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A COMMENT ON “USING RANDOMIZATION TO BREAK THE CURSE OF
DIMENSIONALITY”

ROBERT L. BRAY
Operations Department, Kellogg School of Management, Northwestern University

Rust (1997b) discovered a class of dynamic programs that can be solved in poly-
nomial time with a randomized algorithm. For these dynamic programs, the optimal
values of a polynomially large sample of states are sufficient statistics for the (near)
optimal values everywhere, and the values of this random sample can be bootstrapped
from the sample itself. However, I show that this class is limited, as it requires all but a
vanishingly small fraction of state variables to behave arbitrarily similarly to i.i.d. uni-
form random variables.

KEYWORDS: Markov decision process, dynamic program, curse of dimensionality,
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1. INTRODUCTION

RUST (1997B) DEVELOPED an elegant way to solve high-dimensional dynamic programs:
(i) restrict the problem to a random sample of states, (ii) solve this restricted problem
with value iteration, and (iii) use the values of this restricted problem to approximate the
values of the original problem. Rust explained that this approach can sometimes “break
the curse of dimensionality”—precipitating a phase change from exponential-time dif-
ficulty to polynomial-time difficulty—because weakening the objective from solving the
value function within ε to solving the value function within ε with high probability can
make some otherwise intractable problems tractable.

The Achilles heel of Rust’s approach is the “needle in the haystack problem” that
Rust (1997a, p. 33) identified in a companion paper. This problem arises when the state
transition function has a spike that is too sharp for the random sampler to detect. Rust
(1997a, pp. 35, 47) explained that this “problem can lead VN (s� a) to be a poor estimate
of the true expected value function” and that it “can be a much more serious problem
in higher dimensional problems.” Kristensen, Mogensen, Myun Moon, and Schjerning
(2021, p. 329) empirically confirmed this claim, reporting that the “variances of [Rust’s]
self-approximating method increase dramatically as the number of state variables in-
creases.”

I show that Rust’s approach can avoid the “needle in the haystack problem”—and
hence overcome the curse of dimensionality—in only one special case: when the prob-
lem can be recast so that all but a vanishingly small fraction of state variables behave
like history-independent uniform random variables. Specifically, only around log(d) out
of d state variables may meaningfully depend on past states and actions; the other state
variables must resemble exogenous i.i.d. shocks.
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2. SETUP

This section formally defines the dynamic programs under investigation. However, be-
fore characterizing these optimization problems, we must first establish a few mathemat-
ical conventions:

• ‖ · ‖, ‖ · ‖1, and ‖ · ‖2 are the L∞, L1, and L2 norms, respectively.
• A sequence {xd}d∈N is polynomially bounded if and only if there exist m�n ∈ N such

that |xd| <m+ dn for all d ∈ N.
• b is the set of all polynomially bounded sequences.
• Bd is the set of bounded functions from [0�1]d to R.
• λd represents the Lebesgue measure over the Borel subsets of R

d . For example,∫
t∈[0�1]d f (t)λd(dt) is the Lebesgue integral of f over [0�1]d.

• If pd is a probability density function over [0�1]d, then p<i
d (t<i) ≡ ∫

t≥i∈[0�1]d−i+1 pd(t<i�

t≥i)λd−i+1(dt≥i) is the marginal distribution of the first i − 1 coordinates, t<i ≡
(t1� � � � � ti−1).

• If pd is a probability density function over [0�1]d , then

pi
d(ti|t<i) ≡

⎧⎪⎨
⎪⎩
p<i+1

d (ti)� i = 1�
p<i+1

d (t<i� ti)/p<i
d (t<i)� 1 < i < d�

pd(t<i� ti)/p<i
d (t<i)� i = d�

is the conditional marginal distribution of the ith coordinate, ti, given the first i − 1
coordinates, t<i.

With these variables, we can define a sequence of discrete-time, infinite-horizon
Markov decision problems, indexed by d ∈ N. The dth problem has d-dimensional state
space [0�1]d, along with action space a and discount factor β ∈ [0�1). In the dth problem,
taking action a ∈ a in state s ∈ [0�1]d yields utility uda(s) and sets the probability den-
sity of the subsequent period’s state vector to pda(t|s), for t ∈ [0�1]d . As always, we can
decompose this joint density into a product of conditional marginal densities:

pda(t|s) =
d∏

i=1

pi
da(ti|s� t<i)� (1)

Now, with uda and pda, we can define Bellman operator �d : Bd → Bd , where for V ∈ Bd

and s ∈ [0�1]d ,

(�dV )(s) ≡ sup
a∈a

uda(s) +β

∫
t∈[0�1]d

V (t)pda(t|s)λd(dt)�

This operator has a unique fixed-point solution that satisfies

�dVd = Vd� (2)

Vd is the dynamic program’s value function. It characterizes the expected discounted value
of all utilities received from a given initial state under the optimal sequence of actions.
Deriving value function Vd from primitives uda and pda is our objective. To facilitate this
end, we impose some regularity conditions on our primitives.

ASSUMPTION 1: The transition density function is bounded by a polynomial function of d:
there exists M ∈ b such that supd∈N supa∈a sups�t∈[0�1]d pda(t|s)/Md ≤ 1.



COMMENT 1917

ASSUMPTION 2: The transition density function is strictly positive: pda(t|s) > 0.

ASSUMPTION 3: The utility function is bounded by a polynomial function of d: there exists
K ∈ b such that supd∈N supa∈a sups∈[0�1]d |uda(s)|/Kd ≤ 1.

ASSUMPTION 4: The action space is finite: |a| ∈N.

ASSUMPTION 5: The transition density function is Lipschitz continuous in its second argu-
ment: for each d ∈ N and t ∈ [0�1]d , there exists Lipschitz constant �d(t) ∈ R+ such that

supa∈a supr∈[0�1]d sups∈[0�1]d\r
|pda(t|s)−pda(t|r)|

�d (t)‖s−r‖2
≤ 1.

ASSUMPTION 6: The square integral of the transition density Lipschitz function is bounded
by a polynomial function of d: there exists L ∈ b such that supd∈N

∫
t∈[0�1]d �d(t)2λd(dt)/Ld ≤

1.

ASSUMPTION 7: At the origin, the transition density function is bounded by a polynomial
function of d: there exists M ∈ b such that supd∈N supa∈a supt∈[0�1]d pda(t|0)/Md ≤ 1.

We will not impose all of these assumptions simultaneously. Instead, we will either
use Assumptions 1–4 or 2–7. Rust imposed Assumption 1 but did not assign it a for-
mal assumption number because he claimed to use it for “notational convenience” only.
However, his argument does require this assumption, as his equation (6.11) is incorrect
without it. Assumption 2 is not essential. I impose it simply to prevent the denominator
in expression (3) from being zero (a problem Rust did not consider). However, a slight
modification of Rust’s algorithm would also obviate this issue. Assumption 3 is a weaker
version of Rust’s Assumption A2: whereas a Lipschitz function over the unit square is
always bounded, a bounded function over the unit square is not always Lipschitz. Rust
imposed Assumptions 4 and 5 as they appear here, but did not impose Assumption 6.
However, Blondel and Tsitsiklis (2000, p. 1268) noted that this assumption must hold for
Rust’s results to have any bite. Finally, Assumption 7 is a relaxed version of Assumption
1, which Rust used.

3. BREAKING THE CURSE OF DIMENSIONALITY

In general, we cannot exactly solve the system in (2) because it comprises a continuum
of equations. However, we can approximate its fixed-point solution to any degree of preci-
sion by discretizing the state space, [0�1]d, into a finite grid. Unfortunately, this approach
usually requires the number of grid points—and hence the computational difficulty—to
grow exponentially with d. This is the dynamic program’s infamous curse of dimensional-
ity.

Rust (1997b), however, showed that we can sometimes circumvent this curse of dimen-
sionality by representing the state space with a small number of randomly sampled points.
Rather than cover [0�1]d with a grid that grows exponentially with d, Rust proposed sur-
veying it with a statistical sample that grows polynomially with d. Specifically, he replaced
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Bellman operator �d with random Bellman operator �̂b
d , where

(
�̂b
dV
)
(s) ≡ sup

a∈a
uda(s) +β

bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)

bd∑
i=1

pda

(
mi

d|s
) � (3)

b = {bd}d∈N ∈ b is a polynomially bounded sequence, and md = {mi
d}

bd
i=1 is a collection of

i.i.d. random variables drawn uniformly from [0�1]d (these values remain fixed for the
duration of the algorithm).1

Our two Bellman operators share two useful properties. First, both �d and �̂b
d are con-

traction mappings with Lipschitz constant β, so sequences V
(j+1)
d ≡ �dV

(j)
d and V̂

b(j+1)
d ≡

�̂b
dV̂

b(j)
d converge to respective fixed points Vd and V̂ b

d at linear rate β.2 I will refer to the
latter fixed point as the Rust value function. Second, both �d and �̂b

d map Vd ≡ {V ∈ Bd :
‖V ‖ ≤ Kd/(1 − β)} to Vd , which implies that Vd ∈ Vd and V̂ b

d ∈ Vd (see Rust’s (1997b,
Lemma 2.3)).

The �̂b
d operator has a third useful property: {V̂ b(j−1)

d (mi
d)}bdi=1 are sufficient statistics for

(�̂b
dV̂

b(j−1)
d )(s), for all s ∈ [0�1]d . Accordingly, the jth iteration of the algorithm need only

translate {V̂ b(j−1)
d (mi

d)}bdi=1 into {V̂ b(j)
d (mi

d)}bdi=1. And with the contraction mapping property,
this fact implies that the Rust value function is computable to any degree of precision in
polynomial time. Hence, Rust’s algorithm breaks the curse of dimensionality when the
error between the Rust value function and the true value function is appropriately small.
Unfortunately, we cannot guarantee there will not be a meaningful error, but we can make
the probability of the error being meaningful arbitrarily small, as the following definitions
and propositions establish.

DEFINITION 1: A sequence of dynamic programs is strongly Rust solvable if, for all ε > 0,
there exists b ∈ b such that supd∈N E(‖V̂ b

d − Vd‖) < ε.

DEFINITION 2: A sequence of dynamic programs is weakly Rust solvable if, for all ε > 0,
there exists b ∈ b such that supd∈N E(‖V̂ b

d − Vd‖1) < ε.

PROPOSITION 1: A sequence of dynamic programs that satisfies Assumptions 2–7 is
strongly Rust solvable.

PROPOSITION 2: A sequence of dynamic programs that satisfies Assumptions 1–4 is weakly
Rust solvable.

Proposition 1 is a slight generalization of Rust’s primary finding.3 Proposition 2, how-
ever, is an entirely new result. This latter proposition has two incremental benefits. First,

1My argument extends to the case in which md are drawn from a general density function (see the Supple-
mental Material (Bray (2022))).

2That is, ‖Vd − V
(j+1)
d ‖/‖Vd − V

(j)
d ‖ → β and ‖V̂d − V̂

b(j+1)
d ‖/‖V̂d − V̂

b(j)
d ‖ → β as j → ∞.

3Whereas Rust bounded the transition density function uniformly across s ∈ [0�1]d , I bound it only at s = 0,
and whereas Rust required the utility function to be Lipschitz and bounded, I require it only to be bounded.
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it relies on simpler assumptions that are easier to establish. Specifically, it is more straight-
forward to verify Assumption 1, which directly bounds the density function, than to ver-
ify Assumption 6, which bounds the square integral of a function of Lipschitz constants
that restrict the growth rate of the density function. Second, this proposition has a much
simpler logical underpinning. For example, the proof of Proposition 1 hinges on several
abstruse empirical process results, whereas the proof of Proposition 2 uses nothing more
complicated than Chebyshev’s inequality.

In exchange for these two benefits, we must downgrade strong Rust solvability to weak
Rust solvability. The former establishes a high probability of a good value function esti-
mate across the entire state space (i.e., closeness under the L∞ norm), whereas the latter
establishes a high probability of a good value function estimate across all but an arbitrarily
small region of the state space (i.e., closeness under the L1 norm). In practice, however,
there is no meaningful difference between a good estimate for 100% of states and a good
estimate for 99.9999% of states.

4. LIMITATION OF RANDOMIZATION

The following definitions and proposition illustrate the limited scope of the preceding
results.

DEFINITION 3: A dynamic program’s ith state variable is ε-dependent if ‖V −i
d − Vd‖1 <

ε, where V −i
d is the value function under density function p−i

da(t|s) ≡ pda(t|s)/pi
da(ti|s� t<i).

DEFINITION 4: A sequence of dynamic programs is nearly memoryless if, for all ε > 0,
the number of state variables that are not ε-dependent is O(log(d)) as d → ∞.

DEFINITION 5: A sequence of dynamic programs with Rust value functions {V̂
b

d}d∈N ε-
approximates a sequence of dynamic programs with value functions {Vd}d∈N if there exists

b ∈ b for which supd∈N E(‖V̂ b

d − Vd‖1) < ε.

PROPOSITION 3: Any weakly or strongly Rust solvable sequence of dynamic programs that
satisfies Assumptions 2–4 can be ε-approximated by a nearly memoryless sequence of dy-
namic programs, for all ε > 0.

Density function p−i
da equals density function pda, but with the ith state variable, ti, set

to a uniformly distributed random variable, independent of s, a, and t<i. Hence, if the
ith state variable is ε-dependent, then it can be replaced with a sequence of i.i.d. exoge-
nous shocks without changing the value function by more than ε. And if the dynamic
program is nearly memoryless, then all but an O(log(d)/d) fraction of its state variables
can be replaced in this fashion with history-independent uniform random shocks. To put
it differently, density function pda(t|s) has d channels of communication through which
the current period’s variables, (s� a), can influence the next period’s state, t: namely,
the d conditional marginal distributions, {pi

da(ti|s� t<i)}di=1 (see (1)). Density function
p−i

da(t|s) ≡∏j∈{1�����d}\i p
j
da(tj|s� t<j) equals pda(t|s), with the ith channel “turned off.” A

sequence of dynamic programs is nearly memoryless if all but O(log(d)) of these commu-
nication channels can be thus nullified.

Proposition 3 establishes that a dynamic program with a positive transition density func-
tion, a polynomially bounded transition density function, and a finite action space is not
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Rust solvable unless it has a nearly memoryless analog that approximates it arbitrarily
well. Hence, we find that Rust’s algorithm does not break the curse of dimensionality
unless the given dynamic program can be reworked into a nearly memoryless form.

PROOFS

PROOF OF PROPOSITION 1: For d ∈ N, V ∈ Vd , a ∈ a, and b ∈ b, define

(�daV )(s) ≡ uda(s) +β

∫
t∈[0�1]d

V (t)pda(t|s)λd(dt)�

(
�̂b
daV
)
(s) ≡ uda(s) +β

bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)

bd∑
i=1

pda

(
mi

d|s
) �

(
�̃b
daV
)
(s) ≡ uda(s) +β

bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd�

and Zb
da(s) ≡ β

bd∑
i=1

gi
dV
(
mi

d

)
pda

(
mi

d|s
)
/
√
bd�

where {gi
d}

bd
i=1 is a set of independent standard normal random variables. Now since

E((�̃b
daV )(s)) = (�daV )(s), Pollard’s (1989) seventh equation implies that

E
(∥∥�̃b

daV − �daV
∥∥2)≤ 2π√

bd

E
(

sup
s∈[0�1]d

Zb
da(s)2

)
� (4)

We will now bound the expectation on the right. First, note that

E
(∣∣Zb

da(t) −Zb
da(s)

∣∣2 :md

)= β2
bd∑
i=1

∣∣V (mi
d

)(
pda

(
mi

d|t
)−pda

(
mi

d|s
))∣∣2/bd

≤
(
βKd‖t − s‖2

1 −β

)2 bd∑
i=1

�d
(
mi

d

)2
/bd� (5)

This expression implies that

δm
d ≡ βKd

1 −β

√√√√ bd∑
i=1

d�d
(
mi

d

)2
/bd

≥ sup
s�t∈[0�1]d

√
E
(∣∣Zb

da(t) −Zb
da(s)

∣∣2 :md

)
� (6)
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Now, for a given x > 0, divide [0�1]d into f (x) ≡ 	δm
d /(2x)
d equally sized cubes, and

define {cix}
f (x)
i=1 as the center points of these cubes. By design, these center points satisfy

sup
s∈[0�1]d

min
i∈{1�����f (x)}

∥∥s − cix
∥∥

2
≤ x(1 −β)

βKd

√√√√ bd∑
i=1

�d
(
mi

d

)2
/bd

�

which with (5) implies that

sup
s∈[0�1]d

min
i∈{1�����f (x)}

E
(∣∣Zb

da(s) −Zb
da

(
cix
)∣∣2 :md

)≤ x2� (7)

Now combining (6) and (7) with Pollard’s (1989) eighth equation yields√
E
(

sup
s∈[0�1]d

Zb
da(s)2 :md

)
−
√

E
(
Zb

da(0)2 :md

)

≤ C

∫ δm
d

0

√
log
(
f (x)

)
dx

= Cδm
d

√
d

∫ 1

0

√
log(1/u) du

= Cδm
d

√
dπ/2�

where C ≥ 1 is a universal constant that is independent of all model parameters. And
since x− y ≤ z implies x2 ≤ 2y2 + 2z2 for all x� y� z ∈R, this implies that

E
(

sup
s∈[0�1]d

Zb
da(s)2

)
= E

(
E
(

sup
s∈[0�1]d

Zb
da(s)2 :md

))

≤ E
(
2 E
(
Zb

da(0)2 :md

)+ (Cδm
d

)2
dπ
)

≤ 2
(
βKdMd

1 −β

)2

+π

(
dβCKd

1 −β

)2

E
(
�d
(
mi

d

)2)

≤
(

βKd

1 −β

)2(
2M2

d +πd2C2Ld

)
�

Now combining this with (4) and applying Jensen’s inequality yields, for all V ∈ Vd ,

E
(∥∥�̃b

daV − �daV
∥∥)≤√E

(∥∥�̃b
daV − �daV

∥∥2)
≤
√

2π√
bd

E
(

sup
s∈[0�1]d

Zb
da(s)2

)

≤ 2πβKd

b1/4
d (1 −β)

√
M2

d + d2C2Ld� (8)
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Next, define constant function ιd ∈ Vd , where ιd(t) = Kd/(1 − β) for all t ∈ [0�1]d. With
this, (8) yields

E
(∥∥�̂b

daVd − �̃b
daVd

∥∥)= E

⎛
⎜⎜⎜⎜⎜⎝ sup

s∈[0�1]d

∣∣∣∣∣∣∣∣∣∣∣

(
1 −

bd∑
i=1

pda

(
mi

d|s
)
/bd

)
β

bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)

bd∑
i=1

pda

(
mi

d|s
)

∣∣∣∣∣∣∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

≤ βKd

1 −β
E

(
sup

s∈[0�1]d

∣∣∣∣∣1 −
bd∑
i=1

pda

(
mi

d|s
)
/bd

∣∣∣∣∣
)

= E
(∥∥�̃b

daιd − �daιd
∥∥)

≤ 2πβKd

b1/4
d (1 −β)

√
M2

d + d2C2Ld�

Combining this with (8) yields

E
(∥∥�̂b

dVd − Vd

∥∥)= E
(∥∥�̂b

dVd − �dVd

∥∥)
≤
∑
a∈a

E
(∥∥�̂b

daVd − �daVd

∥∥)

≤
∑
a∈a

E
(∥∥�̂b

daVd − �̃b
daVd

∥∥)+ E
(∥∥�̃b

daVd − �daVd

∥∥)

≤ 4|a|πβKd

b1/4
d (1 −β)

√
M2

d + d2C2Ld�

And with this, Rust’s (1997b) Lemma 2.2 establishes that

E
(∥∥V̂ b

d − Vd

∥∥)≤ E
(∥∥�̂b

dVd − Vd

∥∥)/(1 −β)

≤ 4|a|πβKd

b1/4
d (1 −β)2

√
M2

d + d2C2Ld�

which is smaller than ε when bd is larger than ( 4|a|πβKd

ε(1−β)2

√
M2

d + d2C2Ld)4. Q.E.D.

PROOF OF PROPOSITION 2: Assumptions 1 and 3 ensure that |V (t)pda(t|s)| ≤ KdMd/
(1 −β) for all V ∈ V. Hence, for V ∈V, Popoviciu’s inequality implies that Var(V (mi

d) ×
pda(mi

d|s)) ≤K2
dM

2
d/(1 −β)2 and thus that

Var

(
bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd

)
≤ K2

dM
2
d

bd(1 −β)2 �

Accordingly, Chebyshev’s inequality establishes, for a given δ > 0 and V ∈V, that

Pr
(
yb
d (s) = 1

)≤ K2
dM

2
d

δ2bd(1 −β)2 �
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where

yb
d (s) ≡ 1

{∣∣∣∣∣
bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd −

∫
t∈[0�1]d

Vd(t)pda(t|s)λd(dt)

∣∣∣∣∣> δ

}
�

And this implies for V ∈V that

E
(∣∣(̃�b

da
V
)
(s) − (�daV )(s)

∣∣)

= βE

(∣∣∣∣∣
bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd −

∫
t∈[0�1]d

Vd(t)pda(t|s)λd(dt)

∣∣∣∣∣
)

≤ Pr
(
yb
d (s) = 0

)
× E

(∣∣∣∣∣
bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd −

∫
t∈[0�1]d

Vd(t)pda(t|s)λd(dt)

∣∣∣∣∣ : yb
d (s) = 0

)

+ Pr
(
yb
d (s) = 1

)
× E

(∣∣∣∣∣
bd∑
i=1

V
(
mi

d

)
pda

(
mi

d|s
)
/bd −

∫
t∈[0�1]d

Vd(t)pda(t|s)λd(dt)

∣∣∣∣∣ : yb
d (s) = 1

)

≤ 1 · δ+ K2
dM

2
d

δ2bd(1 −β)2 · 2KdMd/(1 −β)

= δ+ 2K3
dM

3
d

δ2bd(1 −β)3 �

where �̃b
da and �da are defined in the proof of Proposition 1. Hence, for V ∈ V we have

E
(∥∥�̃b

daV − �daV
∥∥

1

)≤ δ+ 2K3
dM

3
d

δ2bd(1 −β)3 � (9)

And this, in turn, implies that

E
(∥∥�̂b

daVd − �̃b
daVd

∥∥
1

)

= E

⎛
⎜⎜⎜⎜⎜⎝
∫
s∈[0�1]d

∣∣∣∣∣∣∣∣∣∣∣

(
1 −

bd∑
i=1

pda

(
mi

d|s
)
/bd

)
β

bd∑
i=1

Vd

(
mi

d

)
pda

(
mi

d|s
)

bd∑
i=1

pda

(
mi

d|s
)

∣∣∣∣∣∣∣∣∣∣∣
λd(ds)

⎞
⎟⎟⎟⎟⎟⎠

≤ βKd

1 −β
E

(∫
s∈[0�1]d

∣∣∣∣∣1 −
bd∑
i=1

pda

(
mi

d|s
)
/bd

∣∣∣∣∣λd(ds)

)
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= E
(∥∥�̃b

daιd − �daιd
∥∥

1

)
≤ δ+ 2K3

dM
3
d

δ2bd(1 −β)3 � (10)

where �̂b
da and ιd are defined in the proof of Proposition 1. Now combining (9) and (10)

yields

E
(∥∥�̂b

dVd − Vd

∥∥
1

)= E
(∥∥�̂b

dVd − �dVd

∥∥
1

)
≤
∑
a∈a

E
(∥∥�̂b

daVd − �daVd

∥∥
1

)

≤
∑
a∈a

E
(∥∥�̂b

daVd − �̃b
daVd

∥∥
1

)+ E
(∥∥�̃b

daVd − �daVd

∥∥
1

)

≤ 2|a|δ+ 4|a|K3
dM

3
d

δ2bd(1 −β)3 �

And with this, Rust’s (1997b) Lemma 2.2 establishes that

E
(∥∥V̂ b

d − Vd

∥∥
1

)≤ E
(∥∥�̂b

dVd − Vd

∥∥
1

)
/(1 −β)

≤ 2|a|δ/(1 −β) + 4|a|K3
dM

3
d

δ2bd(1 −β)4 �

which is less than ε when δ < ε(1−β)
4|a| and bd >

8|a|K3
d
M3

d

δ2ε(1−β)4 . Q.E.D.

DEFINITION 6: κ(p�q) ≡ ∫
t∈[0�1] p(t) log(p(t)/q(t))λ1(dt) is the Kullback–Leibler di-

vergence between densities p and q, which are defined with full support over [0�1].

LEMMA 1: For Assumption 1 to hold, there must exist m�n ∈ N such that

supd∈N supa∈a sups∈[0�1]d

∑d
i=1 E(κ(pi

da
(·|t<i�s)�λ1))

m+n log(d) < 1.

PROOF: Define Hda(s) ≡ − ∫
t∈[0�1]d log(pda(t|s))pda(t|s)λd(dt) as the differential en-

tropy of distribution pda(·|s), and define Hi
da(s� t<i) ≡ − ∫

ti∈[0�1] log(pi
da(ti|s� t<i))pi

da(ti|s�
t<i)λ1(dti) as the differential entropy of conditional marginal distribution pi

da(·|s� t<i).
The differentiable entropy is zero for the uniform distribution and negative for all other
distributions (see Marsh (2013, p. 9)).

The entropy chain rule states that the total entropy equals the sum of the ex-
pected conditional marginal entropies: Hda(s) = ∑d

i=1 E(Hi
da(s� t<i)). And the condi-

tional marginal entropy equals the negative Kullback–Leibler divergence between the
conditional marginal distribution and the standard uniform distribution: Hi

da(s� t<i) =
−κ(pi

da(·|s� t<i)�λ1). Together, these two properties imply that

sup
t∈[0�1]d

pda(t|s) = exp
(

sup
t∈[0�1]d

log
(
pda(t|s)

))

≥ exp
(∫

t∈[0�1]d
log
(
pda(t|s)

)
pda(t|s)λd(dt)

)
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= exp
(−Hda(s)

)
= exp

(
−

d∑
i=1

E
(
Hi

da(s� t<i)
))

= exp

(
d∑

i=1

E
(
κ
(
pi

da(·|s� t<i)�λ1

)))
�

which implies the result. Q.E.D.

LEMMA 2: Any sequence of dynamic programs that satisfies Assumptions 1–4 is nearly
memoryless.

PROOF: To outline the proof, I first use Pinsker’s inequality to bound the distance be-
tween p−i

da(·|s) and pda(·|s) with the expected distance between pi
da(·|s� t<i) and λ1. Intu-

itively, if the expected distance between pi
da(·|s� t<i) and λ1 is small, then pi

da(ti|s� t<i) must
be close to 1 with high probability, which means that p−i

da(t|s) must be close to pda(t|s) with
high probability. Second, I use Lemma 1 to establish that the expected distance between
pi

da(·|s� t<i) and λ1 is small for all but O(log(d)) values of i, which means that the distance
between p−i

da(·|s) and pda(·|s) is small for all but O(log(d)) values of i. This fact holds
for all s ∈ [0�1]d , which means that the distance between p−i

da(·|s) and pda(·|s) is small
for almost all s, for all but O(log(d)) values of i. Third, I use this fact to establish that∫
s∈[0�1]d ‖p−i

da(·|s) −pda(·|s)‖1λd(ds) is small for all but O(log(d)) values of i. And after
this integral is bounded, the rest is fairly straightforward.

Pinsker’s inequality establishes that ‖λ1 −pi
da(·|s� t<i)‖1 ≤√2κ(pi

da(·|s� t<i)�λ1), which
in turn implies that∫

t≥i∈[0�1]d−i+1

∣∣p−i
da(t<i� t≥i|s) −pda(t<i� t≥i|s)

∣∣λd−i+1(dt≥i)

=
∫
t≥i∈[0�1]d−i+1

∣∣1/pi
da(ti|s� t<i) − 1

∣∣pda(t<i� ti� t≥i+1|s)λd−i+1(dt≥i)

=
∫
ti∈[0�1]

∣∣1/pi
da(ti|s� t<i) − 1

∣∣p<i+1
d (t<i� ti)λ1(dti)

= p<i
d (t<i)

∫
ti∈[0�1]

∣∣1 −pi
da(ti|s� t<i)

∣∣λ1(dti)

= p<i
d (t<i)

∥∥λ1 −pi
da(·|s� t<i)

∥∥
1

≤ p<i
d (t<i)

√
2κ
(
pi

da(·|s� t<i)�λ1

)
�

With this, Jensen’s inequality yields

∥∥p−i
da(·|s) −pda(·|s)∥∥

1
=
∫
t∈[0�1]d

∣∣p−i
da(t|s) −pda(t|s)

∣∣λd(dt)

≤
∫
t<i∈[0�1]i−1

p<i
d (t<i)

√
2κ
(
pi

da(·|s� t<i)�λ1

)
λi−1(dt<i)
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≤
√

2
∫
t<i∈[0�1]i−1

p<i
d (t<i)κ

(
pi

da(·|s� t<i)�λ1

)
λi−1(dt<i)

=
√

2 E
(
κ
(
pi

da(·|s� t<i)�λ1

))
�

Next, Lemma 1 implies that there exist m�n ∈N such that
∑d

i=1 E(κ(pi
da(·|s� t<i)�λ1)) <

m+n log(d), for all d ∈N. Since κ(pi
da(·|s� t<i)�λ1) ≥ 0, this implies that for a given γ > 0,

the inequality
√

2 E(κ(pi
da(·|s� t<i)�λ1)) ≤ γ holds for at least d − 2(m + n log(d))/γ2

values of i. And with the result above, this implies that ‖p−i
da(·|s) −pda(·|s)‖1 < γ

holds for at least d − 2(m + n log(d))/γ2 values of i. Now define �i
da = {s ∈ [0�1]d :

‖p−i
da(·|s) −pda(·|s)‖1 < γ} as the set points that satisfy this inequality for a given i ∈

{1� � � � � d}. The Lebesgue measure of this set satisfies

d∑
i=1

λd

(
�i

da

)= d∑
i=1

∫
s∈[0�1]d

1
{
s ∈ �i

da

}
λd(ds)

=
∫
s∈[0�1]d

d∑
i=1

1
{
s ∈ �i

da

}
λd(ds)

≥
∫
s∈[0�1]d

(
d − 2

(
m+ n log(d)

)
/γ2
)
λd(ds)

= d − 2
(
m+ n log(d)

)
/γ2�

And since λd(�i
da) ≤ 1, this implies that for a given δ > 0, there are at least d − 2(m +

n log(d))/(δγ2) values of i ∈{1� � � � � d} for which we have

λd

(
�i

da

)≥ 1 − δ� (11)

Now let �da be the action-a Bellman operator defined in the proof of Proposition 1, and
let �−i

da be the analogous operator under p−i
da. If i satisfies (11), then we have

∥∥�−i
daVd − �daVd

∥∥
1
=
∫
s∈[0�1]d

|uda(s) +β

∫
t∈[0�1]d

V (t)p−i
da(t|s)λd(dt)

− uda(s) −β

∫
t∈[0�1]d

V (t)pda(t|s)λd(dt)|λd(ds)

= β

∫
s∈[0�1]d

∣∣∣∣
∫
t∈[0�1]d

Vd(t)
(
p−i

da(t|s) −pda(t|s)
)
λd(dt)

∣∣∣∣λd(ds)

≤ β‖Vd‖
∫
s∈[0�1]d

∥∥p−i
da(·|s) −pda(·|s)∥∥

1
λd(ds)

≤ β‖Vd‖
(∫

s∈�i
da

∥∥p−i
da(·|s) −pda(·|s)∥∥

1
λd(ds)

+
∫
s∈[0�1]d\�i

da

(∥∥p−i
da(·|s)∥∥

1
+ ∥∥pda(·|s)∥∥

1

)
λd(ds)

)
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≤ β‖Vd‖
(∫

s∈�i
da

γλd(ds) +
∫
s∈[0�1]d\�i

da

2λd(ds)
)

= β‖Vd‖
(
γλd

(
�i

da

)+ 2
(
1 − λd

(
�i

da

)))
≤ β

(
Kd/(1 −β)

)
(γ + 2δ)�

And thus if i satisfies (11), then we have∥∥�−i
d Vd − Vd

∥∥
1
= ∥∥�−i

d Vd − �dVd

∥∥
1

≤
∑
a∈a

∥∥�−i
daVd − �daVd

∥∥
1

≤ |a|β(Kd/(1 −β)
)
(γ + 2δ)�

where �−i
d is the analogue of �d under p−i

d . With this, Rust’s (1997b) Lemma 2.2 implies
that ‖V −i

d − Vd‖1 < |a|βKd(γ+2δ)/(1−β)2 holds for all i that satisfy (11). Hence, setting
γ = δ= ε(1−β)2

4|a|βKd
, we find that ‖V −i

d − Vd‖1 < ε holds for at least d−2(m+n log(d))/(δγ2) =
d − 128( |a|βKd

ε(1−β)2 )3(m+ n log(d)) values of i. Q.E.D.

LEMMA 3: Any strongly Rust solvable sequence of dynamic programs is also weakly Rust
solvable.

PROOF: This holds because the state space, [0�1]d, has Lebesgue measure 1. Q.E.D.

PROOF OF PROPOSITION 3: Define the following probability transition density func-
tion:

pb

da
(t|s) ≡ 1

{
pda(t|s) ≤ b2

d

}
pda(t|s) + b2

d1
{‖t‖ ≤ exp

(−2 log(bd)/d
)}
pda(s)�

where

pda(s) ≡
∫
r∈[0�1]d

1
{
pda(r|s) > b2

d

}
pda(r|s)λd(dr)�

This density function funnels all the mass that exceeds b2
d into a cube with Lebesgue mea-

sure exp(−2 log(bd)/d)d = b−2
d . Since it never exceeds 2b2

d , this density function satisfies
Assumption 1. Therefore, Lemma 2 establishes that this density function corresponds
with a nearly memoryless sequence of dynamic programs (given Assumptions 2–4).

Define the following as the set of points for which the new density function equals the
old density function:

�b
d(s) ≡{t ∈ [0�1]d : pb

da
(t|s) = pda(t|s) ∀a ∈ a

}
�

The Lebesgue measure of this set satisfies

λd

(
�b

d(s)
)≥1 −

∫
t∈[0�1]d

1
{‖t‖ ≤ exp

(−2 log(bd)/d
)}
λd(dt)

−
∑
a∈a

∫
t∈[0�1]d

1
{
pda(r|s) > b2

d

}
)λd(dt)
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≥ 1 − b−2
d − b−2

d

∑
a∈a

∫
t∈[0�1]d

1
{
pda(r|s) > b2

d

}
pda(r|s)λd(dt)

≥ 1 − b−2
d − b−2

d

∑
a∈a

∫
t∈[0�1]d

pda(r|s)λd(dt)

≥ 1 − (1 + |a|)/b2
d�

The probability that this set contains all mi
d values satisfies

Pr

(
bd⋃
i=1

mi
d ⊂�b

d(s)

)

= λd

(
�b

d(s)
)bd

≥ (1 − (1 + |a|)/b2
d

)bd
= exp

(
bd log

(
1 − (1 + |a|)/b2

d

))
= exp

(
bd

(−(1 + |a|)/b2
d − (1 + |a|)2

/
(
2b4

d

)− (1 + |a|)3
/
(
3b6

d

)− · · · ))
> exp

(−(1 + |a|)/bd

)
> 1 − (1 + |a|)/bd� (12)

Next, define �̂
b

d as Rust’s random Bellman operator evaluated under density function
pb

da
. Since V̂ b

d ∈ Vd , we have

∣∣(�̂b

dV̂
b
d

)
(s) − (�̂b

dV̂
b
d

)
(s)
∣∣≤ βKd/(1 −β)� (13)

If
⋃bd

i=1 m
i
d ⊂�b

d(s), then

∣∣(�̂b

dV̂
b
d

)
(s) − (�̂b

dV̂
b
d

)
(s)
∣∣= 0� (14)

Now combining (12)–(14) yields

E
(∥∥�̂b

dV̂
b
d − V̂ b

d

∥∥
1

)= E
(∥∥�̂b

dV̂
b
d − �̂b

dV̂
b
d

∥∥
1

)
=
∫
s∈[0�1]d

E
(∣∣(�̂b

dV̂
b
d

)
(s) − (�̂b

dV̂
b
d

)
(s)
∣∣)λd(ds)

≤
∫
s∈[0�1]d

βKd/(1 −β)

(
1 − Pr

(
bd⋃
i=1

mi
d ⊂�b

d(s)

))
λd(ds)

<

∫
s∈[0�1]d

βKd

(
1 + |a|)

bd(1 −β)
λd(ds)

= βKd

(
1 + |a|)

bd(1 −β)
�
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With this, we can use Rust’s (1997b) Lemma 2.2 to establish that

E
(∥∥V̂ b

d − V̂ b
d

∥∥
1

)≤E
(∥∥�̂b

dV̂
b
d − V̂ b

d

∥∥
1

)
/(1 −β) <

βKd

(
1 + |a|)

bd(1 −β)2 � (15)

Finally, Lemma 3 establishes that our sequence of dynamic programs is weakly Rust
solvable. Thus, we can set b ∈ b to satisfy E(‖V̂ b

d − Vd‖1) < ε/2 and βKd (1+|a|)
bd (1−β)2 < ε/2. And,

with this, (15) yields E(‖V̂ b

d − Vd‖1) ≤ E(‖V̂ b

d − V̂ b
d ‖1) + E(‖V̂ b

d − Vd‖1) < ε. Q.E.D.
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