1l2, time.1l3, time.1l4, time.15,
na.rm

)s
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time.
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time.
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time.
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time.

time.

time.

time.
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time.

10
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time_min,

time_min,

time_min,

time_min,

time_min,

time_min,

time_min,

time_min,

time_min,

time_min,
time_min,
time_min,
time_min,
time_min,
time_min,

as.numeric(time.l, units="days"),

as.numeric(time.2, units="days"),

as.numeric(time.3, units="days"),
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time.4 = as.numeric(time.4, units="days"),
time.5 = as.numeric(time.5, units="days"),
time.6 = as.numeric(time.6, units="days"),
time.7 = as.numeric(time.7, units="days"),
time.8 = as.numeric(time.8, units="days"),
time.9 = as.numeric(time.9, units="days"),

time.10 = as.numeric(time.10, units="days"),
time.1ll = as.numeric(time.1ll, units="days"),
time.12 = as.numeric(time.12, units="days"),
time.13 = as.numeric(time.13, units="days"),
time.14 = as.numeric(time.1l4, units="days"),
time.15 = as.numeric(time.15, units="days"),

time_max =
pmax (
time.1l, time.2, time.3, time.4, time.5,
time.6, time.7, time.8, time.9, time.l0,
time.11, time.1l2, time.1l3, time.l4, time.l5,
na.rm = TRUE

)

day_count = ceiling(time_max),

time.1l = time.l/time_max,
time.2 = time.2/time_max,
time.3 = time.3/time_max,
time.4 = time.4/time_max,
time.5 = time.5/time_max,
time.6 = time.6/time_max,
time.7 = time.7/time_max,
time.8 = time.8/time_max,
time.9 = time.9/time_max,
time.10 = time.1l0/time_max,
time.11 = time.1ll/time_max,
time.12 = time.1l2/time_max,
time.13 = time.l1l3/time_max,
time.14 = time.1l4/time_max,
time.15 = time.15/time_max

) %>%

select(-time_min, -time_max)

And this answer would be 10 times longer if there were 150 possible actions rather than 15 possible
actions. By consolidating the data in time.1—time.15 into a single time variable, the pivot_longer()
step prevents us from having to type out so many column names.

Third, it’s usually easier to widen a long tibble than it is to convert one wide tibble into another wide
tibble. Indeed, recall that all roads lead to Rome, where “Rome” represents the longest possible tibble
configuration: every wide tibble can stretch into the longest form, and the longest form can widen out
into every other form. So storing your data in “long mode” makes it just one pivot_wider () away from
any other tibble configuration. For example, define the following;:
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wide_example_1 <-
alibaba_long %>%
pivot_wider (
id_cols = action,
names_from = action_num,
values_from = time,

values_fn = mean

wide_example_1

wide_example_2 <-
alibaba_long %>%
pivot_wider (
id_cols = action_num,
names_from = action,
values_from = time,

values_fn = mean

wide_example_2

long_example <-
alibaba_long %>%
summar-ise (
mean_time = mean(time),

.by = c(action, action_num)

long_example

Now note that long_example is just one short pivot step away from both wide_example_1 and

wide_example_2:

#Derive wide_example_1 from long_example
long_example %>%
pivot_wider (
names_from = action_num,

values_from = mean_time

#Derive wide_example_2 from long_example
long_example %>%
pivot_wider (
names_from = action,

values_from = mean_time

However, converting wide_example_1 to wide_example_2 requires two pivots:
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wide_example_1 %>%
pivot_longer (

-action,
names_to = "action_num",
values_to = "mean_time",

values_drop_na = TRUE
) 9%>%
pivot_wider (

names_from = action,

values_from = mean_time

And fourth, since they have fewer columns, long tibbles tend to have fewer opportunities for “missing
data” and thus fewer NA values. For example, wide_example_1 and wide_example_2 both have five NA
values, but long_example has none.

For these four reasons, it’s usually easiest to pivot_longer() your data upfront and work primarily
in long mode. Indeed, there’s usually only two reasons to widen a tibble: (i) to configure it for
ggplot() or (ii) to perform a computation that references multiple contemporaneous variables. For
example, suppose I wanted to calculate the difference between the action = "DEPARTURE" and action
= "ARRIVAL" mean_time values, for each value of action_num. We could derive this from long_example
without widening the tibble:

long_example %>%
group_by (action_num) %>%

summar-ise (
time_diff =
weighted.mean(mean_time, action == "DEPARTURE'") -
weighted.mean(mean_time, action == "ARRIVAL'")
)

However, the solution is more elegant if we use pivot_wider():

long_example %>%
pivot_wider (
names_from = action,
values_from = mean_time
) %>%
mutate(time_diff = DEPARTURE - ARRIVAL)

3.4.3 Aggregating Pivots

Sometimes a pivot_wider () operation shortens a tibble faster than it widens it so that the reconfigured
table doesn’t have enough cells to comfortably store all the information. For example, consider the
following tibble:

R_from_july_2011 <-

ufc %>%
filter(
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floor_date(date, "month") == "2011-07-01"
) %>%
select(

R_fighter,

red_win,

result

R_from_july_2011

> # A tibble: 11 x 3

> R_fighter red_win result
> <chr> <lgl> <fct>
> 1 Dominick Cruz TRUE U-DEC
> 2 Wanderlei Silva FALSE KO/TKO
> 3 Dennis Siver TRUE U-DEC
> 4 Tito Ortiz TRUE SuUB

> 5 Carlos Condit TRUE KO/TKO
> 6 Melvin Guillard TRUE KO/TKO
> 7 George Sotiropoulos FALSE KO/TKO
> 8 Brian Bowles TRUE U-DEC
> 9 Brad Tavares FALSE U-DEC
> 10 Anthony Njokuani TRUE U-DEC
> 11 Jeff Hougland TRUE U-DEC

And now let’s pivot this tibble so that the values of red_win run along the rows and the values of
result run along the columns:

R_from_july_2011 %>%
pivot_wider (
names_from = result,

values_from = R_fighter

Warning: Values from "R_fighter  are not uniquely identified; output will contain
list-cols.
* Use “values_fn = 1list’ to suppress this warning.
* Use “values_fn = {summary_fun}  to summarise duplicates.
* Use the following dplyr code to identify duplicates.
{data} |>
dplyr::summarise(n = dplyr::n(), .by = c(red_win, result)) |>
dplyr::filter(n > 1L)

vV V V V V V V VvV

# A tibble: 2 x 4

red_win ‘U-DEC® "KO/TKO® SUB

<1lgl> <list> <list> <list>
1 TRUE <chr [5]> <chr [2]> <chr [1]>
2 FALSE <chr [1]> <chr [2]> <NULL>

vV V V V Vv

As you see, we now get the warning that “Values are not uniquely identified.” The problem is that our
initial tibble had 11 R_fighter values, but only two distinct red_win values and three distinct result
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values. Hence, the pivoted table has only 2 x 3 = 6 cells to store 11 text strings. Accordingly, to
cram all the data into this table, R makes each cell store a list of text strings rather than a single text
string. Lists are basically glorified vectors (we’ll cover them in the next section). But they allow you
to store multiple objects in a single tibble cell. For example, the first cell in the second column houses
list(c("Dominick Cruz", "Dennis Siver", "Brian Bowles", "Anthony Njokuani", "Jeff Hougland"))
(i.e., all the fights with red_win = TRUE and result = “U-DEC").

Whereas the previous pivot_wider () call used lists to retain all the information in the original tibble,
the following pivot_wider () retains only the number of observations in each case:

R_from_july_2011 %>%
pivot_wider (
names_from = result,
values_from = R_fighter,
values_fn = length

)
> # A tibble: 2 x 4
> red_win “U-DEC® "KO/TKO® SUB
> <lgl> <int> <int> <int>
> 1 TRUE 5 2 1
> 2 FALSE 1 2 NA

For example, the first value in the second column is now length(c("Dominick Cruz", "Dennis Siver",
"Brian Bowles", "Anthony Njokuani", "Jeff Hougland")) = 5. The bottom-right value is NA because
there’s no vector of observations with red_win = FALSE and result = "SUB" that R can take the length()
of. And when a cell has no corresponding vector, R assigns it the default value of NA. However, we can
change this default value to zero with the values_fill = 0 option:

R_from_july_2011 %>%
pivot_wider (
names_from = result,
values_from = R_fighter,
values_fn = length,
values_fill = 0

)
> # A tibble: 2 x 4
> red_win “U-DEC" "KO/TKO® SUB
> <lgl> <int> <int> <int>
> 1 TRUE 5 2 1
> 2 FALSE 1 2 0

Now instead of length(), we can pass in any aggregating function we like into the values_fn option.
For example, the following tells R to use str_flatten() to compress the multiple text strings assigned
to a cell into one long text string:

R_from_july_2011 %>%
pivot_wider (
names_from = result,
values_from = R_fighter,
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values_fn = str_flatten,
values_fill = "NO DATA"

)
> # A tibble: 2 x 4
> red_win “U-DEC® "KO/TKO® SUB
> <lgl> <chr> <chr> <chr>
> 1 TRUE Dominick CruzDennis SiverBrian BowlesAnthony NjokuaniJ~ Carlos ~ Tito~
> 2 FALSE Brad Tavares Wander1l~ NO D~

For example, the first cell in the second column now reads str_flatten(c("Dominick Cruz", "Dennis
Siver", "Brian Bowles", "Anthony Njokuani", "Jeff Hougland")) = "Dominick CruzDennis SiverBrian
BowlesAnthony NjokuanilJeff Hougland". And the values_fill = "NO DATA" option tells R to make a
cell store "NO DATA" if it has no other corresponding text strings.

And we can even pass in home-made functions (see section 2.2.5):

paste_last_names <-
. %>%
word(2) %>%
str_flatten(collapse = ", ")

R_from_july_2011 %>%
pivot_wider (
names_from = result,
values_from = R_fighter,
values_fn = paste_last_names

)
> # A tibble: 2 x 4
> red_win “U-DEC® "KO/TKO® SUB
> <lgl> <chr> <chr> <chr>
> 1 TRUE Cruz, Siver, Bowles, Njokuani, Hougland Condit, Guillard Ortiz
> 2 FALSE Tavares Silva, Sotiropoulos <NA>

Now the first cell in the second column reads c("Dominick Cruz", "Dennis Siver", "Brian Bowles",
"Anthony Njokuani", "Jeff Hougland") %>% word(2) %>% str_flatten(collapse = ", ") = "Cruz,
Siver, Bowles, Njokuani, Hougland".

Note, while these aggregating pivots are pretty slick we can always yield the same result by combining
a traditional pivot_wider () call with a summarise() step. For example, the following outputs the same
tibble (albeit with its rows rearranged):

R_from_july_2011 %>%
summarise (
names = paste_last_names(R_fighter),
.by = c(red_win, result)
%>%
pivot_wider (
names_from = result,
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values_from = names

)
> # A tibble: 2 x 4
> red_win ‘U-DEC’ "KO/TKO® SUB
> <lgl> <chr> <chr> <chr>
> 1 TRUE Cruz, Siver, Bowles, Njokuani, Hougland Condit, Guillard Ortiz
> 2 FALSE Tavares Silva, Sotiropoulos <NA>

Exercise 3.59. The following reports the average time in the round that each finishing move took
place, by finishing_round and gender:

ufc %>%

filter(
is.na(finish_round_time),
'is.na(finish_details)
%> %

summar-ise (
mean_time = mean(finish_round_time),
.by = c(finish_details, finish_round, gender)

) %>%

pivot_wider (
names_from = c(finish_round, gender),

values_from = mean_time

)

> # A tibble: 27 x 10

> finish_details ‘2_FEMALE® ‘1_MALE® "1_FEMALE® "2_MALE® °"3_MALE' ‘5_MALE"’
> <chr> <dbl> <db1l> <db1l> <db1> <dbl> <db1>
> 1 Rear Naked Choke 145. 172. 192. 171. 177. NA
> 2 Armbar 182. 183. 186. 185 210. 239
> 3 Guillotine Choke NA 161. 211. 166. 161. NA
> 4 Punch 188. 149. 148 161. 151. 166.
> 5 Knee NA 143. 146 201. 170. NA
> 6 Triangle Choke 220 169. 176. 160. 220. 190
> 7 Heel Hook NA 107 NA NA NA NA
> 8 Kneebar NA 137. 122 181. 143 NA
> 9 Kick 34 150. 115 134. 136. 140
> 10 D'Arce Choke NA 156. 223 158. 147. NA

> # 1 17 more rows
> # i 3 more variables: '3_FEMALE® <dbl>, “4_MALE® <dbl>, '5_FEMALE"® <dbl>

Recreate this tibble without the group_by() and summarise() steps. (Your rows and columns may be
ordered differently.)

e Use the id_cols = finish_details option of pivot_wider() to drop all non-relevant variables.
For example, x %>% pivot_wider(id_cols = a, names_from = b, values_from = c) is equivalent

to x %>% select(a, b, c) %>% pivot_wider(names_from = b, values_from = c).
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Exercise 3.60. We will now make a big table that reports the median fighter age in each weight_class
in each location. The rows of our output will vary by location and the columns will vary by
weight_class.

Use pivot_longer () to consolidate the values in R_age and B_age into a common column called
age.

— Your tibble should have 8222 rows after this step.
Pipe the result into pivot_wider(). Use id_cols = location to specify the row variable and
names_from = weight_class to specify the column variable. Also use the values_from and val-
ues_fn options.
Your final tibble should have 145 rows and 14 columns.

3.4.4 Ungroup Data before Saving

We could have avoided the group_by() step at the beginning of exercise 3.50 if we hadn’t included an
ungroup() step at the end of exercise 3.49. However, you should commit to always saving your data in
an ungrouped state because otherwise you’ll constantly be having to check whether your input tibble
is grouped or not. Consistently leaving your named tibbles ungrouped helps you standardize your
workflow, which will help you both in terms of speed and precision.

3.5 Solutions

3.1

point_height_plot <-
layerless_height_plot +
geom_point(size = .01)

point_height_plot

jitte

r_height_plot <-

layerless_height_plot +
geom_jitter(size = .01, height = 1, width = 1)

jitter_height_plot

3.2

jitter_reach_plot <-

jitter_height_plot +

aes(x = R_reach, y = B_reach) +
labs(

x = "Red Reach",

y = "Blue Reach"

jitter_reach_plot

3.3
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heat_map_plot <-

ufc %>%

ggplot +

aes(
x = R_weight,
y = B_weight

) +

geom_density2d_filled() +

labs(
x = "Weight of Fighter in the Red Corner",
y = "Weight of Fighter in the Blue Corner"

heat_map_plot

3.4

ufc %>%
mutate (
weight_class =
fct_reorder (weight_class, R_weight, mean)

) %>%

ggplot +
aes (
x = date,

color = weight_class,
linetype = weight_class
) +
geom_freqpoly(bins = 20) +
facet_wrap(
vars (gender),
ncol = 1
) +
scale_color_grey() +
theme_bw() +
theme (strip.background = element_rect(color = "white", fill = "white"))

3.5

ufc %>%
filter (weight_class != "Catch Weight") %>%
mutate(
weight_class =
weight_class %>%
str_replace("Women's", "W.'") %>%
str_remove ("weight'")
%> %
ggplot +
aes (
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abs(B_odds - R_odds),
y = fight_time

X

) +
geom_point(size = .2) +
geom_smooth(method = "1m'") +

facet_wrap(
vars(weight_class),
scales = "free",
ncol = 4

3.6-3.7

ufc %>%
mutate(
house_take = 1/R_odds + 1/B_odds - 1,
country =
location %>%
str_extract("\\b[",]+$") %>%
fct_relevel(rev)
) %>%
ggplot +
aes (
x = house_take,

y = country
) +
geom_violin() +
labs(
x = """y
y = "House Take"
)
3.8-3.10

finish_details_plot <-
ufc %>%
filter(
result != "DQ",
!is.na(finish_details),
is.na(finish_round_time)
) %>%
group_by (finish_details) %>%
mutate (
finish_details =
ifelse(
n() < 18,
str_c(result, "Other", sep = " "),
finish_details
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%> %
ungroup %>%
mutate (
finish_details =
fct_reorder(
finish_details, finish_round_time, median,
.desc = TRUE
)

%> %
ggplot +
aes(
x = finish_round_time,
y = finish_details,
fill = result
) %>%
geom_boxplot() +
theme_bw() +

labs(
x = "Time 1in Round",
y = "Finishing Move"
) +
theme (
legend.position = "top",
legend.title = element_blank()
)

finish_details_plot

3.11

new_plot_data <-
finish_details_plot %>%
pluck('"data') %>%
mutate(
upset =
ifelse(
red_win,
R_odds > B_odds,
R_odds <= B_odds
)
winner =
ifelse(
upset,
"Underdog Won",
"Favored Fighter Won"

finish_details_plot %+%
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new_plot_data +
facet_wrap(vars(winner)) +

theme (strip.background = element_rect(color = "white", fill = "white"))

3.12

stance_plot %+% {
ufc %>%
group_by(location, weight_class, B_stance, R_stance) %>%
summarise(spread = min(B_rounds_fought - R_rounds_fought))

3.13

make_stance_plot <- function(sample) {
data_to_plot <-
sample %>%
mutate(spread = B_age - R_age)

stance_plot %+% data_to_plot

#or even better:

make_stance_plot <-
. %>%
mutate(spread = B_age - R_age) %>%
{stance_plot %+% .}

ufc %>%
filter (R_stance != B_stance) %>%

make_stance_plot

ufc %>%
filter (R_age < 28) %>%
make_stance_plot

3.14

new_plot_data <-
finish_details_plot %>%
pluck('"data') %>%
group_by (weight_class) %>%
mutate (
R_aggregate_weight = median(R_weight),
B_aggregate_weight = median(B_weight)

heat_map_plot %+%
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new_plot_data +
geom_point(
aes(
X = R_aggregate_weight,
y = B_aggregate_weight

77

#Here's an example plot:
formula_1 %>%

mutate(position_bin = ntile(start, 6)) %>%

group_by (position_bin) %>%
mutate (
position =
str_c("start <= ", max(start))
) %>%
group_by (flag_d) %>%
mutate (
flag_d =
ifelse(n() < 18000, "Other'", flag_d)
) %>%
ungroup %>%
mutate(
flag_d =
flag_d %>%
fct_relevel("Other", after = Inf),
position =
position %>%
as.factor %>%
fct_reorder(start, mean)
%> %
group_by (date) %>%
filter(
date > today() - years(20),
max (lap) >= 40
9%>%
mutate(lap_count = max(lap)) %>%
group_by(date, driver) %>%
filter (max(lap) == lap_count) %>%
group_by (circuit, lap) %>%

filter(seconds <= 2 * median(seconds)) %>%

group_by (circuit) %>%

mutate (
seconds = seconds/mean(seconds),
percent_race = 2 * ntile(lap, 50)

%>%

group_by(

#cluster start values

#within the last 20 years
#at least 40 laps

#remove drivers who didn't finish

#time isn't more than twice the median

#normalize average lap time
#express distance in percent
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position,
percent_race,
flag_d
) %>%
summarise(seconds = median(seconds)) %>%

ggplot +

aes (
X = percent_race,
y = seconds,
color = position

) +

geom_1line() +

facet_wrap(
vars(flag_d),
scales = "free"

) +

theme_minimal() +

labs (
x = "Percent of Race Completed",
y = "Lap Time Relative to Median Value",
legend = NULL

) +

theme (
legend.title = element_blank(),
legend.position = "top"

3.19

planet_1 %>%
pivot_longer (
cols = c(radius, dist, year),
names_to = "stat",

values_to = "value"

3.20
planet_2 %>%
pivot_wider (
names_from = planet,
values_from = value
3.21
planet_4 <-

planet_2 %>%
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pivot_wider (
names_from = c(planet, stat),

values_from = value

3.22

planet_1 %>%
pivot_longer(
cols = c(radius, dist),
names_to = "stat'",
values_to = "value"

3.23

planet_4 %>%
pivot_longer (
cols = everything(),
names_to = c("planet", "stat"),
names_sep = "_",

values_to = "value"

3.24

ufc %>%

pivot_longer(
cols = c(R_fighter, B_fighter),
names_to = "corner_color",
values_to = "fighter_name"

) %>%

count(fighter_name) %>%

ggplot +

aes(x = n) +

geom_histogram()

3.25

planet_1 %>%
pivot_longer(

cols = -planet,
names_to = "stat'",
values_to = '"value"

) %>%
pivot_wider (
names_from = planet,
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values_from = value

3.26

ufc %>%
filter(fight_time == min(fight_time, na.rm = TRUE)) %>%
select(starts_with(c("R_", "B_")) & where(is.numeric)) %>%
pivot_longer(
col = everything(),
names_to = c("corner_color", "metric"),
names_sep = "
values_to = "stat",
values_drop_na = TRUE
) %>%
pivot_wider (
names_from = corner_color,
values_from = stat

3.28

ufc %>%
select(fight_id, R_wins, B_wins, R_losses, B_losses) %>%
pivot_longer(
cols = —fight_id,
names_to = c("corner_color", "stat"),

names_sep = "_",

values_to = "val"
) %>%
pivot_wider (
names_from = stat,
values_from = val
) 9%>%
mutate (
corner_color =
fct_recode(
corner_color,

"Red-Corner Fighter® = "R",
‘Blue-Corner Fighter® = "B"
)
%>%
ggplot +

aes(x = wins, y = losses) +
geom_jitter(

size = .01,
height = .3,
width = .3

) +
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facet_wrap(
vars(corner_color),

ncol = 2,
scales = "free"

) +

labs(x = "Wins", y = "Losses") +

theme (
panel.background = element_rect(fill = "white", colour = "white"),
strip.background = element_rect(color = "white", fill = "white"),
strip.text.x = element_text(size = 12)

)

3.29

formula_1 %>%
group_by (circuit) %>%
mutate (speed_rank = row_number (seconds)) %>%
ungroup %>%
filter (speed_rank <= 5) %>%
arrange (speed_rank) %>%
pivot_wider (
id_cols = circuit,
names_from = speed_rank,
values_from = team

#or

formula_1 %>%
group_by(circuit) %>%
mutate (speed_rank = row_number (seconds)) %>%
ungroup %>%
filter(speed_rank <= 5) %>%
arrange (speed_rank) %>%
select(circuit, speed_rank, team) %>%
pivot_wider (
id_cols = circuit,
names_from = speed_rank,
values_from = team

3.30

formula_1 %>%
filter (year(date) >= 2022) %>%
select(-c(lap, seconds)) %>%
distinct %>%
pivot_longer(
c("start", "end"),
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names_to = "measure",
values_to = "position"
) %>%
arrange (position) %>%
pivot_wider (
id_cols = c(circuit, measure),
names_from = position,

values_from = driver

#or

formula_1 %>%
filter (year(date) >= 2022) %>%
select(-c(lap, seconds)) %>%
distinct %>%
pivot_longer(
c("start", "end"),
names_to = "measure",
values_to = "position"
) %>%
arrange(position) %>%
select(circuit, measure, position, driver)
pivot_wider (
names_from = position,
values_from = driver

3.31-3.33

ufc %>%
mutate (
house_take = 1/R_odds + 1/B_odds - 1,
date_bucket =
date %>%
ntile(200),
weight_bucket =
(R_weight + B_weight) %>%
ntile(2) %>%
as.factor %>%
fct_recode(
light_fights = "1",
heavy_fights = "2"
)
9%>%
group_by (date_bucket) %>%
mutate(date = median(date)) %>%
group_by (date, weight_bucket) %>%
summarise (house_take_mean = mean(house_take)) %>%
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pivot_wider (
names_from = weight_bucket,
values_from = house_take_mean
) 9%>%
ggplot +
aes (
x = light_fights,
y = heavy_fights,
color = date

) +

geom_path() +

theme_bw ()
3.34

ufc %>%
mutate (
house_take = 1/R_odds + 1/B_odds - 1,
date_bucket =
date %>%
ntile(100),
weight_bucket =
(R_weight + B_weight) %>%
ntile(2) %>%
as.factor %>%
fct_recode(
light_fights = "1",
heavy_fights = "2"
)
%> %
group_by (date_bucket) %>%
mutate(date = median(date)) %>%
group_by (date, weight_bucket) %>%
summarise (house_take_mean = mean(house_take)) %>%
ggplot +
aes(x = date, y = house_take_mean, color = weight_bucket) %>%
geom_1l1ine()
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3.35-3.37

red_blue_scatterplot <-
ufc %>%
select(
fight_id, red_win,
contains(c("attempt", "achieve™))
) %>%
pivot_longer(
cols = -c(fight_id, red_win),
names_to = c("corner_color", "move", "outcome"),
names_sep = "_",
values_drop_na = TRUE
) %>%
pivot_wider (
names_from = corner_color,
values_from = value
%> %
mutate(
red_win =
red_win %>%
as.factor %>%
fct_recode(
‘Red Win' = "TRUE",
‘Blue Win® = "FALSE"
)5
move =
move %>%
fct_relevel("strong", "weak'", "td") %>%
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fct_recode(

"Strong Strike' = '"strong",
‘Weak Strike’ = "weak'",
Takedown = "td",

Submission = "sub"

)’
outcome = str_to_title(outcome)
) %>%
ggplot +
aes(x = R, y = B, color = red_win) %>%
geom_point(size = .02) +
facet_wrap(
vars (outcome, move),
scales = "free'",
nrow = 2
) +
theme_bw() +
theme (
legend.position = "top",
legend.title = element_blank(),
strip.background = element_rect(color = "white", fill = "white")
) +
labs (
x = "Red Fighter",
y = "Blue Fighter"

red_blue_scatterplot

3.38

#The takedown facets are poorly scaled under facet_grid:
red_blue_scatterplot +
facet_grid(
rows = vars(outcome),
cols = vars(move),
scales = "free"

#Switching the rows and columns doesn't help:
red_blue_scatterplot +
facet_grid(
rows = vars(move),
cols = vars(outcome),
scales = "free"

3.39
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wide_punch %>%
pivot_longer (
cols = —-fight_id,

names_to = c("color", ".value", "outcome"),

names_sep =

3.40

#1
wide_punch %>%
pivot_longer(
cols = —-fight_id,
names_to = c("color", "strength", ".value"),

names_sep =

#2
wide_punch %>%
pivot_longer(
cols = —fight_id,
names_to = c(".value", "strength", "outcome"),
names_sep = "_"

3.41

#1
fight_counts %>%
pivot_longer(
everything(),
names_to = c("wday", "month", "year"),
names_sep = "_",
values_to = "fight_count"
%> %
pivot_wider (
names_from = wday,

values_from = fight_count

#2
fight_counts %>%
pivot_longer(
everything(),
names_to = c("wday_month", "year"),
values_to = "fight_count",
names_pattern = "(.+)_(["_]+)"
) %>%
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pivot_wider (
names_from = wday_month,
values_from = fight_count

3.59

ufc %>%
filter(
is.na(finish_round_time),
'is.na(finish_details)
) %>%
pivot_wider (
id_cols = finish_details,

names_from = c(finish_round, gender),

values_from = finish_round_time,

values_fn = mean

3.60

ufc %>%

pivot_longer (
c(R_age, B_age),
values_to = 'age'

) %>%

pivot_wider (
id_cols = location,
names_from = weight_class,
values_from = age,
values_fn = median
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Chapter 4

Multi-Column Operations and Joins

4.1 Introduction

After this chapter you’ll know all the key techniques for manipulating tibbles. Indeed, we only have two
data wrangling topics yet to cover: applying operations across multiple columns and joining tibbles.
We will address the former topic in sections 4.2.2 and 4.2.3, and the latter topic in section 4.2.6.

We'll begin, in section 4.2.2, by learning how to refer to multiple tibble columns. R has a suite of “tidy
select” functions that allow us to select various subsets of columns in a tidy fashion. We’ve actually
used some of these tidy select functions before. For example, consider the following code, from section
3.2.7:

numeric_stats <-
ufc %>%
select(
fight_-id,
where(is.numeric) & starts_with(c("R_", "B_"))

The where() and starts_with() are both tidy select functions. There are several other functions like
this, which together comprise an elegant scheme for specifying variables.

Next, in section 4.2.3 we turbocharge functions like mutate(), summarise(), filter(), and
pivot_longer () by nesting tidy select calls within them. This is a new method for applying
operations across multiple columns is tremendously powerful.!

After, in section 4.2.6 I discuss basic tibble joining and in section 4.2.7 I discuss more advanced
“mutating joins,” which adds columns, and “filtering joins,” which remove rows. I then provide a case
study that that uses tibble joining to study networks.?

Finally, this chapter has there three labs. The first, in section 4.3, repeats the analysis of Bray et al.
[2023] to show that customers are less sensitive to price changes than typical supermarket data would
have you believe. This lab has some light joins and multi-column operations. The second lab, in section
4.4, repeats the analysis of Bray et al. [2019b] to illustrate that the grocery supply chain suffers runs
on inventory when the upstream supplier looks like it may stock out. This lab will comprise a lot
of basic joins, as the data initially come in six raw tables. The third lab, in section 4.5, repeats the

!For more on this topic see vignette("colwise") and vignette("programming").
2For more on joins see vignette("two-table").
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analysis of Astashkina et al. [2023] to show that home cleaners do not tend to “disintermediate” from
the gig-economy platform that links them up with customers. This lab will require a more advanced
mutating join.

Finally, T provide several comments in section 4.6. In section 4.6.1 T argue that you should use multi-
column operations sparingly, because it’s usually simpler to pivot_longer() the tibble so that all the
relevant data are in a single column. In section 4.6.2 I warn against one of the most common sources
of bugs: joins that unintentionally duplicate rows. In section 4.6.3 I explain that joins allow better
data base design, as they enable us to save our data across a collection of tibbles, each focusing on
a different aspect of the problem, rather than lumping everything in one sprawling table. In section
4.6.4 I argue that you shouldn’t be shy about reiterating your group_by() groupings. In section 4.6.5
I illustrate a new technique that enables us to treat tibble rows as vectors of data, like we usually do
for tibble columns.

For the lecture, you can work in the code.R file of the wrangle project you created in exercise 1.38, and
for the labs you can work in the code.R files of the rationing project you created in exercise 1.40 and
the disintermediation project you created in exercise 1.41.

4.2 Lecture

4.2.1 Data

In exercise 1.38 of section 1.3 you created three tibbles: superbowl_ads, gradebook, and chess_panel. Th
first describes a collection of Superbowl advertisements, the second is a table of grades downloaded from
Canvas, and the third reports the following 14 variables for 14,322 chess games played on lichess.org:

e game: Distinct game identification number.

e rated: Logical indicating whether the outcome of the game influences the players’ ratings.

e moves: The games’ moves in chess notation. For example, game = "msIqfn6q" has moves = "e3
e5 Bc4 Qf6 Qf3 Qg6 Qd5 Nhe", which indicates that white first moved a pawn to square e3, then
black moved a pawn to square e5, then white moved a bishop to c4, then black moved its queen
to 6, etc.

e turns: Number of moves the game comprises. For example, turns = 260 indicates that the game
ended after both players moved ten pieces.

e victory_status: Game outcome, either "draw", "mate", "outoftime", or "resign".

e winner: Winner of the game, either "white", "black", or "draw".

e increment_code: The amount of time allotted to each player. Two clocks keep track of the two
players’ remaining time. The white clock counts down when it’s the white player’s turn to move
and the black clock runs down when it’s the black player’s turn to move. If one player runs out
of time, the other player wins. The increment_code values have the form x_y, where x is the
number of minutes initially put on each clock and y is the number of seconds added to a player’s
clock after they make a move. For example, in a game with increment_code = "15_0" the players
both have a 15-minute budget to make all their moves, whereas in a game with increment_code =
"15_2" the players both start with 15 minutes and are given an extra 2 seconds after each move.

e white_id, black_id: Distinct player identification numbers.

e white_rating, black_rating: Player ratings. Better players have higher scores.

e opening_eco: Classification of the game’s opening line—i.e., sequence of beginning moves—as
cataloged by the Encyclopaedia of Chess Openings. For example, opening_eco codes A80—-A99
correspond to the Dutch Defense and codes B20—-B99 correspond to the Sicilian Defense.

e opening_name: Detailed name for the game’s opening line. For example, the games with open-
ing_name = "Alekhine Defense: Scandinavian Variation" all have moves values that start with
"e4 Nf6 d3".
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e opening_ply: Number of moves that comprise the game’s opening line. This is roughly the number
of moves until the players deviate from the traditional script.

4.2.2 Tidy Select

Stuffing all the moves in chess_panel into a single moves column makes them difficult to analyze. So,

we will create a new tibble that assigns a distinct column to each of the first 200 moves:*
first_200_moves <-
chess_panel %>%
select(game, moves) %>%
separate_wider_delim( #Chop up moves column by each " "
moves,
names = str_c("move_", 1:200),
delim = " ",
too_few = "align_start",
too_many = "drop"
)
first_200_moves %>%
select(1:9) %>%
head (4)
> # A tibble: 4 x 9
> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 1T1INXvwaE d4 Nc6 e4 e5 f4 f6 dxe5 fxe5
> 2 mIICvQHh e4 e5 d3 de Be3 c6 Be2 b5
> 3 kWKvrqYL d4 ds5 Nf3 Bf5 Nc3 Nf6 Bf4 Ng4
> 4 9tXolAUZ e4 e5 Nf3 de d4 Nc6 ds Nb4
For example, game = "iyPuQIxx" has turns = 15 and thus has character strings in move_1-move_15 and

NA terms in move_l16-move_200. Likewise define
first_8_moves <-
first_200_moves %>%

select(1:9)

first_8_moves

> # A tibble: 14,322 x 9

> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 11NXvwaE d4 Nc6 e4 e5 f4 f6 dxe5 fxeb

> 2 mIICvQHh e4 e5 d3 de Be3 c6 Be2 b5

> 3 kWKvrqYL d4 d5 Nf3 Bf5 Nc3 Nf6 Bf4 Ng4

> 4 9tXolAUZ e4 e5 Nf3 de d4 Nc6 ds5 Nb4

> 5 qwU9rasv d4 ds e4 dxe4 Nc3 Nf6 3 exf3

> 6 dwF3DJHO e4 e5 Bc4 Nc6 Nf3 Nd4 d3 Nxf3+

3See section 2.4.4 for more on the separate() function.

221



> 7 afoMwnlLg e4 ds exd5 Qxd5 Nc3 Qe5+ Be2 Na6
> 8 HgKLWPsz e3 e6 d4 de Bd3 c6 Nf3 Be7
> 9 2fEjSei6 e4 e6 Qh5 g6 Qe5 Nf6 d4 dé
> 10 u7i6d0al e4 e5 Nf3 Nc6 Bc4 Nf6 Nc3 Bc5
> # 1 14,312 more rows

We can easily select() the white moves of first_8_moves (as the first mover, White makes all the odd
moves):

first_8_moves %>%

select(move_1, move_3, move_5, move_7)

> # A tibble: 14,322 x 4

> move_1 move_3 move_5 move_7
> <chr> <chr> <chr> <chr>
> 1 d4 e4 f4 dxe5
> 2 e4 d3 Be3 Be2

> 3 d4 Nf3 Nc3 Bf4

> 4 e4 Nf3 d4 d5

> 5 d4 e4 Nc3 f3

> 6 e4 Bc4 Nf3 d3

> T e4 exd5 Nc3 Be2

> 8 e3 d4 Bd3 Nf3

> 9 e4 Qh5 Qe5 d4

> 10 e4 Nf3 Bc4 Nc3

> # 1 14,312 more rows
But doing the same for first_200_moves would require listing 100 distinct columns:
first_200_moves %>%
select(
move_1,

move_3,

move_5,

move_199

A smarter solution is to select() all the variables that end in a "1", "3", "s" n7" or "g":

first_200_moves %>%
select(ends_with(c("l", ll3ll, ll5|l, ||7||’ ll9|l)))

This solution uses the “tidy select” scheme for specifying variables. The tidy select conventions give
you tremendous column-picking flexibility. For example,

e select(move_l:move_10) picks the first ten moves,
e select(-(move_1:move_10)) picks all but the first ten moves,
e select(move_l:move_10, move_191:move_200) picks the first and last ten moves,

222



e select(last_col(24):last_col()) picks the last 25 columns,

e select(everything()) picks all columns,

e select(contains("20")) picks move_20, move_120, and move_200,

e select(starts_with("move_9")) picks move_9 and move_96—move_99,

e select(ends_with(c("29", "44"))) picks move_29, move_129, move_44, and move_144,

e select(where(is.character)) picks the character variables, or

e select(where(~.x %>% str_detect("Nxf6") %>% any(na.rm=TRUE))) picks the columns that contain
the string "Nxfe".

The last two examples use where() to assign TRUE or FALSE to each column and then we select() the
TRUE columns. We can derive the logicals from a function, such as is.character, or from a functional
assembly line, such as ~.x %>% str_detect("Nxf6") %>% any(na.rm=TRUE). Starting the assembly line
with ~.x tells R to apply it to every tibble column. Hence, the last example makes R evaluate

o game %>% str_detect("Nxf6") %>% any(na.rm=TRUE),
e move_1 %>% str_detect("Nxf6") %>% any(na.rm=TRUE),
e move_2 %>% str_detect("Nxfe6") %>% any(na.rm=TRUE), etc.

And it keeps the columns for which the result is TRUE.

Exercise 4.1. I always receive a horribly organized table whenever I download the gradebook for this
class. Tidyselect the *SIS User ID' column of gradebook, and those that contain "Quiz" but not "Test
Quiz" or "Quizzes"

Exercise 4.2. Tidyselect the columns of gradebook that comprise any() non-NA terms.

o Note that c(NA, 1:3, NA) %>% is.na %>% ! = c(FALSE, TRUE, TRUE, TRUE, FALSE).
Exercise 4.3. Use where() and dis.numeric() to select the numeric columns of chess_panel.

Exercise 4.4. Use & and ends_with() to select all the black moves in first_200_moves between the
20th and 60th turns (inclusive). (The black player makes all the even-numbered moves.)

Exercise 4.5. Find four different ways to select() all but the game column of first_8_moves.

The tidy select convention isn’t limited to select(). In fact, it’s been rolled out to most tidyverse
functions. For example, we can reposition all the numeric columns of chess_panel to the end:

chess_panel %>%
relocate(
where(is.numeric),
.after = last_col()

And we can pivot first_8_moves by its black moves:

first_8_moves %>%
pivot_longer(
CO‘LS = ends_W'ith(c(”O", ||2||, ||4||, ”6”, ”8”)),
names_to = "move_number",

values_to = "black_move"
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The tidy select protocol is especially powerful when combined with the functional quartet, as we’ll see
in the next sections.

4.2.3 Multivariable Operations

We can capitalize the moves in first_8_moves with:

first_8_moves %>%
mutate(
move_1 = str_to_upper (move_1),
move_2 = str_to_upper (move_2),
move_3 = str_to_upper (move_3),
move_4 = str_to_upper (move_4),
move_5 = str_to_upper (move_5),
move_6 = str_to_upper (move_6),
move_7 = str_to_upper (move_7),
move_8 = str_to_upper (move_8)

%>%

head
> # A tibble: 6 x 9
> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 1T1INXvwaE D4 NC6 E4 E5 F4 F6 DXE5 FXE5
> 2 mIICvQHh E4 E5 D3 D6 BE3 c6 BE2 B5
> 3 kWKvrqYL D4 D5 NF3 BF5 NC3 NF6 BF4 NG4
> 4 9tXolAUZ E4 E5 NF3 D6 D4 NC6 D5 NB4
> 5 qwU9rasv D4 D5 E4 DXE4 NC3 NF6 F3 EXF3
> 6 dwF3DJHO E4 E5 BC4 NC6 NF3 ND4 D3 NXF3+

But extending this solution to first_200_moves would be impractical, requiring 200 str_to_upper ()
calls. A better solution is to tidy select the columns to transform:

first_200_moves %>%
mutate (
across(
starts_with("move"),
str_to_upper

)
%>%
head

> # A tibble: 6 x 201
> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8 move_9 move_10
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 11INXvw~ D4 NC6 E4 E5 F4 F6 DXES5 FXE5 FXE5 NXES5
> 2 mIICvQ~ E4 E5 D3 D6 BE3 C6 BE2 B5 ND2 A5
> 3 kWKvrg~ D4 D5 NF3 BF5 NC3 NF6 BF4 NG4 E3 NC6
> 4 9tXolA~ E4 E5 NF3 D6 D4 NC6 D5 NB4 A3 NA6
> 5 gwU9ra~ D4 D5 E4 DXE4 NC3 NF6 F3 EXF3 NXF3 NC6
> 6 dwF3DJ~ E4 E5 BC4 NC6 NF3 ND4 D3 NXF3+ QXF3 NF6
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i 190 more variables: move_11 <chr>, move_12 <chr>, move_13 <chr>,
move_14 <chr>, move_15 <chr>, move_16 <chr>, move_17 <chr>, move_18 <chr>,
move_19 <chr>, move_20 <chr>, move_21 <chr>, move_22 <chr>, move_23 <chr>,

move_29 <chr>, move_30 <chr>, move_31 <chr>, move_32 <chr>, move_33 <chr>,
move_34 <chr>, move_35 <chr>, move_36 <chr>, move_37 <chr>, move_38 <chr>,

vV V V V V V VvV

#
#
#
# move_24 <chr>, move_25 <chr>, move_26 <chr>, move_27 <chr>, move_28 <chr>,
#
#
#

move_39 <chr>, move_40 <chr>, move_41 <chr>, move_42 <chr>,

The across() function applies str_to_upper () to every column that starts_with("move"). We can also
use across() to summarise() many columns at once:

first_200_moves %>%
summar-ise (
across(
move_5:move_50,
n_distinct

# A tibble: 1 x 46

move_5 move_6 move_7 move_8 move_9 move_10 move_11 move_12 move_13 move_1l4
<int> <int> <int> <int> <int> <int> <int> <int> <int> <int>

154 195 243 282 326 361 395 409 469 486

i 36 more variables: move_15 <int>, move_16 <int>, move_17 <int>,
move_18 <int>, move_19 <int>, move_20 <int>, move_21 <int>, move_22 <int>,
move_23 <int>, move_24 <int>, move_25 <int>, move_26 <int>, move_27 <int>,
move_28 <int>, move_29 <int>, move_30 <int>, move_31 <int>, move_32 <int>,
move_33 <int>, move_34 <int>, move_35 <int>, move_36 <int>, move_37 <int>,
move_38 <int>, move_39 <int>, move_40 <int>, move_41 <int>, move_42 <int>,

V V V V V V V V V V V

H*+ H H H H H H

move_43 <int>, move_44 <int>, move_45 <int>, move_46 <int>,

As you see, across() has two inputs: a tidy selection of columns and a function to apply to these
columns. Hence, the code above applies n_distinct() to columns move_5 through move_so. We can
likewise use across() to tidy select our group_by() groupings:

#group_by () first three moves:
first_8_moves %>%
group_by (across(move_l:move_3)) %>%
summarise (num_of_fourth_moves = n_distinct(move_4)) %>%

head

> # A tibble: 6 x 4

> # Groups: move_1, move_2 [3]

> move_1 move_2 move_3 num_of_fourth_moves
> <chr> <chr> <chr> <int>
> 1 Na3 e5 e3 1
> 2 Nc3 Nc6 Nf3 2
> 3 Nc3 Nc6 d4 1
> 4 Nc3 Nc6 e3 1
> 5 Nc3 Nf6 Nf3 1
> 6 Nc3 Nf6 d4 3
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#group_by () white_rating and black_rating
chess_panel %>%
group_by (across(ends_with("_rating"))) %>%

summarise (white_win_frac = mean(winner == "white")) %>%
head
> # A tibble: 6 x 3
> # Groups: white_rating [6]
> white_rating black_rating white_win_frac
> <dbl> <db1> <dbl>
> 1 784 970 1
> 2 793 961 (0]
> 3 808 973 1
> 4 813 841 1
> 5 842 1076 0
> 6 857 958 (0]

And if we replace group_by() with group .by, then we can tidy select the grouping columns without
across():

#group .by first three moves:
first_8_moves %>%
summar-ise (
num_of_fourth_moves = n_distinct(move_4),
.by = move_1l:move_3

%>%

head

> # A tibble: 6 x 4

> move_1 move_2 move_3 num_of_fourth_moves
> <chr> <chr> <chr> <int>
> 1 d4 Nc6 e4 3
> 2 e4 e5 d3 16
> 3 d4 ds5 Nf3 12
> 4 e4 e5 Nf3 22
> 5 d4 d5 e4 6
> 6 e4 e5 Bc4 21

#group .by white_rating and black_rating
chess_panel %>%
summar-ise (
white_win_frac = mean(winner == "white"),
.by = ends_with("_rating")

) %>%

head
> # A tibble: 6 x 3
> white_rating black_rating white_win_frac
> <db1l> <dbl> <db1l>
> 1 1322 1261 (0]
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> 2 1496 1500 0.333
> 3 1439 1454 1
> 4 1523 1469 1
> 5 1520 1423 1
> 6 1439 1392 (0]

Further, we can tidy select both the columns to summarise and the columns to group by:

#compute number of distinct elements in each column ending in "id",
#after grouping .by the columns starting with "opening"
chess_panel %>%
summar-ise (
across(
ends_with("id"), #<- tidy select columns to compute stats for
n_distinct
)
.by = starts_with("opening") #<- tidy select columns to group by

%>%

head

> # A tibble: 6 x 5

> opening_eco opening_name opening_ply white_id black_qid
> <chr> <chr> <db1> <int> <int>
> 1 BOO Nimzowitsch Defense: Kennedy Variat~ 4 5 5
> 2 C20 King's Pawn Game: Leonardis Variati~ 3 98 101
> 3 D02 Queen's Pawn Game: Zukertort Variat~ 3 69 84
> 4 C41 Philidor Defense 5 85 82
> 5 D00 Blackmar-Diemer Gambit: Pietrowsky ~ 10 2 2
> 6 C50 Italian Game: Schilling-Kostic Gamb~ 6 32 29

#compute the median of all numerical columns,
#after grouping .by all the logical columns
chess_panel %>%

summarise (
across(
where(is.numeric), #<- tidy select columns to compute stats for
median
)
.by = where(is.logical) #<- tidy select columns to group by
) %>%
head
> # A tibble: 2 x 5
> rated turns white_rating black_rating opening_ply
> <lgl> <dbl> <dbl> <db1l> <db1l>
> 1 TRUE 59 1578 1575 4
> 2 FALSE 53 1500 1500 4

Note: To give across() a function rather than the output of the function, I write median rather than
median() in the last example above. Indeed, enter median and median() in the console and you will
see that R treats these expressions differently. Entering the former yields some technical jargon that
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describes the function, and entering the latter returns an error that says that R needs an input vector
to take the median of. This example illustrates a universal principle: writing the name of a func-
tion without parentheses references the function itself, whereas writing the name of a function with
parentheses references the output of the function. For example, consider the following:

#the following defines x as the function today ()
X <- today

#I can now call x just like I call today()
x()

> [1] "2025-04-09"

#indeed, R now considers x a function
class(x)

> [1] "function"

#in contrast, the following defines y as the output of today()
y <- today()

#y 1s now just today's date
y

> [1] "2025-04-09"

#indeed, R considers y a Date:
class(y)

> [1] "Date"

Accordingly, to pass in functions, rather than their outputs, we always leave off the parentheses from
the functions we nest in across(). For example, n_distinct() returns o, since the the parentheses
contain zero distinct items; accordingly, R would interpret this

first_200_moves %>%
summarise (
across(
move_5:move_8,
n_distinct()

as this:

first_200_moves %>%
summar-ise (
across(

move_5:move_8,
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which would yield an error, since 0 is not a function. Replacing n_distinct() with n_distinct makes
the across() call receive a proper function in its second slot, which fixes this problem.

Exercise 4.6. Use summarise() and across() to calculate the mean peer evaluation scores for each lab
in gradebook, .by Section

Exercise 4.7. Use summarise() and across() to get the last() values of every column in chess_panel
whose name contains() a "_". Your output should be a one-row tibble with column names vic-
tory_status, increment_code, white_id, white_rating, black_id, black_rating, opening_eco, open-
ing_name, and opening_ply

e Embed across() within summarise(), and embed last() within across().

e Drop the parentheses after last().

Exercise 4.8. Use mutate(), across(), and where() to apply as.roman() of every column in
chess_panel that is.numeric().

And in addition to pre-defined functions like first() and sd(), we can apply custom transformations
to our variables with anonymous functions. An anonymous functions is a general expression that starts
with ~ and uses .x to refer to the inputted argument. For example, the following are equivalent:

#method 1:
first_200_moves %>%
summar-ise (

move_101 = move_101 %>% is.na %>% mean,
move_102 = move_102 %>% is.na %>% mean,
move_103 = move_103 %>% is.na %>% mean,
move_104 = move_104 %>% 1ds.na %>% mean,
move_105 = move_105 %>% is.na %>% mean,
move_106 = move_106 %>% is.na %>% mean,
move_107 = move_1l07 %>% is.na %>% mean,
move_108 = move_108 %>% is.na %>% mean,
move_109 = move_109 %>% is.na %>% mean,

move_110 = move_110 %>% dis.na %>% mean

# A tibble: 1 x 10
move_101 move_102 move_103 move_104 move_105 move_106 move_107 move_108
<db1> <dbl> <db1l> <db1> <dbl> <db1l> <dbl> <db1l>
1 0.860 0.865 0.869 0.873 0.877 0.882 0.885 0.889
# i 2 more variables: move_109 <dbl>, move_110 <dbl>

vV V V V VvV

#method 2:
first_200_moves %>%
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summarise (
across(
move_101l:move_110,
~.X %>% ds.na %>% mean #this is an anonymous function

> # A tibble: 1 x 10

> move_101 move_102 move_103 move_104 move_105 move_1l06 move_107 move_108
> <db1> <dbl> <db1l> <db1l> <dbl> <db1> <dbl> <db1l>
> 1 0.860 0.865 0.869 0.873 0.877 0.882 0.885 0.889
> # 1 2 more variables: move_109 <dbl>, move_110 <dbl>

Here’s another anonymous function example:

first_8_moves %>%

mutate(
across(
ends_with(c("1", "3", "5", "7", "9Mm)),
~ str_c("w", .x, sep="_")
)’
across(
ends_with(c("0", "2", "4", "6", "gm)),
~ str_c("b", .x, sep="_")
)
) %>%
head (4)
The first across() call redefines move_1 to str_c("w", move_1, sep="_"), move_3 to str_c("w", move_3,
sep="_"), etc., and the second across() call redefines move_2 to str_c("b", move_2, sep="_"), move_4
to str_c("b", move_4, sep="_"), etc. As you see the .x is a stand in for the selected columns.

Exercise 4.9. Chess notation uses "+" to indicate a check—i.e., a threat upon the opponent’s king—
and "#" to indicate a checkmate. Use mutate() and across() to replace in the move_1—move_200 columns
of first_200_moves all instances of "+" with "_check" and all instance of "#" with "_checkmate".

e Use ~.x %>% to start an assembly line that comprises two str_replace() calls.
e "+" has a special meaning when it’s interpreted as a regular expression. To tell R not to interpret
this symbol as a regular expression, refer to it as "\\+" within the str_replace() expression.

Exercise 4.10. Integers should generally be saved as integers, not doubles. Accordingly, we will now
convert the numeric columns of chess_panel that do not have decimal points to integers.

e Pipe chess_panel into a mutate().
e Within the mutate() call, embed an across() call.
o Use the first argument of across() to pick a column if (i) it is.numeric() and (ii) it has no
decimal component.
— Impose the two criteria with two where() operations connected by a &.
— Note that ~ all(.x == as.integer(.x), na.rm = TRUE) is an anonymous function that
returns TRUE if all() of the entries of a numeric column have no decimal part.
e Use the second argument of across() to apply as.integer().
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— Write as.integer rather than as.integer().

e Overwrite the old chess_panel with the new tibble.

Exercise 4.11. Text variables that have few distinct values should generally be saved as factors, not
character strings. Accordingly, we will now convert the character string columns of chess_panel that
have fewer than a dozen distinct values to factors.

e Pipe chess_panel into a mutate().

Within the mutate() call, embed an across() call that applies as.factor() to all variables that
(i) are characters and (ii) have no more than 12 distinct values.

— Use where(is.character) to identify the character string columns.

— Embed a functional assembly line within where() to identify the columns with fewer than

12 distinct values. Note that c("a", "b", "c") %>% n_distinct %>% {. <= 2} = FALSE.

— Use & to connect the two conditions.

— Write as.factor rather than as.factor().
Overwrite the old chess_panel with the new tibble.

Exercise 4.12. Rook moves begin with an "R", knight moves an "N", bishop moves a "B", and queen
moves begin with a "Q". However, king moves begin either with a "K" or an "0". The latter denotes
a “castle” move in which the king jumps two spaces, rather than the usual one. Specifically, under
a king-side castle—a move denoted by "0-0"—the white king moves from square el to gl and the
black king from e8 to g8, and under a queen-side castle—a move denoted by "0-0-0"—the white king
moves from square el to ¢l and the black king from e8 to ¢8. Rather than this inconsistent "0-0" and
"0-0-0" notation, we’ll express these castle moves with the same piece-location notation used for the
other moves. That is, we will change "0-0" to "Kg1" if the king is white and "kg8" if black, and change
"0-0-0" to "Kcl" if the king is white and "Kc8" if black.

Pipe first_200_moves into a mutate() operation.
Include two across() steps within the mutate(), the first corresponding to the white moves and
the second to the black moves.
— Recall how we appended "w_" to white moves and "b_" to black moves.
In the white across() change "0-0-0" to "Kc1" and "0-0" to "Kgi".
— Recall how we changed "#" to "_checkmate" and "+" to "_check".
— Change "0-0-0" before "0-0". If you do it the other way around then your first step will
change "0-0-0" to "Kgl-0".
In the black across() change "0-0-0" to "Kc8" and "0-0" to "Kg8".

Whereas across() gives us multi-column versions of mutate() and summarise(), if_all() and if_any()
give us multi-column versions of filter():

#Get games whose first four moves are made by knights:

first_8_moves %>%

filter(
if_all( #keep if_all() of game's first 4 moves
move_l:move_4, #start with "N". (Knight moves start with "N'".)

~.X %>% str_detect(""N")

> # A tibble: 2 x 9
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> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 47xEFe40 Nc3 Nf6 Nf3 Nc6 e4 e5 Bb5 deé

> 2 6gMKO7pP Nf3 Nf6 Nc3 Nc6 e4 e5 Nd5 Nxe4

#Get games with action in the "a" column within in first three moves
first_8_moves %>%
filter(
if_any( #keep if_any() of game's first 3 moves contain '"a"
move_l:move_3,
~.X %>% str_detect("a"

)

) %>%

head (4)
> # A tibble: 4 x 9
> game move_1l move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 03wdIwg7 e4 e5 a3 Nf6 Nc3 d5 exd5 Nxd5
> 2 GstYv2md h4 e5 a4 ds5 b4 Nc6 b5 Na5
> 3 QnXuc72h e4 a6 Nf3 b6 d4 Bb7 Nc3 h6é
> 4 XLvGOFxw h3 e5 a3 Nf6 e3 d5 Nc3 a6

In the first example, R uses str_detect("AN") to turn vectors move_1, move_2, move_3, and move_4 into
four corresponding logical vectors, and then it keeps the rows for which all four vectors are TRUE. In
the second example, R uses str_detect("a") to turn vectors move_1, move_2, and move_3 into three
corresponding logical vectors, and then it keeps the rows for which any of the three vectors is TRUE.

For another example, the following picks the games in which the first piece was captured in the fortieth
move (piece captures are denoted by an "x"):

first_200_moves %>%

filter(
str_detect(move_40, "x"), #capture in move_40
if_all( #no captures in move_l-move_39

move_l:move_39,

~ str_detect(.x, "x", negate=TRUE) #negate option makes function return
) #TRUE when it doesn't find "x"
%> %

select(game)

See section 4.6.5 for a more flexible-but more cumbersome—way of executing multi-column filters.

Exercise 4.13. filter() gradebook so that we keep students only if_any () of their lab peer evaluation
grades are less than two.

Exercise 4.14. We will now filter() chess_panel to ensure that there are no NA terms in all of the
character string columns.

e Embed where(is.character) and ~.x %>% <dis.na %>% !  inside of if_all(), and embed that
inside of filter().
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— Look what c(1, NA, 3) %% dis.na %% ! yields.

Exercise 4.15. Moves that begin with an "o" denote a “castle.” We will now select games in
first_200_moves in which White castled.

e filter() first_200_moves to keep a game if_any() column that ends_with() an odd number
begins with an "o".

e The regular expression "20" is shorthand for begins with an "0". So the moves with castles are
those for which you can str_detect("*0").

Exercise 4.16. Select the games of first_200_moves in which Black checkmated with a knight.

o Use regular expression "AN.+#$" to identify moves that begin with an "N" and end in a "#".

Exercise 4.17. Select the games of first_200_moves in which White never used never used a bishop
and Black never used a rook.

e Include two if_all() calls in one filter().
e str_detect(""B", negate=TRUE) and str_detect("*R", negate=TRUE) respectively identify the
moves that are not made by a bishop and those not made by a rook.

4.2.4 Case Study: Pawn Promotions

When pawns make it to the other side of the board—i.e., when white pawns arrive at eighth row
or black pawns at the first row—they are “promoted” to any piece of the player’s choosing. Pawn
promotions are easy to identify because they are the only moves whose notation incorporates an equals
sign. For example, the 62nd move of game = "jwiDvtuw" is "b1=Q", which indicates that a black pawn got
promoted to a queen after reaching square bl. We will now create the following plot, which illustrates
the fraction of moves that promote a pawn, as a function of the move number.
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Exercise 4.18. We need at least 200 observations to get a reasonable estimate of the pawn promotion
fraction, so use where() to select() the columns of first_200_moves that have at least 200 non-NA
terms.
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e Use an anonymous function that begins with ~.x %>% dis.na.
e Note that c(TRUE, FALSE) %>% °!° = c(FALSE, TRUE) and 199:201 %>% {. >= 200} = c(FALSE,
TRUE, TRUE).

Exercise 4.19. summarise() the result of the previous exercise to calculate the fraction values for
which you can str_detect() an "=" (after removing the NA terms).

e Use an an anonymous function to apply str_detect("=") %>% mean(na.rm = TRUE) to all the -game
columns.

e The resulting tibble should have one row and 156 columns. For example, move_86 has 4665 non-NA
values, 40 of which contain the symbol "="; hence, the output should have 40/4665 = 0.0086 in
its move_86 column.

Exercise 4.20. pivot_longer() the result of the previous exercise.

e Pull down everything().

e Set the values_to "frac".

e Set the names_to "move_num".

e Include options names_pattern = "move_(.+)" and names_transform = T1list(move_num =
as.integer) to remove the "move_" prefix and save the move number as an integer.

Exercise 4.21. mutate() the result of the previous exercise to define player as a variable that is
"White" in the odd moves and "Black" in the even moves.

e The %% symbol represents the remainder function. For example, 1:6 %% 2 = c(1, 0, 1, 0, 1,
0).
e Use ifelse().

Exercise 4.22. ggplot() frac as a function of move_num with geom_point() and geom_smooth(se =
FALSE, span = 0.25). Give each player type a different color.

o Give the axes appropriate labs().
e Tidy the ggplot with theme_minimal() and theme(legend.position = "top", legend.title =
element_blank()).

4.2.5 Case Study: Superbowl Ads

We will now use multi-column operations to manipulate the superbowl_ads data we loaded in exercise
1.38 of section 1.3.

Exercise 4.23. Use remove_https <- . %>% str_remove("https://") to remove "https.//" from every
column of superbowl_ads that ends_with("url").

Exercise 4.24. superbowl_ads has seven logical columns: funny, show_product_quickly, patriotic,
celebrity, danger, animals, use_sex. Use summarise() and where(is.logical) to calculate the fraction
of commercials that comprise these each of these binary features. The output should be a tibble with
one row and seven columns.

Exercise 4.25. Use filter() and if_all() to determine whether any commercials in superbowl_ads
exhibit none of the seven binary features? For the test function, you can use !, which inverts logicals:
FALSE %>%!= TRUE and TRUE %>%!= TRUE.
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Exercise 4.26. Do any commercials in superbowl_ads exhibit all of the binary features? For this
analysis, you can use I(), which is a silly function that always returns its input, so that TRUE %>% I =
TRUE and FALSE %>% I = FALSE.

Exercise 4.27. Use where(is.logical) to pivot down all the logical columns in superbowl_ads. The
result should be a tibble with column names year, brand, superbowl_ads_dot_com_url, youtube_url,
name, and value, the last of which should be a logical vector. Save the result as superbowl_ads_long.

Exercise 4.28. The code below defines superbowl_ads_wide as a tibble of advertisement counts. For
example, the Toyota advertisers use_sex in one 2012 commercial. Modify this tibble to aggregate over
year. For example, the row with name = "use_sex" should report the total number of sexy commercials
produced by each brand. For this aggregation, group .by = name and sum() the values in the columns
that satisfy where(is.integer).

superbowl_ads_wide <-
superbowl_ads_long %>%
pivot_wider (
id_cols = c(name, year),
names_from = brand,
values_fn = sum,
values_fill = 0

4.2.6 Basic Joins

Limiting yourself to a single table of data is like limiting yourself to a single pair of shoes—you can
do it, but not gracefully or comfortably. However, if we don’t pool all our data into one big, catch-all
table then we’re going to need a way to cross-reference information stored in different tibbles. Our tool
for combining data across tibbles is the join, which merges two tibles into one.

Let me illustrate with an example. The following tibble records the number of moves until the first
piece is captured (i.e., until there’s a move with an "x" in it):

time_to_first_kill <-
first_200_moves %>%

pivot_longer(

-game,
names_to = "move_number",
names_pattern = "move_(.+)",

names_transform = list(move_number = as.integer)
) 9%>%
filter (str_detect(value, "x")) %>%
summar-ise (

first_kill_move = min(move_number),

.by = game

time_to_first_kill %>% head

> # A tibble: 6 x 2
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> game first_kill_move

> <chr> <int>

> 1 T1NXvwaE 7

> 2 mIICvQHh 13

> 3 kWKvrqYL 18

> 4 9tXolAUZ 19

> 5 gwU9rasv

> 6 dwF3DJHO 8

For example, game = "0051WoXz" has first_kill_move = 6, which indicates that the first piece was

captured in the sixth move. We can add first_kill_move to chess_panel by merging this tibble with
time_to_first_kill

chess_panel %>%
inner_join(time_to_first_kill) %>%

glimpse

> Joining with “by = join_by(game)"

> Rows: 14,242

> Columns: 15

> $ game <chr> "11NXvwaE", "mIICvQHh", "kWKvrqYL", "9tXolAUZ", "qwU9r~
> $ rated <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE~
> $ moves <chr> "d4 Nc6 e4 e5 f4 f6 dxe5 fxe5 fxe5 Nxe5 Qd4 Nc6 Qe5+ N~
> $ turns <dbl> 16, 61, 61, 95, 33, 66, 119, 39, 31, 31, 43, 52, 66, 1~
> $§ victory_status <chr> "resign", "mate", "mate", "mate", "resign", "resign", ~
> $ winner <chr> "black", "white", "white", "white", "white", "black", ~
> $ dncrement_code <chr> "5+10", "5+10", "20+0", "30+3", "10+0", "15+0", "10+0"~
> $§ white_id <chr> "a-00", "dischia", "daniamurashov", "nik221107", "capa_~
> $ white_rating <dbl> 1322, 1496, 1439, 1523, 1520, 1439, 1381, 1381, 1381, ~
> $ black_id <chr> "skinnerua", "a-00", "adivanov2009", "adivanov2009", "~
> $ black_rating <dbl> 1261, 1500, 1454, 1469, 1423, 1392, 1209, 1272, 1607, ~
> $ opening_eco <chr> "B@O", "C20", "DO2", "C41", "DOO", "C50", "BOl", "AQO"~
> $ opening_name <chr> "Nimzowitsch Defense: Kennedy Variation", "King's Pawn~
> $ opening_ply <dbl> 4, 3, 3, 5, 10, 6, 4, 1, 2, 8, 7, 8, 8, 5, 4, 4, 4, 4,~
> $ first_kill_move <int> 7, 13, 18, 19, 4, 8, 3, 15, 11, 17, 10, 21, 17, 8, 17,~
The ‘Joining, by = "game" message at the top indicates that the inner_join() operation merges

chess_panel with time_to_first_kill by their one common variable, game. In other words, it matches
up all rows in chess_panel with all rows in time_to_first_kill that share the same game value,
and then it pastes together these matched rows, with the chess_panel values on the left and the
time_to_first_kill values on the right. Accordingly, for this merge we call chess_panel the left-hand
tibble (LHT) tibble and time_to_first_kill the right-hand tibble (RHT).

Unfortunately, this inner_join() deletes 80 rows of data: chess_panel has 14,322 rows but the merged
tibble has only 14,242 rows. What’s happening is that there are 80 games that do not have any no piece
captures, and thus do not appear in time_to_first_kill. Accordingly, there are 80 rows in the LHT
that have no counterparts in RHT. And since inner_join() outputs only successfully merged rows—
with elements from both the LHT and the RHT—the unmatched observations of chess_panel get
dropped. However, we can keep these unmatched rows if we use left_join() instead of inner_join().
For example, the following merged tibble has 14,322 rows, as desired:
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chess_panel %>%
left_join(time_to_first_kill) %>%
dim

> Joining with “by = join_by(game)"
> [1] 14322 15

By design, left_join() keeps all the LHT intact: it matches the tibbles as best as possible, and then
throws in the unmatched rows from the LHT, populating the missing right-hand values with NA terms.
For example, the game = "A7ywzZFZL" row of the merged tibble has first_kill_move = NA because this
game does not appear in time_to_first_kill. In addition to left_join() there is also right_join(),
which keeps all the unmatched elements of the RHT, and full_join(), which keeps the unmatched
elements from both tibbles. However, there are very few circumstances where you would need to use
full_join(), and it’s generally deemed uncouth to use right_join(). Instead, the received etiquette is
to make whatever tibble you want to preserve the LHT, so that you can stick to left_join().

Exercise 4.29. Use inner_join() to copy move_l-move_8 from first_8_moves to chess_panel.

Exercise 4.30. Use inner_join() to copy the white moves from first_200_moves to chess_panel.

e Nest the select() operation within the inner_join().

Exercise 4.31. We will now investigate the relationship between turns in chess_panel and
first_kill_move in time_to_first_kill. Specifically, we will divide chess_panel into four equal
subsamples, based on the quartiles of first_kill_move, and then plot the distribution of turns in each
subsample.

e Pipe chess_panel into inner_join().

e Within the inner_join(), create a tibble that maps each game to a kill_bucket value, which is
1 if first_kill_move is below the first quartile, is 2 if first_kill_move is between the first and
second quartiles, etc.

— Look what 1:100 %>% ntile(4) yields.
— Save kill_bucket as.factor ().
o After the join, ggplot() the geom_density() of turns, and color by kill_bucket.

Exercise 4.32. We will now calculate the number of distinct move_1:move_8 values associated with
each opening_eco.
e Start with first_8_moves and inner_join() it with chess_panel %>% select(game, opening_eco).
e summarise() the result to calculate n_distinct(across(move_1:move_8)) .by opening_eco.
Exercise 4.33. Use inner_join() to restrict first_8_moves to the games with increment_code ==

"30+3". Your join should not increase the number of columns in first_8_moves.

e Pipe first_8_moves into inner_join().
e Within the dinner_join() parentheses, insert a functional assembly line that extracts from
chess_panel the game values for which increment_code == "30+3".

Exercise 4.34. We will now create a geom_bar() plot that illustrates the distribution of
first_kill_move, by victory_status.

e dnner_join() chess_panel and time_to_first_kill.
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e Pipe the combined tibble into ggplot().

e Specify a geom_bar () plot with x = first_kill_move and y = ..prop... This latter option tells
R to make a “proportional plot,” whose columns sum to one.

e facet_wrap by victory_status.

Joins are maximally promiscuous: every row in the LHT matches with as many rows in the RHT as
possible. For example, consider the following;:

X <-
tibble(
a = c(TRUE, TRUE, FALSE),
b = 1:3
)
X
> # A tibble: 3 x 2
> a b
> <lgl> <int>
> 1 TRUE 1
> 2 TRUE 2
> 3 FALSE 3
y <=
tibble(
a = c(TRUE, TRUE, TRUE),
c = C(”X”, llYll’ IIZH)
)
y
> # A tibble: 3 x 2
> a C
> <lgl> <chr>
> 1 TRUE X
> 2 TRUE Y
> 3 TRUE Z

How many rows will inner_join(x, y) and left_join(x, y) comprise? Figure out the solution by
yourself first, and then check your answer with R.

Note, when you run one of these joins, you will get a warning message that begins with “Detected an
unexpected many-to-many relationship between x and y.” This message is alerting you that some rows
in the LHT correspond with multiple rows in the RHT, and some rows in the RHT correspond with
multiple rows in the LHT. You can suppress this message by running inner_join(x, y, relationship
= "many-to-many") and left_join(x, y, relationship = "many-to-many"). This new option tells R
that you’re aware of the multiple matches.
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4.2.7 Mutating and Filtering Joins

We can coerce left_join() to behave like mutate(). For example, suppose we wanted a variable called
games_white_won_as_white that denotes the number of games that the current white_id player won as
White. We can calculate this with mutate() or with a “mutating join”:

#mutate () :
chess_panel %>%
mutate (
games_white_won_as_white =
sum(winner == "white"),
.by = white_1id

#mutating join:
chess_panel %>%

left_join(
summar-ise (
o g #the . refers to chess_panel, the piped-in tibble
games_white_won_as_white = sum(winner == "white"),

.by = white_id

In this case the former solution is preferable. But now suppose I wanted to add a variable called
games_white_won_as_black that denotes the number of games that the current white_id player won as
Black. 1 couldn’t construct this variable with mutate() because the information required to define it

resides in a .by group that does not contain the current observation. For example, game = "epDNgzi0"
has white_id = "yokocito" and black_id = "luis77"; thus it belongs to the black_id = "luis77"
group, but its games_white_won_as_black value depends on information the black_id = "yokocito"

group. Nevertheless, we can define games_white_won_as_black a mutating join:

chess_panel %>%

left_join(
filter(., winner == "black") %>%
count (
black_id,
name = '"games_white_won_as_black"
)
by = c¢("white_id" = "black_id")

) %>%

replace_na(list(games_white_won_as_black = 0))

Let me explain: First, a . inside a function’s parentheses always refers to the data that got piped
into the function (see section 2.2.6). Hence, R interprets filter(., winner == "black") as fil-
ter (chess_panel, winner == "black"). Second, the by = c("white_id" = "black_id") option tells the
left_join() to match the white_id column of the LHT with the black_id column of the RHT. For ex-
ample, it merges the white_id = "yokocito" rows of the LHT with the black_id = "yokocito" row of the
RHT (which is what we wanted). Third, the replace_na() step changes the games_white_won_as_black
= NA values to zero: since the RHT has no record of the players that didn’t win any games in the black
position, the left_join() sets their games_white_won_as_black values to NA.
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In general, mutating joins are more powerful than mutate(): a mutating join can do anything that
mutate() can do, but not vice versa. But the difference isn’t that big anymore, so they don’t come up
all that often.

Exercise 4.35. The following code computes the number of opponents a given player faced. For ex-
ample, "-1-_jedi_knight_-1-" faced four distinct opponents—playing against "erik123678" and "kay-
van0098" as White and against "kayvan0098", "anton2406", and "v_clava38" as Black—and thus has
opponents_faced = 4. Embed this code in a left_join() to create a mutating join that adds a column

to chess_panel called white_opponent_count that records the number of distinct opponents faced by
White.

summarise (
chess_panel,
player = c(white_id, black_id),
opponent = c(black_id, white_id)
) %>%
summarise (
opponents_faced = n_distinct(opponent),
.by = player
) %>%

head

# A tibble: 6 x 2
player opponents_faced
<chr> <int>
a-00

ischia
daniamurashov
nik221107

capa_jr

vV V V V V V V V VvV

oA W N R
H R RN RN

ehabfanri

Exercise 4.36. We will now study how the number of captured pieces varies with the number of turns.
But rather than the “raw” captured count, we will use the z-score version of this variable, normalizing
it so it has mean zero and standard deviation one across all opening_name values. In other words, we
will subtract by the captured count mean and then divide by the captured count standard deviation
(separately for each opening_name grouping). But there’s a catch: we want to exclude outliers when
calculating these means and standard deviations, but not when making our plots. So we will calculate
these statistics “offline” and join their values back into our original tibble.

e Use n() to remove the opening_name values with fewer than 30 corresponding games.
¢ Add a column to chess_panel called captured that specifies the number of pieces captured in the
given game.

— Use str_count(moves, "x").

e Pipe the result into left_join(). And within this function do the following:

— Use . to to refer to the tibble that got piped into the inner_join() and filter() out the
outlier values by imposing row_number (captured) > 3 and row_number (-captured) > 3, .by
= opening_name.

— Use summarise() to define captured_mean and captured_sd as the mean and standard devia-
tion of the remaining captured values.
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e The left_join() should add captured_mean and captured_sd to the larger sample.
— By nesting them in a left_join(), we have not subjected our larger sample to the
row_number (captured) > 3 and row_number (-captured) > 3 restrictions.
e Use mutate() to define captured_z = (captured - captured_mean) / captured_sd.
e Scatter plot captured_z by turns.
— Use the size = .1 option of geom_point().

Exercise 4.37. Suppose that in preparation for an upcoming match against the player "ivanbus", you
wanted to add a new column to chess_panel called ivan_turns that is NA if "ivanbus" never played that
opening_eco, and is otherwise equal to the median() number of turns among the games that "ivanbus"
played with that opening_eco. For example, the three games that "ivanbus" played with opening_eco =
"C45" have turns 39, 46, and 50; so all games in our final panel should have ivan_turns = median(c(39,
46, 50)) = 46. Your join should not decrease the number of rows in chess_panel.

e Pipe chess_panel into left_join().

— We use left_join() because we don’t want to delete a game just because "ivanbus" didn’t
play the given opening_eco.

e Within the left_join(), include a functional assembly line that derives from chess_panel the
median() number of turns, by opening_eco for games with white_id == "jvanbus" or black_id
== "jvanbus"

— The output of this assembly line should be a tibble with columns opening_eco and ivan_turns.
The left_join() will match this tibble with chess_panel by opening_eco.

In addition to the mutating join, there are also the filtering join. Just as the mutating join is a more
potent version of mutate() the filtering join is a more potent version of filter(). We use a filtering
join when the decision about whether to drop a row depends on information that does not neatly reside
in one of the row’s .by groupings. For example, we can use a standard filter() to restrict the sample
to the opening_eco values that have at least 10 distinct opening_name values:

chess_panel %>%
filter(
n_distinct(opening_name) >= 10,
.by = opening_eco

But now suppose we want to restrict the sample to the opening_eco values that have at least 10 distinct
opening_name values among its rated = TRUE games. This problem is harder because the rated = FALSE
games need to access information about the rated = TRUE games. The simplest solution is a filtering
join:

eco_values_to_keep <-

chess_panel %>%

filter(rated) %>%

summarise (
n = n_distinct(opening_name),
.by = opening_eco

) %>%

filter(n >= 10) %>%

select(opening_eco)
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chess_panel %>%

inner_join(eco_values_to_keep)

This code saves the opening_eco values that meet the criterion in wheelbarrow tibble eco_values_to_keep,
and it then takes the inner_join() of this tibble and chess_panel, matching by their one common

variable, opening_eco. It is this last step that filters out the undesirable games from chess_panel.
Indeed, this dinner_join() acts like a filter() step, dropping the games in chess_panel whose

opening_eco does not appear in eco_values_to_keep. In other words, eco_values_to_keep contains a

list of permissible opening_eco values and the inner_join() step removes the games whose opening_eco

is not “on the list.” In fact, this step does nothing other than filter the sample: it doesn’t merge in any

new columns because the only variable in the eco_values_to_keep tibble, opening_eco, already exists

in chess_panel.

Here’s an even more streamlined solution:

chess_panel %>%
semi_join(
filter(., rated) %>%
summarise (
n = n_distinct(opening_name),
.by = opening_eco
) %>%
filter(n >= 10)

First, I nested the functional assembly line inside the join to avoid constructing wheelbarrow variable
eco_values_to_keep. Second, I replaced inner_join() with semi_join() and removed the select() step.
semi_join() is like inner_join(), except it doesn’t copy over the RHT’s columns. Instead, it uses the
RHT simply to determine which rows of the LHT to keep. Hence, we don’t have to select() away the
temporary n column in this case.

In essence, semi_join() was designed for filtering joins and left_join() for mutating joins: the former
can remove rows but not add columns (like filter()) and the latter can add columns but not remove
rows (like mutate()). And dinner_join() is like a mix between the two, as it can both remove rows and
add columns. For example, define:

mini_1 <-
tibble(
x = c("a", "a", "b", "b", "c"),
y = 1:5
)
mini_1
> # A tibble: 5 x 2
> X y
> <chr> <int>
> 1 a 1
> 2 a 2
>3 b 3
>4 b 4
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mini_2 <-
tibble(
X = c(llall’ ”C” 5
Z = C(”X”, IIYH)

)
mini_2
> # A tibble: 2 x 2
> x z
> <chr> <chr>
> 1 a X
> 2 cC Y
Now we can filter out the x = "b" rows from mini_1 with a semi_join():

mini_1 %>%

semi_join(mini_2)

> # A tibble: 3 x 2
> X y
> <chr> <int>
> 1 a 1
> 2 a 2
>3 c 5

We can add the z column to mini_1 with a left_join():

mini_1 %>%

left_join(mini_2)

> # A tibble: 5 x 3

> X y z

> <chr> <int> <chr>

> 1 a 1 X

> 2 a 2 X

>3 b 3 <NA>

>4 b 4 <NA>

>5 ¢ 5Y

And we can both filter out the x = "b" rows and add in the z column with an inner_join():

mini_1 %>%

inner_join(mini_2)

> # A tibble: 3 x 3

> X y z

> <chr> <int> <chr>
> 1 a 1X

> 2 a 2 X

243



Exercise 4.38. pull() the chess_panel moves for the game with the largest first_kill_move in
time_to_first_kill

e Pipe chess_panel into inner_join().

e Within the dinner_join() derive a one-row tibble that corresponds to the game with largest
first_kill_move.

e pull() moves from the joined tibble.

Now there’s one more important join I want to teach you: anti_join(). This join is like the evil twin
of semi_join(). Whereas semi_join() returns the rows in the LHT that correspond to rows in the
RHT, anti_join() returns the rows in the LHT that do not correspond to rows in the RHT. Thus,
anti_join() treats the RHT as a “hit list” that specifies the rows in the LHT to knock off. For example:

mini_1 %>%

anti_join(mini_2)

> # A tibble: 2 x 2
> X y
> <chr> <int>
>1b 3
>2b 4

anti_join() , like semi_join(), is designed for filtering joins, as the following exercise illustrates.

Exercise 4.39. There are 20 possible opening moves in chess. We will now filter out the games with
the least popular opening move.

e Pipe chess_panel into anti_join().
e Within the anti_join() call, write a functional assembly line that selects the game values associ-
ated with the least common opening move.

— You can reference the opening move with word(moves, 1).

— Use add_count(), rather than count(), so that you don’t lose the game values (which you’ll
need to match on).

— End the assembly line with select(game). This final step speeds up the code, but it doesn’t
change the answer. Without this step, both the LHT and RHT would contain all 14 columns
of chess_panel, from game to opening_ply. And {inner_join() would match on all of them,
ensuring that the left-hand game equaled the right-hand game, the left-hand rated equaled
the right-hand rated, the left-hand turns equaled the right-hand turns, and so on. But if
the left-hand game equals the right-hand game then all the other variables would likewise
match up, since both stem from the same chess_panel tibble. Thus, to avoid these needless
comparisons, we use select() to remove all but the game column of the RHT.

Exercise 4.40. We want to remove games in which White faces their highest-ranked black opponent
or Black faces their highest-ranked white opponent. Which of the two options does this?

#0ption 1
chess_panel %>%
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filter(
black_rating < max(black_rating),
.by = white_id

) %>%

filter(
white_rating < max(white_rating),
.by = black_id

#Option 2
chess_panel %>%
filter(
black_rating < max(black_rating),
.by = white_id
) %>%
semi_join(
chess_panel %>%
filter(
white_rating < max(white_rating),
.by = black_id
) %>%
select(game)

Exercise 4.41. Select all the games that share an opening_name with at least one of the games played
by "wall-of-shields"

e Pipe chess_panel into inner_join().
o Within the inner_join(), filter() out the games not played by "wall-of-shields" (as either
White or Black) and select the distinct() opening_name values.

4.2.8 Case Study: Network Analysis

Joins are especially useful for analyzing networks. To illustrate, we will now calculate all the chess
players that are within six degrees of separation from the player "wall-of-shields".

o A player has zero degrees of separation from themselves only.

e A player has one degree of separation from the players who play against zero-degree-of-separation
players, but who are not themselves zero-degree-of-separation players.

e A player has two degrees of separation from the players who play against one-degree-of-separation
players, but who are not themselves zero- or one-degree-of-separation players, etc.

For example, the only opponent "joydivisions" faced is "alkeal", who in turn played "dr_perdyllo"
and "jordanson". Hence, "joydivisions" has zero degrees of separation from "joydivisions", one
degree of separation from "alkeal", and two degrees of separation from "dr_perdyllo" and "jordanson".

Exercise 4.42. How could we derive from chess_panel the players that are within six degrees of
separation from "wall-of-shields"? Think about this problem at a high level before doing any coding.
Write a short paragraph that sketches out your solution strategy.
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OK, here’s my solution (don’t read this until you’ve mulled the problem over for yourself):

e Create a tibble called player_graph that records all the players that play each other. Call its
columns player_from and player_to, so that a player_from can reach a corresponding player_to
in “one hop.” player_graph reports the players that are within one degree of separation from
"wall-of-shields"

e Create two copies of player_graph. Rename the first tibble’s columns to player_from and
player_intermediary and rename the second tibble’s columns to player_intermediary and
player_to. Renaming the columns doesn’t change the player graph, so the first tibble’s
player_from can reach a corresponding player_intermediary in one hop, and the second tibble’s
player_intermediary can reach a corresponding player_to in one hop.

e Join these two tibbles by player_intermediary to create a tibble with columns player_from,
player_intermediary, and player_to. Since player_from can reach player_intermediary in one
hop and player_intermediary can reach player_to in one hop, it follows that player_from can
reach player_to within two hops. Accordingly, this tibble reports the players that are within two
degrees of separation from "wall-of-shields".

o Repeat this process five times to calculate who a given player_from can access in six hops.

We will now implement this solution.

Exercise 4.43. pivot_longer () the game, white_id, and black_id columns of chess_panel into a tibble
called game_player that lists the players associated with each game.

e Use the names_to = NULL option of pivot_longer() to disregard the words "white_id" and
"black_id".
e The head() of game_player should be

# A tibble: 6 x 2

game player

<chr> <chr>
T1NXvwaE a-00

1T1NXvwaE skinnerua
mIICvQHh dschia
mIICvQHh a-00

kWKvrqYL daniamurashov
kWKvrqYL adivanov2009

O b~ W N R

Exercise 4.44. inner_join() two copies of game_player together by = "game", with the suffix =
c("_from", "_to") option. The result of this join should be a tibble with columns game, player_from,
and player_to. Save the distinct(player_from, player_to) values as player_graph. This tibble defines
the edges of our player network graph: i.e., two players are connected if and only if they share a row
in this tibble.

e The head() of player_graph should be

> # A tibble: 6 x 2

> player_from player_to
> <chr> <chr>

> 1 a-00 a-00

> 2 a-00 skinnerua
> 3 skinnerua a-00

> 4 skinnerua skinnerua
> 5 dschia ischia

> 6 dschia a-00
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player_graph identifies who’s “connected” to whom. By definition, a player is connected to themselves
and to all the players they competed against (i.e., to the players that are zero or one degree of separation
away). In other words, we can get to player_to from player_from within one hop. For example, the
following establishes that "kimmmmi®6e" and "moomoo123" are the only players within one hop from
""moomoo123":

player_graph %>%
filter (player_from == "moomool23'")

> # A tibble: 2 x 2

> player_from player_to
> <chr> <chr>

> 1 moomool23 kimmmmiQ60
> 2 moomool23 moomool23

Now let’s calculate the players that are within two hops of "moomoo123". To do so, we’ll use two copies
of player_graph: the first to hop from "moomoo123" to an intermediary player—either "kimmmmio66" or
"moomoo123"—and the second to hop from this intermediary player to a new player_to:

player_graph %>%
filter(player_from == "moomool23") %>%
rename (player_intermediary = player_to) %>%
inner_join(
player_graph,

by = c("player_intermediary" = "player_from")
)
> # A tibble: 8 x 3
> player_from player_intermediary player_to
> <chr> <chr> <chr>
> 1 moomool23 kimmmmi©@60 kimmmmi060
> 2 moomool23 kimmmmiQ60 francooooooo
> 3 moomool23 kimmmmi©@60 moomool1l23
> 4 moomool23 kimmmmiQ60 aerdna87
> 5 moomool23 kimmmmi©@60 jirgu
> 6 moomool23 kimmmmi©60 alwaysl00fc
> 7 moomool23 moomoo123 kimmmmi@60
> 8 moomool23 moomool23 moomool1l23

For example, the second line indicates that "moomoo123" can jump to "francooooooo" by way of "kimm-
mmi060". Note, setting "player_intermediary" = "player_from" in the inner_join() makes the second
hop to start from player_intermediary (i.e., the old player_to).

The following exercise will use this approach to create a tibble that records all the players that a given

player_from can access within two hops.

Exercise 4.45. player_graph lists all the player relationships with zero or one degree of separation.
We will now create an analogous tibble that lists all player relationships with zero, one, or two degrees
of separation.

e rename() the player_to column of player_graph to player_intermediary.
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e dinner_join() the result by = c("player_intermediary" = "player_from").
e Select the distinct(player_from, player_to) rows, and save the result as player_graph_degree_2
e The head() of player_graph_degree_2 should be

> # A tibble: 6 x 2

> player_from player_to
> <chr> <chr>

> 1 a-00 a-00

> 2 a-00 skinnerua
> 3 a-00 ischia

> 4 skinnerua a-00

> 5 skinnerua skinnerua
> 6 skinnerua ischia

We can use player_graph_degree_2 to look up the players that "moomoo123" can access in two steps:

player_graph_degree_2 %>%
filter (player_from == "moomool23'")

> # A tibble: 6 x 2

> player_from player_to

> <chr> <chr>

> 1 moomool23 kimmmmioQ60

> 2 moomool23 francooooooo
> 3 moomool23 moomool23

> 4 moomool23 aerdna87

> 5 moomool23 jirgu

> 6 moomool23 alwaysl00fc

Now let’s calculate the players that "moomoo123" can access in three steps. To do so, we’ll rename()
the player_to column above to player_intermediary and inner_join() in another player_graph to hop
from these player_intermediary values to new player_to values:

player_graph_degree_2 %>%
filter(player_from == "moomool23") %>%
rename (player_intermediary = player_to) %>%
inner_join(

player_graph,

by = c("player_intermediary" = "player_from")
)
> # A tibble: 17 x 3
> player_from player_intermediary player_to
> <chr> <chr> <chr>
> 1 moomool23 kimmmmiQ60 kimmmmiQ60
> 2 moomool23 kimmmmiQ60 francooooooo
> 3 moomool23 kimmmmiQ60 moomoo123
> 4 moomool23 kimmmmiQ@60 aerdna87
> 5 moomool23 kimmmmiQ60 jirgu
> 6 moomool23 kimmmmiQ60 alwaysl00fc
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> 7 moomool23 francooooooo kimmmmi060
> 8 moomool23 francooooooo francooooooo
> 9 moomool23 moomoo123 kimmmmi060
> 10 moomool23 moomoo1l23 moomool23

> 11 moomool23 aerdna87 aerdna87

> 12 moomool23 aerdna87 ivanbus

> 13 moomool23 aerdna87 kimmmmio60
> 14 moomool23 jirgu kimmmmiQ60
> 15 moomool23 jirgu jirgu

> 16 moomool23 alwaysl00fc alwaysle0fc
> 17 moomool23 alwaysl1l00fc kimmmmiQ60

For example, the twelfth row indicates that "moomoo123" can reach "ivanbus" in three hops: two hops
to "aerdna87" and one hop from there.

The following exercise will use this approach to create a tibble that records all the players that a given
player_from can access within three hops.

Exercise 4.46. Apply the previous exercise’s rename(), inner_join(), and distinct() operations to
player_graph_degree_2 to create a tibble called player_graph_degree_3 that lists all player relationships
with zero, one, two, or three degrees of separation. This tibble should have 467566 rows and two
columns: player_from and player_to.

Exercise 4.47. In general we can get the degree-n relationships by applying the rename(), in-
ner_join(), and distinct() operations to the degree n—1 relationships. To avoid copy and pasting these
three functions over and over, compress them into a stand-alone function called increase_separation().

o Use the . <- %>% convention from section 2.2.5.
e player_graph %>% qincrease_separation should yield player_graph_degree_2 and player_graph

%>% increase_separation %>% increase_separation should yield player_graph_degree_3.
Exercise 4.48. Combine five increase_separation() calls in an assembly line to find the players that
are within six degrees of separation from "wall-of-shields".

e It’s a lot faster to impose the player_from == "wall-of-shields" condition before applying the
increase_separation() steps.
¢ You should get 656 players.

Exercise 4.49. Calculate the players that are exactly six degrees of separation from "wall-of-shields".
That, is identify the players that are within six degrees of separation from "wall-of-shields", but not
within five degrees of separation.

e End the assembly line with anti_join(increase_separation(.), .).

4.3 Lab: Pricing Experiment

4.3.1 Introduction

We will now follow the analysis of Bray et al. [2023] to estimate the causal relationship between
grocery prices and grocery demands. Bray et al. studied a pricing experiment conduced by Eversight?,
a company specializing in “Al-powered experimentation”. The experiment randomly shifted thousands

“https://eversightlabs.com/
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of prices in 82 midwestern supermarkets. The researchers sought to estimate whether Eversight’s
experimental price changes elicit a different demand response, or whether customers treat these random
price changes like any other price changes.

We will replicate the core of Bray et al’s analysis, measuring the demand response to 86,043 price
changes. These price changes come in four flavors: (i) standard, non-promotion price updates (e.g.,
inflation adjustments), (ii) price decreases due to promotions starting, (ii) price increases due to promo-
tions ending, and (iv) Eversight’s experimental price changes. The goal is to assess whether the price
elasticity of demand estimated with experimental prices matches that with any of the other three types
of price changes. To determine whether we can rederive the experimental elasticity estimate from non-
experimental data, we will scatterplot the change in sales in terms of the change in prices, and compare
the corresponding regression-line slopes—which we can interpret as demand elasticities—across price-
change flavors. We will ascertain whether the slope derived from experimental price changes match
that from standard price corrections, from promotion-start price decreases, or from promotion-end
price increases.

Exercise 4.50. If there were a type of non-experimental price change that yielded the same demand
response as experimental price changes, then why would a supermarket want to know this?

Exercise 4.51. We will estimate how demand responds to various types of price changes. Why may
customers respond to different types of price changes differently? For example, would you expect a
price reduction that the store classifies as a “promotion” to have a bigger or smaller effect on demand,
after controlling for the size of the price change? Or would you expect the sales decrease at the end of
a promotion to perfectly offset the sales increase at the begining of a promotion?

4.3.2 Data

We will use two tibbles from Eversight. The first denotes the amount of each product sold at each
store on each date:

eversight_quantity %>% tail

> # A tibble: 6 x 4

> store product day quantity
> <int> <chr> <date> <db1l>
> 1 993 997377 2019-09-09 1
> 2 993 997377 2019-09-10 3
> 3 993 997377 2019-09-11 1
> 4 993 997377 2019-09-12 3
> 5 993 997377 2019-09-13 0
> 6 993 997377 2019-09-14 1

The products are all from the same category: canned food. Hence, store = 978 sold four cans of
product = 995036 on date = ymd("2019-09-10"). The second tibble looks like this:

eversight_price %>% glimpse

> Rows: 2,487,667

> Columns: 13

> § store <int> 22, 22, 22, 22, 22, 22, 22, 2~
> $ product <chr> "007219", "007219", "007219",~
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date

$

$ price

$

$

$ Promotion
$ No_Label
$ Test

$

$

$

$

V V V V V V V V V V V

<date> 2019-07-03, 2019-07-04, 2019~

<dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
Promotion_TPR_Sale <inpt> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
Promotion_Print_Ad_Sale <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, O,~
<int> 0, 0, 0, 0, 0, 0, 0, 0, O, O,~
<int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
<int> 0, 0, 0, 0, 0, 0, 0, 0, 0, O,~
Promotion_Digital_Ad_Sale <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, O,~
Promotion_Print_Ad_Buy_One__Get_One_Free <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
Promotion_TPR_Clearance <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, O0,~
Promotion_TPR_Buy_One__Get_One_Free <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, O,~

The first four columns denote the price of a given product on a given date at a given store, and
the remaining nine columns specify the “price type,” which is either No_Label, which denotes regular
prices, Test, which denotes Eversight’s experimental prices, or various flavors of promotion, e.g., Pro-
motion_Print_Ad_Buy_One__Get_One_Free. There is only one price type at any given time, so each row
has one price type value equal to one and the rest equal to zero. For example, the glimpse() output
above describes a product on Promotion, but not on Promotion_TPR_Clearance, Promotion_TPR_Sale,

etc.

4.3.3 Clean

Exercise 4.52. We will begin by pivoting eversight_price into a more amenable form.

e pivot_longer() eversight_price into to a tibble with six columns: store, product, date, price

price_type, and value.
— Set the names_to = "price_type" and the values_to = "value"
— Use values_transform = list(value = as.logical) to turn the 1 and o values into TRUE and
FALSE values.

e Drop the value

= FALSE rows and the value column.

— For example, the first row of the pivoted tibble tells us that product = "007219" at store
= 22 had price_type = "Promotion_TPR_Sale" on date = ymd("2019-07-03"); the following
eight rows are redundant, as they simply tell us that this product’s price type was not
"Promotion_Print_Ad_Sale", "Promotion", etc. This step will remove these redundant rows

e <- the result into eversight_price.
— The result should have 2487667 rows.

Exercise 4.53. We will now tidy eversight_price and join it with eversight_quantity, so that all
our data are in one organized tibble.

e Relabel the price_type values by piping them through str_replace("No_Label", "Baseline")

%>% str_remove("_.+").
— The first operation changes "No_Label" to "Baseline" and the second removes all the text
after and including the first underscore.
— The resulting price_type vector should have distinct values "Baseline", "Promotion", and

"Test".

e dnner_join() the resulting tibble with eversight_quantity.
— Be wvery careful with this join, as it will crash your computer if you don’t do it properly.
Map out which columns will join with which.
e <- the result into eversight.
— This tibble should have 2487667 rows and 6 columns: store, product, date, price,
price_type, and quantity.
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4.3.4 Analyze

We will now plot the change in the average sales rate in response to each price change. We will do so
in three steps. First, we will calculate each price’s the average sales rate. Second, we will create new
columns that report the price and average sales rate before the last price change. And finally, we will
difference the price variables, to calculate the price change, and difference the average sales variables,
to calculate the corresponding demand change, and then scatterplot these differences.

Exercise 4.54. Ultimately, we would like to compress eversight into a tibble that has one row for each
price of each store-product—so that every price change in eversight corresponds with one row in the
compressed sample. Before you attempt this with your full sample, however, consolidate the simpler
tibble_raw into tibble_summary, below. Use consecutive_id() to add a column called price_regime to
tibble_raw, and then summarise() the result .by price_regime and price.

e You should always properly arrange() your tibble before implementing consecutive_id(), as this
function requires well ordered rows.

tibble_raw <-

tibble(
date = today() + days(seq(1l)),
price =
c(
i, 1, 1, 1, 1, #price 1
2, 2, #price 2
iy dg dg #price 3
3 #price 4

)5
quantity = ¢(1, 1, 1, 1, 1, 0, 0, 2, 3, 4, 2)

tibble_summary <-
tibble(
price_regime = 1:4, #<- price number
price = ¢(1, 2, 1, 3),

n=c(5, 2, 3, 1), #<- days this price lasted
sales_rate = c(1, 0, 3, 2) #<- average sales quantity under this price
)
tibble_raw

# A tibble: 11 x 3
date price quantity
<date> <dbl> <db1>
2025-04-10
2025-04-11
2025-04-12
2025-04-13
2025-04-14
2025-04-15
2025-04-16

>
>
>
>
>
>
>
>
>
>
> 2025-04-17

o N O A WN R
H NN B R R e R
N ©@ @ B B B B B
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> 9 2025-04-18

> 10 2025-04-19

> 11 2025-04-20
tibble_summary

> # A tibble: 4 x 4

> price_regime price
> <int> <dbl>
> 1 1
> 2 2 2
> 3 3 1
> 4 4 3

n
<db1l>
5

2
3
1

sales_rate
<db1l>

1

0
3
2

Exercise 4.55. We will now compress eversight into a tibble that has one row for each price of each
store-product—so that every price change in eversight corresponds with one row in the compressed

sample.

e Use the consecutive_id() function to to create a variable called price_regime which increments
every time there is a change in price or a change in price_type (sometimes the price_type
changes without the price changing).

— Define this variable .by = c(store, product), so that each price_regime starts at 1 for each

(store, product) pair.

— You should include price_type in addition to price inside of consecutive_id(), because
sometimes the price_type changes without the price changing.

— Make sure you arrange() the data by store, product, and date before you compute the

e summarise() the result .by
the number of observations, n = n(), and the average sales_rate

consecutive_id().

c(store, product, price_regime, price, price_type) to calculate

= mean(quantity) associated

with each price_regime. The resulting tibble should record the average sales_rate associated
with 236740 different price_regime values.

eversight_2 %>% head(10)

# A tibb

<int>
22
22
22
22
22
22
22
22
22
22

©O© 0o N oo 00 b~ W N

>
>
>
>
>
>
>
>
>
>
>
>
>

1

(o}

le: 10 x 7
store product price_regime price

<chr>

007219
007219
007219
007219
017334
017334
017334
017334
017334
017334

<int> <dbl>

O b~ WNRFE DM WN

1

H R H R R RO OO

.89
.99
.89

.49

.25

.49
.49

price_type

<chr>
Promotion
Promotion
Promotion
Promotion
Promotion
Baseline
Promotion
Baseline
Baseline
Promotion

n sales_rate

<int>
49
7

13

7
12

17

<dbl>
1.12
2

.75
.69
.857
.667
.833
.33
.824

© O B O & © +H K

Exercise 4.56. We will now pull forward the prior price’s data, so that we can measure the changes
between the current price and the prior price.
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e arrange() eversight_2 by store, product, and price_regime and then use across() to lag()
columns n, sales_rate, price_type, and price .by(store,product) pairs.

— Include the option .names = "{.col}_lag" in your across() call to assign the outputs to
new columns called n_lag, sales_rate_lag, price_type_lag, and price_lag

e filter() the result down to the rows with n >= 7 and n_lag >= 7.

— This step restricts the sample to the cases in which the current price and the previous price
both lasted at least one week. We impose this condition, because accurately estimating the
sales_rate requires at least a week’s worth of data.

e <- the result into eversight_3.
— This tibble should have 76833 rows.

Your eversight_3 tibble should look like this:

eversight_3 %>% glimpse

> Rows: 76,833

> Columns: 11

> § store <int> 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,~
> § product <chr> "@@7219", "@07219", "EO7219", "©17334", "017334", "0173~
> $ price_regime <int> 2, 3, 4, 2, 8, 9, 10, 11, 12, 15, 16, 17, 18, 21, 26, 2~
> § price <dbl> 0.89, 0.99, 0.89, 1.49, 1.49, 1.49, 1.00, 1.19, 1.49, 1~
> $ price_type <chr> "Promotion", "Promotion", "Promotion", "Baseline", "Bas~
>$n <int> 7, 8, 13, 12, 7, 9, 7, 9, 17, 12, 7, 7, 21, 34, 35, 7, ~
> $ sales_rate <dbl> 2.0000000, 1.7500000, 1.6923077, 0.6666667, 0.2857143, ~
> $ n_lag <int> 49, 7, 8, 7, 10, 7, 9, 7, 9, 8, 12, 7, 7, 7, 14, 35, 7,~
> $ sales_rate_lag <dbl> 1.1224490, 2.0000000, 1.7500000, 0.8571429, 0.2000000,

> $ price_type_lag <chr> "Promotion", "Promotion", "Promotion", "Promotion", "Pr~
> $ price_lag <dbl> 1.00, 0.89, 0.99, 1.00, 1.25, 1.49, 1.49, 1.00, 1.19, 0O~

Each row corresponds to a price change, where price, price_type, and sales_rate describe the post-
change situation, and price_lag, price_type_lag, and sales_rate_lag describe the pre-change situa-
tion.

Overall, there are nine ways that the price type can change:

eversight_3 %>%
distinct(price_type_lag, price_type)

> # A tibble: 9 x 2

> price_type_lag price_type
> <chr> <chr>

> 1 Promotion Promotion
> 2 Promotion Baseline
> 3 Baseline Promotion
> 4 Baseline Baseline
> 5 Promotion Test

> 6 Test Test

> 7 Baseline Test

> 8 Test Baseline
> 9 Test Promotion
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For example, the observations with price_type_lag = "Baseline" and price_type = "Promotion" corre-
spond to price changes that occur at the start of a promotion, in which the old price is a baseline price
and the new price is a promotion price, whereas the observations with price_type_lag = "Promotion"
and price_type = "Baseline" correspond to the price changes that occur at the end of a promotion, in
which the old price is a promotion price and the new price is a baseline price.

We will focus our attention on four of the nine types of price changes:

. test%xrtest(iew price_type_lag = "Test" and price_type = "Test"%

o baseline-to-promotion (i.e., price_type_lag = "Baseline" and price_type = "Promotion"),
o promotion-to-baseline (i.e., price_type_lag = "Promotion" and price_type = "Baseline"), and
o baseline-to-baseline (i.e., price_type_lag = "Baseline" and price_type = "Baseline").

We could limit our sample to these four key price change types with the following code:

eversight_4 <-
eversight_3 %>%

mutate (
label =
case_when (
price_type_lag == "Test" & price_type == "Test" ~ "Test",
price_type_lag == "Baseline" & price_type == "Promotion'" ~ "Promo Start",
price_type_lag == "Promotion" & price_type == "Baseline" ~ "Promo End",
price_type_lag == "Baseline" & price_type == "Baseline" ~ "Baseline"

)

%> %

filter(!is.na(label))

The code above uses the case_when() function to set label

e to "Test" when price_type_lag == "Test" & price_type == "Test",

e to "Promo Start" when price_type_lag == "Baseline" & price_type == "Promotion",

e to "Promo End" when price_type_lag == "Promotion" & price_type == "Baseline", and
e to "Baseline" when price_type_lag == "Baseline" & price_type == "Baseline", and

e to NA otherwise.

It then removes the label = NA rows, to limit the sample to the "Test", "Promo Start", "Promo End", and
"Baseline" price changes. The case_when() conditions are dense, however, and you can often simplify
such condition-laden code with a tibble. The following exercise illustrates this technique of replacing
code with data.

Exercise 4.57. Rewrite the code above without mutate() or filter (). Instead, define eversight_4 as
an inner_join() of eversight_3 and a tibble that defines the four relevant cases. This new tibble should
have four rows—corresponding to the four case_when() cases—and it should have three columns—
price_type_lag, price_type, and label, the last of which should be as defined above. For example, the
first row of your new tibble should have price_type_lag = "Test", price_type == "Test", and label
=“Test”. Your new code should be shorter and simplier to read than the code above (it helps to
usetribble()rather thantibble()‘).

Exercise 4.58. Derive from eversight_4 four scatterplots that depict the elasticity of demand to our
four types of price changes: baseline-to-baseline, test-to-test, baseline-to-promotion, and promotion-to-
baseline.
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e Let the x-axis correspond to the price_change = log(price) - log(price_lag) and the y-axis
correspond to the sales_change = log(sales_rate) - log(sales_rate_lag). Note, the logarithms
enable us to interpret the slope of our plot’s regression lines as price elasticities.

e Order the facets from "Baseline", to "Promo Start", to "Promo End", to "Test".

e Include geom_point(size = .05, alpha = 1/20) and geom_smooth(method = "lm") layers.

Exercise 4.59. What are the key findings we can take away from your plot?

4.3.5 Explore

Exercise 4.60. The figure you created indicates that sales go up when a promotion starts and go down
when a promotion ends. However, the decrease could exceed the increase because the promotion could
canabalize future sales, as customers stock up when the price is cheap. To quantify this canabalize
effect, compare the baseline sales rates in the weeks leading up to a promotion to the baseline sales
rates in the weeks following a promotion.

4.3.6 Reflect

Exercise 4.61. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

4.4 Lab: Inventory Runs

4.4.1 Overview

The COVID-19 pandemic incited panic purchasing. Stores faced runs on inventory as customers scram-
bled to stock up their home pantries and freezers with basic essentials. Customers took photos of bare
Walmart and Target shelves—a spectacle they had never before seen—and posted them to social media,
reinforcing the fear that initiated the hoarding. We stockpiled because others stockpiled. And this
cycle was self sustaining: we kept hoarding even after learning that the virus wouldn’t dramatically
undermine our production capacity, because we feared that even if our supply chains could withstand
the virus, they couldn’t withstand our hoarding. Hence, hoarding begat hoarding.

The inventory runs we experienced at the beginning of the pandemic are the supply chain analog of the
bank runs we experienced at the beginning of the 2008 financial crisis. Supply chain researchers call
the behavior that leads to these inventory runs “ration gaming.” The name refers to buyers’ attempts
to game the system by which scarce inventory is rationed. Bray et al. [2019b] documented a more
prosaic instance of ration gaming in a Chinese supermarket chain:

The context is a Chinese grocery supply chain that spans one upstream distribution center
(DC) and 73 downstream stores. If the stores were self-sacrificing, they would curtail their
orders when the DC’s inventory runs low, scrimping for those in need. However, they
are self-serving, and therefore, they accelerate their orders, stockpiling inventory to hedge
against a potential upstream stock out.

In Bray’s case, the hoarder is the store, rather than the customer, and the purveyor is the distribution
center (DC) rather than the store. And the signal that triggers the inventory run isn’t a pandemic,
but a low upstream inventory level: all stores see the DC stock levels, and all stores know that all
other stores see the same information. So a low upstream inventory level will spur the stores to snap
up the dwindling supplies in anticipation of a possible future shortage, slamming the distributor with
a blast of simultaneous orders. However, the effect is far more subtle than anything we saw during the
coronavirus. Specifically, Bray et al. [2019b] reported that the knowledge that the upstream inventory
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level is in the bottom 10% of the values it typically takes increases the likelihood of a given store
ordering inventory by a moderate 31%.

We will replicate Bray et al’s study to uncover these inventory runs for ourselves. We will recreate
their article’s primary exhibit, which crystalizes the phenomenon of ration gaming. The plot will be
simple, but the process of making will not be: unfortunately, nothing in data science is easy because
a large sample will undermine you in many surprising ways. Indeed, a million-observation sample will
have representatives for every possible problem, so you can’t take anything for granted. This lab will
entail a lot of challenging data cleaning—indeed no other assignment in this book will require as much
data wrangling. But this work will shore up your data science foundation, instilling the sound data
manipulation practices. Moreover, it is not contrived: it is precisely the data cleaning methodology
that Bray et al. [2019b] employed.®

4.4.2 Roadmap

There are three fundamental challenges in this lab. The first is joining together the input tables into
a large tibble that contains all the relevant variables. We must perform these joins with care to avoid
creating redundancies in our resulting tibble. We will prepare for and perform these joins in exercises
4.63-4.67.

The second challenge is to address the data issues in our sample. Exercise 4.68 distinguishes between
observations in which the store didn’t order inventory and observations in which we didn’t observe
whether the store ordered inventory, both of which correspond to NA values after the join. Exercise 4.69
highlights two problems with our inventory series: (i) long spells with no inventory records and (ii) long
spells with no change in the inventory level (which suggests an error in the records). We mitigate these
issues by chopping up a product’s data into “generations” in exercise 4.70 and removing the generations
with fewer than 200 observations in exercise 4.71. Specifically, if there’s a range of data that looks
fishy, we give every observation in that range a different generation number, dividing the suspicious
subsample into a collection of single-observation generations; and since they correspond to only one row,
these degenerate generations get dropped when we impose the 200-observation requirement. Exercise
4.71 also removes products with very infrequent orders or inventory changes.

The third challenge is constructing the final output. To create this graph, we must compute a collection
of statistics, pivot them into the correct shape, and then ggplot() them.

Exercise 4.62. Before we start the process of creating this plot, it’s instructive to consider how you
would illustrate that stores engage in ration gaming. Without reading ahead, design the layout of an
exhibit that you believe would most convincingly establish the ration gaming phenomenon. Note that
the phenomenon comprises two distinct parts: rationing, in which the DC throttles shipments when
its supply runs short, and gaming, in which stores order earlier than they normally would to head off
a potential DC shortage.

o It’s probably best to establish these separate effects with separate plots.

¢ You should use three variables: the DC’s inventory level, the store’s order quantity, and the DC’s
corresponding shipment decision, whether it fulfills the store’s order in full or not at all (the DC
never partially fulfills orders).

4.4.3 Data

We will use order_dates, category, order_store, ship_store, inv_store, and inv_DC from section 1.3,
exercise 1.40. These tibbles describe different aspects of the grocery supply chain:

5You can see this write-up® of Bray’s study to get a better sense for what we’re about to do.
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e order_dates specifies whether, for a given date, we observe the stores’ order quantities
(order_observed = TRUE) or we do not (order_observed = FALSE). Unfortunately, there’s a gap
in our order data because the store lost some of these records, as Bray et al. [2019b] explained:
“We do not observe orders .. from October 23, 2011 to December 31, 2012, because of a lost
Excel file”

e category assigns a product category to each item. This latter variable is a stock keeping unit
(SKU) identification number. For example, item = 1895 corresponds to a 250 ml carton of “fresh,
orange-flavor orange juice” (direct translation).

e order_store records the order quantities of 113 stores, which are identified by ID variable store.
If order_type = "DC" then order records the amount of inventory that the store requested from
the DC at the beginning of the given date. Alternatively, if order_type = "cD" then the product
is “cross-docked,” which means that the DC distributes this merchandise to the stores as soon
as it receives it. Hence, the order_type = "CD" observations do not actually correspond to store
orders—rather, they are automated records that the DC’s IT system generated when deploying
the cross-docked merchandise. Finally, order_code is an order ID number.

— An order_code generally corresponds to multiple item values, since stores usually include
multiple products in an order.

— A given store did not order a given item on a given date if (i) there is no corresponding
(store, item, date) record in order_store and (ii) the row in order_dates corresponding to
the given date has order_observed = TRUE (i.e., we observe the orders placed on this date).

— order measures inventories in physical units. We will always measure inventory in physical
units (as opposed to, say, the retail value of the inventory).

e ship_store reports the inventory that arrived at the stores from the DC. The order_code values
link these shipments with the orders that triggered them.

e inv_store describes the stores’ end-of-day inventory levels.

e inv_DC describes the DC’s end-of-day inventory levels.

— Inv denotes the DC’s inventories whereas inv denotes the stores’ inventories.

4.4.4 Merging Inputs

A tibble’s primary key is a minimal set of columns that uniquely identifies the observations. The
phrase “uniquely identifies the observations” means that the values in the primary-key columns are
different for each row in the tibble, so that you could use a row’s primary key to “look up” the rest of
the information stored in that line item. And the phrase “minimal set of columns” means that every
column in a primary key is necessary to identify a row: i.e., if we removed a column from the primary
key then we couldn’t use it to create a look-up table. For example, the inv_store tibble looks like this:

slice(inv_store, 1000:1004)

> # A tibble: 5 x 4

vV V. V V Vv VvV VvV
a A W N

store item date inv
<fct> <fct> <date> <int>
1003 11042 2012-03-25 22
1003 11042 2012-03-26 19
1003 11042 2012-03-27 18
1003 11042 2012-03-28 17
1003 11042 2012-03-29 16

A primary key in this case is (store, item, date). First, each (store, item, date) triple appears only
once in the data, a fact that we can confirm by comparing the number of rows with the number of
distinct (store, item, date) values:
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nrow(inv_store)

> [1] 16490877

inv_store %>%
distinct(store, item, date) %>%

nrow

> [1] 16490877

Since there are as many distinct (store, item, date) triples as there are observations, each triple must
correspond to only one observation. Second, these three variables are minimal because no subset of
them uniquely identifies an observation. For example, there are fewer distinct (item, date) pairs than
observations:

inv_store %>%
distinct(item, date) %>%

nrow

> [1] 342782

Hence, some (item, date) pairs must repeat. And the same is true for the (store, date) and (store,
item) pairs. Thus, (store, item, date) is a minimal row identifier—i.e., a primary key.

A tibble’s primary key is usually quite easy to identify. Often, a tibble’s variables will fall in two
broad categories: identification variables and measurement variables. The latter store the basic data
recordings—i.e., “what the tibble is about”—whereas the former store the “metadata” necessary to
keep track of these recording. The primary key is usually the collection of the identification variables.
For example, identification variables store, item, and date identify what measurement variable inv
actually measures.

The key test verifies that what looks like a primary key is actually a primary key. The test comprises the
uniqueness and redundancy checks that we performed for inv_store. The following exercise provides
another example.

Exercise 4.63. Determine the identification variables of inv_bDC, and use this information to surmise
a primary key for this tibble. Use nrow() and distinct() to confirm that your proposed set of columns
is a primary key. Establish sufficiency by showing that your columns identifies the observations and
establish necessity by showing that no subset of your columns uniquely identifies the observations.

Knowing what your primary keys are is crucial because treating a non-unique collection of variables as
unique is a surefire way to corrupt your analysis. The following two exercises illustrate the dangers of
not checking your keys.

Exercise 4.64. The following two tibbles house the inv_store and order_store data for store = 7511:

inv_7511 <-
inv_store %>%
filter(store == 7511) %>%
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select(-store)

order_7511 <-
order_store %>%
filter(store == 7511) %>%
select(item, date, order)

The first tibble has columns {item, date, and inv and the second tibble has columns item, date, and
order. The first tibble has primary key (item, date), but the latter does not because an item can be
shipped multiple times on a given date. For example, order_7511 has two observations with item =
13180 and date = ymd("2013-04-06"). But let’s see what happens when we mistakenly assume that
(item, date) is a primary key of both tibbles.

e left_join() tibbles inv_7511 and order_7511 to create a tibble called master_panel_7511.
— Your new tibble should have 186,468 rows.
o Use master_panel_7511 calculate the number of (item, date) pairs that have an inventory level in
excess of 560.
— You should get 3,731, which is the wrong answer.

Exercise 4.65. Misidentifying the key led to a miscalculation in the previous exercise. Specifically,
the (item, date) duplicates in order_7511 spawned inv duplicates in master_panel_7511, which begot
some inventory level double counting. We will now correct this problem by aggregating the data in
order_7511 up front, so that it has primary key (item, date).

o summarise() order_7511 to calculate the sum() of order .by (item, date) pair.
e Use your new version of order_7511 to create a new version of master_panel_7511, and use that
to calculate the number of (item, date) pairs that have an inventory level in excess of 560.
— You should get 3,728 units, which is the correct amount.

In the exercises above, a bug in the order data led to an error in the inventory calculation: redundant
rows of order_7511 lead to redundant rows in master_panel_7511, which lead to redundant values of
inv. And this is often how data errors work: your data transformations can amplify an error in an
input table so dramatically as to contaminate your entire panel, tainting calculations that are seemingly
unrelated to the initial issue. This is why it’s important to check all tables that contribute to your
analysis, even those that are seemingly inconsequential.

More specifically, exercise 4.64 illustrates a common join error: the rows of one tibble matching too
many rows of another tibble, creating unwanted duplicates. We can avoid these spurious duplicates
by keeping track of our tibble keys. In general, if we join a collection tibbles then the primary key of
the resulting merged tibble is always a subset of the union of the keys of the constituent tibbles. For
example, we would like to merge all our tibbles into a large master panel that has a different (store,
item, date) combination in each row. And we can guarantee that our combined panel won’t have any
(store, item, date) duplicates by ensuring that our input tibbles’ primary keys contain only store, item,
and date. Unfortunately, this currently isn’t the case:

o the key of category is item,

e the key of order_dates is date,

o the key of inv_DC is (item, date),

o the key of inv_store is (store, item, date),

o the key of order_store is (store, item, date, order_type), and
o the key of ship_store is (item, order_code, ship).
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Hence, if we join together all these tibbles the result could have a primary key as large as (store, item,
date, order_type, order_code, ship), and could thus have (store, item, date) duplicates. To prevent
such duplicates we will combine order_store and ship_store into a tibble with primary key (store,
item, date).

Exercise 4.66. We will now join order_store and ship_store into a simpler tibble called order_ship.

e Remove the order_type = "CD" observations of order_store and then drop the order_type column.

— These cross-docked products are not relevant to our analysis, since the stores do not order
them.

e left_join() in ship_store.

e Now an NA ship value indicates that the given order_store row had no ship_store match. And
this indicates that there was no shipment corresponding to this order quantity—i.e., that zero
units of inventory were shipped in response. Accordingly, use replace_na() to change these NA
terms to zero.

e summarise() the result to redefine order and ship to be the sum of all order and ship values, .by
(store, item, date) triple.

— Use across() to avoid writing sum() more than once.

— The observation with store = 1015, item = 11488, and date = ymd("2014-02-19") should
have order and ship values of 12.

— ship does not report the inventory shipped to a given store on a given date. Instead, it
reports the inventory shipped to a given store in response to the orders placed on a given
date. The shipment arrives on the ship_date, which usually falls a day or two after. However,
our summarise() steps disregards ship_date, which we won’t use.

— order_ship should have 409,636 rows.

Now the union of the keys of category, order_dates, inv_DC, inv_store, and order_ship is (store, item,
date). Hence, we can join these tibbles together without duplicating (store, item, date) values.

Exercise 4.67. left_join() together tibbles inv_store, inv_DC, order_ship, order_dates, and cate-
gory in that order.

e Your code should start withinv_store %>% left_join(inv_DC).

e <- the resulting tibble into master_panel.

e master_panel should have as many rows as inv_store.

o Confirm that every row of master_panel has a unique (store, item, date).

4.4.5 Clean

We will now tidy up our sample.

Exercise 4.68. The order and ship values in master_panel are NA if (i) no inventory was ordered on
the given date or (ii) order_observed == FALSE, in which case the order data is missing. However, these
values should be NA only when we’re missing data—i.e., only when order_observed = FALSE. Otherwise,
these values should be zero, because we explicitly observed that no inventory was ordered or shipped
on that day. That said, turn the NA values of order and ship to zero when order_observed = TRUE.

Exercise 4.69. We will create two plots that depict two problems with inv_store.

e Define a data-free ggplot with inv_plot <- ggplot() + aes(x = date, y = inv) + geom_point().
e Define sample_1 as the store == 1039, item == 211610 observations of inv_store and define
sample_2 as the store == 7723, item == 13045 observations of inv_store.
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e %+% sample_1 to inv_plot and then %+% sample_2 to inv_plot.

The first plot you created in exercise 4.69 indicates that our inventory series can have gaps, as products
are temporarily discontinued. For example, store = 1039 stopped selling item = 211610 on 2012-10-27
and then started selling it again on 2013-05-11. But like a person who’s returned to his hometown
after a long absence, a product that’s reintroduced to a store after a long break is, in a sense, a
different product. Or at least that’s how Bray et al. [2019b] saw it, as they treated a product that was
reintroduced after an absence of more than two weeks as a new “generation” of the product. And, for
all intense and purposes, they treated different generations of the same product as different products.
We’'ll do the same.

The second plot illustrates a more subtle problem. Basically, inv_store contains spurious records
for stocks that don’t actually exist, as merchandise is lost, stolen, or somehow taken from the store
without its removal being logged. And this issue becomes apparent after a product is discontinued, as
the “phantom inventory” lingers on the books long after the store stops ordering it. For example, store
= 7723 discontinued item = 13045 on 2014-05-31, at which point it had 11 phantom units of this item
on its books. And since these units never sold—because they didn’t exist—it appears that the store
held a constant 11 units of this item through the end of 2015. Bray et al. [2019b] resolved this problem
by starting a new product generation whenever the inventory level remained flat for more than 60 days
in a row. This correction shortens the store = 7723, item = 13045 series from ending on 2015-06-01
to ending on 2014-12-31, excising most of the degenerate data.

We'll add a product generation variable to master_panel in the next exercise. Following Bray et al.
[2019b], we will increment the value of generation when (i) the current date is more than 14 days after
the preceding date or (ii) the value of inv hasn’t changed for 60 consecutive observations. We will
combine store, item, and generation into an identification variable called product. Henceforth, the
term “product” will denote a (store, item, generation) triple.

Exercise 4.70. We will now add the product generation to our master_panel.

e arrange() master_panel by store, item, and date.

— The second observation should have store == 1003, item == 10210, and date == ymd("2011-
04-02").

e group_by() store and -item.

e Use mutate() and lag() to create a logical variable that indicates whether this observation’s date
is more than 14 days later than the previous observation’s date. In other words, time_jump should
be TRUE if the difference between date and lag(date) exceeds 14.

— Generally, the first element of a lagged vector is NA. For example, 1:3 %>% lag = c(NA, 1,
2). Hence, the first value of time_jump should be NA for each store and item grouping. We
will remove these NA terms later.

— In general, you should avoid embedding constants, like the number 14, in your code. Instead,
it’s preferable to define some descriptive variable upfront, such as allowable_time_gap <-
14, and then using that in your code.

e Within the same mutate () call, use lag() to define value_change as a logical variable that indicates
whether this row’s inventory level differs from the previous row’s inventory level. In other words,
value_change should be TRUE if inv differs from lag(inv).

— The first element of value_change should be NA for each store and -item grouping.

e Pipe the output of mutate() into replace_na() to turn the NA values in time_jump and
value_change to FALSE.

e Pipe the output of replace_na() into a second mutate(), and use cumsum() to define
cum_value_change as the cumulative sum of value_change. That is, cum_value_change should
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record the total number of times the inventory level has changed up until the given point.

— Alternatively, you could create cum_value_change with the consecutive_id() function.
Within the same mutate() step, define stationary as a logical variable that indicates whether the
value of cum_value_change in this row equals that from 60 rows back. In other words, stationary
should be true TRUE if cum_value_change equals lag(cum_value_change, 60), which indicates that
the inventory level didn’t change over the past 60 observations.

— Note that the first 60 values of 1:100 %>% lag(n = 60) are NA. By a similar logic, the first

60 values of stationary should be NA.
— Rather than hard code the number 60 into your solution, define flat_time <- 60 upfront
and use that variable instead.
After the mutate() step, replace_na() the values in stationary to FALSE.
Use a third mutate() step to define new_gen as a logical variable that is TRUE if and only if there
was a 14-day time_jump or the inventory level was stationary for the past 60 days. In other
words, let new_gen indicate a long span of missing data or a long spell without a sale or delivery
(both of which should trigger a new product generation).
Define gen as the cumulative sum of new_gen. This variable specifies the current generation
number.
ungroup () the data and pipe it into unite(product, store, item, gen, remove = FALSE) to create
a column called product that combines store, item, and gen. This variable will serve as our
product identification number.
Save the result as master_panel.
— The 5000th row of master_panelshould have product = "1003_11222_838".

Exercise 4.71. Finally, we will remove anomalous products from our sample, in the fashion of Bray
et al. [2019Db]. Specifically, drop a product if (i) it has fewer than 200 observations, (ii) less than 4% of
its observations have an inventory level change, or (iii) less than 2% of its observations have a positive
order quantity.

master_panel should have 8,663 distinct() product values after this step.

Start your solution by defining obs_length <- 200, inv_change_min <- .04, and order_min <- .02.
This way readers can clearly see that our methodology relies on these ad hoc constants, and they
can easily modify these constants to gauge how sensitive our results are to their specific values.

4.4.6 Analyze

We will now use master_panel to recreate a version of figure 4.1, which Bray et al. [2019b] developed
to illustrate the inventory runs endemic to our supermarket supply chains. This figure captures the
essence of ration gaming in two simple plots, as Bray et al. [2019b] explain:

Ration gaming has two aspects: rationing—the DC curtailing shipments when its supply
runs short—and gaming—the stores selfishly manipulating the inventory allocation scheme.
Figure 2 depicts both phenomena.

First, the DC rations inventory. It fulfills 95% of orders when its inventory level is above
the first decile, but only 36% when its inventory level is below the first decile (overall, 13%
of orders go unfulfilled). And a stint of rationing can last awhile: if we define a “rationing
spell” as a span of time when the estimated order fulfillment probability is less than one half,
then 50% of rationing spells last at least 5 days, 10% last at least 14 days, and 1% last at
least 35 days. Sample-wide, these rationing spells comprise 10% of our sample and account
for 74% of unfulfilled orders. Moreover, these rationing spells are predictable because the
DC inventory declines at a steady pace. ..

Second, the stores game the inventory rationing scheme. They have a 9.6% probability of
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Figure 4.1: Signatures of Rationing and Gaming Bray

ordering inventory when the DC inventory is above the first decile and a 12.8% probability
of ordering inventory when the DC inventory is below the first decile (an increase of (12.8%
- 9.6%)/9.6% = 31%). This phenomenon is broad: 60 out of the 61 stores that have at least
10,000 observations in our sample order more frequently when the DC inventory is in its
lowest decile.

Exercise 4.72. We will now create plots analogous to those presented in figure 4.1. Our graphs will
be a bit different, however, as our sample was a bit different (e.g., it comprises only three product
categories).

e« Remove from master_panel the observations in which Inv is NA.

e Use ntile() to create a variable called Inv_percent that specifies the percentile value of Inv, .by
item. This variable should take integer values from 1 to 100, dividing each item’s data into 100
parts of roughly equal size. Higher values of Inv_percent should correspond to higher values of
Inv.

— Inv should have an average value of 10 units in the subsample with item = 10210 and
Inv_percent = 17.

e Define logical variable order_positive that is TRUE if order > @, FALSE if order = 0, and NA if
order is NA.

e Use summarise() and across() to redefine order, ship, order_positive, and order_observed to
be the sum of their respective values, .by (category, Inv_percent) pairs.

— Use the na.rm = TRUE option of sum().
— For category = "Drinks" and Inv_percent = 19, you should get order = 52758 and or-
der_observed = 23685.
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e Define Rationing = ship / order as the ratio of inventory delivered to inventory requested.

e Define Gaming = order_positive / order_observed as the ratio of the number of days for which
the order quantity is observed and positive to the number of days for which the order quantity
is observed.

e Remove all variables besides category, Inv_percent, Rationing, and Gaming.

e pivot_longer() the tibble into one with column names category, Inv_percent, value, and name,
where the last variable is a text string that equals either "Rationing" or "Gaming".

e ggplot() the data in the fashion of Bray et al. [2019Db].

The plot you created illustrates two effects. The top panel demonstrates that the supplier is less likely
to fulfill store orders when its inventory is low—and thus that stores have an incentive to track the
supplier’s inventory level. And the bottom panel demonstrates that stores respond by placing more
orders when it seems that the supplier may stock out—i.e., that they engage in inventory runs (albeit
modest ones).

4.4.7 Reflect

Exercise 4.73. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

4.5 Lab: Disintermediation in Gig Economy

4.5.1 Introduction

Gig economy platforms, such as Uber or Airbnb, are middlemen, that link customers with service
providers. And since there’s always an incentive to cut out a middleman, customers and service
providers are often inclined to transact offline, to avoid giving the platform its cut. Astashkina et al.
[2023] study the prevalence of such platform disintermediation in a European company that sells itself
as the “Uber of home cleaning.” They use the company’s data, which reports the geographic distance
between the cleaners and the residences they were assigned to clean—both while the cleaners are
working and when they are not. You see, the platform’s app records each cleaner’s whereabouts at
roughly 30-minute intervals, whenever it is running on the cleaner’s phone. And the cleaners tend to
leave the app open for long periods, which allows the company to deduce whether any of the cleaners
returned to any of the residences they were previously assigned to for some off-the-books cleanings
(assuming that the cleaner wouldn’t have the foresight to exit out of the app before performing the
disintermediated cleaning).

Astashkina et al. [2023] gauged the scale of disintermediation in this market by plotting the distribu-
tion of the shortest recorded distance between a given cleaner and a given residence on a given day,
across four subsamples of data: wWorking, Non_Working, Observed, and Unobserved. Figure 4.2 recreates
Astashkina et al’s exhibit, except with the Unobserved distribution removed, so as not to give away the
answer. The Working subsample comprises the (cleaner, residence, date) triples that correspond to an
official, app-sanctioned cleaning. In this case, the distance values are short, as the cleaner is usually
geotagged in the vicinity of the apartment, as they clean it. The Non_Working subsample comprises the
(cleaner, residence, date) triples that do not correspond to an official cleaning, but that lie between two
official cleanings. For example, if cleaner A cleans residence X on 2017-02-02, 2017-02-08, and 2017-
02-012, then the working subsample would have cleaner A, residence X observations with dates 2/2,
2/8, and 2/12, and the Non_working subsample would have cleaner A, residence X observations with
dates 2/3, 2/4, 2/5, 2/6, 2/7, 2/9, 2/10, and 2/11. The idea is that a cleaner and customer wouldn’t
transact on the app after disintermediating off of it, so the official cleaning on 2017-02-012 implies that
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cleaner A did not do any unofficial cleanings at residence X before 2017-02-013, which implies that this
cleaner did not do any cleanings at this residence—official or otherwise—on the Non_Working dates. As
expected, the distance values are longer in the Non_Working subsample, as the cleaners have no reason
to be near these residences in this case. (The authors attribute the sharp dip near zero to the fact
that “cleaners do not visit affluent residential areas when they’re not working, and because the area
of land that’s approximately r km from an apartment decreases with radius r”.) Finally, the observed
subsample comprises the observations that constitute the working and Non_Working subsamples, and
the Unobserved subsample comprises the observations that come after the given cleaner’s last official
job at the given residence. For example, the Observed subsample would have cleaner A, residence X
observations with dates between 2017-02-02 and 2017-02-12, and the Unobserved subsample would have
cleaner A, residence X observations with dates between 2017-02-13 and 2017-08-1 (which is the end of
our sample). In other words, the Observed subsample consists of the (cleaner, residence, date) triples
for which we know whether or not a cleaning took place (e.g., there couldn’t have been a disintermedi-
ated cleaning on 2/9, because the official relationship didn’t end until 2/12), whereas the Unobserved
subsample consists of the (cleaner, residence, date) triples for which we don’t know whether a cleaning
took place (e.g., there could have been disintermediated cleaning on 2/20, since the official relationship
was over by then).
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Figure 4.2: Distribution of Distance Between Cleaner and Residence

Exercise 4.74. How could we gauge the level of disintermediation from the distribution between the
cleaner and residence found in the Unobserved subsample? What would this distribution look like if all
contracts disintermediated, so that the cleanings continued as before in the post period? What would
this distribution look like if none of the contracts disintermediated? What would the distribution look
like if X% of contracts disintermediated?

Exercise 4.75. What level of disintermediation do you expect to find in this market? In turn, what
do you expect the Unobserved distribution to look like?
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4.5.2 Data

Astashkina et al. [2023] start with two raw tables of data: Jobs and Distances. The former has many
columns that describe the nature of each cleaning assignment in detail. However the authors use only
three variables from this table: “the cleaner IDs, the residence IDs, and the time of the cleanings—i.e.,
who worked where when.” The latter table reports the geographic distances between the cleaners and
the apartments:

The Distances table reports the geographic distances between each cleaner and the dwellings
they clean, roughly every half hour the app is open on their phone, between 2015-09-07 and
2016-06-23. More specifically, the table comprises a collection of snapshots that capture at
a particular time the distance between a given cleaner and all the dwellings they have ever
cleaned or will ever clean. For example, a representative distance snapshot indicates that at
04:30:03 on 2016-04-02, cleaner 14592 was 0.106, 2.05, 2.17, 5.30, 6.07, 6.68, 6.82, 11.9, 14.2,
14.6, 18.0, and 25.0 km from residences 39215, 40124, 10986, 6080, 35402, 22177, 24612,
13027, 31629, 32096, 15966, and 43196, which is all the units this cleaner is associated
with. We have 4,323,897 such distance snapshots, across 76,112 cleaner—date pairs, so that
a cleaner’s distance profile is recorded 4,323,897/76,112 = 57 times a day, on average.

The authors then transform Distances into a table called Shortest_Distances

which comprises a collection of (cleaner, residence, date, shortest_distance) quadruples,
the last variable of which specifies how close the given cleaner got to the given dwelling
on the given day, when they were at their nearest. Case in point: Distances has distance
= 77.0, 77.2, 77.0, 76.9, 76.8, 77.0, 77.0, 76.9, and 15.9 km at time = 01:36, 01:37, 05:29,
05:31, 05:48, 08:53, 08:54, 09:10, and 15:58 for (cleaner, residence, date) = (11452, 22177,
2016-04-21), and thus Shortest_Distances has shortest_distance = min(77.0, 77.2, 77.0,
76.9, 76.8, 77.0, 77.0, 76.9, 15.9) = 15.9 km for (cleaner, residence, date) = (11452, 22177,
2016-04-21).

Since the Distances table is too large to conveniently share, we will instead start with Short-
est_Distances and Jobs, which you downloaded in section 1.3, exercise 1.41. The Shortest_Distances
tibble has four self-explanatory variables: the address_id, the cleaner_id, the date, and short-
est_distance, which denotes the shortest recorded distance between the cleaner and the residence for
the day. The Jobs table has the cleaner_id, the address_id, time_clean, which specifies when each
cleaning took place, and a bunch of other variables that we will not need.

4.5.3 Analyze

Figure 4.2 depicts the distribution of coarsened_shortest_distance, which Astashkina et al. [2023]
defined as the value of shortest_distance rounded up to the nearest multiple of 25 and then truncated
at 5,000 meters. Bucketing the distances in this fashion makes them easier to plot, because we can
simply graph the fraction of observations in each bucket (like a histogram).

Exercise 4.76. Add coarsened_shortest_distance, as Astashkina et al. [2023] define it, to Short-
est_Distances.

Exercise 4.77. Use Jobs to add a logical column to Shortest_Distances called cleaning that specifies
whether there was a cleaning that day. For example, the observation with address_id = "290d4791",
cleaner_id = 4131, and date = ymd("2015-16-22") should have cleaning = TRUE, and the observation
with address_id = "290d4791", cleaner_id = 4131, and date = ymd("2015-10-23") should have cleaning
= FALSE.

e Use replace_na(list(cleaning = FALSE)).
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Astashkina et al. [2023] derived from Shortest_Distances a tibble called Shortest_Distances_Filtered,
as they explain:

Next, we define a (cleaner, residence) pair’s active period as the days between 69 days before
its first cleaning and its last cleaning, and we define this pair’s post period as the days after
its last cleaning and before the end of the Jobs sample. For example, cleaner 71747 first
cleaned residence 71043 on 2016-12-11 and last cleaned it on 2017-03-18, so this (cleaner,
residence) pair’s active period spans from 2016-12-11 - 69 days = 2016-10-03 to 2017-03-18,
and its post period spans from 2017-03-19 to 2017-08-10 (which is the last date in the Jobs
sample). We then limit our Shortest_Distances sample to the (cleaner, residence) pairs
whose post periods last at least 90 days—i.e., whose final cleanings occurred at least 90
before the end of the Jobs sample. This filter limits the sample to the working relationships
that most likely ended on our watch, as only 7.5% of inter-cleaning times exceed 90 days.
We call the resulting panel Shortest_Distances_Filtered.

Exercise 4.78. Create tibble Shortest_Distances_Filtered in the fashion of Astashkina et al. (2023).
This tibble should contain only the (cleaner, residence) pairs with sufficiently long post periods, and
should contain only the dates in the active and post periods.

Define end_of_jobs_sample as the date() of the last time_clean in Jobs.

filter() Shortest_Distances down to the observations with a cleaning and calculate the cor-
responding first_cleaning = min(date) and last_cleaning = max(date), for each (address_id,
cleaner_‘id) pair.

Join these statistics back into Shortest_Distances.

filter() the resulting observations to ensure that the date lies after 69 days before the
first_cleaning, and the last_cleaning lies at least 90 days before the end_of_jobs_sample.
Define a logical called active_period which specifies whether a given observation corresponds to
the active period or the post period (we’ll use this variable in the next exercise).

<- your result into Shortest_Distances_Filtered.

Astashkina et al. [2023] derived four tibbles from Shortest_Distances_Filtered:

Finally, we construct four samples from Shortest_Distances_Filtered and Jobs:

o the Unobserved sample comprises the Shortest_Distances_Filtered (cleaner, residence,
date, shortest_distance) quadruples that correspond to the (cleaner, residence) pair’s
post period,

o the Observed sample comprises the Shortest_Distances_Filtered (cleaner, residence,
date, shortest distance) quadruples that correspond to the (cleaner, residence) pair’s
active period,

e the Working sample comprises the Observed observations that have a corresponding
Jobs work order, and

e the Non_Working sample comprises the Observed observations that do not have a corre-
sponding Jobs work order.

Exercise 4.79. Derive tibbles Unobserved, Observed, Working, and Non_Working from Short-
est_Distances_Filtered, in the fashion of Astashkina et al. (2023). All four tibbles should have
columns address_id, cleaner_id, date, and coarsened_shortest_distance.

Exercise 4.80. Unfortunately, it is quite inconvenient to have our data scattered across four different
tibbles. So bind_rows() of Unobserved, Observed, Working, and Non_Working into a long tibble called
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four_samples, which has columns address_id, cleaner_id, date, coarsened_shortest_distances, and
sample, the last of which takes values "Unobserved", "Observed", "Working", and "Non_Working".

Exercise 4.81. Use four_samples to create a version of figure 4.2 that also includes the Unobserved
distribution.

e Set frac to the fraction of each coarsened_shortest_distance, by sample. For example, the
row with sample = "Non_Working" and coarsened_shortest_distance = 25 should have frac =
0.0003785.

e Not all sample values correspond with all coarsened_shortest_distance values, so you’ll probably
have some nﬁsshug(sample,coarsened_shortest_distance) pairs. Use complete(sample, coars-
ened_shortest_distance, fill = list(frac = 107-4)) to fill in these missing data. This step
sets the frac value to a very small number if there were zero obserations with the particular
sample and coarsened_shortest_distance. We do not set frac = 0, because you’ll be using a
scale_y_loglo(labels = scales::comma) axis scaling.

e Save your plot as dist_plot.

Exercise 4.82. According to your plot, how pressing is the problem of disintermediation for this
home-cleaning platform?

4.5.4 Explore

Exercise 4.83. What would the figure you created look like if 1% of the Unobserved observations
had a disintermediated cleaning? To determine this, slice_sample(replace = TRUE) the rows of the
Working and Non_Working tibbles to simulate a hypothetical Non_Working tibble, which is 99 parts
Non_Working to one part Working. Your simulated Unobserved tibble should have the same number of
observations as the actual Unobserved tibble, except all its observations should origionate from the
Working and Non_Working samples. Accordingly, whereas we don’t know how many observations in
the true Unobserved sample correspond to a cleaning, we know that exactly 1% of observations in the
hypothetical Unobserved sample correspond to a cleaning. Recreate dist_plot with this hypothetical
Unobserved sample. Compare this plot to the plot you made in the previous exercise to gauge how
likely it is that at least 1% of the true Unobserved observations have a disintermediated cleaning.

4.5.5 Reflect

Exercise 4.84. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

4.6 Commentary

4.6.1 Lengthen to Avoid Multi-Column Operations

It’s generally easier to work with a tibble that has fewer columns than more columns. So before using a
multi-column operation, ask yourself: Can I pivot_longer() the tibble to stack all these variables into
single column? The answer is usually yes. For example, we could have avoided much of the complexity
of this section by first_200_moves in “long mode,” like this:

long_200 <-

first_200_moves %>%

pivot_longer (
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-game,

names_to = "move_number",

names_pattern = "move_(.+)",

names_transform = list(move_number = as.integer),
values_drop_na = TRUE

long_200 %>% head

> # A tibble: 6 x 3

> game move_number value
> <chr> <int> <chr>
> 1 11NXvwaE 1 d4

> 2 1T1NXvwaE 2 Ncé6

> 3 1T1NXvwaE 3 e4

> 4 T1NXvwaE 4 e5

> 5 T1NXvwaE 5 f4

> 6 11NXvwaE 6 fo6

This configuration is much more manageable. For example, this tibble has no NA values and it gives us
room to add move-specific variables, like so:

long_200 %>%

mutate(player = ifelse(move_number %% 2, "w", "b"))

> # A tibble: 908,970 x 4

> game move_number value player
> <chr> <int> <chr> <chr>
> 1 T1INXvwaE 1 d4 w

> 2 1T1NXvwaE 2 Ncé6 b

> 3 T1NXvwaE 3 e4 w

> 4 T11NXvwaE 4 e5 b

> 5 1T1NXvwaE 5 f4 w

> 6 11NXvwaE 6 f6 b

> 7 1T1NXvwaE 7 dxe5 w

> 8 11NXvwaE 8 fxe5 b

> 9 11NXvwaE 9 fxe5 w

> 10 11NXvwaE 10 Nxe5 b

> # 1 908,960 more rows

Also, it’s often faster to operate in long mode. For example, the following compares two ways to
compute time_to_first_kill. The first uses pivot_longer() to consolidate all moves into a single
column, and the second uses c_across(), from section 4.6.5, to search across multiple columns.

library(tictoc)

#Case 1: stack data into single column
tic()
time_to_first_kill <-

first_200_moves %>%
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pivot_longer(

-game,
names_to = "move_number",
names_pattern = "move_(.+)",

names_transform = list(move_number = as.integer)
) %>%
filter (str_detect(value, "x")) %>%
group_by (game) %>%
summarise(first_kill_move = min(move_number))

toc() #stop timer

> 0.177 sec elapsed

#Case 2: use multi-column operation
tic() #start timer
time_to_first_kill <-
first_200_moves %>%
group_by (game) %>%
summar-ise (
first_kill_move =
c_across(starts_with("move'")) %>%
str_detect("x") %>%
which %>%
first
)
toc() #stop timer

> 5.691 sec elapsed

4.6.2 Watch Out For Duplicate Rows

Be vigilant about duplicate rows when joining tibbles. I warned you about this in the lab, but it bears
repeating. A row in one tibble will be copied if it matches multiple rows in the other tibble, and
this copying can lead to double counting. For example, if we replaced distinct(opening_name) with
select(opening_name) in our solution to exercise 4.41 then every row in chess_panel with opening_name
= "Rat Defense: Balogh Defense" will have three copies, because "wall-of-shields" played that opening
three times.

Row duplication from joins is one of the most common sources of programming mistakes. And unlike
most programming bugs, which lead to a compilation error or to flagrantly wrong results, the influence
of row duplication can be sublet enough to overlook—and hence subtle enough to bias your final results.
Or, in the other extreme, row duplication can be bad enough to crash your computer. For example, if
a million rows in the LHT matches a million rows in the RHT then your computer will try to create a
tibble with a trillion rows, which won’t end well.

4.6.3 Use Multiple Tibbles

Joins free us from the all-data-in-one tibble paradigm. And this is crucial, because it’s usually best to
split your data across multiple tibbles. Indeed, just as you usually wouldn’t cram all your data into a
single Excel worksheet, you usually shouldn’t cram all your data in a single R tibble.
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For example, consider our chess data: there’s no good way to store both the chess moves and match
details in a single tibble (unless we use a list column, which is an advanced tool we’ll discuss in chapter
5). The current solution of compressing each game’s moves into a long character string makes individual
moves inaccessible: e.g., try extracting the odd moves from "f4 e6 Kf2 Qf6 Kel Qxf4 h3 Bc5 c3 Qf2#".

Alternatively, we could store the match details in wide mode and the chess moves in long mode, like
this:”

chess_panel %>%
mutate(moves = str_split(moves, pattern = " ")) %>%
unnest (moves) %>%

relocate(moves)

> # A tibble: 909,432 x 14

> moves game rated turns victory_status winner increment_code white_id
> <chr> <chr> <lgl> <dbl> <chr> <chr> <chr> <chr>
> 1 d4 1T1NXvwaE TRUE 16 resign black 5+10 a-00
> 2 Ncé6 11NXvwaE TRUE 16 resign black 5+10 a-00
> 3 e4 1T1NXvwaE TRUE 16 resign black 5+10 a-00
> 4 e5 1T1NXvwaE TRUE 16 resign black 5+10 a-00
> 5 f4 1T1NXvwaE TRUE 16 resign black 5+10 a-00
> 6 f6 1T1NXvwaE TRUE 16 resign black 5+10 a-00
> 7 dxe5 T11NXvwaE TRUE 16 resign black 5+10 a-00
> 8 fxe5 11NXvwaE TRUE 16 resign black 5+10 a-00
> 9 fxe5 T11NXvwaE TRUE 16 resign black 5+10 a-00
> 10 Nxe5 11NXvwaE TRUE 16 resign black 5+10 a-00

> # i 909,422 more rows
> # 1 6 more variables: white_rating <dbl>, black_id <chr>, black_rating <dbl>,
> #  opening_eco <chr>, opening_name <chr>, opening_ply <dbl>

But this solution would add a lot of redundancy, repeating the non-moves values for each value of moves.
For example, the opening_name value of the average game is copied 63.5 times in the tibble above. The
third option is to give each move its own column, as we did for first_200_moves. But since the games
comprise a different number of moves, this approach would lead to a “ragged right edge” that would
introduce over four million NA terms. For example, the move_200 column of first_200_moves is 99.8%
NA. Further, this approach would make the dimensions of the tibble highly sensitive to outliers. For
example, the longest match has 349 moves, whereas the second-longest match has only 259 moves; thus
this method would introduce 90 columns, move_260-move_349, just to accommodate a single game.

Without resorting to an advanced list column, the best solution is to store the moves in one tibble and
the other match details in another:

chess_moves <-
chess_panel %>%
select(game, moves) %>%
mutate(moves = str_split(moves, pattern = " ")) %>%
unnest (moves) %>%

rowid_to_column(var = "move_num'"

chess_moves

"This unnest() solution exploits the power of lists, which we will cover in the next chapter.
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# A tibble: 909,432 x 3

move_num game moves

<int> <chr> <chr>

1T1NXvwaE d4
T1NXvwaE Nc6
T1NXvwaE e4
T1NXvwaE e5
1T1NXvwak f4
T1NXvwaE f6
T1NXvwaE dxe5
T1NXvwaE fxe5
1T1NXvwaE fxe5
10 10 11INXvwaE Nxe5
> # 1 909,422 more rows
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match_details <-
chess_panel %>%

select(-moves)

match_details

> # A tibble: 14,322 x 13

> game rated turns victory_status winner +dincrement_code white_id white_rating
> <chr> <1gl> <dbl> <chr> <chr> <chr> <chr> <db1>
> 1 1T1INXv~ TRUE 16 resign black 5+10 a-00 1322
> 2 mIICv~ TRUE 61 mate white 5+10 ischia 1496
> 3 kWKvr~ TRUE 61 mate white 20+0 daniamu~ 1439
> 4 9tXol~ TRUE 95 mate white 30+3 nik2211~ 1523
> 5 gqwU9r~ TRUE 33 resign white 10+0 capa_jr 1520
> 6 dwF3D~ TRUE 66 resign black 15+0 ehabfan~ 1439
> 7 afoMw~ TRUE 119 mate white 10+0 daniel_~ 1381
> 8 HgKLW~ FALSE 39 mate white 20+60 daniel_~ 1381
> 9 2fEjS~ FALSE 31 resign black 8+0 daniel_~ 1381
> 10 u7i6d~ FALSE 31 mate white 15+15 shivang~ 1094

> # i 14,312 more rows
> # i 5 more variables: black_id <chr>, black_rating <dbl>, opening_eco <chr>,
> # opening_name <chr>, opening_ply <dbl>

This solution has (i) easily accessible moves, (ii) no data redundancies, and (iii) no NA terms. And
since they share a common game variable, the tibbles can easily communicate with one another, via

inner_join().

This scheme also gives us a place to store move-level features. For example, we can add additional
columns detailing which player made the move and whether the move captured a piece:

chess_moves <-
chess_moves %>%
mutate(
player = difelse(move_num %% 2, "w'", "b"),
capture = str_detect(moves, '"x")
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chess_moves

> # A tibble: 909,432 x 5

> move_num game moves player capture
> <int> <chr> <chr> <chr> <lgl>
> 1 1 11NXvwaE d4 w FALSE
> 2 2 1T1NXvwaE Ncé6 b FALSE
> 3 3 1T1INXvwaE e4 w FALSE
> 4 4 1T1NXvwaE e5 b FALSE
> 5 5 1T1NXvwaE f4 w FALSE
> 6 6 L1NXvwaE f6 b FALSE
> 7 7 1T1INXvwaE dxe5 w TRUE
> 8 8 T11INXvwaE fxe5 b TRUE
> 9 9 11NXvwaE fxe5 w TRUE
> 10 10 11INXvwaE Nxe5 b TRUE

> # 1 909,422 more rows

In contrast, when we saved all the moves in one row, as we did in first_200_moves, there was nowhere
convenient to save these attributes. So we had to write ends_with(c("1", "3", "5", "7",  "g")) every
time we wanted to refer to white moves and write str_detect("x") every time we wanted to refer to
piece-capturing moves.

4.6.4 Reiterate Groupings

Our solution to exercise 4.36 includes a redundant group_by (opening_name) step inside the left_join().
This group_by () operation is superfluous because the prior group_by () groupings still apply (the tibble
represented by . inherits the opening_name groupings). But I include this extra grouping step to make
the nested query self-contained, which makes the code more robust to future modifications.

For example, suppose I later wanted to limit the sample to the increment_code values that correspond
to at least 250 games. As it stands, I could do so by adding group_by (increment_code) %>% filter (n()
> 250) just before the left_join(). But without the backup group_by(opening_name) step I would
instead need to add group_by(increment_code) %>% filter(n() > 250) %>% group_by(opening_name).
And it’d be easy to overlook the latter group_by() step because it’s not obvious that the code inside
the left_join() needs it. Hence, the dependence of the internal left_join() code on an external
group_by () operation represents a liability in the code base. Thus, it’s safer to give the nested query
its own group_by (opening_name) step, so that it is self-sufficient.

This principle applies more broadly: you should make separate sections of your code as independent
as possible, so that mucking around with one chuck of code doesn’t break another chunk. Hence, you
should reestablish your group_by() groupings liberally, to help decouple the different sections of your
code. Moreover, reasserting the grouping structure makes your code easier to read: e.g., the nested
group_by (opening_name) makes it clear that captured_mean and captured_sd vary with opening_name.

Finally, there’s an even larger lesson here: code is a “living document,” revised over many versions.
So, it’s not enough for your program to be correct—it should also be resilient, because you’ll probably
tinker with it in the future, after you’ve forgotten some key details.

4.6.5 Treating Rows as Vectors

We can use a multi-column summarise() to count the number of pieces captured in each turn:
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first_8_moves %>%
summar-ise (
across(
starts_with("move"),
~.X %>%
str_detect("x") %>%
sum(na.rm = TRUE)

)
)
> # A tibble: 1 x 8
> move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8
> <int> <int> <int>  <int> <int> <int> <int> <int>
> 1 0 0 465 989 1274 2340 2509 2455

Specifically, this code counts the number of moves that contain an "x", which flags a captured piece.

But suppose we want to sum across games rather than across moves. We can switch from vertical
aggregation to horizontal aggregation by replacing across() with c_across():®

first_8_moves %>%
rowwise %>%
summar-ise (
game,
num_captured =
c_across(starts_with("move")) %>%
str_detect("x") %>%
sum(na.rm = TRUE)

# A tibble: 14,322 x 2
game num_captured
<chr> <int>
T1INXvwaE

mIICvQHh

kWKvrqgYL

9tXolAUZ

qwU9rasv

dwF3DJHO

afoMwnlLg

HgKLWPsz

2fEjSei6

10 u7i6dOal

> # i 14,312 more rows
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>
>
>
>
>
>
>
>
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>
>
>
>
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This c_across() call vectorizes a row’s move_1-move_8 values. And this is new: while we’ve always
treated a tibble column as a vector, we’ve never before treated a tibble row (or select elements of a
row) as a vector.

8Note that across() and c_across() have different notation: we embed the assembly line within the former function
and attach an assembly line to the latter function.
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The rowwise() call tells R to treat each row as its own group_by() group. In general, c_across()
pools the relevant elements of the given group_by () group into a large vector. For example, removing
rowwise() yields the total number of pieces captured across all games:

first_8_moves %>%
summarise (
num_captured =
c_across(starts_with("move")) %>%
str_detect("x") %>%

sum(na.rm = TRUE)

> # A tibble: 1 x 1

> num_captured

> <int>

> 1 10032

In this case, c_across() stacks all move_1—move_8 values in first_8_moves into a long vector that gets
piped into str_detect(). In contrast, the following counts the number of captured pieces by opening
move:

first_8_moves %>%
group_by (move_1) %>%
summar-ise (
num_captured =
c_across(starts_with("move")) %>%
str_detect("x") %>%

sum(na.rm = TRUE)

)
> # A tibble: 20 x 2
> move_1 num_captured
> <chr> <int>
> 1 Na3 3
> 2 Nc3 37
> 3 Nf3 201
> 4 Nh3
> 5 a3
> 6 a4 7
> 7 b3 30
> 8 b4 39
> 9 c3 22
> 10 c4 293
> 11 d3 35
> 12 d4 1573
> 13 e3 106
> 14 e4 7574
> 15 f3 6
> 16 f4 32
> 17 g3 28
> 18 g4 23
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> 19 h3 5
> 20 h4

For example, there are 62 matches with move_1 = "b4"  so c_across() outputs a vector of length
8- 62 = 496 for this group.

Exercise 4.85. Modify the following code to create a tibble that reports the number of times that
White checked the black king and Black checked the white king (recall that checking moves are those
that contain "\\+"):

first_200_moves %>%
rowwise %>%
summar-ise (
game,
white_checked_black =
c_across(ends_with(c("1", "3'", "5" "7N 0 N9UYY) %>%
#
#
#
black_checked_white =
c_across(ends_with(c("0", "2'", "4" U"g"  "8"))) %>%
#
#
#
) %>%

ungroup

Exercise 4.86. Pawn moves are those that do not begin with "rR", "N", "B", "Q", "K", or "0". We will
now count the number of white and black pawn moves in each game.

e Remove from first_200_moves the games for which move_200 is not NA.

— We can’t determine the number of pawn moves in these games because they didn’t finish in
the 200-move window.

e Split the resulting tibble with rowwise(game) and then summarise() it as follows:

— Write white_pawn_moves = c_across(ends_with(c("1", "3", "s" o uw7zn o nwgmyy)y %% and
attach to this a functional assembly line that counts the number of elements in the input
vector that starts with a character other than "r", "N", "B", "Q", "K", or "0". Use the regular
expression "A[RNBQKO]", which refers to a character string that starts with "r", "N", "B", "Q",
"K' or "O".

— Analogously define black_pawn_moves.

e (all the resulting tibble pawn_moves.

We can analogously use c_across() with mutate(). For example, the following adds a column to our
tibble that specifies the number of bishop moves made by White:

first_8_moves %>%

rowwise %>%

mutate(
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B_count =
c_across(ends_with(c("1", "3'", "5" "7N 1MUY %>%
str_detect(""B") %>%

sum(na.rm = TRUE)

> # A tibble: 14,322 x 10
> # Rowwise:

> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8 B_count
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
> 1 11NXvwaE d4 Nc6 e4 e5 f4 f6 dxe5 fxe5 0
> 2 mIICvQHh e4 e5 d3 de Be3 c6 Be2 b5 2
> 3 kWKvrqYL d4 d5 Nf3 Bf5 Nc3 Nf6 Bf4 Ng4 1
> 4 9tXolAUZ e4 e5 Nf3 de d4 Nc6 ds5 Nb4 (0]
> 5 gwU9rasv d4 d5 e4 dxe4 Nc3 Nf6 3 exf3 0
> 6 dwF3DJHO e4 e5 Bc4 Nc6 Nf3 Nd4 d3 Nxf3+ 1
> 7 afoMwnlLg e4 ds exd5 Qxd5 Nc3 Qe5+ Be2 Na6 1
> 8 HgKLWPsz e3 e6 d4 de Bd3 c6 Nf3 Be7 1
> 9 2fEjSei6 e4 e6 Qh5 g6 Qe5 Nf6 d4 de (0]
> 10 u7i6d0al e4 e5 Nf3 Nc6 Bc4 Nf6 Nc3 Bc5 1

> # i 14,312 more rows

In the code above, "2B" is shorthand for “character string that begins with B”, which indicates a
bishop move. And, again, the rowwise() function divides the tibble so each row row comprises its own
group_by () group. Accordingly, this code compresses each row’s move_1, move_3, move_5, and move_7
values into a vector that gets piped through str_detect(""B") %>% sum(na.rm = TRUE). The outputs
then get saved as B_count.

We can replace rowwise() with group_by(move_1) to apply the functional assembly line once for each
opening move, rather than once for each game:

first_8_moves %>%
group_by(move_1) %>%
mutate(
B_count =
c_across(starts_with("move")) %>%
str_detect(""B") %>%

sum(na.rm = TRUE)

> # A tibble: 14,322 x 10
> # Groups: move_1 [20]

> game move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8 B_count
> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
> 1 11NXvwaE d4 Nc6 e4 e5 f4 f6 dxe5 fxe5 3400
> 2 mIICvQHh e4 e5 d3 dé6 Be3 c6 Be2 b5 8730
> 3 kWKvrqgYL d4 d5 Nf3 Bf5 Nc3 Nf6 Bf4 Ng4 3400
> 4 9tXolAUZ e4 e5 Nf3 dé d4 Nc6 ds Nb4 8730
> 5 gwU9rasv d4 ds e4 dxe4 Nc3 Nf6 f3 exf3 3400
> 6 dwF3DJHO e4 e5 Bc4 Nc6 Nf3 Nd4 d3 Nxf3+ 8730
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> 7 afoMwnlLg e4 ds exd5 Qxd5 Nc3 Qe5+ Be2 Na6 8730

> 8 HgKLWPsz e3 e6 d4 de Bd3 c6 Nf3 Be7 276

> 9 2fEjSei6 e4 eb Qh5 g6 Qe5 Nf6 d4 de 8730

> 10 u7i6d0al e4 e5 Nf3 Nc6 Bc4 Nf6 Nc3 Bc5 8730

> # 1 14,312 more rows

In this case all games with move_1 = "e4" have B_count = 8730, which is the number of bishop moves

across all games with this opening move.

Exercise 4.87. Define the “center of gravity” of a first_8_moves game as the average row number
listed in move_1-move_8. Using str_extract("[1-8]") to get the move row numbers, create a tibble
called center_of_gravity that equals first_8_moves with an extra center of gravity column, called
c_of_g. The top of your tibble should look like this:

center_of_gravity %>%

>
>
>

vV V V V V V V V V V VvV

head (10)

# A tibble:
# Rowwise:
game
<chr>
T1NXvwaE
mIICvQHh
kWKvrqYL
9tXo1lAUZ
qwU9rasv
dwF3DJHO
afoMwnlLg
HgKLWPsz
2fEjSei6
u7i6dOal

O 0o N O 00 b W N -

=
(o]

10 x 10

move_1 move_2 move_3 move_4

<chr>
d4
e4
d4
e4
d4
e4
e4
e3
e4
e4

<chr>
Nc6
e5
d5
e5
d5
e5
d5
e6
e6
e5

<chr> <chr>

e4 e5
d3 dé6
Nf3 Bf5
Nf3 de
e4 dxe4
Bc4 Nc6
exd5 Qxd5
d4 dé
Qh5 g6
Nf3 Nc6

move_5 move_6

<chr>
f4
Be3
Nc3
d4
Nc3
Nf3
Nc3
Bd3
Qe5
Bc4

<chr>
f6
c6
Nf6
Nc6
Nf6
Nd4
Qe5+
c6
Nf6
Nf6

move_7 move_8 c_of_g
<db1>

<chr>
dxe5
Be2
Bf4
ds5
f3
d3
Be2
Nf3
d4
Nc3

<chr>
fxeb
b5
Ng4
Nb4
exf3
Nxf3+
Na6
Be7
de
Bc5

4.
.25
.25
.62

We can also use c_across() to create general multi-column filter() operations.
in section 4.2.3 that if_all() enables us to keep a game if all of its first four
knights. But suppose we wanted to filter () the games down to those with at least three knight moves
in the first four turns. We couldn’t do this with if_all(), but we could do so with c_across():

first_8_moves

>
>
>

%>%

group_by (game) %>%

filter(

c_across(move_l:move_4) %>%

str_detect("AN'") %>%

sum %>%

{. >= 3}

# A tibble:
# Groups:
game

74 x 9
game [7

move_1 move_2 move_3 move_4 move_5 move_6 move_7 move_8

4]
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.38
.75
.25

For example, we saw
moves were made by



> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
> 1 VVMmBXVj d4 Nf6 Nf3 Nc6 Bf4 de e3 e5

> 2 leveeyFX f4 Nc6 Nf3 Nf6 b3 g6 Bb2 Bg7
> 3 rOIxos8q e4 Nc6 Nf3 Nf6 Nc3 de Bb5 Bd7
> 4 -ipabyOYy Nc3 e5 N3 Nc6 d4 de ds Nd4
> 5 auHFTCkl Nf3 e6 Nc3 Nf6 d4 Bb4 e4 Nxe4
> 6 ktbttJF8 Nf3 Nf6 g3 Nc6 Bg2 d5 0-0 e5

> 7 asHLw3nz Nf3 ds5 Nc3 Nf6 Nxd5 Nxd5 d4 Nc6
> 8 bgshRM97 e4 Nc6 Nc3 Nf6 d4 e5 ds5 Nd4
> 9 rtJouIxZ Nf3 Nf6 Nc3 g6 e4 dé Bc4 Bg7
> 10 hGksQi60 Nf3 ds Nc3 Nf6 d4 e6 e4 c5

> # i 64 more rows

For another example, the following picks the games in which Black moved its queen in more than half
of its moves:

first_200_moves %>%
rowwise %>%
filter(
c_across(ends_with(c("0", "2'", "4" "g"  "8"))) 9%>%

str_detect(""Q") %>%
mean(na.rm = TRUE) %>%
{. > .5}

) %>%

select(game) %>%

head

# A tibble: 6 x 1
# Rowwise:

game

<chr>

y9jJdqti
eWSKkiIR
5fnwzmqt
bVPtH47G
ilLOVHTM
90BJIpgcO

vV V V V V V V V V V

o b~ W N R

Exercise 4.88. Select the games of first_200_moves in which a move was repeated within the first
dozen moves. For example, game = "g3NHAFFp" should be preserved because it has "0-0" in both move_9
and move_12 and game = "7rbdtPw0" should be preserved because it has "Nxe5" in both move_16 and

move_11.
e Use na.omit to remove the NA terms from the vector.
e c("a", "b", "c") %% {n_distinct(.) < length(.)} = FALSE and c("a", "b", "c", "a") %>%
{n_distinct(.) < length(.)} = TRUE

So far, we’ve applied all our multi-column filters rowwise(). But we can also apply them at the group
level. For example, if we define an “opening line” as a game’s first six moves then the following restricts
the sample to the opening lines whose corresponding games have no castling moves (i.e., moves that
contain the substring "0-0"):
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first_200_moves %>%
group_by (across(move_l:move_6)) %>%
filter(
c_across(everything()) %>%
str_detect("0-0", negate=TRUE) %>%
all(na.rm=TRUE)

In this case, the c_across(everything()) term compresses every variable of every game with a given
opening line into one long vector, which gets piped into str_detect().

4.7 Solutions

4.1
gradebook %>%
select(
"SIS User ID',

contains("Quiz"),

-contains(c("Test Quiz", "Quizzes"))

4.2
gradebook %>% select(where(~.x %>% is.na %>% | %>% any))
4.3

chess_panel %>%
select(where(is.numeric))

4.4
first_200_moves %>%
select(
move_20:move_60 &
ends_w-ith(c(lloll’ ll2!l’ ||4ll, ||6l|, HSII))
4.5
first_8_moves %>% select(-game)
first_8_moves %>% select(starts_with("move'))

first_8_moves %>% select(contains('"move"))

first_8_moves %>% select(move_l:move_8)
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4.6

gradebook %>%
summar-ise (
across(
contains("Lab Peer Evaluations"),
mean
)’
.by = Section

4.7

chess_panel %>%
summar-ise (
across(
contains("_"),
last

4.8

chess_panel %>%
mutate(
across(
where(is.numeric),
as.roman

4.9

first_200_moves %>%
mutate (
across(
-game,
~.X %>%
str_replace("#", "_checkmate"
str_replace("\\+", "_check")

4.10

%>%
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chess_panel <-
chess_panel %>%
mutate (
across (
where(is.numeric) &
where(~ all(.x == as.integer(.x), na.rm = TRUE)),
as.integer

4.11

chess_panel <-
chess_panel %>%
mutate (
across(
where(is.character) &
where (
~.X %>%
n_distinct %>%
{. <= 12}
)5

as.factor

4.12

first_200_moves %>%
mutate (
across (
ends_with(c("1", "3", "5", "7, ngnyy,
~.X %>%
str_replace(
pattern = "0-0-0",
replacement = "Kcl"
) 9%>%
str_replace(
pattern = "0-0",
replacement = "Kgl"

)

across(
ends_with(c("0", "2", "4", "g", "g")),
~.X %>%
str_replace(
pattern = "0-0-0",
replacement = "Kc8"

%>%
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str_replace(
pattern = "0-0",

replacement = "Kg8"

4.13
gradebook %>% filter (if_any(contains("Peer Evaluation"),

4.14

chess_panel %>%
filter(
if_all(
where(is.character),
~.X %>% dis.na %>% !

4.15

first_200_moves %>%
filter(
if_any(
ends_with(c("1", "3'", "5 on7mw_ongnyy
~.X %>% str_detect(""0")

4.16

first_200_moves %>%
filter(
if_any (
ends_with(c("0", "2",  "4m vt ngnyy
~ str_detect(.x, "N.+#")

4.17

first_200_moves %>%
filter(
if_all(
ends_with(c("1", "3", "s5", "7" M"gN)),
~ str_detect(.x, ""B'", negate=TRUE)
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Do

if_all(
endS_W'ith(C(”O”, I|2|l’ ||4II’ ||6l|’ ||8l|)),
~ str_detect(.x, ""R", negate=TRUE)

4.18-4.22

first_200_moves %>%
select(
where (
~.X %>%
is.na %>%
T1%>%
sum %>%
{. >= 200}
)
) %>%
summarise (
across (
-game,
~.X %>%
str_detect("=") %>%
mean(na.rm = TRUE)
)
) %>%
pivot_longer(
cols = everything(),
names_to = "move_num",
names_pattern = "move_(.+)",
names_transform = list(move_num = as.integer),
values_to = "frac"
) %>%
mutate(player = ifelse(move_num %% 2, "White'", "Black")) %>%
ggplot +
aes (
color = player,
X = move_num,
y = frac
) +
geom_point() +
geom_smooth(se = FALSE, span = 0.25) +

labs/(
x = "Move Number",
y = "Pawn Promotion Fraction"
) +
theme_minimal() +
theme (
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legend.position = "top",
legend.title = element_blank()

4.23

superbowl_ads %>%
mutate (
across(
ends_with("url"),

remove_https

4.24

superbowl_ads %>%
summarise (
across(
where(is.logical),
mean

4.25

superbowl_ads %>%
filter(
if_all(
where(is.logical),
Shs

4.26

superbowl_ads %>%
filter(
if_all(
where(is.logical),
I

4.27
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superbowl_ads_long <-
superbowl_ads %>%
pivot_longer (where(is.logical))

4.28

superbowl_ads_wide %>%
summar-ise (
across(
where(is.integer),
sum

)

.by = name

4.29

chess_panel %>%
inner_join(first_8_moves)

4.30

chess_panel %>%
inner_join(
first_200_moves %>%
select(game, ends_with(c("1", "3", "5" "7"_  "9l)))

4.31

chess_panel %>%
inner_join(
time_to_first_kill %>%
mutate (
kill_bucket =
first_kill_move %>%
ntile(4) %>%
as.factor
)
) %>%
ggplot +
aes(x = turns, color = kill_bucket) +
geom_density() +
theme_minimal()

4.32
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first_8_moves %>%
inner_join(chess_panel %>% select(game, opening_eco)) %>%
summar-ise (
number_of_first_8_moves = n_distinct(across(move_l:move_8)),

.by = opening_eco

4.33

first_8_moves %>%
inner_join(
chess_panel %>%
filter (increment_code == "30+3") %>%

select(game)

4.34

chess_panel %>%
inner_join(time_to_first_kill) %>%
ggplot() +
aes(x = first_kill_move, y = ..prop..) +
geom_bar () +
facet_wrap(vars(victory_status))

4.35

chess_panel %>%
left_join(
summarise (
L)
player = c(white_id, black_id),
opponent = c(black_id, white_-id)
) %>%
summarise (
white_opponent_count = n_distinct(opponent),
.by = player
)
by = c("white_id" = "player")

4.36

chess_panel %>%
filter(
n() > 30,
.by = opening_name

%>%
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mutate(captured = str_count(moves, '"x")) %>%
left_join(
filter(
L]
row_number (captured) > 3,
row_number (-captured) > 3,
.by = opening_name
) %>%
summarise (
captured_mean = mean(captured),
captured_sd = sd(captured),
.by = opening_name
)
) %>%
mutate(captured_z = (captured-captured_mean)/captured_sd) %>%

ggplot() +
aes (
X = turns,

y = captured_z

) +
geom_point(size=.1) +
theme_bw ()

4.37

chess_panel %>%
left_join(
chess_panel %>%
filter (white_id == "divanbus" | black_id == "divanbus") %>%
summarise (
ivan_turns = median(turns),

.by = opening_eco

#or even better:
chess_panel %>%
left_join( #the . below references the piped-in tibble
filter (., white_id == "divanbus" | black_id == "divanbus'") %>%
summarise (
jvan_turns = median(turns),
.by = opening_eco

4.38

chess_panel %>%
inner_join(
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time_to_first_kill %>%
filter(first_kill_move == max(first_kill_move))
) %>%

pull(moves)

4.39

chess_panel %>%
anti_join(
add_count(., m_1 = word(moves, 1)) %>%
filter(n == min(n)) %>%

select(game)

4.40 Option 2 is correct. For example, consider game = "00OXPfTEt". It is played by white_id = "cdvh" and
black_id = "japcan". This game should not get removed because "japcan" is the second-highest-rated
black player that "cdvh" faced, after "capito2017", and "cdvh" is the second-highest-rated white player
that "japcan" faced, after "behrooz36tehran". However, Option 1 removes this game because "japcan"
is the highest-rated black player that "behrooz36tehran" faced, and so its first filter() removes the
"behrooz36tehran" vs. "japcan" match, which makes its second filter() think that "cdvh" is the
hardest white adversary that "japcan" faced. In contrast, the second filter () in Option 2 starts from
the original chess_panel tibble, which makes it aware of the "behrooz36tehran" vs. "japcan" match.

Note that the query nested inside the semi_join() ends in a select(). This operation doesn’t affect
the answer, but it does speed up the code. Without this step, both the LHT and RHT would contain
all 14 columns of chess_panel, from game to opening_ply. And dinner_join() would match on all of
them, ensuring that the left-hand game equaled the right-hand game, the left-hand rated equaled the
right-hand rated, the left-hand turns equaled the right-hand turns, etc. But we know that if the left-
hand game equals the right-hand game then all the other variables would likewise match up, since both
stem from the same chess_panel tibble. Thus, to avoid these needless comparisons, we use select()
to remove all but the game column of the RHT.

4.41

chess_panel %>%

inner_join(

filter(
*)
white_id == "wall-of-shields" |
black_1id == "wall-of-shields"

) %>%

distinct(opening_name)

4.43

game_player <-
chess_panel %>%
select(game, white_id, black_id) %>%
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pivot_longer(

-game,
names_to = NULL,
values_to = "player"
)
4.44

player_graph <-
game_player %>%
inner_join(
game_player,
by = "game",
suffix = c¢("_from", "_to")
) %>%

distinct(player_from, player_to)

4.45

player_graph_degree_2 <-
player_graph %>%
rename (player_intermediary = player_to) %>%
inner_join(
player_graph,
by = c("player_intermediary" = "player_from")
) %>%

distinct(player_from, player_to)

4.46

player_graph_degree_3 <-
player_graph_degree_2 %>%
rename (player_intermediary = player_to) %>%
inner_join(
player_graph,
by = c("player_intermediary" = "player_from")
) %>%
distinct(player_from, player_to)

4.47

increase_separation <-
. %>%
rename (player_intermediary = player_to) %>%
inner_join(
player_graph,

by = c("player_intermediary" = "player_from")
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) %>%
distinct(player_from, player_to)

4.48

player_graph %>%

filter(player_from == "wall-of-shields") %>% #degree 1

increase_separation %>% #degree 2

increase_separation %>% #degree 3

increase_separation %>% #degree 4

increase_separation %>% #degree 5

increase_separation #degree 6
4.49

player_graph %>%

filter(player.x == "wall-of-shields") %>% #degree 1
increase_separation %>% #degree 2
increase_separation %>% #degree 3
increase_separation %>% #degree 4
increase_separation %>% #degree 5

anti_join(

increase_separation(.),

4.85

first_200_moves %>%
rowwise %>%
summar-ise (
game,
white_checked_black =
c_across(ends_with(c("1", "3", "5" "7 NQUYY) %>%
str_detect("\\+") %>%
sum(na.rm = TRUE),
black_checked_white =
c_across(ends_with(c("0", "2'", "4" e, "8"))) %>%
str_detect("\\+") %>%
sum(na.rm = TRUE)

4.86

pawn_moves <-
first_200_moves %>%
filter(is.na(move_200)) %>%

rowwise(game) %>%
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summarise (
white_pawn_moves =
c_across(ends_with(c("1", "3'", "5" "7 ngnyY) %>%
str_detect(
"A[RNBQKO]",
negate=TRUE
) %>%
sum(na.rm = TRUE),
black_pawn_moves =
c_across(ends_with(c("0", "2'", "4" g "8"))) %>%
str_detect(
"A[RNBQKO]",
negate=TRUE
) %>%
sum(na.rm = TRUE)
%> %

ungroup

4.87

center_of_gravity <-
first_8_moves %>%
rowwise %>%
mutate (
c_of_g =
c_across(-game) %>%
str_extract("[1-8]") %>%
as.integer %>%
mean(na.rm = TRUE)

4.88

first_200_moves %>%
rowwise %>%
filter(
c_across(move_l:move_12) %>%
na.omit %>%
{n_distinct(.) < length(.)}
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Chapter 5

Lists and Linear Models

5.1 Introduction

My 80-year-old father stores all his computer files in the “desktop” folder of his computer. It’s an
absolute mess, as you can imagine. Of course, the proper way to store your computer files is with an
organizing hierarchy of folders and subfolders. Unfortunately, standard tibbles store information like
my dad, laying everything out flat on a two-dimensional surface. In this chapter, we’ll learn how to
give our tibbles a hierarchical “file structure,” with subtibbles stored inside of tibbles, like subfolders
stored inside of folders.

The key for storing tibbles inside of tibbles is the list. A list is a much more general version of a
vector. Vectors can store only numbers, logicals, character strings, Dates, and factors, but lists can
store anything, including entire tibbles. Heretofore, all our tibble columns have been vectors, but tibble
columns can also be lists. Thus, a tibble column can store a list of tibbles. In other words, we can
compress an entire table of data into a single tibble cell. Nesting tibbles in this fashion is a powerful
and elegant way to store data.

For example, we saw in section 4.6.3 that there’s no good way to store the moves data in chess_panel
without lists. Compressing the moves values into a long character string makes individual moves
inaccessible, giving each move its own column introduces a proliferation of NA terms, and giving each
move its own row requires us to repeat the other columns’ data an inordinate number of times. Lists
give us a tidy solution: save the moves as a list of vectors:

chess_panel_list <-
chess_panel %>%

mutate(moves = str_split(moves, " "))

chess_panel_list %>% head

> # A tibble: 6 x 14

> game rated moves turns victory_status winner increment_code white_-id
>  <chr> <lgl> <list> <dbl> <chr> <chr> <chr> <chr>

> 1 1T1INXvwaE TRUE <chr [16]> 16 resign black 5+10 a-00

> 2 mIICvQHh TRUE <chr [61]> 61 mate white 5+10 ischia

> 3 kWKvrqYL TRUE <chr [61]> 61 mate white 20+0 daniamur~
> 4 9tXolAUZ TRUE <chr [95]> 95 mate white 30+3 nik221107
> 5 gqwU9rasv TRUE <chr [33]> 33 resign white 10+0 capa_jr
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> 6 dwF3DJHO TRUE <chr [66]> 66 resign black 15+0 ehabfanri
> # 1 6 more variables: white_rating <dbl>, black_id <chr>, black_rating <dbl>,
> # opening_eco <chr>, opening_name <chr>, opening_ply <dbl>

chess_panel_list %>% pull(moves) %>% head(3)

(l1]1]
[l] lld4l| "NC6" l|e4|l l|e5|l |lf4l| |lf6|l lldxe5l| llfxesll |lfxe5|l "NXeS"
[11] Ile4l| IINCGII llQe5+|| "NXGS" Ilc4l| lle4+|l

>
>
>
>
> [[2]1]
> [1] "e4" "e5"  "d3"  "de"  "Be3" "c6" "Be2" "b5"  "Nd2" "a5"
> [11] "a4"  "c5"  "axb5" "Nc6" "bxc6" "Ra6" "Nc4" "a4"  "c3"  "a3"
> [21] "Nxa3" "Rxa3" "Rxa3" "c4"  "dxc4" "d5"  "cxd5" "Qxd5" "exd5" "Be6"
> [31] "Ra8+" "Ke7" "Bc5+" "Kf6" "Bxf8" "Kg6" "Bxg7" "Kxg7" "dxe6" "Khe"
> [41] "exf7" "Nf6" "Rxh8" "Nh5" "Bxh5" "Kg5" "Rxh7" "Kf5" "Qf3+" "Ke6"
> [51] "Bg4+" "Kd6" "Rh6+" "Kc5" "Qe3+" "Kb5" "c4+" "Kb4" "Qc3+" "Ka4"
> [61] "Bd1#"

>

>

>

>

>

>

>

>

>

[[3]]

[1] lld4l| ||d5ll lle3l| IIBfSII IINC3I| lle6ll lle4|| |lNg4ll l|e3|l
[10] "NC6” IIBezll lle7’| ||o_o|’ HO_O_O’I "Nb5" ’|Nb4|| "Rclll "Nxazll
[19] llRalll lle4|l llea7+ll lle8|l lle5l| lleczll IIBXC7+II |IKC8" llezll
[28] I’QCGH llNa7+|| HKd7ll "NXCG" "bXCG’l lled8" ’lKXdSH "Qxb4|’ ’lesll
[37] llQb8+ll llKe7|l "dXeS" llBe4|l llRa7+l| llKe6ll llQe8+ll |le5ll llef7+l|
[46] |le6l| lINh4+|| llKgsll ||g3ll llNg4l| lle4+|l I|Kh5l| "ng4+” llKh6||
[55] llQ-f:4+ll llgsll llQ-f:6+l| llBgGll "ng6" llBg?ll "ng7#"

In this case, moves is a collection of character string vectors. For example, the first element of moves
isn’t the character string "d4"; it’s the character string vector c("d4", "Ncé", "e4", "e5", "f4" 6 "fg",
l|dxe5l|’ |lfxe5|l, llfxe5l|’ |lee5|l, lle4|l, "NC6"’ llQe5+||, lleesll’ "C4"’ lle4+||)'

I’ll begin the lecture, in section 5.2.1, with a brief primer on lists. Then, in section 5.2.2 I’ll explain how
we can use lists to nest tibbles within tibbles (within tibbles within tibbles...). I'll cover two functions,
nest() and unnest(), which are like pivot_wider () and pivot_longer(), except rather than create and
destroy columns they create and destroy nested tibbles.

Sections 5.2.3 and 5.2.4 are case studies. For the first, we will use our list-wrangling skills to organize
and analyze a sample of 129971 wine reviews from Wine Enthusiast Magazine. Specifically, we’ll study
the relationship between the score a wine receives and the “sentiment” of its description (measured by
the number of positive-connotation words it contains less the number of negative-connotation words).
And for the second case study, we will analyze some student feedback data.

We’ll formalize our analysis in section 5.2.5 with a linear regression. This section covers the basics of
running ordinary least squares (OLS) regressions in R and uses these techniques to develop ever more
sophisticated models of Wine Enthusiast’s review scores. Since this book is more about coding than
about statistics I will focus more on the low-level mechanics of efficiently executing the least squares,
and less on the high-level philosophy underlying the regressions and hypotheses tests.

Combining the two topics of this lecture, sections 5.2.6 and 5.2.7 illustrates how we can use lists to
streamline the execution of regressions. In short, we will use nested tibbles to run a set of regressions
over various subsamples of our data. We will practice these techniques by analyzing some Pokemon
battle data in section 5.2.8.
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After the lecture, we will apply what we learned about lists and regressions in the lab in section 5.3.
In this lab you will replicate the primary outputs of Bray et al. [2019a]: plots that illustrate that auto
parts are more prone to failure when they’re manufactured in a factory that’s situated further from
the vehicle assembly plant (the theory being that more distant factories operate with less oversight).

Finally, I provide some auxiliary content in the commentary section. In section 5.4.1 I will discuss an
underapreciated fact about lists. But this fact can be misleading, so I won’t won’t mention it now. In
section 5.4.2 I provide a glossary of list functions. I don’t include these functions in the lecture because
they aren’t as well designed as their tibble counterparts. In section 5.4.3 I will discuss a drawback of
working with lists: if we want to apply a function to a list we must usually do so element-wise (unlike
vectors). That is, rather than pass an entire list into a function, we must usually pass its elements into
the function one at a time. And this can be much slower. Hence, it’s often faster to convert a list to a
vector (or tibble) before subjecting it to a function.

For the lecture, you can work in the code.R file of the Im project you created in exercise 1.42, and for
the lab you can work in the code.R file of the cars project you created in exercise 1.43.

5.2 Lecture

5.2.1 Lists

So far we’ve stored all our data in vectors and tibbles. But R has a third type of data structure: the
list. A list is like a vector, except it can store multiple different data types. For example, here’s a list
that describes the novel Mansfield Park:

mansfield <-
list(
title = "Mansfield Park",
pub_date = "1 July 1814" %>% dmy,
word_count = 159381,

protagonist = "fanny price"

mansfield

Stitle
[1] "Mansfield Park"

Spub_date
[1] "1814-07-01"

$word_count
[1] 159381

$protagonist

vV V V V V V V V V V VvV

[1] "fanny price"

A vector couldn’t store two character strings, a date, and a number, as this list does. A list can contain
any R object—including other lists. For example, the following defines a list of lists:
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jane <-

Tist(
novel_1 =
list(
title = "Sense & Sensibility",
pub_date = "1 February 1811" %>% dmy,
word_count = 119394,
protagonist = "elinor dashwood"
)
novel_2 =
list(
title = "Pride & Prejudice",

pub_date = "28 January 1813" %>% dmy,
word_count = 122189,
protagonist = "elizabeth bennet"

)

novel_3 = mansfield

jane

V V V VvV VvV vV vV vV V V VvV VvV V V V V V V V V V V V V V V V V VvV

Snovel_1
Snovel_1$title
[1] "Sense & Sensibility"

$novel_1$pub_date
[1] "1811-02-01"

Snovel_1lSword_count
[1] 119394

$novel_l$protagonist

[1] "elinor dashwood"

Snovel_2
Snovel_2s$title
[1] "Pride & Prejudice"

$novel_2$pub_date
[1] "1813-01-28"

Snovel_2Sword_count
[1] 122189

$novel_2S$protagonist
[1] "elizabeth bennet"

Snovel_3
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Snovel_3stitle
[1] "Mansfield Park"

$novel_3$pub_date
[1] "1814-07-01"

Snovel_3Sword_count
[1] 159381

$novel_3S$protagonist

V V V V V V V V V V V

[1] "fanny price"
The list jane comprises the lists novel_1, novel_2, and novel_3.

We can pluck() out individual elements of a list:

#get first element (i.e., the list novel_1)
jane %>% pluck(1)

Stitle
[1] "Sense & Sensibility"

Spub_date
[1] "1811-02-01"

Sword_count
[1] 119394

$protagonist

V V V V V V V V V V V

[1] "elinor dashwood"

#get third attribute of second book:
jane %>% pluck(2, 3)

> [1] 122189

#get "pub_date'" of "novel_3"
jane %>% pluck('"novel_3", "pub_date")

> [1] "1814-07-01"
And we can apply a function—or a “mapping”—to each element of a list:
#turn list of lists into list of tibbles

jane %>%
map (as_tibble)

> Snovel_1

> # A tibble: 1 x 4

> title pub_date word_count protagonist
> <chr> <date> <dbl> <chr>
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> 1 Sense & Sensibility 1811-02-01 119394 elinor dashwood
>

> $novel_2

> # A tibble: 1 x 4

> title pub_date word_count protagonist

> <chr> <date> <db1l> <chr>

> 1 Pride & Prejudice 1813-01-28 122189 elizabeth bennet
>

> $novel_3

> # A tibble: 1 x 4

> title pub_date  word_count protagonist

> <chr> <date> <dbl> <chr>

> 1 Mansfield Park 1814-07-01 159381 fanny price

#get day each book was published:
jane %>%
map (pluck ("pub_date"))

Snovel_1
[1] "1811-02-01"

Snovel_2
[1] "1813-01-28"

Snovel_3
[1] "1814-07-01"

V V V V V V V VvV

#get day of the week each book was published:
jane %>%
map (
~.X %>%
pluck("pub_date") %>%
wday (label = TRUE)

Snovel_1
[1] Fri
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Snovel_2
[1] Thu
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Snovel_3
[1] Fri
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

V V V V V V V V V V V

#get word count in thousands
jane %>%
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map (~ str_c(round(pluck(.x, "word_count'")/1000), "k"))

Snovel_1
[1] "119k"

Snovel_2
[1] "122k"

Snovel_3
[1] "159k"

vV V V V V V V VvV

The last two examples use anonymous functions, which we first saw in section 4.2.3. For example,
the last map() turns a list containing novel_1, novel_2, and novel_3 into a list containing the out-
puts of str_c(round(pluck(novel_1, "word_count")/1000), "k"), str_c(round(pluck(novel_2, and
"word_count")/1000), "k"), and str_c(round(pluck(novel_3, "word_count")/1000), "k"). As you
see, the .x stands for “each element in the list.”

Exercise 5.1. Use map() to pluck() the every protagonist in jane.
Exercise 5.2. Use map() to pluck() the first word() in every title in jane.

Exercise 5.3. Use map() and str_to_upper() to get the title values in jane, expressed in capital
letters

In addition to map(), there is map_df (), which is the same except it output tibbles (df stands for “data
frame”):

#protagonists of each book
jane %>%
map_df (pluck("protagonist"))

> # A tibble: 1 x 3

> novel_1 novel_2 novel_3
> <chr> <chr> <chr>

>

1 elinor dashwood elizabeth bennet fanny price

#days since publication of each book
jane %>%
map_df(
~.X %>%
pluck("pub_date") %>%
{today() - .}

)
> # A tibble: 1 x 3
> novel_1 novel_2 novel_3
> <drtn> <drtn> <drtn>
>

1 78230 days 77503 days 76984 days

Exercise 5.4. Use map_df() to tabulate each protagonist in jane, expressed with str_to_title().
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5.2.2 Tibbled Lists

Heretofore, all of our tibble columns have been vectors, but tibble columns can also be lists. For
example, define

mansfield_tib <-
tibble(
stat = c("Book Title", "Pub. Date", "Word Count", "Main Character"),
value = mansfield

mansfield_tib

> # A tibble: 4 x 2

> stat value

> <chr> <named list>
> 1 Book Title <chr [1]>

> 2 Pub. Date <date [1]>

> 3 Word Count <dbl [1]>

> 4 Main Character <chr [1]>

This tibble’s first column is a standard character string vector, but its second column is a list that
comprises two character strings, a Date, and a double. For example, the first and third elements in the
value column are:

mansfield_tib %>% pluck("value'", 1)
> [1] "Mansfield Park"
mansfield_tib %>% pluck("value", 3)

> [1] 159381

Now since tibbles can store lists and lists can store anything, it follows that tibbles can store anything—
including other tibbles. We will use this fact to organize the following tibble, which stores the text of
Jane Austin’s novels:

rows_are_lines <-
janeaustenr::austen_books () %>%
mutate(
chapter =
text %>%
str_detect(""CHAPTER|"Chapter") %>%
cumsum,
.by = book
%> %
filter(
chapter >= 1,
text = ""
) %>%
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mutate (

line = row_number(),

.by = book

) %>%

relocate(text, .after = "line")

rows_are_Llines %>% head

> # A tibble: 6 x 4

> book

> <fct>

> 1 Sense & Sensibility
> 2 Sense & Sensibility
> 3 Sense & Sensibility
> 4 Sense & Sensibility
> 5 Sense & Sensibility
> 6 Sense & Sensibility

chapter
<int>

T

line text

<int> <chr>
1 CHAPTER 1
2 The family of Dashwood had long been settle~
3 was large, and their residence was at Norla~
4 their property, where, for many generations~
5 respectable a manner as to engage the gener~
6 surrounding acquaintance. The late owner o~

rows_are_lines %>% distinct(book)

> # A tibble: 6 x 1
book

<fct>

Sense & Sensibility
Pride & Prejudice
Mansfield Park

Emma

Northanger Abbey

vV V. V V V V V Vv
o b~ W N R

Persuasion

First let’s nest() the line and text values into collection of chapter-level tibbles:

rows_are_chapters <-
rows_are_lines %>%

nest(

.by = c(book, chapter),

.key = "chapter_tib"

rows_are_chapters %>%
head (4)

# A tibble: 4 x 3
book

<fct>

Sense & Sensibility
Sense & Sensibility
Sense & Sensibility

A W N R

Sense & Sensibility

chapter
<int>
1

2
3
4

chapter_tib

<list>

<tibble [136 x 2]>
<tibble [170 x 2]>
<tibble [138 x 2]>
<tibble [170 x 2]>
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The chapter_tib column is a list of tibbles. For example, the third element of chapter_tib is a tibble
with the following head():

rows_are_chapters %>%
pluck("chapter_tib", 3) %>%

head
> # A tibble: 6 x 2
> line text
> <int> <chr>
> 1 307 CHAPTER 3
> 2 308 Mrs. Dashwood remained at Norland several months; not from any
> 3 309 disinclination to move when the sight of every well known spot ceased
> 4 310 to raise the violent emotion which it produced for a while; for when
> 5 311 her spirits began to revive, and her mind became capable of some other
> 6 312 exertion than that of heightening its affliction by melancholy

Now we can further nest() each chapter_tib into a collection of novel-level tibbles:

rows_are_books <-
rows_are_chapters %>%
nest(
.by = book,
.key = "novel_tib"

rows_are_books

> # A tibble: 6 x 2

> book novel_tib

> <fct> <list>

> 1 Sense & Sensibility <tibble [50 x 2]>
> 2 Pride & Prejudice <tibble [61 x 2]>
> 3 Mansfield Park <tibble [48 x 2]>
> 4 Emma <tibble [55 x 2]>
> 5 Northanger Abbey <tibble [31 x 2]>
> 6 Persuasion <tibble [24 x 2]>

#view fourth novel tibble
rows_are_books %>%
pluck("novel_tib", 4) %>%

head (4)
> # A tibble: 4 x 2
> chapter chapter_tib
> <int> <list>
> 1 1 <tibble [277 x 2]>
> 2 2 <tibble [146 x 2]>
> 3 3 <tibble [160 x 2]>
> 4 4 <tibble [294 x 2]>
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#view eighth chapter tibble of fourth novel tibble
rows_are_books %>%
pluck("novel_tib", 4, "chapter_tib", 8) %>%

head
> # A tibble: 6 x 2
> line text
> <int> <chr>
> 1 1490 CHAPTER VIII
> 2 1491 Harriet slept at Hartfield that night. For some weeks past she had been
> 3 1492 spending more than half her time there, and gradually getting to have
> 4 1493 a bed-room appropriated to herself; and Emma judged it best in every
> 5 1494 respect, safest and kindest, to keep her with them as much as possible
> 6 1495 just at present. She was obliged to go the next morning for an hour or

The nest() operation above bundles the chapter and chapter_tib columns of rows_are_chapters into
the six tibbles of the list column novel_tib. We’'ve now organized our data into a hierarchical structure:
rows_are_books stores six novel-level tibbles, which store 269 chapter-level tibbles, which in turn store
62248 lines of text.

Exercise 5.5. pluck() the lines of the fifth chapter of the third book of rows_are_books.

Exercise 5.6. What’s the difference between rows_are_lines %>% nest(.by = c(book, chapter), .key
= "chapter_tib") %>% nest(.by = book, .key = "novel_tib") and rows_are_lines %>% nest(.by =
book, .key = "novel_tib")?

We can unnest () the tibbles nested in the novel_tib column:

rows_are_books %>%

unnest(novel_tib) %>%

head

book

<fct>
Sense
Sense
Sense
Sense
Sense

vV V V V V V V V V

o b~ W NN R

Sense

# A tibble: 6 x 3

chapter chapter_tib
<int> <list>

& Sensibility 1 <tibble [136 x 2]>
& Sensibility 2 <tibble [170 x 2]>
& Sensibility 3 <tibble [138 x 2]>
& Sensibility 4 <tibble [170 x 2]>
& Sensibility 5 <tibble [90 x 2]>
& Sensibility 6 <tibble [114 x 2]>

And we can further unnest() the tibbles nested in the chapter_tib column:

rows_are_books %>%

unnest(novel_tib) %>%

unnest(chapter_tib) %>%

head
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> # A tibble: 6 x 4

> book chapter Tline text

> <fct> <int> <int> <chr>

> 1 Sense & Sensibility 1 1 CHAPTER 1

> 2 Sense & Sensibility 1 2 The family of Dashwood had long been settle~
> 3 Sense & Sensibility 1 3 was large, and their residence was at Norla~
> 4 Sense & Sensibility 1 4 their property, where, for many generations~
> 5 Sense & Sensibility 1 5 respectable a manner as to engage the gener~
> 6 Sense & Sensibility 1 6 surrounding acquaintance. The late owner o~

The unnest() steps lengthen the tibble from 6 rows (one per book), to 269 (one per chapter), to 62248
rows (one per line). Since they lengthen the tibble, these operations are analogous to pivot_longer ().
And nest() is likewise analogous to pivot_wider(), except rather splay out the data in new columns it
squirrels them away in nested tibbles.

Exercise 5.7. We will now divide the line values of rows_are_lines by word to create a tibble that
assigns each word to a different row.

e mutate() rows_are_lines to redefine text = str_split(text, " "). This transforms text from a
vector of 62248 character strings to a list of 62248 character string vectors.
— For example, consider c("glory follows virtue", "as if it were its shadow") %>%
str_split(" ").
e unnest() the text column.
e <- the result into rows_are_words.

Exercise 5.8. nest() rows_are_words three times to create a tibble that stores a collection of novel-
level tibbles, that store a collection of chapter-level tibbles, that store a collection of line-level tibbles.
Call this tibble rows_are_books_2. This tibble should resemble rows_are_books, but with an additional
layer of nesting.

Exercise 5.9. pluck() the 11th word of the 50th line of the 10th chapter of the 4th book of
rows_are_books_2. (You should get the word "fool".)

Exercise 5.10. We will now create a tibble that assigns each sentence of Sense & Sensibility to its
OWI TOW.

e filter() rows_are_lines to keep only the book == "Sense & Sensibility" observations.

e select() away the book and line columns.

e group_by() chapter and summarise() to redefine text = str_c(text, collapse = " ")). This will
consolidate the text of each chapter into a long character string.

e mutate() the result to redefine text = str_split(text, " "). Note, there are two spacesin " ",
so this operation splits text whenever there are two consecutive spaces. And since there are two
spaces after each sentence (with a few exceptions that we’ll ignore), this operation chops text up
by sentence.

e unnest() the result by text.

5.2.3 Case Study: Wine Reviews

We will now study the wine reviews in wine_list (which you defined in exercise 1.42 of section 1.3).
Specifically, we will test whether we can predict the review’s final score from the number of positive-
and negative-connotation words in its description.
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wine_list is a list of lists that describe 129,971 wine reviews from Wine Enthusiast. For example, the
100th element wine_1list is the following list:

wine_list %>% pluck(100)

$points
[l] nggn

Stitle
[1] "Soquel Vineyards 2013 Intreccio Library Selection Red (Napa Valley)"

$description
[1] "This blends 20% each of all five red-Bordeaux varieties, showing grap..."

Staster_name

[1] "Virginie Boone"

Staster_twitter_handle
[1] "@vboone"

$price
[1] 75

$designation

Svariety
[1] "Bordeaux-style Red Blend"

$region_1
[1] "Napa Valley"

$region_2
[l] "Napa"

Sprovince
[1] "California"

Scountry
[l] IIUSII

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> [1] "Intreccio Library Selection"
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> $winery
>

[1] "Soquel Vineyards"

Now if you google the title of this review, you will find that these data were scraped from this website!.
Every record in wine_list was scraped from a page like this on the Wine Enthusiast website?. And
if you compare a few of these wine reviews with the corresponding wine_1ist listings you’ll soon see
what each variable in our sample represents.

Thttps://www.winemag.com/buying-guide/soquel-vineyards-2013-intreccio-library-selection-red-napa-valley/
2www.winemag.com
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Exercise 5.11. We’ll now tibblize our data, since tibbles are easier to work with than lists.

Convert wine_11ist to a tibble with map_df(~.x).

— The anonymous function ~.x returns each element of wine_list exactly as it is. For example,
piping wine_list through map_df(~.x %>% head) would apply head() to each element of
wine_list and return the results as a tibble. And piping wine_list through map_df(~.x) is
the same, except it skips the head() steps.

Extract the distinct() rows of this tibble.

Add an identification variable with rowid_to_column(var = "review_id").

Use strtoi() to translate the points and price columns from character strings to integers.
Extract the year the grapes were picked from each review title and add it as a column called
vintage.

— Use the expression str_extract("\\b199[5-91\\b|\\b20[01]1[0-9]\\b") %>% strtoi, which
returns the first number between 1995 and 2019 from a text string (or NA if none is found).
For example, "Gaul 2013 Rosé (Pfalz)" %>% str_extract("\\b199[5-9]\\b|\\b20[01][6-
9]\\b") %>% strtoi = 2013.

<- the result as wine_tib.
— This tibble should have 119988 rows and 15 columns.

Now that they’re in a tibble, we can more easily analyze our data. We will use text analytics to relate
a review’s points with its description. First, we find that longer reviews receive higher scores:

wine_
ggp
aes

X

Yy
) +

tib %>%

lot +

(

= str_length(description),
= points

geom_density_2d_filled() +
theme_minimal() +

lab
X

Yy
) +

s(
= "Number of Characters 1in Description",

= "Point Score"

guides(fill = guide_legend(title = "Probability Density"))
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But this isn’t particularly interesting. For a more interesting analysis, we will use the following sen-
timent_dictionary to correlate the sentiment of a review with its points:

sentiment_dictionary <-
tidytext::get_sentiments("bing") %>%
mutate(
sentiment =
fct_recode(
sentiment,
“+° = "positive",

‘= = "negative"

sentiment_dictionary %>% tail

> # A tibble: 6 x 2

> word sentiment

> <chr> <fct>

> 1 zealous -

> 2 zealously -

> 3 zenith +

> 4 zest +

> 5 zippy +

> 6 zombie -

This sentiment_dictionary codes 6786 words as either "+" or "-", depending on their connotation.

Exercise 5.12. At a high level, can you figure out a way to transform the tibbles to correlate the
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number of positive- and negative-coded words in sentiment_dictionary with the number of points in
wine_tib?

Exercise 5.13. We will now convert the description column from a vector of character strings to
a list of character string vectors. For example, this step will change the description associated with
review_id == 12932 from the character string "Flat, fruity and lacking in complexity." to the
character string vector c("Flat", "fruity", "and", "lacking", "in", "complexity").

e select() the review_id and description columns of wine_tib.

e Redefine description as description %>% str_remove_all("[* [:alnum:]1]1") %>% str_squish
%>% str_split(" "). This step will convert description into a list column that that stores the
individual words of each review in a collection of character string vectors.

— str_remove_all("[* [:alnum:]]") removes everything besides spaces and alphanumeric char-
acters from a character string.
— str_squish() removes excess space from a character string.
— str_split(" ") turns a vector of character strings into a list of character string vectors, by
splitting each character string at each " ". For example, consider c("don't make me run",
"I'm full of chocolate") %>% str_split(" ").
e <- the result into wine_description_by_word

Exercise 5.14. We have now chopped up each wine description description by word. But these words
are difficult to access, as they’re stored in a collection of vectors that are saved in a list column. We
will now unnest() this list column to make the individual words accessible.

e unnest() wine_description_by_word by description, so that each word has its own row.
— The tibble should have 4849491 rows after this step.
e rename() word = description.
e <- the result into wine_words.
— Since each review_id has many rows, it’s better to save these word count records in a
new tibble than it is to inner_join() them back into wine_tib. For example, there are
94 observations with review_id == 84908; so if we added the word counts into wine_tib,
then the resulting tibble would repeat this review’s other variables 94 times—e.g., it would
contain 94 copies of its full description.

Exercise 5.15. At a high level, can you figure out a way to use wine_words and sentiment_dictionary
to add to wine_tib new columns called word_count, pos_count, neg_count, and pos_minus_neg, which
respectively report the number of words, the number of "+"-coded words, the number of "-"-coded
words, and the number of "+"-coded words minus the number of "-"-coded words in description.

e Should you use left_join() or inner_join()?
¢ Should you join the three tibbles upfront, or should you join two of the tibbles, process the result,
and then join the third tibble?

Exercise 5.16. We will now combine wine_words with sentiment_dictionary to add four new variables
to wine_tib.

o left_join() wine_words with sentiment_dictionary (so that all rows of the former are preserved).
e group_by() review_1id.
e summarise() the result to define

— word_count as the number of words in description,

— pos_count as the number of "+"-coded words,

— neg_count as the number of "-"-coded words, and
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— pos_minus_neg as the difference between the number of "+"-coded words and the number of
"-r-coded words.
e ungroup() the result and inner_join() it with wine_tib, to add back the other review variables.
— This join won’t create unwanted row duplicates, because each review_id appears only once
in both tibbles.
e <- the result into wine_tib_2.
— This tibble’s mean() pos_count should be 2.70.

Now we can now see that pos_minus_neg is positively correlated with points:

wine_tib_2 %>%

filter(
n() >= 80, #only keep countries with at least 80 obs
.by = country

) %>%

mutate (
country = #order countries by number of observations

fct_reorder (country, country, length),

.by = country

) %>%

ggplot() +

aes (

X = pos_minus_neg,

y = points
) +
geom_jitter(shape = ".") +

geom_smooth (

method = "lm",

se = FALSE
) +
facet_wrap(vars(country)) +
theme_minimal()
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Indeed, pos_minus_neg is a surprisingly good indicator of wine quality. For example, here are the three
reviews with the lowest pos_minus_neg scores:

wine_tib_2 %>%
filter (row_number (pos_minus_neg) <= 3) %>%
pull(description)

> [1] "There's a funky, strange quality to San Pedro's high-end 2008 Syrahs from Elqui. Like the Kankana ultrapre
> [2] "Sweaty, raw, sour aromas are harsh. The palate is flat and chunky in feel, with pithy grapefruit, nettle a
> [3] "This dis an unusual white blend from Mallorca that uses the native Premsal grape along with 15% Muscat. It

These reviews have 82, 87, and 84 points, respectively. And here are the three reviews with the highest
pos_minus_neg Scores:

wine_tib_2 %>%
filter (row_number (-pos_minus_neg) <= 3) %>%
pull(description)

Peach and honeysuckle already have a notion of honeyed sweetness and
ripeness on the nose. The palate boosts both fruit and floral notion to
the top, where honeysuckle and rose petal notes meeting with peach on
the medium-sweet palate. This is full on, joyous, juicy and rich with
expressive, exuberant flavor. An underlying concentration almost feeds
this with a fiery dynamic force. The finish is medium sweet but comes
with a wonderfully redeeming pure lemon streak. This is ready now but
will get even better with age. Drink 2017-2037. A touch of freshly cut apple peel 1is all that appears on the shy
The palate is more approachable and opens 1into beautifully aromatic
notions of ripe tart apples and blossom. This has a very harmonious
balance and something like tender poise. This is absolutely fresh but

V V vV V V V V V V V V VvV

it comes like a caress, touching and convincing with tenderness rather
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than flashy force. The palate is dry, has ample and aromatic apple fruit

and immense charm. This is so easy to drink right now but will certainly

evolve. It finishes with a long pure echo of lemon. Drink 2017-2027. Peach and honey characterize the nose ¢
also play generously on the concentrated rich midpalate where they

are countered by aromatic orange and tangerine zestiness, creating a

lovely contrast and exciting richness. There is just a touch of residual

sweetness here to create some drama, but it works to great effect. The

wine is not sweet enough for deserts but will work with Asian spices or

vV V V V V V V V V

ripe cheeses. It's simply wonderful and so balanced.
These reviews have 94, 94, and 93 points, respectively.

However, we can more richly capture points with three variables than with one. So we would like to
describe the review score in terms of pos_count, neg_count and word_count, rather than in simply in
terms of pos_minus_neg (which is a derivative of pos_count and neg_count). However, characterizing
such a multi-variate relationship requires a statistical tool that’s more powerful than a simple scatter
plot or rank ordering.

5.2.4 Case Study: End-of-Year Feedback

In the spring of 2023, I updated my class to accommodate ChatGPT. I introduced several innovations
that leverage ChatGPT’s coding capabilities in different ways. At the end of the course, I distributed
a Google Form to get the students’ opinions of these innovations. The form comprised two checkbox
questions: “Which innovations worked well?” and “Which innovations need improving?” For each
question, the students would place tick marks by the corresponding innovations. Unfortunately, Google
Forms makes analyzing such checkbox data difficult, as it pastes all options selected for a given answer
into a long comma-separated character string. For example, the first student to submit the form
identified two unsatisfactory innovations, “Using ChatGPT to run a random forest in the first class’
and “Using ChatGPT in quizzes,” so the first row in the table has "Using ChatGPT to run a random
forest in the first class, Using ChatGPT in quizzes" in the needs-improvement column. We will
use lists to make sense of these clumsy Google Forms data, so we can determine which areas of the
class the students found most and least popular.

)

Exercise 5.17. Develop a high-level strategy for transforming student_survey_data from a tibble with
columns Timestamp, 'What innovations worked well?", and ‘What dinnovations need -improvement?’
to a tibble with columns Timestamp, question, and innovation, where the second column has values
"What innovations worked well?" and "What -innovations need +improvement?" and the third column
has eight distinct values, corresponding to the eight class innovations (e.g., "Using ChatGPT to run a
random forest in the first class" and "Using ChatGPT in quizzes").

Exercise 5.18. Execute your strategy to create a geom_bar () chart with x = ..count..,y = innovation,
and fill = question.

5.2.5 Linear Regression

We will now formally model the relationship between a wine’s description sentiment and its review
points with linear regression. We will run the regressions with the linear model function 1m(), and will
organize the outputs with the tidy () function of the broom package:

library(broom) #we'll need to load this package

Here’s a simple regression of points on word_count, pos_count, and neg_count:
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wine_model <-
wine_tib_2 %>%
m(
points ~ word_count + pos_count + neg_count,
data = .

wine_model %>%

tidy

> # A tibble: 4 x 5

> term estimate std.error statistic p.value
> <chr> <db1> <db1> <dbl> <db1l>
> 1 (Intercept) 81.8 0.0308 2657. 0O

> 2 word_count 0.173 0.000909 190. ©

> 3 pos_count 0.250 0.00452 55.3 0

> 4 neg_count -0.123 0.00871 -14.1 4.42e-45

The lm() function conducts our linear regression. But this function is old, and it follows some outdated
conventions. First, it returns the regression results as a messy kind of list called an “lm” object. The
tidy () function converts this disorganized list into an organized tibble. Second, whereas all modern
functions reserve the first argument for the data, the 1m() function reserves the second argument for
the data. Hence we must set the second argument of lm() to data = . to direct the %>% to the function’s
second slot. The first slot of 1m() is reserved for the regression formula, which is a bit of code with
the form dependent_var ~ -dindependent_var_1 + ... + independent_var_n. For example, the points ~
word_count + pos_count + neg_count formula specifies the following statistical model:

points = [, + [, - word__count + 3, - pos__count + 5 - neg__count + e,

where 3y, B, By, and [ are fixed coefficients and € is an unobserved error term that’s mean-zero
and uncorrelated with word_count, pos_count, and neg_count. These errors don’t have to be normally
distributed.?

The estimate column of the tibble above provides our coefficient estimates: Bo = 81.6, 51 = 0.178,
ﬁz = 0.251, and 63 = —0.130. The "(Intercept)" term corresponds to the additive constant S,
which R added to the regression on our behalf (we never have to incorporate an intercept term in
our regression formula, because R adds them automatically).* Note, these are not the true coefficient
values—they’re just our best guess, given the data we have. In fact, the error in our ¢th estimate,
ﬁAi — fB;, is roughly normally distributed with mean zero and standard deviation o, (even when the e
terms are not normally distributed). This standard deviation is called a “standard error,” and it’s
reported in the std.error column of our output tibble. Hence, the error 31 — 8, has standard deviation
0.000725, whereas the error 33 — B3 has standard deviation 0.00851. The former estimate is thus more
precise.

The statistic column of our output tibble reports the t-statistic, which equals the estimate value
divided by the std.error value. In short statistic measures how far the coefficient estimate is from
zero, in terms of standard deviations. For example, there are 0.251 / 0.00443 = 55 standard deviations

3A common misconception is that OLS regressions require normally distributed error terms. They do not. They simply
require the error terms be mean-zero and uncorrelated with the independent variables.

4To run a regression without an intercept term add -1 to the regression formula. For example, points ~ word_count
+ pos_count + neg_count - 1 corresponds to the following statistical model: points = 8, word_ count + B,pos_ count +
Bsneg count + e.
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between BQ and zero.

Finally, the p.value column reports the probability of seeing an estimate as far from zero when the
true coefficient is actually zero. For example, since it’s basically impossible for a (nearly normally
distributed) random variable to be 55 standard deviations above its mean, we find that there would be
essentially no chance of getting 52 > 0.251 when f; = 0 (the probability is so small that R rounds it
down to p.value = 0). Hence, we can safely conclude that 5; > 0—i.e., that a review’s score increases
with the number positive-association words it contains. Likewise, we can conclude that a review’s
score decreases with the the number negative-association words it contains, because the probability of
getting 34 < —0.130 when 8, = 0 is p.value = 1.36e-29 (i.e., 0.0000000000000000000000000000136).

Our best prediction of points, given word_count, pos_count, and neg_count, is:

fitted :Bo + Bl -word__count + 32 - pos__count + 53 -neg_count (5.1)
=81.6 + 0.178 - word__count + 0.251 - pos__count — 0.130 - neg_count (5.2)

This expression is called the “fitted value” of our regression. For example, the review with title =
"Marchesi Antinori 2015 Villa Antinori White (Toscana)" has word_count = 38, pos_count = l,and
neg_count = @, so our best forecast for this score would be 81.6 + 0.178 * 38 + 0.251 * 1 - 0.130 * 0
= 87.74, which is close to the 87 points it actually received.

Rather than manually type out the equation above, we can get the fitted value by piping wine_model
into broom’s augment () function:

wine_model %>%
augment (data = wine_tib_2) %>%
glimpse

Rows: 119,988
Columns: 25

>

>

> $ review_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1~
> $ word_count <int> 22, 35, 25, 31, 38, 38, 28, 20, 24, 26, 33, 26, ~
> $ pos_count <int> 1, 2, 3, 2, 3, 3, 4, 1, 5, 4, 4, 2, 2, 1, 3, 6, ~
> $ neg_count <int> 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, ~
> $ pos_minus_neg <int>» 0, 2, 3, 1, 1, 2, 4, 1, 5, 4, 4, 1, 2, 0, 3, 5, ~
> $ points <int> 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, ~
> $ title <chr> "Nicosia 2013 Vulka Bianco (Etna)", "Quinta dos~
> $ description <chr> "Aromas -include tropical fruit, broom, brimstone~
> $ taster_name <chr> "Kerin 0’Keefe", "Roger Voss", "Paul Gregutt", "~
> $ taster_twitter_handle <chr> "@kerinokeefe", "@vossroger", "@paulgwine ", NA,~
> $§ designation <chr> "Vulka Bianco", "Avidagos", NA, "Reserve Late Ha~
> $ variety <chr> "White Blend", "Portuguese Red", "Pinot Gris", "~
> $ region_1 <chr> "Etna", NA, "Willamette Valley", "Lake Michigan ~
> $ province <chr> "Sicily & Sardinia", "Douro", "Oregon", "Michiga~
> $ country <chr> "Italy", "Portugal", "us", "us", "us", "Spain", ~
> $ winery <chr> "Nicosia", "Quinta dos Avidagos", "Rainstorm", "~
> $ price <int> NA, 15, 14, 13, 65, 15, 16, 24, 12, 27, 19, 30, ~
> $ region_2 <chr> NA, NA, "Willamette Valley", NA, "Willamette Val~
> $ vintage <int> 2013, 2011, 2013, 2013, 2012, 2011, 2013, 2012, ~
> $ .fitted <dbl> 85.67973, 88.29861, 86.82115, 87.48484, 88.82171~
> $ .resid <db1l> 1.32026770, -1.29860927, 0.17885144, -0.48483788~
> $ .hat <db1l> 3.210816e-05, 1.682473e-05, 2.420637e-05, 1.2048~

315



> $ .sigma <db1l> 2.583928, 2.583929, 2.583931, 2.583931, 2.583926~
> $ .cooksd <db1l> 2.095796e-06, 1.062433e-06, 2.899461e-08, 1.0605~
> $ .std.resid <dbl> 0.51096342, -0.50257746, 0.06921792, -0.18763766~

The output tibble is our initial wine_tib_2 regression data with five extra columns: .fitted, .resid,
.std.resid, .hat, and .sigma. The data = wine_tib_2 option tells augment() to append these statistics
to wine_tib_2. But we can exclude this option to get a more streamlined output:

wine_model %>%
augment

> # A tibble: 119,988 x 10

> points word_count pos_count neg_count .fitted .resid .hat .sigma .cooksd
> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
> 1 87 22 1 1 85.7 1.32 3.21le-5 2.58 2.10e-6
> 2 87 35 2 0 88.3 -1.30 1.68e-5 2.58 1.06e-6
> 3 87 25 3 0] 86.8 0.179 2.42e-5 2.58 2.90e-8
> 4 87 31 2 1 87.5 -0.485 1.20e-5 2.58 1.06e-7
> 5 87 38 3 2 88.8 -1.82 2.61le-5 2.58 3.24e-6
> 6 87 38 3 1 88.9 -1.94 9.71le-6 2.58 1.37e-6
> 7 87 28 4 0 87.6 -0.590 2.49e-5 2.58 3.24e-7
> 8 87 20 1 0 85.5 1.54 3.79e-5 2.58 3.38e-6
> 9 87 24 5 0 87.1 -0.149 4.85e-5 2.58 4.02e-8
> 10 87 26 4 0 87.2 -0.244 2.92e-5 2.58 6.51e-8

> # 4 119,978 more rows
> # i 1 more variable: .std.resid <dbl>

As before, a given row in this output tibble corresponds to the analogous row in wine_tib_2. But
now the output includes only wine_tib_2’s regression variables—points, word_count, pos_count, and
neg_count—and the five new statistics—.fitted, .resid, .std.resid, .hat, and .sigma. The first
statistic is the fitted value. For example, we find that our model predicts a score of 85.8 for the first
wine (conditional on its word_count = 25, pos_count = 1 and neg_count = 1 values). And since this
wine actually received 87 points, it exceeded expectations by 87 - 85.8 = 1.21 points. This value is
reported in the .resid column, which gives the difference between the forecasted score, .fitted, and
the actual score, points.”

Exercise 5.19. Which wine most exceeded expectations, given its word_count, pos_count, and
neg_count values? In other words, what title has the largest .resid?

Exercise 5.20. A regression’s R? value reports the fraction of variation in the dependent variable that
it explains. Compute this statistic with 1 - sd(.resid)*2/sd(points)*2. Confirm your calculation by
comparing it with the r.squared statistic yielded by wine_model %>% glance. (The glance() function,
from the broom package, calculates regression summary statistics.)

Now let’s add some control variables to our regression. We will begin by including the wine vintage::

wine_tib_2 %>%
m(

5See 7augment.lm for the definition of the other statistics.
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points ~ word_count + pos_count + neg_count + vintage,

data =
tidy

> # A tibble: 5 x 5

> term estimate std.error statistic p.value
> <chr> <db1l> <db1> <db1l> <dbl>
> 1 (Intercept) -112. 4.27 -26.2 7.37e-151
> 2 word_count 0.174 0.000919 189. 0

> 3 pos_count 0.266 0.00459 58.0 0

> 4 neg_count -0.109 0.00876 -12.4 2.30e- 35
> 5 vintage 0.0962 0.00212 45.4 0

The pos_count and neg_count estiamtes are still statistically significant, which is reassuring, and the
new estimate suggests that incrementing the vintage by one year increases the predicted number of
points by 0.0950. But assuming a linear relationship between points and vintage is too crude. It’s
better to allow each vintage year to have its own idiosyncratic effect:

wine_model_2 <-
wine_tib_2 %>%
m(
points ~ word_count + pos_count + neg_count + as.factor(vintage),
data =

wine_model_2 %>%

tidy

> # A tibble: 26 x 5

> term estimate std.error statistic p.value
> <chr> <db1l> <db1l> <db1> <dbl>
> 1 (Intercept) 81.2 0.362 224, 0]

> 2 word_count 0.173 0.000919 188. 0

> 3 pos_count 0.275 0.00459 60.0 0]

> 4 neg_count -0.114 0.00873 -13.1 4.64e-39
> 5 as.factor(vintage)1996 -0.590 0.477 -1.24 2.15e-1
> 6 as.factor(vintage)1997 0.0470 0.389 0.121 9.04e- 1
> 7 as.factor(vintage)1998 -1.18 0.377 -3.14 1.71e- 3
> 8 as.factor(vintage)1999 -0.920 0.375 -2.46 1.41le- 2
> 9 as.factor(vintage)2000 -0.933 0.373 -2.50 1.22e- 2
> 10 as.factor(vintage)2001 -0.913 0.374 -2.44 1.46e- 2

> # 1 16 more rows

Converting vintage from a number to a factor changes the statistical model from

points = 5, + 5, - word__count + (3, - pos__count + 35 - neg__ count + 3, - vintage + €,

to
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points =0, + ; - word__count + 3, - pos_ count + (5 - neg_count

In the expression above, vintage == 1996, ..., vintage == 2017 are called dummy variables because they’re
only smart enough to take two values: 0 or 1. These variables enable us to model the incremental effect
of a given vintage, relative to the benchmark year of 1995 (R benchmarks against 1995 because that is
the first level of as.factor(vintage)). For example, if the vintage is 1995 then all the vintage dummy
variables are zero (or FALSE), in which case our statistical model boils down to:

points =03, 4 [5; - word__count + 3, - pos_ count + 5 - neg_count
+ /61996 -0 + 4 ,82017 -0 + €.
=p, + B; - word __count + 3, - pos_count + (5 - neg count + e.

And if the vintage is 2011 then then the vintage == 2011 dummy variable is one and all the other
vintage dummy variables are zero, in which case our statistical model boils down to:

points =0, 4+ ; - word__count + (3, - pos__count + (5 - neg__count
+ Biggs - 0+ + Bagro - 0
+ Bao11 - 1
+ Bao12 - 0+ + Bogr7 - 0
=fy + B, - word__count + 5 - pos__count + 5 - neg_count + [9q1; + €.

As you see, the 2011 model is the same as the 1995 model, but with an extra [y, offset term.
Accordingly, 32011 = 0.619 is our estimate for the expected point differential between a 2011 wine and
an analogous 1995 wine. In other words, the .fitted value of a 2011 wine would be 32011 = 0.619
points higher than that of a 1995 wine with the same word_count, pos_count, and neg_count values.
And we can see this when we compare the .fitted values of "Marchesi di Barolo 1995 Barolo"
and "Artadi 2011 Pagos Viejos (Rioja)", both of which have word_count = 60, pos_count = 6, and
neg_count = 1:

wine_model_2 %>%

augment (
newdata =
wine_tib_2 %>%
filter(
title %in%
c(

"Marchesi di Barolo 1995 Barolo",
"Artadi 2011 Pagos Viejos (Rioja)"

)
) %>%
select(title, word_count, pos_count, neg_count, .fitted) %>%
mutate(.dif = .fitted - min(.fitted))

> # A tibble: 2 x 6
> title word_count pos_count neg_count .fitted .dif
> <chr> <int> <int> <int> <dbl> <dbl>
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> 1 Marchesi di Barolo 1995 Barolo 53 6 1 91.9 0.0467
> 2 Artadi 2011 Pagos Viejos (Rioj~ 50 6 1 91.9 0

The example above uses the newdata option of augment() to calculate the .fitted values of the two
relevant rows. The newdata option enables us to calculate the .fitted value associated with any
combination of word_count, pos_count, neg_count, and vintage. For example, the following predicts
the points value of a hypothetical review with word_count = 60, pos_count = 10, neg_count = 5, and
vintage = 1999:

wine_model_2 %>%
augment (
newdata =
tibble(
word_count = 60, pos_count = 10,
neg_count = 5, vintage = 1999

)
> # A tibble: 1 x 5
> word_count pos_count neg_count vintage .fitted
> <db1l> <dbl> <db1l> <db1l> <db1l>
> 1 60 10 5 1999 92.8

And the following predicts the points value of a hypothetical review with word_count = 0, pos_count
= 1000, neg_count = -1, and vintage = 2000:

wine_model_2 %>%
augment (
newdata =
tibble(
word_count = 0, pos_count = 1000,
neg_count = -10, vintage = 2000

> # A tibble: 1 x 5
> word_count pos_count neg_count vintage .fitted
<db1> <db1l> <db1> <db1> <db1>

>
> 1 0 1000 -10 2000 357.

Of course it would be impossible for a review to comprise zero words, 1000 positive words, and -10
negative words, but our statistical model doesn’t know this. It simply calculates

fitted :Bo + B1 -0+ 52 - 1000 + 53 - (—10) + 32000
=81.1+0.178 -0+ 0.277 - 1000 — 0.121 - (*10) —0.829
=358

Exercise 5.21. Use the newdata option of augment() to calculate the mean() .fitted value of the
following 10,000 wine review scenarios:
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wine_review_scenarios <-
expand_grid(
word_count = 100:109,
pos_count = 0:9,
neg_count = 0:9,
vintage = 2000:2009

Exercise 5.22. We will now show that there was consistent grade inflation—or consistent wine
improvement—Dbetween 1998 and 2014.

e tidy() wine_model_2 and filter () the result to keep only the rows in which you can str_detect()
the word "vintage" in the term column.
e mutate() the result to redefine term = term %>% str_remove("as.factor\\(vintage\\)") %>%
strtoi.
— This step converts character strings "as. factor (vintage)1996", ..., "as.factor (vintage)2017"
into integers 1996, ..., 2017.
e ggplot() the result with x = term by y = estimate.
— This plot illustrates the point estimates associated with each vintage. You should see
a systematic increase in the estimate values between 1998 and 2014. For example, the
estimate corresponding to vintage == 2014 is 1.02, which indicates that the score of a 2014
wine is a full point higher, on average, than that of a comparable 1995 wine (the benchmark
year).

We will now add province, taster_name, and variety as additional control variables. Specifically,
we will assign a regression coefficient to each value of each of these variables that has at least 1000
observations. For example, we will add dummy variable taster_name == "Matt Kettmann" to our
regression equation because there are 5730 observations with this reviewer, but we will not add dummy
variable taster_name == "Fiona Adams" because there are only 24 observations with this reviewer. We
will disregard the values with fewer than 1000 observations by setting them to "Other":

wine_tib_3 <-

wine_tib_2 %>%

mutate(
province = ifelse(n() >= 1000, province, "Other"),
.by = province
%> %

mutate (
taster_name = +ifelse(n() >= 1000, taster_name, "Other"),
.by = taster_name
%>%

mutate(
variety = difelse(n() >= 1000, variety, "Other"),
.by = variety

mutate (
across(

c(province, taster_name, variety),
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~.x %>% fct_relevel("Other")

The final mutate() makes "Other" the first factor level of province, taster_name, and variety, which
will make it the benchmark value in our regression (like how 1995 is the benchmark year).

We’re now ready to run our regression:

wine_model_3 <-
wine_tib_3 %>%
m(
points ~
word_count +
pos_count + neg_count +
as.factor (vintage) +
province + taster_name + variety, #don't need to as.factor() these

data = . #because they're already factors

wine_model_3 %>%
tidy %>%

head
> # A tibble: 6 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1> <dbl> <dbl>
> 1 (Intercept) 81.6 0.629 130. 0
> 2 word_count 0.162 0.00104 156. 0
> 3 pos_count 0.242 0.00502 48.2 (0]
> 4 neg_count -0.0408 0.00901 -4.52 0.00000613
> 5 as.factor(vintage)1996 -0.328 0.740 -0.444 0.657
> 6 as.factor(vintage)1997 -0.971 0.676 -1.44 0.151

As you can see, the pos_count and neg_count values are still statistically significant. Overall, this
regression has 86 independent variables:

wine_model_3 %>% tidy %>% pull(term)

> [1] "(Intercept)" "word_count"

> [3] "pos_count" "neg_count"

> [5] "as.factor(vintage)1996" "as.factor(vintage)1997"
> [7] "as.factor(vintage)1998" "as.factor(vintage)1999"
> [9] "as.factor(vintage)2000" "as.factor(vintage)2001"
> [11] "as.factor(vintage)2002" "as.factor(vintage)2003"
> [13] "as.factor(vintage)2004" "as.factor(vintage)2005"
> [15] "as.factor(vintage)2006" "as.factor(vintage)2007"
> [17] "as.factor(vintage)2008" "as.factor (vintage)2009"
> [19] "as.factor(vintage)2010" "as.factor(vintage)2011"
> [21] "as.factor(vintage)2012" "as.factor(vintage)2013"

321



[23]
[25]
[27]
[29]
[31]
[33]
[35]
[37]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]
[61]
[63]
[65]
[67]
[69]
[71]
[73]
[75]
[77]
[79]
[81]
[83]
[85]

V V. V. V V vV vV VvV VvV VvV vV V V V V V V V V V V V V V V V V V V V V VvV

Indeed,

"as.factor(vintage)2014"
"as.factor (vintage)2016"
"provinceAlsace"
"provinceBurgundy"
"provinceCatalonia"
"provinceChampagne"
"provincelLoire Valley"
"provinceNew York"
"provinceNorthern Spain"
"provincePiedmont"
"provinceSicily & Sardinia"
"provinceSouthern Italy"
"provinceTuscany"
"provinceWashington"
"taster_nameAnne Krebiehl MW"
"taster_nameJoe Czerwinski"
"taster_namelLauren Buzzeo"
"taster_nameMichael Schachner"
"taster_nameRoger Voss"
"taster_nameSusan Kostrzewa"
"varietyBordeaux-style Red Blend"
"varietyCabernet Sauvignon"
"varietyChardonnay"
"varietyMalbec"
"varietyNebbiolo"
"varietyPinot Noir"
"varietyPortuguese White"
"varietyRhéne-style Red Blend"
"varietyRosé"
"varietySauvignon Blanc"
"varietySyrah"

"varietyWhite Blend"

here’s our statistical model:

"as.factor(vintage)2015"
"as.factor(vintage)2017"
"provinceBordeaux"
"provinceCalifornia"
"provinceCentral Italy"
"provinceDouro"
"provinceMendoza Province"
"provinceNortheastern Italy"
"provinceOregon"
"provinceProvence"
"provinceSouth Australia"
"provinceSouthwest France"
"provinceVeneto"
"taster_nameAnna Lee C. Iijima"
"taster_nameJim Gordon"
"taster_nameKerin 0’Keefe"
"taster_nameMatt Kettmann"
"taster_namePaul Gregutt"
"taster_nameSean P. Sullivan"
"taster_nameVirginie Boone"
"varietyCabernet Franc"
"varietyChampagne Blend"
"varietyGriner Veltliner"
"varietyMerlot"
"varietyPinot Gris"
"varietyPortuguese Red"
"varietyRed Blend"
"varietyRiesling"
"varietySangiovese"
"varietySparkling Blend"
"varietyTempranillo"

"varietyZinfandel"

points =03, 4 3, - word__count + 3, - pos_ count + 5 - neg_count
+ Biggg - (vintage == 1996) + --- + Byg17 - (vintage == 2017)

+ Batsace * (Province == “Alsace”) + - + Byeneto * (Province == “Veneto”)
+ Banna Lee C. Tijima * (taster_name == “Anna Lee C. lijima”) + ---
+ Bvirginie Boone * (taster_name == “Virginie Boone”)
+ 5Bordeaux_style Red Blend © (variety == “Bordeaux-style Red Blend”) + -
+ Brinfandel * (variety == “Zinfandel”) + e.

This specification’s dummy variables provide idiosyncratic vintage, province, and taster_name offsets.

For example, the By, = —0.472 estimate indicates that we would expect -0.472 fewer points from a
variety == "Merlot" wine than from a variety == "Other" wine that matches on all other dimensions.
(In this case, we benchmark against variety == "Other".)

Exercise 5.23. Of the wine tasters with at least 1000 reviews, which is the harshest grader, according
to wine_model_37
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Exercise 5.24. We will now depict the relationship between points and price. When we model the
relationship as linear, we estimate that an extra dollar in price buys and additional 0.0175 points, in
expectation:

wine_tib_3 %>%

m(

points ~ word_count + pos_count + neg_count + as.factor(vintage) +
province + taster_name + variety + price,

data =
%> %

tidy %>%

filter (term == "price")

> # A tibble: 1 x 5

> term estimate std.error statistic p.value
> <chr> <db1> <dbl> <dbl> <db1>
> 1 price 0.0175 0.000184 95.2 0

But this linear specification is overly restrictive, as it gives us only one degree of freedom to capture
the effect of price. In contrast, we will model the effect with 99 degrees of freedom by turning price
into a factor with 100 levels and giving all but the first baseline level its own parameter.

e mutate() wine_tib_3 to define price_group = price %>% ntile(100) %>% as.factor. This new
factor variable divides the sample into 100 groups, based on the percentile of price. For example,
the observations with the lowest 1% of price values have price_group = "1" and the observations
with the highest 1% of price values have price_group = "100".

¢ Run the regression above, but with price_group instead of price.

e tidy() and filter() the result down to the rows in which you can str_detect() "price_group"
in the term column.

e Pipe the resulting tibble into the following assembly line, to create the desired ggplot().

#...
%>%
mutate (
term = #turn term values into integers
term %>%
str_remove ("price_group") %>%
strtoi,
lower_1lim = estimate - gnorm(.975) * std.error,

upper_lim = estimate + gnorm(.975) * std.error
) %>%

ggplot +
aes(
X = term,

y = estimate,
ymin = lower_1lim,

ymax = upper_lim

) +
geom_point() + #this layer plots the estimate values
geom_errorbar () + #this layer plots estimates' 95% confidence intervals
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theme_minimal() +

labs/(

x = "Price Percentile",

y = "Expected Point Surplus, Relative to 1lst-Percentile Wines"
)

e Use str_remove("price_group") %>% strtoi to convert the term values from character strings to
integers.

e Add columns lower_lim = estimate - gnorm(.975) * std.error and upper_lim = estimate +
gnorm(.975) * std.error, which characterize the estimate values’ 95% confidence intervals.

e ggplot() the results, with geom_point() and geom_errorbar() layers, evaluated under x = term,
y = estimate, ymin = lower_lim, and ymax = upper_lim

— The points denote the estimate values, and the error bars depict their 95% confidence
intervals.

— The plot should illustrate that the expected number of points systematically increases with
the price percentile. For example, wines in the 25th, 50th, and 75th price percentiles are
expected to receive two, three, and four more points than otherwise equivalent wines in the
first price percentile.

— Use theme_minimal() and add labs() x = "Price %" and y = "Expected Additional Points,
Relative to 1lst %".

Exercise 5.25. My friend Emily Harbaugh® reviews wines on Instagram’. So I asked her to dictate
to me the following two reviews.

e 2016 California Merlot, Bota Box brand:

review_1 <-
str_c(

"Smells alcholic. Yeah, it definetly does have notes",
"of alchohol. Hold on. It's like pretty jucy. It's",
"light; its not super tannic, which is good because",
"I don't like high tannins. I'm getting like a lot of",
"red fruit---hold on, I'm still drinking it. It's like",
"light---not too full. You know like sometimes you're'",
"like 'wow that's a lot a fruit'? But this one's like",
"lighter. It's actually not that bad. because the one",
"from Cosco tastes a lot like alchohol ---yeah, Costco",
"has a $14.98 bottle of organic red wine, but 1it",
"tastes more like alchohol than this one. Yeah, so, I",
"feel like this is not a bad boxed wine to have on hand.",
sep = " "

o 2017 Argentinian Malbec, National Origin brand (i.e.,. the Costco wine referenced in review_1):

review_2 <-
str_c(

6 (https://www.instagram.com/EmilyHarbaugh/)
"https://www.instagram.com/glougang/
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(https://www.instagram.com/EmilyHarbaugh/)
https://www.instagram.com/glougang/

"So this one has a heavier mouth feel. And it definatly",
"smells more like alchohol, so I don't really enjoy",

"that about that. And it seems like a little more tannic",
"and oaky, because it feels more like there's a fuzz on",
"my tounge after I'm done drinking it. Definatly get like",
"a lot of dark fruits with this one---1like red and black",
"fruits. I would say it like doesn't leave like a great",
"taste in my mouth, but it's alright for a boxed wine,",

"I would suppose. It's like, there's something like",

"kind of spicy. I get a taste like, the one I had",

"before was like lighter and jucier and more enjoyable",
"when drinking than this one. This one's definately like;",
"this one definately smells like alchohol, and I don't",
"like that. Does that work, do you need any other",
"details? A one sentence summary? It is, ahhh, god, a",
"one sentence summary... Not that great, like thick and",
"no real like pronounced fruit flavor. I don't like, I",
"dont like it. I don't know how else to say but.",

"Yeah, it's just like it's not good.",

sep =

Overall, here’s everything I know about the two wines:

emily_wine <-
tribble(
~review_id, ~brand, ~vintage, ~province, ~taster_name, ~variety, ~description,
1, "Bota Box", "2016", "California", "Other", "Merlot", review_1,

2, "National Origin", "2017", "Mendoza Province", "Other", "Malbec", review_2

Both wines have taster_name = "Other" because Emily Harbaugh is not represented in our sample,
and the latter wine has province = "Mendoza Province" because that’s the wine country of Argentina.
We’ll now use our statistical model to anticipate which review would receive a higher score, if they
were published by Wine Enthusiast.

e Use the methodology used to create wine_tib_2 to create emily_wine_2, which equals emily_wine,
but with extra columns word_count, pos_count, and neg_count.
e Pipe wine_model_3 into augment(), with the newdata = emily_wine_2 option.

This exercise serves as a cautionary tale about extrapolating a statistical model beyond the scope of
its training data: since Emily’s reviews deviate drastically from those found on the Wine Enthusiast
website the .fitted values corresponding to her reviews are nonsensical. For example, the model
assigned more points to the less-preferred Costco wine because its review was longer, with more positive
words. In fact, this review had such large word_count and pos_count values that its .fitted value
exceeds 100, which is an impossible score on Wine Enthusiast’s 100-point scale. But, of course, our
linear model isn’t aware of this 100-point ceiling. To accommodate such a cap we must switch from a
linear model to a generalized linear model, which we’ll cover in the next chapter.
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5.2.6 Manipulating Tibbled Lists

wine_model_3 accounts for the reviewers’ average severity. For example, all other things equal, we
would expect Bann, Lee C. Tijima — BKerin 0'Keefe = 0.944 — 0.843 = 0.102 more points from a review by
Anna Lee C. Iijima than one by Kerin O’Keefe. However, our model does not account for the myriad
other ways that reviewers could differ. For example, Roger Voss may have a penchant for Rieslings, or
Lauren Buzzeo may be biased against California reds, or a lengthy review by Jim Gordon may be more
auspicious than one from Joe Czerwinski, or the negative words of Michael Schachner may be more
damning that those of Virginie Boone. To capture their idiosyncrasies, we will create an independent
statistical model for each of the 13 reviewers in wine_tib_3.

We could create these 13 models with 13 distinct 1m() calls:

#Model 1
model_anna <-
wine_tib_3 %>%

filter (taster_name == "Anna Lee C. Iijima") %>%
m(
points ~ variety + as.factor(vintage),
data = .
)
#
#Model 13

model_virginie <-
wine_tib_3 %>%

filter (taster_name == "Virginie Boone") %>%
m(
points ~ variety + as.factor(vintage),
data = .
)

But this approach is cumbersome. So we’ll develop a more a elegant solution, based on nested tibbles.
We'll start by structuring our data by taster_name.

Exercise 5.26. nest() wine_tib_3 by .by = taster_name to create a tibble with two columns:
taster_name and sample, the latter of which stores a collection of tibbles that house all the data
corresponding to a given reviewer.

e The row with taster_name = "Roger Voss" should have a 23560 x 18 tibble in its sample column.
(You can confirm this with glimpse().)

e filter() out the rows with taster_name %in% c("Other", NA).

e <- the result into wine_tib_4.

wine_tib_4 has a sample of data for each of the 13 reviewers:
wine_tib_4

> # A tibble: 13 x 2
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> taster_name sample

> <fct> <list>

> 1 Kerin 0’Keefe <tibble [9,697 x 18]>
> 2 Roger Voss <tibble [23,560 x 18]>
> 3 Paul Gregutt <tibble [8,868 x 18]>
> 4 Michael Schachner <tibble [14,046 x 18]>
> 5 Anna Lee C. Iijima <tibble [4,017 x 18]>
> 6 Virginie Boone <tibble [8,708 x 18]>
> 7 Matt Kettmann <tibble [5,730 x 18]>
> 8 Sean P. Sullivan <tibble [4,461 x 18]>
> 9 Jim Gordon <tibble [3,766 x 18]>
> 10 Joe Czerwinski <tibble [4,766 x 18]>
> 11 Anne Krebiehl Mw <tibble [3,290 x 18]>
> 12 Lauren Buzzeo <tibble [1,700 x 18]>
> 13 Susan Kostrzewa <tibble [1,023 x 18]>

Now we could pluck() out each sample for individual analysis. For example, we could get the distinct()
taster_twitter_handle values of each sample with:

wine_tib_4 %>%
pluck("sample", 1) %>%
distinct(taster_twitter_handle)

> # A tibble: 1 x 1

> taster_twitter_handle
> <chr>

> 1 @kerinokeefe

wine_tib_4 %>%
pluck("sample", 13) %>%
distinct(taster_twitter_handle)

> # A tibble: 1 x 1

> taster_twitter_handle

> <chr>

> 1 @suskostrzewa

But this approach would require calling distinct() 13 times. An easier way to get the distinct()
taster_twitter_handle values is to implement a rowwise() summarise():

#return the taster_name and the taster_twitter_handle
wine_tib_4 %>%
rowwise (taster_name) %>% #putting taster_name inside of rowwise() tells
summarise ( #R to report taster_name in the summarise()
sample %>%
distinct(taster_twitter_handle)
) %>%
head (4)
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> # A tibble: 4 x 2

> # Groups: taster_name [4]

> taster_name taster_twitter_handle
> <fct> <chr>

> 1 Kerin 0’Keefe @kerinokeefe

> 2 Roger Voss @vossroger

> 3 Paul Gregutt @paulgwine

> 4 Michael Schachner @wineschach

This example illustrates a useful technique: splitting wine_tib_4 rowwise() enables summarise() to
access the tibbles inside of the sample list column. Hence, although it’s a list of tibbles, the code inside
of summarise() treats sample as if it were an individual tibble.

Note, this trick would not work if we split the data with a traditional group_by(). Indeed, replacing
rowwise (taster_name) with group_by (taster_name) would yield an error, because while sample appears
to summarise() like a tibble under a rowwise() grouping, it appears to summarise() like a list containing
a tibble under a group_by () grouping. This is the key distinction: the list wrapper is effectively dropped
under the rowwise() grouping, but not under the group_by() grouping. group_by() preserves the list
wrapper because a group_by() cluster can comprise multiple rows, in general, and hence correspond to
multiple sample tibbles. Accordingly, R can’t associate the word sample with any one tibble, without
losing access to the others; hence, it associates the word sample with a list that comprises all the
tibbles in the cluster. In contrast, a rowwise() cluster, by definition, comprises only one row, and
hence corresponds with only one tibble. In this case, R can associate the word sample with this single
tibble, without losing access to any other data.

Let me illustrate with an example:

tib_A <- tibble(date_col = today())

tib_B <-
tibble(
number_col

1:3,
letter_col = c("a", "b", "c")

tiny_tib <-
tibble(
x = c("A", "B"),
y = list(first_list_element = tib_A, second_list_element = tib_B)

tiny_tib

> # A tibble: 2 x 2

> X y

> <chr> <named 1list>

> 1A <tibble [1 x 1]>
>2 B <tibble [3 x 2]>

Splitting tiny_tib rowwise() divides the y list column into tibbles tib_aA and tib_B, which get passed
into summarise() one at a time in the guise of y. Accordingly, under a rowwise() split, summarise()
considers the first value of y to be a tibble with one column named "date_col" and considers the second
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value of y to be a tibble with columns named "number_col" and "letter_col":

tiny_tib %>%
rowwise(x) %>%

summarise(y_is_a_tibble = dis_tibble(y))

> # A tibble: 2 x 2

> # Groups: x [2]

> X y_is_a_tibble
> <chr> <1gl>

> 1A TRUE

> 2B TRUE

tiny_tib %>%
rowwise(x) %>%

summarise(names_of_y = names(y))

EeS

A tibble: 3 x 2
Groups: x [2]

H+

X names_of_y
<chr> <chr>
1A date_col
2B number_col
3B letter_col

V V V V V V VvV

But performing a group_by() split divides y into lists list(first_list_element = tib_A) and
list(second_list_element = tib_B), which get passed into summarise() one at a time. Hence, under
a group_by() split, summarise() considers the first value of y to be a list with one element named
"first_list_element" and considers the second value of y to be a list with one element named
"second_list_element"

tiny_tib %>%
group_by(x) %>%
summarise(y_is_a_tibble = dis_tibble(y))

> # A tibble: 2 x 2

> X y_is_a_tibble
> <chr> <1gl>

> 1A FALSE

> 2B FALSE

tiny_tib %>%
group_by(x) %>%
summarise(y_is_a_list = dis_list(y))

> # A tibble: 2 x 2

> X y_is_a_list
> <chr> <1gl>

> 1A TRUE

> 2B TRUE
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tiny_tib %>%
group_by(x) %>%
summarise(y_is_a_list = names(y))

> # A tibble: 2 x 2

> X y_is_a_list

> <chr> <chr>

> 1A first_list_element
>2 B second_list_element

The upshot is that splitting a tibble of tibbles rowwise() enables us to work with the nested tibbles
directly. For example, we can apply any tibble operation to the 13 tibbles in sample, so long as we
rowwise () split wine_tib_4 before hand:

#get first three rows of each tibble in sample
wine_tib_4 %>%

rowwise (taster_name) %>%

summarise(sample %>% head(3))

> # A tibble: 39 x 19

> # Groups: taster_name [13]
> taster_name review_id word_count pos_count neg_count pos_minus_neg points
> <fct> <int> <int> <int> <int> <int> <int>
> 1 Kerin 0’Keefe 1 22 1 1 0 87
> 2 Kerin 0’Keefe 7 28 4 0 4 87
> 3 Kerin 0’Keefe 14 34 1 1 0] 87
> 4 Roger Voss 2 35 2 0 2 87
> 5 Roger Voss 8 20 1 0] 1 87
> 6 Roger Voss 10 26 4 0 4 87
> 7 Paul Gregutt 3 25 3 0 3 87
> 8 Paul Gregutt 5 38 3 2 1 87
> 9 Paul Gregutt 22 37 3 (0] 3 87
> 10 Michael Schach~ 6 38 3 1 2 87
> # 1 29 more rows
> # 1 12 more variables: title <chr>, description <chr>,
> # taster_twitter_handle <chr>, designation <chr>, variety <fct>,
> # region_1 <chr>, province <fct>, country <chr>, winery <chr>, price <int>,
> # region_2 <chr>, vintage <int>
#get 10th row of each tibble in sample
wine_tib_4 %>%

rowwise (taster_name) %>%

summarise(sample %>% slice(10)) %>%

head (4)
> # A tibble: 4 x 19
> # Groups: taster_name [4]
> taster_name review_id word_count pos_count neg_count pos_minus_neg points
> <fct> <int> <int> <int> <int> <int> <int>
> 1 Kerin 0’Keefe 73 32 1 (0] 1 86
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86
85

> 2 Roger Voss 66 32 3

> 3 Paul Gregutt 252 34 2

> 4 Michael Schachn~ 82 45 2

> # 1 12 more variables: title <chr>, description <chr>,

> # taster_twitter_handle <chr>, designation <chr>, varijety <fct>,

> # region_1 <chr>, province <fct>, country <chr>, winery <chr>, price <int>,
> # region_2 <chr>, vintage <int>

#count number of distinct price points in each tibble in sample
wine_tib_4 %>%
rowwise (taster_name) %>%
summar-ise (
sample %>%
summarise (number_of_prices = n_distinct(price))

%> %

head (4)

> # A tibble: 4 x 2

> # Groups: taster_name [4]

> taster_name number_of_prices
> <fct> <int>
> 1 Kerin 0’Keefe 185
> 2 Roger Voss 329
> 3 Paul Gregutt 95
> 4 Michael Schachner 178

#get min and max "Red Blend'" scores from each tibble in sample
wine_tib_4 %>%
rowwise (taster_name) %>%
summar-ise (
sample %>%
filter(variety == "Red Blend") %>%
summarise (
min_score = min(points, na.rm = TRUE),
max_score = max(points, na.rm = TRUE)

)

%> %

head (4)

> # A tibble: 4 x 3

> # Groups: taster_name [4]

> taster_name min_score max_score
> <fct> <int> <int>
> 1 Kerin 0’Keefe 83 99
> 2 Roger Voss 82 95
> 3 Paul Gregutt 80 97
> 4 Michael Schachner 80 96

This rowwise() trick also works with mutate():
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#add

wine

the number of rows
_tib_4 %>%

rowwise %>%

mu

> #
> #
>

O 0 N O U W N

V V VvV V V V V V V V V V V VvV
I
N B

[
w

#add
wine
ro
mu

> #
> #
>

V V. V V V V V V VvV VvV
© 0 N O U b W N -

> 10
> 11
> 12

tate(row_count = sample %>%

A tibble: 13 x 3
Rowwise:
taster_name
<fct>
Kerin 0’Keefe
Roger Voss
Paul Gregutt
Michael Schachner
Anna Lee C. Iijima
Virginie Boone
Matt Kettmann
Sean P. Sullivan
Jim Gordon
Joe Czerwinski
Anne Krebiehl MW
Lauren Buzzeo
Susan Kostrzewa

first description

_tib_4 %>%

wwise %>%

tate(

first_review =
sample %>%
pull(description)
first

A tibble: 13 x 3
Rowwise:
taster_name
<fct>
Kerin 0’Keefe
Roger Voss
Paul Gregutt
Michael Schachner
Anna Lee C. Iijima
Virginie Boone
Matt Kettmann
Sean P. Sullivan
Jim Gordon
Joe Czerwinski
Anne Krebiehl MW
Lauren Buzzeo

sample

<list>

<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble

%>%

sample

<list>

<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble
<tibble

nrow)

[9,697 x 18]>
[23,560 x 181>
[8,868 x 181>
[14,046 x 181>

[4,017
[8,708
[5,730
[4,461
[3,766
[4,766
[3,290
[1,700
[1,023

X X X X X X X X X

187>
181>
18]>
181>
18]>
187>
18]>
181>
187>

[9,697 x 18]>
[23,560 x 18]>
[8,868 x 18]>
[14,046 x 18]>

[4,017
[8,708
[5,730
[4,461
[3,766
[4,766
[3,290
[1,700

X
X
X
X
X
X
X
X

181>
181>
187>
181>
187>
181>
187>
181>

row_count
<int>
9697
23560
8868
14046
4017
8708
5730
4461
3766
4766
3290
1700
1023

first_review

<chr>

Aromas include tropical fruit, bro~
This s ripe and fruity, a wine th~
Tart and snappy, the flavors of 1li~
Blackberry and raspberry aromas sh~
Savory dried thyme notes accent su~
Soft, supple plum envelopes an oak~
Building on 150 years and six gene~
Aromas of cranberry, barrel spice ~
Very deep in color and spicy-smoky~
This medium-bodied Chardonnay feat~
Freshness characterizes the nose: ~

This 1is a concentrated, fairly ful~
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> 13 Susan Kostrzewa <tibble [1,023 x 18]> Orange blossom and flowers lead on~

#add the mean and median review score
wine_tib_4 %>%
rowwise %>%
mutate (
sample %>%
summarise (
mean_score = mean(points),

median_score = median(points)

)

> # A tibble: 13 x 4

> # Rowwise:

> taster_name sample mean_score median_score
> <fct> <list> <db1> <dbl>
> 1 Kerin 0’Keefe <tibble [9,697 x 18]> 88.9 89
> 2 Roger Voss <tibble [23,560 x 18]> 88.7 88
> 3 Paul Gregutt <tibble [8,868 x 18]> 89.1 89
> 4 Michael Schachner <tibble [14,046 x 18]> 86.9 87
> 5 Anna Lee C. Iijima <tibble [4,017 x 18]> 88.4 88
> 6 Virginie Boone <tibble [8,708 x 18]> 89.2 90
> 7 Matt Kettmann <tibble [5,730 x 18]> 90.1 90
> 8 Sean P. Sullivan <tibble [4,461 x 18]> 88.8 89
> 9 Jim Gordon <tibble [3,766 x 18]> 88.6 89
> 10 Joe Czerwinski <tibble [4,766 x 18]> 88.5 89
> 11 Anne Krebiehl Mw <tibble [3,290 x 18]> 90.6 90
> 12 Lauren Buzzeo <tibble [1,700 x 18]> 87.7 87
> 13 Susan Kostrzewa <tibble [1,023 x 18]> 86.6 87

The last mutate() doesn’t need an =, because its nested summarise() call returns a tibble with the
desired column names.

This rowwise() trick also works with filter():

#keep reviewers with an average score of at least 90
wine_tib_4 %>%
rowwise %>%
filter(
sample %>%

summarise (mean(points) > 90) #this step returns a logical

1 Matt Kettmann <tibble [5,730 x 18]>
2 Anne Krebiehl MW <tibble [3,290 x 18]>

)
> # A tibble: 2 x 2
> # Rowwise:
> taster_name sample
> <fct> <list>
>
>
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#keep reviewers with at least 100 California wine reviews
wine_tib_4 %>%
rowwise %>%
filter( #this filter() applies to wine_tib_4
sample %>%
filter( #this filter() applies to tibbles in sample
province %>%
str_detect("California')
) %>%

summarise(n() >= 100)

)
> # A tibble: 4 x 2
> # Rowwise:
> taster_name sample
> <fct> <list>
> 1 Paul Gregutt <tibble [8,868 x 18]>
> 2 Virginie Boone <tibble [8,708 x 18]>
> 3 Matt Kettmann <tibble [5,730 x 18]>
> 4 Jim Gordon <tibble [3,766 x 18]>

Exercise 5.27. The follow code calculates the number of keywords found in text_to_search:

keywords <- c("tarnished", "corruption", "assassination")

text_to_search <- "Grant: tarnished by numerous corruption scandals"

str_detect(text_to_search, keywords) %>% sum

> [1] 2

Unfortunately, this approach fails if text_to_search is a vector:

keywords <- c("tarnished", "corruption", "assassination")
text_to_search <-
c(
"Johnson: lenient Reconstruction policies",
"Grant: tarnished by numerous corruption scandals",
"Hayes: ended the Reconstruction era",
"Garfield: cut short by assassination",

"Arthur: reforming civil service"

str_detect(text_to_search, keywords) %>% sum

> Error in ‘str_detect() " :
> | Can't recycle “string’ (size 5) to match “pattern’ (size 3).

I could, of course, call str_detect() separately element in text_to_search:
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c(
str_detect("Johnson: lenient Reconstruction policies", keywords) %>% sum,
str_detect("Grant: tarnished by numerous corruption scandals", keywords) %>% sum,
str_detect("Hayes: ended the Reconstruction era", keywords) %>% sum,
str_detect("Garfield: cut short by assassination'", keywords) %>% sum,
str_detect("Arthur: reforming civil service", keywords) %>% sum

>[11062010

But this technique doesn’t scale. Use rowwise() to count the number of keywords in each element of
text_to_search,Vﬁth,only‘one str_detect()

Exercise 5.28. Suppose I wanted to select the employees that are smart, driven, and passionate. The
code below won’t do, as its combines all() logicals across every row. Use rowwise() tells R to evaluate
all() logicals in each row seperately.

tribble(
~employee, ~smart, ~driven, ~passionate,

"A", TRUE, TRUE, FALSE,
"B", FALSE, TRUE, FALSE,
"C", FALSE, FALSE, FALSE,
"D", TRUE, TRUE, TRUE,
"E", FALSE, FALSE, FALSE,
"F", TRUE, TRUE, TRUE

) %>%

filter(all(smart, driven, passionate))

> # A tibble: 0 x 4
> # 1 4 variables: employee <chr>, smart <lgl>, driven <lgl>, passionate <lgl>

Exercise 5.29. Use a rowwise() filter() to limit wine_tib_4 down to the reviewers who used at least
five times as many positive words as negative words.

e Nest a summarise() within the filter() to evaluate sum(pos_count) > 5 * sum(neg_count) for
each tibble in sample.
e ungroup() the result to remove the rowwise() split.

Exercise 5.30. Use a rowwise() mutate() to add the a column to wine_tib_4 called median_length
that reports the median() number of characters in description.

e Nest a summarise() with the mutate() to define median_length = description %>% str_length
%>% median for each tibble in sample.
e ungroup() the result to remove the rowwise() split.

Exercise 5.31. Use a rowwise() summarise() to calculate the correlation between each reviewer’s
pos_count and neg_count.

e Nest a summarise() with the summarise() to calculate pos_neg_cor = cor(pos_count, neg_count)
for each tibble in sample.
e ungroup() the result to remove the rowwise() split.
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5.2.7 Nested Tibble Regressions

We will now use a rowwise() mutate() to run an independent 1m() for each reviewer:

wine_tib_5 <-
wine_tib_4 %>%
rowwise %>%
mutate(
Ims =
sample %>%
m(
points ~ word_count + pos_count + neg_count,
data =
) %>%
list
%>%

ungroup

wine_tib_5

> # A tibble: 13 x 3

> taster_name sample ms
> <fct> <list> <list>
> 1 Kerin 0’Keefe <tibble [9,697 x 18]> <lm>
> 2 Roger Voss <tibble [23,560 x 18]> <lm>
> 3 Paul Gregutt <tibble [8,868 x 18]> <lm>
> 4 Michael Schachner <tibble [14,046 x 18]> <lm>
> 5 Anna Lee C. Iijima <tibble [4,017 x 18]> <lm>
> 6 Virginie Boone <tibble [8,708 x 18]> <lm>
> 7 Matt Kettmann <tibble [5,730 x 18]> <lm>
> 8 Sean P. Sullivan <tibble [4,461 x 18]> <lm>
> 9 Jim Gordon <tibble [3,766 x 18]> <lm>
> 10 Joe Czerwinski <tibble [4,766 x 18]> <lm>
> 11 Anne Krebiehl Mw <tibble [3,290 x 18]> <lm>
> 12 Lauren Buzzeo <tibble [1,700 x 18]> <lm>
> 13 Susan Kostrzewa <tibble [1,023 x 18]> <lm>

The code in the mutate() above ends in list(), because only a list column can store a collection of
linear models.

Unfortunately, if you recall, im() outputs an ugly sort of list. So we’ll now use a rowwise() summarise()

to tidy () to each element of the 1ms list column:

wine_tib_6 <-
wine_tib_5 %>%
rowwise (taster_name) %>%
summarise(lms_tidy = lms %>% tidy %>% list) %>%

ungroup
wine_tib_6
> # A tibble: 13 x 2
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taster_name Ims_tidy

<fct> <list>

Kerin 0O’Keefe <tibble [4 x 5]>
Roger Voss <tibble [4 x 5]>
Paul Gregutt <tibble [4 x 5]>
Michael Schachner <tibble [4 x 5]>
Anna Lee C. Iijima <tibble [4 x 5]>
Virginie Boone <tibble [4 x 5]>
Matt Kettmann <tibble [4 x 5]>
Sean P. Sullivan <tibble [4 x 5]>
Jim Gordon <tibble [4 x 5]>
Joe Czerwinski <tibble [4 x 5]>
Anne Krebiehl Mw <tibble [4 x 5]>
Lauren Buzzeo <tibble [4 x 5]>
Susan Kostrzewa <tibble [4 x 5]>

Again, we use list(), because only a list column can store a collection of tibbles, and we include
taster_name in the rowwise() so that this column is also outputted by summarise().

Exercise 5.32. At a high level, can you figure out a way to compare the pos_count and neg_count
estimates of each reviewer?

Exercise 5.33. We will now get the reviewer-specific effects of pos_count and neg_count on points.

select() the taster_name and lms_tidy columns of wine_tib_6, and unnest() by lms_tidy.
filter() the the result down to the estimates that correspond to pos_count or neg_count.

— You can use str_detect(term, "pos") | str_detect(term, "neg").

— The resulting tibble should have 26 columns an 6
To focus on the statistically significant estimates, set estimate = ifelse(p.value < .05, estimate,
NA).

— This step turns the statistically insignificant estimate values to NA.
pivot_wider () the result into a tibble with columns taster_name, pos_count, and neg_count, the
latter two of which report these variables’ statistically significant coefficient estimates.

— Use id_cols = taster_name to drop the superfluous columns.

The pos_count estimates are almost always significantly positive, but the neg_count estimates are rarely
significantly negative. Perhaps including variety as a control variable will help. We’ll test this next.

Exercise 5.34. We will now incorporate variety into our reviewer-specific regressions.

Modify the code that defines wine_tib_5 and wine_tib_6 to (i) run a regression with formula
points ~ word_count + pos_count + neg_count + variety for each reviewer and (ii) tidy() the
results.

— Perform these two operations in one functional assembly line that translates the sample

column of wine_tib_4 into a list column called 1ms_t1idy.

— Your tibble should have 13 rows and three columns after this step.
ungroup() the result to remove the rowwise() split.
unnest() the tibble, and inspect the estimate values that correspond to neg_count.
Your estimates should be similar to before.

Exercise 5.35. We will now ascertain who is the most sentimental reviewer—the reviewer whose
points are most determined by word_count, pos_count, and neg_count.
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e Use a rowwise() summarise() to glance() each linear model in the 1ms column of wine_tib_5, and
save the results in a list column called 1ms_glance.

e ungroup() the result to remove the rowwise() split.

e unnest() the tibble by lms_glance to append columns r.squared, adj.r.squared, sigma, .., nobs
to wine_tib_5.

o filter() the sample down to the reviewer with the largest r.squared value (i.e., the reviewer
whose points are best explained by our sentiment variables.)

Exercise 5.36. Suppose the review of your wine comprised 40 words, four of which are negative and
none of which are positive. Who would you least want to receive such a review from? In other words,
who do you think would award the fewest number of points to a review with word_count = 40, pos_count
= 0, and neg_count = 47

e Use a rowwise() mutate() to augment() each linear model in the 1ms column of wine_tib_5, with
the option newdata = tibble(word_count = 40, pos_count = 0, neg_count = 4). Save the result
as a list() column called lms_augment.

e unnest() the resulting tibble by 1ms_augment.

e filter() the result down to the row with .fitted == min(.fitted).

e select() this row’s taster_name.

5.2.8 Case Study: Pokemon Battles

We run a Pokemon training program. To determine the best future applicants, we want to analyze
the performance of our past trainees. Their battle outcomes are given in the following tibble, which is
organized by Generation

pokemon_raw %>% head

> # A tibble: 6 x 2

> Generation Battle_Data

> <db1l> <list>

> 1 3 <tibble [10,190 x 12]>
> 2 5 <tibble [10,302 x 12]>
> 3 2 <tibble [6,643 x 12]>
> 4 6 <tibble [5,219 x 12]>
> 5 1 <tibble [10,066 x 12]>
> 6 4 <tibble [7,580 x 12]>

Exercise 5.37. unnest() pokemon_raw to look at the entire sample. Call the result pokemon_battles.
The second and third columns of this tibble specify a trainee pokemon from your program and their
corresponding type, the next two columns specify the competitor and their corresponding type, the
fifth column specifies whether your team’s pokemon won the battle, and the remaining columns further
characterize the competition. For example, the seventh column records the competition’s hit points.

Exercise 5.38. To determine which applicant types we should focus on, convert pokemon_battles into
trainee_type_tib, which has two columns: trainee_type and competition_dat, the latter of which
stores a collection of tibbles.

Exercise 5.39. We want to determine each trainee_type’s toughest competitor_type, after controlling
for the competitor’s HP. That is, we want to determine which competitor_type each trainee_type most
likely lose to, conditional on the competitor having some fixed number of hit points, say HP = 100. To
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this end, use a rowwise() summarise() to run a regression of trainee_win ~ competitor_type + HP for
each tibble in competition_dat, and then tidy() the results into a list column called ests. Save the
resulting tibble as est_tib.

Exercise 5.40. Use the estimates in est_tib to determine each trainee_type’s toughest competi-
tor_type, after controlling for the competitor’s HP.

Exercise 5.41. We now want to determine how each trainee responds to the various competitor
attributes. Create a tibble with two columns: trainee and ests, the latter of which gives the coefficient
estimates for the trainee-specific regression of trainee_win on HP, Attack, Defense, SpAtk, SpDef, and
Speed. Call the output trainee_est_tib.

Exercise 5.42. Use trainee_est_tib to determine the pokemon who’s most susceptible to competitor
Speed—i.e., the trainee whose winning probability most degrades as the opponent’s Speed increases.

Exercise 5.43. Create a histogram of the estimate values in trainee_est_tib by term.

5.3 Lab: Supply Chain Proximity

5.3.1 Objective

Since it’s harder to collaborate with far-flung suppliers, Bray et al. [2019a] theorized that geographically
dispersed supply chains will produce lower quality goods. They tested this hypothesis with a dataset
that tracks the flow of thousands of auto parts through hundreds of component factories and auto
assembly plants, and concluded that “supply chain distance lowers product quality.” Specifically, they
estimated that “increasing the distance between an upstream component factory and a downstream
assembly plant by an order of magnitude increases the component’s expected defect rate by 3.9%.”

The authors buttressed their claim that auto parts are more prone to failure when they’re made in
factories that are further from the auto assembly plant with three sets of linear regressions, which they
characterize in three plots, reproduced in figures 5.1-5.3. These plots correlate a car part’s defect rate
with the distance between the upstream factory that produced the car part and the downstream factory
that produced the corresponding car. We’ll create an updated version of these plots with an updated
sample.

5.3.2 Data
You created a tibble called cars_raw in exercise 1.43 of section 1.3. This tibble has 13 columns:

e assembler, brand, and model: Automaker, car brand, and car model. For example, the 19th row
has assembler = "ZHEJIANG GEELY HOLDING GROUP CO.", brand = "vOLVO", and model = "XC70"
because the Zhejiang Geely Holding Group owns the Volvo brand, which produces the XC70
station wagon.

e year: Production year of the car. We observe different car models in different years.

e module and part: High-level and low-level description of the car part.

e defects: The number of NHTSA defect reports per 10 million vehicle-years of registration. For
example, if 1 million cars were each driven for 10 years and in that time there were 5 defects
reported to the NHTSA then this car part would have defects = 5. This variable is 10 million
times the Defect Rate variable of Bray et al. [2019a].

e lat_d and lon_d: Latitude and longitude of the downstream assembly plant—i.e., where the car
is built.
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Figure 5.1: Supply Chain Distance and Product Quality by Component Type
These scatter plots illustrate how defects respond to distance. We depict the fitted regression curve
with a line, which is black when the slope is significantly different from zero and white otherwise. We
depict the regression curves’ 95% confidence intervals with gray bands.

e lat_u and lon_u: Latitude and longitude of the upstream component factory—i.e., where their
car part is made.

The one variable we’re missing is the distance between the upstream and downstream factories. In
the end notes of their article, Bray et al. [2019a] explained that “We use Vincenty’s (1975) formula
to calculate geographic distances from latitudes and longitudes” Vincenty’s formula® provides the
distance between two points on a spheroid”, which is a more accurate representation of the Earth
than a perfect sphere. We’ll calculate this formula with the distVincentyEllipsoid() function of the
geosphere package, which you can install and load with the following;:

library(geosphere)

The distVincentyEllipsoid() function takes two vectors, each of which contain a longitude and a
latitude, and returns the distance between the points, in meters. For example, the following calculates
the number of meters between Moscow and Kiev:

moscow_coords <- ¢(55.7558, 37.6173) #(longitude, latitude)
kiev_coords <- c(50.4501, 30.5234)

8https://en.wikipedia.org/wiki/Vincenty%27s_ formulae
9https://en.wikipedia.org/wiki/Spheroid
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Figure 5.2: Supply Chain Distance and Product Quality by Car Brand

This figure recreates the plots of figure 5.1, by car brand.

distVincentyEllipsoid(moscow_coords, kiev_coords)

> [1] 926430.1

Unfortunately, distvincentyEllipsoid() is a old function, with an outdated syntax. So rather than
distVincentyEllipsoid(lon_1, lat_1, lon_2, lat_2), we must invoke this function with the more
cumbersome distVincentyEllipsoid(c(lon_1, lat_1), c(lon_2, lat_2)). This awkward notation
makes constructing a distance variable somewhat tricky.

Exercise 5.44. We will now derive a distance variable from lon_u, lat_u, lon_d, and lat_d.

. Apply a rowwise() mutate() to cars_raw to define distance = distVincentyEllipsoid(c(lon_u,
lat_u), c(lon_d, lat_d)).
— Rather than vectors, the rowwise() grouping ensures that lon_u, lat_u, lon_d, and lat_d
are treated as individual numbers, which distVincentyEllipsoid() requires.
e ungroup() the result and drop the lon_u, lat_u, lon_d, and lat_d columns.
e <- the result into cars_tib.
— This tibble should have mean(distance = 5250756).

5.3.3 Analyze

We'll gradually construct our version of figures 5.1 and 5.2.

Exercise 5.45. Create a geom_point(size = .1) ggplot of the x = distance and y = defects variables
of cars_tib.
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We create this plot in four steps. First, we turn distance into a factor with 100 levels, based
on this variable’s percentiles. Second, we reexpress defects in percentile terms. Third, we regress
the defects percentiles on the distance, brand, and part factors. Fourth, we plot the 99 distance
coefficient estimates and their corresponding 90% confidence intervals.

e facet_wrap() by module, with scales = "free".
e Tidy the result with theme(strip.background = element_blank()) and add axis labs() x = "Dis-
tance" and y = "Defects".

e <- the result into base_plot.

Exercise 5.46. We will now streamline our plot to the 40 most common module values.

o Create a tibble called module_sample that comprises the 40 most common module levels in
cars_tib.
— This tibble should have 23762 rows.
e Use fct_relevel(sort) to alphabetize the module levels in in module_sample.
— This step will ensure that the facets in our plot are arranged alphabetically.
e %+% module_sample to base_plot and + an additional geom_smooth(method = "1m") layer.
e Log-transform the axes with scale_x_logl0() and scale_y_logl6().
e <- the result into module_plot.

Exercise 5.47. Create an analogous plot for car brands. Your plot should depict the 28 most common
car brand values. Try to recreate the code from memory, rather than blindly copy the code from above.

Exercise 5.48. Whereas the regression lines in module_plot and brand_plot area always black, the
regression lines in the figure at the beginning of the slide deck are black when p.value < 0.05 and
are white otherwise. At a high level, how could we make the color of our regression lines depend on
whether they are statistically different from zero? There is no simple option in ggplot that does this
for us.
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The following exercises will add color to our trend lines.

Exercise 5.49. We will now add a column to module_sample that indicates whether the regression of
defects on distance is statistically significant.

e nest() module_sample .by module, so that it has two columns: module and module_t1ib, the latter
of which is a column of nested tibbles.
— module = "EXHAUST" should correspond to a nested tibble with 683 rows.
e Use a rowwise() mutate() to apply Im(loglo(defects) ~ logl@(distance), data = .) %>% tidy
to each tibble in the module_tib column and save the outputs in a list column called reg_ests.
— This step will run a regression of log() defects on log() distance for each, module, and
then it will tidy() the regression outputs.
— We log() the defects and distance values to match our log-transformed ggplot axes.
e ungroup() and unnest() the tibble by reg_ests.
e filter() the resulting tibble down to the observations with term == "logl0(distance)".
e Use ifelse() to define significance as a variable that equals "Significant" if p.value < 0.05
and equals "Insignificant" otherwise.
e unnest() the module_tib list column and <- the result into module_sample_2.
— This tibble should have 23762 rows.

Exercise 5.50. We will now color the trend lines of module_plot to indicate whether they are statis-
tically significant.

e %+% module_sample_2 to module_plot.
e Color code the trend lines by adding geom_smooth(method = "1m", aes(color = significance)).
— Embedding the aes() within a geom_smooth() indicates that we want the color coding to
apply to the regression lines but not to the scatter plot points.
e Tidy the plot with theme(legend.position = 'top', legend.title = element_blank()).
e <- the result into module_plot_2.

Exercise 5.51. We will now create a brand-based version of module_plot_2.

e Convert brand_sample into brand_sample_2 in the same way that you converted module_sample
into module_sample_2.
— In other words, add a significance column to brand_sample.
e %+% brand_sample_2 to module_plot_2.
e facet_wrap() by brand.

We will now create our version of figure 5.3. Whereas the regressions underlying figures 5.1 and 5.2
capture the effect of distance on defects with a single parameter, the regression underlying figure 5.3
captures this effect with 99 parameters. Specifically, it uses the following statistical model:

defects pct =f, + [ - (dist__pct == 2) 4+ --- + 1o - (dist_pct == 100)
+ /BAIRBAGS . (part == “AIRBAGS”) + -+ /BWIRING . (part == “WIRING”)
+ Baup; - (brand == “AUDI”) + - 4+ Byorvo - (brand == “VOLVO”),

where dist_pct = ntile(distance, n = 100) is the distance percentage and defects_pct = per-
cent_rank(defects) is the defect rate percentage. However, while dist_pct and defects_pct are both
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expressed in percentile terms, the former takes integer values between 1 and 100 the latter takes frac-
tional values between 0 and 1 (e.g., it has values 0.4999580, 0.5000000, and 0.5000420).

The dummy variables enable each part, brand, and dist_pct to have its own distinct offset. We will
plot the dist_pct offset estimates, BQ, ---,ﬁAlOO, which denote the expected defects_pct when distance
is in its second through hundredth percentiles, relative to the benchmark case in which the distance
is in its first percentile. For example, we will get Bso = (0.0732, which indicates that lengthening a
component’s supply chain distance from the first percentile to the 80th percentile would increase its
expected defects_pct by 0.0732. Our plot will illustrate that the dist_pct estimates generally increase
from 52 to 3100, and hence that we should expect more defects with larger dist_pct values.

Exercise 5.52. We will now illustrate the relationship between the percentile of distance and the
percentile of defects with a plot that’s analogous to figure 5.3.

e Use the data in cars_tib to run a regression with defects_pct ~ as.factor(dist_pct) + part +
brand, where defects_pct = percent_rank(defects) and dist_pct = ntile(distance, n = 100).
e tidy() the result and filter() out the rows that do not pertain to dist_pct.
e Use str_remove_all("[*0-9]") and strtoi() to turn term into an integer.
— This step should replace the character string "as.factor (dist_pct)44" with the number 44.
e Define upper_1lim = estimate + qnorm(.975) * std.error and lower_1lim = estimate - gnorm(.975)
* std.error, which characterize the 95% confidence interval of our estimate.
e ggplot() the results, depicting the estimate values with a geom_point() layer and the upper_Llim
and lower_1lim values with a geom_errorbar() layer.

5.3.4 Explore

Exercise 5.53. Create a function called add_statistical_significance_of_module() that performs
the operation outlined in exercise 5.49. Your function should add a significance column to any tibble
that looks like module_sample. For example, it should map module_sample to module_sample_2

Exercise 5.54. The following code uses add_statistical_significance_of_module() to improve mod-
ule_plot_2. The plot this code produces better illustrates the positive relationship between distance
and defects: whereas only 18 had a statistically significant relationship in the old plot, 22 have a sta-
tistically significant relationship in the new plot. Provide thorough comments that explain this code
in detail.

expand_grid(
trim_distance = seq(0, .05, .01),
trim_defects = seq(0, .05, .01)
) %>%
rowwise %>%
mutate(

num_signif

module_sample %>%

filter(
percent_rank(distance) > trim_distance,
percent_rank(distance) < 1 - trim_distance,
percent_rank(defects) > trim_defects,
percent_rank(defects) < 1 - trim_defects,
.by = module

) %>%
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add_statistical_significance_of_module %>%
distinct(module, significance) %>%
summarise(significance = mean(significance == "Significant")) %>%
pull(significance)
) %>%
ungroup %>%
filter (num_signif == max(num_signif)) %>%
rowwise %>%
mutate(
data =
module_sample %>%
filter(
percent_rank(distance) > trim_distance,
percent_rank(distance) < 1 - trim_distance,
percent_rank(defects) > trim_defects,
percent_rank(defects) < 1 - trim_defects,
.by = module
) %>%
add_statistical_significance_of_module %>%
list,
plot = (module_plot_2 %+% data) %>% Llist
) 9%>%
pluck("plot", 1)

Exercise 5.55. Modify the code above to further improve the plot. Specifically, add a third dimension
to the initial expand_grid() to give yourself additional degrees of freedom to further strengthen the
positive relationship between distance and defects.

Exercise 5.56. Are you sure that your final plot is better than module_plot_2? Which plot more
faithfully represents the relationship between distance and defects?

5.3.5 Reflect

Exercise 5.57. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

5.4 Commentary

5.4.1 Tibbles are Lists

Here’s an important but potentially misleading fact: tibbles are actually a special kind of list. Indeed, all
tibbles are lists, but not all lists are tibbles. For example, in addition to being a tibble, rows_are_lines
is also a list:

rows_are_lines %>% is_Tlist

> [1] TRUE

Specifically, it’s a list of four elements:
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rows_are_Llines %>% length

> [1] 4

The list’s elements correspond to the tibble’s columns. For example, the fourth element of the list is
the character string vector stored in the text column.

rows_are_lines %>% pluck(4) %>% head

[1] "CHAPTER 1"

[2] "The family of Dashwood had long been settled in Sussex. Their estate"
[3] "was large, and their residence was at Norland Park, in the centre of"
[4] "their property, where, for many generations, they had 1lived in so"

[5] "respectable a manner as to engage the general good opinion of their"

vV V V V V VvV

[6] "surrounding acquaintance. The late owner of this estate was a single"

In general, a tibble is a list whose elements are vectors of equal length. But having equally lengthed
vectors as elements does not necessarily make a list a tibble:

tiny_Tlist <-
list(
X = 1:2,
y = ¢("a", "b"),

z = c¢(TRUE, FALSE)
)
tiny_Tlist
> $x
> [1] 1 2
>
> Sy
> [1] "a" "b"
>
> Sz
> [1] TRUE FALSE

tiny_list %>% is_tibble

> [1] FALSE

But such a list can be turned into a tibble (unlike most other lists):

tiny_list %>%

as_tibble
> # A tibble: 2 x 3
> Xy z
> <int> <chr> <lgl>
> 1 1 a TRUE
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> 2 2 b FALSE

Since tibbles are lists, all the list functions defined in the next section apply to tibbles.

5.4.2 Common List Functions
Most standard tibble functions have a list analog. For example, the list analog of

e glimpse() is str(),

e pull() or select() is pluck(),

e mutate() is list_modify()

e filter() is keep() or discard(),

e summarise() is map(),

e dnner_join() is map2(), and

e pivot_wider() iS nest() or transpose(), and
e pivot_longer() is unnest() or transpose().

I will now illustrate each of these functions, besides pluck(), map(), nest(), and unnest(), which we
covered in the lecture.

First str() is analogous to glimpse():

jane %>% str

> List of 3

> $ novel_1l:List of 4

> ..$ title : chr "Sense & Sensibility"

> ..S$ pub_date : Date[1:1], format: "1811-02-01"
> ..$ word_count : num 119394

> ..$ protagonist: chr "elinor dashwood"

> $ novel_2:List of 4

> ..$ title : chr "Pride & Prejudice"

> ..$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189

> .$ protagonist: chr "elizabeth bennet"

> $ novel_3:List of 4

> .$ title : chr "Mansfield Park"

> .$ pub_date : Date[1:1], format: "1814-07-01"
> .$ word_count : num 159381

> .$ protagonist: chr "fanny price"

Next, 1ist_modify() is analogous to mutate():

#add a fourth book
jane %>%
list_modify (
novel_4 =
Tist(
title = "Emma",
pub_date = "23 December 1815" %>% dmy,
word_count = 155887,
protagonist = "emma woodhouse"
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)

) %>%

str
> List of 4
> $ novel_l:List of 4
> ..$ title : chr "Sense & Sensibility"
> ..$ pub_date : Date[1:1], format: "1811-02-01"
> ..$ word_count : num 119394
> ..$ protagonist: chr "elinor dashwood"
> $ novel_2:List of 4
> ..$ title : chr "Pride & Prejudice"
> ..S$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> $ novel_3:List of 4
> .$ title : chr "Mansfield Park"
> .$ pub_date : Date[1:1], format: "1814-07-01"
> .$ word_count : num 159381
> ..$ protagonist: chr "fanny price"
> $ novel_4:List of 4
> .$ title : chr "Emma"
> .$ pub_date : Date[1:1], format: "1815-12-23"
> .$ word_count : num 155887
> .$ protagonist: chr "emma woodhouse"

#remove first book
jane %>%
list_modify(novel_1 = NULL) %>%

str
> List of 3
> $ novel_1: NULL
> $ novel_2:List of 4
> ..$ title : chr "Pride & Prejudice"
> .$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> $ novel_3:List of 4
> .$ title : chr "Mansfield Park"
> .$ pub_date : Date[1:1], format: "1814-07-01"
> .$ word_count : num 159381
> .$ protagonist: chr "fanny price"

#replace first book with "Unavailable"
jane %>%
list_modify(novel_1 = "Unavailable") %>%
str
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> List of 3

> $ novel_1l: chr "Unavailable"

> $ novel_2:List of 4

> ..$ title ¢ chr "Pride & Prejudice"

> ..$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189

> ..$ protagonist: chr "elizabeth bennet"

> $ novel_3:List of 4

> .$ title : chr "Mansfield Park"

> .$ pub_date : Date[1:1], format: "1814-07-01"
> .$ word_count : num 159381

> .$ protagonist: chr "fanny price"

#add and change attributes of first book:
jane %>%
list_modify(

novel_1 =
list(
publisher = "Thomas Egerton",
protagonist = "marianne dashwood"
)
%> %
str

> List of 3
> $ novel_1l:List of 5
> .$ title : chr "Sense & Sensibility"
> .$ pub_date : Date[1:1], format: "1811-02-01"
> .$ word_count : num 119394
> .$ protagonist: chr "marianne dashwood"
> ..$ publisher : chr "Thomas Egerton"
> $ novel_2:List of 4
> ..$ title ¢ chr "Pride & Prejudice"
> ..$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> $ novel_3:List of 4
> ..$ title : chr "Mansfield Park"
> ..$ pub_date : Date[1:1], format: "1814-07-01"
> ..$ word_count : num 159381
> ..$ protagonist: chr "fanny price"

The first example above adds a list to jane. The second example removes a list from jane by setting it
to the special keyword NULL (which is not to be confused with NA). The third example redefines novel_1
from a list to a character string. And the last example modifies the elements of the novel_1 list. Note
that this last case departs from the standard convention. Logically, the fourth 1ist_modify() should set
novel_1 to list(publisher = "Thomas Egerton", protagonist = "marianne dashwood"), but it doesn’t.
Instead, the operation collates the two elements of 1ist(publisher = "Thomas Egerton", protagonist
= "marianne dashwood") with the four elements of the original novel_1 list. Indeed, whenever we ask
list_modify() to replace one list with another list, the function takes the liberty of combining the
elements of the two lists. And this is a pretty useful protocol. For example, we can use it to add an

349



antagonist attribute to each of our lists:

jane %>%
list_modify (
novel_1 = list(antagonist = "John Willoughby"),

novel_2 = list(antagonist = "George Wickham"),
novel_3 = list(antagonist = "Mrs. Norris'")
) 9%>%

str
> List of 3
> $ novel_1l:List of 5
> .$ title : chr "Sense & Sensibility"
> .$ pub_date : Date[1:1], format: "1811-02-01"
> .$ word_count : num 119394
> .$ protagonist: chr "elinor dashwood"
> ..$ antagonist : chr "John Willoughby"
> $ novel_2:List of 5
> .$ title : chr "Pride & Prejudice"
> .$ pub_date : Date[1:1], format: "1813-01-28"
> .$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> ..$ antagonist : chr "George Wickham"
> $ novel_3:List of 5
> .$ title : chr "Mansfield Park"
> $ pub_date : Date[1:1], format: "1814-07-01"
> ..$ word_count : num 159381
> .$ protagonist: chr "fanny price"
> $ antagonist : chr "Mrs. Norris"

Adding this antagonist feature would be more difficult if 1ist_modify() were more literal-minded.

Exercise 5.58. Redefine novel_1 to list(title = "Lady Susan", protagonist = "susan")

e Use NULL to delete the Sense € Sensibility attributes.

Exercise 5.59. Use NULL to remove the word_count of novel_2.

Unfortunately, it’s not as easy as it should be to reference list elements within list_modify(). For
example, the following would ideally str_to_title() the protagonist of novel_1:

jane %>%
list_mod1ify(
novel_1 =
list(
protagonist =
novel_1 %>%
pluck("protagonist") %>%
str_to_title
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%>%

str

> Error: object 'novel_1' not found

But, regrettably, list_modify() doesn’t know what to make of novel_1 when it’s positioned to the
right of the = sign. Here’s the (slightly dissatisfying) solution:

jane %>%
list_modify (
novel_1 =
list(
protagonist =
pluck(., "novel_1", "protagonist") %>%
str_to_title

)

) 9%>%

str
> List of 3
> $ novel_l:List of 4
> ..$ title : chr "Sense & Sensibility"
> ..$ pub_date : Date[1:1], format: "1811-02-01"
> ..$ word_count : num 119394
> ..$ protagonist: chr "Elinor Dashwood"
> $ novel_2:List of 4
> ..$ title : chr "Pride & Prejudice"
> ..S$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> $ novel_3:List of 4
> ..$ title : chr "Mansfield Park"
> ..$ pub_date : Date[1:1], format: "1814-07-01"
> ..$ word_count : num 159381
> ..$ protagonist: chr "fanny price"

In this case, R interprets the . as jane, since that’s what got piped into list_modify().

Exercise 5.60. Add an attribute to the three lists in jane called pub_wday, which equals the wday (label
= TRUE) of the pub_date.

e Within list_modify(), you can reference the first novel’s publication date with pluck(.,
"novel_1", "pub_date").

Exercise 5.61. Use map() and list_modify() to round() the word_count values in jane to the nearest
thousand. For example, the Pride & Prejudice word_count should change to 122189 %>% round(digits
= -3) = 122000.

Exercise 5.62. Use map() and list_modify() to str_to_lower() the title values in jane.
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keep() is analagous to filter(). It applies to each element in the list a function—or an anonymous
function—that yields a logical, and it keeps the elements for which this logical is TRUE.

#get the character strings in mansfield

mansfield %>%

keep (is.character)

stitle
[1] "Mansfield Park"

$protagonist

vV V V V VvV

[1] "fanny price"

#get books published after 1812
jane %>%
keep (
~.oX %>%
pluck("pub_date") %>%
year %>%

.$ word_count : num 159381
.$ protagonist: chr "fanny price"

{. > 1812}

str
> List of 2
> $ novel_2:List of 4
> ..$ title : chr "Pride & Prejudice"
> ..$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189
> ..$ protagonist: chr "elizabeth bennet"
> $ novel_3:List of 4
> .$ title : chr "Mansfield Park"
> .$ pub_date : Date[1:1], format: "1814-07-01"
>
>

#get books with "&'" in the title
jane %>%
keep (
~.X %>%
pluck("title") %>%
str_detect("&")
) 9%>%

str
> List of 2
> $ novel_l:List of 4
> .$ title : chr "Sense & Sensibility"
> ..$ pub_date : Date[1:1], format: "1811-062-01"
> .$ word_count : num 119394
> .$ protagonist: chr "elinor dashwood"
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> $ novel_2:List of 4

> ..$ title : chr "Pride & Prejudice"

> ..$ pub_date : Date[1:1], format: "1813-01-28"
> ..$ word_count : num 122189

> ..$ protagonist: chr "elizabeth bennet"

The second and third examples use an anonymous function, rather than a stand-alone function, to
determine which elements to keep. For example, the last example tells R to evaluate novel_1 %>%
pluck("title") %>% str_detect("&"), novel_2 %>% pluck("title") %>% str_detect("&"), and novel_3
%>% pluck("title") %>% str_detect("&"), and to retain the books for which this output is TRUE. But
the ~.x %>% term is unnecessary if we’re applying a single function without options. For example, the
first example tells R to apply is.character() to each attribute in mansfield and keep those for which
this is TRUE.

In addition to keep() there is discard(), which drops the elements that meet the specified condition:
#remove the character strings in mansfield

mansfield %>%
discard(is.character)

$pub_date
[1] "1814-07-01"

Sword_count
[1] 159381

vV V V V VvV

#remove books published after 1812
jane %>%
discard(
~.X %>%
pluck("pub_date") %>%
year %>%

{. > 1812}
%> %
str
> List of 1
> $ novel_1l:List of 4
> .$ title : chr "Sense & Sensibility"
> .$ pub_date : Date[1:1], format: "1811-02-01"
> .$ word_count : num 119394
> ..$ protagonist: chr "elinor dashwood"

#remove books with "&" in the title
jane %>%
discard(
~.X %>%
pluck("title") %>%
str_detect("&")
) 9%>%

353



str

> List of 1

> $ novel_3:List of 4

> ..S$ title : chr "Mansfield Park"

> ..$ pub_date : Date[1:1], format: "1814-07-01"
> ..$ word_count : num 159381

> ..$ protagonist: chr "fanny price"

Exercise 5.63. Use is.Date() to discard() the Dates in mansfield.
Exercise 5.64. keep() only the books of jane that are at least 120000 words long.

Exercise 5.65. Use map_df(), keep(), and is.character() to tabulate all the character strings in jane.

The list version of inner_join() is map2(), which takes two lists of equal length and combines their
elements with a functional assembly line. For example, the following adds a first_sentence attribute
to jane:

s_1 <- "The family of Dashwood had long been settled in Sussex."
s_2 <-
str_c(
"It is a truth universally acknowledged,",
"that a single man in possession of a good fortune,",
"must be in want of a wife.",

sep = non

jane %>%

map2 (

list(s_1, s_2, NULL),

~.x %>% list_modify(first_sentence = .y)
)
Snovel_1

[1] "list(title = \"Sense & Sensibility\", pub_date = -58043, word_count = 1..."

Snovel_2
[1] "ldist(title = \"Pride & Prejudice\", pub_date = -57316, word_count = 122..."

Snovel_3
[1] "list(title = \"Mansfield Park\", pub_date = -56797, word_count = 159381..."

vV V V V V V V VvV

The map2() function receives the left-hand list (LHL) jane and the right-hand list (RHL) list(s_1,
s_2, NULL). (I made the third element of the RHL NuLL, because the first sentence of Mansfield Park
is really long.) map2() also receives the functional assembly line ~.x %>% list_modify(first_sentence
= .y), where .x is a place-holder for the LHL element and .y is a place-holder for the RHL element.
Thus, the first element that map2() returns is
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list(
title = "Sense & Sensibility",
pub_date = "1 February 1811" %>% dmy,
word_count = 119394,
protagonist = "elinor dashwood"

) %>%
list_modify(first_sentence = s_1)

$title
[1] "Sense & Sensibility"

Spub_date
[1] "1811-02-01"

$word_count
[1] 119394

$protagonist
[1] "elinor dashwood"

$first_sentence

V V VvV VvV VvV VvV V V V V V V V VvV

[1] "The family of Dashwood had long been settled in Sussex."
And the third element that map2() returns is

mansfield %>%
list_modify(first_sentence = NULL)

Stitle
[1] "Mansfield Park"

$pub_date
[1] "1814-07-01"

Sword_count
[1] 159381

$protagonist
[1] "fanny price"

$first_sentence

>
>
>
>
>
>
>
>
>
>
>
>
>
> NULL

Note, the NULL tells R not to bother giving this book a first_sentence attribute.

map2 () allows us combine the elements in the LHL with those of the RHL in any which way, depending
on how we combine the .x and .y terms in the functional assembly line. Here are some examples:'®

10Tn practice, I would use ~ if(.y) pluck(.x, 1) else pluck(.x, 2) or ~ pluck(.x, 2 - .y) instead of ~.x %>% {if(.y)
pluck(., 1) else pluck(., 2)} in the second example. But for consistency I'll stick to the ~.x %>% convention in this text.
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#paste together strings
List("First Name", "Last Name") %>%

map2 (
List("Gertrude", "Bray"),
~.X %>% str_c(.y, sep = ": ")
)
> [[11]
> [1] "First Name: Gertrude"
>
> [[2]]
> [1] "Last Name: Bray"

#pick TRUE or FALSE statements
list(
list("earth 1is round", "earth is flat"),
list("water 1is wet", "water is dry"),
Tist("2 + 2 = 4", "2 + 2 = 5")
) %>%
map2 (
list(TRUE, FALSE, TRUE),
~.x %>% {if(.y) pluck(., 1) else pluck(., 2)}

([1]]

[1] "earth s round"

[[2]1]
[1] "water dis dry"

(L311]
[1] "2 + 2 = 4"

vV V V V V V V VvV

#apply function list to number list
list(a = 10:20, b = 100:200, c = 1000:2000) %>%
map2 (
list(mean, median, sum),

~.X %>% .y

Sa
[1] 15

$b
[1] 150

$c
[1] 1501500

vV V V V V V V VvV

In the last case, the RHL comprises three functions—as I said, lists can store anything—and the
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functional assembly line tells R to pipe the LHL elements into these functions. Hence, map2() returns
1ist(10:20 %>% mean, 100:200 %>% median, 1000:2000 %>% sum) = list(15, 150, 1501500).

And like map_df (), we analogously have map2_df():

#apply different functions to different vectors
list(a = 10:20, b = 100:200, c = 1000:2000) %>%
map2_df(
list(mean, median, sum),

~.X %>% .y

# A tibble: 1 x 3
a b C
<db1l> <int> <int>
1 15 150 1501500

Exercise 5.66. Use map2() to create the following list:

S$novel_1
[1] "Sense & Sensibility"

>

>

>

> $novel_2

> [1] 122189
>

>

>

Snovel_3
[1] "fanny price"

Exercise 5.67. Use map2() to list_modify() the protagonist attribute with a characters attribute,
which should be c("elinor dashwood", "marianne dashwood") for novel_1, c("elizabeth bennet", "mr.
darcy") for novel_2, and c("fanny price", "lady bertram", "mrs. norris") for novel_3. Call the
resulting list jane_2.

Exercise 5.68. Use map2() to add "John Willoughby" as the antagonist of novel_1, "George Wickham"
as the antagonist of novel_2, and "Mrs. Norris" as the antagonist of novel_3.

Exercise 5.69. Use map2_df() to create the following tibble:

> # A tibble: 1 x 3

> novel_1 novel_2 novel_3
> <chr> <db1l> <chr>

>

1 Sense & Sensibility 122189 fanny price

Exercise 5.70. Start with jane_2, from exercise 5.67, and discard() the books with more than two
listed characters. Then tabulate the remaining title values with map_df(). (The output should be a
tibble comprising "Sense & Sensibility" and "Pride & Prejudice".)

e Note that c("a", "b", "c") %>% length %>% {.>2} = TRUE.

Another list analog of pivot_longer() and pivot_wider() is transpose(). This function rearranges a
list of lists or a list of vectors. For example, we can transpose() jane from three length-four lists to
four length-three lists:
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#origional list:

jane

V V. V vV V vV vV vV VvV VvV V vV V V VvV V V V V V V V V V V V V V V V V V V V V V V V V V

Snovel_1
Snovel_1S$title
[1] "Sense & Sensibility"

$novel_1$pub_date
[1] "1811-02-01"

Snovel_1lSword_count
[1] 119394

$novel_l$protagonist
[1] "elinor dashwood"

Snovel_2
Snovel_2$title
[1] "Pride & Prejudice"

$novel_2$pub_date
[1] "1813-01-28"

Snovel_2Sword_count
[1] 122189

$novel_2S$protagonist
[1] "elizabeth bennet"

S$novel_3
Snovel_3stitle
[1] "Mansfield Park"

$novel_3$pub_date
[1] "1814-07-01"

$novel_3$word_count
[1] 159381

$novel_3S$protagonist
[1] "fanny price"

#transposed list:

jane %>%

>

transpose

$title
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StitleSnovel_1
[1] "Sense & Sensibility"

StitleSnovel_2
[1] "Pride & Prejudice"

StitleSnovel_3
[1] "Mansfield Park"

$pub_date
$pub_date$novel_1
[1] "1811-02-01"

$pub_date$novel_2
[1] "1813-01-28"

$pub_date$novel_3
[1] "1814-07-01"

$word_count
Sword_count$novel_1
[1] 119394

Sword_countS$novel_2
[1] 122189

Sword_count$novel_3

[1] 159381

$protagonist
$protagonistsSnovel_1
[1] "elinor dashwood"

$protagonist$novel_2
[1] "elizabeth bennet"

$protagonist$novel_3

V V. V. V V vV vV VvV VvV VvV vV vV V V V V V V V V V V V V V V V V V V V V V V V V V V V V V

[1] "fanny price"

As you see, transpose() flips the list nesting order: whereas jane organizes the data by book, jane
%>% transpose organizes the data by attribute. Or whereas wine_list groups the data by bottle of
wine, wine_list %>% transpose groups the data by wine attribute—the names of its sublists are points,

title, description, taster_name, etc.

It’s often useful to transpose() a tibble into a more conventional list. For example, wine_tib organizes
the data by attribute, grouping all the taster_name values in one vector and all the variety values in
another vector, etc. But wine_tib %>% transpose groups the data by wine bottle, as wine_list does.

Finally, it’s sometimes it’s easier to work with a list after you transpose() it. Indeed, a common
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strategy is to transpose() a list, modified it, and then transpose() it back to the original configuration,
a technique you’ll use in the following exercise.

Exercise 5.71. We will now remove all the non-character-string data in jane.

e transpose() jane so that it comprises four lists: title, pub_date, word_count, and protagonist
Each of these lists corresponds to a single data type. For example, all the elements of title are
character strings and all the elements of pub_date are Dates.

e keep() only the lists that store character strings.

— pluck() the first element and test whether it is.character().
e transpose() the list back into one with elements novel_1, novel_2, and novel_3

5.4.3 Vectorize Function Inputs

There’s a fixed overhead associated with every R function call. For example, it’s faster to execute
sqrt(1:1000) than to execute

sqrt (1)
sqrt(2)

# ...
sqrt(1000)

Whereas the former case “opens” and “closes” the sqrt() function only once, the latter case “opens”
and “closes” sqrt () a thousand times, which is onerous. Indeed, since “opening” and “closing” functions
is time-consuming, it’s always faster to apply a function to an entire vector than it is to apply it to
each vector element separately. Here’s a numerical example:

library(tictoc)

janes_words <-
rows_are_lines %>%
pull(line) %>%
str_split(" ") %>%
unlist

#Case 1:
tic() #start timer
janes_words %>%

str_to_Tlower %>%
head

> [l] lllll ll2|l ll3ll ll4|l l|5|l ||6l|
toc() #stop timer

> 0.003 sec elapsed

#Case 2:
tic() #start timer

janes_words %>%
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map_chr (str_to_lower) %>%
head

> [l] lllll l|2" |13l| ll4|l l|5|l ||6l|

toc() #stop timer

> 0.16 sec elapsed

In the code above, janes_words is a character string vector that comprises the 724151 words in Jane
Austin’s novels, and tic() and toc(), from the tictoc package, start and stop a stopwatch that times
our code. Both Case 1 and Case 2 administer str_to_lower () to janes_words. But the first case applies
the function to the full janes_words vector, calling str_to_lower () only once, whereas the latter case
applies the function one word at a time, calling str_to_lower() 724151 distinct times. The latter
method is clearly slower.

It’s easy to avoid applying a function element-wise when the data are stored in a vector, like janes_words,
because most functions can handle vector inputs. However, most functions cannot handle list inputs.
So to apply a function to a list you usually must either (i) apply it element-wise, which can be very
slow, or (ii) convert the list to a vector or tibble before applying the function.

5.5 Solutions

5.1

jane %>%
map (pluck("protagonist"))

5.2

jane %>%
map (
~.X 9%>%
pluck("title") %>%
word (1)

5.3
jane %>%
map (
~.X %>%

pluck("title") %>%
str_to_upper

5.4
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jane %>%
map_df(
~.X %>%
pluck("protagonist") %>%
str_to_title

5.5

rows_are_books %>%
pluck("novel_tib", 3, "chapter_tib", 5)

5.6 The former gives each chapter of each novel its own tibble, and the latter pools all lines of a novel
in one tibble.

5.7

rows_are_words <-
rows_are_lines %>%
mutate(text = str_split(text, " ")) %>%
unnest(text)

5.8

rows_are_books_2 <-
rows_are_words %>%
nest(
.by = -text,
.key = "line_tib"
%> %
nest(
.by = c(book, chapter),
.key = "chapter_tib"

%>%

nest(
.by = book,
.key = "novel_tib"
)
5.9

rows_are_books_2 %>%
pluck("novel_tib", 4, "chapter_tib", 10, "line_tib", 50, "text", 11)

5.10

rows_are_lines %>%
filter() %>%
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select(-c(book, line)) %>%
mutate(text = str_split(text, " ")) %>%
unnest (text)

5.11

wine_tib <-
wine_Tlist %>%
map_df(~.x) %>%
distinct %>%
rowid_to_column(var = "review_id") %>%
mutate(
across(
c(points, price),
strtoi
)
vintage =
title %>%
str_extract("\\b199[5-9]\\b|\\b20[01][0-9]\\b") %>%
strtoi

5.12

There’s not much we can do when the entire description is stuffed in a single character string. So we
must start by choping each character string description into a character string vector of words. We
can then unnest() these character string vectors, so that each word has its own row. Finally, we can
then join this tibble of words with sentiment_dictionary, matching by word.

5.13

wine_description_by_word <-
wine_tib %>%
select(review_1id, description) %>%
mutate (
description =
description %>%
str_remove_all("[" [:alnum:]]") %>%
str_squish %>%
str_split(" ")

5.14
wine_words <-
wine_description_by_word %>%

unnest(description) %>%
rename (word = description)

5.15
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First merge wine_words and sentiment_dictionary with left_join(), to ensure that we keep the words
in the description that aren’t in the sentiment_dictionary, so that our word_count is accurate. Then
summarise() the result down, so there’s only one row per review. Finally, inner_join() the result with
wine_tib. We want to join wine_tib at the end, so that we don’t copy all the data of a review for every
word in the review, which would take a lot of time and memory.

5.16

wine_tib_2 <-

wine_words %>%

left_join(sentiment_dictionary) %>%

group_by (review_id) %>%

summar-ise (
word_count = n(),
pos_count = sum(sentiment == "+"  na.rm=TRUE),
neg_count = sum(sentiment == "-", na.rm=TRUE),
pos_minus_neg = pos_count - neg_count

) %>%

ungroup %>%

inner_join(wine_tib)

5.17

» pivot_longer() to stack the student responses into a single innovation column, since it’s always
easier to work with one unified thing than two different things (see section 2.4.8).

o str_split() by the innovation column by comma.

o unnest() by innovation

o create ggplot

5.18

student_survey_data %>%
pivot_longer (
-Timestamp,
names_to = '"question",
values_to = "innovation",
values_drop_na = TRUE
) %>%
mutate(innovation = str_split(innovation, "\\, ")) %>%
unnest(innovation) %>%
ggplot() +
aes(y = innovation, x = ..count.., fill = question) +
geom_bar ()

5.19

wine_model %>%
augment (data = wine_tib_2) %>%
filter(.resid == max(.resid)) %>%
select(title)
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5.20

wine_model %>%
augment %>%
summarise(R2 = 1 - sd(.resid)?2/sd(points)~2)

5.21

wine_model_2 %>%
augment (newdata = wine_review_scenarios) %>%
summarise(mean(.fitted))

5.22

wine_model_2 %>%
tidy %>%
filter(str_detect(term, "vintage")) %>%
mutate (
term =
term %>%
str_remove("as.factor\\(vintage\\)") %>%
strtoi
%>%
ggplot() +
aes(x = term, y = estimate) +

geom_point()

5.23

wine_model_3 %>%
tidy %>%
filter (str_detect(term, "taster_name")) %>%

filter(estimate == min(estimate)) %>%
mutate(term = str_remove(term, "taster_name'")) %>%
pull(term)

5.24

wine_tib_3 %>%
mutate (
price_group =
price %>%
ntile(100) %>%
as.factor
) %>%
m(
points ~ word_count + pos_count + neg_count + as.factor(vintage) +
province + taster_name + variety + price_group,
data =
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) %>%
tidy %>%
filter (str_detect(term, "price_group"))

5.25

emily_word_count <-

emily_wine %>%

select(review_id, description) %>%

mutate(

description =

description %>%
str_remove_all("[" [:alnum:]]") %>%
str_squish %>%
str_split(" ")

) %>%

unnest(description) %>%

rename (word = description) %>%

count(review_id, word)

emily_wine_2 <-
emily_word_count %>%
left_join(sentiment_dictionary) %>%
summarise (

word_count = sum(n),

pos_count sum(n * (sentiment == "+"), na.rm=TRUE),
neg_count = sum(n * (sentiment == "-"), na.rm=TRUE),
.by = review_did

%>%

inner_join(emily_wine)

wine_model_3 %>%
augment (newdata = emily_wine_2) %>%
select(brand, .fitted)

5.26

wine_tib_4 <-
wine_tib_3 %>%
nest(
.by = taster_name,
.key = "sample"
) 9%>%
filter (!taster_name %in% c("Other', NA))

5.27
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keywords <- c("tarnished", "corruption", "assassination")

tibble(
president =
c(
"Johnson: lenient Reconstruction policies following the Civil War",
"Grant: tarnished by numerous corruption scandals",
"Hayes: ended the Reconstruction era'",
"Garfield: cut short by assassination",
"Arthur: reforming civil service"
)
) %>%
rowwise %>%

mutate(score = str_detect(president, keywords) %>% sum)

5.28

tribble(

~employee, ~smart, ~driven, ~passionate,

"A", TRUE, TRUE, FALSE,
"B", FALSE, TRUE, FALSE,
"C", FALSE, FALSE, FALSE,
"D", TRUE, TRUE, TRUE
) %>%
rowwise %>%
filter(all(smart, driven, passionate))

# A tibble: 1 x 4
# Rowwise:

<chr> <lgl> <1gl> <lgl>

>
>
> employee smart driven passionate
>
>1D TRUE TRUE TRUE

5.29

wine_tib_4 %>%
rowwise %>%
filter(
sample %>%
summarise (sum(pos_count) > 5 * sum(neg_count))
) %>%
ungroup

5.30
wine_tib_4 %>%

rowwise %>%
mutate (
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sample %>%
summarise (
median_length =
description %>%
str_length %>%
median
)
%>%

ungroup

5.31

wine_tib_4 %>%
rowwise (taster_name) %>%
summarise (
sample %>%
summarise (pos_neg_cor = cor(pos_count, neg_count))
) %>%

ungroup

5.32
unnest() the tibble by lms_tidy
5.33

wine_tib_6 %>%
select(taster_name, lms_tidy) %>%
unnest (lms_tidy) %>%
filter(
str_detect(term, "pos'") |
str_detect(term, '"neg")
) %>%
mutate(estimate = ifelse(p.value < .05, estimate, NA)) %>%
pivot_wider (
id_cols = taster_name,
names_from = term,

values_from = estimate

5.34

wine_tib_4 %>%
rowwise(taster_name) %>%
summarise (
Ims_tidy =
sample %>%
m(
points ~ word_count + pos_count + neg_count + variety,
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data =

) %>%

tidy %>%

list
) 9%>%
ungroup %>%
unnest (lms_tidy) %>%
filter(term %>% str_detect('"neg"))

5.35

wine_tib_5 %>%
rowwise (taster_name) %>%
mutate(lms_glance = lms %>% glance %>% list) %>%
ungroup %>%
unnest(lms_glance) %>%
filter(r.squared == max(r.squared)) %>%
select(taster_name)

5.36

wine_tib_5 %>%
rowwise %>%
mutate (

Ims_augment =
ms %>%
augment (

newdata =
tibble(word_count = 40, pos_count = 0, neg_count = 4)

) %>%

list
) 9%>%
unnest(lms_augment) %>%
filter(.fitted == min(.fitted)) %>%
select(taster_name)

5.37

pokemon_battles <-
pokemon_raw %>%
unnest(Battle_Data)

5.38

trainee_type_tib <-
pokemon_battles %>%
nest(
.by = trainee_type,
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.key = "competition_dat"

5.39

est_tib <-
trainee_type_tib %>%
rowwise(trainee_type) %>% #include trainee_type in parens to include
summar-ise ( #its value in the summarise() output.
ests =
competition_dat %>%
m(
trainee_win ~ competitor_type + HP,
data =
) %>%
tidy %>%
list
) %>%

ungroup

5.40

unnest(est_tib) %>%
filter (str_detect(term, '"competitor")) %>%
filter(
estimate == min(estimate),
.by = trainee_type
%> %

select(trainee_type, term)

5.41

trainee_est_tib <-
pokemon_battles %>%
nest(.by = trainee) %>%
rowwise(trainee) %>%
summar-ise (
ests =
data %>%
Im(
trainee_win ~ HP + Attack + Defense + SpAtk + SpDef + Speed,
data =
) %>%
tidy %>%
list
) %>%
ungroup

5.42
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trainee_est_tib %>%
unnest(ests) %>%

filter (term == "Speed") %>%
filter(estimate == min(estimate))
5.43

trainee_est_tib %>%

unnest(ests) %>%

ggplot +

aes(x = estimate) +

geom_histogram() +

facet_wrap(
vars(term),
scales = "free"
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Chapter 6

Generalized Linear Models

6.1 Introduction

The generalized linear model (GLM) is a powerful framework that unifies many statistical models,
such as linear regression, Poisson regression, logistic regression, multinomial regression, and gamma
regression. Like ordinary least squares (OLS), a GLM characterizes the dependence of a left-hand
variable, y, on a linear combination of right-hand variables, 5, + 8,z; + --- + B,x,,. However, whereas
an OLS regression describes how the linear sum of independent variables influences the dependent
variable’s mean and standard deviation, a GLM describes how the linear sum of independent variables
influences the dependent variable’s full distribution. For example, we could use a GLM to estimate
how the far-right tail of y responds to changes in x_1, something we could never do with an OLS.

The second defining characteristic of the GLM is that the influence between the linear combination of
independent variables, 8, + 8,2, +---+ ,,x,,, and the dependent variable, y, is mediated by transforma-
tion function f(). In other words, y depends not on B,+ 3,21 +---+f,,2,,, but on f(By+ L2, ++06,,,)-

And f() is something that we can choose. For example, we can set f(x) = exp(x) to force y to be
exp(z)
1+exp(z)

positive or set f(z) = to force y to be between zero and one.

In the lecture, in section 6.2, we’ll cover R’s glm() function with an extended case study of Citi Bike’s
NYC bicycle sharing platform. Specifically, we’ll analyze the long bike rentals, which are inconvenient
for the company. Unfortunately, the full distribution of bike rental times has an ad hoc shape that’s
hard to model. However, the right-hand tail of this distribution decays gracefully, like the gamma
distribution. So we characterize the distribution of long bike rides in two steps. First, we use a gamma
regression to model the bike rental duration, conditional on being in the right tail of the distribution.
And second, we use a logistic regression to estimate the probability of being in the right tail of the
distribution. Combining these two models yields a flexible and accurate characterization of the long-
lasting bike rides. For a second example, we structure Eating and Health data of the American Time
Use Survey (ATUS) with a generalized linear model to study the drivers of obesity. Finally, we will
see that glm() can implement nonlinear least squares, which we can use when the dependent variable
has an irregular distribution.

The lab, in section 6.3, will replicate a study of safety issues at nuclear power plants conducted by
Blanco et al. [2019]. We will use glm() to run Poisson regressions, which are especially designed for
count data (which take integer values). We will use our regression models to estimate how many more
safety issues the plants would have suffered had they not implemented Probability Risk Assessments
(PRASs).

The lab in section 6.4 will biuld on the menu cost work of Bray and Stamatopoulos [2022]. Specifically,
we will create a nonlinear least squares model that characterizes a product’s profitability in terms of
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the time since its price last changed. We will use this model to quantify the value of electronic shelf
labels that reduce the cost of changing prices.

The lab in section 6.5 will teach you how to call ChatGPT from within R, and will show you how you
can use ChatGPT to analyze text strings.

For the lecture, you can work in the code.R file of the glm project you created in exercise 1.44, for the
first lab you can work in the code.R file of the radiation project you created in exercise 1.45, for the
second lab you can work in the code.R file of the menu_ cost project you created in exercise 1.46, and
for the third lab you can work in the code.R file of the gpt project you created in exercise 1.47.

6.2 Lecture

6.2.1 Limits of Linear Models

The bike tibble you made in exercise 1.44 of section 1.3 looks like this:
bike %>% glimpse

Rows: 1,590,688

Columns: 19

$ bike_id <int> 25805, 17258, 19692, 28285, 21000, 32205, 31327, 20~
$ user_type <fct> Subscriber, Subscriber, Subscriber, Subscriber, Sub~
$ gender <fct> male, male, male, male, female, male, male, male, m~
$ age <int> 32, 24, 39, 28, 51, 25, 34, 32, 37, 48, 31, 27, 26,~
$ distance <db1l> 1.3605215, 1.3786632, 0.7192057, 1.0831996, 0.74991~
$ duration <dbl> 12.966667, 12.450000, 8.300000, 7.750000, 8.050000,~
$ overtime <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, O~
$ start_time <dttm> 2018-05-31 23:59:59, 2018-05-31 23:59:59, 2018-05-~
$ start_station_id  <int> 312, 401, 483, 3107, 3341, 3562, 479, 128, 537, 322~
$ start_station_name <chr> "Allen St & Stanton St", "Allen St & Rivington St",~
$ start_station_lat <dbl> 40.72161, 40.72046, 40.73198, 40.72355, 40.79548, 4~
$ start_station_long <dbl> -73.98901, -73.98960, -73.98816, -73.95150, -73.961~
$ start_wday <fct> Thu, Thu, Thu, Thu, Thu, Thu, Thu, Thu, Thu, Thu, T~
$ start_hour <fct> 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,~
$ end_time <dttm> 2018-06-01 00:12:57, 2018-06-01 00:12:26, 2018-06-~
$ end_station_id <int> 460, 360, 368, 3076, 3400, 3562, 3635, 308, 546, 33~
$ end_station_name <chr> "S 4 St & Wythe Ave", "William St & Pine St", "Carm~
$ end_station_lat <dbl> 40.71287, 40.70699, 40.73054, 40.70862, 40.79616, 4~
$ end_station_long <dbl> -73.96578, -74.00899, -74.00173, -73.94513, -73.947~

V V. vV vV vV vV VvV V V V V V V V V V V V V V VvV

This tibble describes Citi Bike’s' May 2018 bike-sharing rides in New York City. Two key vari-
ables are distance, which records the number of miles between coordinates (start_station_lat,
start_station_long) and (end_station_lat, end_station_long), and duration, which records the
number of minutes between start_time and end_time. Here are their distributions:

bike %>%
pivot_longer (c(duration, distance)) %>%
mutate (

name =

Thttps://citibikenyc.com/homepage
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ifelse(
name == '"distance",
"Distance (miles)",
"Duration (minutes)"
)
) %>%
ggplot() +
aes(x = value) +
geom_density(adjust = .2) +
facet_wrap(
vars(name),
scales = "free"
) +
labs(
x ="y,
y = "Probability Density"
) +

theme_minimal()

Distance (miles) Duration (minutes)

0.75 0.06
2
‘0
c
[
0 0.50 0.04
2
5
©
o
2025 0.02
o

0.00 s 0.00

0.0 25 5.0 7.5 10.0 0 25 50 75

Overall, 80% of trips last less than 20 minutes. Citi Bike prefers these short trips because they enable
it to execute more rentals. For example, the company would prefer four 15-minute rentals, which help
justify four subscriptions, to one hour-long rental, which helps justify only one subscription. Moreover,
shorter trips mean shorter bike wait times: the more frequently the company turns over its fleet, the
less time a customer has to wait for a bike to be returned.

Trips that last longer than 20 minutes are deemed to run “over time.” The overtime column reports
the trip duration in excess of 20 minutes. For example, a trip with duration = 19 has overtime = o,
whereas a trip with duration = 25 has overtime = 5. To begin, we will limit our sample to the trips
that ran overtime:

overtime_trips <-

bike %>%
filter (overtime > 0)
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We will study the drivers of overtime in our sample of overtime_trips. When explaining the variation
in a random variable, it’s always best to start with a simple 1m(). Since OLS does not require the
dependent variable or statistical error term to be normally distributed—contrary to popular belief—we
can use lm() to model the expected value of overtime, even though it’s non-negative and right-skewed.

Exercise 6.1. Use overtime_trips to run a linear regression of overtime on trip distance, and save
the result as baseline_lm. tidy() the result to confirm that increasing a trip’s distance by one mile
increases its expected overtime by 1.212 minutes (conditional on the trip running overtime).

We can now augment() our model to get the mean and standard deviation of overtime, conditional on
distance:

#the .fitted values are the means and .sigma is the standard deviation:
baseline_1lm %>%
augment

> # A tibble: 317,393 x 8

> overtime distance .fitted .resid .hat .sigma .cooksd .std.resid
> <db1> <db1> <db1l> <dbl> <dbl> <dbl> <db1> <db1>
> 1 1.97 1.31 8.47 -6.50 0.00000541 9.28 0.00000133 -0.700
> 2 16.6 2.77 10.2 6.39 0.00000350 9.28 0.000000831 0.689
> 3 39.1 4.76 12.6 26.4 0.0000149 9.28 0.0000605 2.85

> 4 5.67 3.67 11.3 -5.66 0.00000667 9.28 0.00000124 -0.610
> 5 17.0 2.77 10.2 6.74 0.00000350 9.28 0.000000924 0.727
> 6 0.117 2.50 9.91 -9.79 0.00000319 9.28 0.00000178 -1.06

> 7 0.517 2.50 9.91 -9.39 0.00000319 9.28 0.00000164 -1.01

> 8 12.0 3.68 11.3 0.709 0.00000672 9.28 0.0000000196 0.0765
> 9 3.9 2.15 9.49 -5.59 0.00000324 9.28 0.000000587 -0.602
> 10 1.82 3.57 11.2 -9.39 0.00000616 9.28 0.00000316 -1.01

> # i 317,383 more rows

For example, the first row indicates that if distance = 1.31 then overtime has a mean equal to . fitted
= 8.47 and has a standard deviation equal to .sigma = 9.28. But rather than the mean, suppose
we wanted to calculate the median value of each overtime. For example, if distance = 1.31 then
what value has exactly a 50% chance of exceeding overtime? If the overtime variables were normally
distributed then their means would equal their medians, in which case the . fitted values would also be
the medians—i.e., the overtime values would exceed the .fitted values half the time. However, only
37% of overtime values exceed their corresponding .fitted value:

baseline_1lm %>%
augment %>%

summarise (mean(overtime > .fitted))

> # A tibble: 1 x 1

> "mean(overtime > .fitted)’
> <dbl>
> 1 0.374

The problem is that overtime is instead heavily right skewed, which makes its mean (i.e., . fitted) far
exceed its median. For example, here is the distribution of overtime when distance is near 1.32:
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overtime_trips %>%
filter(
distance > 1.27,
distance < 1.36
) 9%>%
ggplot() +
aes(x = overtime) +
geom_density(adjust = .1) +
labs(
x = "Trip Overtime",
y = "Probability Density"
) +

theme_minimal()

0.15

0.10

0.05

Probability Density

0.00 ~

0 20 40 60
Trip Overtime

As you see, this distribution looks nothing like a normal distribution, so there’s no easy way we can
derive its median from the outputs provided by 1m(). Indeed, 1m() tells us nothing besides the mean
and standard deviation of the dependent variable. Accordingly, it’s impossible to determine from
baseline_lm how the median overtime varies with distance. And it’s similarly impossible to determine
the probability that overtime exceeds 15 minutes given distance = 1, or the interquartile range of
overtime when distance = 10, or the probability that a distance = 3 trip has a longer overtime than a
distance = 30 trip. To answer these questions, we must explicitly characterize the distribution of the
overtime conditional on distance. And we can assign overtime a distribution if we upgrade our linear
model to a generalized linear model (GLM).

6.2.2 Generalized Linear Model

Since overtime is positive and right-skewed, we will model it with the gamma distribution®. This
distribution is parameterized by its mean and by a shape coefficient. The shape parameter describes
the silhouette of the distribution and the mean describes the scaling of the axes:

https://en.wikipedia.org/wiki/Gamma_ distribution
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expand_grid(
mean = c(1, 10, 100),
shape = ¢(.5, 1, 2, 10, 100)
) 9%>%
mutate(
case =
str_c("mean: ", mean, ", shape: ", shape) %>%
fct_reorder (row_number ())
) %>%
group_by(case) %>%
reframe (
x = seq(®, 3 * mean, length.out = 1073),
density =
dgamma(x, shape, scale = mean / shape)
) %>%
ggplot() +
aes(x = x, y = density) +
geom_line() +
facet_wrap (

vars(case),

scales = "free",
ncol = 5
) +
theme_minimal()
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If you compare this plot with the previous plot, you'll see that the distribution of overtime resembles
the gamma distribution with shape parameter = 1 when distance is near 1.31. And this checks out,
as the following glm() pegs the shape parameter at 1.02399:
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#estimate glm
gamma_glm <-
overtime_trips %>%
glm(
overtime ~ distance,
family = Gamma(link = "didentity"),

control = list(maxit = 1073), #This option tells glm() not to give
data = . #up too early. By default, glm() will
) #return an error i1f it can't find an

#answer within a certain amount of time.

#get shape parameter estimate #This option extends the clock, giving
gamma_shape <- #giving the function more time to find
gamma_glm %>% #the right answer.

summary %>%
{1/pluck(., "dispersion")} #Rather than the shape parameter, glm()
#returns the '"dispersion" parameter,
#which i1s the inverse of the shape parameter
gamma_shape

> [1] 1.02399

#get mean coefficient estimates

gamma_glm %>%

tidy
> # A tibble: 2 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1l> <db1l> <db1l>
> 1 (Intercept) 8.28 0.0347 239. 0
> 2 distance 0.606 0.0139 43.5 0]
A glm() with family = Gamma(link = "didentity") models the dependent variable as a gamma whose

shape parameter remains fixed but whose mean varies linearly with the dependent variables. Accord-
ingly, gamma_glm models overtime as a gamma random variable with shape parameter = 1.02399 and
mean = 8.28 4+ 0.606 x distance. This model fits the data extremely well:

gamma_mean <-
gamma_glm %>%
augment (newdata = tibble(distance = 2)) %>%
pull(.fitted)

overtime_trips %>%

filter(distance > 1.95, distance < 2.05) %>%
select(overtime) %>%
mutate(case = "Empirical Distribution \n When 1.95 < distance < 2.05") %>%
bind_rows (

tibble(

overtime =
rgamma (
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n = 10%6,

shape = gamma_shape,

scale = gamma_mean / gamma_shape
)5

case = "Theoretical Distribution \n When distance = 2"

)
9%>%
mutate (
case =
case %>%
fct_relevel("Theoretical Distribution \n When distance = 2", after = 0)
) %>%
ggplot() +
aes(x = overtime) +
geom_density(adjust = .1) +
facet_wrap(
vars(case),
scales = "free"
) +
theme_minimal() +
theme (strip.text.x = element_text(size = 12)) +
labs(x = "Overtime", y = "Probability Density")

Theoretical Distribution Empirical Distribution
When distance = 2 When 1.95 < distance < 2.05
0.15
202
(%]
o
a 0.10
P
%E 0.1
B 0.05
a
0.0 0.00
0 50 100 150 0 20 40 60
Overtime

Since our model specifies the full distribution of our dependent variable—mnot just its mean and standard
deviation—we can now calculate the median overtime and the probability that it exceeds 15 minutes
(statistics we couldn’t derive from our 1m()):

#median overtime
ggamma (
p = 0.5,
shape = gamma_shape,
scale = gamma_mean / gamma_shape
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> [1] 6.640216

#probability that overtime exceeds 15 minutes
pgamma (
15,
shape = gamma_shape,
scale = gamma_mean / gamma_shape,
lower.tail = FALSE

> [1] 0.2053227
Note, the scale of a gamma distribution is its mean divided by its shape parameter.
We could run a glm() with other distributions. For example, instead of gamma random variable with

time-varying mean, we could model overtime as a normal random variable with time-varying mean:

#estimate glm with normal distribution
normal_glm <-
overtime_trips %>%

glm(
overtime ~ distance,
family = gaussian(link = "didentity'"), #'"gaussian distribution'" is a fancy
data = . #term for normal distribution.

#get standard deviation
normal_sd <-
normal_glm %>%
augment %>%
pluck(".sigma", 1)

normal_sd

> [1] 9.278229

#get mean coefficient estimates
normal_glm %>%

tidy
> # A tibble: 2 x 5
> term estimate std.error statistic p.value
> <chr> <db1> <db1l> <dbl> <db1l>
> 1 (Intercept) 6.88 0.0354 194. 0
> 2 distance 1.21 0.0133 91.3 0

normal_glm models overtime as a normally distributed random variable, with standard deviation =
9.278 and mean = 6.88 + 1.21 * distance. However, the gamma distribution fits the data better
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than the normal distribution, as we can see when we compare the models’ Akaike information criteria
(AIC)3:

#the model with the lower AIC has a better fit:

gamma_glm %>% glance

> # A tibble: 1 x 8

> null.deviance df.null TlogLik AIC BIC deviance df.residual nobs
> <dbl> <int> <dbl> <dbl> <db1> <dbl> <int> <int>
> 1 335773. 317392 -1038914. 2077833. 2077865. 331995. 317391 317393

normal_glm %>% glance

> # A tibble: 1 x 8

> null.deviance df.null logLik AIC BIC deviance df.residual nobs
> <db1> <int> <db1> <db1> <db1l> <db1> <int> <int>
> 1 28040707. 317392 -1157407. 2314820. 2314852. 27322728. 317391 317393

Exercise 6.2. A gamma random variable is characterized by two parameters: the mean and the
shape. If a GLM models the dependent variable as a gamma random variable, then which of these two
parameters varies with the independent variable: the mean alone, the shape alone, both the mean and
the shape, or neither the mean nor the shape?

Exercise 6.3. What’s some benefits to modeling the dependent variable as a gamma, rather than a
normal?

Exercise 6.4. Does factoring the customer age improve our statistical model?

e Run a glm() with formula overtime ~ distance + age and family = Gamma(link = "identity").
— Include the control = list(maxit = 1043) option, to give the computer extra computation
time.

— Ignore the warnings that gim() returns.
e <- the result into gamma_glm_2.
e glance() gamma_glm and gamma_glm_2 to determine which has a lower AIC.

Exercise 6.5. Which is a better model for the following data:

(1) y is a normal random variable whose standard deviation remains fixed and whose mean varies
linearly with x.
(2) y is a gamma random variable whose shape remains fixed and whose mean varies linearly with z.

Justify your answer.

3https://en.wikipedia.org/wiki/Akaike_information__criterion
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Exercise 6.6. Which is a better model for the following data:

(1) y is a normal random variable whose standard deviation remains fixed and whose mean varies
linearly with z.

(2) y is a gamma random variable whose shape remains fixed and whose mean varies linearly with z.

Justify your answer.
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Two feature distinguish GLMs from linear models. We’ve already discussed the first feature: GLMs
specify the full distribution of the dependent variable, whereas linear models specify only the mean
and standard deviation. We will now explore the second distinguishing feature: whereas linear models
set the expected value of the dependent variable to a linear combination of the independent variables,
GLMs can more generally set the expected value of the dependent variable to a function of a linear
combination of independent variables. In other words, linear models specify E(y) = o+ 8,21+ +06,,%,,,
whereas GLMs can specify E(y) = f(8, + 8,2, + - + B,,,), for some function f().

Let f~1() denote the inverse of function f(), such that f~1(f(z)) = x for all . For example:

o if f(x) = exp(z) then f~1(x) = log(x) since f~1(f(x)) = log(exp(x)) = .
o if f(z) =22 then f~'(z) = x since f1(f(z)) = Va2 =z,

o if f(x) =1/z then f~(z) = 1/x since f~1(f(z)) = 1/% =z, and

o if f(x) =2 then f~1(x) = x since f1(f(x)) = f(z) = z.

Unfortunately, for historical reasons that predate R, we must pass inverse function f~1() into our glm()
call, rather than f() itself. Also, the GLM literature annoyingly refers to f~1() as a “link function”
rather than an inverse function. For example, when we specified 1ink = "identity", in our definition
of gamma_glm_2, we told glm() to set the link function to the identity function that maps x to itself,
f Y(x) = z; and since the inverse of the identity function is the identity function, this was an indirect
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way of telling glm() to set the transformation function to the identity function, f(x) = z. Hence,
setting link = "didentity" is a roundabout way of telling glm() to set the mean dependent variable to
a linear combination of the independent variables, 8, + 5yz, + - + 5, ,,

But now suppose we wanted to set the mean dependent variable to exp(S, + Sz + - + 5,,,,). This
specification uses transformation function f(x) = exp(x) and thus uses link function f~*(x) = log(z).
Accordingly, we run this model with link = "log":

gamma_glm_exp <-
overtime_trips %>%
glm(
overtime ~ distance + age,
family = Gamma(link = "log"),
control = list(maxit = 1073),
data =

#get shape parameter estimate
gamma_shape_exp <-
gamma_glm_exp %>%
summary %>%
{1/pluck(., "dispersion")}

gamma_shape_exp
> [1] 1.005337

#get mean coefficient estimates
gamma_glm_exp %>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1l> <dbl> <dbl>
> 1 (Intercept) 2.11 0.00708 298. 0]
> 2 distance 0.0829 0.00143 58.1 ©
> 3 age -0.000958 0.000159 -6.03 0.00000000160

gamma_glm_exp models overtime as a gamma random variable with shape parameter = 1.005337 and
mean = exp(2.11 + 0.0829 * distance - 0.000958 * age). For example, the average overtime when
distance = 2 and age = 30 is

gamma_glm_exp %>%
augment (
newdata = tibble(distance = 2, age = 30),
type.predict = "response"
) 9%>%

pull(.fitted)

> [1] 9.447587
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The type.predict = "response" option ensures that augment() returns exp(2.11 + 0.0829 * 2 -
0.000958 * 30) = 9.448 rather than 2.11 + 0.0829 % 2 - 0.000958 % 30 = 2.246. In general, including
type.predict = "response"teﬂsaugment()tOIeturn(f(Bb%—le1+~"%—ann),mﬁﬁChiS(nn‘bestesthnate
of the mean, rather than 50 + 31371 +-+ ann, which is largely irrelevant.

Exercise 6.7. We will now illuste how the 95th percentile of overtime varies with trip distance and
customer age.

e augment() gamma_glm_exp with newdata = expand_grid(distance = seq(0, 20, length.out = 100),
age = seq(20, 70, length.out = 100)) and type.predict = "response"

e mutate() the result to define percent_95 as the output of the gamma quantile function,
ggamma (), evaluated with percentile p = .95, shape = gamma_shape_exp, and scale = .fitted /
gamma_shape_exp.

— We defined gamma_shape_exp right after creating gamma_glm_exp.

— Rather than its mean, qgamma() expects you to pass in the gamma’s scale, which is the ratio
of its mean to its shape parameter. And in this case, the gamma’s mean is the . fitted value
of our model.

e ggplot() the result with a geom_contour_filled() layer evaluated with x = distance, y = age,
and z = percent_95.

— You should get linear contour lines, sine you're using a generalized linear model. But the
space between your contour lines should decrease exponentially fast, due to the f(x) =
exp(x) transformation.

Exercise 6.8. Which model better fits the data: gamma_glm_2 or gamma_glm_exp?

e glance() both models, and pick the one with the smaller AIC.

Exercise 6.8 establishes that we can better explain the data when we transform our linear combination
of distance and age with f(x) = exp(z). And we can do even better with inverse function f(z) =1/z:

gamma_glm_inv <-
overtime_trips %>%

glm(
overtime ~ distance + age,
family = Gamma(link = "dinverse"),
control = list(maxit = 1043),
data = .

#get shape parameter estimate
gamma_shape_inv <-
gamma_glm_inv %>%
summary %>%
{1/pluck(., "dispersion")}

gamma_shape_inv

> [1] 0.9731811
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#get mean coefficient estimates

gamma_glm_inv %>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1> <db1> <db1l> <db1>
> 1 (Intercept) 0.129 0.000741 174. 0
> 2 distance -0.0116 0.000131 -88.5 0
> 3 age 0.0000946 0.0000166 5.70 0.0000000119

#confirm that gamma_glm_inv has a lower AIC:
gamma_glm_inv %>% glance %>% pull(AIC)

> [1] 2074065
gamma_glm_exp %>% glance %>% pull(AIC)

> [1] 2076437

Note, the link = "inverse" option sets the link function to f~!(z) = 1/z, which sets the transformation
function to f(x) = 1/x (since f(x) = 1/x has inverse f~'(z) = 1/x). Accordingly, gamma_glm_inv
models overtime as a gamma random variable with shape parameter = 0.9731 and mean = 1/(0.129
- 0.0116 x distance + 0.0000946 * age).

Putting the linear combination of distance and age in the denominator may seem strange, but it’s
actually quite natural, especially when the shape parameter is near one. You see, when the shape
parameter is one, the gamma distribution matches the exponential distribution?, which has only one
parameter: the hazard rate, which is the reciprocal of the mean. Hence, imposing 1ink = "inverse" sets
the dependent variable’s hazard rate, rather than its mean, to a linear combination of the independent
variables. The hazard rate of an exponential random variable specifies the probability of the variable
realizing in the next instant. Accordingly, with 1ink = "inverse", glm() treats the probability that
the customer returns the bike in the next second as linear in distance and age, whereas with link =
"identity", glm() treats the expected trip duration as linear in distance and age.

Exercise 6.9. When you’re watching a scary movie and the music gets ominous, is the expected length
of time until the next jump scare® high or low? Is the hazard rate of a jump scare high or low?

Exercise 6.10. Create a gamma glm() that models the overtime hazard rate as a liner combination of
trip distance, customer age, and dummy variables that indicate (i) the customer user_type and gender
and (ii) the day of week and hour of day the trip began.

e Use formula overtime ~ distance + age + user_type + gender + start_wday + start_hour and
family = Gamma(link = "dnverse").
e <- the result into gamma_glm_inv_2.
e glance() gamma_glm_inv_2 to confirm that it explains the data better than gamma_glm_inv.
— Show that it has a lower AIC.

“https://en.wikipedia.org/wiki/Exponential _distribution
Shttps://en.wikipedia.org/wiki/Jump_ scare
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Exercise 6.11. We will now illustrate how the probability of overtime exceeding 10 minutes varies

with distance, user_type, gender, and start_hour.

Extract the shape parameter from gamma_shape_inv_2 with summary %>% {1/pluck(., "disper-
sion")}. <- the result into gamma_shape_inv_2.
Define new_scenarios as a tibble that comprises all possible combinations of distance = 0:4, age
= 30, user_type = c("Customer",
"Thu", and start_hour = as.character(0:23).

— expand_grid() these vectors into a tibble with 480 rows and 6 columns.

augment () gamma_glm_inv_2 to get the .fitted value associated with each of our new_scenarios.

"Subscriber"), gender = c("male", "female"), start_wday =

— Use type.predict = "response"
mutate() the result to set start_hour =

and,prob_more_than_lO_given_positive =

strtoi(start_hour), distance =
pgamma(q =
.fitted / gamma_shape_inv_2, lower.tail = FALSE).
— The pgamma(lower.tail = FALSE) function calculates the probability that a gamma with a
particular shape and scale exceeds a given threshold q.

as.factor(distance),

10, shape = gamma_shape_inv_2, scale

<- the result into prob_long_overtime_given_overtime.

ggplot() prob_long_overtime_given_overtime, with a geom_line() layer evaluated with x =

start_hour, y prob_more_than_10_given_positive, and color = distance. facet_grid() by

user_type and gender.
<- the result into probability_plot.

6.2.3 Case Study: American Time Use Survey

We will now use GLMs to study the following data from the Eating and Health Module of the American
Time Use Survey (ATUS):

glimpse (time_use_data)

> Rows: 7,018

> Columns: 37

> $ tucaseid <dbl> 2.01401e+13, 2.01401le+13, 2.01401le+13, 2.01401le+13, 2.0140~
> $ tulineno <dbl» 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
> $ eeincomel <dbl'> 2, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1~
> $ erbmi <dbl> 49.4, 31.0, 30.7, 33.3, 28.3, 40.5, 28.0, 27.9, 30.4, 25.8~
> $ erhhch <dbl> 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3~
> $ erincome <fct> 5, 5,1, 1, 1, 1, 5, 1, 5, 2.3_.4, 1, 1, 1, 1, 5, 1, 1, 5,

> $ erspemch <dbl'> -1, -1, 1, 5, 5, -1, -1, 5, 5, -1, 5, 5, 5, 5, -1, -1, -1,~
> $§ ertpreat <dbl> 60, 65, 20, 30, 80, 35, 0, 25, 150, 105, 47, 90, 180, 30, ~
> § ertseat <dbl> 0, 0, 10, 5, 0, 20, 5, 10, 5, 2, 15, 0, 10, 10, 5, 3, 30, ~
> $§ ethgt <dbl> 0, 0, 0, 6, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, O~
> $ etwgt <dbl> 0, 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O~
> $ eudietsoda <dbl1> -1, -1, 1, -1, 2, 1, -1, -1, 1, -1, 2, -1, -1, 2, 1, -1, 2~
> $ eudrink <dbl» 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
> $ eueat <dbl'> 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2~
> $ euexercise <fct> 2, 1,1, 2,2, 2, 2,2, 2,1,2,2,2,2,2,1,1, 2,1, 1~
> $ euexfreq <dbl'> -1, 5, 2, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, 4~
> ¢ eufastfd <dbl> 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1~
> § eufastfdfrq <dbl> 0, 0, 3, 3, 2, 5, 0, 5, 0, 0, 1, 3, 1, 2, 0, 0, 0, 0, 1, 4~
> $ euffyday <dbl»> -1, -1, 1, 2, 1, 2, -1, 1, -1, -1, 2, 1, 2, 2, -1, -1, -1,~



> $ eufdsit <db1> 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
> $ eufinlwgt <dbl> 26000000, 17500000, 3661280, 11600000, 5179966, 7151101, 7~
> $ eusnap <dbl> 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2~
> $ eugenhth <fct> 5, 4, 3, 2, 1, 4, 3, 3, 3, 2, 2, 3, 5, 4, 2, 2, 2, 3, 2, 2~
> $ eugroshp <dbl> 2, 1, 2, 3, 1, 1, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 1~
> $ euhgt <dbl> 62, 69, 71, 65, 65, 70, 56, 77, 68, 60, 70, 58, 65, 73, 62~
> $ euinclvl <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5~
> $ euincome2 <dbl'> 2, 2, -1, -1, -1, -1, 2, -1, 3, -1, -1, -1, -1, -1, 2, -1,~
> $ eumeat <db1» -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 2, 1, 1, -1, 1, 1, -1, ~
> $ eumilk <dbl> -1, 2, -1, 2, 2, -1, 2, -1, -1, 2, 2, 2, 2, -1, 2, 2, -1, ~
> $ euprpmel <dbl> 2, 1, 2, 3, 1, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 3, 2, 1, 1, 1~
> $ eusoda <fct> 2, 2,1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2~
> § eustores <fect> -1, 1, -1, 2, 3, 1, 1, -1, -1, 1, -1, 2, 1, -1, 2, 2, -1, ~
> $ eustreason <fct» -1, 1, -1, 5, 1, 1, 2, -1, -1, 2, -1, 1, 3, -1, 2, 6, -1, ~
> $ eutherm <dbl> -1, 2, -1, 2, 2, -1, 2, -1, -1, 2, -1, 2, 2, -1, 2, 2, -1,~
> $ euwgt <dbl> 270, 210, 220, 200, 170, 282, 125, 235, 200, 132, 176, 160~
> $ euwic <dbl> 2, 1, 2, 2, -1, -1, 1, 2, -1, -1, -1, -1, -1, 2, -1, -1, 2~
> $

exincomel  <dbl> 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 0, O, ~

I will explain the variables we use as we use them, but you can find all the variable definitions in this
data dictionary®.

Exercise 6.12. erincome is a factor variable that is

e "1"if the respondent’s total household income before taxes exceeds 185% of the poverty threshold,
e "2_3_4" if their income is between 185% and 130% of the poverty threshold, and
e "5" if their income is below 130% of the poverty threshold.

Create a geom_density() plot of BMI, erbmi, by erincome. Confirm that the BMI distributions exhibit
a rightward skew, and are thus not normally distributed.

Exercise 6.13. Since BMI has a rightward skew, we can model it as a gamma random variable. Create
a Gamma(link = "identity") glm() that characterizes the mean value of erbmi in terms of erincome.
Call your model glm_1.

Exercise 6.14. The following code compares the actual erbmi distributions (empirical distributions)
with their closes-fitting gamma distribution (theoretical distributions). The actual distributions sub-
stantively differ from the theoretical distributions, which indicates that glm_1 poorly fits the data. The
problem is that a gamma random variable always starts its increase from zero—unlike the normal
distribution, you can’t shift a gamma along the x-axis. Pegging the distribution to zero leads to a
discrepancy because the actual erbmi distribution doesn’t start increasing until 16, which is the small-
est erbmi value. Since no gamma can start its increase at 16, we cannot reasonably model erbmi as
a gamma random variable. However, we can reasonably model erbmi_recentered = erbmi - 16 as a
gamma, as the distribution of this shifted variable starts increasing at zero, by design. Define glm_2 as
a glm() that explains erbmi_recentered in terms of erincome, and modify the code below to compare
the actual erbmi_recentered distributions with their closes-fitting theoretical analogs.

Shttps://www.dropbox.com/scl/fi/gw7qkmsuvsbfe86kz20q7/data_ dictionary.pdf?rlkey=r1pipcdf2lcliy81110qrraod&d
1=1
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shape_param <-
glm_1 %>%
summary %>%
{1/pluck(., "dispersion")}

glm_1 %>%
augment (newdata = tibble(erincome = c("1", "2_3_4", "5"))) %>%

rowwise(erincome) %>%

reframe (
type = "theoretical distributions",
erbmi =
rgamma (
n = 1046,

shape = shape_param,
scale = .fitted / shape_param
)
%>%
bind_rows (
time_use_data %>%
select(erincome, erbmi) %>%
mutate(type = "empirical distributions")
) %>%
ggplot +
aes(x = erbmi, color = type) +
geom_density(adjust = .5) +
facet_wrap(vars(erincome)) +
theme_minimal() +
theme (legend.position = "top")

Exercise 6.15. eusoda is a factor variable that is "1" if the subject recalls drinking a soda in the
previous day, and is "2" otherwise. eufastfdfrq is a numeric variable that specifies the number of
times the subject recalls getting fast food in the previous week. Add these variables to your GLM, to
establish that soda drinking and fast-food eating are both correlated with BMI. Call your model glm_3.

Exercise 6.16. The following code denotes the probability of a respondent in the lowest income
category being obese (i.e., having a BMI in excess of 30), conditional on them having drank a soda
in the previous day and having eaten five fast-food meals in the previous week. Modify this code to
determine how the obesity propensity would change if this subject were not a soda drinker (recall that
non-soda drinkers have eusoda = "2").

shape_param <-
glm_3 %>%
summary %>%
{1/pluck(., "dispersion")}

glm_3 %>%

augment (
newdata =
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tibble(erincome = "1", eusoda = "1", eufastfdfrq = 5)
%>%
mutate (
prob_obese =
pgamma (
30 - 16, #recall that we're modeling BMI - 16
shape = shape_param,
scale = .fitted / shape_paranm,
lower.tail = FALSE

Exercise 6.17. Is soda drinking more predictive of obesity for high or low income respondents? Modify
your solution to the previous exercise to calculate the effect of drinking soda on the obesity probability
for each income bracket. Fix the number of fast food meals at 5.

Exercise 6.18. eustores is a factor variable that characterizes the respondent’s answer to “Where do
you get the majority of your groceries?” The level codes are as follows:

Level Answer

"-1"  No answer

mn Grocery store

man Supercenter

n3n Warehouse club

ngn Drugstore or convenience store
ngn Some other place

eustreason is a factor variable that characterizes the respondent’s answer to “What is the primary
reason you shop there?” The level codes are

Level Answer

"-1"  No answer
nin Price
non Location

n3n Quality of products
ngn Variety of products

ng Customer service
" Other
Run a family = Gamma(link = "didentity") glm() of erbmi_recentered on eustores and eustreason

Use your model to determine the 99th percentile of BMI for the following two cases:
tribble(

~ case, ~ eustores, ~ eustreason,
"superstore_price", "2", "1i",
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"grocerystore_quality", "1", "3"

> # A tibble: 2 x 3

> case eustores eustreason
> <chr> <chr> <chr>

> 1 superstore_price 2 1

> 2 grocerystore_quality 1 3

Use your results to determine the difference between the 99th percentile of BMI among people who
buy food at a “Supercenter” for “Price” and the 99th percentile of BMI among people who buy food
at a “Grocery store” for “Quality of products.”

You can work off of the following code, which calculates the 10th percentile of BMI, among the people
who reported not having exercised in the past week.

glm_model <-
time_use_data %>%
glm(
erbmi_recentered ~ euexercise,
family = Gamma(link = "didentity"),
control = list(maxit = 1073),
data = .

shape_param <-
glm_model %>%
summary %>%
{1/pluck(., "dispersion")}

glm_model %>%
augment (newdata = tibble(euexercise = "2")) %>%
mutate (
BMI_99 = 16 +
ggamma (
p=20.1,
shape = shape_param, #scale = mean/shape
scale = .fitted / shape_param

6.2.4 Logistic Regression

Characterizing the trip overtime in our full bike sample requires (i) the probability of a trip running
over time and (ii) the overtime distribution, conditional on the trip running over time. We’ve modeled
the second part, and now we’ll model the first part.

Our dependent variable will be the logical positive_overtime = overtime > 6. We can’t assign posi-
tive_overtime a gamma or normal distribution, because it takes only two values: TRUE (which R treats
as 1) and FALSE (which R treats as 0). Hence, the best we can do is suppose that positive_overtime is
TRUE with probability p and FALSE with probability 1—p, where the value of p varies with our covariates.
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The key to our analysis is that the expected value of positive_overtime equals the probability that the
trip ran over time: E(positive overtime) = TRUE -p + FALSE- (1—p) =1-p+0-(1 —p) = p.
Accordingly, we can derive the overtime probability from a glm() that models the expected value of
positive_overtime.

For example, the following models the positive_overtime probability in terms of the latitude of the
drop-off point:

glm_latitude <-

bike %>%

mutate(positive_overtime = overtime > 0) %>%

glm(
positive_overtime ~ end_station_lat,
family = binomial(link = "didentity"),
control = list(maxit = 1073),
data = .

glm_latitude %>% tidy

> # A tibble: 2 x 5

> term estimate std.error statistic p.value
> <chr> <dbl> <dbl> <dbl> <db1l>
> 1 (Intercept) -4.42 0.436 -10.1 3.98e-24
> 2 end_station_lat 0.113 0.0107 10.6 3.33e-26

The binomial() term specifies that positive_overtime has a binary distribution over TRUE and FALSE,
and the 1ink = "didentity" option indicates that the mean of this binary random variable is a linear
function of end_station_lat—i.e., that the probability that positive_overtime = TRUE equals 3, + 3, -
end_ station_ lat.

The positive end_station_lat coefficient estimate indicates that trips that end further away from
downtown Manhattan are more likely to run overtime. More specifically, our model indicates that the
expected value of positive_overtime is 0.116 when end_station_lat = 46:

glm_latitude %>%
augment (newdata = tibble(end_station_lat = 40))

# A tibble: 1 x 2
end_station_lat .fitted
<db1l> <db1>

>
>
>
> 1 40 0.116

Put differently, a trip that ends at latitude 40 has an 11.6% chance of running overtime.

But now look at what happens when we consider trips that end at latitude 38:

glm_latitude %>%
augment (newdata = tibble(end_station_lat = 38))

> # A tibble: 1 x 2
> end_station_lat .fitted
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> <db1l> <db1l>
> 1 38 -0.111

Our model suggests that if end_station_lat = 38 then positive_overtime has a negative expected
value—i.e., that the probability of the trip running over time is negative.

To avoid such nonsensical probability predictions, we must choose our transformation function to ensure
that the output of f(8,+ Bz, +--+5,,,) is always between 0 and 1. The simplest increasing function

that maps the entire number line to the range (0, 1) is the logistic function”: f(z) = 13&7&;)' The
inverse of the logistic function is the logit function®: f~!(z) = log (7% ). We invoke this logit link
function—and hence the logistic transformation function—by including 1ink = "logit" in our glm()
call:

glm_latitude_2 <-
bike %>%
mutate (positive_overtime = overtime > 0) %>%
glm(
positive_overtime ~ end_station_lat,
family = binomial(link = "logit"),
control = list(maxit = 1073),
data = .

glm_latitude_2 %>% tidy

> # A tibble: 2 x 5

> term estimate std.error statistic p.value
> <chr> <dbl> <dbl> <dbl> <db1>
> 1 (Intercept) -34.2 2.73 -12.5 7.24e-36
> 2 end_station_lat 0.805 0.0671 12.0 3.81e-33

This specification yields a valid probability prediction, pegging chance of overtime for latitude-38-
terminating trips at 2.68%:

glm_latitude_2 %>%

augment (
newdata = tibble(end_station_lat = 38),
type.predict = "response"
)
> # A tibble: 1 x 2
> end_station_lat .fitted
> <dbl> <dbl>
> 1 38 0.0268
As before, the type.predict = "response" option tells augment() to to set the .fitted value to the
. exp(By+B;-end_station_lat) _ exp(—34.176+0.805-38) . .
estimated mean, Trexp(By B,-ond_station Tat) — Trexp(—31.176+0.50538) — 0.0268. And hence this option

ensures that we can interpret the .fitted value as a probability. If we didn’t include type.predict
= "response" then augment() would set the .fitted value to the linear combination of the dependent

"https://en.wikipedia.org/wiki/Logistic_ function
8https://en.wikipedia.org/wiki/Logit
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variables, \beta_{0} + \beta_{1} \cdot \text{end\_station\_lat} = -3.586, which doesn’t mean
anything useful in this context.

To recap, whereas a GLM with binomial(link = "identity") specifies that the dependent variable is
a binary that equals one with probability 8, + 3, - ©; + -+ + 3,, - z,, and equals zero with probability
1-B8y—pB -2y ——pB,,,, a GLM with binomial(link = "logit") specifies that the dependent variable

exp(ﬁ0+/81 Ty +"'+5n 'xn)
+exp(Bo+B8y -zt +B, T,

. For example, binomial_glm, below, models positive_overtime as a binary

exp(—3.87+1.66-distance+0.00131-age) .
+exp(—3.87+1.66-distance+0.00131-age) *

is a binary that equals one with probability 5

1— exp(Bo+B1 %1+ +Bp-Ty)
14exp(Bo+B1 -1+ 4B, T,,)

random variable that equals TRUE with probability 5

3 and equals zero with probability

binomial_glm <-
bike %>%
mutate(positive_overtime = overtime > 0) %>%
glm(
positive_overtime ~ distance + age,
family = binomial(link = "logit"),
control = list(maxit = 1073),
data = .

binomial_glm %>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1»> <dbl> <db1l>
> 1 (Intercept) -3.87 0.0102 -380. 0]
> 2 distance 1.66 0.00304 546. 0
> 3 age 0.00131 0.000227 5.78 0.00000000727

Exercise 6.19. Use the binomial_glm estimates to create an expression for the probability that a trip
runs over time, as a function of distance and age.

e To confirm the accuracy of your expression, augment() binomial_glm with type.predict = "re-
sponse" and get the .fitted value associated with tibble(distance = 2, age = 30).

binomial_glm %>%

augment (
newdata = tibble(distance = 2, age = 30),
type.predict = "response"

%> %

pull(.fitted)

> [1] 0.3749504

Exercise 6.20. Why should you generally not model probabilities as a linear combination of indepen-
dent variables?

Exercise 6.21. Create a glm() that models the probability of a trip running over time as a function
of distance, customer age, and dummy variables that indicate (i) the customer user_type and gender

and (ii) the day of week and hour of day the trip began.
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e mutate() bike to define positive_overtime = overtime > 0.
e Run a glm() with formula positive_overtime ~ distance + age + user_type + gender +
start_wday + start_hour and family = binomial(link = "logit").
e <- the result into binomial_glm_2.
e glance() binomial_glm_2 to confirm that it explains the data better than binomial_glm.
— Show that it has a lower AIC.

Exercise 6.22. We will now illustrate how the probability of a trip running over time varies with
distance, user_type, gender, and start_hour.

e augment() binomial_glm_2 to get the .fitted value associated with each of the new_scenarios
defined in exercise 6.11.
— Use type.predict = "response".
e mutate() the result to set start_hour = strtoi(start_hour) and distance = as.factor(distance).
e rename() prob_positive = .fitted.
e <- the result into prob_overtime.

e %+% prob_overtime to the probability_plot you made in exercise 6.11, and + aes(y =
prob_positive) to update the y-axis.

Exercise 6.23. The probability of a trip lasting at least 30 minutes equals the probability of it running
over time (i.e., lasting at least 20 minutes) times the probability of the trip having at least 10 minutes
of overtime, conditional on the trip running over time. We will now combine the tibbles we made in
exercises 6.11 and 6.22 to illustrate how the probability of a trip lasting at least 30 minutes varies with
distance, user_type, gender, and start_hour.

e dnner_join() prob_long_overtime_given_overtime and prob_overtime.

e mutate() the result to define prob_duration_at_least_36 = prob_positive * prob_more_than_10_given_posit

o %+% the result to the probability_plot you made in exercise 6.11, and + aes(y = prob_duration_at_least_30)
to update the y-axis.

Exercise 6.24. To gauge the statistical strength of our gim(), we will compare the .fitted values in
the positive_overtime = TRUE subsample against those in the positive_overtime = FALSE subsample.
If our model has good predictive power then the .fitted values should be much higher in the former
subsample.

e augment() binomial_glm_2 with type.predict = "response" to get the .fitted value associated
with each observation in bike.
e ggplot() the distribution of .fitted with a geom_density(alpha = .3) layer. Specify fill =

positive_overtime to distinguish between the positive_overtime = TRUE and positive_overtime
= FALSE subsamples.
— You should find a high correlation between the expected value of positive_overtime and
the actual value of positive_overtime. In other words, you should get much larger . fitted
values in the subsample of trips that ran over time.

6.2.5 Nonlinear Least Squares

Sometimes, there’s no good distribution for the variable of interest. For example, in our raw data, the
overtime variable looks like this:
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bike %>%
ggplot() +
aes(x = overtime) +
geom_histogram(bins = 20)

1le+06 -

count

5e+05 -

Oe+00 -

0 20 40 60
overtime

As you see, most trips have exactly zero overtime. We have hitherto disregarded this point mass at
zero by studying the distribution of overtime conditional on it being positive (i.e., by restricting the
sample to overtime_trips <- bike %>% filter(overtime > 0)). But now, suppose we wanted to model
overtime without conditioning on it being positive. In this case, glm() can’t characterize overtime’s
non-conventional distribution, but it can characterize its mean. For example, if E(overtime) = exp(/3,+
B, - age + [, - distance) then the following yields estimates Bo: Bl, and 52:

bike %>%
glm(
overtime ~ age + distance,
data = .,
control = list(maxit = 1043),
mustart = rep(l, nrow(.)),
family = gaussian(link = "log")

%>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <dbl> <dbl> <db1l>
> 1 (Intercept) 0.0999 0.00526 19.0 2.29e-80
> 2 age 0.000531 0.000121 4.40 1.08e- 5
> 3 distance 0.476 0.000579 822. 0

Let me explain this one bit at a time. First, the mustart = rep(1, nrow(.)) option initializes the
algorithm: it tells R to start with the supposition that each overtime has a mean of one and then to
refine the model from there. (Usually, glm() can make do without such a starting value, but sometimes
it returns an error requesting one.) Second, as we have seen before, the control = list(maxit = 10/3)
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option tells glm() not to give up too early, and the 1ink = "log" option tells it to use transformation
function exp() (i.e., to set E(overtime) = exp(8, + [, - age + 3, - distance), for some parameters /3,
B, and (5). And finally, the gaussian() term tells R that overtime has a Gaussian distribution. Note,
Gaussian distribution is just another name for normal distribution, so we’re stipulating that overtime
follows a normal distribution whose mean equals exp(f, + f; - age + (3, - distance), conditional on age
and distance.

But overtime behaves nothing like a normal, so isn’t this specification ridiculous?! Well, no, it is not,
because using glm() with family = gaussian() is equivalent to using nonlinear least squares, which we
can always use to model the dependent variable’s mean. In other words, specifying family = gaussian()
tells R to estimate the parameters by minimizing the sum of the squared errors, where the observation-¢
error is defined as

e, = overtime, — E(overtime,)

= overtime, — exp(f, + 3 - age, + B3, - distance, ).

As you see, nonlinear least squares is equivalent to ordinary least squares (i.e., Im() ), except rather than
y—Py— Py —— B,x, the errors have the form y— f(8,+ Bz, + -+ B,,x,,), for some transformation
function f() (which is exp() in this case). Indeed, a glm() with family = gaussian() is equivalent to
an 1m() when we specify link = "identity" (i.e., f(x) = x).

To recapitulate, we can always use a glm() with family = gaussian() to model the expected value
of a dependent variable, because nonlinear least squares is valid under all distributions. And if the
dependent variable really is normally distributed then can use a glm() with family = gaussian() to
model its expected value and its distribution.

6.3 Lab: Nuclear Mishaps

6.3.1 Overview

In 1979, the core of the Three Mile Island Reactor 2 lost coolant and melted down, releasing radioac-
tive gases and iodine into the environment. In response, the nuclear industry and federal regulators
redoubled their efforts to mitigate the risks of splitting the atom. As part of this effort, the Nuclear
Regulatory Commission (NRC) published a guideline for conducting a Probabilistic Risk Assessment
(PRA) at a nuclear plant. According to the NRC, a PRA is intended

to estimate risk by computing real numbers to determine what can go wrong, how likely
is it, and what are its consequences. Thus, PRA provides insights into the strengths and
weaknesses of the design and operation of a nuclear power plant. For the type of nuclear
plant currently operating in the United States, a PRA can estimate three levels of risk. A
Level 1 PRA estimates the frequency of accidents that cause damage to the nuclear reactor
core. This is commonly called core damage frequency (CDF). A Level 2 PRA, which starts
with the Level 1 core damage accidents, estimates the frequency of accidents that release
radioactivity from the nuclear power plant. A Level 3 PRA, which starts with the Level 2
radioactivity release accidents, estimates the consequences in terms of injury to the public
and damage to the environment.

In 1988 the NRC mandated PRA implementation, requiring

each existing plant [to] perform a systematic examination to identify any plant-Specific [sic]
vulnerabilities to severe accidents and report the results to the Commission.
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The general purpose of this examination, defined as an Individual Plant Examination (IPE),
is for each utility (1) to develop an appreciation of severe accident behavior, (2) to under-
stand the most likely severe accident sequences that could occur at its plant, (3) to gain
a more quantitative understanding of the overall probabilities of core damage and fission
product releases, and (4) if necessary, to reduce the overall probabilities of core damage
and fission product releases by modifying, where appropriate, hardware and procedures that
would help prevent or mitigate severe accidents.

Did these PRAs decrease incidents at nuclear power plants? To answer this research question, Blanco
et al. [2019] gauged whether the PRAs were followed by a reduction in Licensee Event Reports (LERS)
filings. A LER is “A reportable event [as| determined by Title 10, Code of Federal Regulations (10
CFR). These reports describe an event with significant safety implications at the plant.” For example,
here’s a LER from Peach Bottom Atomic Power Station, Unit 2:

On 8/21/09, Exelon security staff personnel determined that unescorted access was granted
to a contract worker who did not provide complete work history information that was rele-
vant to making an access authorization determination made on 9/11/08. It was determined
that the individual did not provide complete information to Exelon concerning a previous
incident at a non-nuclear work facility where the individual had tested positive in a Fitness-
for-Duty test. In accordance with Exelon procedures, this individual would not have been
granted unescorted access if this information had been known at the time that unescorted
access was granted.

There was no actual adverse security consequences associated with this event. The individ-
ual’s activities at PBAPS were limited to work on non-safety related equipment.

This individual’s access had been previously terminated at PBAPS on 9/28/08 as a result of
the completion of the individual’s work activities associated with refueling outage P2R17.

There were no previous similar events identified.
And here’s a LER from Palo Verde Nuclear Generating Station, Unit 3:

On March 20, 2003, Unit 3 was in MODE 1, operating at approximately 98 percent power
when augmented testing revealed that one main steam safety valve (MSSV) had an as-found
lift pressure above the Technical Specification limit of 4 /- 3 percent of design lift pressure.
This MSSV is believed to have experienced setpoint drift.

The valve was reset per plant procedures to +/-1 % of the required setpoint upon completion
of valve testing.

We will follow Blanco et al’s methodology to estimate the relationship between PRAs and LER filing
rates. And we will extend their analysis to estimate the relationship between PRAs and employee
radiation exposure levels (which Blanco et al. did not study). Before proceeding, skim Blanco et al’s
article, focusing primarily on Sections 1-4.1.

6.3.2 Data

We will use facility, power, shutdown, ler, and radiation from section 1.3, exercise 1.45. Here’s a
description of these tibbles:

o facility:
— pwr_bwr specifies whether the reactor is a pressurized water reactor (PWR) or a boiling
water reactor (BWR).
— pra_month specifies when the facility performed its PRA.

e power:
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— generation specifies the electricity output, in megawatt hours. This variable can be negative
because the plants, themselves, use energy.

— capacity_factor specifies the actual energy output divided by the maximum energy output.
This variable can exceed 1, due to changes in reactor capacity over time.

shutdown:

— The stop_type = "vol" observations correspond to the stoppages that Blanco et al. [2019]
described as “long-term voluntary plant shutdowns, which can take more than a year. Op-
erators implement improvements at the plant at these times.”

— The stop_type = "invol" observations correspond to the stoppages that Blanco et al. [2019]
alluded to when explaining that “Regulators imposed a forced shutdown in only 1.6% of
months in the sample.”

— The stop_type = "refuel" observations correspond to refuelings, which reactors must do
“every 12 to 18 months, and this takes anywhere from 30 to 60 days.”

ler:

— ler specifies the total number of Licensee Event Reports filed in the given month.

— actuation_ler, techspec_ler, degrade_ler, inoperable_ler, and safety_equip_ler variables
specify the number of LERs that are flagged with the “actuation”, “technical specifications”,
“degradation”, “inoperable”, and “prevent safety equipment” Code of Federal Regulations
(CFR) codes.

— A given LER can be assigned zero or multiple CRF codes.

radiation:

— exposure_sum measures the total radiation that the workforce was exposed to collectively.
— exposure_average measures the radiation that the average worker was exposed to.
— These variables are measured Roentgen equivalent man® (rem) units.

6.3.3 Clean

We will combine these tibbles into a master panel. But first we will pivot_wider() shutdown into a
more convenient form:

shutdown <-

shutdown %>%
pivot_wider (

id_cols = c(reactor, start),
names_from = stop_type,
values_from = stop_type,
values_fn = length,
values_fill = 0,
names_prefix = "shutdown_"

%>%

rename (month = start)

shutdown %>% head

vV V V V VvV

A tibble: 6 x 5

reactor month shutdown_vol shutdown_invol shutdown_refuel
<fct> <date> <int> <int> <int>
Browns Ferry 2 1984-09-01 1 0 1
Calvert Cliffs 1 1989-05-01 1 0 0

Shttps://www.nrc.gov /reading-rm/basic-ref/glossary /rem-roentgen-equivalent-man.html
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> 3 Calvert Cliffs 2 1989-03-01 1 0 1
> 4 Clinton 1996-09-01 1 0 0
> 5 Crystal River 3 1996-09-01 1 0 0
> 6 D.C. Cook 1 1997-09-01 1 (0] 0

This tibble reports the number of shutdown_vol, shutdown_invol, and shutdown_refuel at a given
reactor in a given month. For example, the first row indicates that Browns Ferry 2 had both a voluntary
shutdown and a refueling shutdown in September, 1984.

Exercise 6.25. We will now create our combined panel.

left_join() together facility, power %>% mutate(year = year(month)), ler, radiation, and
shutdown in that order.

— Adding a year column to power gives the radiation observations something to latch onto.
The resulting tibble’s shutdown_vol, shutdown_invol, and shutdown_refuel variables will be NA
unless the plant shut down in the specified month. replace_na() values in these columns to 0,
since there were zero shutdowns in these months.
arrange() the result by reactor and month, group_by() reactor, and then redefine shutdown_vol,
shutdown_invol, and shutdown_refuel so that they report the cumsum() number of facility shut-
downs.

— Use across() to avoid writing cumsum() multiple times.

— The last row should indicate that the Wolf Creek 1 reactor had 23 refueling shutdowns.
Define pra as a logical that indicates whether the facility has performed its PRA by the given
month.
filter () away the observations that fall outside of 1985-1998, since Blanco et al. [2019] explain
that they “focus on the period from 1985 to 1998 because this is when PRA was widely adopted
by the nuclear industry.”
ungroup() the tibble and define day = as.integer(month - min(month)) as the number of days
since the start of the sample (i.e., since mdy ("01-01-1985")).
<- the result into a tibble called combined_sample.

— This tibble should have 16163 row and 24 columns.

In addition to our combined_sample we will use the following three tibbles in our analysis:

glm_

tib <-

tibble(

glm_

specification

1]
=
o
w

formula =

c(

ler ~ pra + reactor * day + shutdown_refuel,

ler ~ pra + reactor * day + shutdown_refuel + shutdown_vol,
ler ~ pra + reactor * day + shutdown_refuel + shutdown_vol + shutdown_invol

tib_2 <-

tibble(

dependent_variable =

c(

"actuation_ler",
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"techspec_ler",
"degrade_ler",
"inoperable_ler",
"safety_equip_ler"
)
formula =
dependent_variable %>%
str_c(
"~ pra + day + reactor + shutdown_refuel",
"+ shutdown_vol + shutdown_invol"
)
) 9%>%
rowwise %>%
mutate(formula = formula %>% as.formula %>% list) %>%

ungroup

hypothetical_scenarios <-
combined_sample %>%
select(-pra) %>%
expand_grid(pra = c(TRUE, FALSE))

glm_tib and glm_tib_2 define the regressions we will run in exercises 6.30 and 6.33, and hypothet-
ical_scenarios specifies the cases we will consider in our counterfactual analysis. Specifically, this
tibble repeats the observations of combined_sample twice, once with pra = TRUE and once with pra =
FALSE. We will calculate the .fitted value associated with each of these hypothetical_scenarios to
compare what the ler rate would be if every observation had pra = TRUE to what it would be if every
observation had pra = FALSE.

6.3.4 Analyze

We will first establish that pra implementation is associated with lower ler counts.

Exercise 6.26. Plot the distribution of 1ler, both for the the pra = TRUE and pra = FALSE observations.
Unfortunately, the plot you made does not suggest that pra adoption caused lower ler counts, because
the facilities that chose to implement a pra differ systematically from those that did not. We will now

controll for the reactor-specific effects.

Exercise 6.27. Use combined_sample to run an lm() (not a glm()) with formula ler ~ pra + day +
reactor. tidy() the result to view the coefficient estimates.

The "praTRUE" estimate suggests that implementing a pra decreases the expected ler value by 0.245.
This is the key result, and its statistical significance is strong. The "reactorArkansas Nuclear 2", ..,
"reactorWolf Creek 1" estimates benchmark against the reactor = "Arkansas Nuclear 1" baseline.
For example, Browns Ferry 2 has an average of 0.939 more LERs per month than Arkansas Nuclear 1
(when they have the same pra value). And finally the "day" estimate reports the temporal trend: the
nuclear plants become gradually safer over time, as the average ler decreases by 0.000221 per day.

However, Blanco et al. [2019] gave each reactor their own temporal trend. We can incorporate reactor-
specific temporal trends into our model by changing the regression formula from ler ~ pra + day +
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reactor to ler ~ pra + day * reactor:

Im_nuclear <-
combined_sample %>%
m(
ler ~ pra + day * reactor,
data =

#first six estimates:
Ilm_nuclear %>% tidy %>% head

> # A tibble: 6 x 5

> term estimate std.error statistic p.value
> <chr> <db1> <dbl> <dbl> <db1l>
> 1 (Intercept) 1.69 0.241 7.01 2.42e-12
> 2 praTRUE -0.169 0.0479 -3.54 4.03e- 4
> 3 day -0.000196 0.0000828 -2.37 1.79e- 2
> 4 reactorArkansas Nuclear 2 0.582 0.339 1.71 8.65e- 2
> 5 reactorBeaver Valley 1 -0.443 0.339 -1.31 1.91e-1
> 6 reactorBeaver Valley 2 -0.426 0.446 -0.955 3.40e- 1

#last six estimates:
Ilm_nuclear %>% tidy %>% tail

> # A tibble: 6 x 5

> term estimate std.error statistic p.value

> <chr> <db1l> <dbl> <dbl> <dbl>

> 1 day:reactorVermont Yankee 0.000376 0.000116 3.25 0.00116

> 2 day:reactorVogtle 1 -0.000645 0.000136 -4.74 0.00000213

> 3 day:reactorVogtle 2 -0.0000744 0.000164 -0.453 0.651

> 4 day:reactorWaterford 3 -0.0000669 0.000120 -0.558 0.577

> 5 day:reactorWatts Bar 1 -0.000750 0.000987 -0.759 0.448

> 6 day:reactorWolf Creek 1 -0.000602 0.000120 -5.01 0.000000536

Now in addition to the estimates we had previously—"(Intercept)", "praTRUE", "day", "re-
actorArkansas Nuclear 2", .., "reactorWolf Creek 1"—we have 102 reactor-level time trends:
‘"day:reactorArkansas Nuclear 2", .., "day:reactorWolf Creek 1". These estimates report the rate of
improvement relative to the reactor = "Arkansas Nuclear 1" baseline. For example, the Watts Bar 1

reactor decreased its LER rate by 0.000750 reports per day more than Arkansas Nuclear 1 did. Put
differently, after 365 days, the expected LER rate is 1.69 — 0.000196 - 365 = 1.62 at Arkansas Nuclear
1 and 1.69 — 0.000196 - 365 — 0.000750 - 365 = 1.34 at Watts Bar 1 (assuming that neither facility
implemented a PRA in the first year).

Unfortunately, our linear model has one glaring problem: it sometimes predicts a negative number of
LERs, as we will see in the next exercise.

Exercise 6.28. augment() lm_nuclear to anticipate the expected ler count for reactor == "Turkey
Point 4" in December, 1, 1998.

Of course, this forecast is nonsense, as engineers can’t file a negative number of reports. To correct this
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issue, we will use a glm() with transformation function f(z) = exp(z). Since the exponential function
always returns a positive number, this model ensures that the expected number of LERs—i.e., the
.fitted value—is positive. Specifically, our glm() will treat ler as a Poisson random variable whose
mean equals the exponentiation of a linear combination of our independent variables. The Poisson
distribution!? is the simplest distribution whose values are constrained to non-negative integers, so it’s
well-suited for modeling “count data” like ler, which has no fractional parts. Furthermore, the “law of
rare events”!! suggests that ler should indeed resemble a Poisson random variable.

Exercise 6.29. Define glm_nuclear as the glm() analog of 1m_nuclear. Use the Poisson distribution
and the f(z) = exp(z) transformation function (and hence the f~!(x) = log(x) link function).

e Use family = poisson(link = "log").
e tidy() glm_nuclear to view its estimates.

The "praTRUE" estimate is -0.153, which suggests that the expected number of LERs should only be
exp(—0.153) = 85.8% as high after implementing a PRA. For example, the "(Intercept)", "day",
"reactorKewaunee", "day:reactorKewaunee" estimates are 0.585, -.000183, -0.237, and 0.000124, respec-
tively. Thus, the expected LER rate corresponding to reactor = "Kewaunee", day = 100, and pra =
FALSE 1S

fitted = exp(0.585 —.000183 - 100 — 0.237 + 0.000124 - 100) = 1.41

In contrast, the expected LER rate corresponding to reactor = "Kewaunee", day = 100, and pra = TRUE
is

fitted = exp(0.585 — 0.153 — .000183 - 100 — 0.237 + 0.000124 - 100)
=exp(—0.153) exp(0.585 — .000183 - 100 — 0.237 + 0.000124 - 100)
=0.858 - 1.41
=1.21

Note, the exp(x + y) = exp(x)exp(y) property of the exponential function enables us to isolate
exp(—0.153).

Exercise 6.30. We will now run the regressions that Blanco et al. [2019] reported in Table 2.

e mutate() glm_tib to map() each formula to its corresponding glm(). Save the output as a list
column called estimated_glm.
— Within the mutate() write estimated_glm = formula %>% map(), and then embed the glm()
call within the map().
— Specify data = combined_sample and family = poisson(link = "log") in the glm().
e <- the output of mutate() into glm_tib, overwriting the previous version.

Exercise 6.31. We will now report our estimates with a simplified version of Blanco et al’s Table 2.

e Split glm_tib rowwise() to tidy() each model in the estimated_glm column. Save the summary
statistics in a new column.

e unnest() the result by the new column you just made.

e filter() the sample down to the observations with term == "praTRUE".

Ohttps:/ /en.wikipedia.org/wiki/Poisson__distribution
Hhttps://en.wikipedia.org/wiki/Poisson_ limit_ theorem

403


https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_limit_theorem

e select() the specification, estimate, std.error, statistic, and p.value columns.

— Your estimate values should differ from those presented in Table 2 of Blanco et al. [2019],
because rather than ,é they “report the marginal effects of the results,” which is a related
but different statistic.

— This estimate values should indicate a strongly negative relationship between pra and ler.
For example, the last estimate should suggest that implementing a pra reduces the expected
ler by 1 —exp(—0.128) = 12%.

Exercise 6.32. We will now illustrate how pra adoption influences the distribution of 1er. The Poisson
distribution has only one parameter: its mean. Hence, the . fitted values of our glm() fully characterize
the distribution of ler. Accordingly, we will augment() our model to compare the ler distribution when
pra = TRUE to when it is FALSE.

e Split glm_est_tib with rowwise(specification) and summarise() the result to do the following:

— augment() each model of estimated_glm with newdata = hypothetical_scenarios and
type.predict = "response"

— mutate() the augmented data to define hypothetical_outcome = rpois(n = n(), lambda =
.fitted).

— Save the mutated data in a list() column called prediction_tib.
e ungroup() and unnest() the result to get a tibble that stores hypothetical_outcome values for
each observation in each of the hypothetical_scenarios under each specification
e Feed the result into the create_plot_function() to create a plot that illustrates the causal effect
of pra adoption on ler counts.

create_plot_function <-
. %>%
count(pra, specification, hypothetical_outcome) %>%
mutate (
n = n/sum(n),
specification = str_c("Specification ", specification),
pra = ifelse(pra, "With PRA", "Without PRA"),
.by = c(pra, specification)
%>% {
ggplot(data = .) +
aes (
x = hypothetical_outcome,
y = n,
color = pra
) +
geom_point() +
geom_1line() +
facet_wrap(
vars(specification),
scales = "free"
) +
labs(
x = "Number of LERs",
y = "Probability Mass"
) +
theme_minimal() +
theme (
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legend.title=element_blank(),
legend.position = "top"

After modeling the effect of PRAs on the overall LER rate, Blanco et al. [2019] estimated the effect
on each specific type of LER. In other words, they estimated the influence of pra on actuation_ler,
techspec_ler, degrade_ler, inoperable_ler, and safety_equip_ler. We will replicate this analysis.

Exercise 6.33. We will now run the regressions that Blanco et al. [2019] reported in Table 8.

e Run a Poisson regression with each formula in glm_tib_2, and save the output as a list column
called estimated_glm.
— Copy your solution to exercise 6.30.
e tidy() each element in estimated_glm and save the output as a list column called tidied_glm.
— See how I defined tidied_glm for glm_tib.
e <- the resulting tibble into glm_tib_2, overwriting the previous version.

We can now create our own version of Blanco et al’s Table 8:12

glm_tib_2 %>%
mutate (
tidied_glm =
estimated_glm %>%
map (tidy)
) %>%
unnest(tidied_glm) %>%
filter(term == "praTRUE") %>%

select(-c(formula, estimated_glm, term))

> # A tibble: 5 x 5

> dependent_variable estimate std.error statistic p.value
> <chr> <db1l> <db1l> <db1> <dbl>
> 1 actuation_ler -0.385 0.0437 -8.82 1.19e-18
> 2 techspec_ler -0.205 0.0372 -5.52 3.44e- 8
> 3 degrade_ler -0.349 0.0750 -4.65 3.30e- 6
> 4 +dnoperable_ler -0.465 0.145 -3.22 1.28e- 3
> 5 safety_equip_ler -0.211 0.0775 -2.72 6.50e- 3

In each case, we find a strongly negative relationship between pra and dependent_variable. For example,
the first estimate suggests that implementing a pra decreases the expected actuation_ler by 1 —
exp(—0.385) = 31.95%.

Exercise 6.34. We will now illustrate how the distribution of the expected number of each LER type
changes with PRA adoption.

12These estimate values differ from those presented in Table 2 of Blanco et al. [2019], because rather than ,5’\ they “report
the marginal effects of the results,” which is a related but different statistic.
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e Use mutate() and map() to augment() each estimated_glm in glm_tib_2, with newdata = hypo-
thetical_scenarios and type.predict = "response". Save the outputs in a list column called
augmented_glm.

e unnest() the resulting tibble by augmented_glm.

e ggplot() the result with geom_density(alpha = .35) layer evaluated with x = .fitted and fill
= pra. facet_wrap() by dependent_variable.

— The pra = FALSE distributions should be shifted to the right, as the expected number of each
type of LER is larger in this case.

Blanco et al. [2019] focused on the effect of PRAs on LERs. But there’s another interesting variable in
our sample: the amount of radiation employees were exposed to. We will now test whether implementing
PRASs reduced radiation exposure levels.

Exercise 6.35. Run a GLM with formula exposure_average ~ pra + day. Again use the f(x) = exp(z)
transformation function, but now give the dependent variable a gamma distribution (since it takes non-
integer values.)

e Use data = combined_sample and family = Gamma(link = "log") in your glm() call.
e tidy() the output to view the coeflicient estimates.

The gamma regression you ran in exercise 6.35 yield a statistically insignificant "praTRUE" coefficient
estimate. So we fail to reject the null hypothesis that PRAs had no influence on employee radiation
exposure levels.

6.3.5 Explore

Exercise 6.36. How does the rate of electricity generation depend on the length of time since the last
refueling?

e You probably will want to model the relationship with something more flexible than a straight
line, which gives you only two degrees of freedom, an intercept and a slope. For example, if you
estimated the generation rate separately for each decile of the time since the last refueling then
you would have 10 degrees of freedom to model the relationship.

e To better compare across reactors, you may want to redefine generation = (generation -
mean(generation)) / sd(generation), where the mean() and sd() are computed at the reac-
tor level.

6.3.6 Reflect

Exercise 6.37. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

6.4 Lab: Menu Costs

6.4.1 Overview

Restaurants can only change their prices after reprinting their menus. In this vein, economists call
the operational costs associated with adjusting prices menu costs. Bray and Stamatopoulos [2022]
illustrate the effects of menu costs in a large Chinese supermarket chain. Their primary figure, which
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we reproduce below, depicts what a product’s average gross profits would be on days -1, —T +1,---, T,
for T' = 20, 40, 60, and 80, if its price changed on day zero. As you see, profits surge when the stores
reoptimize their prices, but they decline steadily thereafter as demand evolves and becomes ever more
misaligned with the old price. Bray and Stamatopoulos explain, “This, of course, is the expected
pattern—the freshest prices should yield the highest profits.” These results suggest that if it weren’t
for menu costs, stores would tweak their prices daily to maintain the most up-to-date price profile.
Instead, they let the average price last 30.23 days, as they must wait for prices and demands to be
sufficiently out of sync before they can justify posting new price labels.

The Chinese grocer is considering installing electronic shelf labels (ESLs) to lower the cost of updating
prices. The current price-updating process is labor intensive, as it requires (i) printing a new label in
the backroom, (ii) walking to the shelf in the store, and (iii) scraping off the old sticker and pasting on
the new one. With ESLs, store supervisors could manage all prices from their laptops, as updating a
given price would simply entail changing a cell in a spreadsheet. The cost savings could be significant,
as “Physical menu costs—labor and material price adjustment costs—have been estimated at about
0.7% of revenue and 35.2% of net margin for U.S. supermarkets and drugstores,” and digitizing this
process could reduce these costs from $0.90 per price change to $0.09 [Stamatopoulos et al., 2021, 242].

Exercise 6.38. If ESLs reduce the cost of changing an individual price from $0.90 to $0.09, then
should we expect these devices to decrease the total annual menu cost by (i) an order of magnitude,
(ii) less than order of magnitude, or (iii) more than order of magnitude?

Exercise 6.39. Given your answer to the previous exercise, should we expect the value of installing
ESLs to amount to (i) 90% of the total annual menu cost, (ii) less than 90% of the total annual menu
cost, or (iii) more than than 90% of the total annual menu cost?

We will now conduct an empirical investigation to gauge the value of installing ESLs. We must antic-
ipate (i) how ESLs affect the price-update frequency and (ii) how the price-update frequency in turn
affects menu costs and gross margins.

6.4.2 Data

We will use the menu_cost tibble from exercise 1.46 of section 1.3. The data look like this:

menu_cost %>% glimpse

> Rows: 217,669

> Columns: 6

> $ store <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, ~
> $ product <fct> Detergent_02f62211, Detergent_02f62211, Detergent_02f6~
> § date <date> 2021-06-26, 2021-06-27, 2021-06-28, 2021-06-29, 2021-~
> $ price_retail <dbl> 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, ~
> $ price_wholesale <dbl> 7.83, 7.83, 7.83, 7.83, 7.83, 7.83, 7.83, 7.83, 7.83, ~
> $ sales <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, ©, 1, 1, ©, ©, 0, 0, 0, 0, ~

Overall, there are seven distinct stores:

menu_cost %>% distinct(store)

> # A tibble: 7 x 1
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Figure 6.1: Evidence of Menu Costs

These plots provide reduced-form evidence of menu costs. They indicate that daily profits spike after
price changes and fall otherwise. Producing these figures takes several steps. First, we isolate all
instances where a product’s price is constant in the T" days leading up to a price change and the T
days following a price change. Second, we normalize each product’s daily average profits to one in the
(2T + 1)—day window surrounding the price change. Third, we calculate the median normalized profit
for each day t € {—T,---, T}, where t = 0 represents the day of the price change. Fourth, we plot these
median profits by product category for T' € {20, 40, 60, 80}.
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And there are 194 distinct products, all of which are laundry detergents:

menu_cost %>% distinct(product)

# A tibble: 194 x 1
product

<fct>
Detergent_02f62211
Detergent_054d3cbb
Detergent_05c8017b
Detergent_0669a6a2
Detergent_07838a31l
Detergent_07958152
Detergent_086864ch
Detergent_091be9ba
Detergent_0aal5lal
10 Detergent_0cc7fad9b
> # i 184 more rows

O 0o N O U W N -

>
>
>
>
>
>
>
>
>
>
>
>
>

We observe these products’ price_retail, price_wholesale, and unit sales, for the following date
range:

menu_cost %>% summarise(min(date), max(date))

> # A tibble: 1 x 2

> ‘min(date)” ‘max(date)’
> <date> <date>

> 1 2020-03-28 2023-12-27

6.4.3 Clean

Exercise 6.40. Some sales quantities are extreme. Winsorize the top 3% of sales by store-product.
That is, replace the top 3% of each store-product’s sales values with the 97th percentile. After this
step, you should have a mean sales value of 4.24. Save the resulting tibble as tib.

Exercise 6.41. Use price_retail, price_wholesale, and sales to add a corresponding gross_profit
variable to tib. Use the exchange rate $1.00 = ¥7.31 to express this quantity in USD (i.e., divide the
revenue by 7.31). Also, use floor_date() to derive a variable called month from date. We will use this
latter variable to add month fixed effects to our regression to control for time trends.

Exercise 6.42. Bray and Stamatopoulos [2022] demonstrated that old prices are less profitable than
new prices. Indeed, this profit decay is the primary impetus for updating prices. To capture this
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phenomenon, add a variable to tib called price_age that reports the number of days old a given store-
product’s price_retail is. Note, there’s no telling how old any prices are at the sample’s start, so
you cannot calculate this variable until you see the given store-product’s first price_retail change.
Accordingly, you should remove from tib the observations that precede the first price change of each
store-product, and then track price_age from that point on. For example, there should be no store
= 0, product = "Detergent_02f62211" values before 2021-09-02; then this store-product should have
price_age values that increase from 1 to 8 between 2021-09-02 and 2021-09-09, and then go back down
to 1 on 2021-09-10. The median price_age should be 77 days.

e Hint: use functions consecutive_id() and row_number ().

6.4.4 Analyze

We will now create a statistical model that describes gross_profit in terms of price_age. We will then
use this model to calculate the optimal price-change frequency under the ESL menu cost, $0.09, and
the ESL-free menu cost, $0.90. Finally, we will calculate each case’s gross profits and menu costs to
determine the total value of installing ESLs.

Exercise 6.43. The distribution of gross_profit is too excentric to characterize with a glm(). Never-
theless, we can still use glm() to model this variable’s mean with nonlinear least squares. The nls_model
you create should characterize the expected gross_profit as a linear combination of price_age, store
dummies, product dummies, and month dummies, transformed by the exp() function (to ensure that
the expectation is positive).

o Hint: use the mustart option if you get an error that reads “Error in eval(family$initialize) :
cannot find valid starting values: please specify some”.

We will now use our nls_model to conduct a counterfactual analysis that gauges how installing ESLs
affects the stores’ profitability. We will factor both a direct effect—lower outlays for each price change—
and a set of knock-on effects—lower outlays for each price change begetting more price changes, which
beget higher gross profits and more distinct menu costs.

Exercise 6.44. Use your nls_model to anticipate the expected gross_profit for all price_age values
between 1 and 1,000 for each combination of store, product, and month in tib. Then average over
the month values to create a mean expected gross_profit for each store, product, and price_age
combination. Save this counterfactual sample in a tibble called cf_sample.

e The observation with store = 0, product = "Detergent_02f62211", and price_age = 1 should
have expected_gross_profit = 1.875564.
o Hint: Don’t forget to use the type.predict = "response" option of augment().

Exercise 6.45. Use cf_sample’s expected gross_profit estimates to determine the best time to update
the price of each store-product, both when the menu cost is $0.90 and when it is $0.09. And then, use
these optimal price-change frequencies to calculate the corresponding average daily gross_profit and
average daily menu cost. For example, the expected gross_profit for product = "Detergent_02f62211"
at store = 0is 1.875564, 1.875215 1.874866, and 1.874518 when price_age is 1, 2, 3, and 4, respectively.
Hence, if we changed this store-product’s prices every four days without ESLs, then its average daily
gross_profit would be ($1.875564 4+ $1.875215+ $1.874866 + $1.874518)/4 = $1.875041 and its average
daily menu cost would be $0.90/4 = $0.225. However, changing prices every four days is not optimal,
as it yields very high menu costs; indeed for this scenario, the optimal policy changes prices every 23
days, in which case the the difference between the average daily gross_profit and the average daily
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menu cost takes its maximum value of $1.871733 — $0.90/23 = $1.832603. Save the optimal time
between price changes, and the corresponding average daily gross profits and menu costs in a tibble
called cf_sample_under_optimal_policy.

Exercise 6.46. We will now calculate the value of installing ESLs in a naive way and in a sophisticated
way. For the naive calculation, scale cf_sample_under_optimal_policy’s daily ESL-free menu costs by
90%, and then take the average of this result across (store, product) pairs. And for the sophisticated
calculation, measure how the difference between the average daily gross_profit and average daily menu
cost changes when introducing ESLs, and then take the average of this result across (store, product)
pairs. The naive calculation implicitly assumes that installing ESLs won’t change the time between
price changes. The sophisticated calculation accounts for the fact that installing ESLs would increase
the frequency of price changes, which would increase the average daily gross_profit and the average
daily menu cost.

Exercise 6.47. You should find that the sophisticated valuation exceeds the naive valuation. Hence,
dividing each menu cost by a factor of 10 underestimates the value of ESLs. Explain why this is the
case.

6.4.5 Reflect

Exercise 6.48. Write a detailed lab report that recounts all the data transformations necessary to
create you final outputs. You can organize the report by exercise, explaining what, why, and how the
solution to each problem did what it did.

6.5 Lab: Text Analytics with ChatGPT

6.5.1 Overview

R has powerful natural language processing (NLP) capabilities, with dozens of libraries for analyzing
and interpreting textual data, such as tm for text mining, word2vec for semantic analysis, and syuzhet
for sentiment analysis. However, these packages may soon find themselves obsolete, as ChatGPT
encroaches on their functionality. For example, in years prior, extracting the meaning from text required
an inordinate amount of statistical know-how. Now we can simply ask ChatGPT to summarize it for
us. In this lab, we will gauge ChatGPT’s facility with text analytics.

6.5.2 Calling ChatGPT from R

The chatgpt library enables us to call the ChatGPT API from within R. Before we can use this API,
however, we must generate an API key. To do so, create an account at https://beta.openai.com/signup,
log into https://platform.openai.com/api-keys, and then click on “Create new secret key.” After you
have created this key, save its value in a character string variable named my_secret_key. After doing
o, you should be able query ChatGPT like this:

library(chatgpt)
Sys.setenv(OPENAI_API_KEY = my_secret_key) #<- give R the API key

"Who 1is the dean of the Kellogg School of Management?" %>%
ask_chatgpt

> [1] "The dean of Northwestern's Kellogg School of Management 1is Francesca Cornelli."
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This function has a memory of your conversation:

"Who were we just talking about?" %>%
ask_chatgpt %>%
cat

> [1] "We were discussing the dean of the Kellogg School of Management, Francesca Cornelli."

And, of course, you can clear this memory:
reset_chat_session()

"Who were we just talking about?" %>%
ask_chatgpt

> [1] "I'm sorry, as an AI, I don't have the capability to remember previous conversations."

For a more elaborate example, the following tells ChatGPT to generate two limericks and to specify
which is funnier:

#Note: TURKEYS, POETS, BUCKETS, BOTS, etc. are

# Kellogg MBA student section names.
gpt_output <-
n

Create two limericks, both of which contain a few of the following subjects:

TURKEYS, POETS, BUCKETS, BOTS, HIGHLANDERS, MOOSE, HEDGEHOGS, BULLFROGS,
CASH COWS, ROADRUNNERS, BIG DOGS.

After creating the limricks, report which you think is more humorous.
Follow this template:
LIMERICK 1:
*xwrite first limrick herex
LIMERICK 2:
*write second limrick herex
EVALUATION:
LIMERICK xwrite either 1 or 2* is more humorous.
" %>%
ask_chatgpt

gpt_output

> [1] "LIMERICK 1:\nThere once was a poet from France,\nWwho wrote Tlimericks at every
chance.\nHe 1loved his turkeys,\nAnd wrote about them 1in buckets,\nHis talent was truly
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enhanced!\n\nLIMERICK 2:\nThere once was a bot from the net,\nWho wrote limericks without a
sweat.\nHe knew of highlanders,\nAnd even moose meandered,\nHis limericks, the best you can
get!\n\nEVALUATION:\nLIMERICK 2 1is more humorous."

Unfortunately, the gpt_output is a bit messy, as it uses "\n" for line breaks. But we can use the cat()
function to print this character string more sensibly:

gpt_output %>% cat

LIMERICK 1:

There once was a poet from France,
Who wrote limericks at every chance.
He loved his turkeys,

And wrote about them in buckets,
His talent was truly enhanced!
LIMERICK 2:

There once was a bot from the net,
Who wrote limericks without a sweat.
He knew of highlanders,

And even moose meandered,

His limericks, the best you can get!
EVALUATION:

LIMERICK 2 is more humorous.

6.5.3 Data

To create a large corpus of random text, I called chatGPT 1000 times with the prompt above to create
1000 pairs of limericks, each of which has one limerick singled out as the funnier of the two.

Exercise 6.49. Which snippet of code below defines limerick_vector as a character string vector that
comprises 1000 pairs of limericks, as defined above.

#Version 1
limerick_vector <-
seq(1000) %>%
map_chr(
~{

reset_chat_session()

Create two limericks, both of which contain a few of the following subjects:

TURKEYS, POETS, BUCKETS, BOTS, HIGHLANDERS, MOOSE, HEDGEHOGS, BULLFROGS,
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CASH COWS, ROADRUNNERS, BIG DOGS.

After creating the limricks, report which you think is more humorous.
Follow this template:

LIMERICK 1:

*write first limrick herex

LIMERICK 2:

*write second limrick herex

EVALUATION:

LIMERICK *write either 1 or 2* is more humorous.

" %>%

ask_chatgpt

#Version 2
limerick_vector <-
seq(1000) %>%
map (
= {
reset_chat_session()

Create two limericks, both of which contain a few of the following subjects:

TURKEYS, POETS, BUCKETS, BOTS, HIGHLANDERS, MOOSE, HEDGEHOGS, BULLFROGS,
CASH COWS, ROADRUNNERS, BIG DOGS.

After creating the limricks, report which you think is more humorous.

Follow this template:

LIMERICK 1:

*write first limrick herex

LIMERICK 2:

*write second limrick herex

EVALUATION:
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LIMERICK #*write either 1 or 2% is more humorous.
n
} %>%
ask_chatgpt(.x) #<<<<---- Note .x here!

#Version 3
limerick_vector <-
seq(1000) %>%

map_chr (
~ WX %>%

ask_chatgpt

After creating limerick_vector, I saved the first 800 limerick pairs in training sample limerick_train
and the last 200 pairs in hold-out sample limerick_test, which you should have loaded in exercise 1.47.
These samples look like this:

limerick_train %>% glimpse

> Rows: 800

> Columns: 4

> $ trial <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16~
> § first_is_funnier <lgl> TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TR~
> $ limerdick_1 <chr> "There once was a poet from Skye __ Whose turkeys cou~
> $ limerick_2 <chr> "There once was a bot with no shame __ Who dreamed of~

limerick_test %>% glimpse

> Rows: 200

> Columns: 3

> § trial <dbl> 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812,~
> $ limerick_1 <chr> "A poet once wrote of a moose __ Whose antlers were as big ~
> $ limerick_2 <chr> "There once was a bucket of bolts __ Whose programming neve~

Both tibbles comprise the trial number, which spans from 1 to 800 in limerick_train and from 801
to 1,000 in limerick_test, and text of each trial’s limerick_1 and limerick_2. However, only the
training data contains the first_is_funnier column, which is TRUE if ChatGPT deemed limerick_1
funnier than limerick_2. We will use logistic regression to anticipate which limericks in the testing
data ChatGPT deemed funnier.

6.5.4 Analysis

To model ChatGPT’s decision, we must extract features from the limerick_1 and limerick_2 text
strings that are predictive of the first_is_funnier logical. Our prompt asked ChatGPT to incorpo-
rate in the limericks a few of the Kellogge MBA group names, such as "TURKEYS", "POETS", "MOOSE",
"BULLFROGS", etc. Some of these team names are quite colorful, and so their inclusion may make the
limericks funnier. To determine whether this is the case, I will run a logistic regression that predicts
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first_is_funnier in terms of the number of funny MBA group names found in the first and second
limericks:

limerick_model_1 <-
Timerick_train %>%
mutate (
name_count_1 =
Timerick_1 %>%
str_count( #count number of times any of these words appear in limerick_1
"turkey|hedgehog|roadrunner|bot|moose|bullfrog|cash cow|big dog"
) b
name_count_2 =
Timerick_2 %>%
str_count(
"turkey |hedgehog|roadrunner |bot|moose|bullfrog|cash cow|big dog"
)
) %>%
glm(
first_is_funnier ~ name_count_1 + name_count_2,
family = binomial(link = "logit"),
control = list(maxit = 1073),
data =

limerick_model_1 %>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1l> <dbl> <dbl>
> (Intercept) 1.27 0.195 6.53 6.77e-11
> 2 name_count_1 0.0331 0.0776 0.427 6.69e- 1
> 3 name_count_2 -0.285 0.0596 -4.79 1.69e- 6

As you see, the name_count_2 coefficient is strongly negative, which suggests that incorporating these
words into limerick_2 increases that rhyme’s funniness, relative to limerick_1.

Unfortunately, limerick_model_1 is incompatible with our hold-out sample, which lacks name_count_1

and name_count_2 columns:

limerick_model_1 %>%
augment (newdata = limerick_test)

> Error 1in eval(predvars, data, env): object 'name_count_1' not found
Accordingly, we’ve have to mutate() our hold-out sample before we can calculate its .fitted values:
limerick_model_1 %>%

augment (

newdata =
Timerick_test %>%
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mutate(
name_count_1 =
Timerick_1 %>%
str_count( #count number of times any of these words appear in limerick_1
"turkey|hedgehog|roadrunner |bot|moose|bullfrog|cash cow|big dog"
)’
name_count_2 =
limerick_2 %>%
str_count(
"turkey |hedgehog|roadrunner |bot|moose|bullfrog|cash cow|big dog"

)
)
)
> # A tibble: 200 x 6
> trial limerdick_1 limerick_2 name_count_1 name_count_2 .fitted
> <db1l> <chr> <chr> <int> <int> <dbl>
> 1 801 A poet once wrote of a mo~ There onc~ 1 1 1.02
> 2 802 A poet whose name was Mis~ A big dog~ 1 2 0.737
> 3 803 There once was a bot in a~ There was~ 2 2 0.770
> 4 804 There was a cash cow 1in t~ There was~ 2 2 0.770
> 5 805 There was a big dog in th~ There was~ 1 3 0.452
> 6 806 In the Highlands, the cow~ A poet on~ 1 1 1.02
> 7 807 A hedgehog once got in a ~ A bot nam~ 2 2 0.770
> 8 808 There was a young poet na~ A cash co~ 2 1 1.06
> 9 809 There once was a poet nam~ There was~ 3 5 -0.0524
> 10 810 There was a bot who tried~ A poet on~ 2 2 0.770

> # 1 190 more rows

Copying these mutate() steps is awkward. Fortunately, the powerful 1() convention enables us to elim-
inate this redundancy. The 1() function allows you to incorporate code in a formula. Rather than give
glm() the pre-defined vectors name_count_1 and name_count_2, we can instead give it the code that de-
fines these vectors, wrapped in an I(). For example, the following tells R to regress first_is_funnier on
the vectors outputted by str_count(limerick_1, "turkey|poet|bucket|moose|bullfrog|cash cow|big
dog") and str_count(limerick_2, "turkey|poet|bucket|moose|bullfrog|cash cow|big dog"):

limerick_model_2 <-
Timerick_train %>%
glm(
first_dis_funnier ~
I(
str_count( #<- set first regression variable to output of this code

limerdick_1,
"turkey|hedgehog|roadrunner |bot|moose|bullfrog|cash cow|big dog"

)
I(
str_count( #<- set second regression variable to output of this code

limerick_2,
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"turkey | hedgehog|roadrunner |bot|moose|bullfrog|cash cow|big dog"

)
)J
family = binomial(link = "logit"),
control = list(maxit = 1073),
data =

limerick_model_2 %>%

tidy
> # A tibble: 3 x 5
> term estimate std.error statistic p.value
> <chr> <db1l> <db1> <db1> <db1>
> 1 "(Intercept)" 1.27 0.195 6.53 6.77e-11
> 2 "I(str_count(limerick_1, \"turkey|hedge~ 0.0331 0.0776 0.427 6.69%e- 1
> 3 "I(str_count(limerick_2, \"turkey|hedge~ -0.285 0.0596 -4.79 1.69e- 6

As you see, limerick_model_2 has the same coeflicient estimates as 1imerick_model_1. However, whereas
limerick_model_1 characterizes these coefficients in terms of the new name_count_1 and name_count_2
variables, limerick_model_1 characterizes them in terms of our original limerick_1 and limerick_2
variables. Accordingly, limerick_model_2 is compatible with our hold-out sample, without further
modification:

limerick_model_2 %>%
augment (newdata = limerick_test) %>%

head

> # A tibble: 6 x 4

> trial limerdick_1 limerick_2 .fitted
> <db1l> <chr> <chr> <db1>
> 1 801 A poet once wrote of a moose __ Whose antlers were a~ There onc~ 1.02
> 2 802 A poet whose name was Miss Beryl, __ Had a turkey na~ A big dog~ 0.737
> 3 803 There once was a bot in a race, __ Determined to fin~ There was~ 0.770
> 4 804 There was a cash cow in the yard __ Whose ability to~ There was~ 0.770
> 5 805 There was a big dog in the park __ Whose bark was ~ There was~ 0.452
> 6 806 In the Highlands, the cows had a stash __ Of cash th~ A poet on~ 1.02

This is the primary benefit of using 1(): it enables you to define your model in terms of basic variables
only, which makes it reliant on basic variables only (e.g., limerick_1 and limerick_2, rather than
derivatives name_count_1 and name_count_2).

I wrote a function called prediction_evaluator_fn() to determine the value of our out-of-sample
predictions. This function takes a vector of .fitted values for the limerick_test data, and returns
the corresponding mean square error (MSE)—i.e., it calculates mean((first_is_funnier_test-
.fitted)"2), where first_is_funnier_test is the Tlimerick_test analog of Ulimerick_train’s
first_is_funnier column. The prediction_evaluator_fn() function knows the values of these hold-
out first_is_funnier_test logicals. Unfortunately, these first_is_funnier_test logicals apparently
do not align well with limerick_model_2’s out-of-sample .fitted values, as evidenced by the relative
high MSE of 0.268:
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limerick_model_2 %>%
augment (newdata = limerick_test) %>%
pull(.fitted) %>% # <= pull .fitted value vector from augment() tibble

prediction_evaluator_fn # <- pass this vector to custom-made function

> [1] 0.2680375

We clearly need a better model. Rather than count some ad hoc words, such as turkey, hedgehog, and
roadrunner, we will next try counting all words and character strings.

Exercise 6.50. Which snippet of code below defines 1imerick_model_3 as a logistic regression with
two key independent variables: (i) the number of characters in limerick_1 minus the the number of
characters in limerick_2 and (ii) the number of words in limerick_1 minus the the number of words
in limerick_27

#Version 1:
limerick_model_3 <-
limerdick_train %>%
glm(
first_is_funnier ~
I(str_length(limerick_1)) -
I(str_length(limerick_2)) +
I(str_count(limerick_1, "\\w+")) -
I(str_count(limerick_2, "\\w+")),
family = binomial(link = "logit"),
control = list(maxit = 1043),
data =

#Version 2:
limerick_model_3 <-
Timerick_train %>%
glm(
first_is_funnier ~
I(str_length(limerick_1) - str_length(limerick_2)) +
I(str_count(limerick_1, "\\w+") - str_count(limerick_2, "\\w+")),
family = binomial(link = "logit"),
control = list(maxit = 1073),
data =

#Version 3:
limerick_model_3 <-

Timerick_train %>%

augment (

first_dis_funnier ~
I(
str_length(limerick_1) -
str_length(limerick_2) +
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str_count(limerick_1, "\\w+") -
str_count(limerick_2, "\\w+")
)
family = binomial(link = "logit"),
control = list(maxit = 1073),
data = .

Here are the corresponding coefficient estimates:

limerick_model_3 %>% tidy

> # A tibble: 3 x 5

> term estimate std.error statistic p.value
> <chr> <db1l> <db1l> <db1l> <dbl>
> 1 "(Intercept)" 0.688 0.0759 9.06 1.26e-19
> 2 "I(str_length(limerick_1) - str_length(~ 0.0129 0.00605 2.14 3.27e- 2
> 3 "I(str_count(limerick_1, \"\\\\w+\") - ~ -0.0413 0.0263 -1.57 1.17e- 1

Exercise 6.51. What does the strongly positive intercept estimate, BO, indicate? Keep in mind that
our model sets

exp(BO + 3, Word Count Diff. + 3,Char. Count Diff.)
1+ exp(f3, + 3, Word Count Diff. + 3,Char. Count Diff.)’

and that exp() is an increasing function that satisfies exp(0) = 1.

fitted value =

1. ChatGPT will usually find the first limerick funnier when it has the same number of words and
characters as the second limerick.

2. The mean word count and character count differences tend to be positive—i.e., the first limerick
tends to be longer than the second limerick.
3. The mean() first_is_funnier value is positive, because it takes values in 0 and 1.

While better, this model’s out-of-sample fit is still quite bad:

limerick_model_3 %>%
augment (
newdata = limerdick_test,
type.predict = "response'
) %>%
pull(.fitted) %>%

prediction_evaluator_fn

> [1] 0.1981189

But we should be able to improve upon this, as we should be able to find better features than basic
word and character counts.
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Exercise 6.52. Before reading ahead, brainstorm a few features that you could extract with R from
limerick_1 and limerick_2 to improve the model’s predictive power.

Did your answer to the previous exercise include something as abstract as, say, the limericks’ level of
whimsy? If so, you've probably grokked the revolution in text string analytics that ChatGPT could
represent. Before the advent of large language models, there was no reliable way to have a computer
score something subjective like whimsiness. But now we can leverage ChatGPT’s uncanny judgement to
produce such scores. For example, the following asks ChatGPT to score the first element of limerick_1
along six conceptual dimensions:

limerick_train %>%

slice(l) %>%

pull(limerick_1) %>%

str_c(
"Score the following limerick in terms of rhyme, rhythm,",
"whimsy, wit, cleverness, and humorousness:\n",
)
"\nYour answer should have the following form:",
"Rhyme: xnumber 1 to 10*, Rhythm: *number 1 to 10x,",
"Whimsy: *number 1 to 10%, Wit: *number 1 to 10x,",
"Cleverness: *number 1 to 10*, Humorousness: *number 1 to 10x"

) %>%

ask_chatgpt %>%

cat
> Rhyme: 8
> Rhythm: 7
> Whimsy: 9
> Wit: 7
> Cleverness: 8
> Humorousness: 9

Exercise 6.53. Which snippet of code below asks ChatGPT to score each limerick in limerick_train,
as above, and saves the outputs in limerick_train_w_scores_raw?

#Version 1
limerick_train_w_scores_raw <-
str_c(
"Score the following limerick in terms of rhyme, rhythm,",
"whimsy, wit, cleverness, and humorousness:\n",
c(
limerick_train %>% pull(limerick_1),
Timerick_train %>% pull(limerick_2)
)’
"\nYour answer should have the following form:",
"Rhyme: *number 1 to 10%, Rhythm: *number 1 to 10x,",
"Whimsy: *number 1 to 10%, Wit: *number 1 to 10x,",

"Cleverness: *number 1 to 10*, Humorousness: *number 1 to 10x"
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) %>%
ask_chatgpt

#Version 2
Timerick_train_w_scores_raw <-
Timerick_train %>%
mutate (
across (
c(limerick_1, limerick_2),
~{

reset_chat_session()

str_c(
"Score the following limerick in terms of rhyme, rhythm,",
"whimsy, wit, cleverness, and humorousness:\n",
. X,
"\nYour answer should have the following form:",
"Rhyme: xnumber 1 to 10*x, Rhythm: *number 1 to 10x,",
"Whimsy: xnumber 1 to 10*, Wit: *number 1 to 10%,",
"Cleverness: *number 1 to 10*, Humorousness: *number 1 to 10x"

) %>%
ask_chatgpt

1,

.names = "{.col}_scoresheet"

#Version 3
Timerick_train_w_scores_raw <-
Timerick_train %>%
rowwise %>% #<<<- Note rowwise()
mutate (
across (
c(limerick_1, limerick_2),
@

reset_chat_session()

str_c(
"Score the following limerick in terms of rhyme, rhythm,",
"whimsy, wit, cleverness, and humorousness:\n",
.X,
"\nYour answer should have the following form:",
"Rhyme: xnumber 1 to 10*x, Rhythm: xnumber 1 to 10x,",
"Whimsy: xnumber 1 to 10%, Wit: *number 1 to 10x,",
"Cleverness: *number 1 to 10*, Humorousness: *number 1 to 10x"

) %>%
ask_chatgpt

}’

.names = "{.col}_scoresheet"
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With a bit of processing, we can transform limerick_train_scores_raw and an analogous limer-
ick_test_scores_raw into the limerick_train_w_scores_clean and limerick_test_w_scores_clean tib-
bles we loaded in exercise 1.47. These tibbles look like this:

limerick_train_w_scores_clean %>%

glimpse
> Rows: 800
> Columns: 16
> $ trial <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16~
> $ first_is_funnier <lgl> TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TR~
> $ limerick_1 <chr> "There once was a poet from Skye __ Whose turkeys cou~
> $ limerick_2 <chr> "There once was a bot with no shame __ Who dreamed of~
> $ Rhyme_1 <dbl> 9, 8, 8, 1, 8, 9, 9, 9, 9, 7, 9, 7, 9, 1, 9, 9, 9, 9,~
> $ Rhythm_1 <dbl> 9, 8, 8, 9, 7, 9, 9, 9, 8, 8, 9, 6, 9, 9, 9, 9, 9, 9,~
> $ Whimsy_1 <dbl> 8, 7, 7, 9, 7, 8, 8, 8, 8, 8, 9, 7, 9, 9, 8, 7, 7, 8,~
> $ Wit_1 <dbl> 7, 7, 7, 8, 6, 7, 8, 7, 7, 7, 8, 6, 8, 8, 7, 7, 8, 8,~
> § Cleverness_1 <dbl>» 7, 7, 6, 7, 6, 7, 8, 6, 7, 7, 8, 6, 7, 8, 6, 7, 8, T,~
> $ Humorousness_1 <dbl> 9, 8, 7, 9, 6, 8, 9, 7, 7, 7, 8, 7, 8, 8, 8, 7, 8, 9,~
> ¢ Rhyme_2 <dbl> 8, 7, 8, 8, 9, 9, 5, 9, 9, 9, 9, 7, 9, 1, 9, 8, 8, 1,~
> $ Rhythm_2 <dbl> 8, 5, 7, 8, 8, 7, 6, 8, 9, 8, 9, 6, 9, 8, 8, 8, 6, 9,~
> $ Whimsy_2 <dbl> 9, 8,9, 7, 7,8, 7,8, 8,8,9,8,9, 7, 8,7, 7, 8~
> § Wit_2 <dbl> 8, 8, 7, 6, 7, 9, 7, 7, 7, 7, 8, 8, 7, 6, 9, 9, 7, 8,~
> $ Cleverness_2 <dbl> 7, 7, 7, 5, 7, 7, 6, 8, 7, 7, 8, 8, 7, 6, 8, 9, 6, 7,~
> $ Humorousness_2 <dbl> 9, 8, 8, 7, 8, 9, 7, 8, 8, 8, 9, 8, 8, 5, 8, 8, 7, 8,~
limerick_test_w_scores_clean %>%

glimpse
> Rows: 200
> Columns: 15
> $ trial <dbl> 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, ~
> $ limerdick_1 <chr> "A poet once wrote of a moose __ Whose antlers were as ~
> $ limerick_2 <chr> "There once was a bucket of bolts __ Whose programming ~
> $ Rhyme_1 <dbl> 9, 9, 9,1, 8, 1, 9, 9, 9, 9, 8, 9, 1, 8, 9, 9, 9, 8, 9~
> $ Rhythm_1 <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 7, 8, 9, 8, 8, 9, 9, 9, 8~
> $ Whimsy_1 <dbl> 7, 8, 6, 8, 7, 8, 8, 8, 8, 8, 7,9, 8, 7, 8, 8, 9, 8, 9~
> $ wit_1 <dbl> 6, 8,5, 7,7,7,9,7,7,8,8, 7,7, 7, 7, 7, 7, 7, T~
> $ Cleverness_1 <dbl> 6, 8, 5, 7, 6, 7, 8, 8, 7, 8, 9, 7, 7, 7, 7, 7, T, 7, 1~
> $ Humorousness_1 <dbl> 7, 8, 6, 7, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8~
> § Rhyme_2 <dbl> 8, 9, 9, 7, 9, 1, 9, 8, 8, 9, 1, 1, 1, 1, 9, 9, 9, 9, 8~
> $ Rhythm_2 <dbl> 7, 8, 8, 6, 9, 1, 8, 7, 6, 8, 8, 9, 9, 9, 8, 8, 9, 8, 9O~
> $ Whimsy_2 <dbl> 7, 8, 9, 8,8, 7,8,8,7,8,7,7,8,8,8,7, 8, 6, 8~
> $ wWit_2 <dbl> 7, 7, 8, 6, 7, 8, 6, 7, 6, 7, 6, 7, 9, 7, 7, 8, 7, 6, T~
> $ Cleverness_2 <dbl> 8, 7, 8,5, 7,8,5,7,6,7,6,6,9,8,8,7, 7,7, 6~
> $ Humorousness_2 <dbl> 7, 7, 9, 6, 8, 9, 7, 8, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 9~

423



The metrics ending in _1 correspond to limerick_1 and those ending in _2 correspond to limerick_2.

We’ll now use our limerick scores to explain the variation in first_is_funnier.

Exercise 6.54. Which snippet of code below defines 1imerick_model_4 as a generalized linear model
of first_is_funnier on the differences between (i) Rhyme_1 and Rhyme_2, (ii) Rhythm_1 and Rhythm_2,
(iii) Whimsy_1 and whimsy_2, (iv) wit_1 and wit_2, (v) Cleverness_1 and Cleverness_2, and (vi) Humor-
ousness_1 and Humorousness_27

#Version 1
limerick_model_4 <-
limerick_train_w_scores_clean %>%
glm(
first_is_funnier ~
I(
Rhyme_1 - Rhyme_2 +
Rhythm_1 - Rhythm_2 +
Whimsy_1 - Whimsy_2 +
Wit_1 - Wit_2 +
Cleverness_1 - Cleverness_2 +
Humorousness_1 - Humorousness_2
)
family = binomial(link = "logit"),
control = list(maxit = 1073),
data =

#Version 2
limerick_model_4 <-
Timerick_train_w_scores_clean %>%
glm(
first_is_funnier ~
I(Rhyme_1) - I(Rhyme_2) +
I(Rhythm_1) - I(Rhythm_2) +
I(Whimsy_1) - I(Whimsy_2) +
I(Wit_1) - I(wit_2) +
I(Cleverness_1) - I(Cleverness_2) +
I(Humorousness_1) - I(Humorousness_2),
family = binomial(link = "logit"),
control = list(maxit = 1043),
data =

#Version 3
limerick_model_4 <-
limerick_train_w_scores_clean %>%
glm(
first_is_funnier ~
I(Rhyme_1 - Rhyme_2) +
I(Rhythm_1 - Rhythm_2) +
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I(Whimsy_1 - Whimsy_2) +

I(Wit_1 - wit_2) +

I(Cleverness_1 - Cleverness_2) +

I(Humorousness_1 - Humorousness_2),
family = binomial(link = "logit"),
control = list(maxit = 1043),
data =

6.5.5

Exercise 6.55. Which snippet of code below uses the custom-made prediction_evaluator_fn() func-
tion to calculate the out-of-sample fit of limerick_model_47?

#Version 1

limerick_model_4 %>%
augment (newdata = limerick_test_w_scores_clean) %>%
pull(.fitted) %>%
prediction_evaluator_fn

#Version 2

limerick_model_4 %+%
limerick_test_w_scores_clean %>%
augment %>%
pull(.fitted) %>%
prediction_evaluator_fn

#Version 3

limerick_model_4 %>%
pull(.fitted) %>%
prediction_evaluator_fn

Unfortunately, limerick_model_4 yields an out-of-sample MSE of 0.297, which makes it much worse than
our previous attempts. The problem is that 1imerick_model_4 comprises too many weak independent
variables, which leads it to “overfit” on the training data. To avoid such overfitting, we will use fewer
but stronger variables. Reducing the number of variables will give the model fewer ways to leverage
spurious correlations, and requiring the variables we do include to be “strong”—i.e., predictive of the
funnier limerick—will ensure that the correlations found in the training data are not spurious.

To rule out the hypothesis that ChatGTP’s responses to abstract questions contain no meaningful
information, I will use the strongest possible query, directly asking the chatbot for the probability that
it would have deemed limerick_1 funnier in its previous assessment:

limerick_train_w_gpt_prediction_raw <-
Timerick_train %>%
rowwise %>%

mutate(
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prob_1_funnier =
{

reset_chat_session()

str_c(
"I gave ChatGPT two Llimericks, and I asked it to determine which is
funnier. I want you to predict the probability that it chose the
the first limerick as being funnier.",
"Here is the first limerick:",
limerick_1,
"And here is the second limerdick:",
limerick_2,
"Your answer should have the following form:",
"ANSWER: there's a *number from 0 to 100x%
chance that ChatGPT considered limerick 1 funnier."
) 9%>%

ask_chatgpt

After running this code, I tidied limerdick_train_w_gpt_prediction_raw and an analogous limer-
ick_train_w_gpt_prediction_clean into the following:

limerick_train_w_gpt_predictions_clean %>% head

> # A tibble: 6 x 5

> trial first_is_funnier limerick_1 limerick_2 gpt_fitted
> <dbl> <1gl> <chr> <chr> <dbl>
> 1 1 TRUE There once was a poet from Skye ~ There onc~ 0.6
> 2 2 TRUE There once was a poet with mirth~ There was~ 0.6
> 3 3 FALSE There was a young moose with a c~ There was~ 0.7
> 4 4 FALSE There once was a poet from Franc~ A group o~ 0.65
> 5 5 TRUE A poet once wrote of big moose, ~ A cash co~ 0.75
> 6 6 TRUE There once was a turkey named To~ A bot tri~ 0.75

limerick_test_w_gpt_predictions_clean %>% head

> # A tibble: 6 x 4

> trial limerick_1 limerick_2 gpt_fitted
> <db1l> <chr> <chr> <dbl>
> 1 801 A poet once wrote of a moose __ Whose antlers wer~ There onc~ 0.45
> 2 802 A poet whose name was Miss Beryl, __ Had a turkey~ A big dog~ 0.7
> 3 803 There once was a bot in a race, __ Determined to ~ There was~ 0.65
> 4 804 There was a cash cow in the yard __ Whose ability~ There was~ 0.55
> 5 805 There was a big dog in the park __ Whose bark w~ There was~ 0.25
> 6 806 In the Highlands, the cows had a stash __ Of cash~ A poet on~ 0.85

The gpt_fitted values in the tibbles above record the probability that ChatGPT assigned to it having
chosen the first limerick as the funnier of the two.
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Exercise 6.56. Which snippet of code below tests the accuracy of ChatGPT’s predictions? That is,
which calculates the MSE of the hold-out sample’s gpt_fitted values?

#Version 1
limerick_test_w_gpt_predictions_clean %>%
summarise (prediction_evaluator_fn(gpt_fitted))

#Version 2
limerick_train_w_gpt_predictions_clean %>%
rowwise %>%
mutate(predictions = gpt_fitted %>% prediction_evaluator_fn)

#Version 3

c(
limerick_train_w_gpt_predictions_clean %>% pull(gpt_fitted),
limerick_test_w_gpt_predictions_clean %>% pull(gpt_fitted)

) %>%

prediction_evaluator_fn

Unfortunately, ChatGPT’s predictions yield a relatively high MSE of 0.208. Perhaps we can improve
our model fit by embedding the gpt_fitted values in a logistic regression.

Exercise 6.57. Which snippet of code below runs a logistic regression of first_is_funnier on
gpt_fitted, and then calculates the corresponding out-of-sample fit?

#Version 1

limerick_test_w_gpt_predictions_clean %>%
pull(gpt_fitted) %>%
prediction_evaluator_fn

#Version 2
limerick_train_w_gpt_predictions_clean %>%
glm(
first_is_funnier ~ gpt_fitted,
family = binomial(link = "logit"),
control = list(maxit = 1043),
data =
) %>%
augment (
newdata = limerick_test_w_gpt_predictions_clean,
type.predict = "response'
) %>%
pull(.fitted) %>%
prediction_evaluator_fn

#Version 3

limerick_train_w_gpt_predictions_clean %>%
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glm(
first_is_funnier ~ gpt_fitted,
family = binomial(link = "logit"),
control = list(maxit = 1043),
data =
) %>%
tidy %>%
filter(term == "gpt_fitted") %>%
select(statistic)

Wrapping a logistic regression around gpt_fitted decreases the out-of-sample MSE to 0.1986, which
is about as good as when we use the word count and character count. Hence, the amount of usable
signal in gpt_fitted basically matches that found in these simple counts—i.e., not much. But this
quantity is not zero, as gpt_fitted’s t statistic—which one of the snippets of code above calculates—is
an impressive 5.85. Indeed, you can clearly see the signal in gpt_fitted in the plot below.

limerick_train_w_gpt_predictions_clean %>%
ggplot +
aes(x = gpt_fitted, color = first_is_funnier) +

geom_density ()

first_is_funnier

0-

0.00 0.25 0.50 0.75
gpt_fitted

Exercise 6.58. What is the main take-away from this plot?

(1) The green line is more concentrated than the red line, which indicates that gpt_fitted is indeed
larger when first_is_funnier = TRUE

(2) The green line is taller than the red line, which indicates that gpt_fitted is indeed larger when
first_dis_funnier = TRUE
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(3) The green line is shifted to the right of the red line, which indicates that gpt_fitted is indeed
larger when first_is_funnier = TRUE

In conclusion, we found that ChatGPT can produce some meaningful judgements. But these judge-
ments are so weak that anything more subtle than point-blank asking it which limerick it anticipates
having selected as funnier yielded useless responses. However, I ran this experiment with the notori-
ously weak ChatGPT 3.5, at the beginning of 2023. More modern models would surely yield more
impressive results.

6.6 Solutions

6.1

baseline_1lm <-
overtime_trips %>%
m(
overtime ~ distance,
data = .

baseline_1lm %>% tidy

6.2 Only the mean varies with the independent variables. The shape remains fixed in a glm(), like the
standard deviation remains fixed for an 1m().

6.3 The gamma distribution can rationalize non-negative data, itallows the standard deviation to scale
with the mean, and it permits shapes other than a bell curve.

6.4

gamma_glm_2 <-
overtime_trips %>%
glm(
overtime ~ distance + age,
family = Gamma(link = "didentity"),
control = list(maxit = 1043),
data = .

#Factoring age lowers the AIC, and hence improves the model:
gamma_glm %>% glance %>% pull(AIC)
gamma_glm_2 %>% glance %>% pull(AIC)

6.7
gamma_glm_exp %>%
augment (

newdata =
expand_grid(
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distance = seq(0, 20, length.out = 100),
age = seq(20, 70, length.out = 100)
)5
type.predict = "response'"
%> %
mutate(
percent_95 =
ggamma (
p = .95,
shape = gamma_shape_exp,
scale = .fitted / gamma_shape_exp
)

%> %

ggplot() +
aes(

X distance,

y = age,
percent_95

V4
) +
geom_contour_filled() +
theme_minimal()

6.8

#gamma_glm_exp has lower AIC, and thus fits better:
gamma_glm_2 %>% glance %>% pull(AIC)
gamma_glm_exp %>% glance %>% pull(AIC)

6.9

When the music gets ominous, you know that something freaky will jump out at you any second now.
So the expected length of time until the next jump scare is low, and the hazard rate of a jump scare
is high. These variable are inverses of one another: when one is low the other is high.

6.10

gamma_glm_inv_2 <-
overtime_trips %>%

glm(
overtime ~ distance + age + user_type + gender + start_wday + start_hour,
family = Gamma(link = "dinverse"),
control = list(maxit = 1043),
data =

#gamma_glm_inv_2 model has lower AIC, and thus fits better:
gamma_glm_inv %>% glance %>% pull(AIC)
gamma_glm_inv_2 %>% glance %>% pull(AIC)

6.11
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gamma_shape_inv_2 <-
gamma_glm_inv_2 %>%
summary %>%
{1/pluck(., "dispersion")}

new_scenarios <-
expand_grid(

distance = 0:4,
age = 30,
user_type = c("Customer", "Subscriber"),
gender = c("male", "female"),
start_wday = "Thu'",
start_hour = as.character(0:23)

prob_long_overtime_given_overtime <-

gamma_glm_inv_2 %>%

augment ( #get mean duration for each scenario
newdata = new_scenarios,
type.predict = "response"

) 9%>%

mutate(
start_hour = strtoi(start_hour),
distance = as.factor(distance),
prob_more_than_10_given_positive =

pgamma ( #derive longer—-than 10 minute
q = 10, #probability from gamma's shape
shape = gamma_shape_inv_2, #and mean (i.e., .fitted value)
scale = .fitted / gamma_shape_inv_2,

lower.tail = FALSE

probability_plot <-
prob_long_overtime_given_overtime %>%
ggplot() +
aes (
x = start_hour,
y = prob_more_than_10_given_positive,
color = distance
) +
geom_line() +
facet_grid(

cols vars(user_type),
rows = vars(gender)

) +

theme_minimal()

probability_plot
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6.12

time_use_data %>%
geplot() +
aes(x = erbmi, color = erincome) +
geom_density(adjust = .5) +
theme_minimal() +

theme (legend.position = "top")

6.13
glm_1 <-
time_use_data %>%
glm(
erbmi ~ erincome,
family = Gamma(link = "didentity"), #Use gamma distribution.
control = list(maxit = 1073), #Don't give up too early.
data =
)
6.14
glm_2 <-

time_use_data %>%
mutate(erbmi_recentered = erbmi - 16) %>%

glm(
erbmi_recentered ~ erincome,
family = Gamma(link = "didentity"), #Use gamma distribution.
control = list(maxit = 1073), #Don't give up too early.
data =

shape_param <-
glm_2 %>%
summary %>%
{1/pluck(., "dispersion")}

glm_2 %>%
augment (newdata = tibble(erincome = c("1'", "2_3_4", "5"))) %>%
rowwise(erincome) %>%
reframe (
type = "theoretical distribution",
erbmi_recentered =
rgamma (
n = 1046,
shape = shape_param,
scale = .fitted / shape_param

) %>%
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bind_rows (
time_use_data %>%
mutate(erbmi_recentered = erbmi - 16) %>%
select(erincome, erbmi_recentered) %>%
mutate(type = "empirical distribution")
%> %
ggplot +
aes(x = erbmi_recentered, color = type) +
geom_density(adjust = .5) +
facet_wrap(vars(erincome)) +
theme_minimal() +

theme (legend.position = "top")

6.15

glm_3 <-
time_use_data %>%
mutate (erbmi_recentered = erbmi - 16) %>%

glm(
erbmi_recentered ~ erincome + eusoda + eufastfdfrq,
family = Gamma(link = "identity"), #Use gamma distribution.
control = list(maxit = 1073), #Don't give up too early.
data =

glm_3 %>% tidy

The eusoda2 coefficient estimate is significantly negative, so the eusoda = "2" observations have with
lower BMI values. The eufastfdfrq coeflicient estimate is significantly positive, so more fast food is
associated with higher BMI.

6.16

shape_param <-
glm_3 %>%
summary %>%
{1/pluck(., "dispersion")}

glm_3 %>%
augment (
newdata =
tibble(erincome = "1", eusoda = c("1", "2"), eufastfdfrq = 5)
%> %
mutate(
prob_obese =
pgamma (
30 - 16,

shape = shape_param,

scale .fitted / shape_param,
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lower.tail = FALSE
)

) %>%
pivot_wider (

id_cols = -.fitted,

names_from = eusoda,

names_prefix = "prob_given_soda_equals_",

values_from = prob_obese
) 9%>%
summarise(prob_given_soda_equals_1 - prob_given_soda_equals_2)

6.17

shape_param <-
glm_3 %>%
summary %>%
{1/pluck(., "dispersion")}

glm_3 %>%
augment (
newdata =
expand_grid(
erincome = c("1", "2_3_4", "5"),
eusoda = c("1", "2"),
eufastfdfrq = 5

)
9%>%
mutate (
prob_obese =
pgamma (
30 - 16,
shape = shape_param,
scale = .fitted / shape_param,
lower.tail = FALSE
)

) %>%
pivot_wider (
id_cols = -.fitted,
names_from = eusoda,
names_prefix = "prob_given_soda_equals_",
values_from = prob_obese
) 9%>%
summar-ise (
prob_given_soda_equals_1 - prob_given_soda_equals_2,

.by = erincome

6.18
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glm_model <-
time_use_data %>%
glm(
erbmi_recentered ~ eustores + eustreason,
family = Gamma(link = "didentity"),
control = list(maxit = 1073),
data =

shape_param <-
glm_model %>%
summary %>%
{1/pluck(., "dispersion")}

glm_model %>%
augment (
newdata =
tribble(
~ case, ~ eustores, ~ eustreason,
"superstore_price", "2", "1i",

"grocerystore_quality", "1", "3"

)
%> %
mutate(
BMI_99 = 16 +
ggamma (
p = 0.99,

shape = shape_paranm, #scale = mean/shape
scale = .fitted / shape_param

6.19

#the following yield the same probability estimates:

distance <- 2

age <- 30

linear_combo <- -3.867568 + 1.65859 * distance + 0.0013117 * age
exp(linear_combo) / (1 + exp(linear_combo))

binomial_glm %>%
augment (
newdata = tibble(distance = 2, age = 30),
type.predict = "response'
) %>%
pull(.fitted)

6.20 If we model probabilities as linear in some independent variables then extreme values for these
variables will correspond to probabilities that are less than 0 or greater than 1.
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6.21

binomial_glm_2 <-

bike %>%

mutate (positive_overtime = overtime > 0) %>%

glm(
positive_overtime ~ distance + age + user_type + gender + start_wday + start_hour,
family = binomial(link = "logit"),
control = list(maxit = 1073),
data =

#gamma_glm_inv_2 model has lower AIC, and thus fits better:
binomial_glm %>% glance %>% pull(AIC)
binomial_glm_2 %>% glance %>% pull(AIC)

6.22

prob_overtime <-

binomial_glm_2 %>%

augment (
newdata = new_scenarios,
type.predict = "response"

) %>%

mutate (
start_hour = strtoi(start_hour),
distance = as.factor(distance)
%>%

rename (prob_positive = .fitted)

probability_plot %+%
prob_overtime +
aes(y = prob_positive)

6.23

data_to_plot <-
prob_long_overtime_given_overtime %>%
inner_join(prob_overtime) %>%
mutate(
prob_duration_at_least_30 =
prob_positive * prob_more_than_10_given_positive

probability_plot %+%
data_to_plot +
aes(y = prob_duration_at_least_30)

6.24
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binomial_glm_2 %>%
augment (type.predict = "response') %>%
ggplot() +
aes(
x = .fitted,
fill = positive_overtime

) +
geom_density(alpha = .3) +
labs(
x = "Prob. of Trip Running Over",

y = "Density",

fill = "Trip Actually Ran Over Time:"
) +
theme_bw() +
theme (legend.position = "top")
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Chapter 7

Spatial Data

7.1 Introduction

In this chapter you will learn how to work with geographic data. This is an area that R excels in. The
two primary packages for geocomputing in R are sp and sf. The former package is old school: it’s
cumbersome but it underpins much of the existing mapping technology in R. The latter package is
the new mapping gold standard. It’s easier to work—e.g., it plays nicely with the tidyverse—and it
receives more developer attention. We will use this more modern package.

The sf package can be a bit confusing at first, but it the gives you tremendous power once you get the
hang of it. Comprising dozens of functions, it has a built-in solution for almost any geometric data
problem you may have. All the functions in this package begin with st_, which stands for “spatial
temporal.” This this cheat sheet! can help you keep them straight.?

The sf package is named after the Simple Features standard for specifying spatial data, which is
recognized by both the Open Geospatial Consortium (OGC) and the International Organization for
Standardization (ISO). The standard boils geometry down to its simple features: points, lines, and
polygons. The package defines three primary objects:

« sfg objects are a collection of basic simple features, such as POINT or MULTIPOLYGON. They
can fit in individual cells of a tibble.

o sfc objects are a collection of sfg objects stacked into a column of data. These objects can serve
as a column variable in a tibble.

o sf tables are a special type of tibble that contain an sfc column for storing geometric objects and
other columns for storing other data.

We will cover sfg objects in section 7.2.1 of the lecture, and will cover sfc and sf objects in section 7.2.2.
Finally, we will cover geometric joins st_intersection() and st_difference() in section 7.2.3. These
functions are like inner_join() and anti_join() except they merge tibbles by the geometric objects
they comprise. Specifically, they deem two rows “a match” if their geometric objects overlap.

In the lab in section 7.3 we will replicate the empirical study of Bastani and de Zegher [2019]. We
will use satellite data to study illegal fishing practices in the open ocean. This is a geometric problem
because different rules apply in different regions of the ocean. You can do this lab work in the code.R
file of the fishing project you created in exercise 1.48.

thttps://github.com/rstudio/cheatsheets/blob/master /sf.pdf

20ther useful reference materials are Geocomputation with R3, Using Spatial Data with R*, Drawing beautiful maps
programmatically with R, sf and ggplot2®, Spatial Manipulation with sf: Cheat Sheet®, and vignettes returned by brow-
seVignettes("sf").
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7.2 Lecture

7.2.1 Geometric Objects
Download and load the sf and spData packages with the following:

library(sf)
library(spData)

The latter package gives us some geometric objects, which we’ll apply the sf package’s functions to.
In the sf package, the fundamental geometric unit is the simple feature geometry, which has class sfg.
These sfg objects are collections of points, lines, and polygons. For example, st_linestring() turns a
two-column matrix into squiggly line with corresponding (x, y) coordinates:

crooked_line <-
runif(20) %>%
matrix(ncol = 2) %>%
st_linestring

class(crooked_1line)

> [1] "Xy" "LINESTRING" "sfg"

As you see, crooked_line is a LINESTRING object, which is a type of sfg object. We can ggplot() it
with geom_sf():

crooked_line %>%

ggplot() +

geom_sf() +

theme_bw ()
1.04
0.8 1
0.6+
0.4 1
0.2 1

dO d2 d4 dG dB
A MULTILINESTRING is a sfg object that describes a collection of squiggly lines:

multi_crooked_lines <-
list(
runif(20) %>%
matrix(ncol = 2),
runif (40, min = 1.5, max = 4) %>%
matrix(ncol = 2)

) %>%
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st_multilinestring

class(multi_crooked_1lines)

> [1] "Xy" "MULTILINESTRING" "sfg"

multi_crooked_lines %>%

ggplot() +

geom_sf() +

theme_bw ()
4-
3-
2-

1 4 S
0-I T T T T T T T
0.00.51.01.52.02.53.03.54.0

We can analogously create POINT, MULTIPOINT, POLYGON, and MULTIPOLYGON sfg objects
with st_point(), st_multipoint(), st_polygon(), and st_multipolygon() options. As expected, we de-
fine a POINT object with a single (x, y) coordinate pair (e.g., st_point(c(0, 1))) and a MULTIPOINT
object with a matrix of coordinate pairs (e.g., st_multipoint(matrix(runif(8), 4))). However, the
POLYGON and MULTIPOLYGON objects are more difficult to define. For example, the following
constructs and plots a single POLYGON object:

base_triangle <-
rbind(
c(o, 0),
c(1/2, 1/2),
c(1, 0),
c(0, 0)

base_square <-
rbind(
c(o, 0),
c(1, 0),
c(1, 1),
c(o, 1),
c(0, 0)

shape_Tlist <-
list(
2 * base_square,
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base_square/2 + 1/4,
base_triangle/6 + 1/2,
base_square/16 + 1/3,
2 * base_triangle + 1

complex_polygon <-
shape_Tlist %>%
st_polygon

complex_polygon %>%

ggplot() +
geom_sf() +
theme_bw ()
2.0
1.54
1.04
0.5 -
a
0.0

00 05 10 15 20 25 30

As you see, a POLYGON object is not a single polygon, but rather a collection of polygons layered on
top of one another. This collection of polygons partitions the plane into an “interior” region and an
“exterior” region, where the inside points are those that reside in an odd number of polygons and the
outside points those that reside in an even number. We construct this object by giving st_polygon()
a list of matrices (e.g., shape_list), where each matrix stores the coordinates of a polygon’s corners.
Note, the first and last row of each matrix must be the same, to ensure that the polygons close off (e.g.,
base_triangle both starts and ends at point c(e, 0)).

Whereas a POLYGON object stems from a list of matrices, a MULTIPOLYGON object stems from
a list of a list of matrices (or from a list of POLYGON objects). A MULTIPOLYGON object stores
a collection of spatial partitions. For example, if your fields are divided into “wheat” and “corn”
regions and into “organic” and “non-organic” regions, then you could save these two partitions in one

MULTIPOLYGON object.

Finally, the GEOMETRYCOLLECTION object allows you save a general collection of points, lines,
and polygons:

list(
complex_polygon,
multi_crooked_1lines,
st_point(c(1, 3))

) %>%
st_geometrycollection %>%
ggplot() +
geom_sf() +
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theme_bw ()

44
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7.2.2 Geometric Tables

Like integers, logicals, or character strings, sfg objects are basic R data elements that we will store in
individual cells of a table. To make these geometric objects table-compatible, we stack them into a
column of data. A column of sfg objects is called an sfc object (the “c” stands for column). For example,
the following uses st_sfc() to combine three MULTIPOINT objects into a single sfc. MULTIPOINT
object (which is a kind of sfc object).

points_1 <-
matrix(runif(8), ncol = 2) %>%
st_multipoint

points_2 <-
matrix(runif(16), ncol = 2) %>%

st_multipoint

points_3 <-
matrix(runif(64), ncol = 2) %>%

st_multipoint

point_var <-
st_sfc(
points_1,
points_2,
points_3

class(point_var)

> [1] "sfc_MULTIPOINT" "sfc"
We can now cast this sfc object as a tibble column, which assigns a MULTIPOINT object to every row
of the table:

mini_tibble <-
tibble(
random_data = 1:3,
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dots = point_var

mini_tibble

> # A tibble: 3 x 2

> random_data dots
> <int> <MULTIPOINT>
> 1 1 ((0.2004898 0.905651), (0.5925133 0.6862674), (0.06013693 0.76085~
> 2 ((0.5078738 0.02065375), (0.5327895 0.3976664), (0.8466024 0.3439~
> 3 3 ((0.7738415 0.1868685), (0.8091557 0.9785103), (0.04481773 0.5965~

However, we usually store geometric data in an sf table, which is just a tibble with a few extra features.
For example, we can derive an sf table from mini_tibble with st_as_sf():

mini_sf <-

mini_tibble %>%

st_as_sf
mini_sf
> Simple feature collection with 3 features and 1 field
> Geometry type: MULTIPOINT
> Dimension: XY
> Bounding box: xmin: 0.02382217 ymin: 0.01940189 xmax: 0.994166 ymax: 0.9871973
> CRS: NA
> # A tibble: 3 x 2
> random_data dots
> <int> <MULTIPOINT>
> 1 ((0.2004898 0.905651), (0.5925133 0.6862674), (0.06013693 0.76085~
> 2 ((0.5078738 0.02065375), (0.5327895 0.3976664), (0.8466024 0.3439~
> 3 ((0.7738415 0.1868685), (0.8091557 0.9785103), (0.04481773 0.5965~

Changing mini_tibble to mini_sf gives the table extra metadata attributes: a bounding box that en-
compasses the geometric objects, a MULTIPOINT geometry type, and a two-dimensional Xy coordinate
system (as opposed to three-dimensional XYz, or four-dimensional Xyzm coordinate systems). The final
printed attribute, the CRS, is NA because we haven’t specified the coordinate reference system (CRS).
The CRS specifies how longitudes and latitudes are measured. There are hundreds of such coordi-
nate systems, customized to different regions. They are cataloged in the EPSG Geodetic Parameter
Dataset.” The most common CRS is EPSG:4326, otherwise known as the World Geodetic System 1984,
or WGS 84. It corresponds to the standard latitudes and longitudes you see on most world maps. We
can add this CRS to mini_sf with

mini_sf <-
mini_sf %>%
st_set_crs(4326)

You'll also find WGS 84 in the world sf table from the spData package, which you will use in the
following exercise.

"EPSG stands for the European Petroleum Survey Group, a defunct organization.
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Exercise 7.1. We will now create a map that depicts the life expectancy of countries around the world.

Remove the countries in world with NA 14 feExp.
Use ntile() to bucket the remaining countries into five groups, based on lifeExp. Call the
bucketing variable LE_group.
Use summarise() to calculate the mean value of 14ifeExp across each LE_group.
— The mean 1ifeExp is 58.11 years in the LE_group = 1 subsample.
— This step compresses the sf table from 167 rows and 12 columns to five rows and three
columns.
Round lifeExp to the nearest hundredth of a year and save it as a factor variable.
ggplot() the map with the fill = 1ifeExp option.
— The map is much clearer when 11 feExp is a factor than when it’s a number.

Exercise 7.1 illustrates one of the key differences between tibbles and sf tables. If world were a tibble
then the summarise() operation would discard the unreferenced geom column. But sf tables treat
geometric columns with deference, so even though we didn’t ask it to, the summarise() step aggregated
geom’s polygons at the LE_group level. For example, compare what summarise() does to world as a
tibble with what it does to world as an sf table:

# tibble summarise()
world %>%

as_tibble %>%

group_by (continent) %>%

vV V V V V V V V V V VvV

o N oo 00~ W N

summarise(area = sum(area_km2))

#

A tibble: 8 x 2

continent area
<chr> <db1l>
Africa 29946198.
Antarctica 12335956.
Asia 31252459.
Europe 23065219.
North Amer-ica 24484309.
Oceania 8504489.
Seven seas (open ocean) 11603.
South Ameriica 17762592.

# st summarise()
world %>%

group_by (continent) %>%

V V V V V V V VvV

summarise(area = sum(area_km2))

Simple feature collection with 8 features and 2 fields
Geometry type: GEOMETRY
Dimension: XY

Bounding box: xmin: -180 ymin: -89.9 xmax: 180 ymax: 83.64513
Geodetic CRS: WGS 84

#

A tibble: 8 x 3
continent area geom
<chr> <dbl> <GEOMETRY [°]>
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> 1 Africa 29946198. MULTIPOLYGON (((36.86623 22, 36.69069 22.20~
> 2 Antarctica 12335956. MULTIPOLYGON (((-180 -89.9, 180 -89.9, 180 ~
> 3 Asia 31252459, MULTIPOLYGON (((36.14976 35.82153, 35.90502~
> 4 Europe 23065219. MULTIPOLYGON (((26.29 35.29999, 25.74502 35~
> 5 North America 24484309. MULTIPOLYGON (((-82.26815 23.18861, -82.510~
> 6 Oceania 8504489. MULTIPOLYGON (((166.7932 -15.66881, 167.001~
> 7 Seven seas (open ocean) 11603. POLYGON ((68.935 -48.625, 68.8675 -48.83, 6~
> 8 South Ameriica 17762592. MULTIPOLYGON (((-66.95992 -54.89681, -66.45~

In the latter case, we get sfc column geom, which stores the polygons that characterize the continents.

The following exercises will give you some practice with this feature of sf tables.

Exercise 7.2. nz is an sf table from the spData package that describes the districts of New Zealand.
Its Sex_ratio variable reports the number of males living in the district divided by the number of
females. We will use this variable to divide the country into masculine and feminine regions

e Create a logical variable called mostly_men that indicates whether Sex_ratio >= 1.
e group_by() mostly_men and summarise(). Call the resulting sf table nz_sex.
— nz_sex should have two columns and two rows.
— The summarise() operation “flattens” the geom column from the polygons that characterize
the district partition to the polygons that characterize the coarser mostly_men partition.
e ggplot() nz_sex with the fill = mostly_men option.

Exercise 7.3. Partition New Zealand, in the fashion of exercise 7.2, into a richest_part = TRUE region,
in which Median_income >= 30000, and a richest_part = FALSE region, in which Median_income < 30000.
Call this new sf table nz_wealth. Like nz_sex, nz_wealth should have two columns and two rows. Plot
it.

Exercise 7.4. Add country borders to the map you made in exercise 7.1. The regions should remain the
same color, but they should now be partitioned by country, such that, for example, we can distinguish
Canada from the United States.

e Change one word of your former solution.

7.2.3 Geometric Joins

The intersection of two shapes is the area that lies in both (e.g., the red-orange portion of the Mastercard
logo) and the difference of two shapes is the area that lies in the first one and not the second one
(e.g., the red portion of the Mastercard logo). The intersection operation is roughly analogous to an
inner_join() and the difference operation to an anti_join().

st_intersection() implements geometric intersections. It takes two sf tables and returns a third sf table
that reports the geometric intersections. Specifically, if x and y are sf tables then st_intersection(x,
y) joins every row of x with every row of y for which the x and y geometric objects intersect, and sets
the new geometric variable to the corresponding overlapping region. For example, the following depicts
the st_intersection() of nz_sex and nz_wealth (from Exercises 7.2 and 7.3):

st_intersection(
nz_sex,
nz_wealth

) %>%

mutate (
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mostly_men = str_c("men: ", mostly_men),
richest_part = str_c("rich: ", richest_part)
) %>%
ggplot() +
geom_sf() +
facet_grid(
rows = vars(richest_part),
cols = vars(mostly_men)

) +
theme_bw ()
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st_intersection() outputs an sf table with each (mostly_men, richest_part) combination because
both nz_sex regions intersect both nz_wealth regions. However, the mostly_men = TRUE zone intersects
the richest_part = TRUE zone only at the border between the West Coast district, which is predomi-
nantly male, and the Canterbury district, which is wealthy (the sf package treats the border points as
belonging to both districts).®

In the following exercises, you will intersect nz with nz_height, an sf table from spData that lists the
101 highest peaks in New Zealand.

Exercise 7.5. We will now calculate the number of peaks that reside in each district.

e Take the st_intersection() of nz and nz_height.
— The joined table has the same number of rows as nz_height because each peak intersects
only one district.
— Each row has a POINT geometry because the intersection of a polygon and a point is a
point.
e count() the number of times that each Name occurs.
— This count() operation doesn’t drop the geometry column, as it would with a standard
tibble. Instead, it aggregates the mountain coordinates at the district level, so that the
districts with multiple peaks have MULTIPOINT geometries.

Exercise 7.6. We will now plot the region of New Zealand that’s within 100 Km of any of its 101
tallest peaks.

e Apply st_buffer(., 100000) to nz_height to add a 100 Km radius to around each peak, turning
the individual points to circles.
— This step turns the POINT geometries to POLYGON geometries.
— st_crs(nz_height)$units confirms that lengths are measured in meters (under this CRS).

8You can remove this border line with st_collection_extract("POLYGON"), which discards all geometries besides enclosed
polygons.
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e Intersect the result with nz.

— The average t50_fid circle intersects 317/101 = 3.14 districts.
e group_by(Name) and summarise().

— This step flatten the various circles into cohesive regions, which makes the map look cleaner.
e ggplot() the result, with fill = Name.

The other key spatial join is the geometric difference, which we implement with st_difference(). It
takes two sf tables and returns a third sf table that reports the geometric differences. Specifically, if x
and y are sf tables then st_difference(x, y) joins every row of x with every row of y for which the y
geometric object does not subsume the x geometric object, and sets the new geometric variable to the
region in the x object but not the y object. For example, the following depicts the st_difference() of
nz_sex and nz_wealth:

st_difference(
nz_sex,
nz_wealth
) %>%
mutate(
mostly_men = str_c("men: ", mostly_men),
richest_part = str_c("rich: ", richest_part)
) %>%
ggplot() +
geom_sf() +
facet_grid(
rows = vars(richest_part),
cols = vars(mostly_men)
) +
theme_bw()
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Note, the output of st_difference() does not have a mostly_men = TRUE, richest_part = FALSE row,
because there’s nothing left when we subtract the richest_part = FALSE zone from the mostly_men =
TRUE.

Or for another example, here’s the part of New Zealand that’s not within 100 Km of any of its 101
tallest peaks:

nz %>%
st_difference(
nz_height %>%
st_buffer (100000) %>%
summarise
) %>%
geplot() +
aes(fill = Name) +
geom_sf() +
theme_bw() +

theme (legend.position = "none")

34°S -

36°S -

38°S -

40°S -

42°S A

44°S -

46°S -

y g

180°
Note, the summarise() step after st_buffer() is crucial! It takes the union of the 101 circles outputted
by st_buffer () to create a single MULTTPOLYGON that comprises all points within 100 Km of a peak.
Taking the st_difference() with respect to this MULTIPOLYGON removes all the points within 100

Km of any peak. The result is an sf table with 16 rows—one for each district—where a given row
describes the region of a given district that’s more than 100 Km from all peaks.

In contrast, if we didn’t include the summarise() step then the st_difference() operation would be
performed peak by peak. The result would be an sf table with 1,616 rows—one for each (peak, district)
combination—where a given row would describe the region of a given district that’s more than 100 Km
from a given peak.

To reiterate, if x and y are sf tables then st_difference(x, y) returns the geometric difference of every
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combination of x and y elements. But we don’t usually want to take geometric differences with respect
to individual elements of y. Instead, we usually want to take geometric differences with respect to the
entirety of y—i.e., to remove the area in x that belongs to any element of y. And to do this, we must
first flatten y with summarise() and before implementing the st_difference().

The following exercises provide additional examples.

Exercise 7.7. Use st_convex_hull() and st_difference() to plot the region of the world that does
not lie in the convex hull of any Asian country.

e Don’t forget to flatten the hull polygons before differencing them out.

Exercise 7.8. Use st_convex_hull() and st_difference() to plot the region of the world that does
not lie between Ecuador and Japan. That is, remove from our map the diagonal strip that lies between
these two countries.

e Be conscious of the order in which you implement the st_convex_hull() and summarise() steps.

7.3 Lab: Illegal Fishing

7.3.1 Overview

We will study a topic that relates to illegal fishing. It is transshipment of fish from one vessel to another
on the open ocean, a practice that has been banned in several regions. Bastani and de Zegher [2019]
explain the rationale behind these bans:

A reefer-to-vessel transshipment (simply referred to as a transshipment hereafter) is the act
of offloading fish catch from a fishing vessel to a refrigerated cargo vessel (often called a
reefer) on the high seas (UN FAO 2011). The cargo vessel would then bring the frozen catch
back to port, ensuring that freshly-caught fish does not spoil onboard a fishing vessel that
might remain far from shore for months or even years. The cargo vessel would typically also
resupply the fishing vessel with fuel and provisions. This practice has obvious economic
benefits, allowing fishing vessels to maximize catch as well as minimize fuel costs. ...

However, transshipments also significantly reduce transparency in the seafood supply chain
by masking where, how, and by whom the fish are caught. Cargo vessels can pick up catch
from many fishing boats along their way, enabling them to launder contraband catch into
poorly-monitored ports as legally-caught catch. ..

Critically, transshipments enable fishing vessels to stay at sea for months or even years at a
time, which allows fishing vessels to evade monitoring, enforcement and civil society. These
conditions pave the way for human rights abuses, e.g., the Issara Institute (2017) finds that
physical abuse of fishermen is three times more likely to occur on vessels that transshipped
catch in the open ocean.

Amidst these concerns, civil society groups, several UN organizations, NGOs, and marine
policy academics have argued that transshipments on the high seas—the open ocean that
does not fall within any country’s jurisdiction—should be banned entirely.

But the efficacy of these bans is uncertain because unscrupulous captains can avoid scrutiny by “flying
flags of convenience”—i.e., by registering their vessels with countries with notoriously lax enforcement.
So we will follow the methodology of Bastani and de Zegher [2019] to estimate the effect of these bans.
Skim the article they wrote before proceeding, so you have a general sense for what we’re going to do.
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7.3.2 Data

9

Access the project data here’. The following exercises will help you load these tables into your R

environment.

Exercise 7.9. The files in the polygons/RFMO folder specify the geographic boundaries of the Regional
Fisheries Management Organizations (RFMOs). Specifically, these data characterize the dotted lines
of this map!®. Use map_df() to load these polygon maps into an sf table called RFMO.

o Although its name suggests that it’ll output a data frame, map_df() will indeed output an sf
table.

e Try using dir() with the full.names = TRUE option.

e Your sf table should have 32 rows and 12 columns.

Exercise 7.10. Use read_rds() to load polygons/eez/eez.rds into an sf table called EEz. This object
specifies the Exclusive Economic Zone boundaries. Bastani and de Zegher [2019] explain that “EEZs
are areas in the ocean that typically stretch out 200 nautical miles from a country’s coastline; countries
have special rights to fish in these zones as prescribed by the UN Convention on the Law of the Sea.”
Following Bastani and de Zegher [2019], we will disregard transshipments that fall within these EEZs.

Exercise 7.11. Use read_csv() to load transshipment.csv into a tibble called all_vessels and load
authorized.csv into a tibble called authorized_vessels. The former file describes all vessels that are
capable of transshipping and the latter describes all vessels that are legally authorized to transship.

e Use the col_types = "iccciTT" option when loading transshipment.csv, to ensure that mmsi and
imo are treated as integers rather than doubles (i.e., fractional numbers).

Exercise 7.12. Use read_csv() to load loiter.csv into a tibble called loiter and load encounter.csv
into a tibble called encounter. The former file lists instances “where these vessels loitered at sea long
enough to receive a transshipment” and the latter lists instance “where two vessels (a transshipment
vessel and a fishing vessel) were in close proximity long enough to transfer catch, crew or supplies.”
Following Bastani and de Zegher [2019], we will interpret these loitering and encounter activities as
“detected transshipments.”

7.3.3 Clean

We’ll clean our data with the following exercises.

Exercise 7.13. We'll first derive an sf table called incidents from loiter and encounter.

o In loiter, (i) define lat = (starting_latitude + ending_latitude) / 2 and long = (start-
ing_longitude. + ending_longitude.) / 2, (ii) rename transshipment_mmsi as mmsi and start-
ing_timestamp as time, and (iii) drop all variables besides mmsi, lat, long, and time.

o Modify encounter to look like loiter (i.e., with columns mmsi, lat, long, and time).

e Use bind_rows() to combine loiter and encounter into a unified tibble called incidents. This
tibble should have a new variable called activity, which is either "loiter" or "encounter", based
on where the observation originated.

— Before combining them, give loiter an activity = "loiter" variable and give encounter an
activity = "encounter".
e Use st_as_sf(., coords = c(x = "long", y = "lat")) to turn incidents into an sf table.

Shttps://www.dropbox.com/sh/hhdelcOty12nyqf/AAAvjR01c8Wd_oVaUuOUZH7na?dl=0
Ohttp:/ /www.fao.org/figis/geoserver /factsheets/rfbs.html
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e Use st_crs(incidents) <- st_crs(RFMO) to give incidents the coordinate reference system used
by RFMO (which is the World Geodetic System 1984).

Exercise 7.14. We’ll now remove from {incidents the vessels that are authorized to transship.

e Use anti_join() to remove the ships in authorized_vessels from all_vessels. Call the resulting
tibble unauthorized_vessels
— Join the tibbles by IMO number.
e Use inner_join() to drop the observations in incidents that do not correspond to a ship in
unauthorized_vessels.

— Join the tibbles by MMSI number.

Exercise 7.15. Our sf tables are cumbersomely large. For example, calling plot(EEZ) will probably
crash your R session. Use st_simplify(., dTolerance = .5) to streamline RFMO and EEZ. This operation
will replace the complex borders with simpler approximations that are accurate to within a half angular
degree of precision.

e Ignore the warning message you get on this step.

Exercise 7.16. Ewell et al. [2017] report that the RFMO zones that ban transshipments (either fully
or partially) are SEAFO, IATTC, ICCAT, IOTC, GFCM, and WCPFC. However, these zones some-
times overlap with zones that do not ban transshipments. For example, zones IATTC and SPRFMO
generously overlap. When I asked Professor Bastani about this, she responded by explaining that

Yes there’s significant overlap in the REMOs—when there’s overlap, we go with the min-
imum regulation (no ban if there’s any rfmo without a ban). The reason being you can
always choose your vessel flag to be one that’s signatory to the no-ban rfmo. And not have
the ban apply.

e Use summarise() to flatten the zones that do not ban transshipments into an sf table with one
row and one column called no_ban_region.

e Use st_difference() to create an analogous sf table called ban_region that describes the area in
RFMO that’s not in no_ban_region. This object should also have one row and one column.

— Ignore the warning message you get on this step.

e Use bind_rows() to combine no_ban_region and ban_region into a single sf table, which inherits
the name RFMO. Give this table a logical variable called ban that indicates whether transshipments
are banned in this zone.

— Define the ban variable in no_ban_region and ban_region before combining these tables.
— RFMO should have two columns and two rows.

Exercise 7.17. Following Bastani and de Zegher [2019], we will now “exclude transshipments that
occurred within Exclusive Economic Zone (EEZ),” since transshipments bans do not apply there.

e Use summarise() to flatten EEZ to a single row.

e Use st_difference() to remove the area in RFMO that belongs to the flattened EEZ.
— Ignore the warning message you get on this step.
— RFMO should be two-by-two before and after this step.

Exercise 7.18. Use st_intersection() to add the ban column from RFMO to incidents. This variable
indicates whether an incident occurred in a region where transshipments are banned.

e This step will probably take your computer a few minutes.

e This step should reduce the size of incidents from 32,084 rows to 12,310 rows, since most incidents
occur in region not described by RFMO. For example, the st_intersection() drops all incidents
that occur in EEZs, which we have removed from RFMO.
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7.3.4 Analyze

To replicate the primary result of Bastani and de Zegher [2019], we will demonstrate that the prevalence
of transshipments has increased more slowly where transshipments are illegal. We will make our case
with plots, which will suffice for our purposes.

Exercise 7.19. To illustrate the relationship between the legality and growth rate of transshipments,
we will plot where transshipments occurred each year. Our plot will depict two sources of data with
two geom_sf() calls. The first layer will illustrate the ban = TRUE and ban = FALSE polygons of RFMO.
And the second layer will illustrate the event points of incidents.

e Pipe RFMO into ggplot().

e Include an aes(fill = ban) call inside a geom_sf() call. Nesting the aes() expression in this
fashion tells R to apply the fill = ban option to this layer only.

e Add scale_fill_grey() and theme_bw() options.

e (Call the resulting ggplot object map_plot.

We’ve now finished our first layer. Print map_plot to confirm that you get a globe with the two regions
of RFMO depicted with two shades of gray. We will now add our second layer to map_plot.

e mutate() incidents, setting year = year(time).
e select() the year and activity columns of incidents and call the result incidents_to_plot.
— dncidents_to_plot will receive the geometry column for free.
e Use + to add a second geom_sf() layer to map_plot. Inside this geom_sf() call, include options
data = dincidents, size = .001, and color = "red".
e facet_grid() by year and activity.

This figure brings the data into relief. And it’s always good to start with a plot like this, provides a
zoomed-out, big-picture sense for what the data look like. But, unfortunately, it’s not clear whether
the red points proliferate faster in the light-gray or dark-gray zones. To make these relative growth
rates more apparent, we’ll put time on the horizontal axis in the next exercise.

Exercise 7.20. We will now provide a scatter plot that illustrates how the fraction of transshipments
that are illegal has changed over time.

e arrange() incidents by activity and time and then group_by() activity.

e Use row_number () and round() to create a variable called bucket that groups the data into 100-
observation chunks. For example, you could give the first 100 rows bucket = @, the second
hundred rows bucket = 1, etc.

— By design, the observations of a given bucket happen around the same time.

e group_by() activity and bucket, and use summarise() to define mean_time as the corresponding

average time and define fraction_banned as the fraction of observations with ban = TRUE.
— Your sf table should have 125 rows after this step.

e ggplot() the result with x = mean_time and y = fraction_banned. Include both geom_point()

and geom_smooth(method = "lm") layers, and facet_wrap() by activity.

The fraction of loiter events that are illegal has clearly decreased. For a full-fledged analysis, you
would probably want to supplement these graphs with some 1m() or glm() regressions. But your
plots should always take precedence, as a compelling graph will always be more convincing—and more
illuminating—than a set of regression estimates.
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7.4 Solutions

7.1

world %>%
filter(!is.na(lifeExp)) %>%
mutate(LE_group = ntile(lifeExp, 5)) %>%
group_by (LE_group) %>%
summar-ise (
1ifeExp = mean(lifeExp),
lifeExp = round(lifeExp, 2),
lifeExp = as.factor(lifeExp)
) %>%
ggplot() +
aes(fill = lifeExp) +
geom_sf() +
labs(fill = 'Life Expectancy')

7.2

nz_sex <-
nz %>%
mutate(mostly_men = Sex_ratio >= 1) %>%
group_by (mostly_men) %>%
summarise

nz_sex %>%
ggplot() +
aes(fill = mostly_men) +

geom_sf() +
theme_bw ()
7.3

nz_wealth <-
nz %>%
mutate(richest_part = Median_income >= 30000) %>%
group_by (richest_part) %>%

summarise

nz_wealth %>%
ggplot() +
aes(fill = richest_part) +
geom_sf() +
theme_bw ()

7.4
Change summarise() to mutate() in your solution to exercise 7.1.

7.5
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st_intersection(
nz,
nz_height

) %>%
count (Name)

7.6

nz_height %>%
st_buffer(100000) %>%
st_intersection(nz) %>%
group_by (Name) %>%
summarise() %>%
geplot() +
aes(fill = Name) +
geom_sf() +
theme_bw() +
theme (legend.title = element_blank())

7.7

world %>%
st_difference(
filter (., continent == 'Asia') %>%

st_convex_hull %>%
summarise

) %>%

ggplot() +

geom_sf() +

theme_bw/()

7.8

world %>%
st_difference(
filter (., name_long %in% c('Ecuador', 'Japan')) %>%
summarise %>%
st_convex_hull
%> %
ggplot() +
geom_sf() +
theme_bw ()
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