
Obsolete Version

This document is an outdated version of “Strong Convergence and Dynamic Economic Models.”

I make this old draft public because (i) it better explains how to modify the nested fixed point

(NFXP) and nested pseudo-likelihood (NPL) estimators to leverage strong convergence, and (ii) it

provides additional Monte Carlo simulations.

Strong Convergence and the Estimation of Markov Decision Processes

Robert L. Bray⇤

Kellogg School of Management, Northwestern University

January 31, 2017

Abstract

The empirical likelihood of a Markov decision process depends only on the di↵er-
enced value function. And the di↵erenced value function depends only on the payo↵s
received until the underlying Markov chain reaches its stationary distribution. Thus,
whereas the value function converges with Bellman contractions at the rate of cash
flow discounting, the di↵erenced value function—and hence the empirical likelihood—
converges at the rate of cash flow discounting times the rate of Markov chain mixing
(the spectral sub-radius of the state transition matrix). I use this strong convergence
result to speed up Rust’s (1987) nested fixed point (NFXP) and Aguirregabiria and
Mira’s (2002) nested pseudo-likelihood (NPL) estimators. The approach is especially
useful when estimating high-frequency models.

Keywords: Markov decision process, dynamic discrete choice, nested fixed point, nested
pseudo-likelihood, strong convergence.

⇤I would like to thank Victor Aguirregabiria, Achal Bassamboo, Thomas Bray, Seyed Emadi, Soheil Ghili,

Arvind Magesan, John Rust, Dennis Zhang, and three anonymous referees for their helpful comments.

1

1 Introduction

This project stemmed from a bug in my code. I tried to implement Rust’s (1987) nested

fixed point (NFXP) dynamic program estimator, but I erred. I mistakenly changed the

inner-loop stopping condition from value function convergence to policy function convergence—

näıvely, I thought the two were equivalent. They were not. The policy functions converged

sooner, leaving me with value functions that violated Bellman’s equation. I fixed the bug,

iterating the inner-loop until the value function reached its fixed point. But after imple-

menting Rust’s algorithm properly, my code took orders of magnitude longer to run. And

the extra time didn’t buying me anything: my utility estimates didn’t change. In this

manner, I accidentally found a faster way to estimate Markov decision processes.

My approach extends to models with multiple agents and continuous state and action

spaces, but I will focus on the conical single-agent dynamic discrete choice problem. Here,

an agent guides the evolution of a Markov chain in a utility-maximizing fashion with a

sequence of discrete choices, and an empiricist aims to reverse engineer this agent’s private

utility function from its public actions. My estimators capitalize on three facts:

1. The empirical likelihood of a dynamic discrete choice problem depends only on the

dynamic program’s policy function, not its value function.

2. The policy function depends only on the value function’s relative di↵erences, not its

absolute level.

3. The value function’s relative di↵erences converge faster than its level under Bellman

contractions. This is called strong convergence.

Note, the di↵erencing I refer to in the second point is not the di↵erencing most are used

to. I di↵erence across states, not across actions. It is well known that we can normalize

the utility of choosing action a0 to zero, since argmaxat u(at, xt) = argmaxat u(at, xt) �

2

u(a0, xt). It is less well known that we can normalize the value of being in state x0

to zero, since argmaxat u(at, xt) + �E(v(xt+1)|at, xt) = argmaxat u(at, xt) + �E(v(xt+1)�

v(x0)|at, xt). It is these cross-state value di↵erences, v(xt+1)�v(x0), that experience strong

convergence.

Strong convergence roughly implies that only the first 1% of Bellman contractions

meaningfully a↵ect the value function’s shape; the latter 99% increase the value function

rigidly. These uniform shifts don’t change the value function’s relative di↵erences, and

thus don’t change the policy function, and thus don’t change the empirical likelihood.

Therefore, they are superfluous. My estimators disregard them.

My first estimator applies strong convergence to Rust’s (1987) nested fixed point

(NFXP) estimator; I call it strong nested fixed point (SNFXP). NFXP imposes the Bell-

man equation as a constraint, specifying that a Bellman contraction does not a↵ect the

value function; in contrast, SNFXP imposes the Bellman equation’s first di↵erences as

a constraint, specifying that a Bellman contraction does not a↵ect the value function’s

shape, only its level. NFXP calculates many value functions, but SNFXP calculates none.

Accordingly, dynamic programs that require 458 processor hours to estimate with NFXP

require only 21 processor hours with SNFXP.

My second estimator applies strong convergence to Aguirregabiria and Mira’s (2002)

nested pseudo-likelihood (NPL) estimator; I call it strong nested pseudo-likelihood (SNPL).

NPL uses policy iteration, which calculates the value function under a given policy by

solving a system of equations the size of the state space; in contrast, SNPL uses Morton’s

(1971) relative policy iteration, which solves the di↵erenced value function under a given

policy by applying successive approximations until a Bellman contraction does not a↵ect

the value function’s shape, only its level. NPL calculates many value functions, but SNPL

calculates none. Accordingly, dynamic programs that require 740 processor hours to solve

with NPL require only 72 processor hours with SNPL.

3

Strong convergence is a timely topic, given the deluge of high-frequency data coming

online. Cheap sensors now give us visibility to fast-changing environments, such as Uber’s

network of drivers. But we cannot rely on financial discounting to make high-frequency

models tractable, since the per-period discount rate goes to one as the period length goes

to zero. Fortunately, strong convergence can be a substitute for discounting in this case;

strong convergence empowers the Bellman contraction in the high-frequency era.

2 Illustration

Rust’s (1987) canonical engine replacement problem demonstrates the power of strong

convergence. Mechanic Harold Zurcher faces a dynamic program with one state variable:

engine mileage xt. Each month Zurcher decides whether or not to replace his bus engine.

He follows the replacement schedule that minimizes the expected net present value of

his operating costs, discounting at rate �. In month t, an engine with mileage xt costs

xt/10, 000 � et1 to operate and 10 � et0 to replace, where et1 and et0 are i.i.d. standard

Gumbel shocks. If he replaces the engine, the odometer goes to zero; otherwise it increases

by 10,000 miles.

I solve this dynamic program with value iteration. As the algorithm progresses, I

track my assessment of (i) the value function, Zurcher’s expected discounted operating

costs at each state; (ii) the di↵erenced value function, the value function minus its first

element; and (iii) the policy function, Zurcher’s engine replacement probability at each state

(unconditional on the Gumbel shocks). Figure 1 depicts the magnitude of these function

changes for each iteration of the algorithm. The policy function and di↵erenced value

function converge within 32 value iteration steps, whereas the total value function converges

in upwards of 100,000. Figure 2 illustrates that the value function moves in lock step after

32 value iterations: the expected cost of operating a new engine increases from 88.42 to

4

179.74 between iterations 32 and 64, but the expected discounted cost di↵erence between

operating a new engine and one with 100,000 miles only changes from 95.44� 88.42 = 7.02

to 186.75� 179.74 = 7.01.

Figure 3 demonstrates why the di↵erenced value function stabilizes faster than total

value function. The di↵erence between the value function evaluated at xt = 20, 000 and

at xt = 0 is the di↵erence in the expected discounted costs starting from xt = 20, 000 and

from xt = 0. Under the optimal policy, Zurcher’s engine mileage follows an ergodic Markov

chain that regresses to its stationary distribution after 32 state transitions: variable xt+32

has the same distribution from both xt = 20, 000 and xt = 0. Accordingly, the expectation

of costs incurred after month t + 32 is the same under both initial states, and thus the

di↵erence between the value function evaluated at xt = 20, 000 and xt = 0 depends only

on the costs faced between months t and t + 31. Calculating these 32 cash flows requires

a mere 32 Bellman contractions.

3 Model

3.1 Dynamic Program

An agent follows a Markov decision process. In a given period, it chooses action a 2 =

{a1, · · · , aā} in response to state variables x 2 = {x1, · · · , xx̄} and e = {e(a) 2 R|a 2 }.

I observe a and x, but not e, which serves as a statistical error term. Taking action a in state

{x, e} yields utility u(a, x) = z(a, x)0✓ + e(a), where z(a, x) is a length-z̄ vector of factors

and ✓ is a length-z̄ vector of parameters. I observe z, but not ✓, which I seek to estimate.

The probability density function of tomorrow’s state variables given today’s action a and

state {x, e} is f(x0, e0|a, x, e) = f
e(e0|x0)fx(x0|x, a), where f e is twice di↵erentiable, specifies

a finite first moment, and has full support over the real line. Since f
e has full support, all

actions have strictly positive probability in all states, and thus the state variables’ Markov

5

Figure 1: Function Changes with Value Iteration Step

These plots depict, for each step of the value iteration algorithm, the magnitudes of the value function, di↵erenced

value function, and policy function changes (measured under the `1 norm). The value function provides expected

future discounted costs; the di↵erenced value function is the value function less its first element; and the policy

function gives the probability of replacing the engine, unconditional on the Gumbel cost shocks. Parameter � is the

cash flow discount factor.

β = 0.9 β = 0.99

β = 0.999 β = 0.9999

1e−08

1e−05

1e−02

1e+01

1e−08

1e−05

1e−02

1e+01

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Value Iteration Algorithm Step Number

Fu
nc

tio
n

C
ha

ng
e

Policy Function Differenced Value Function Value Function

6

Figure 2: Value Function with Value Iteration Step
These plots depict my assessment of the value function at various steps of the value iteration algorithm. (For

illustrative purposes, I set the elements of the initial value function to i.i.d. standard normal random variables.) The

value function’s shape converges by iteration 32, but the value function’s level does not.

Iteration 0 Iteration 1 Iteration 2 Iteration 4

Iteration 8 Iteration 16 Iteration 32 Iteration 64

−2

−1

0

1

−2.5

0.0

2.5

5.0

7.5

10.0

2

4

6

8

7

8

9

10

11

12

13

18

20

22

24

42

44

46

48

90

92

94

96

180

182

184

186

25000 75000 25000 75000 25000 75000 25000 75000
Engine Mileage

Ex
pe

ct
ed

 D
is

co
un

te
d

C
os

t

7

Figure 3: State Space Distribution with Value Iteration Step

These histograms depict the distribution of xt+⌧ from the perspective of period t. The left-hand plots give the

distribution conditional on xt = 0, and the right-hand plots give the distribution conditional on xt = 20, 000. From

both starting conditions, the distribution of xt+32 equals the Markov chain’s stationary distribution.

New Engine Used Engine

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

t
t + 1

t + 2
t + 4

t + 8
t + 16

t + 32
t + 64

0 20000 40000 60000 0 20000 40000 60000
Engine Mileage

D
en

si
ty

8

chain is ergodic under all policies if it is ergodic under at least one policy; I suppose the

state variables’ Markov chain is ergodic under at least one policy.1

The agent chooses the action that maximizes its infinite-horizon expected discounted

utility, under discount rate � < 1. A Bellman equation recursively defines its value function:

v̆(x, e) =max
a2

u(a, x) + �

Z X

x0

f(x0, e0|a, x, e)v̆(x0, e0)de0.

More useful, however, is the integrated value function, the expected value conditional on

the observable state but not the unobservable state:

v(x) =

Z
v̆(x, e)de

=

Z
max
a2

�
s(a, x) + e(a)

�
f
e(e|x)de,

where s(a, x) =z(a, x)0✓ + �

X

x0

f
x(x0|a, x)v(x0).

Choice-specific value function s(a, x) gives the expected value of choosing action a in state

x, net the error term.

The conditional choice probability (CCP) of the agent choosing action a, given observ-

able state x, is

p(a|x) =
Z

{a = argmax
ă2

s(ă, x) + e(ă)}f e(e|x)de.

Hotz and Miller (1993) showed that these CCPs characterize the agent’s policy by prov-

ing that there exists function g that satisfies E[e(a)|a, x] = g(a, p(x)), where p(x) =

[p(a1|x1), · · · , p(aā|x)]. For example, when the e errors are i.i.d., mean-zero Gumbels,

g(a, p(x)) = � log(p(a|x)). With this, and the law of iterated expectations, they derived

1 My approach can accommodate transitory states as long as they do not feed into multiple communi-
cating classes. The vast majority of economic models fit this specification.

9

alternate value function representation

v(x) =
X

a2
p(a|x)(s(a, x) + g(a, p(x)))

=max
p̆2⌅

X

a2
p̆(a)(s(a, x) + g(a, p̆)),

where simplex ⌅ is the set of length-ā probability vectors. This equation reformulates the

problem: while the agent actually chooses action a in response to states x and e, I can

pretend it chooses CCP p in response to state x. Casing the CCP as the policy function

eliminates the unobserved state and transforms the optimization problem from discrete to

continuous.

3.2 Vectorization

I now vectorize the model variables by the span of the state space.

1. V is the length-x̄ vector with i
th element v(xi). It denotes the value function.

2. Pa is the length-x̄ vector with i
th element p(a|xi). It denotes the action-a CCPs.

3. P = [P 0
a1 , · · · , P

0
aā]

0 is a length-āx̄ vector that comprises all the CCPs. It denotes the

full policy function.

4. Ga(P) is the length-x̄ vector with i
th element g(a, p(xi)). It denotes the expected

error terms, conditional on action a.

5. G(P) =
P

a2 diag(Pa)Ga(P) is the length-x̄ vector with i
th element

P
a2 p(a|xi)g(a, p(xi)).

It denotes the expected error terms, unconditional on the action.

6. Za is the x̄⇥z̄ matrix with i
th row z(a, xi). It denotes the utility statistics, conditional

on action a.

10

7. Z(P) =
P

a2 diag(Pa)Za is the x̄ ⇥ z̄ matrix with i
th row

P
a2 p(a|xi)z(a, xi). It

denotes the expected utility statistics, unconditional on the action.

8. U(P) = Z(P)✓+G(P) is the length-x̄ vector with i
th element

P
a2 p(a|xi)

�
z(a, xi)0✓+

g(a, p(xi))
�
. It denotes the expected utilities, unconditional on the action.

9. Fa is the x̄ ⇥ x̄ matrix with ij
th element f

x(xj |a, xi). It denotes the joint state

transition probabilities, conditional on action a.

10. F (P) =
P

a2 diag(Pa)Fa is the x̄⇥x̄matrix with ij
th element

P
a2 p(a|xi)fx(xj |a, xi).

It denotes the expected state transition probabilities, unconditional on the action.

3.3 Operators

I now define several dynamic programming operators:

1. The Bellman contraction function is �. It maps policies and values to values: the

value today is �(V̆ , P̆) = U(P̆) + �F (P̆)V̆ when the policy today is P̆ and the value

tomorrow is V̆ .

2. The policy improvement operator is ⇡. It maps values to policies: the optimal policy

today is ⇡V̆ = argmaxP̆2⌅⇥ �(V̆ , P̆) when the value tomorrow is V̆ . When the

errors are i.i.d. Gumbels, ⇡V̆ =
n

exp(R(a)+�FaV̆)P
ă exp(R(ă)+�F (ă)V̆)

�� a 2
o
, with the exponents

and division evaluated element-wise.

3. The value iteration operator is ⌫. It maps values to values: the value today is

⌫V̆ = �(V̆ ,⇡V̆) when the value tomorrow is V̆ . When the errors are i.i.d., mean-zero

Gumbels, ⌫V̆ = log
⇣P

a exp
�
R(a) + �FaV̆

�⌘
, with the exponents and logarithm

evaluated element-wise.

11

4. The policy valuation operator is ⌘. It maps policies to values: the value of following

policy P̆ forever is ⌘P̆ =
�
I � �F (P̆)

��1
U(P̆). This equation stems from isolating V̆

in fixed point �(V̆ , P̆) = V̆ .

5. The policy iteration operator is ⇢ = ⇡⌘. It maps policies to policies: the optimal

policy today is ⇢P̆ , given policy P̆ from tomorrow onwards. When the errors are

i.i.d.Gumbels, ⇢P̆ =
n

exp(R(a)+�Fa⌘P̆)P
ă exp(R(ă)+�F (ă)⌘P̆)

�� a 2
o
, with the exponents and division

evaluated element-wise.

6. The di↵erence operator is � = I � ◆e
0
1
, where ◆ is a length-x̄ vector of ones and e1

is a length-x̄ unit vector indicating the first position. Premultiplying a vector by �

renormalizes it, setting its first element to zero. For example, the i
th element of �V

is v(xi)� v(x1).

4 Solution

4.1 Standard Algorithms

I now present two standard solution algorithms: value iteration and policy iteration. Both

use convergence threshold � = ✏(1��)
2� to produce an ✏-optimal policy, a policy that yields

within ✏ of V when followed forever (Puterman, 2014, 161).

The value iteration algorithm applies the value iteration operator to convergence:

1. Set t = 0 and Vt = 0.

2. Increment t.

3. Set Vt = ⌫Vt�1.

4. If kVt � Vt�1k � � go to 2.

12

5. Return ⇡Vt.

And the policy iteration algorithm applies the policy iteration operator to convergence:

1. Set t = 0 and Pt = ⇡0.

2. Increment t.

3. Set Pt = ⇢Pt�1.

4. If k⌫⌘Pt�1 � ⌘Pt�1k � � go to 2.

5. Return Pt.

Policy iteration steps accomplish more than value iteration steps, but they are slower be-

cause calculating ⌘P̆ is di�cult. The näıve approach—computing (I��F (P̆))�1 and post-

multiplying by U(P̆)—is cumbersome and numerically unstable. A better way to evaluate

⌘P̆ is to apply the LU decomposition or Gaussian elimination to the (I��F (P̆)
�
⌘P̆ = U(P̆)

system of equations.

Alternatively, I can approximate ⌘P̆ with a series of Bellman contractions. The value

of following policy P̆ forever is ⌘P̆ =
�
I � �F (P̆)

��1
U(P̆) =

P1
t=0

�
t
F (P̆)tU(P̆). Define

⌘⌧ P̆ =
P⌧

t=0
�
t
F (P̆)tU(P̆) as a finite approximation of this infinite sum. Operator ⌘⌧ re-

turns the expected discounted utility amassed over the next ⌧ periods under a given policy.

Approximation error ⌘P̆�⌘⌧ P̆ =
P1

t=⌧+1
�
t
F (P̆)tU(P̆) = �

⌧+1
F (P̆)⌧+1

P1
t=0

�
t
F (P̆)tU(P̆) =

�
⌧+1

F (P̆)⌧+1
⌘P̆ goes to zero as ⌧ grows. So I can substitute ⌘tP̆ , with large ⌧ , for ⌘P̆ .

And since ⌘0P̆ = U(P̆) and ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆), I can evaluate ⌘⌧ P̆ with ⌧ Bellman

contractions.

4.2 Relative Algorithms

I will now present versions of value iteration and policy iteration that correspond not to

the value function V , but to its relative di↵erences V̄ = �V . This relative approach

13

exploits two identities. First, an outer di↵erencing makes an inner di↵erencing redundant:

��(�V̆ , P̆) = ��(V̆ , P̆).2 And second, the policy function depends on the value function’s

shape but not its level: ⇡� = ⇡.3 These properties imply that the di↵erenced value

function identifies the optimal policy (i.e., ⇡V̄ = ⇡�V = ⇡V = P) and that repeatedly

applying relative value function operator ⌫̄ = �⌫ identifies the di↵erenced value function

(i.e., lim⌧!1 ⌫̄
⌧0 = V̄).4

Leveraging this insight, the relative value iteration algorithm applies the relative value

iteration operator to convergence:5

1. Set t = 0 and V̄t = 0.

2. Increment t.

3. Set V̄t = ⌫̄V̄t�1.

4. If kV̄t � V̄t�1k � � go to 2.

5. Return ⇡V̄t.

Analogously define relative policy iteration operator: ⇢̄ = ⇡⌘̄, where ⌘̄ = �⌘. The

relative policy iteration algorithm applies the relative policy iteration operator to conver-

gence:6

1. Set t = 0 and Pt = ⇡0.
2 First, �2 = �, since � is a projection matrix. Second, for any Markovian matrix F , F ◆ = ◆, and thus

F (I ��) = F ◆e01 = ◆e01 = I ��. Third, �F (I ��) = �(I ��) = 0, which implies �F = �F�, and thus
��(�V̆ , P̆) = �U(P̆) + ��F (P̆)�V̆ = �U(P̆) + ��F (P̆)V̆ = ��(V̆ , P̆).

3 Footnote 2 shows that I �� = F (I ��), which implies ⇡�V̆ = argmaxP̆2⌅⇥ U(P̆) + �F (P̆)�V̆ =

argmaxP̆2⌅⇥ U(P̆) + �F (P̆)�V̆ + �(I � �)V̆ = argmaxP̆2⌅⇥ U(P̆) + �F (P̆)�V̆ + �F (P̆)(I � �)V̆ =

argmaxP̆2⌅⇥ U(P̆) + �F (P̆)V̆ = ⇡V̆ for all V̆ , and thus ⇡� = ⇡.
4 For all V̆ , ⌫̄�V̆ = ��(�V̆ ,⇡�V̆) = ��(V̆ ,⇡V̆) = ⌫̄V̆ , and thus ⌫̄� = ⌫̄. By induction this implies

⌫̄⌧ = �⌫⌧ , and thus lim⌧!1 ⌫̄⌧ V̆ = lim⌧!1 �⌫⌧ V̆ = �V = V̄ , for all V̆ .
5This algorithm also yields an ✏-optimal policy (Puterman, 2014, 205).
6This algorithm’s stopping condition is equivalent to relative value iteration’s stopping condition, with

V̄⌧�1 = ⌘̄P⌧�1 and V̄⌧ = ⌫̄⌘̄P⌧�1. Thus, since relative value iteration yields an ✏-optimal policy, this
algorithm does as well.

14

2. Increment t.

3. Set Pt = ⇢̄Pt�1.

4. If k⌫̄⌘̄Pt�1 � ⌘̄Pt�1k � � go to 2.

5. Return Pt.

Since ⇢̄ = ⇡⌘̄ = ⇡�⌘ = ⇡⌘ = ⇢, relative policy iteration appears equivalent to policy

iteration. But it is not, because ⌘̄P̆ is more amenable to Bellman contraction approximation

than ⌘P̆ . That is, ⌘̄⌧ P̆ = �⌘⌧ P̆ converges to ⌘̄P̆ = �⌘P̆ faster than ⌘⌧ P̆ converges to ⌘P̆ .

Morton (1971) and Morton and Wecker (1977) dub this strong convergence.

5 Strong Convergence

Since F (P̆) is a regular stochastic matrix, (i) its largest eigenvalue is one, (ii) its largest

eigenvalue corresponds to eigenvector ◆, and (iii) its second-largest eigenvalue is less than

one (Puterman, 2014, 595). I will call this subdominant eigenvalue �(P̆). Note that

approximation error ⌘P̆ � ⌘⌧ P̆ = �
⌧+1

F (P̆)⌧+1
⌘P̆ decreases with ⌧ at rate � times the

largest eigenvalue of F (P̆). Since this eigenvalue is one, k⌘P̆ �⌘⌧ P̆k is O(�⌧) as ⌧ ! 1. In

contrast, di↵erenced approximation error ⌘̄P̆ � ⌘̄⌧ P̆ = �(⌘P̆ � ⌘⌧ P̆) = �
⌧+1�F (P̆)⌧+1

⌘P̆

decreases with ⌧ at rate � times the largest eigenvalue of F (P̆) whose eigenvector is not in

the kernel of �. Since the kernel of � is the span of ◆, and ◆ is the eigenvector corresponding

to F (P̆)’s largest eigenvalue, k⌘̄P̆ � ⌘̄⌧ P̆k is O(�⌧
�(P̆)⌧) as ⌧ ! 1. The di↵erenced value

function, therefore, is easier to approximate.

The intuition is straightforward: the distribution of the state t periods hence depends

on the convolution of t state transitions. These convolutions scramble the state variables,

returning them to steady state. Eigenvalue �(P̆) parameterizes this rate of mixing—

smaller �(P̆) begets faster blending. The number of transitions required for a Markov

15

chain to return to its stationary distribution is called the mixing time (Levin et al., 2009).

We can decompose the value function into expected payments received before the mixing

time plus expected payments received after. But payments received after the mixing time

contribute equally to each state’s value, shifting the value function upwards in a uniform

fashion. These uniform shifts wash out upon di↵erencing. Thus, whereas the value function

depends on all future payo↵s not discounted to irrelevance, the di↵erenced value function

depends only on payo↵s received before the mixing time. Strong convergence limits the set

of cash flows we must consider.

To exploit strong convergence, Morton (1971) developed the relative policy iteration

algorithm. Whereas policy iteration calculates ⌘P̆ by iterating ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆) to

convergence (or by solving system of equations (I � �F (P̆)
�
⌘P̆ = U(P̆) for ⌘P̆), relative

policy iteration calculates ⌘̄P̆ by iterating ⌘̄⌧ P̆ = ��(⌘̄⌧�1P̆ , P̆) to convergence. This is

a faster iterative scheme. Morton and Wecker (1977) extended this logic to relative value

iteration, proving that kV̄ � ⌫̄
⌧0k is O(�⌧

�(P)⌧) as ⌧ ! 1, while kV � ⌫
⌧0k is O(�⌧) as

⌧ ! 1.

6 Estimators

6.1 Overview

I observe a sequence of states x and corresponding actions a. I store these data in āx̄-

dimensional vector N = [n(a1, x1), · · · , n(aā, xx̄)]0, where n(a, x) denotes the number of

action-a, state-x observations in my dataset. Following Rust (1994, 3109), I take � and f
x

as given (the state transition probabilities are estimable in reduced form). I will estimate

utility vector ✓—which resides in compact set ⇥ 2 RM—by maximizing the conditional

16

log-likelihood of the observed actions, given the observed states

b✓ =argmax
✓̆

N
0 log(P (✓̆)),

where P (✓̆) is the optimal policy under utility vector ✓̆, and the logarithm evaluates element

by element (as it does whenever applied to a vector).

I will present four algorithms that maximize this likelihood: nested fixed point (NFXP),

strong nested fixed point (SNFXP), nested pseudo-likelihood (NPL), and strong nested

pseudo-likelihood (SNPL). Since they maximize the same likelihood, all four estimators

share the same identification and asymptotic properties. Indeed, SNFXP and SNPL are

just NFXP and NPL with their value iteration and policy iteration steps replaced with

relative value iteration and relative policy iteration steps. Since the policy function re-

sponds to relative value iteration and relative policy iteration in the same way it responds

to value iteration and policy iteration, SNFXP always yields the same estimate as NFXP

and SNPL always yields the same estimate as NPL. However, SNFXP and SNPL identify

these estimates with less computation.

6.2 Nested Fixed Point

Rust’s (1987) NFXP estimation algorithm proceeds as follows:

1. Define P (✓̆) as the output of the following subroutine:

(a) Set t = 0 and Vt = 0.

(b) Increment t.

(c) Set Vt = ⌫✓̆Vt�1.

(d) If kVt � Vt�1k � �1 or
��� kVt�Vt�1k
kVt�1�Vt�2k � �

��� � �2 go to 1b.

(e) Set Pt = ⇡✓̆Vt.

17

(f) Increment t.

(g) Set Pt = ⇢✓̆Pt�1.

(h) If k⌫✓̆⌘✓̆Pt�1 � ⌘✓̆Pt�1k � � go to 1f.

(i) Return Pt.

2. Return argmax✓̆ N
0 log(P (✓̆)).

This algorithm uses both value iteration (in Steps 1b to 1d) and policy iteration (in

Steps 1f to 1h). The policy iteration steps can calculate vector ⌘P̆ either by solving system

of equations (I � �F (P̆)
�
⌘P̆ = U(P̆) or by iterating ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆) to convergence.

6.3 Strong Nested Fixed Point

Rust’s (2000, 18) NFXP estimator is predicated on the assumption “that one has to com-

pute the fixed point [V = ⌫V] in order to evaluate the likelihood function.” But this is

incorrect. The empirical likelihood only depends on the value function’s relative di↵erences,

not its absolute level. Therefor, I replace the value iteration and policy iteration steps,

which solve the value function, with relative value iteration and relative policy iteration

steps, which solve the di↵erenced value function. This creates the SNFXP estimator:

1. Define P (✓̆) as the output of the following subroutine:

(a) Set t = 0 and V̄t = 0.

(b) Increment t.

(c) Set V̄t = ⌫̄✓̆V̄t�1.

(d) If kV̄t � V̄t�1k � �1 or
��� kV̄t�V̄t�1k
kV̄t�1�V̄t�2k

� �

��� � �2 go to 1b.

(e) Set Pt = ⇡✓̆V̄t.

(f) Increment t.

18

(g) Set Pt = ⇢̄✓̆Pt�1.

(h) If k⌫̄✓̆⌘̄✓̆Pt�1 � ⌘̄✓̆Pt�1k � � go to 1f.

(i) Return Pt.

2. Return argmax✓̆ N
0 log(P (✓̆)).

Since Step 2 of each algorithm is the same, NFXP and SNFXP search the parameter

space in the same way and yield the same estimates. However, by circumventing the

solution of V , SNFXP evaluates this objective more quickly. First, satisfying Condition 1d

requires fewer Bellman contractions under SNFXP than NFXP. And second, implementing

policy iteration Step 1g is easier under SNFXP than NFXP, because evaluating ⌘̄P̆ requires

fewer Bellman contractions than evaluating ⌘P̆ (assuming ⌘P̆ is not solved via system of

equations).

This implementation of SNFX, however, inherits one of NFXP’s problems: the di�-

cultly in determining when to switch from value iteration to policy iteration. As expressed

above, this issue amounts to choosing fine-tuning parameters �1 and �2. But Condition

1d is actually an abridged version of Rust’s (2000) complex decision rule, which spans

three pages and comprises a series of ad hoc conditions, such as “Case 3: if ftol is too

small, say less than 10�7, then if the last fixed point hit the upper limit of cstp iterations

before switching to Newton Kantorovich iterations, then I decrease cstp by 10 and set

minstp=2.” Moreover, Rust (2000, 30) “makes no claim that these heuristics for adap-

tively determining the time to switch from contraction iterations to Newton Kantorovich

iterations are in any sense ‘optimal.’ [And he] encourage[s] you to experiment with your

own heuristics to get faster execution times.” Iskhakov et al. (2015, 7) concur, explaining

how this approach requires “devoting time to the special-purpose programming necessary

to implement [NFXP].”

I can obviate these di�culties by using relative value iteration throughout for a simpler

19

SNFXP implementation:

1. Define P (✓̆) as the output of the following subroutine:

(a) Set t = 0 and V̄t = 0.

(b) Increment t.

(c) Set V̄t = ⌫̄✓̆V̄t�1.

(d) If kV̄t � V̄t�1k � � go to 1b.

(e) Return ⇡✓̆V̄t.

2. Return argmax✓̆ N
0 log(P (✓̆)).

This algorithm applies Bellman contractions until the di↵erenced value function con-

verges. It then stops. It never calculates the true value function because the empirical

likelihood does not need it: if a Bellman contraction does not change the value function’s

curvature, then the policy is optimal and the likelihood true.7

6.4 Nested Pseudo-Likelihood

Aguirregabiria and Mira’s (2002) NPL algorithm solves a series of problems linked by

policy iteration steps. NPL does not evaluate the empirical likelihood perfectly for each

parameter vector; instead, it only approximates the empirical likelihood well enough to

identify a better parameter vector.

At a high level, the NPL estimation algorithm proceeds as follows:

1. Create reduced form CCP estimates bP.

2. Set t = 0 and Pt = bP.
7 Note, since ⌫̄⌧ = �⌫⌧ (see Footnote 4), Step 1 of this algorithm is equivalent to iterating Vt = ⌫✓̆Vt�1

until stopping condition k�(Vt � Vt�1)k < �.

20

3. Increment t.

4. Set ✓t = argmax✓̆ N
0 log(⇢✓̆Pt�1).

5. Set Pt = ⇢✓tPt�1.

6. If k⌫✓t⌘✓tPt�1 � ⌘✓tPt�1k � � go to 3.

7. Return ✓t.

Note, implementing Step 4 requires evaluating ⇢✓̆P̆ under many ✓̆. There are two ways

to do this e�ciently. First, I can use the LU decomposition to express I � �F (P̆) as the

product of a lower triangular matrix and an upper triangular matrix, both amenable to

Gaussian elimination (Horn and Johnson, 2012, 216). Doing so enables me to quickly solve

⌘✓̆P̆ in system of equations (I � �F (P̆))⌘✓̆P̆ = U✓̆(P̆) under many ✓̆. With this, NPL

becomes:

1. Create reduced form CCP estimates bP.

2. Set t = 0 and Pt = bP.

3. Increment t.

4. Calculate lower triangular matrix Lt, upper triangular matrix Ut,

and permutation matrix Pt, such that Pt(I � �F (Pt�1)) = LtUt.

5. Define Vt(✓̆) as the output of the following subroutine:

(a) Solve Ltx = PtU✓(Pt�1) for x.

(b) Solve Utv = x for v.

(c) Return v.

6. Set ✓t = argmax✓̆ N
0 log(⇡✓̆Vt(✓̆)).

21

7. Set Pt = ⇡✓tVt(✓t).

8. If k⌫✓tVt(✓t)� Vt(✓t)k � � go to 3.

9. Return ✓t.

The second approach to evaluating ⇢✓̆P̆ under many ✓̆ is to approximate ⌘✓̆P̆ with a

sequence of Bellman contractions in such a way that the final result is a linear function of ✓̆.

Note that (i) ⌘✓̆P̆ =
�
I � �F (P̆)

��1
U✓̆(P̆) =

�
I � �F (P̆)

��1
Z(P̆)✓̆+

�
I � �F (P̆)

��1
G(P̆);

(ii)
�
I � �F (P̆)

��1
Z(P̆) = lim⌧!1 Z⌧ (P̆), where Z⌧ (P̆) = Z(P̆) + �F (P̆)Z⌧�1(P̆) and

Z0(P̆) = Z(P̆); and (iii)
�
I � �F (P̆)

��1
G(P̆) = lim⌧!1G⌧ (P̆), where G⌧ (P̆) = G(P̆) +

�F (P̆)G⌧�1(P̆) and G0(P̆) = G(P̆). Thus, my alternate NPL implementation iterates

the Z⌧ (P̆) and G⌧ (P̆) contractions to convergence to calculate
�
I � �F (P̆)

��1
Z(P̆) and

�
I � �F (P̆)

��1
G(P̆), with which it expresses ⌘✓̆P̆ as a linear function of ✓̆:8

1. Create reduced form CCP estimates bP.

2. Set t = 0 and Pt = bP.

3. Increment t.

4. Set ⌧ = 0, Zt⌧ = Z(Pt�1), and Gt⌧ = G(Pt�1).

5. Increment ⌧.

6. Set Zt⌧ = Z(Pt�1) + �F (Pt�1)Zt⌧�1 and Gt⌧ = G(Pt�1) + �F (Pt�1)Gt⌧�1.

7. If max(kZt⌧ � Zt⌧�1k, kGt⌧ �Gt⌧�1k) � � go to 5.

8. Define Vt(✓̆) = Zt⌧ ✓̆ +Gt⌧.

8 This implementation refines the approaches of Aguirregabiria and Mira (2010, 51) and Aguirregabiria
and Alonso-Borrego (2014, 27). Their A(P̆)⌧ = I + �F (P̆)A(P̆)⌧�1 iterations multiply two x̄⇥ x̄ matrices.
In contrast, my Z⌧ (P̆) = Z(P̆) + �F (P̆)Z⌧�1(P̆) iterations multiply an x̄⇥ x̄ matrix with an x̄⇥ z̄ matrix,
and my G⌧ (P̆) = G(P̆) + �F (P̆)G⌧�1(P̆) iterations multiply an x̄⇥ x̄ matrix with a length-x̄ vector. My
approach should be faster when z̄ < x̄� 1.

22

9. Set ✓t = argmax✓̆ N
0 log(⇡✓̆Vt(✓̆)).

10. Set Pt = ⇡✓tVt(✓t).

11. If k⌫✓tVt(✓t)� Vt(✓t)k � � go to 3.

12. Return ✓t.

6.5 Strong Nested Pseudo-Likelihood

My SNPL estimator replaces NPL’s policy iterations steps with relative policy iteration

steps. Whereas NPL solves ⌘P̆ by iterating Z⌧ (P̆) = Z(P̆)+�F (P̆)Z⌧�1(P̆) and G⌧ (P̆) =

G(P̆)+�F (P̆)G⌧�1(P̆) (i.e., by iterating ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆)), SNPL solves ⌘̄P̆ by iterating

Z̄⌧ (P̆) = �Z(P̆) + ��F (P̆)Z̄⌧�1(P̆) and Ḡ⌧ (P̆) = �G(P̆) + ��F (P̆)Ḡ⌧�1(P̆) (i.e., by

iterating ⌘̄⌧ P̆ = ��(⌘̄⌧�1P̆ , P̆)):9

1. Create reduced form CCP estimates bP.

2. Set t = 0 and Pt = bP.

3. Increment t.

4. Set ⌧ = 0, Z̄t⌧ = �Z(Pt�1), and Ḡt⌧ = �G(Pt�1).

5. Increment ⌧.

6. Set Z̄t⌧ = �Z(Pt�1)+��F (Pt�1)Z̄t⌧�1 and Ḡt⌧ = �G(Pt�1)+��F (Pt�1)Ḡt⌧�1.

7. If max(kZ̄t⌧ � Z̄t⌧�1k, kḠt⌧ � Ḡt⌧�1k) � � go to 5.

8. Define V̄t(✓̆) = Z̄t⌧ ✓̆ + Ḡt⌧.

9. Set ✓t = argmax✓̆ N
0 log(⇡✓̆V̄t(✓̆)).

9I derive iterative equations Z̄⌧ (P̆) = �Z(P̆) + ��F (P̆)Z̄⌧�1(P̆) and Ḡ⌧ (P̆) = �G(P̆) +
��F (P̆)Ḡ⌧�1(P̆) with identify �F (P̆) = �F (P̆)� from Footnote 2.

23

10. Set Pt = ⇡✓t V̄t(✓t).

11. If k⌫✓t V̄t(✓t)� V̄t(✓t)k � � go to 3.

12. Return ✓t.

SNPL and the latter NPL version both comprise an outer loop, Steps 3 to 11, and

an inner loop, steps 5 to 7. The outer loops are the same, since SNPL’s ⇡✓̆V̄t(✓̆) equals

NPL’s ⇡✓̆Vt(✓̆). Accordingly, the estimators search the parameter space in the same way

and yield the same estimates. However, SNPL uses fewer inner loops because Z̄⌧ (P̆) and

Ḡ⌧ (P̆) converge to�
�
I��F (P̆)

��1
Z(P) and�

�
I��F (P̆)

��1
G(P) at rate ��(P̆), whereas

Z⌧ (P̆) and G⌧ (P̆) converge to
�
I � �F (P̆)

��1
Z(P) and

�
I � �F (P̆)

��1
G(P) at rate �.

7 Monte Carlo Simulation

7.1 Experimental Design

A taxi driver traverses a random graph of neighborhoods = [1, · · · , x̄]. In each period,

the driver ferries a customer from one neighborhood to another. The customer decides

the destination, but the driver decides the customer class—whether to pick up a passenger

from the street (a = 0) or the Uber app (a = 1). The probability that a neighborhood-i

street passenger asks to go to neighborhood j is f
x(xj |0, xi), and the probability that a

neighborhood-i Uber passenger asks to go to neighborhood j is fx(xj |1, xi), where vectors

[fx(x1|0, xi), · · · , fx(xj |0, xi)] and [fx(x1|1, xi), · · · , fx(xj |1, xi)] are symmetric Dirichlet

random variables with dispersion parameter ↵. The expected utility from a neighborhood-

i street ride is z(0, xi)0✓+e(0), and the expected utility from a neighborhood-i Uber ride is

z(1, xi)0✓+e(1), where z(0, xi), z(1, xi), and ✓ are vectors of independent standard normals,

and e(0) and e(1) are standard Gumbel shocks the taxi driver observes at the beginning

24

of the period. The taxi driver toggles between Uber rides and street rides to maximize

expected discounted utility.

Why choose this specification? To specify a dynamic program, I must define three

things: parameter vector ✓, utility statistic matrix Za, and state transition matrix Fa. The

simplest thing I can do for ✓ and Za is set their elements to independent standard normals;

and the simplest thing I can do for Fa is set its rows to independent standard Dirichlets.10

Since normal random variables have full support over the real line and Dirichlet random

variables have full support over the unit simplex, my specification assigns strictly positive

likelihood to all §3.1 models with two actions and Gumbel shocks. Indeed, it is the most

parsimonious specification that can derive all two-action dynamic logit models; it is the

simplest specification that can generate a wide variety of problems.

7.2 Implementation

I run 1,168 simulations in parallel across the 64 processors of an r4.16xlarge Amazon

Web Services server. I use approximately 430 GiB of the machine’s 488 GiB of RAM (I

keep around 50 GiB of RAM idle to ensure no time is spent waiting for memory). The

simulations comprise 1,511 processor hours of estimation time.

For a given simulation:

1. I set discount rate � = 0.99 per period.

2. I set z̄ = 2 utility statistics per state.

3. I draw state space cardinality x̄ uniformly from [100, · · · , 20, 000].

4. I draw Dirichlet dispersion parameter ↵ with equal probability from {0.0001, 0.01, 1}.

The ↵ = 1 specification yields dense state transition matrices, the ↵ = 0.01 specifi-

10Each row of a Markov matrix must lie in the unit simplex, and the Dirichlet is the standard unit simplex
distribution.

25

cation yields semi-sparse transition matrices, and the ↵ = 0.0001 specification yield

sparse state transition matrices.

5. I set the elements of Za to random normals and the rows of Fa to random Dirichlets.

6. I solve the agent’s optimal policy with relative value iteration.

7. I use the optimal policy and state transition matrices to generate a sample comprising

300 state–action pairs.

8. I use these data to estimate the utility parameters with NPL, SNPL, SNFXP, and, if

the state space is less than 8,000, NFXP (this estimator quickly becomes intractable).

I implement SNFXP without relative policy iteration steps. For NFXP’s policy iteration

steps, I use the LAPACK package to solve system of equations (I � �F (P̆)
�
⌘P̆ = U(P̆),

which I find faster than iterating ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆) to convergence. For NPL’s policy

iteration steps, I use the LAPACK package to perform an LU decomposition of I��F (P⌧),

which I find faster than iterating Z⌧ (P̆) = Z(P̆) + �F (P̆)Z⌧�1(P̆) and G⌧ (P̆) = G(P̆) +

�F (P̆)G⌧�1(P̆) to convergence. I abstract away the estimation of state transitions, setting

bFa = Fa, and I set the initial NPL and SNPL CCP estimates to the fitted values of a

multinomial logistic regression of the actions on the 2ā variables in {Za|a 2 }. For all

estimators, I set � = 10�8, and for NFXP, I set �1 = �2 = 0.1 (which I find faster than

setting �1 = �2 = 0.01).11 I optimize across the parameter space with the BFGS algorithm.

7.3 Results

Table 1 depicts the distribution of the estimation error, kb✓�✓k, across estimators. The four

estimators are equally accurate because they maximize the same likelihood function. Since

11With �1 = �2 = 0.1, most empirical likelihood evaluations required exactly two Newton steps, satisfying
Rust’s (2000, 29) rule of thumb.

26

Table 1: Estimation Error

This table depicts the 10
th
, 25

th
, 50

th
, 75

th
, and 90

th
percentiles of each estimator’s estimation error, measured

under the `1 norm. I only consider the problems that I estimate with all four estimators (i.e., those with fewer than

8,000 states).

10% 25% 50% 75% 90%

NFXP 0.04989 0.08431 0.14619 0.21743 0.28243

SNFXP 0.04989 0.08431 0.14619 0.21743 0.28243

NPL 0.04989 0.08438 0.14613 0.21743 0.28243

SNPL 0.04989 0.08438 0.14613 0.21743 0.28243

NFXP and SNFXP search the parameter space in the same fashion, their figures match

perfectly; and since NPL and SNPL search the parameter space in the same fashion, their

figures also match perfectly; but since NFXP and NPL search the parameter space in

di↵erent ways, their figures di↵er slightly.

Figure 4 plots the estimation times as a function of the state space. The average

estimation time in minutes is as follows:

NFXP SNFPX NPL SNPL

Fewer than 8,000 states 80 7.8 6.7 2.8

More than 8,000 states – 14 124 9.8

Clearly SNFPX outperforms NFXP and SNPL outperforms NPL. But these results are

hard to generalize, because they depend on spectral sub-radius �(P). And this scalar is

small in my problems—around 0.02, 0.22, and 0.70 when transition matrices are dense,

semi-sparse, and sparse, respectively.12

Figure 5 illustrates a more generalizable result. It plots the estimation times without

strong convergence divided by the estimation times with strong convergence. As you see,

strong convergence becomes more powerful as the problem scales. In fact, the time ratios

increase linearly with the size of the state space. This result is universal: for any problem,

the time ratios between NFXP and SNFXP and between NPL and SNPL will increase
12Further increasing �(P) would require imposing additional structure on the state transition matrices.

27

linearly with the state space cardinality so long as NFXP and NPL use traditional policy

iteration. With traditional policy iteration steps, which calculate ⌘P̆ via a system of

equations, NFXP’s and NPL’s estimation times increase cubicly with x̄, whereas SNPL’s

and SNPL’s estimation times increase quadratically.13 Thus, for any problem, there is a

state space large enough so that SNFXP and SNPL dominate NFXP and NPL; for any

fixed �(P), there is an x̄ that makes the estimation times look as they do in Figure 4.

Of course NFXP’s and NPL’s policy iteration steps could calculate ⌘P̆ via Bellman

contraction, iterating ⌘⌧ P̆ = �(⌘⌧�1P̆ , P̆) to convergence. But in this case, SNFXP and

SNPL mechanically dominate NFXP and NPL: the only di↵erence is that the former

estimators use relative policy iteration steps, which require roughly log(�)/ log(��(P))

Bellman contractions, whereas the latter use regular policy iteration steps, which re-

quire roughly log(�)/ log(�) Bellman contractions. Thus, SNFXP and SNPL are roughly

log(�)/ log(�)
log(�)/ log(��(P))

= 1 + log(�(P))

log(�) times as fast as NFXP and NPL with iterative policy it-

eration steps. Consider the extreme case �(P) = 0.999; if the data are annual, then

� ⇡ 0.95 and using strong convergence is only around 1 + log(0.999)
log(0.95) = 1.02 times as fast;

however, if the data are daily, then � ⇡ exp(log(.95)/365) = 0.99986 and using strong

convergence is 1 + log(0.999)
log(0.99986) = 8.1 times as fast; and if the data are hourly, then � ⇡

exp(log(.95)/365/24) = 0.9999941 and using strong convergence is 1 + log(0.999)
log(0.9999941) = 171

times as fast.

In sum, my estimators are competitive in problems with large state spaces and high

sampling frequencies. High-frequency sampling enervates the traditional Bellman contrac-

tion by abating the per-period discount rate; and an expansive state space cripples the

policy iteration step by situating the problem in the steep part of the cubic computational

13The slowest step in a Bellman contraction is the product of the state transition matrix with the value
function vector; this operation increases quadratically with the state space cardinality. Note, the number
of Bellman contractions required to evaluate ⌘P̆ generally does not increase with the size of the state space;
it is always on the order of log(�)/ log(��(P)).

28

cost curve. In these problems, strong convergence is useful.

7.4 External Validation

Aguirregabiria and Magesan (2016) replicate these findings, confirming that strong con-

vergence shortens the solution time of an entry-exit model similar to Ericson and Pakes’s

(1995). They develop a new means to estimate dynamic programs based on Euler equa-

tions. Initially, they only compared their estimation times to NPL. But after I shared a

preliminary version of this work with them, they added relative value iteration as a bench-

mark. Aguirregabiria and Magesan (2016, 25) report that relative value iteration solves

their 200,000-state problem in 1,934 seconds, whereas value iteration does so in 23,270

seconds, and policy iteration does so in upwards of a million seconds.

8 Related Work

However, relative value iteration is not the fastest solution method for this problem. Aguir-

regabiria and Magesan’s (2016) Euler equations solve it in only 274 seconds. Aguirregabiria

and Magesan’s (2016) estimator is elegant and fast—probably faster than mine in most

cases. But theirs is not a maximum likelihood estimator, whereas mine is. Moreover, it

is impossible to translate legacy NFXP or NPL code into an Euler equation estimator;

in contrast, upgrading NFXP to SNFXP or NPL to SNPL requires only one line of code:

value.fn = value.fn – value.fn[1]. Finally, while the math behind my approach

is well understood, it’s not clear what makes Aguirregabiria and Magesan’s estimator so

fast. Their numerical analysis demonstrates a powerful convergence, but their proof only

guarantees a rate-� contraction.

My work relates to several other recent developments in the dynamic discrete choice

literature (see Aguirregabiria and Mira (2010) and Arcidiacono and Ellickson (2011) for

29

Figure 4: Estimation Times

These scatter plots and corresponding LOESS regression curves depict how the estimation times vary with the size

of the state space. The gray points correspond to NFXP and NPL estimation times, and black points to SNFXP

and SNPL estimation times.

Dense Matrix Semi−Sparse Matrix Sparse Matrix

● ●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●● ●● ●●
●

●
●●●● ●●● ●

●●● ● ●●●● ● ●
●●● ●●

● ●
●

●

●●●
●

●● ●● ●● ●●
● ●● ● ●
● ●● ●● ●● ●

● ●●
●

●● ●●
●

● ● ●● ● ●● ● ●
● ● ●● ●●

●
●

●
●

●
● ●●● ●●● ● ●

● ●

●●
● ●● ●● ●

● ●
● ●

●●
●

●

●
●●

● ●

● ●● ●
● ●

●●
●

●

●

● ●
●

●●● ● ●●● ● ●● ●
●

●● ●●
●

● ●
●

●●
●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●●● ● ●● ●●●●● ● ●●● ●● ● ●●●●● ●● ● ●

●

● ●● ●●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●● ●● ●●
●

●
●●

●● ●●● ● ●●● ● ●●●● ● ●
●●● ●● ●

●

●

●●●
●●● ●● ●● ●●● ●● ● ●● ●

●● ●
● ●● ●● ●●

●
● ●●● ● ●● ●

●
● ● ●● ●●

●
●

●●
●

● ●●● ●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●● ●

● ●
● ●

●●●
●●●

● ●
● ●● ●

● ●
●

●
●

●● ● ●●●●
● ●

●

●

● ●● ●

●

●● ●●
●

● ●● ●
●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●●

●● ● ●

●

●● ● ●
●●●

● ●
●●

●

● ●
●

●●●
●

●

● ●
● ● ● ●

●●

●
●●

●●●
●

●
●

●
●●

●
●●●

●

●

●
●

●
●

● ● ● ●●
●● ●●

●
●●●●

●
●● ●●● ● ● ●

●
● ●●● ●

●●
● ●
●● ●● ● ● ● ●

●●

●

●
●

●
●

●

● ●●● ●
●

●

●● ● ●

●

●

●
●

●
●

●

●

●
●●●●●

●

●●

● ●

●●

●● ●
●

●●
●

●●
● ●●

● ●
●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●●● ●●● ● ●●●● ● ●●●●● ●●● ●● ●● ●●●●

●

●

●
● ●

●

●

●
●

● ●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●●

●

●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
● ●●

●

●

●
●

●

●

●● ●
●● ●

●

●

●

●
●

●
● ●

●●

●

●

●
● ●

● ● ●

●

●

●
● ●●●● ● ●

●● ● ●●●●
● ●●● ●● ●● ●●● ● ●

● ●● ● ● ● ●●
●

●●●●● ●● ● ●● ●●●●
●

●
●● ●●

● ● ● ●●●● ●●
●●●●●

●
●● ●●● ● ● ●●

● ●●● ●●● ● ●●● ●● ● ● ● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●
●

●
●● ●

●
●

● ●
●

●
●

●

●
●●●

●●●

●● ●
●

●● ●● ●●
●

●

● ●●
●

●●
● ●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●
● ●

●

● ●
●

● ●
●●

●

●

●

●
●

●

●

●●

●

●

●

●●
●● ●

●
●● ● ●

●

●

●
●●
● ●

●

●

●

●

●●

●

●

●

●

● ● ●●●
●

●

●●

●

●

●●

● ●
●●

●

●
●●

●
●

●

●● ●●

●

●
● ●

●

●●●

●●

●

●

●

●
●

●●
● ●

●

●

●

●

●
●

●
●

●
●

●●● ●

●

●
● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●
●

●●

●

●●

●

●

●

●

●
●

●
●

●

● ● ●
●

●●● ●
●

● ●● ● ●
●●
●

● ●
● ●● ●●

● ● ● ●●●● ● ●●● ● ●● ●

●
●● ● ●

●●

●
●

●

●

● ●

●
●

● ● ●●●● ●●●
●●

●●
●●●

●
●●●

●●
●

●●●
●●

●● ●●● ●
●●
● ●

●
●●● ●

●
●●
●
● ●●

●
●● ●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●● ●

●

● ●

●
●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●● ●● ●

●●
●

●

●●

●

●●

●

●

0

200

400

0

200

400

N
FXP

N
PL

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of States

N
um

be
r o

f M
in

ut
es

● ●Without Strong Convergence With Strong Convergence

30

Figure 5: Estimation Time Ratios

These scatter plots and corresponding OLS regression lines depict the NFXP estimation times divided by the SNFXP

estimation times, and the NPL estimation times divided by the SNPL estimation times.

Dense Matrix Semi−Sparse Matrix Sparse Matrix

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●●
●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●
●●●

●

●

●

●

●
●●●

●

●
●

●
●

●
●

●
●
●

●
●●
●
●
●

●

●
●

●
●●

●

●●

●
●

●

●●●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●
●●
●
●●●
●●
●
●
●

●

●

●
●
●

●

●

●●
●
●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●●

●
●

●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●●

●

●
●●
●●●
●●
●

●

●

●
●●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●●●

●
●
●
●
●●●
●
●●●●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●●

●

●
●
●●

●

●

●

●
●
●

●●

●●
●●●●
●●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●
●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

0

10

20

30

N
FXP

N
PL

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of States

Ti
m

e
R

at
io

31

more comprehensive surveys). Su and Judd’s (2012) mathematical program with equi-

librium constraints (MPEC) approach reframes the dynamic program as a constrained

optimization problem. With Monte Carlo simulations, Su and Judd found that models

that take 112 seconds to estimate with NFXP only take 0.14 seconds to estimate with

MPEC. However, they use “an ine�cient version of the NFXP algorithm that results in

misleading conclusions about the relative speed of MPEC”; when NFXP is properly imple-

mented “MPEC and [NFXP] are similar in performance when the sample size is relatively

small. However, in problems with larger sample sizes, [NFXP] outperforms MPEC by a

significant margin” (Iskhakov et al., 2015, 0-2). Also, Su and Judd only consider 175 states;

I consider 20,000.

Arcidiacono and Miller’s (2011) conditional choice probability (CCP) estimator em-

ploys the “finite dependence property” that there exists a sequence of actions that makes

future state variables independent of the current action. The conical problem is one where

the agent can regenerate the Markov chain within a fixed amount of time. Arcidiacono

and Miller’s estimator only considers payments received until the process reaches its regen-

eration state. Similarly, my estimators only consider payments received until the process

reaches its stationary distribution. But whereas every ergodic Markov chain has a station-

ary distribution, most do not have a regeneration state. And even when a model exhibits

finite dependence, there is no guarantee it will yield reasonable moment conditions: e.g.,

applying Arcidiacono and Miller’s estimator to Harold Zurcher’s engine replacement prob-

lem requires a sharp estimate of the logarithm of the probability that Zurcher replaces a

brand new engine.

9 Conclusion

I will close with a few miscellaneous points that may be of interest to future researchers:

32

1. Traditionally, economists have observed economic agents every quarter or every month.

Now we observe them every hour or every minute. For example, Uber has recently

shared its trip-level data with academics (Uber, 2017); consider estimating an Uber

driver’s dynamic program: the time between decisions is around 15 minutes, so the

per-period discount rate is around exp(log(.95)/365/24/4) = 0.9999985. Standard

Bellman contractions are powerless with so little discounting. Relative Bellman con-

tractions, on the other hand, converge steadily at the rate of Markov chain mixing.

In the age of negligible discounting, strong convergence can power the Bellman con-

traction.

2. Aguirregabiria and Mira (2007) showed that NPL can estimate Markov perfect equi-

libria; SNPL generalizes to games in an equivalent fashion.

3. Iterating SNPL’s outer loop to convergence is not necessary: stopping after one

iteration yields a strong convergence analog to Hotz and Miller’s (1993) original

CCP estimator, and stopping after K iterations yields a strong convergence analog

to Aguirregabiria and Mira’s (2002) K-step NPL estimator. Both of these estimators

are asymptotically e�cient.

4. Estimators NFXP and NPL require � < 1, but estimators SNFXP and SNPL only

require ��(P) < 1. Since �(P) < 1, my estimators therefore permit � = 1 (see

Morton and Wecker, 1977). Strong convergence relaxes the assumption of cash flow

discounting.

5. Empiricists usually fix the discount factor before estimating a dynamic discrete choice

model. This seems dubious, because the value function changes dramatically with

the discount factor near unity: e.g., the value function under � = 0.999 is roughly

twice that under � = 0.998. However, whereas the value function asymptotes as �

33

goes to one, the di↵erenced value function converges to a stable limit, making the

policy function continuous in the discount factor through � = 1 (Puterman, 2014,

205). Thus, the empirical likelihood is largely insensitive to small perturbations in �

near one, making the number of trailing nines inconsequential: changing � from 0.99

to 0.999999 a↵ects the value function substantially, but not the policy function. This

result justifies the tradition of calibrating the discount factor in dynamic discrete

choice estimation.

6. Since V = V̄ + (1� �)�1(⌫V̄ � V̄), the di↵erenced value function identifies the total

value function.14

7. Strong convergence can facilitates the calculation of counterfactual policies and coun-

terfactual value functions. Arcidiacono and Ellickson (2011, 391) explain that “the

computational advantages of the CCP approach stem from avoiding the solution of

the full DP problem when estimating the structural parameters of the underlying

model. This is sometimes perceived as a weakness when it comes to conducting

counterfactual policy simulations, which typically involves fully resolving the DP.”

In this sense, the counterfactual analysis can be the limiting aspect of the researcher’s

workflow. Strong convergence helps alleviates this bottleneck.

8. My SNFXP and SNPL estimators permit any compact action space. For example, in

§3.1 I re-defined the decision variable from discrete choice a 2 to continuous choice

p 2 ⌅.

9. Strong convergence is ine↵ectual when �(P) ⇡ 1. Hartfiel and Meyer (1998) prove

that this only happens when the state transition matrix is nearly block diagonal.

14First, ⌫V̄ � V̄ = ↵◆ for some scalar ↵. Second, ⌫⌧ V̄ =
P⌧�1

t=0 �tF (P)tU(P) + �⌧F (P)⌧ V̄ , and thus
⌫⌧+1V̄ � ⌫⌧ V̄ = �⌧F (P)⌧U(P) � �⌧F (P)⌧ (I � �F (P))V̄ = �⌧F (P)⌧ (⌫V̄ � V̄) = ↵�⌧F (P)⌧ ◆ = ↵�⌧ ◆ =
�⌧ (⌫V̄ � V̄). Third, V = V̄ +

P1
⌧=0 ⌫

⌧+1V̄ � ⌫⌧ V̄ = V̄ +
P1

⌧=0 �
⌧ (⌫V̄ � V̄) = V̄ + (1� �)�1(⌫V̄ � V̄).

34

10. Porteus (1975) demonstrate that it is often possible to transform a problem with

�(P) ⇡ 1 to one with �(P) ⌧ 1. For example, if the smallest diagonal element

of F (P) is ↵, then the dynamic program with F̆ (P) = (F (P) � ↵I)/(1 � ↵) and

Ŭ(P) = U(P)/(1� ↵) has the same solution but a smaller spectral sub-radius.

11. When designing a model, we must keep tractability in mind. Most of us have been

taught that we have two ways to facilitate computation, limiting the number of state

variables and the discount rate. But we have a third degree of freedom: the rate

at which the state variables gravitate back to equilibrium. We should encourage

this Markov chain mixing. Due to the curse of dimensionality, we must invariably

leave out some variables when designing a dynamic model. When deciding which

variables to include and which to exclude, we must keep in mind that not all variables

are equally burdensome. When choosing between two variables of equal economic

merit, we should pick the one with a lower persistence. Indeed, it could be easier to

accommodate two low-persistent variables than one high-persistent variable. Overall,

I predict �(P) will proved to be quite elastic in most contexts; I suspect economists

will find creative ways to promote Markov chain mixing once they acquire a taste for

strong convergence.

35

References

Aguirregabiria, Victor, Cesar Alonso-Borrego. 2014. Labor contracts and flexibility: Evi-
dence from a labor market reform in Spain. Economic Inquiry 52(2) 930–957.

Aguirregabiria, Victor, Arvind Magesan. 2016. Solution and Estimation of Dynamic Struc-
tural Models Using an Euler Equations Mapping .

Aguirregabiria, Victor, Pedro Mira. 2002. Swapping the Nested Fixed Point Algorithm
: A Class of Estimators for Discrete Markov Decision Models. Econometrica 70(4)
1519–1543.

Aguirregabiria, Victor, Pedro Mira. 2007. Sequential estimation of dynamic discrete games.
Econometrica 75(1) 1–53.

Aguirregabiria, Victor, Pedro Mira. 2010. Dynamic discrete choice structural models: a
survey. Journal of Econometrics 156(1) 38–67.

Arcidiacono, Peter, Paul B. Ellickson. 2011. Practical Methods for Estimation of Dynamic
Discrete Choice Models. Annual Review of Economics 3(1) 363–394.

Arcidiacono, Peter, Robert Miller. 2011. Conditional choice probability estimation of dy-
namic discrete choice models with unobserved heterogeneity. Econometrica 79(6) 1823–
1867.

Ericson, Richard, Ariel Pakes. 1995. Markov-perfect industry dynamics: A framework for
empirical work. The Review of Economic Studies 62(1) 53–82.

Hartfiel, D.J., Carl D. Meyer. 1998. On the structure of stochastic matrices with a sub-
dominant eigenvalue near 1. Linear Algebra and its Applications 272 193–203.

Horn, Roger A, Charles R Johnson. 2012. Matrix Analysis. Cambridge university press.

Hotz, VJ, RA Miller. 1993. Conditional choice probabilities and the estimation of dynamic
models. The Review of Economic Studies 60(3) 497–529.

Iskhakov, Fedor, Jinhyuk Lee, John Rust, Bertel Schjerning, Kyongwon Seo. 2015. Con-
strained Optimization Approaches to Estimation of Structural Models: Comment.

Levin, David Asher, Yuval Peres, Elizabeth Lee Wilmer. 2009. Markov chains and mixing
times. American Mathematical Soc.

Morton, Thomas E. 1971. On the Asymptotic Convergence Rate of Cost Di↵erences for
Markovian Decision Processes. Operations Research 19(1) 244–248.

36

Morton, Thomas E, William E Wecker. 1977. Discounting, Ergodicity and Convergence
for Markov Decision Processes. Management Science 23(8) 890–900.

Porteus, E.L. 1975. Bounds and transformations for discounted finite Markov decision
chains. Operations Research 23(4) 761–784.

Puterman, Martin L. 2014. Markov decision processes: discrete stochastic dynamic pro-
gramming . John Wiley & Sons.

Rust, J. 1987. Optimal replacement of GMC bus engines: an empirical model of Harold
Zurcher. Econometrica: Journal of the Econometric Society 55(5) 999–1033.

Rust, John. 1994. Structural estimation of Markov decision processes. Handbook of econo-
metrics 4 3081–3143.

Rust, John. 2000. Nested Fixed Point Algorithm Documentation Manual 06520(October)
1–43.

Su, Che-Lin, Kenneth L Judd. 2012. Constrained Optimization Approaches to Estimation
of Structural Models. Econometrica 80(5) 2213–2230.

Uber. 2017. Introducing Uber Movement.

37

