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Introduction

My argument seamlessly extends to this case in which the Monte Carlo sample is drawn from a
general density function. Regardless of the sampling distribution, Rust’s algorithm breaks the curse
of dimensionality only if the number of state variables that are meaningfully history dependent—i.e.,
contingent of the prior period’s state s or action a—is O(log(d)). However, the nature of this near
memorylessness varies with the sampling distribution. Under the uniform sampling distribution,
almost all state variables, ¢;, have a distribution that’s arbitrarily close to a uniform distribution
from almost all states s € [0, 1]d. But under sampling density ug, almost all state variables, ¢;, have
a distribution that’s arbitrarily close to the conditional marginal sampling distribution, Mé(ti‘t@‘),

from almost all states s € [0,1]%.

Analysis

I will now derive the analog of each of Bray’s (2021) results under general sampling density pg.
Suppose the elements of my = {mfi}?i , are drawn from a distribution with general density function
tq, which has full support over [0, 1]%.

In this case, Rust’s random Bellman operator would be

)
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aca Zzil pda(m&]s)

where  ph (ts) =paa(t|s)/pa(t).



We will call this operator’s fixed point, V;M, the Rust value function under sampling density pu.

Note that we can also express the standard Bellman operator in terms of pga and pg:

CaV)) =macan(s) +8 [ VO tipa(a)

where  pg(dt) =pq(t)Ag(dt)

We will now re-express our definitions, assumptions, and propositions in terms of pq.

Definition 7. A sequence of dynamic programs is strongly Rust solvable under sampling density

w if for all € > 0 there exists b € b such that supyey E(||V;“ —Vil) <e.

Definition 8. A sequence of dynamic programs is weakly Rust solvable under sampling density u

if for all € > 0 there exists b € b such that supgey E(]|de’L —Vally) <e

Definition 9. The ith state variable is e-dependent under sampling density pu if HVd“’*i —Vall; <

)

where Vd“’fi is the value function under density function ply~"(t|s) = paa(t|s)pl(tilt<i) /P4 (tilt<i).

Definition 10. A sequence of dynamic programs is nearly memoryless under sampling density u
if for all € > 0, the number of state variables that are not e-dependent under sampling density p is

O(log(d)) as d — 0.

Definition 11. A sequence of dynamic programs whose Rust value functions under sampling density
b
W are {Kdu}de]N Rust e-approximates under sampling density p a sequence of dynamic programs

with value functions {Vi}aen if there exists b € b for which supgcy E(HKZM —Villy) <e.

Assumption 7. The scaled transition density function is Lipschitz continuous in its second argu-
ment: For each d € N and t € [0,1]¢, there exists Lipschitz constant 0h(t) € Ry such that

[Pl (t18) =Py, (EIr)]
maXgea SUPre[0,1]¢ SUPse(0,1]4\r E®ls—rly, = L

Assumption 8. The square integral of the scaled transition density Lipschitz function with re-

spect to measure pg is bounded by a polynomial function of d: There exists L* € b such that

SUPdeN fte[o,l]d 0(t)2pa(dt) /L < 1.

Assumption 9. At the origin, the scaled transition density function is bounded by a polynomial

function of d: there exists M* € b such that max,ea SUPgen SUPye(o,1]¢ pga(t\())/]\/[g <1.

Assumption 10. The scaled transition density function is bounded by a polynomial function of d:

there exists M" € b such that maxaea SUP e SUD; se(0,1]d Pigq (t]8) /MYy < 1.



Proposition 1. Any sequence of dynamic programs that satisfies Assumptions 1, 2, 7, 8, and 9 is

strongly Rust solvable under sampling density p.

Proposition 2. Any sequence of dynamic programs that satisfies Assumptions 1, 2, and 10 is

weakly Rust solvable under sampling density p.

Proposition 3. Every sequence of dynamic programs that satisfies Assumptions 1, 2, 7, 8, and 9

can be e-approrimated by a sequence that satisfies Assumptions 1, 2, and 10, for all € > 0.

Proposition 4. Any sequence of dynamic programs that satisfies Assumptions 1, 2, and 10 is

nearly memoryless under sampling density .

Proposition 5. Any sequence of dynamic programs that (i) is weakly Rust solvable under sampling
density p and (ii) satisfies Assumptions 1 and 2 can be Rust e-approzimated under sampling density
w by a sequence of dynamic programs that is nearly memoryless under sampling density p, for all

€ > 0.

Proofs

Proposition 1. Any sequence of dynamic programs that satisfies Assumptions 1, 2, 7, 8, and 9 is

strongly Rust solvable under sampling density p.

Proof. For d e N, V € Vg4, a € a, and b € b define

Zz 1V(md)Pda(md,| s)
S0ty Pl (miy]s)

(T V)(s) Zudals) + ﬁz V (mig)pl, (myls)/ba,

9

(FV)(s) Zudals) + B

and Zde( )—BngV pda my|s )/\/%,

where {gfi}fi | is a set of independent standard normal random variables. Since E((fZiV)(s)) =
(T4aV)(s), where T'y, is defined in the proof of Proposition 1, Pollard’s (1989) seventh equation
implies that

~ 2 2 b
E (D% ~ TV ) < =E( sup Z(s)?). (1)
(T ) Vba <se[o,1}d ! >



We will now bound the expectation on the right. First, note that

bg

=52 [V (i) (o, (mift) — ply (mig|s))] /ba
=1

< (5Kd”t 5H2>2§:€M /bd (2)

(2% (t) — Z5(s)| -

This expression implies that

K
5 = B dJchw“md )2 /bq
2

> sup \E(Z() - Z2()] : ma). 3)
s,t€[0,1]¢

Now for a given = > 0, divide [0, 1]¢ into f(z) = [67"/(22)]? equally sized cubes, and define {cffﬂ}{g)

as the center points of these cubes. By design, these center points satisfy

i z(1—p)
sup min = [|s — ¢}y < ‘ )
56[01}“6{1 (@)} /BKd\/Zd gu mfi)Q/bd
which with (2) implies that
sup min E(]Zgg(s) - ZZZ(C;)ﬁ cmyg) < 22, (4)

sef0,1]d i€{1, . f(2)}

Now combining (3) and (4) with Pollard’s (1989) eighth equation yields

\/E (Ses[lg’fl)]d ng(s)Q : md)—\/E(ng(O)Q D My)
oq
Vlog(f(x))dz

- Jo
:C'(FCT\/&/OI \/1og (1/u)du

=Co;'Vdn/2,

where C' > 1 is a universal constant that’s independent of all model parameters. And since x—y < z



implies 22 < 2y? + 222 for all z,y, z € R, this implies that
E( sup ZSZ(5)2> =E (E( sup ng(s)2 : md)>
s€[0,1]4 s€[0,1)4
<E (2 B(Z2(0)2 : mg) + (0531)%)

sz(ﬁff]‘f )’ o (LR oy

Ko\2
g(lﬂ_ 2) (2(MM)? + 7d?C2 L1

Now combining this with (1) and applying Jensen’s inequality yields for all V € V,

B(IE2V — TwV]) <VE (IF%V - T V)

\/ sup ZSZ(S)Q)
56 0 1

2mB Ky
b1/4( ,B

| J Qo2+ e2c2rl. (5)

Next, define constant function 1g € Vg, where 14(t) = Kq/(1 — 8) for all ¢ € [0,1]?. With this,
(5) yields

bd

= V(md)pda(md‘ )
1 —
( Zpda >ﬁ Zfdlpda(md‘ )

B(|[ToVa — ToVall) = < sup
s€[0,1]4

bq
BKq4
<PEa g qup 1230 pt (mifs) b
1-p s€(0,1]4 ; ¢
E (IT% 14 — Taatal))
2Ky

< (MR - d2C Lk
b1 - B) Vo !



Combining this with (5) yields

E (0% Vy — Vi) =E (0% Va — TaVal))

<> E(I00hVa — TaaVal))

aca
<N E (Ve - T%Va]) + E (T2 V,
aca
4’8,’7T5Kd
<R (a2 + d2ceL,
by (1—5)

And with this, Rust’s (1997) Lemma 2.2 establishes that

E (|[V;" = Vall) <E (IT¢Va — Vall) /(1 - 5)

< 4‘a‘ﬂﬁKd \/(M5)2+d2C2L§,

bt By

— T Vall)

S . d|a|rBKq 1N\2 22 T M 4
which is smaller than € when b, is larger than ( 5 \/ (M})*+d?*C?L d) .

e(1-p)

O]

Proposition 2. Any sequence of dynamic programs that satisfies Assumptions 1, 2, and 10 is

weakly Rust solvable under sampling density p.

Proof. Assumptions 2 and 10 ensure that [V (¢)p!, (t|s)| <
V € V, Popoviciu’s inequality implies that Var(V (m)p, (m}|s))
that

Vaf(ZV PPl (mils )/bd) < (d(

Accordingly, Chebyshev’s inequality establishes, for a given § > 0 and V' € V, that

Ny
Pr(4(s) = 1) < iy A

where {

K MY
1-8)*

> Vergpmii b [ VaOpatisaan

KM} /(1—p) for all V € V. Hence, for
< (KqM}¥)?/(1 — B)?, and thus



And this implies for V € V that

E(TV)(s) = (TaaV)(s)])

_5E(
<Pr(y} (
+ Pr(y} (

(KaM})?
62bg(1 — B)?
2(KqMY)?
62bg(1 — B)3’

pmmﬂvw—/ V(t)paa(t]5) Na(dt)

te[o,1]¢

)

D Cmils) = [ V(o) atat) s

P)p (m |ww—/ Va(t)paa(tls)Aalde)| = yh(s
te(o,1)4

<1-6+ 2K MY /(1 - B)

—5 +

where f‘g‘; is defined in the proof of Proposition 1 and I'y, is defined in the proof of Proposition 1.

Hence, for V € V we have

2(KqMH)3
Phl1- B ©

)\d(ds)>

E(IT%V —TaV|,) <6+

And this, in turn, implies that

) b,
E(|T Vs — Fd’;VdHl) =E (/
s€[0,1]4

BK /
< E
“1-p ( s€[0,1)4

ba b PN (i
; S0, Va(mipl, (mils)
(1= pha(mils)/bg) gty B Pia
Zz lpda(md|s)
=E ([Tt — Taata,)

)\d(ds)>
2(KqMH)3

5%by(1 — )3 (™)

bq
1= pl,(mils)/ba

i=1

<5+



where fZ’; and ¢q are defined in the proof of Proposition 1. Now combining (6) and (7) yields

E (|0%Vy — Vall,) =E (0% Va — TaVal,)
<Y E(I%Va - TaaVall,)

aca
~b =b =b
<N E (1% Ve — T%Vall,) + E (IT%Va — TaaVall,)
aca
4 K M™3
copalg 4 RIS

02ba(1 = B)

And with this, Rust’s (1997) Lemma 2.2 establishes that

E (|V* = Val,) <E (10 Ve - Vall,) /1 - B8)
dla|(KqMY)3

<2]alo/(1 - B) + 52,1 — B)

which is less than € when § < E(Ah;'ﬁ ) and by > %.

O]

Proposition 3. Every sequence of dynamic programs that satisfies Assumptions 1, 2, 7, 8, and 9

can be e-approrimated by a sequence that satisfies Assumptions 1, 2, and 10, for all € > 0.

e(1—B)2
Proof. First, choose ¢ > 0 small enough so that fte[O,l]d () pa(dt) > 0q = 2&%1(53/8'

Second, set

74 € R such that fte[() ja max (0, 0 (t) — va)pa(dt) = 84. Third, define probability density function

1{¢4(t) > va}
frE[O,l]d 1{55(’") > ’Yd}ﬂd(dr)'

w ()



Fourth, Jensen’s inequality yields
[Pt = [ {0 = e
tel0,1]4 telo,1]4
:/ wg(t)ES(t)Q,ud(dt)/ {4 (r) > ~va}pa(dr)
tefo,1]d rel0,1]¢

2
> (/ wg(t)ﬁﬁ(t)ﬂd(dt)> / L{¢4(r) > ya}pal(dr)
tel0,1]¢ ref0,1]4

max(0, £ () — va)pa(dt)
fre[o,l]d H{gd (r) > ’Yd},ud(dr) rel0,1]4

2
3 /
= + 1{05(r) > (dr)
(W fre[o 1)d ]1{£ ) = 'Vd}:“d dr > r€l0,1]4 { %l}ud

> mi B
2 min (va + 0a/y)*y

:2’Yd5d7

which with Assumption 8 implies

va < L/ (20a)-

Fifth, define probability density function

P (t]s) =P (t]s) +1— / P (rls)aldr),
€[o0,1]¢

where  , (t|s) = max (pl;, (t|0) + Vdva, ply, (]5)).
This density function satisfies Assumption 10, since

P, (tls) <P, (tls) +1
<ph (t|0) + Vdyq + 1
<MY +VdLY/(204) + 1

. aBKLhd

:Md+6(1—ﬁ) +1,



which is polynomially bounded. Also, by design we have

/t 0 1]d|Bga(t|S) _pga(ﬂs)‘,ud(dt)
E ’

B /te[o,l]d
B /te[o,l]d

< / P2 (£]s) — PP (t]3) ra(de) + / 1D (rls) — B (rls) wa(dr)
telo,1]4 relo,1]d

fa(dt)

Phaltl) + 1= [ (lowmadr) — 4,115
rel0,1]¢

Phlt) + [ (halrls) = Patrio)mater) 015

— / [P (t]s) — B (¢]) aa(dt)
te[o,1]4

<2 / masx (0, 24(0) ) — vdya) pa(de)
te[o,1]4

<2vd max (0, 5 (t) — ~a)) pa(dt)

tel0,1]4

:2\/§5d.

Now let Eg represent the Bellman operator under density function Bﬁa- With (8), we find that this

operator satisfies

IT% Vi = Vall =IIT% Vi — TaVal

<> sup B
aca 5€[0,1]4

BK4 /
< sup [ph (t|s) — ph, (t]s)|pa(dt)
1-5 a%se[o,l]d tefo,]d 9@ d

BK4
1-p

/tE[O 14 Va() (2, (t1s) — paq (ts)) paldt)

< sup 2Vddy,
aca 5€[0,1]4
_2a,85de\/g
=—_7 5

=(1- ).

And with this, Rust’s (1997) Lemma 2.2 establishes that V! — Vy|| < ¢, where V) is the fixed

point of I'Y.

Proposition 4. Any sequence of dynamic programs that satisfies Assumptions 1, 2, and 10 is

nearly memoryless under sampling density u.

10



Proof. Pinsker’s inequality establishes that [|A\; — pl, (|s, t<;)[; < \/ZK(pila(-]s,tq), A1). And this
implies that

/ [0,1]d—i+1 ‘pgj(t<i7 tZi‘S) - pda(t<i; tZi‘S) ‘Ad7i+1(dt2i)
t>;€ 0,1]¢—*
= / / |pa (tis iy toi41]5) — Paaltes, titsisn|s)| Aa—i(dtsign) M (dt:)
tie[O,l] tZH_lE[O,l}d*i

Z/ |1 — Pl (tils, t<i)] P (teis i toig1|s)Aai(dEsig1) M (dt;)
tiE[O,l] t21+1€[071]d71
, Jio s etoqji—i Pda(t<is tis tita] ) Aa—i(dt>iv1)
:/ |1 — g (tils, t<i)| zi41€l0.) : A1 (dt;)
t:€[0,1] Pha(tils, t<q)
<141
1 pd <t<17t2)
= 1 — pya(tils, t<i) | —————A1(dty)
/tie[o,l] ‘ o ’ ‘ Y, (tils, t<i) ’

—p5i(te) / 11— g (tils, ti) | 2 (dt)
t;€[0,1]

=pg" (t<i) |\ = Paalls 1<)y

<p§ (tei)y 26 (Pl (s, t i) M-

And with this, Jensen’s inequality yields

1Pz (-18) = paa-19)lly =/ P (t]s) — paa(t]s)| Aa(dt)
te[0,1]¢

=/ o 1/ A [Pt (teist>ils) — Pda(teis t=il$) [ Ad—it1 (dt=i) Ai1 (dt<;)
t<;€[0,1]*~ t>;€[0,1]¢~*

<[ )2, s ) AN ()
t<;€[0,1]i1

S\/2/ g (i) k(P (s, t<i), An) X1 (diE<i)
t<ie[0711171

:\/2E (K(PiaCls, t<i), A1)

Next, Lemma 1 implies that there exists m,n € N such that Z?ZIE (k(Pl, (s t<i), A1) <
m + nlog(d), for all d € N. Since ﬁ(pila(~]s,t<i),)\1)) > 0, this implies that for a given v >
0 the inequality \/ZE (k(Ph, (|8, t<i); A1)) < 7 holds for at least d — 2(m + nlog(d))/7* values
of . And with the result above, this implies that [[p;’(|s) — paa(:|s)

|, < v holds for at least
d—2(m +nlog(d))/7* values of i. Now define O}, = {s € (0,1 oy (1s) — paa(-|s)]; <7} as the

set points that satisfy this inequality for a given ¢ € {1,--- ,d}. The Lebesgue measures of these

11



sets satisfy

d
Z?ﬂ Z/M1@G2W®

/ Z]l{seﬁda})\d (ds)
€[0,1]4

2{/" (d — 2(m + nlog(d))/7?) Aa(ds)
€[0,1]4

=d — 2(m + nlog(d)) /7%

Since A\g(€Y,) < 1 this implies that

>‘d( ila)zl_é

(9)

holds for at least d — 2(m + nlog(d))/(6v?) values of i. Thus, for i that satisfies (10), we have

T

—TgaVall, = /e[o 0

wal) 48 [ VORI

— Ugq(s ﬁ/ t)Pda(t|s)Aa(dt)|Aa(ds)
[0,1]¢

s

SﬁHVdH/ |!pgj('|8) = Pda(*[$)[[; Ad(ds)
s€[0,1]d

/ Va®) (03 (1) — paa(t])) Ma(dt) Aa(ds)

da

§MMM</QiMJC@mAwaA¢)
+ /se[o,l]d\fzfm (lpga Cls)ll, + ||pda(.|5)||1))\d(d5)>

’y)\d(ds) + / 2>\d(ds)>
Qi s€[0,1]9\Q7),

<pIvi ( / E

=B Vall (vAa(Qha) + 2(1 = Xa(25,)))
<B(Ka/(1 - B))(y + 20),

where I'y, is the action-a Bellman operator defined in the proof of Proposition 1, and I’

12
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analogous operator under pgai . Thus, for i that satisfies (10), we have

I3V = Vall, =T *Va — TaVall,
< T3 Va — TaaVall,

aca

<lalB(Ka/(1 = B))(y + 20),

where I‘;i is the analog of I'y under p;i. And with this, Rust’s (1997) Lemma 2.2 implies that

V" — Vall, < |alBK4(v+26)/(1—5)? holds for i that satisfies (10). Hence, setting y =6 = Z%fﬂ%?

: 3
we find that ||V — V||, < € holds for at least d —2(m +nlog(d))/(67*) = d — 128 ( I&aIBg%) (m—+

nlog(d)) values of i. O

Lemma 1. Assumption 10 implies that there exist m,n € N such that

S B (<) iy (t<i))
maXgea SUPgeN SUPse[0,1]d - m+dn log(d) ‘ <l

Proof. The following implies the result:

sup psa<t|s>:exp( sup_log(pf, (t]s)) )
telo,1)@ tel0,1]d

</€[0 ”dlog da(t] ))Pda(t\S))\d(dt))
exp< /te[o e (W)pda(tls)kd(dt))
(

d
e ( 3 (stphal 0, i t<i))))-
=1

O]

Proposition 4. Any sequence of dynamic programs that satisfies Assumptions 1, 2, and 10 is

nearly memoryless under sampling density .

Proof. Pinsker’s inequality establishes that ||pl, (-]s, t<;) — pi(-|t<i)|l; < \/QK(pZa(-‘S, tei) 1y (-Jt<s)).

13



And this implies that

/t>i€[0,1}d_i+1

:/ |\l (tilt<i) /P (tils, t<i) — 1 paa(t<is tis t>iv1]s) Aais1 (dts;)
t>;€[0,1]d—i+1

P (tciyt>ils) — Paa(t<is t>i]5) ‘/\d—i—i-l(dtZi)

:/ 01 }Mil(ti|t<i)/pila(ti|syt<i) - 1}pji+1(t<i,ti))\1(dti)
t;€[0,

—p5i(te) / il <i) — Dl (tils, t<i)| M (dt)
tiE[O,l]
o5 ()i lts) — B (st

<o (t<i) 260}, (13 t i), 1<),

And with this, Jensen’s inequality yields

1) = paaClol = [

telo,1]¢

S/ _ Pji<t<z’)\/QK(PQQ("Sth)aMz’z("t<i))>\i_1<dt<z‘)
t<i€[0,1]z_1

P (t]s) — paalt]s) ‘)\d(dt)

S\/2 / A P (tei) (PG, (15, tei), iy (|t<i)) Nim (dt <)
t;€[0,1]i—1

= /2B (s(ph (s, ), 1 Clea)).

Next, Lemma 1 implies that there exists m,n € N such that Z?Zl E (k(ph, (|5, t<i), iy (-[t<i))) <
m + nlog(d), for all d € N. Since r(pl, (|5, t<i), 4 (-|t<i)) > 0, this implies that for a given v > 0
the inequality \/2 E (k(p4, (-]s, t<i), 1y (-|t<i))) <~ holds for at least d — 2(m + nlog(d))/~* values
of i. And with the result above, this implies that Hpg(’;i(-]s) — Pda(]8)|l; < 7 holds for at least
d — 2(m + nlog(d))/+? values of i. Now define Qg{f ={se[0,1]: ||ps(’l_i(‘\s) —pda(-8)ll; < 7}

as the set points that satisfy this inequality for a given i € {1,--- ,d}. The Lebesgue measures of

14



these sets satisfy

d d
S :Z/ - 1{s € QI \(ds)
i=1 i=1"7s€
/ Z]l{seﬂ‘“})\d (ds)
[0,1)d 5=

> / (d — 2(m + nlog(d))/7?) Aa(ds)
0,14

=d — 2(m + nlog(d)) /7%
Since Ad(Q%) < 1 this implies that
Aa() =16 (10)

holds for at least d — 2(m + nlog(d))/(6v?) values of i. Thus, for i that satisfies (10), we have

It Vo Tl = [ o) +8 [ v st
—uanls) =6 [ V(Opaaltls)haldt) Aa(ds)
te(0,1)4
8 [ o VO @) — paat a0 )

<BIVal / 195715 — paa(-1s)], Aa(ds)
s€(0,1]4
<BIval ( / BT )~ paa (9l )
selly,
4 / (i)l + upda<-|s>|1)xd<ds>)
s€[0,1]9\ QA

Aalds) + / 2a(ds)
Qi se[0,1]4\ k0

<BIVa ( / 6

=Bl Val (WAa(Q57) +2(1 — Xa(21)))
<B(Kq/(1 = B))(y +29),

where I'y, is the action-a Bellman operator defined in the proof of Proposition 1, and Fgg;i is the

15



analogous operator under p d&_i' Thus, for i that satisfies (10), we have

T4~V — Vall, =TV = TaVall,

<> T Va - TaaVal),

aca

<la|8(Ka/(1 = B))(v + 20),

where I‘g’ﬂ' is the analog of I'y under pd’fi. And with this, Rust’s (1997) Lemma 2.2 implies
that ||Vd“’7i — Vall, < |alBKa(y +26)/(1 — )? holds for i that satisfies (10). Hence, setting v =
§ = flﬁml_ﬂﬁlgz’ we find that ||Vd“’7i — Vall, < € holds for at least d — 2(m + nlog(d))/(6+?) = d —

3
128 (!@f?ﬁz) (m + nlog(d)) values of i. 0

Proposition 5. Any sequence of dynamic programs that (i) is weakly Rust solvable under sampling
density p and (ii) satisfies Assumptions 1 and 2 can be Rust e-approzimated under sampling density
w by a sequence of dynamic programs that is nearly memoryless under sampling density p, for all

e > 0.

Proof. Define Eg as a general set with measure bﬁ under sampling density u: ftef“ g (dt) = b;Z.
—d

And use this to define the following probability transition density function:

Pl (t15) =1{pl, (tls) < b3}l (t]s) + 631 {t € Z}}7j,(5)
where  B(s)= [ {0l (rls) > BE}0h (rls)natdr).
relo,1]4

This density function funnels all the mass that exceeds to b?l into Eg . Since it never exceeds 263, this
density function satisfies Assumption 10. So Proposition 4 establishes that this density function
corresponds with a sequence of dynamic programs that’s nearly memoryless under sampling density
u (given Assumptions 1 and 2).

Define the following as the set of points for which the new density function equals the old density

function:

Q“b {t e o, 1] B’;’S(ﬂs) =pl,(tls)Vae a}.
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The measure of this set under sampling density p satisfies

/teﬂg(@ud(dt) 21_/te:Z ol Z/ oy PP 18) > V()

aca Y tE[0,1]4

SIS / 1{ply, (r[s) > b3 ol (rls)naldt)

aca [0 1

>1-b72 - 52y / P (r|s)paldt)
€[o0,1]¢

aca ’t

>1— (1+al)/b3.

The probability that this set contains all m; values satisfies

Pr (U, my C Q(s)) :(/tem(s) Md(dt))bd

>(1— (14 |a])/b3)"

= exp (balog(1 — (1 + |al)/b3))
=exp (ba(—(1 + [a]) /b7 — (1 + [a])?/(2b3) — (1 + |a])*/(3b]) —
> exp(—(1 + [a]) /b)

>1— (1 + |a])/ba.

) . . .
Next, define EZ as Rust’s random Bellman operator evaluated under density function BZZ' Since

Vd” be Vg4, we have
A b~ A DA
(L ViI®)(s) = (DVI%) ()| < BKa/(1 = B).
And if UZ ymb € Q%(s) then

|(E5°V1) () — (P71 ()] = 0.
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Now combining (11)—(13) yields
b b b bbby b
E (|D5 Vi° = Vo) =B (T Ve — T )
~ b ~ ~ ~
= [ BOEET6) = 7)) At
se|0,

g/ BEa/(1— B)(1— Pr (U mi)  Q°(s))) Aa(ds)
s€[0,1]4

s€[0,1]4

ba(1 - B)
_BK4(1 + |a])
ba(1—B)

And with this, we can use Rust’s (1997) Lemma 2.2 to establishes that

b eob A b b BE4(1+ |al)
B (I - Vi®l) <E(ICVE® = Vi) /(0= 8) < 50—y (14)
Now for a given € > 0 choose b € b such that % < €/2 and E(HVd“b —Vall;) < ¢/2. And
with this, (14) yields E ([’ — Val,) < E (V4 = V%)) + E(IVI® = Vi) < e. O
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