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Abstract: We study the supply chain implications of dynamic pricing. Specifically, we esti-
mate how reducing menu costs—the operational burden of adjusting prices—would affect
supply chain volatility. Fitting a structural econometricmodel to data from a large Chinese su-
permarket chain, we estimate that removing menu costs would (i) reduce the mean shipment
coefficient of variation by 7.2 percentage points (pp), (ii) reduce the mean sales coefficient of
variation by 4.3 pp, and (iii) reduce the mean bullwhip effect by 2.9 pp. These stabilizing
changes are almost entirely attributable to an increase in themean sales rate.
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1. Introduction
The fields of revenue management and supply chain
management have relatively little overlap, given their
respective sizes.1 Indeed, prices are stable at the mouth
of most supply chains, as sophisticated revenue man-
agement techniques are not practical in most retail set-
tings. This is because the operational costs of updating
retail prices—known as “menu costs” after restaura-
teurs’ menu-printing fees—overwhelm the benefits of
dynamic pricing in most shops. However, new technol-
ogies, such as electronic shelf labels, which obviate the
hassle of changing price stickers (Harrison et al. 2018,
Barba 2019, Stamatopoulos et al. 2021), are mitigating
these menu costs. And this means that supply chain
managers must soon contend with dynamic pricing.

What will be the supply chain implications of dy-
namic pricing at retail outlets? To help answer this
question, we create a structural econometric model of
a large Chinese supermarket chain and use it to simu-
late the effect of removing menu costs on the chain’s
product flows. We estimate that removing menu costs
would significantly stabilize the chain, decreasing its
downstream sales volatility, its upstream shipment
volatility, and its bullwhip effect, which is the differ-
ence of the two (i.e., the downstream-to-upstream vol-
atility amplification). Specifically, we calculate that
removing menu costs would increase the chain’s sales
rate, which—given that the inventory’s standard

deviation grows sublinearly in the sales rate—would
make product flows relatively less lumpy. In short,
we predict that dynamic pricing will help supply
chains “outgrow” the bullwhip effect.

2. Related Literature
Chan et al. (2004, p. 2) asserted that pricing flexibility
can make supply chains more efficient. For example, in
their chapter on price and inventory management, they
wrote,

This integration of pricing, production and distribution de-
cisions in retail or manufacturing environments is still in
its early stages inmany companies, but it has the potential
to radically improve supply chain efficiencies inmuch the
same way as revenue management has changed airline,
hotel and car rental companies. Thus we are motivated in
this paper to consider strategies which integrate pricing
decisions with other aspects of the supply chain, particu-
larly those related to production or inventory.

But this chapter provides no hard evidence that
dynamic pricing increases or decreases supply chain
efficiency. And neither do the surveys of Bitran and
Caldentey (2003), Elmaghraby and Keskinocak (2003),
Chen and Simchi-Levi (2012), Chen and Chen (2015),
or Van den Boer (2015).

There is a good reason that the Chan et al. (2004)
conjecture remains unverified: endogenizing prices re-
quires explicitlymodelingmenu costs—the operational
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burden of changing prices (Netessine 2006)—which is
difficult to do, both theoretically and empirically. The
pure theory route is stymied because models that have
both a fixed shipment cost and a fixed menu cost are
largely intractable (Chen and Simchi-Levi 2012, p. 815).
Accordingly, only a few theoretical works study inven-
tory and revenue management with menu costs, and
none of these study the upstream implications:
Çelik et al. (2009) provided a heuristic pricing policy
for perishable inventory under stochastic demand;
Chen et al. (2011) provided two joint ordering and pric-
ing policies, one with inventory carryovers but without
menu costs and the other with menu costs but without
inventory carryovers; and Chen and Hu (2012) provid-
ed a joint ordering and pricing policy for nonperishable
inventory under deterministic demand.

The pure empirical route is also stymied by a dearth
of exogenous menu-cost shocks. Accordingly, only a few
empirical works study the operational effects of menu
costs, and none of these study the upstream implica-
tions: Levy et al. (1997) and Owen and Trzepacz (2002)
compared chains that are subject to a pricing law man-
dating item-specific price tags with chains that are not
subject to this law to show that menu costs cause price
stickiness; Anderson et al. (2015) compared single-
variant products with multiple-variant products at a re-
tailer that requires uniform pricing across variants to
demonstrate the same; and Stamatopoulos et al. (2021)
compare stores that installed electronic shelf labels with
stores that did not to show that menu costs reduce
profits.

To avoid the pitfalls of the pure theory and pure em-
pirical routes, we use a blended approach that combines
the strengths of both math and data. We develop and es-
timate a structural econometric ordering-and-pricing
model and use it to compare the optimal supply chain
policies both with and without menu costs. Our counter-
factual study is numerical—and thus does not require a
closed-form solution—but also hypothetical—and thus
does not require an explicit menu cost experiment.

Our counterfactual is the mirror image of Aguirrega-
biria’s (1999) counterfactual. Aguirregabiria estimated
that shipping costs drive inventory volatility—stock
levels rising and falling in saw-toothed fashion—which
in turn drives price volatility—prices rising and falling
countercyclically with inventory levels. Consequently, he
estimated that eliminating the fixed shipping cost would
steady the pricing process. In effect, we perform the in-
verse analysis, showing that eliminating the fixed price-
change cost would steady the ordering process.

3. Theoretical Models
Removing menu costs can accentuate both demand-
based pricing—setting prices to correlate positively
with demand levels—and inventory-based pricing—
setting prices to correlate negatively with inventory

levels. We study these two pricing mechanisms with
two models. Unfortunately, their combined effect on
supply chain stability is unclear because one of the
mechanisms appears to increase the bullwhip effect,
whereas the other appears to decrease it. This theoreti-
cal limitation motivates the structural econometric ap-
proach we pursue in Section 6.

3.1. Demand-Based Pricing
Our first model illustrates that removing menu costs
can stabilize the supply chain by undermining Lee
et al.’s (1997) first bullwhip driver: demand signal
processing. Specifically, the model suggests that the
demand-based pricing enabled by eradicating menu
costs would smooth the spikes and slumps in demand,
which would lead to even more pronounced smoothing
upstream, for a net reduction in the bullwhip effect.

Our model is the Lee et al. (1997) demand signal
processing (DSP) model but with endogenous prices.
The model describes a store that orders and prices a
representative product, subject to stochastic and serial-
ly correlated demand, holding costs, backlogging
costs, and free returns. We define and analyze our
DSP model in Appendix A. We use it to anticipate
how volatility along the supply chain would change as
menu costs decrease from infinity to zero. We summa-
rize our results in the following three propositions:2

Proposition 1. Under the DSP model, the volatility of sales
is smaller with dynamic pricing than with static pricing.

Proposition 2. Under the DSP model, the volatility of ship-
ments is smaller with dynamic pricing thanwith static pricing.

Proposition 3 Under the DSP model, the bullwhip effect
is smaller with dynamic pricing than with static pricing.

Under a constant price, the store responds to posi-
tive demand signals by increasing order-up-to levels.
But with a variable price, the store has another re-
course: temper positive demand signals by increasing
the price. And exploiting this second degree of free-
dom has two effects. First, it smooths sales because
the profit-maximizing price always biases demand to-
ward its mean. Second, it smooths shipments even
more because (i) the downstream smoothing mechani-
cally translates to upstream smoothing and (ii) the
price reaction substitutes for the order reaction.

3.2. Inventory-Based Pricing
Our secondmodel illustrates that removingmenu costs
can destabilize the supply chain by accentuating the
Lee et al. (1997) third bullwhip driver: order batching.
Specifically, the model suggests that the inventory-
based pricing enabled by eradicating menu costs
would decrease the cost of holding inventory relative
to the cost of shipping it, which would compel stores to
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increase their shipping batch sizes, which, in turn,
would increase their shipping volatilities.

Rather than develop our own model, we use the
Stamatopoulos et al. (2019) generalized economic or-
der quantity (EOQ) model, which is well-suited to our
purposes. The model describes a store that orders and
prices a representative product, subject to determinis-
tic demand, holding costs, and shipping costs. We de-
fine and analyze this model in Appendix B. We use it
to anticipate how the bullwhip effect changes as menu
costs decrease from infinity to zero. We summarize
our results with the following proposition:3

Proposition 4. Under the EOQ model, the bullwhip effect
is larger with dynamic pricing than with static pricing.

Under a constant price, the inventory level follows
a straight line down to zero. But with a variable price,
the inventory level follows a convex curve, which de-
creases quickly at the beginning and slowly at the
end. This convex curve has a smaller integral than the
straight line for any given order quantity, which
means that it comes with a smaller inventory-holding
burden than the straight line. Accordingly, the eco-
nomic order quantity increases as the menu cost de-
creases, which increases the bullwhip effect.

3.3. Reconciliation
Neither model tells the full story. The EOQ model has
dynamics but not demand uncertainty, whereas the
DSP model has demand uncertainty but not dynamics
(because it has free returns). And their results are con-
tradictory: the DSP model suggests that demand-based
pricing leads to demand smoothing—stores tempering
demand spikes with high prices—which mitigates de-
mand signal processing, which reduces the bullwhip
effect (Lee et al. 1997), whereas the EOQ model sug-
gests that inventory-based pricing leads to inventory
smoothing—stores burning off inventory gluts with
low prices—which leads to lower inventory holding
costs, which leads to larger shipping batch sizes, which
increases the bullwhip effect (Lee et al. 1997).

Because no closed-form analytical model can clean-
ly capture both demand smoothing and inventory
smoothing, we build a more general, structural econo-
metric model in Section 6. Our structural model nests
both the DSP and EOQ models as special cases. But
before getting to that, let us discuss the data.

4. Empirical Setting and Data
4.1. Setting
We study 78 hypermarkets owned and operated by
the sixth-largest supermarket chain in China. These
hypermarkets are larger than the chain’s normal gro-
cery stores (which the chain generally franchises).
They are located in Shanghai, Anhui, and Jiangsu and

are fulfilled by a distribution center (DC) in Shanghai.
Each store has one manager, who operates with au-
tonomy and whose compensation depends on store
sales and operating costs (including inventory costs).

Each store manager oversees a team of category man-
agers, who make inventory and pricing decisions daily.
These category managers decide whether and how
much to order with the assistance of an IT system.
Overall, the order placement and fulfillment process is
fairly routine (see Bray et al. 2019 for a comprehensive
description), so we focus on the price-updating process.

Local managers choose prices after consulting a
global “guiding price,” which the company headquar-
ters sets in response to the supplier’s price, the com-
petitive environment, the target profit margin, and
several other factors. All stores receive the same guid-
ing price; but local managers can deviate from this
guiding price, and they do so regularly. For example,
on average, an item has 3.4 different prices across the
78 stores.4

Changing prices is an involved process: First, a cate-
gory manager uses a computer terminal located in the
store’s back room to “apply” for a price update in the
price maintenance system. Second, a price manager re-
views and approves or denies the application. Third, if
the price manager approves the application, the catego-
ry manager prints the new price tag on a backroom
printer. Fourth, a store clerk physically updates the
price tag on the store floor, which, across all products,
takes about one labor hour per day per store.

4.2. Data
We observe sales, wholesale prices, retail prices, store-
to-DC orders, and start-of-the-day inventories from
April 1, 2011 to December 31, 2014. We observe de-
mand if and only if inventory is not stocked out. To
avoid a censoring bias, we treat this variable as
“unobserved” when the inventory level is below the
lowest decile—that is, when there is a credible threat
of stocking out; otherwise, we treat demand as ob-
served and equal to sales.

Our original sample comprises 78 stores, 91 items,
and 2,598 products. An item is a size-specific SKU—
for example, item 103060 is a 700-g package of
“Baimao laundry detergent for colorful clothes”—
whereas a product is a store-item combination—for
example, product 103060_1016 denotes item 103060 at
store 1016. To facilitate our estimation procedure, we
remove products with fewer than 200 daily observa-
tions, fewer than 20 orders, fewer than 25 days with
an inventory change, or more than 20% of shipments
arriving later than one day (because our model as-
sumes next-day delivery).5

Because no individual product has enough data to
support a full structural estimation, we aggregate simi-
lar products into clusters with the k-means algorithm.
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We pool the product-level data by item rather than by
store because the sample is more similar across stores
than across items. Specifically, we divide each item’s
data into 10 product clusters, where each cluster repre-
sents the item at a collection of stores. For example, we
divide item 13204's data into product clusters 13204_A,
13204_B, 13204_C, 13204_D, 13204_E, 13204_F, 13204_G,
13204_H, 13204_I, and 13204_J, where cluster 13204_A
represents item 13204 at stores 1005, 1021, 1023, 1037,
3772, 3880, 4125, 4517, 7906, and 8442; cluster 13204_B
represents item 13204 at stores 1003, 1009, 1053, 3775,
7600, and 8415, and so on. Each item has its own store
grouping: for example, clusters 13204_A and 108004_A
correspond to different sets of stores. We create our
item-store groupings based on similarity in average in-
ventories, average order quantities, and average de-
mands. For example, the average inventory is 33.5 units
in cluster 13204_A and 74.4 units in cluster 13204_G. We
remove product clusters with fewer than 100 retail price
changes, fewer than 200 orders, or fewer than two dis-
tinct order quantities with at least 10 corresponding or-
ders (Bray et al. 2019 proved that our model is empiri-
cally identified when there are at least two nonzero
order quantities).6

Our final sample comprises 308 product clusters
spanning 91 items, 78 stores, and 2, 598 products across
seven categories: detergents, drinks, oil/vinegar, oral

care, shampoo, tissues, and toilet paper (Table 1). Most
of our items are stable sundries, but a few of the bever-
ages are perishable.

5. Reduced Form Evidence
The bullwhip effect, menu costs, demand smoothing,
and inventory smoothing are all apparent in our sample.

5.1. Bullwhip Effect
We measure the bullwhip effect with the DC-to-store
shipments coefficient of variation minus the store-to-
customer sales coefficient of variation. This measure is
positive when upstream volatility exceeds downstream
volatility, that is, when the supply chain exhibits the
bullwhip effect.

We report our measure both at the product level
and the item level. The product-level measure uses
the shipments and sales of a given item at a specific
store; the item-level measure uses the shipments and
sales of a given item aggregated across all stores.
Roughly speaking, the product-level metric measures
the bullwhip from the stores’ perspective (store man-
agers care about the flow through their individual fa-
cilities), whereas the item-level metric measures the
bullwhip from the DC’s perspective (the DC manager
cares about the total flow through all facilities).

We find a robust bullwhip effect at both levels of
analysis: the shipment coefficient of variation exceeds
the sales coefficient of variation in 91 out of 91 items
and 2, 596 out of 2, 598 products (Figure 1). Indeed,
the upstream volatilities are generally more than three
times the downstream volatilities: at the product level,
the median shipment coefficient of variation is 5.60,
whereas the median sales coefficient of variation is
only 1.37; at the item level, the median shipment coef-
ficient of variation is 2.57, whereas the median sales
coefficient of variation is only 0.84.

5.2. Menu Costs
The prices in our sample indicate menu costs. For ex-
ample, the average price reoptimization changes pri-
ces by ¥3.50, or 16% (Table 2). And the “lumpiness”

Table 1. Sample-Composition Summary Statistics

Stores Items Products Clusters

Detergent 73 22 762 89
Drinks 72 28 748 87
Oil/vinegar 55 6 116 15
Oral care 52 10 183 23
Shampoo 66 11 318 38
Tissues 55 4 100 13
Toilet paper 68 10 371 43
Total 78 91 2,598 308

Notes. This table reports the number of distinct stores, items,
products, and product clusters in our final sample. A product is a
store-item combination, and a product cluster is a collection of
products comprising one item andmultiple stores.

Table 2. Price-Change Summary Statistics

Magnitude Duration

Detergent 0.17 26.44
Drinks 0.12 25.87
Oil/vinegar 0.16 45.34
Oral care 0.16 33.04
Shampoo 0.27 34.98
Tissues 0.14 46.75
Toilet paper 0.12 31.68
Total 0.16 30.23

Notes. This table reports the average price change magnitude, measured as a fraction of the prior price, and the average price duration, measured
in days. For example, the average price change shifts the price by 16% and the average price lasts 30.23 days.

Bray and Stamatopoulos: Supply Chain Implications of Dynamic Pricing
Operations Research, 2022, vol. 70, no. 2, pp. 748–765, © 2021 INFORMS 751

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
4.

85
.8

1]
 o

n 
28

 A
ug

us
t 2

02
3,

 a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



holds in both directions: the new-price-to-old-price ra-
tio has quantiles 1.05, 1.11, and 1.27 following price in-
creases and has quantiles 0.78, 0.89, and 0.95 following
price decreases. Such coarse corrections are difficult to
explain without menu costs.

More convincing are the profit patterns: profits fol-
low a downward drifting process, punctuated by up-
ward jumps when prices change (Figure 2). This, of
course, is the expected pattern—the freshest prices
should yield the highest profits. But what is striking is
the magnitude of the profit discontinuity. For example,
there are 16, 420 price changes for which the price held
constant in the 40 days leading up to the change and in
the 40 days following the change. Focusing on this
sample of price changes and denoting the number of
days since the price change with t, we find that profits
are on average 16.3% higher for t ∈ {20, ⋯ , 40} than for
t ∈ {−40, ⋯ , − 20} (with this difference being statisti-
cally significant at the p < 10−12 level). Also, in the
same sample, we find that 57% of products have higher
average profits for t ∈ {20, ⋯ , 40} than for t ∈ {−40, ⋯ ,
−20} (with this probability being statistically greater than
0.5 at the p < 10−12 level). The profit deterioration that fol-
lows price changes is also significant. For example, limit-
ing attention to prices that remained constant for at least
180 days and defining t aswe did above, we estimate that
the average daily profit is as follows:

¥3:41 when t ∈ {0, ⋯ , 9} days,
¥3:16 when t ∈ {10, ⋯ , 19} days,
¥3:10 when t ∈ {20, ⋯ , 29} days,
¥3:08 when t ∈ {30, ⋯ , 39} days,
¥2:98 when t ∈ {60, ⋯ , 69} days,
¥2:98 when t ∈ {70, ⋯ , 79} days,
¥2:95 when t ∈ {80, ⋯ , 89} days,
¥2:89 when t ∈ {90, ⋯ , 99} days,
¥2:85 when t ∈ {100, ⋯ , 109} days,
¥2:80 when t ∈ {110, ⋯ , 119} days,
¥2:79 when t ∈ {120, ⋯ , 129} days,
¥2:77 when t ∈ {130, ⋯ , 139} days,
¥2:76 when t ∈ {140, ⋯ , 149} days,
¥2:73 when t ∈ {150, ⋯ , 159} days,
¥2:71 when t ∈ {160, ⋯ , 169} days, and
¥2:66 when t ∈ {170, ⋯ , 179} days:

The persistence of the profit decline suggests that it
stems from a gradual mismatch between an evolving
demand and a static price, rather than from some oth-
er factor that coincides with the price change.

5.3. Demand and Inventory Smoothing
Our theoretical models explain that stores could adjust
prices to smooth both demand and inventory: the DSP
model suggests that stores increase prices to temper de-
mand spikes and decrease prices to spur slow sales, and
the EOQ model suggests that stores increase prices to

Figure 1. Reduced-Form Evidence for the Bullwhip Effect

Notes. To create these plots, we calculate the coefficients of variation (CV) of sales and shipments by item and product and plot the difference be-
tween the shipment and sales measures as a function of the sales measure. This difference is positive in every case, so all items and products ex-
hibit the bullwhip effect.
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preserve scarce supplies and decrease prices to liquidate
excess supplies. We find both forms of smoothing in
the data: the probability that a price change increases
the price (i) increases with sales over the previous seven
days and (ii) decreases with the current inventory level
(Figure 3). The former result suggests demand smooth-
ing and the latter suggests inventory smoothing.

6. Structural Econometric Model
6.1. Overview
To reconcile Section 3's theory with Section 4’s data, we
create a dynamic discrete choice model of the supply

chain. We build on Aguirregabiria’s (1999) model, mak-
ing four substantive changes. First, we incorporate a
Markov modulated demand process (Chen and Song
2001), whereas Aguirregabiria treated demand as inde-
pendent and identically distributed (i.i.d.).7 Second, we
allow the DC to not fulfill the store’s order quantity.
Third, we model prices and order quantities as discrete
decision variables, whereas Aguirregabiria treated them
as continuous. This change makes our model more con-
ducive to estimation. Specifically, our empirical likeli-
hood function captures both the decision to place an
order and the order size, whereas Aguirregabiria’s

Figure 2. Reduced-Form Evidence of Menu Costs

Notes. Producing these figures takes several steps. First, we isolate all instances in which a product’s price held constant in the T days leading up
to a price change and the T days following a price change. Second, we normalize each product’s daily average profits to one in the (2T + 1)–day
window surrounding the price change. Third, we calculate the median normalized profit for each day t ∈ {−T, ⋯ ,T}, where t � 0 represents the
day of the price change. Fourth, we plot these median profits, by product category, for T ∈ {20,40, 60, 80}.
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captures in only the former. Likewise, our likelihood
function captures both the decision to change a price
and the magnitude of the price change, whereas Aguir-
regabiria’s captures only the former. Fourth, we incorpo-
rate Hendel and Nevo’s (2006) two-step decision struc-
ture, specifying the store to first choose order quantities
(conditional on nested-logit inclusive values) and then
choose prices (conditional on order quantities), whereas
Aguirregabiria modeled the store’s decision as a single-
shot, discrete-choice problem over price-quantity pairs.
Aguirregabiria’s framing is less economically sound be-
cause it requires the idiosyncratic value of two price-
quantity pairs to be independent, even if they share
the same price or the same quantity. His framing also
is more restrictive because it requires the retail price
statistical error to be exactly as noisy as the order
quantity statistical error. In contrast, our specification
incorporates an additional parameter, σ, which gives

these distinct errors distinct variances. This additional
parameter significantly improves our model fit.

6.2. Model Details
Our model describes a store that chooses order
quantities and prices to maximize the expected dis-
counted utility it receives from a representative
product under per-period discount factor β ∈ [0, 1).
Each period lasts one day. A representative day pro-
ceeds as follows:

1. The day begins with inventory i ∈ i � {0, ⋯ , i},
reference retail price r ∈ p � {p1, ⋯ ,pp}, and demand
state s ∈ s � {s1, ⋯ , ss}. More specifically, r is the pre-
vious day’s retail price and s is a statistic that character-
izes the distribution of demand.

2. Order shock vector e � (e1, ⋯ , eq)′ ∈ Rq resolves.
The elements of e are i.i.d., mean-zero Gumbel random

Figure 3. Reduced-Form Evidence for Demand-Based and Inventory-Based Pricing

Notes. Producing these figures takes several steps. First, we filter the sample to the set of observations that have a price change. Second, we calcu-
late the average sales over the previous seven days for each observation. Third, we group each product’s inventory and average sales values into
ventile buckets. (Ventiles are like deciles, except they divide a variable into 20 groups instead of 10.) Fourth, we regress a dummy variable that
specifies that the price change was a price increase on dummy variables that specify (i) the inventory-level ventile, (ii) the average-sales ventile,
(iii) the store, (iv) the item, and (v) the month. Fifth, we plot our 19 inventory-level-ventile coefficient estimates and our 19 average-sales-ventile
coefficient estimates with points and plot their corresponding 95% confidence intervals with vertical bars. We find that the inventory estimates
decrease by ventile, which suggests that stores are more likely to decrease prices when inventories are high. For example, the likelihood that a de-
tergent price change increases prices is roughly 20 percentage points lower when the inventory level is in the top ventile than when it is in the
bottom ventile. We also find that the average sales estimates increase by ventile, which suggests that stores are more likely to increase prices
when sales are high. For example, we find that the likelihood that a detergent price change increases the price is roughly 20 percentage points
higher when the average sales over the previous seven days is in the top ventile than when it is in the bottom ventile.

Bray and Stamatopoulos: Supply Chain Implications of Dynamic Pricing
754 Operations Research, 2022, vol. 70, no. 2, pp. 748–765, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
4.

85
.8

1]
 o

n 
28

 A
ug

us
t 2

02
3,

 a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



variables that correspond one-to-one with the set of
feasible order quantities q � {q1, ⋯ qq}, where 0 ∈ q.
The store observes e, but we do not. We treat e as a sta-
tistical error term, as it captures all unobserved factors
that influence the store’s order quantity decision. Infor-
mally, one can interpret the elements of e as random
fluctuations in shipping costs (e.g., it is more burden-
some to place an order when the truck is almost full).

3. The store orders q ∈ q units of inventory from
the DC.

4. Price shock vector u � (u1, ⋯ ,up )′ ∈ Rp resolves.
The elements of u are i.i.d., mean-zero Gumbel random
variables that correspond one-to-one with the set of
feasible retail prices p � {p1, ⋯ ,pp}. The store observes
u, but we do not. We treat u as a statistical error term,
as it captures all unobserved factors that influence the
store’s pricing decision. Informally, one can interpret
the elements of u as random fluctuations in menu costs
(e.g., the availability of sticker changers) combined
with a bit of store manager caprice (e.g., the “gut feel-
ing” associated with each new price).

5. The store chooses retail price p ∈ p.8

6. Demand d ∈ N resolves from distribution δd(d|s,p).
7. The store sells min (i,d) units of inventory.
8. The store receives revenue pmin (i,d).
9. Fulfillment indicator variable f ∈ {0, 1} resolves

from distribution δf ( f ).
10. The store receives fq units of inventory from

the DC.
11. The store receives utility

κpmin (i, d) − λ1( fq ≠ 0) −
μ1(p ≠ r) − ηmax (i − d, 0) + eq + σup,

where κ is the benefit of one additional renminbi
(the currency in use) in revenue, λ is the fixed ship-
ping cost, μ is the menu cost, η is the cost of holding
one unit of inventory for one day, and σ is a scalar
that parameterizes the volatility of the pricing
error term. In vector notation, the store’s utility is
θ′γ(i, r,q,p, e,u,d, f ), where θ � (κ,λ,μ,η, 1,σ)′ and
γ(i, r,q,p, e,u,d, f ) � (pmin (i,d), −1( fq≠ 0), −11(p≠ r),
−max (i− d, 0), eq,up)′. We normalize the fifth element
of θ to one to be consistent with Aguirregabiria’s
(1999) and the Bray et al. (2019) utility function scal-
ing. Thus, we implicitly measure all utilities relative
to the variance of the order quantity error term.

12. Tomorrow’s inventory transitions to i′ �
max (i− d, 0) + fq.

13. Tomorrow’s reference price is set to r′ � p.
14. Tomorrow’s demand state resolves from distribu-

tion δs(s′| s). 9
This sequence of events characterizes a Markov de-

cision process with action variables {p,q} and state var-
iables {i, r, s, e,u}. We estimate our model separately
for each product cluster with Rust’s (1987) nested
fixed-point algorithm (see Appendix C for details).

6.3. Empirical Identification
The Bray et al. (2019) fourth theorem formally established
that θ is empirically identified up to scale. But informally,
it is easy to see that our utility parameters are identified.

First, the newsvendor model indicates that the ser-
vice level should increase with κ=η, which identifies
this ratio. For example, if the store almost never stocks
out, then the inventory underage cost must be large
relative to the inventory overage cost.

Second, inverting the classic EOQ solution, we find
that the square of the average order quantity divided
by twice the average demand should increase with
λ=η, which identifies this ratio. For example, if the or-
der quantity is large relative to the average demand,
then the shipping cost must be large relative to the in-
ventory holding cost.

Third, the classic menu cost models suggest that the
frequency of price changes should decrease with μ=η,
which identifies this ratio. For example, if the store drops
prices when inventories are high, then the cost of holding
excess stock must exceed the cost of changing prices.

Fourth, the classic logit logic suggests that the predict-
ability of price changes decreases with σ, which identifies
this parameter. For example, if prices are almost perfectly
predictable given x and q, then σmust be near zero.

Fifth, the classic logit logic suggests that the predict-
ability of orders increases with the magnitudes of κ, λ,
μ, and η, which identifies the scale of these parame-
ters. For example, if order quantities were almost per-
fectly predictable given x, then the magnitude of these
parameters must be high.

7. Structural Estimates
We calculate κ̂, λ̂, μ̂, η̂, and σ̂ for each of our 232 prod-
uct clusters and bootstrap a standard error for each of
these 5 · 232 � 1, 160 parameter estimates (Figure 4).
Across product clusters, our structural parameter esti-
mates have the following quantiles:

κ̂ λ̂ μ̂ η̂ σ̂
Q1 0:0075 3:4 8:7 0:00046 0:8233
Q2 0:016 4:3 230 0:0012 4:38
Q3 0:066 5:2 850 0:0034 156

Note that we implicitly express these estimates rela-
tive to the variance of eq, which we normalize to π2=6
(the variance of a standard Gumbel random variable).

Our fixed shipping cost and inventory holding cost
estimates are similar to that of Bray et al. (2019): their
mean and median λ̂ estimates were 3.83 and 3.48,
which lie within our λ̂’s interquartile range; and their
mean and median η̂ estimates were 0.0030 and 0.0019,
which lie within our η̂’s interquartile range. The κ̂ es-
timates are more difficult to benchmark because Bray
et al. (2019) set the cost of a lost sale to a constant,
whereas we set it to a constant multiplied by the
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prevailing price. But we get comparable estimates un-
der the steady-state average price: the Bray et al. (2019)
median lost sale cost was 0.080, just outside the interquar-
tile range of our average-price lost sale cost, which ranges
from 0.082–0.785. Bray et al. (2019) did not report menu
costs but Aguirregabiria (1999) did, and his estimates
were relatively close to ours: Aguirregabiria’s (1999) μ̂
estimates are between 50 and 139, whereas our median
μ̂ estimate is 230 (which is not significantly larger than
139 at the p � 0:05 level). Finally, neither Aguirregabiria
(1999) nor Bray et al. (2019) incorporated a parameter

analogous to σ. But we find that this parameter signifi-
cantly improves our model fit. Specifically, we reject the
σ � 1 null hypothesis at the p � 0:05 level in 82% of prod-
uct clusters. Overall, 72% of our σ̂ estimates exceed one:
prices are generallymore erratic than orders.

As predicted in Section 6, we observe that (i) κ̂=η̂ in-
creases with the service level; (ii) λ̂=η̂ increases with
the inverted EOQ (i.e., the average order quantity
squared, divided by twice the average demand); and
(iii) μ̂=η̂ decreases with the frequency of price changes
(Table 3).

Figure 4. Distribution of Structural Utility Parameter Estimates and Corresponding t-Statistics

Notes. To create these plots, we estimate these distributions with a kernel density estimator and graph them on a log scale. The dashed lines in
the t-statistic plots mark the p � 0:05 statistical significance threshold; anything to the right of these lines is significantly greater than zero.
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8. Counterfactuals
8.1. Specification
We next use our structural model to anticipate the
supply chain implications of removing menu costs.10

The most natural counterfactual would be a ceteris
paribus change in the menu cost, from μ̂ to zero. Un-
fortunately, this specification yields nonsensical coun-
terfactual policies: without menu costs keeping them
in check, the pricing error terms run amok, compel-
ling the stores to set prices helter-skelter in a manic
pursuit of the largest Gumbel shocks. So, we consider
two alternative specifications.

The first compares the supply chain without price
errors (i.e., with parameter vector (κ̂, λ̂, μ̂, η̂, 1, 0)′)
with the supply chain without menu costs or price er-
rors (i.e., with parameter vector (κ̂, λ̂, 0, η̂, 1, 0)′). This
specification implicitly assumes that prices will re-
spond to demand and inventory in a controlled fash-
ion after menu costs are removed, without a reckless
degree of volatility. The second specification com-
pares the current supply chain (i.e., with parameter
vector (κ̂, λ̂, μ̂, η̂, 1, σ̂)′) with the supply chain without
menu costs or price errors (i.e., with parameter vector
(κ̂, λ̂, 0, η̂, 1, 0)′). This specification implicitly interprets
the price errors as arising from menu costs so that
they go to zero together. Our two counterfactuals
yield nearly the same findings, so we present the re-
sults of the former here and relegate the results of the
latter to the online appendix. We henceforth refer to
the case with parameter vector (κ̂, λ̂, 0, η̂, 1, 0)′ as the
“counterfactual scenario” and to the case with param-
eter vector (κ̂, λ̂, μ̂, η̂, 1, 0)′ as the “current scenario.”
(This, of course, is a slight abuse of language, because
the true current scenario has σ � σ̂.)

8.2. Results
We find that removing menu costs intensifies both de-
mand smoothing and inventory smoothing (Figure 5).
Specifically, we estimate that removing menu costs
amplifies the positive correlation between prices and
demand states from an average of 2.54% to an average
of 33:2% and amplifies the negative correlation be-
tween prices and inventory levels from an average of
–3.6% to an average of –28.8%. Further, we estimate
that the hypothetical change increases the average
sales rate by 0:13=3:49 � 3:7% and decreases the aver-
age inventory flow time by 0:51=23:99 � 2:1% (Table
4). In other words, without menu costs, more invento-
ry flows more quickly through the supply chain.

Relatedly, we estimate that removing menu costs
stabilizes the supply chain (Table 5). The mean ship-
ment coefficient of variation falls from 4.14 to 4.07 (a
change that is significant at the p < 10−6 level); the
mean sales coefficient of variation falls from 1.26 in
the current scenario to 1.21 in the counterfactual sce-
nario (a change that is significant at the p < 10−10 lev-
el); and the mean bullwhip falls from 2.89 to 2.86
(a change that is significant at the p < 10−3 level).

8.3. Mechanism
The change in the sales rate largely explains the
change in supply chain stability: regressing the change
in the sales coefficient of variation on the change in the
sales rate yields an R2 of 0.88; regressing the change in
the shipment coefficient of variation on the change in
the sales rate yields an R2 of 0.96; and regressing the
change in the bullwhip effect on the change in the sales
rate yields an R2 of 0.91 (Figure 6). Specifically, each
volatility measure decreases with the throughput rate:

Table 3. Explanation of the Variation in Our Structural Estimates

κ̂=η̂ λ̂=η̂ μ̂=η̂

Intercept 0.309* −0.002 0.276*
(0.038) (0.027) (0.043)

Mean inventory −0.047 0.254 −0.150
(0.147) (0.105) (0.164)

Mean sales −0.191 0.081 0.174
(0.136) (0.098) (0.152)

Service level 0.324* 0.097 0.174
(0.065) (0.047) (0.073)

Inverted EOQ 0.265* 0.516* 0.240*
(0.082) (0.059) (0.092)

Price change frequency −0.236* 0.064 −0.237*
(0.077) (0.055) (0.086)

Notes. Producing this table takes several steps. First, we calculate five operational statistics for each product cluster: average inventory, average
sales, service level, “inverted EOQ,” and price change frequency. The service level is the fraction of days without a stockout. The inverted EOQ is
the average order quantity squared divided by twice the average demand (i.e., what the λ=η ratio would be in the EOQ model). And the price
change frequency is the fraction of days with a price change. Second, we difference these five operational statistics across product clusters that
share an item (keeping the within-item variation and discarding the between-items variation). Third, we similarly difference estimate ratios
κ̂=η̂,λ=η̂, and μ̂=η̂. Fourth, we regress the estimate ratio differences on the operational statistic differences. Fifth, we tabulate the coefficient
estimates and corresponding standard errors.

*p � 0.01.
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the supply chain is more stable at higher sales rates,
like a bicycle is more stable at higher speeds. This prin-
ciple holds both upstream and downstream but for
different reasons.

The upstream flows are governed by EOQ dynamics.
Specifically, the EOQmodel suggests that the shipping
batch size should increase with the square root of sales.
And because the shipping standard deviation scales

Figure 5. How the Pricing Process Changes from the Current Scenario to the Counterfactual Scenario

Notes. Producing these plots takes several steps. First, we calculate each product cluster’s optimal policy under the current scenario, with param-
eter vector (κ̂, λ̂, μ̂, η̂, 1, 0)′, and under the counterfactual scenario, with parameter vector (κ̂, λ̂, 0, η̂, 1, 0)′. Second, we map all state variables to
their quantiles to compare across product clusters. For example, we map each product cluster’s median inventory level to 0.5. Third, we calculate
the average price-increase and price-decrease probabilities under the median price and under the various quantiles for the demand and invento-
ry state variables. Fourth, we plot these price change probabilities by the quantile of the demand state variable (which is specified by line color)
and the quantile of the inventory state variable (which is specified by the horizontal axis). In general, we find that price increases are more likely
when the inventory state variable is low and the demand state variable is high, and vice versa for price decreases. These effects are more pro-
nouncedwithout menu costs, as prices are more sensitive to the inventory and demand state variables in this case.

Table 4. Downstream Operations from the Current Scenario to the Counterfactual Scenario

Current Counterfactual Difference

Price 16.529 16.949 0.419
Demand 3.904 3.921 0.017
Sales 3.487 3.616 0.129
Lost sales 0.417 0.305 −0.112
Inventory 23.986 23.473 −0.513
Shipment prob. 0.082 0.085 0.003
Price change prob. 0.004 0.106 0.102

Notes. To produce this table, for each product cluster, we calculate the Markov chain’s stationary distribution under the current parameter
vector, (κ̂, λ̂, μ̂, η̂, 1, 0)′, and under the counterfactual parameter vector, (κ̂, λ̂, 0, η̂, 1, 0)′. Under each steady-state distribution, we calculate
the average price, demand, sales, lost sales, inventory, shipment probability, and price change probability. We tabulate the average value of
these statistics across products cluster for both scenarios and tabulate their differences from one scenario to the next. Prices are measured in
renminbi (the local currency); demand, sales, and lost sales are measured in units per day; and inventory is measured in days’worth of supply.

Bray and Stamatopoulos: Supply Chain Implications of Dynamic Pricing
758 Operations Research, 2022, vol. 70, no. 2, pp. 748–765, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
4.

85
.8

1]
 o

n 
28

 A
ug

us
t 2

02
3,

 a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



linearly with the shipping batch size, the shipping coef-
ficient of variation should thus decrease with the
square root of sales. In short, increasing the sales rate
decreases the shipping batch size, in relative terms.11

We find a similar pattern downstream: the sales
standard deviations grow more slowly than the sales
means, for a net reduction in the sales coefficient of
variation. This, however, stems from classic demand

Table 5. Change in Supply Chain Stability from the Current Scenario to the Counterfactual Scenario

Shipment CV Sales CV Bullwhip

Detergent −0.036 −0.030* −0.006
(0.025) (0.010) (0.016)

Drinks −0.089* −0.051* −0.038
(0.027) (0.011) (0.017)

Oil/vinegar −0.203* −0.078* −0.125*
(0.058) (0.022) (0.036)

Oral care −0.015 −0.024* 0.009
(0.027) (0.008) (0.019)

Shampoo −0.102 −0.054* −0.049
(0.049) (0.018) (0.031)

Tissues −0.095 −0.040 −0.055
(0.086) (0.035) (0.052)

Toilet paper −0.066* −0.043* −0.023
(0.018) (0.007) (0.011)

Total −0.072* −0.043* −0.029*
(0.014) (0.005) (0.009)

Notes. To produce this table, for each product cluster, we calculate the Markov chain’s stationary distribution under the current parameter
vector, (κ̂, λ̂, μ̂, η̂, 1, 0)′, and under the counterfactual parameter vector, (κ̂, λ̂, 0, η̂, 1, 0)′. Under each steady-state distribution, we calculate
the shipment coefficient of variation, the sales coefficient of variation, and the difference between the two, which serves as our bullwhip
measure. Finally, we present the mean within-product-cluster changes in these three volatility measures, from the current scenario to the
counterfactual scenario, by category.

*p � 0.01.

Figure 6. Change in the Sales Rate, from the Current to the Counterfactual Scenario, Explains the Changes in the Shipment Coef-
ficient of Variation, in the Sales Coefficient of Variation, and in the Bullwhip Effect

Notes. To produce these plots, for each product cluster, we calculate the shipment coefficient of variation, the sales coefficient of variation, and
the bullwhip effect, under both the current and counterfactual scenarios, in the fashion of Table 5. We likewise calculate the mean sales rates—
measured in items per day per store—under the two scenarios. We then scatter plot the fractional change in our volatility measures as a function
of the fractional change in the sales rates. The dashed lines denote the value of one, where there is no change. These plots depict the change in
supply chain stability from the current scenario to the counterfactual scenario. For each product cluster, we calculate the Markov chain’s station-
ary distribution under the current parameter vector, (κ̂, λ̂, μ̂, η̂, 1, 0)′, and under the counterfactual parameter vector, (κ̂, λ̂, 0, η̂, 1, 0)′. Under each
steady-state distribution, we calculate the shipment coefficient of variation, the sales coefficient of variation, and the difference between the two,
which serves as our bullwhip measure. Finally, we plot the distributions of the within-product-cluster changes in these three volatility measures,
from the current scenario to the counterfactual scenario, by category.
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pooling: the standard deviation of demand generally
scales with the square root of the mean demand. For
example, our demands are negative binomials, which
are similar to Poison random variables; a Poison’s
standard deviation equals the square root of its mean.
(Note that this demand pooling effect differs from the
demand smoothing effect that we anticipated with
our DSP model.)

The bullwhip effect also diminishes as the supply
chain scales. In fact, this “scaling effect” by far domi-
nates the demand smoothing or inventory smoothing
effects we theorized in Section 3.
Finally, the increase in the throughput rate largely
stems from a decrease in the stockout rate. Specifically,
the reduction in stockouts explains 0:112=0:129 � 87%
of the increase in sales (Table 4). Intuitively, reducing
menu costs decreases stockouts because the stores can
increase prices when inventories run low. More pre-
cisely, stockouts decrease because the marginal unit is
priced higher, which makes stocking out more costly
(the average price increases by 0:42=16:53 � 2:5% in
the counterfactual).12

8.4. Strategic Consumers
Does strategic consumer behavior threaten the robust-
ness of our results? Not if the returns to strategic be-
havior given the stores’ optimal policies are low. The
logic goes like this: (i) stores devise their pricing and
ordering policies ignoring strategic consumer behavior;
(ii) given the stores’ policies, the returns to strategic
consumer behavior are low; (iii) given the low returns
to strategic behavior, consumers choose not pay the
cost of being strategic (i.e., not to monitor prices, inven-
tory, and demand or try to learn the store’s policy), so
no strategic behavior occurs; (iv) stores are correct to
ignore strategic behavior when devising their pricing
and ordering policies.

We estimate the returns to strategic behavior with
a variation of Hendel and Nevo’s (2013) method.
Specifically, we assume that consumers (i) visit the
store every nth day for n ∈ {1, 2, 4, 8, 16} and (ii) know
the expectation of the price n days later. Hence, the
“effective price” that a strategic consumer faces on
day t is yt � pt−n1(pt−n ≤ Et−n(pt)) + pt1(pt−n > Et−n(pt)),
where Et−n(·) represents expectation with respect to
the day-(t− n) information set. We calculate the ex-
pected value of a strategic consumer’s price under
the Markov chain’s stationary distribution, E(yt),
and the expected value of a myopic consumer’s price
under this distribution, E(pt), for both the current
and counterfactual scenarios. Then, we calculate the
strategic consumer’s savings, (E(pt) −E(yt))=E(pt).
These savings estimates should be generous upper
bounds to the real savings, as they assume that (i)
consumers know the current state variables; (ii) con-
sumers know the store’s policy—and hence the

dynamic program’s transition probabilities; and (iii)
consumers are able to calculate the distribution of
the state variables after n transitions. Our simula-
tions deliver savings estimates of roughly 1% in the
current scenario and roughly 2% in the counterfactu-
al scenario.13 In summary, our analysis establishes
that the money consumers leave on the table by act-
ing myopically is negligible—both in the current
and counterfactual settings. (See the online appendix
for details.)

9. Conclusion
Our theoretical models did not fare particularly well
at predicting our empirical results. These models
identified some of the second-order effects but missed
the primary effect, which was an uptick in sales rates
that helped steady the inventory flows.

Our EOQmodel suggests that removing menu costs
would reduce the ratio between the average inventory
level and the shipping quantity—as high stocks burn
faster and low stocks linger longer—which would de-
crease the effective inventory holding cost and thus
increase the order quantity. An increase in the order
quantity should in turn increase the shipping volatili-
ty, which should increase the bullwhip effect. We find
evidence of increased inventory smoothing, but its ef-
fect on supply chain stability is swamped by the scal-
ing effect. The problem with our EOQ model is that it
does not factor in demand uncertainty and therefore
does not factor in the lost sales due to stockouts, the
primary driver of the change in sales rates.

Our DSP model suggests that removing menu costs
would help stores adjust prices to smooth demand
shocks and that this demand smoothing would lead
to even more pronounced order smoothing, for a net
reduction in the bullwhip effect. We find empirical ev-
idence for the downstream effect but not for the up-
stream effect. The problem with our DSP model is
that it does not factor in the fixed shipping costs or the
fixed batch sizes that inventories must move in, both
of which attenuate the upstream effects of demand
smoothing. For example, shipping costs can compel a
store to order two weeks’ worth of supply, and a sin-
gle day’s smoothing makes a small dent in a 14-day or-
der. Indeed, these two factors—the fixed shipping cost
and the fixed batch size—quash almost all demand
signals, so that the change in the baseline demand rate
almost entirely mediates the upstream effect of remov-
ing menu costs. And like our EOQ model, our DSP
model did not anticipate the change in sales rates.

This exercise highlights the strength of structural es-
timation for the study of supply chains. Supply chains
are too complex to solve outright with equations, but
they are structured enough to model numerically.
And although theoretical models, such as our DSP or
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EOQ specifications, can articulate potential effects,
they are not powerful enough to entertain multiple
different mechanisms and determine which will be
first order and which will be second order. But a
structural econometric model, primed with real data
from a real operation, can weigh the various vying
forces and impartially crown a victor.

Appendix A. Demand Signal Processing Model
We illustrate the demand-based pricing effect of removing
menu costs with an extension of the Lee et al. (1997) de-
mand signal processing model. At the beginning of period
t, the store chooses replenishment quantity qt and price pt.
Next, demand dt � st −mpt resolves, where m > 0 is a sca-
lar and st a random state variable that follows an auto-
regressive process: st � a+ bst−1 + σet, where a > 0, σ > 0,
and b ∈ (0, 1) are scalars, and et ~N(0, 1) is a random shock
that resolves after qt and pt are chosen. Next, the invento-
ry level transitions to it � it−1 + qt − dt. Finally, the store re-
ceives revenue ptdt and incurs ordering cost wqt, menu
cost μ1(pt ≠ pt−1), holding cost ηmax (it, 0), and backlog
cost κmax (−it, 0). Excess inventory can be returned at no
cost; the wholesale price satisfies w < a=(m(1− b)), which
ensures that the expected demand would be positive if
the firm priced at the marginal cost. The store’s objective
is to maximize the long-run discounted profit under dis-
count factor β ∈ [0, 1).14

Dynamic Pricing
When μ � 0, the store chooses price pt and order quantity
qt to maximize

E
∑
t≥0

βt(ptdt − wqt − ηmax (it, 0) − κmax (−it, 0))
( )

: (A.1)

If jt is the order-up-to level on day t, then∑
t≥0

βtqt �
∑
t≥0

βt(dt−1 + jt − jt−1)

� d−1 − j−1 +
∑
t≥0

βt(βdt + (1 − β)jt):
With this, we express the store’s objective in terms of pt
and jt:

E
∑
t≥0

βt((pt − βw)dt − (1 − β)wjt − ηmax (jt − dt, 0)
(

−κmax (dt − jt, 0))
)
:

The corresponding first-order conditions are

pt � a + bst−1 +mw
2m

and

jt � (a + bst−1 −mw)=2 + σΦ−1 κ − (1 − β)w
κ + η

( )
:

Price pt implies sales

dt � a + bst−1 + σet −mpt
� (a + bst−1 −mw)=2 + σet,

which has mean and variance

E(dt) � (a + bE(st−1) −mw)=2 � (a + b
a

1 − b
−mw)=2

� a
2(1 − b) −mw=2 and

Var(dt) � b2

4
Var(st−1) + σ2 � b2σ2

4(1 − b2) + σ2 (A.2)

Next, order-up-to level jt and sales dt imply order quantity

qt � jt − jt−1 + dt−1 � b(st−1 − st−2)=2 + dt−1
� (bst−1 + a − wm)=2 + σet−1,

which has mean and variance

E(qt) � E(dt) and

Var(qt) � b2σ2

4(1 − b2) + (1 + b)σ2 � Var(dt) + bσ2: (A.3)

Static Pricing
When μ �∞, the store maximizes the same objective but
with the additional constraint that pt � pt−1. Adding this
constraint changes the problem’s first-order conditions to15

jt � a+ bst−1 − a
2(1− b) −mw=2+ σΦ−1 κ− (1− β)w

κ+ η

( )
and

p0 � a
2m(1− b) +w=2:

Price p0 implies sales

dt � a + bst−1 + σet −mp0

� a + bst−1 + σet − a
2(1 − b) −mw=2,

which has mean and variance

E(dt) � E a + bst−1 + σet − a
2(1 − b) −mw=2

( )
� a
2(1 − b) −mw=2

and Var(dt) � Var a + bst−1 + σet − a
2(1 − b) −mw=2

( )
� b2Var(st−1) +σ2 � σ2

1 − b2
: (A.4)

Next, order-up-to level jt and sales dt imply order quantity

qt � jt − jt−1 + dt−1 � b(st−1 − st−2) + dt−1

� bst−1 + σet−1 + a − a
2(1 − b) − wm=2,

which has mean and variance

E(qt) � E(dt) and

Var(qt) � b2σ2

1 − b2
+ (1 + 2b)σ2 � Var(dt) + 2bσ2: (A.5)

Comparison
Expressions (A.2) and (A.4) establish that decreasing the
menu cost from μ �∞ to μ � 0 would decrease the vari-
ance of sales by

σ2

1− b2
− b2σ2

4(1− b2) − σ2 � 3σ2b2

4(1− b2) > 0:

Because the mean sales are the same in both cases, the
sales coefficient of variation would likewise decrease.
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Expressions (A.3) and (A.5) establish that decreasing the
menu cost from μ �∞ to μ � 0 would decrease the vari-
ance of inbound shipments by

b2σ2

1− b2
+ (1+ 2b)σ2 − b2σ2

4(1− b2) − (1+ b)σ2 � 3b2σ2

4(1− b2) + bσ2 > 0:

Because the mean shipment quantities are the same in
both cases, the shipment coefficient of variation would
likewise decrease.

Expressions (A.2)–(A.5) establish that decreasing the
menu cost from μ �∞ to μ � 0 would decrease the bull-
whip effect by���������������������

b2σ2
1−b2 + (1+ 2b)σ2

√
−

�����
σ2

1−b2
√

a
2(1−b) −mw=2

−
����������������������
b2σ2

4(1−b2) + (1+ b)σ2
√

−
��������������
b2σ2

4(1−b2) + σ2
√

a
2(1−b) −mw=2

�
�����
σ2

1−b2
√

a
2(1−b) −mw=2

( ������������������
1+ 2b(1− b2)√ − 1− ���������������������������

1− 3b2=4+ b(1− b2)√
+ �������������

1− 3b2=4
√ )

:

It is easy to check that the expression inside the parenthe-
sis is zero for b � 0, strictly increasing until it peaks at b �
0:502 and then strictly decreasing until it hits zero again
at b � 1.

Appendix B. Economic Order Quantity Model
We illustrate the inventory-based pricing effect of remov-
ing menu costs with the Stamatopoulos et al. (2019) gener-
alized EOQ model. The model is the continuous-time limit
of a discrete-time specification. Specifically, we chop each
day into n periods and let n→∞. In period t, the store
chooses price pt and sells dt � (a−mpt)=n units, where
a,m > 0 are fixed demand constants. To satisfy this de-
mand, the store orders q �∑nτ

t�1dt units of inventory every
τ days. In other words, each replenishment cycle spans nτ
periods. Note that replenishment cycles are identical be-
cause demand is deterministic.

To study the bullwhip in this setting, we first calculate
shipment and sales volatility—both with respect to time,
as there is no uncertainty. Note that the shipment quantity
is q every nτ periods and is zero otherwise. Hence, it re-
sembles q times a Bernoulli random variable with mean
1=nτ. Accordingly, the shipment quantity has mean q=nτ,
variance q2(nτ− 1)=n2τ2, and coefficient of variation���������
nτ− 1

√
. When it comes to sales, note that dt ∈ [0, a=n],

where the lower limit corresponds to price pt �∞ and the
upper limit to price pt � 0. Hence, Popoviciu’s inequality
establishes that demand’s variance is upper bounded by
(a=n)2=4 and its coefficient of variation is upper bounded
by aτ=2q. And, of course, these terms are lower bounded
by zero.

These bounds imply that if BWn is the bullwhip effect
when days are divided into n periods,

���������
nτ− 1

√ − aτ=2q ≤
BWn ≤

���������
nτ− 1

√
. This, in turn, implies that

lim
n→∞BWn=

��
n

√ � ��
τ

√
:

So, from an EOQ perspective, the square root of the time
between orders—equivalently, the square root of the days

of inventory in each order—measures the bullwhip effect.
Intuitively, increasing this time is the same as increasing the
order batch size, the Lee et al. (1997) third bullwhip driver.
And the Stamatopoulos et al. (2019) analysis tells us how

removing menu costs affects τ. Specifically, they found that
the optimal inventory holding cost per cycle will be the
same under μ � 0 and μ �∞. However, they also showed
that for any given τ, the per-cycle inventory holding cost
will be strictly less under μ � 0 than under μ �∞ (given
our linear demand model). These two facts imply that τ
must be strictly greater under μ � 0 than under μ �∞ (see
Stamatopoulos et al. 2019, appendix C, for details).

Appendix C. Estimation Procedure

Value Function and Policy Function
Before developing the estimator, we first define our dy-
namic program’s value function and policy function.
These functions integrate over unobserved error terms e
and u in the standard fashion (see Aguirregabiria and
Mira 2010). We define these functions in six steps:

1. The Gumbel distribution has two useful properties: if
{εi}Ni�1 are i.i.d., mean-zero Gumbel random variables and
{yi}Ni�1 are fixed scalars, then
E(εj|j � arg max

i
(yi + εi)) � −ln (P(j � arg max

i
(yi + εi))), and

(C.6)

P(j � arg max
i

(yi + εi)) � exp (yj)∑n
i�1exp (yi)

: (C.7)

2. Define x � i × p × s as the collection of observable
state variables. And define φ(q|x) as the probability that the
optimally behaving store chooses order quantity q in state x �
{i, r, s} and ψ(p|q,x) as the probability that the optimally be-
having store chooses price p in state x given order q. Note
that from our perspective, functions φ and ψ fully character-
ize the store’s policy. We characterize these functions in step
6 but until then take them as given.

3. Line (6) establishes that the expected value of eq con-
ditional on the agent choosing order q in state x is
−ln (φ(q|x)) and that the expected value of up conditional
on the agent choosing price p and order q in state x is
−ln (ψ(p|q,x)). Using these observations, we express the
store’s expected state-x utility in terms of φ, ψ, δd, and δf:

E(θ′γ(i, r,q,p, e,u,d, f ) | x) � θ′π(x),
where π(x) � E(γ(i, r,q,p, e,u,d, f ) | x)

�∑
q∈ q

∑
p∈ P

φ(q|x)ψ(p|q,x)ω(p,q,x) (C.8)

and ω(p,q,x) � E(γ(i, r,q,p, e,u,d, f ) | p,q,x)

�∑
d∈N

∑
f∈{0,1}

δd(d|s,p)δf (f )(pmin (i,d), − 1(fq≠ 0),

− 1(p≠ r), −max (i− d, 0), − ln (φ(q|x)), − ln (ψ(p|q,x)))′:
(C.9)

4. We likewise express the Markov chain’s transition prob-
abilities in terms of φ, ψ, δd, δf, and δs: the probability that the
state jumps from x to x′ is

δ(x′|x) �∑
q∈ q

∑
p∈ p

φ(q|x)ψ(p|q,x)ζ(x′|p,q,x), (C.10)
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where ζ(x′|p,q,x) �∑
d∈N

∑
f∈{0, 1}

δd(d|s,p)δf (f )δs(s′|s)

1(r′ � p ∩ i′ �max (i− d, 0) + fq): (C.11)

5. Next, we express the dynamic program’s value function
in terms of utility function π and transition function δ. The
expected discounted value of entering state x is θ′ν(x), where
vector ν(x) is the unique solution of the following Bellman
equation:

ν(x) � π(x) + β
∑
x′∈ x

δ(x′|x)ν(x′): (C.12)

6. Finally, we characterize policy functions φ and ψ. Ex-
pression (C.7) establishes that the optimal choice probabilities
have the following multinomial logistic forms:

φ(q|x) �
exp

(∑
p∈ p

ψ(p|q,x)(θ′
ω(p,q,x) + β

∑
x′∈ x

ζ(x′|p,q,x)θ′ν(x′))
)

∑
j∈ q

exp (∑p∈ p
ψ(p|j,x)(θ′

ω(p, j,x) + β
∑

x′∈ x
ζ(x′|x,p, j)θ′ν(x′)))

(C.13)

and ψ(p|q,x) �
exp

(
(θ′ω(p,q,x) + β

∑
x′∈ x

ζ(x′|p,q,x)θ′ν(x′))=σ
)

∑
j∈ p

exp
(
(θ′ω(j,q,x) + β

∑
x′∈ x

ζ(x′|x, j,q)θ′ν(x′))=σ
) ,

(C.14)

where θ � (κ,λ,μ,η, 0,σ)′
and θ � (κ,λ,μ,η, 0, 0)′:

Expressions (C.8)–(C.14) characterize the optimal policy
implicitly. This system of equations has a unique solution,
which we can identify with the policy iteration algorithm,
iterating the equations to convergence.

Estimation Methodology
Our estimation procedure has 10 steps. We first discuss
these steps at a high level and then discuss them in detail.

In step 1, we estimate the causal effect of prices on de-
mand with an instrumental variables (IV) regression. This
step represents the most notable difference between our es-
timation procedure and the procedure from Bray et al.
(2019), who treated demand as exogenous. Our IV regres-
sion includes several exogenous factors that influence
demand, such as month dummies and product dummies.
Ideally, we would incorporate each of these demand shifters
as a state variable in our dynamic program, but the curse of
dimensionality prevents us from doing so. So in step 2, we
concentrate these various demand shifters into the single
demand state variable s. Specifically, we set s to the fitted
value of the IV regression when prices are normalized to
zero—that is, to the intercept of the demand curve, condi-
tional on the current exogenous demand shifters.

After calculating s, we have all of our state and action
variables. We limit the number of possible values each of
these variables can take in step 3. Specifically, we restrict
the state space to a grid of 40 · 4 · 4 � 640 points and the
action space to a grid of 4 · 4 � 16 points.16

Next, we estimate the transition probabilities. In step 4, we
estimate δd with the negative binomial distribution that
best rationalizes the observed demands given the expected
demands we get from our IV regression. In steps 5 and 6,
we estimate δf and δs with their empirical distributions.
And in step 7, we combine these estimates to create an esti-
mate of ζ, the action-specific transition probability function.

We define our dynamic program solver in step 8. The
solver uses the policy iteration algorithm, iterating equations
(C.8)–(C.14) until convergence, to calculate the optimal poli-
cies that correspond to a given parameter vector, θ.
And, finally, we nest this dynamic programming prob-

lem within a maximum likelihood problem in steps 9 and
10, setting θ̂ to the parameter vector that maximizes the
empirical likelihood of the observed actions.
In more detail, our estimation process proceeds as follows:
1. We run an IV regression of tomorrow’s demand on (i)

store dummy variables; (ii) month dummy variables; (iii)
today’s demand; (iv) today’s sales of the given item across
all stores; (v) today’s sales of the given store across all
items, and (vi) tomorrow’s retail price, using the wholesale
price from today and the retail price from four weeks be-
fore as instruments for tomorrow’s retail price. These in-
struments are valid because they directly influence prices
but not demand. The current retail price should clearly re-
spond to both the current wholesale price (because the
stores prefer stable margins) and last month’s retail price
(because menu costs make prices sticky). But, otherwise,
wholesale prices and month-old retail prices should not
appreciably influence the customer’s purchase decision.
We test the strength of our instruments with an F-test of

the null hypothesis that the coefficients corresponding to
our two instrumental variables are zero in the first stage of
the IV regression. These tests strongly reject the hypothesis
that the wholesale price from today and the retail price
from four weeks before do not influence tomorrow’s retail
price. Specifically, of our 308 product cluster tests, 298 re-
ject the null at the p � 0:05 level, 292 reject it at the p � 0:01
level, and 284 reject it at the p � 0:001 level.

2. We test the necessity of our instruments with a Haus-
man test for the endogeneity of retail prices. Specifically,
we test whether the coefficient of the fitted retail price (i.e.,
the projection of the retail price onto the instruments) goes
to zero when we add the actual retail price into the second
stage of the IV regression. Overall, we find it prudent to
use instruments: we reject the null hypothesis that retail
prices are exogenous in 99 out of 308 product clusters, at
the p � 0:05 level. Demand-based pricing makes retail pri-
ces endogenous.17

We define demand state s as the fitted value of our IV re-
gression when the retail price is set to zero.

3. For numerical tractability, we restrict the state space to a
grid comprising 40 inventory levels, four demand states, and
four retail prices; and we set the action space to a grid com-
prising the same four retail prices and four order quantities.
We set the order quantity grid points to the four most fre-
quent orders. We set the retail price grid points to the cen-
troid points of four retail price clusters (created with the
k-means clustering algorithm) and set the demand state grid
points analogously. Finally, we arrange the inventory grid
points to lie with logarithmic density, because the value func-
tion is steeper for smaller inventory levels.

4. We define Ê(d|s,p) as the fitted value of our IV regres-
sion and define δ̂d as the negative binomial distribution that
best fits the realized demands, given these demand expecta-
tions. That is, we suppose that a given demand is drawn
from a negative binomial distribution with mean Ê(d|s,p) and
estimate its scale parameter with maximum likelihood.

5. We define δ̂ f as the empirical distribution of the fulfill-
ment indicator. That is, we set δ̂f (1) to the number of ship-
ments divided by the number of orders.

6. We define δ̂s as the empirical distribution of tomorrow’s
demand state given today’s demand state. That is, we round
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all demand states in our sample to one of the four demand
state grid points and define δ̂s(s′|s) as the number of times the
demand state jumped from grid point s to grid point s′ divid-
ed by the number of grid-point-s observations in the sample.

7. We create a transition probability function estimate ζ̂ by
plugging δ̂d, δ̂f , and δ̂s into (C.11) in such a way as to assign
all of the probability mass to the 40 inventory grid points. To
do so, we reassign mass that falls between consecutive grid
points in and in+1 to these grid points, in inverse proportion to
their distance. For example, if the last two grid points were 90
and 100, then we would reroute (100− 92)=(100− 90) � 80%
of the mass at point 92 to point 90 and reroute (92−
90)=(100− 90) � 20% to point 100.

8. Next, we create a function that identifies the optimal pol-
icy associated with input parameter vector θ.

a. We start with initial policy function guesses φ̂ and ψ̂.
b. We plug φ̂ and ψ̂, along with δ̂d, δ̂f , and ζ̂, into (C.8),
(C.9), and (C.10) to create estimates π̂, ω̂, and δ̂.

c. We plug π̂ and δ̂ into (C.12) and solve for the corre-
sponding fixed point solution, ν̂.

d. We plug ψ̂, ω̂, ζ̂, and ν̂ into the right-hand sides of
(C.13) and (C.14) to revise estimates φ̂ and ψ̂.

e. We iterate steps 8(b)–8(d) until the difference between
the consecutive values of ν̂ is smaller than 10−10.

f. We return φ̂θ � φ̂ and ψ̂θ � ψ̂.
9. We define L(θ) as the sample average value of

ln (φ̂θ(q|x)) + ln (ψ̂θ(p|q,x)).
10. We set θ̂ to the parameter vector that maximizes L(θ).

We solve this maximization problem with the
Berndt–Hall–Hall–Hausman algorithm.

Endnotes
1 For example, among all articles published in INFORMS journals
since January 1, 1990, we count 581 that mention the phrase “supply
chain” in their title, abstract, or keywords; 439 that mention either
“revenue management” or “dynamic pricing;” and 6 that mention
both “supply chain” and either “revenue management” or
“dynamic pricing.”
2 In Propositions 1–3, we measure sales and shipment volatilities
with the coefficient of variation and we measure the bullwhip effect
with the shipment coefficient of variation minus the sales coefficient
of variation.
3 In Proposition 4, we measure the bullwhip effect with the squared
root of the days of inventory that comprise each shipment. This
measure is the continuous-time limit of the shipment coefficient of
variation minus the sales coefficient of variation. See Appendix B
for details.
4 Two comments on guiding prices: First, because local demand
variation generally exceeds global demand variation, one would ex-
pect guiding prices to be stickier than retail prices. Indeed, the mod-
al across-stores price—a rough proxy for the guiding price—lasts
between 6 and 76 days more than the average individual-store
price, across product categories. Second, both the corporate plan-
ners and the local store managers significantly influence store pri-
ces. Specifically, regressing prices on date dummies, item-by-item,
we get a median R2 of 62.6%. Hence, roughly 62.6% of the within-
item variation in prices is common across stores—which suggests a
sizeable corporate planner effect—and the remaining 37:4% of price
variation is attributable to between-store heterogeneity—which
suggests a sizeable local manager effect.
5 These four filters reduce the sample by 20%, 82%, 0.001%, and
1.8%, respectively. However, our results are not sensitive to the re-
strictiveness of these filters; we get basically the same results when
we double the four threshold values (i.e., when we drop products

with fewer than 400 daily observations, fewer than 40 orders, fewer
than 50 days with an inventory change, or more than 40% of ship-
ments arriving later than one day).
6 These three filters reduce the sample by 34%, 4.8%, and 9.2%, re-
spectively. However, our results are not sensitive to the restrictive-
ness of these filters; we get basically the same results when we dou-
ble the three threshold values (i.e., when we drop product clusters
with fewer than 200 retail price changes, fewer than 400 orders, or
fewer than 2 distinct order quantities with at least 20 corresponding
orders). See the online appendix for details.
7 Aguirregabiria (1999, p. 298) reported lagged demand estimates in
his fifth table but only as a robustness check; he did not incorporate
these lagged demands as state variables in his dynamic program.
8 As we discuss in Section 4, retail prices are influenced by both cor-
porate and local managers. In this work, we view the entire process
as our subject of inquiry and set the level of abstraction to the store
and the prices it posts. But an interesting avenue for future research
would be to open the black box and explore the microlevel work-
ings of the price selection process.
9 Note that we assume that the demand state variable resolves inde-
pendently of the current price. Thus, we implicitly rule out strategic
customer behaviors, supposing that customers do not factor future
prices into their purchasing decisions. Fortunately, we can test the
reasonableness of this assumption empirically, because we know
the trajectory of prices over time. We discuss this point further in
Section 7.
10 Before rigorously testing the supply chain implications of dynam-
ic pricing with our counterfactual comparisons, we also check our
theoretical model’s predictions with a simple reduced-form analysis.
In summary, the analysis suggests that when product prices at the
Chinese supermarkets are updated more frequently than usual, (i)
revenues are more stable than usual, (ii) sales are higher than usual,
and (iii) orders are (weakly) higher than usual. Although these cor-
relations do not have a causal interpretation—because the underly-
ing comparisons are not ceteris paribus—they are worth reporting,
for completeness. See the online appendix for details.
11 This trend is exacerbated by the fact that every shipment must be
an integer multiple of some standard lot size, a restriction that limits
the stores’ ordering flexibility. For example, the standard lot size of
item 11251—a 250 mL carton of “fresh, orange-flavor orange
juice”—is 24 units. So when the average sales rate increases from
1.62–1.95 units per day, following a removal of menu costs, the
stores cannot commensurately increase their order quantities, be-
cause they must swallow an additional 24 units to receive any more.
12 You may wonder whether there is a simple way to predict the
product clusters that see increasing sales in the counterfactual. Un-
fortunately, we cannot find one. See the online appendix for details.
13 The key difference between Hendel and Nevo’s (2013) exercise
(which detects value to strategic behavior) and ours (which does
not detect value to strategic behavior) is that Hendel and Nevo as-
sume perfect foresight: consumers in their model know exactly when
a product’s price will change next and what the new price level will
be after the change. This assumption is crucial. To see why, suppose
that the price of a product is $1 for exactly one randomly chosen
second every week and is $100 for the remaining 604,799 seconds.
With perfect foresight, consumers stand to gain 99% on the prod-
uct’s price by being strategic. But without perfect foresight, the val-
ue of being strategic is essentially nil—there is only a 1=604,800
chance of arriving in the correct second—despite a 99% price reduc-
tion every week.
14 We focus on the case when lead time L � 1 and informally inter-
pret a period as the time between two orders (approximately 15 days
in our data). We do so because we want a model with at most one
batch of pipeline inventory at any given time. A model with L � 15
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allows for 15 distinct batches of pipeline inventory, which is not the
case in our context. So it is more accurate to set L � 1 and interpret
the length of a period to be around 15 days. In fact, the original DSP
model, developed by Kahn (1987), has L � 1, with each period rep-
resenting one month. (Lee et al. 1997 then extended their specifica-
tion to permit multiple shipping lead times.)
15 We derive this expression with the identity E(∑t≥0β

t · st |s−1)�
a=(1− b)(1− β).
16 We have made our dynamic program relatively small because we
have to solve it so many times. Specifically, each estimation requires
us to solve around 25 dynamic programs; we have to estimate our
model for 308 product clusters, and we have to bootstrap each esti-
mate 30 times. All told, that is around 25 · 308 · 30 � 231,000 dynam-
ic programs that need solving. We solve these dynamic programs in
parallel on an AWS computer with 64 cores and 256 GiB of RAM.
17 It can happen—for example, because the instruments happen to be
weak for a product cluster—that some of the IV price coefficients are
positive. To correct this issue, we run a set of “back-up” ordinary least
squares regressions (which include the same set of controls as the IV re-
gressions) and, whenever an IV price coefficient is negative, we replace
it with the corresponding ordinary least squares price coefficient. We
adjust intercepts accordingly. After applying this correction, all prod-
uct clusters have downward-sloping demand curves. See the online
appendix for details.
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