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Abstract

I study how the shadow prices of a linear program that allocates an endowment of nβ ∈ Rm

resources to n customers behave as n→∞. I show the shadow prices (i) adhere to a concentra-
tion of measure, (ii) converge to a multivariate normal under central-limit-theorem scaling, and
(iii) have a variance that decreases like Θ(1/n). I use these results to prove that the expected
regret in Li and Ye’s (2022) online linear program is Θ(log n), both when the customer variable
distribution is known upfront and must be learned on the fly. I thus tighten Li and Ye’s upper
bound from O(log n log log n) to O(log n), and extend Lueker’s (1998) Ω(log n) lower bound to
the multi-dimensional setting. I illustrate my new techniques with a simple analysis of Arlotto
and Gurvich’s (2019) multisecretary problem.

Keywords: online linear program; multisecretary problem; network revenue management; dual
convergence; regret bounds; empirical process

1 Introduction

Caley (1875) introduced the secretary problem in the nineteenth century. The problem is to hire a

man to serve as your secretary (a man because most secretaries were men back then). There are n

applicants for the position whom you interview sequentially. But there’s a hitch: once you interview

a man, you must decide whether or not to hire him before interviewing the next man. So you face

an optimal stopping problem, with the objective being to maximize the expected capability of the

man you hire or, equivalently, to minimize the expectation of your regret, the capability difference

between the most competent man and the man you hire.

Arlotto and Gurvich (2019) studied the multisecretary problem, which is the same as above

except with nβ posts to fill, for some β ∈ [0, 1]. In this version of the problem, your regret is the
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expected capability difference between the nβ most capable men and the nβ men you hire. Arlotto

and Gurvich made a striking discovery: If secretary valuations are i.i.d. random variables with finite

support, then your expected regret is uniformly bounded across n ∈ N and β ∈ [0, 1]. In other

words, you’re never expected to make more than some finite number of hiring mistakes, regardless

of the number of positions you must fill. For this breakthrough result, Arlotto and Gurvich (2019)

won the 2021 Applied Probability Society Best Publication Award.

Citing an example by Robert Kleinberg, however, Arlotto and Gurvich (2019, p. 234, 251)

showed that the regret could be large if one valuation had a small probability mass, which suggests

that “one cannot generally expect a bound that does not depend on the minimal mass.” Never-

theless, they concluded their article by explaining “At this point, it is not clear whether bounded

regret is achievable also with continuous [valuation] distributions.”

In Section 3, I show that bounded regret is not achievable with continuous valuation distri-

butions. Specifically, I show that if secretary valuations are i.i.d. uniform random variables then

the expected regret lies between (β/8)(1 − β/8)(log(n)/2 − log(6)) and (log(n + 1) + 7)/8 for all

n ≥ 220β−8 and β ∈ [0, 1/2]. Moreover, I show that the most obvious heuristic satisfies the upper

bound.

Switching from finite to continuous valuations completely changes the mechanics of the model.

With finite valuations, the probability of making a period-t hiring mistake decreases exponentially

in t, whereas the expected cost of such a mistake remains constant. Hence the total regret grows

with n like
∑n

t=1 exp(−t) = Θ(1). With continuous valuations, however, the probability of making

a period-t hiring mistake and the expected cost of such a mistake both decrease like 1/
√
t. Hence

the total cost grows with n like
∑n

t=1(1/
√
t) · (1/

√
t) = Θ(log n).

In Section 4, I extend this logic and Θ(log n) regret rate to Li and Ye’s (2022) more general

online linear programming” (OLP) problem. In this problem, you start with inventory vector

nβ ∈ R
m
+ , and you exchange inventory at ∈ R

m
+ for utility ut ≥ 0 if you fulfill the period-t

customer’s demand. Since none of your stocks can become negative, you must carefully husband

each of your m resources. But doing so is difficult, as you have no foreknowledge of the nature

of demand; instead, you must learn the demand distribution the old-fashioned way—by serving

customers.

The engine underlying my analysis of the online linear program is a set of shadow price conver-

gence results I develop in Section 4.2. Li and Ye (2022, p, 2952) lamented that “there is still a lack

of theoretical understanding of the properties of the dual optimal solutions,” so I begin by charac-

terizing their limiting behavior. I show that an online linear program’s shadow prices (i) conform
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to a concentration of measure, (ii) converge to a multivariate normal under CLT-like scaling, and

(iii) have a covariance matrix whose elements fall like Θ(1/t). I derive these results with a new

approach that hems in the shadow prices with empirical processes.

2 Related Works

2.1 Primary Antecedents

I thought I was the first to resolve Arlotto and Gurvich’s (2019) question as to whether bounded

regret is achievable with continuous valuation distributions. Unfortunately, after two rounds of

review, I became aware of Lueker’s (1998) article, which answered the question before Arlotto and

Gurvich posed it. (My understanding is that Sid Banerjee found the reference.) Lueker study the

“zero-one knapsack problem,” in which you successively decide whether to add a given object to

your backpack. He proves the expected regret grows like Θ(log n) under the optimal policy.

And he establishes this bound with proof unlike any other I have found in the literature.

Specifically, he constructs lower and upper envelopes across the entire surface of the offline and

online value functions. The induction required to creating these bounds was painstaking because

he had to weaken them just so as the inventory level departed the initial resource endowment. In

contrast, I use Vera and Banerjee’s (2019) simpler compensated coupling scheme, which sums up

the myopic regret incurred over the random walk traversed by the inventory level under the online

policy.1

As Lueker’s specification generalizes the multisecretary model, it also generalizes Arlotto and

Xie’s (2020) stochastic knapsack problem, which is the multisecretary’s mirror image: one has

continuous valuations and fixed capacity consumption, and the other has fixed valuations and

continuous capacity consumption. Arlotto and Xie (2020, p. 190) develop an O(log n) upper

bound for the regret in their model, but they do not develop a corresponding lower bound, since

“it is well known that the optimal policy often lacks desirable structural properties, so proving [this

lower bound] is unlikely to be easy.”

Jasin (2014) extend the O(log n) upper regret bound to the multi-variate setting. Incorporating

multiple dimensions enables inventories and shadow prices to veer off course in an uncoutable

number of ways. Indeed, whereas Lueker has only to prevent these variables from being too high

or too low, Jasin has to prevent them from following any unit vector too far. However, Jasin only

supports a finite number of consumption bundles, as he considers the network revenue management
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problem in which you price a set number of products (e.g., flight itineraries), each of which comprises

a set number of resources (e.g., flight legs).

Li and Ye (2022) relax the finite-product assumption, allowing a given customer’s resource con-

sumption to be any number in a bounded region of Rm. And, more importantly, they incorporate

online learning, as they suppose you don’t know the demand distribution upfront. Not knowing this

distribution induces a complex correlation between inventory levels and shadow price estimates. Li

and Ye nevertheless managed to establish an O(log n log log n) upper regret bound.

Now, if you compare this O(log n log log n) bound with the prior O(log n) bounds, you can’t help

but wonder: Is revenue management with and without learning in the same class of difficulty? I

show that they are. Specifically, I establish that the regret is O(log n) when the demand distribution

is unknown and Ω(log n) when it is known.

Removing the log logn fudge factor from Li and Ye’s upper bound requires (i) more sharply

characterizing the limiting behavior of the shadow prices and (ii) more tightly controlling the inven-

tory process. Whereas Li and Ye show that the magnitude of the period-t shadow price covariance

matrix is O((log log t)/t), I show that it is Θ(1/t). And whereas they constrain inventories for all

but the last O(log n log logn) periods, I constrain them for all but the last O(1) periods. New

methodological innovations underpin both improvements.

First, I sharpen the shadow price asymptotics by applying empirical process techniques to the

subgradient of the dual linear program. Casting this subgradient as an empirical process enables

me to create shadow price convergence results that hold uniformly in the inventory level. And this,

in turn, allows me to overcome the hopeless entanglement between the current inventory level and

the current shadow price estimate.

Second, I create new techniques to constrain the inventory level’s random walk. For the up-

per bound with a known demand distribution, I control the process with a standard martingale

concentration inequality. For the upper bound with an unknown demand distribution, I split the

process into martingale and drift parts, and I then apply the martingale concentration inequality

to the former and inductively bound the latter, showing that the inventory level being “in control”

up until period t + 1 implies that the period-(t + 1) shadow price is “in control,” which in turn

implies that the period-t inventory level is “in control.” (This induction wouldn’t have been pos-

sible without the empirical process’ uniform bounds.) Finally, for the lower bound, I regulate the

probability of the inventory levels spiraling out of control with the cost of splitting the offline linear

program into two separate linear programs. For example, suppose you have 1,000 applicants for

100 secretarial positions and can interview all the men upfront; now, suppose I told you that you
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can only hire ten of the last 500 candidates. This additional constraint will substantially decrease

the value of your hires, with high probability. And your regret conditional on having fewer than

ten open positions with 500 remaining applicants is at least as large as the cost imposed by this

offline constraint. Hence, the probability of having such a low inventory level must be sufficiently

small, or the optimal policy would violate the O(log n) regret upper bound.

Before discussing the rest of the literature, let me recapitulate this work’s primary contributions

relative to what came before.

• I extend Lueker’s (1998) Θ(log n) regret convergence rate to a multivariate setting, both with

and without online learning. Neither generalization is trivial (see the discussion at the end

of Section 4.1).

• I show that we can tightly regulate an online linear program’s shadow prices by casting the

subgradient of the dual value function as an empirical process.

• I use this newfound control over shadow prices to establish their asymptotic normality, con-

centration of measure, and Θ(1/t) variance. (N.B., the last result does not stem from the

first result because convergence in distribution does not imply convergence of variance.)

• I create new methods for constraining the inventory process under the online policy.

2.2 Recent Developments

I will now discuss some noteworthy advancements that emerged since I first circulated my results.

First, Balseiro et al. (2023) have produced an insightful and comprehensive survey article that or-

ganizes models corresponding to “dynamic pricing with capacity constraints, dynamic bidding with

budgets, network revenue management, online matching, and order fulfillment” under a unified um-

brella, “dynamic resource-constrained reward collection (DRC2) problems.” The DRC2 framework

is similar to Vera et al.’s (2019) “online resource allocation” framework, except it can accommodate

an infinite number of customer types. Accordingly, whereas the online linear program cannot be

positioned in Vera et al.’s framework, it can be positioned in Balseiro et al.’s (2023) framework (by

making utilities bounded and the demand distribution known). Balseiro et al. explain that their

class of problems is especially amenable to the “certainty-equivalent principle: replace quantities

by their expected values and take the best actions given the current history.” And, indeed, Li and

Ye (2022) and I employ this approach to upper bound the regret of the online linear program.
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An anonymous reviewer brought Balseiro et al.’s article to my attention, highlighting that we

both independently devised how to exploit the certainty equivalent heuristic’s martingale invento-

ries:

I want to note that Balseiro, Besbes, and Pizarro (2021) were written after the initial

draft of [Bray’s] paper. The certainty equivalent (CE) heuristic studied seems like a

close cousin of [Bray’s] “martingale policy.” Specifically, Balseiro, Besbes, and Pizarro

(2021) show that under similar assumptions, the resource vector under the CE heuristic

evolves like a martingale until it exits some region. ... Both heuristics seem to achieve

a Log(T) regret under seemingly similar conditions (the author may want to comment

if there are key differences). I want to emphasize that I do not think Balseiro, Besbes,

and Pizarro (2021) diminishes the contribution of this paper because a) it is clear that

the two papers are developed independent at around the same time, and b) the main

contribution of this paper is the lower bound. In fact, Balseiro et al.’s work for a similar

class of problems further highlights that a general lower bound is significant to the

literature.

Next, Wang and Wang (2022) establish an Ω(log n) gap between the expected online value and

the fluid approximation value (as opposed to the expected offline value) in Jasin’s (2014) network

revenue management problem. However, they only establish this result for the one-dimensional

version of the problem. For the multi-dimensional version, they show that the optimal policy yields

only O(1) more expected value than the policy Jasin used.

Besbes et al. (2022) point out that a multisecretary problem’s O(log n) regret critically hinges

on the probability density function being bounded away from zero near the acceptance-rejection

threshold. Akshit Kumar explained it to me like this: If you have n applicants for nβ open positions,

then the marginal applicant would have a valuation of F−1(1−β+Op(
√
n)), where F is the utility

CDF. Now, if the utility PDF equals f(u) = |u− u∗| in a neighborhood of u∗ ≡ F−1(1 − β) then

we would have F (u) = 1 − β + sign(u − u∗)(u − u∗)2/2 and hence F−1(q) = u∗ + sign(q − 1 +

β)
√

2|q − 1 + β|. And in this case, the expected myopic regret would exceed 1/n because rather

than the usual n−1/2 tolerance, we could now only discern the marginal man’s utility to within a

n−1/4 tolerance: F−1(1 − β + Op(
√
n)) = u∗ + sign(Op(

√
n))
√

2|Op(
√
n)| = u∗ + Op(n

−1/4). To

avoid these low-density regions, Besbes et al. create a version of Balseiro et al.’s (2023) certainty-

equivalent principle that is “conservative with respect to gaps.” Their algorithm steers the inventory

random walk away from regions with high expected myopic regret.
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Finally, Jiang et al. (2022) independently developed an O(1/n) bound for the shadow price

variance (I posted the result in January 2022, and they posted it in October). They combine this

dual convergence result with a technique that’s similar in spirit to Besbes et al.’s “conservative with

respect to gaps” to establish an O(log2 n) regret bound for the network revenue management prob-

lem without imposing a non-degenerate fluid limit. In contrast, previous models have assumed the

fluid approximation’s constraints bind with pressure or are slack, with additional leeway. Assuming

extra wiggle room in the fluid model is unreasonable, however, as it implies that some buffer stocks

scale linearly with demand, which is a way over investment since safety stocks ought to scale with

the square root of sales.

3 Multisecretary Problem

I will begin with the simple multi-secretary problem to demonstrate my regret-bounding approach.

Lueker (1998) has already established that this model’s regret scales like Θ(log n), but I will provide

a far simpler proof, and my bounds won’t have any hidden constants.

3.1 Setup

You have n ∈ N applicants for nβ ∈ N positions, where β ∈ [0, 1/2]. (It suffices to consider

β ∈ [0, 1/2], because the the expected regret with nβ initial open slots equals that with n(1 − β)

initial open slots.2) You interview the candidates sequentially, starting with the nth man and

ending with the first man so that the applicant number corresponds with the size of the remaining

candidate pool. Interviewing the tth man reveals the utility you would get from hiring him, ut, a

standard uniform random variable independent of the other candidates’ utilities. After interviewing

this candidate, you must hire him on the spot or reject him for good. You seek to maximize the

expected total utility from your hires. Characterizing this utility will take a few steps.

First, let vbt denote the utility you receive starting from period t with tb ∈ N open positions.

7



The expectation of this variable satisfies the following Bellman equations:

E(vbt ) ≡E
(

max
xt∈{0,1}

xtut + E(v
ψbt (xt)
t−1 ) s. t. xt ≤ tb

)
,

E(vb0) ≡0,

and ψbt (a) ≡

(tb− a)/(t− 1) t > 1,

0 t = 1.

I will explain the logic underlying these equations after line (1). But first note that the ψbt function

maps the fraction of men you can hire from period t onwards, b, and your period-t hiring decision,

xt, to the fraction of men you can hire from period-(t − 1) onwards. For example, if the period-

t superscript is b and you hire the period-t applicant—i.e., set xt = 1—then the period-(t − 1)

superscript is tb− 1︸ ︷︷ ︸
positions left

/ (t− 1)︸ ︷︷ ︸
applicants left

.

The Bellman equations above specify the following optimal action:

πbt ≡ arg max
xt∈{0,1}

xtut + E(v
ψbt (xt)
t−1 ) s. t. xt ≤ tb. (1)

The xt ≤ tb constraint ensures that you don’t extend a job offer if you don’t have any positions

available—i.e., that you set xt = 0 if tb = 0. The expression above states that you hire the period-t

man (i.e., set xt = 1) if you have a job opening (i.e., 1 ≤ tb) and if the total expected utility

conditional on hiring him (i.e., ut + E(v
ψbt (1)
t−1 )) exceeds the total expected utility conditional on

rejecting him (i.e., E(v
ψbt (0)
t−1 )).

Your corresponding realized value is

vbt ≡πbtut + v
ψbt (π

b
t )

t−1 and vb0 ≡ 0.

Hence, you garner value vβn from your n applicants and nβ positions under the expected-utility-

maximizing policy. But if you could have interviewed every applicant before extending any job

offers, then you would have garnered value V β
n , where

V b
t ≡

tb∑
s=1

hst ,

and hst is the sth highest value in {ut, · · · , u1}. Since the utilities follow a uniform distribution,
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order statistic hst follows a beta(t− s+ 1, s) distribution.

The difference between the aggregate utility received in the offline problem and that received

in the online problem is your regret:

Rn ≡ V β
n − vβn .

The following two propositions bound the expectation of this random variable.

Proposition 1. The optimal policy of the multisecretary problem yields an expected regret that

grows at no more than a log n rate: E(Rn) ≤ (log(n+ 1) + 7)/8, for all n ∈ N and β ∈ [0, 1/2].

Proposition 2. The optimal policy of the multisecretary problem yields an expected regret that

grows at no less than a log n rate: E(Rn) ≥ (β/8)(1− β/8)(log(n)/2− log(6)), for all n ≥ 220β−8

and β ∈ [0, 1/2].

N.B., these theorems provide non-asymptotic results—i.e., do not rely on big-O notation. Propo-

sition 1’s finite-sample bound is especially interesting, as it highlights the near worthlessness of the

value of future information. For example, suppose you have a billion applicants for 500 million

jobs. In this case, your online value would be around (1/2 + 1)/2︸ ︷︷ ︸
value of average hire

· 500 million︸ ︷︷ ︸
number of hires

= 375 million

and your offline value would exceed your online value by around (log(109 + 1) + 7)/8 = 3.47.

Hence, knowing the billion worker utilities upfront increases your workforce’s value by around

3.47/375 million = .00000093%.

3.2 Upper Bound

I will now prove Proposition 1 by showing that Algorithm 1 honors its bound. The proof has two

parts: the first decomposes the total regret into a sum of “myopic regrets,” in the fashion of Vera

and Banerjee (2019), and the second shows that the expectation of the period t myopic regret is

O(1/t) under the myopic-regret-minimizing Algorithm 1, and hence that the expected total regret

is O(
∑n

t=1 1/t) = O(log n).

To derive the policy underling Algorithm 1, suppose that you hire the tth man with tb available

positions if and only if his valuation exceeds τ bt , where {τ bt : t ∈ [n], tb ∈ {0, · · · , t}} is a collection

of thresholds that have yet to be defined. These thresholds will satisfy τ0
t = 1 and τ1

t = 0 for all
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t ∈ [n], to ensure that bt ∈ [0, 1] for all t ∈ [n], where

bn ≡ β

and bt−1 ≡ ψbtt (1{ut > τ btt }).

In other words, you start period t with tbt ∈ {0, · · · , n} open positions under the threshold policy.

And you receive corresponding value v̄n, where

v̄t ≡ 1{ut > τ btt }ut + v̄t−1,

and v̄0 ≡ 0.

Since E(v̄n) ≤ E(vβn), it follows that

E(R̄n) ≥E(Rn),

where R̄t ≡V bt
t − v̄t.

Accordingly, it will suffice to upper bound E(R̄n). To this end, first note that the offline value

function satisfies the following recurrence relations:

V b
t = (ut − htbt−1)+ + V

ψbt (0)
t−1 (2)

and V
ψbt (0)
t−1 = htbt−1 + V

ψbt (1)
t−1 . (3)

Line (2) states that if there are tb open positions then the value of increasing the applicant pool

from t − 1 to t applicants equals the option value of replacing the tbth most capable man, out of

the first t − 1 applicants, with the tth man. And line (3) states that if there are t − 1 remaining

applicants then the value of increasing the number of job openings from (t − 1)ψbt (1) = tb − 1 to

(t− 1)ψbt (0) = tb positions equals the value of the tbth best man out of the t− 1 candidates.

Algorithm 1.

1. input n, β, {ut}nt=1,

2. initialize bn := β

3. for t from n to 1 do
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(a) set xt := 1{ut > 1− bt}

(b) set bt−1 := ψbtt (xt)

4. end for

5. output {xt}nt=1

Now suppose that ut ≤ τ btt , and hence that bt−1 = ψbtt (0) and v̄t = v̄t−1. In this case, (2) implies

that

R̄t = V bt
t − v̄t

= (ut − htbt−1)+ + V
ψbt (0)
t−1 − v̄t−1

= (ut − htbt−1)+ + V
bt−1

t−1 − v̄t−1

= (ut − htbt−1)+ + R̄t−1.

Next, suppose that ut > τ btt , and hence that bt−1 = ψbtt (1) and v̄t = ut + v̄t−1. In this case, (2) and

(3) imply that

R̄t = V bt
t − v̄t

= (ut − htbt−1)+ + V
ψbt (0)
t−1 − v̄t

= (ut − htbt−1)+ + (htbt−1 + V
ψbt (1)
t−1 )− (ut + v̄t−1)

= (ut − htbt−1)− + R̄t−1.

Combining these two recurrence relations inductively yields

R̄n = r̄n + R̄n−1 =

n∑
t=1

r̄t, (4)

where r̄t ≡ 1{ut ≤ τ btt }(ut − h
tbt
t−1)+ + 1{ut > τ btt }(ut − h

tbt
t−1)−

= (1{ut > htbtt−1} − 1{ut > τ btt })(ut − h
tbt
t−1).

In the expression above, r̄t is your “myopic regret,” which is the cost of your period-t hiring mistake.

Total regret can always be decomposed into a sum of myopic regrets.

Now here’s the key: we can integrate over ut and htbt−1 when taking the expectation of r̄t because

these variables are independent of each other and bt. To integrate over ut, we use the fact that
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this uniform random variable satisfies E((1{ut > h}− 1{ut > τ})(ut − h)) = h2/2− hτ + τ2/2, for

constants h and τ . And to integrate over htbt−1, we use the fact that this beta(t − tb, tb) random

variable satisfies E(htbt−1) = 1 − b and E(htbt−1)2 = (1−b)+t(1−b)2
t+1 . These properties enable us to

express the expected myopic regret in terms of bt and τ btt :

E(r̄t) = E
(

E
(
(1{ut > htbtt−1} − 1{ut > τ btt })(ut − h

tbt
t−1) : htbtt−1 = h, bt = b

))
= E

(
E
(
((htbtt−1)2/2− htbtt−1τ

bt
t + (τ btt )2/2) : bt = b

))
= E

((1− bt) + t(1− bt)2

2(t+ 1)
− τ btt (1− bt) + (τ btt )2/2

)
. (5)

I will now minimize the expectation above by setting τ bt = 1 − b (as specified by Algorithm 1), in

which case the expression above simplifies to

E(r̄t) =
E(bt(1− bt))

2(t+ 1)
.

And, with this, we find that the regret incurred under Algorithm 1 satisfies our logarithmic bound:

E(Rn) ≤E(R̄n)

=

n∑
t=1

E(r̄t)

=
n∑
t=1

E(bt(1− bt))
2(t+ 1)

≤
n∑
t=1

sup
b∈(0,1)

b(1− b)
2(t+ 1)

=

n∑
t=1

1

8(t+ 1)

≤(log(n+ 1) + 7)/8.

3.3 Lower Bound

I will now prove Proposition 2. The proof has four steps. The first creates an optimal-policy version

of the regret decomposition derived in the last section. The decomposition is the same as before,

except bt now denotes the number of open positions under the optimal algorithm rather than under

Algorithm 1. The second part of the proof shows that Ω(log n) expected regret follows immediately

from the regret decomposition, provided that there’s an Ω(1) chance of bt being bounded away
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from either endpoint. Finally, the third part of the proof bounds the chance of bt being too close

to one, and the fourth part bounds the chance of it being too close to zero.

To begin the proof, note that the objective in (1) is supermodular in xt and ut. Hence, Topkis’s

theorem implies that there exists threshold collection

{τ bt : t ∈ [n], tb ∈ {0, · · · , t}}, (6)

such that the optimal policy hires the tth man with tb available positions if and only if ut > τ bt .

And as before, these thresholds satisfy τ0
t = 1 and τ1

t = 0, since the optimal policy always makes

exactly n job offers.

Now, since the optimal policy has a threshold structure, lines (4) and (5) imply that

E(Rn) =

n∑
t=1

E
((1− bt) + t(1− bt)2

2(t+ 1)
− τ btt (1− bt) + (τ btt )2/2

)
≥

n∑
t=1

E
(

min
τ

((1− bt) + t(1− bt)2

2(t+ 1)
− τ(1− bt) + τ2/2

))
=

n∑
t=1

E(bt(1− bt))
2(t+ 1)

. (7)

Keep in mind that that bt now characterizes the number of open positions under the optimal

thresholds defined in (6):

bn ≡ β

and bt−1 ≡ ψbtt (1{ut > τ btt }). (8)

Lower bounding expression (7) will require upper bounding the probability that bt veers too

closely to either endpoint. For this, I will show that n ≥ 220β−8 and
√
n ≤ t ≤ n/2 imply

Pr(bt < β/8) ≥ Pr(bt > 1− β/8) (9)

and Pr(bt < β/8) ≤ 1/4. (10)
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Combining these bounds with line (7) yields Proposition 2:

E(Rn) ≥
n∑
t=1

Pr(β/8 ≤ bt ≤ 1− β/8)β/8(1− β/8)

2(t+ 1)

=
n∑
t=1

(
1− Pr(bt < β/8)− Pr(bt > 1− β/8)

)
β/8(1− β/8)

2(t+ 1)

≥
bn/2c∑
t=d
√
ne

(1− 1/4− 1/4)β/8(1− β/8)

2(t+ 1)

≥
∫ n/3

t=2
√
n
(β/8)(1− β/8)/(8t)dt

= (β/8)(1− β/8)(log(n)/2− log(6)).

Accordingly, it will suffice to establish lines (9) and (10). I will begin with the former, because

it is more straightforward. Simply put, the {bt}1t=n is process is more likely to approach the left

endpoint than the right endpoint because it starts at β ≤ 1/2 and is symmetric about 1/2.

I will now formalize this intuition with a coupling argument. First, note that the problem

symmetry discussed in Endnote 2 implies that the acceptance thresholds satisfy

τ bt = 1− τ1−b
t . (11)

Basically, this holds because one minus a uniform is also a uniform. Second, consider the following

benchmark process:

b̂n ≡ 1− β

and b̂t−1 ≡ ψb̂tt (1{ut > τ b̂tt }).

The {bt}1t=n and {b̂t}1t=n processes can’t jump over one another, because the number of open

positions can only decrease by one or remain constant in a given period. And the processes couple

whenever they meet, with bt = b̂t implying bt−1 = b̂t−1. Accordingly, b̂t < β/8 implies bt < β/8,

and hence Pr(b̂t < β/8) ≤ Pr(bt < β/8). Third, since one minus a uniform is also a uniform, the
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process {b̂t}1t=n has the same distribution as the process {b̃t}1t=n, where

b̃n ≡ 1− β

and b̃t−1 ≡ ψb̃tt (1{1− ut > τ b̃tt }).

And with (11) these equations can be rearranged like this:

1− b̃n = β

and 1− b̃t−1 = 1− ψb̃tt (1{1− ut > τ b̃tt })

= 1− ψb̃tt (1{ut < τ1−b̃t
t })

=
t− 1− tb̃t + 1{ut < τ1−b̃t

t }
t− 1

=
t(1− b̃t)− 1{ut ≥ τ1−b̃t

t }
t− 1

= ψ1−b̃t
t (1{ut ≥ τ1−b̃t

t }).

Compare this system to (8), and you will see that 1− b̃t = bt, almost surely. Accordingly, Pr(bt >

1− β/8) = Pr(b̃t < β/8) = Pr(b̂t < β/8) ≤ Pr(bt < β/8), which establishes (9).

Finally, I will establish (10). The argument has three steps. First, I establish that the regret

conditional on bt < β/8 is at least as high as the value you’d get by replacing the the worst btβ/8c

men hired before period t with the best btβ/8c men rejected after period t, which is at least as

high as btβ/8c times the difference between the value of the (tbt + btβ/8c)th best man to arrive

after t and the (nβ − tbt − btβ/8c + 1)th best man to arrive before t. Second, I use the binomial

Chernoff to establish that there’s at least a 1− 1/12− 1/12 = 5/6 chance that the (tbt + btβ/8c)th

best man to arrive after t is at least β/2 units better than the (nβ − tbt − btβ/8c+ 1)th best man

to arrive before t. Third, I use these results to show that the optimal policy would violate the

(log(n+ 1) + 7)/8 upper regret bound if the event bt < β/8 were not sufficiently rare.

Now to begin the proof of line (10), note that conditional on having tbt open positions at the

start of period t, the best the online policy can do is hire the best tbt men out of the last t applicants

and hire the best nβ− tbt men out of the first n− t applicants. Thus, the online value must satisfy

vβn ≤
tbt∑
s=1

hst +

nβ−tbt∑
s=1

h←−
s
t ,
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where look-back order statistic h←−
s
t is the sth largest value in {un, · · · , ut+1} (i.e., it equals hsn−t,

but with the order of the applicants reversed). Further, if bt < β/8 then the offline policy could

hire the best tbt + btβ/8c men out of the last t applicants and the best nβ − tbt − btβ/8c men out

of the first n− t applicants. Hence, the offline value must satisfy the following when bt < β/8:

V β
n ≥

tbt+btβ/8c∑
s=1

hst +

nβ−tbt−btβ/8c∑
s=1

h←−
s
t .

Differencing the last two inequalities yields the following, for bt < β/8:

Rn ≥
tbt+btβ/8c∑
s=tbt+1

hst −
nβ−tbt∑

s=nβ−tbt−btβ/8c+1

h←−
s
t

≥ btβ/8chtbt+btβ/8ct − btβ/8c h←−
nβ−tbt−btβ/8c+1
t

≥ btβ/8c(hbtβ/4ct − h←−
nβ−btβ/4c
t )

≥ btβ/8c1{hbtβ/4ct ≥ 1− 3β/8}1{ h←−
nβ−btβ/4c
t ≤ 1− 7β/8}(7β/8− 3β/8)

≥ btβ2/16c1{hbtβ/4ct ≥ 1− 3β/8}1{ h←−
nβ−btβ/4c
t ≤ 1− 7β/8}.

The first line above states that your regret is at least as large as the benefit you’d get by replacing

the worst btβ/8c men hired before period t with the best btβ/8c men rejected after period t. The

second line maintains that the value of this difference is at least as large as btβ/8c (i.e., the number

of men being exchanged) times the difference between h
tbt+btβ/8c
t (i.e., the value of the worst man

added) and h←−
nβ−tbt−btβ/8c+1
t (i.e., the value of the best man removed). The remaining three lines

use the fact that hst decreases in its superscript to connect the bound with the following binomial

Chernoff results: If t ≥ 48 log(12)/β, n ≥ 336 log(12)/β, and
√
n ≤ t ≤ n/2 then

Pr(h
btβ/4c
t ≥ 1− 3β/8) ≥ 11/12

and Pr( h←−
nβ−btβ/4c
t ≤ 1− 7β/8) ≥ 11/12,

Accordingly, Proposition 1 and Bonferroni’s inequality imply the following, for the specified range
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of n and t:

(log(n+ 1) + 7)/8

≥ E(Rn)

≥ btβ2/16cPr
(
bt < β/8 ∩ h

btβ/4c
t ≥ 1− 3β/8 ∩ h←−

b(n−t)βc
t ≤ 1− 7β/8

)
≥ b
√
nβ2/16c

(
Pr(bt < β/8) + 11/12 + 11/12− 2

)
.

Finally, this inequality implies (10) when n ≥ 220β−8 and
√
n ≤ t ≤ n/2.

4 Online Linear Programming Problem

4.1 Model

I will now extend the techniques developed in the last section to Li and Ye’s (2022) online linear

program.3 See the appendix for a notation guide and the online supplement for the proofs.

As before, I will count backward from period n ∈ N to period 1. In each period, a customer

arrives, and you must decide whether or not to fulfill their demand from your inventory. You

begin in period n with initial inventory endowment nbn = nβ, for some given β ∈ Rm
+ , so that

you have e′jbn units of the jth resource budgeted for the “average” remaining period, where ej

is the unit vector indicating the jth position. If you satisfy the period–n customer then you

exchange inventory bundle an ∈ Rm
+ for utility un, so that you begin period n − 1 with resource

vector bn−1 ≡ (nbn − an)/(n − 1). If, on the other hand, you reject the period–n customer, then

you receive no utility and lose no resources, so that you begin period n − 1 with resource vector

bn−1 ≡ nbn/(n − 1). And this pattern repeats so that bt−1 ≡ (tbt − at)/(t − 1) if you satisfy the

period–t customer and bt−1 ≡ (tbt)/(t − 1) otherwise. The problem is dynamic because you don’t

observe variables ut and at until the beginning of period t. These variables satisfy the following

assumptions:

Assumption 1. The customers are i.i.d.: vectors {(ut, at)}nt=1 are drawn independently of one

another, from joint distribution µ.

Assumption 2. The utilities and resource requirements are non-negative: u1, a1 ≥ 0 almost surely.

Assumption 3. The utilities have finite expectation: E(u1) <∞.

Assumption 4. The resource requirements are bounded: a1 ≤ α, almost surely, for some α ∈ Rm
+ .

17



N.B. that u1 can have unbounded support, whereas the other models cited in Section 2—most

notably those of Lueker (1998) and Li and Ye (2022)—restrict u1 to a finite range.

Let vbt denote the utility you receive from period t onwards when you begin that period with re-

source endowment tb ∈ Rm. Since you follow the expected-utility-maximizing policy, this variable’s

expectation satisfies the following Bellman equations:

E(vbt ) ≡E
(

max
xt∈{0,1}

xtut + E(v
ψbt (xtat)
t−1 ) s. t. xtat ≤ tb

)
, (12)

E(vb0) ≡0,

and ψbt (a) ≡

(tb− a)/(t− 1) t > 1,

0 t = 1.
(13)

To better understand this system, consider the following optimal action:

πbt ≡ arg max
xt∈{0,1}

xtut + E(v
ψbt (xtat)
t−1 ) s. t. xtat ≤ tb. (14)

In other words, you accept the period-t customer (i.e., set xt = 1) if you have inventory enough to

do so (i.e., at ≤ tb) and if the total expected utility conditional on satisfying this customer (i.e.,

ut+E(v
ψbt (1)
t−1 )) exceeds the total expected utility conditional on turning them away (i.e., E(v

ψbt (0)
t−1 )).

Under this policy you garner total value vβn from your initial nβ resource endowment, where

vbt ≡πbtut + v
ψbt (π

b
tat)

t−1 and vb0 ≡ 0. (15)

However, if you could have observed all of the customer attributes before deciding which ones to

satisfy, then you would have garnered value V β
n , where

V b
t ≡ max

x∈{0,1}t

t∑
s=1

xsus s. t.
t∑

s=1

xsas ≤ tb. (16)

Your regret is the difference between the utility you extract when you observe all customer

variables upfront and the utility you extract when you learn these variables on the fly:

Rn ≡V β
n − vβn . (17)

Our objective is to show that E(Rn) = Θ(log n) as n→∞.
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Since expanding your choice set from {0, 1} to [0, 1] will not make you worse off, we have

V̄ β
n ≥V β

n ,

where V̄ b
t ≡ max

x∈[0,1]t

t∑
s=1

xsus s. t.
t∑

s=1

xsas ≤ tb (18)

= min
y∈Rm+

tΛbt(y), (19)

Λbt(y) ≡b′y +
t∑

s=1

∆s(y)+/t,

and ∆t(y) ≡ut − a′ty. (20)

Line (19) is a reconfiguration of the dual of line (18)’s linear program (see Li and Ye, 2022). (To

remember that it is a dual, it helps to think of Λ as an upside down V .) This dual problem has a

not-necessarily-unique shadow price minimizer:

ybt ∈ arg min
y∈Rm+

tΛbt(y). (21)

Since we initialized bn = β, the problem in (19) converges, as n → ∞, to the following deter-

ministic problem:

min
y∈Rm+

Λβ∞(y) where Λb∞(y) ≡ b′y + E(∆1(y)+). (22)

The following assumption endows this problem with a positive shadow price solution.

Assumption 5. All resources are consumed in the limit: there exists yβ∞ ∈ arg miny∈Rm+ Λβ∞(y)

such that yβ∞ > 0.

Extending this assumption to accommodate constraints that are strictly slack in the limit is

simple. However, it’s harder to accommodate constraints that just barely hold in the limit. See

Jiang et al.’s (2022) recent work for an interesting analysis of the degenerate-limit case.

The final assumption is the multivariate analog of Lueker’s (1998) local restriction. Lueker

imposed two critical constraints on the joint distribution of (u1, a1): a local restriction that holds

in a neighborhood of the u1 = a′1y
β
∞ level set, and a global restriction that holds across the entire

breadth of the distribution. I will need only the former because all the tough calls lie at the margin.

For example, the following assumption permits point masses in the distribution, so long as they do
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not abut the fluid model’s accept-reject indifference curve.

Assumption 6. There’s a continuum of marginal customers that strain the resources in a lin-

early independent fashion: the Jacobian matrix ∂
∂y E(1{∆1(y) > 0}a1) exists, is full rank, and is

continuous in y in a neighborhood of yβ∞.

This assumption is more straightforward than the second-order growth condition imposed by

Li and Ye (2022) and many others. Indeed, it simply states that shadow prices give us complete

control over inventories. To see this, note that E(1{∆1(y) > 0}a1) is the mean resource consump-

tion rate when we satisfy all customers with positive surplus utility, under shadow price vector

y. Accordingly, Jacobian matrix ∂
∂y E(1{∆1(y) > 0}a1) maps marginal shadow price changes to

marginal consumption rate changes. This matrix being full rank ensures that we can control the

inventory burn rate in a linearly independent fashion by fine-tuning y. For example, marginally

shifting the shadow price in the direction of ( ∂
∂y E(1{∆1(y) > 0}a1))−1ei would marginally decrease

the consumption of the ith resource, without changing that of the other resources.

Here’s a simple sufficient condition that implies Assumption 6.

Example 1. Suppose that given a1, utility u1 has bounded and continuous conditional density

function g(u1 : a1), which almost surely satisfies g(a′1y
β
∞ : a1) > 0. Further, suppose that E(a1a

′
1)

is non-singular. �

The following lemma is equivalent to Assumption 6, so you can consider it an alternative

assumption:

Lemma 1. The limiting problem’s second derivative is positive and continuous at its minimizer:

Hessian matrix Λ̈∞(y) ≡ ∂2

∂y2
Λb∞(y) = − ∂

∂y E(1{∆1(y) > 0}a1) exists, is positive definite (and

hence full rank), and its elements are continuous in y in a neighborhood of yβ∞.

Combining Lemma 1 with Assumption 5 yields the following sister lemma via the implicit function

theorem.

Lemma 2. Limiting shadow prices are locally differentiable in the resource vector: if b is sufficiently

close to β, then Λb∞ has a unique minimizer, yb∞ > 0, which is continuously differentiable—and

hence Lipschitz continuous—in b, with ∂
∂by

b
∞ = −Λ̈∞(yb∞)−1.

Together, Lemmas 1 and 2 imply that Λ̈∞(yb∞)—the Hessian matrix of Λb∞ at its minimum—is

continuous in b in a neighborhood of β. Accordingly, {ωbi}i∈[m] and {σbi}i∈[m] are likewise continuous

in b, where ωbi is an eigenvector of Λ̈∞(yb∞) with eigenvalue σbi . Further, since Λ̈∞(yb∞) is positive
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definite, we can take {ωbi}i∈[m] to be orthonormal and take {σbi}i∈[m] to be real numbers that satisfy

σb1 ≥ · · · ≥ σbm > 0 (provided that b is sufficiently close to β).

Lemma 1 also implies that

Λ̇b∞(y) ≡ ∂
∂yΛb∞(y) = b− E(1{∆1(y) > 0}a1) (23)

exists and is continuous in y a neighborhood of yβ∞. Unfortunately, the finite analog, Λbt , is not

always differentiable, but when it is, its gradient equals subgradient

Λ̇bt(y) ≡ b−
t∑

s=1

1{∆s(y) > 0}as/t. (24)

Our model is now fully characterized. Thus, we are now ready for the primary results.

Theorem 1. The optimal policy of the online linear program without learning yields an expected

regret that grows at no more than a log n asymptotic rate: E(Rn) = O(log n) as n → ∞ when

distribution µ is known to the decision maker.

Theorem 2. The optimal policy of the online linear program with learning yields an expected regret

that grows at no more than a log n asymptotic rate: E(Rn) = O(log n) as n→∞ when distribution

µ is unknown to the decision maker.

Theorem 3. The optimal policy of the online linear program without learning yields an expected

regret that grows at no less than a log n asymptotic rate: E(Rn) = Ω(log n) as n → ∞ when

distribution µ is known to the decision maker.

Corollary 1. The optimal policy of the online linear program with learning yields an expected regret

that grows at no less than a log n asymptotic rate: E(Rn) = Ω(log n) as n→∞ when distribution

µ is unknown to the decision maker.

Since knowing µ won’t decrease your regret, Corollary 1 follows immediately from Theorem 3,

and Theorem 1 follows immediately from Theorem 2. However, I don’t call Theorem 1 a corollary

because I provide an independent proof for it. Indeed, I will use the proof of Theorem 1 as a

stepping stone to the proof of Theorem 2.

Also note that the single-dimensional results of Section 3 and Lueker (1998) imply none of the

multi-dimensional results above—the previous findings establish that an online linear program can

exhibit log n regret, but not that it must do so. Naturally, the regret could be larger for the “harder”

21



online linear program, but the regret also be smaller. Indeed, while an additional restriction cannot

increase the objective value, it can decrease the regret by burdening the offline problem more than

the online problem. For instance, Examples 2 and 3 illustrate that adding a second constraint can

reduce the expected regret from Θ(log n) to o(1) in the multisecretary problem, and from Θ(log n)

to O(1) in Arlotto and Xie’s (2020) stochastic knapsack problem. Hence, some constraints negate

the log n regret rate; I must prove that all such negating constraints violate our assumptions.

Further, increasing the dimesionality can lower the regret by helping the period-t inventory

vector, bt, escape the neighborhood of β for which the expected myopic regret is high. Indeed,

since we have imposed only local restrictions on the demand function, we can lower bound the

myopic regret only when bt lies in some ball Bδ(β). And the more dimensions Bδ(β) has, the easier

it is for bt to break free.

Finally, even if we imposed global demand restrictions so that all Rm
>0 had uniformly high

myopic regrets, we still couldn’t easily collapse the state space to a single dimension. The natural

state space collapse would project the resource and inventory vectors onto shadow prices, defining

ãt ≡ a′ty
β
n/||yβn || and b̃t ≡ b′ty

β
n/||yβn ||. But this projection doesn’t neatly transform the model into

Lueker’s (1998) framework, because the shadow prices we project onto are a function of the data,

which makes the resulting ãt values interdependent.

Example 2. Consider the multisecretary problem of Section 3.1, but with an additional payroll

budget constraint: now, in addition to the nβ available positions, you also start with nβ/2 dollars,

which you use to pay your workforce. The tth man commands wage ut, so the applicants all yield

the same bang for the buck. By design, you will almost certainly run out of money before you fill

all the positions when n is large, both under the optimal online and offline policies. Hence, only

your payroll budget constraint is relevant as n→∞. But you will never regret how you spend this

budget because every dollar yields the same marginal utility. Accordingly, the regret must go to

zero, almost surely, as n→∞. �

Example 3. Suppose you sequentially decide which of n items to add to a knapsack with volume

n/4. The item volumes are independent uniform random variables, but the item values are all one

dollar, so you want to add small items to your backpack. Lueker’s (1998) theorem indicates that

this problem has Θ(log n) expected regret. But now suppose you have an A backpack and a B

backpack, both with volume n/4. And suppose each item comprises an A part, which can be stored

only in the A backpack, and a B part, which can be stored only in the B backpack. Furthermore,

suppose that the volume of the A part is a uniform random variable and that the volume of the B
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part is one minus the volume of the A part, and hence also a uniform random variable. Finally, you

get a dollar for each part you add to a backpack. Now, if you could put one part of an item in a

knapsack and not the other part, your problem would decompose into two independent problems,

each with Θ(log n) expected regret. But if putting one part of an item into a backpack compels

you to put the other part in the other backpack, then your regret is only O(1). To see this, note

that your regret will be proportional to the leftover space in one backpack when the other one is

filled, and Corollary 4 establishes that this wasted capacity is O(1) under Algorithm 2. �

4.2 Dual Convergence Results

Everything boils down to shadow prices, so we can only make progress once we understand how

ybt converges to yb∞. I will thus begin the analysis by presenting four propositions that crisply

characterize the shadow prices’ limiting behavior.

Proposition 3. There exists δ > 0 such that
√
t(ybt − yb∞)

d→ N (0,Σb) for all b ∈ Bδ(β), where

Σb ≡ Λ̈∞(yb∞)−1 Cov(1{∆1(yb∞) > 0}a1)Λ̈∞(yb∞)−1 is full rank and continuous in b ∈ Bδ(β).

Unfortunately, this proposition proved less helpful than I had hoped because the rate of convergence

could depend on b—i.e., the magnitude of t required to ensure that
√
t(ybt − yb∞) ≈ N (0,Σb) could

be unbounded in any neighborhood of β. This, unfortunately, won’t do because I’ll need to invoke

my convergence results at a random value of bt. Hence, rather than Proposition 3, I will use the

following results, which control the limiting shadow prices uniformly across b ∈ Bδ(β).

Proposition 4. There exists δ > 0 such that E(supb∈Bδ(β) ||ybt − yb∞||
2
) = O(1/t).

Proposition 5. There exists δ > 0 such that E(infb∈Bδ(β) ||ybt − yb∞||
2
) = Ω(1/t).

Corollary 2. There exists δ > 0 such that the covariance matrix of ybt has a Θ(1/t) spectral norm,

for all b ∈ Bδ(β).

Note, positioning the supb∈Bδ(β) and infb∈Bδ(β) terms inside of the expectations makes these

results especially strong. We’ll need this extra strength to bound the regret when µ is unknown, in

which case shadow prices and inventory vectors become tangled. (Jiang et al. (2022) independently

developed a supb∈Bδ(β)-free version of Proposition 4.)

Proposition 4 is a stronger version of Li and Ye’s (2022) first theorem, which states that

E(||ybt − yb∞||
2
) = O((log log t)/t). I had to shave off the repeated logarithms to derive a sharp

log n upper bound. I did so with a new approach. I first bounded the difference between ybt and yb∞
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with the difference between the limiting gradient, Λ̇b∞(·), and its finite analog, Λ̇bt(·), evaluated at the

shadow price midway point, ŷbt ≡ (ybt+y
b
∞)/2. But ŷbt is difficult to work with, so I then bounded the

expected value of ||Λ̇bt(ŷbt )− Λ̇b∞(ŷbt )||
2

with the expected value of sup
y∈B2ε(y

β
∞)
||Λ̇bt(y)− Λ̇b∞(y)||2.

Finally, I bounded the expected value of this supremum with a classic empirical processes result.

I also used empirical processes to prove Proposition 5, which will permit the corresponding

lower regret bound. Specifically, I establish this result by showing that
√
t(ybt − ybt ) is near γ ∈ Rm

if
√
t(Λ̇βt (y)− Λ̇β∞(y)) is near Λ̈∞(yβ∞)γ for all y in a neighborhood of yβ∞, and this latter condition

holds because the mapping (j, y) 7→
√
te′j(Λ̇

b
t(y) − Λ̇b∞(y)) converges to a sufficiently well-behaved

Gaussian process, indexed by y and j.

While the previous propositions establish that our shadow price variances falls linearly with t,

the following proposition and corollary show that their tails falls exponentially with t.

Proposition 6. For all p ≥ 0, there exist δ, C > 0 such that E
(

supb∈Bδ(β) 1{ybt /∈ Bε(yb∞)}||ybt − yb∞||
p) ≤

exp(−Cε2t) for all sufficiently small ε > 0 and sufficiently large t.

Corollary 3. There exist δ, C > 0 such that Pr
(

supb∈Bδ(β) ||ybt − yb∞|| > ε
)
≤ exp(−Cε2t) for all

sufficiently small ε > 0 and sufficiently large t.

Whereas Li and Ye’s (2022) third proposition establishes a concentration of measure for random

subgradient Λ̇bt(y
b
∞), Corollary 3 establishes a concentration of measure for random shadow price

ybt . This latter result is far harder to prove because ybt is not a sum of i.i.d. random variables, unlike

Λ̇bt(y
b
∞). I establish the shadow price concentration of measure by projecting the shadow prices onto

the subgradient of the dual value function at many points. These projections yield inequalities that

describe a small box around ybt and yb∞. This box has random faces, so its walls don’t meet at

90-degree angles, but the angles exhibit a concentration of measure, so the probability that the

wall’s fluctuations undermine the box’s integrity falls exponentially fast with t.

4.3 Upper Bound with Known Distribution

I will now prove Theorem 1 by showing that Algorithm 2 honors its O(log n) bound. I will begin

by showing that the inventory levels follow a martingale under this algorithm. This martingale

property concentrates the distribution of bt to the small neighborhood of β for which our lemmas

apply. Next, I will express the values received under Algorithm 2 and those received under the

optimal algorithm with Bellman-style recurrence relations. I will then combine these recurrence

relations to create an analogous regret recurrence relation, which I will unravel to create a corre-
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sponding regret recurrence relation. Finally, I will bound this decomposition’s myopic regret with

our shadow price convergence results.

Algorithm 2 satisfies the period-t customer if and only if (i) there is inventory enough to do

so (i.e., tbt ≥ at) and (ii) the customer has positive surplus utility under the fluid-approximation

shadow prices (i.e., ∆t(y
bt
∞) > 0). Under this policy, the inventory vector follows a martingale: for

t > 1, bt ≥ α/t, and bt sufficiently close to β, we have

E(bt−1 : bt) = E(ψbtt (xtat) : bt)

= (tbt − E(1{∆t(y
bt
∞) > 0}at : bt))/(t− 1)

= (tbt − bt + Λ̇bt∞(ybt∞))/(t− 1)

= bt + Λ̇bt∞(ybt∞)/(t− 1)

= bt.

This martingale property implies the following, via the Azuma–Hoeffding inequality.

Lemma 3. The inventory vector abides by a concentration of measure, under Algorithm 2: for all

δ > 0, there exists C > 0 such that Pr(bt /∈ Bδ(β)) ≤ exp(−Ct), for all sufficiently large t.

This result is stronger than one Li and Ye (2022) used. To see this, let τ(δ) represent the first

time that bt leaves Bδ(β):

τ(δ) ≡

0 {bt : t ∈ [n]} ⊂ Bδ(β),

max{t : bt /∈ Bδ(β)} otherwise.
(25)

Li and Ye proved that their algorithm yields E(τ(δ)) = O(log n log logn)—i.e., that it constrains the

resource vector for all but the lastO(log n log logn) periods. But I couldn’t use thisO(log n log log n)

result to derive aO(log n) regret bound, so I had to sharpen their finding. To my surprise, I managed

to tighten it O(1), as the following corollary explains.

Corollary 4. The time remaining after the resource vector leaves a given neighborhood of β is

asymptotically independent of n, under Algorithm 2: E(τ(δ)) = O(1) as n→∞, for all δ > 0.

Algorithm 2.

1. input n, β, {ut}nt=1, {at}nt=1, µ
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2. initialize bn := β

3. for t from n to 1 do

(a) set xt := 1{∆t(y
bt
∞) > 0}1{tbt ≥ at}

(b) set bt−1 := ψbtt (xtat)

4. end for

5. output {xt}nt=1

Algorithm 2 yields total value v̄n, where

v̄t ≡ 1{∆t(y
bt
∞) > 0}1{tbt ≥ at}ut + v̄t−1 (26)

and v̄0 ≡ 0.

Since the optimal policy is no worse than our martingale policy, we have

E(R̄n) ≥ E(Rn) (27)

where R̄t ≡ V̄ bt
t − v̄t.

Accordingly, it will suffice to show that E(R̄n) = O(log n).

I will now present some basic linear programming identities to express regret R̄n in terms of

shadow prices. First, note that we can express the problem in (18) recursively:

V̄ b
t ≡

maxxt∈[0,1] xtut + V̄
ψbt (xtat)
t−1 tb ≥ at,

V̄
ψbt (0)
t−1 tb < at.

(28)

Second, since the shadow price weakly decreases with the inventory level, we have the following for

x ∈ [0, 1] and tb ≥ at:

(1− x)a′ty
ψbt (0)
t−1 ≤ V̄ ψbt (xat)

t−1 − V̄ ψbt (at)
t−1 ≤ (1− x)a′ty

ψbt (at)
t−1 (29)

xa′ty
ψbt (0)
t−1 ≤ V̄ ψbt (0)

t−1 − V̄ ψbt (xat)
t−1 ≤ xa′ty

ψbt (at)
t−1 . (30)

Third, ∆t(y
bt
∞) > 0 and tbt ≥ at imply bt−1 = ψbtt (at) and hence v̄t−1 = V̄

ψ
bt
t (at)

t−1 −R̄t−1. Accordingly,
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lines (26)–(29) yield the following, when ∆t(y
bt
∞) > 0 and tbt ≥ at:

R̄t =V̄ bt
t − v̄t

= max
x∈[0,1]

utx+ V̄
ψ
bt
t (xat)

t−1 − ut − v̄t−1

= max
x∈[0,1]

ut(x− 1) + V̄
ψ
bt
t (xat)

t−1 − V̄ ψ
bt
t (at)

t−1 + R̄t−1

≤ max
x∈[0,1]

ut(x− 1) + (1− x)a′ty
ψ
bt
t (at)

t−1 + R̄t−1

=(a′ty
ψ
bt
t (at)

t−1 − ut)+ + R̄t−1

=∆t(y
ψ
bt
t (at)

t−1 )− + R̄t−1. (31)

Analogously, if ∆t(y
bt
∞) ≤ 0 and tbt ≥ at then (26), (28), and (30) yield

R̄t ≤∆t(y
ψ
bt
t (0)

t−1 )+ + R̄t−1, (32)

And if tbt < at then (26) and (28) yield

R̄t = R̄t−1. (33)

Finally, since V̄ bt
t can’t exceed the sum of the remaining utilities, we must also have

R̄t ≤
t∑

s=1

us + R̄t−1. (34)

Now combining inequalities (31)–(34) inductively yields the following, for sufficiently small δ > 0:

R̄n ≤
n∑
t=1

rt, (35)

where rt ≡ 1{bt /∈ Bδ/2(β)}
t∑

s=1

us

+ 1{bt ∈ Bδ/2(β)}1{∆t(y
bt
∞) > 0}∆t(y

ψ
bt
t (at)

t−1 )−

+ 1{bt ∈ Bδ/2(β)}1{∆t(y
bt
∞) ≤ 0}∆t(y

ψ
bt
t (0)

t−1 )+.

Note, I condition on bt ∈ Bδ/2(β), because that implies ψbtt (0), ψbtt (at) ∈ Bδ(β), when t is large.

Finally, combining lines (27) and (35) with the following lemma yields Theorem 1.
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Lemma 4. The expected period-t myopic regret is O(1/t) under Algorithm 2: there exists C > 0

such that E(rt) ≤ C/t, for all n ∈ N and t ≤ n.

To control the first term of the myopic regret, I use the fact that E(
∑t

s=1 us) increases linearly

in t, whereas Pr(bt /∈ Bδ/2(β)) falls exponentially, by Lemma 3. To control the second term, I bound

E(1{∆t(y
bt
∞) > 0}∆t(y

ψ
bt
t (at)

t−1 )−) in terms of E(supb∈Bδ(β) ||ybt−1 − yb∞||
2
), E(supb∈Bδ(β) 1{ybt−1 /∈

Bε(y
b
∞)}||ybt−1 − yb∞||), and Pr(supb∈Bδ(β) ||ybt − yb∞|| > ε), and then apply Propositions 4 and 6

and Corollary 3. And I control the third term similarly since the argument also holds in the mirror

image.

4.4 Upper Bound with Unknown Distribution

I will now prove Theorem 2 by showing that Algorithm 3 honors its O(log n) bound. The only

difference between Algorithms 2 and 3 is that the former uses limiting shadow price ybt∞, which

requires knowledge of µ, whereas the latter uses look-back shadow price y
←−
bt
t , which is an estimate

of ybt∞ given the data observed up until period t + 1. More specifically y
←−
bt
t is a minimizer of the

backwards-looking problem

Λ←−
b
t(y) ≡ b′y +

n∑
s=t+1

∆s(y)+/(n− t). (36)

Our shadow price convergence results hold for look-back shadow prices but with (n − t)-

period scaling rather than t-period scaling. For example, Proposition 4 implies that E(1{bt ∈

Bδ(β)}|| y
←−
bt
t − ybt∞||

2
) = O(1/(n − t)). (Note that this would not be the case if the proposition

positioned the supb∈Bδ(β) term outside of the expectation, since bt correlates with the random map

b 7→ y
←−
b
t .)

Algorithm 3.

1. input n, β, {ut}nt=1, {at}nt=1

2. initialize bn := β

3. for t from n to 1 do

(a) set xt := 1{∆t( y←−
bt
t ) > 0}1{tbt ≥ at}

(b) set bt−1 := ψbtt (xtat)
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4. end for

5. output {xt}nt=1

While the inventory vector does not follow a martingale under Algorithm 3, as it does under

Algorithm 2, we can still exercise control over its trajectory for all but O(1) periods, as the following

results establish.

Lemma 5. The inventory vector abides by a concentration of measure, under Algorithm 3: for all

δ > 0, there exists C > 0 such that Pr(bt /∈ Bδ(β)) ≤ exp(−C min(t,
√
n)), for all sufficiently large

t ≤ n.

Corollary 5. The time remaining after the resource vector leaves a given neighborhood of β is

asymptotically independent of n, under Algorithm 3: E(τ(δ)) = O(1) as n→∞, for all δ > 0.

The critical insight underlying Lemma 5 is that bt can’t escape Bδ/2(β) in less than Ω(n) time,

and hence without first generating an Ω(n)-sized sample of training data. This means that by the

time the {bt}1t=n process has made it halfway out of Bδ(β)—i.e., departed Bδ/2(β)—our look-back

shadow prices are accurate enough to (almost) guarantee that it can’t traverse the second half.

This property enables us to restrict attention to the periods with accurate look-back shadow prices

(i.e., periods after time τ(δ/2)).

But controlling the evolution of {bt}1t=n is difficult even when look-back shadow prices are

accurate. The problem is that while bt is independent of the mapping b 7→ ybt , it is not independent

of the mapping b 7→ y
←−
b
t . Indeed, the inventory vectors and look-back shadow prices intertwine in

a complex dance. To extricate bt from this pas de deux, I decompose it into three parts: bτ(δ/2)+1,∑τ(δ/2)
s=t bs−E(bs : bs+1), and

∑τ(δ/2)
s=t E(bs : bs+1)− bs+1. By definition, the first part is within δ/2

of β. The second part follows a martingale and thus concentrates about zero. And the third part

is small, provided that y
←−
bs
s is near ybs∞, for all s ∈ {t + 1, · · · , τ(δ/2) + 1}. Crucially, τ(δ/2) will

be small enough to ensure that this holds with high probability, provided that bs is near β for all

s ∈ {t + 1, · · · , τ(δ/2) + 1}. And thus, I can inductively establish the result: bs being near β for

s ∈ {t+1, · · · , τ(δ/2)+1} implies that y
←−
bs
s is near ybs∞ for s ∈ {t+1, · · · , τ(δ/2)+1}, which implies

that
∑τ(δ/2)

s=t E(bs : bs+1)− bs+1 is small, which implies that bt is near β.

Having reigned in our inventory vectors, we are ready to decompose our regret. The analysis of
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the previous section yields the following:

R̄n ≤
n∑
t=1

rt, (37)

where rt ≡ 1{bt /∈ Bδ/2(β)}
t∑

s=1

us

+ 1{bt ∈ Bδ/2(β)}1{∆t( y←−
bt
t ) > 0}∆t(y

ψ
bt
t (at)

t−1 )−

+ 1{bt ∈ Bδ/2(β)}1{∆t( y←−
bt
t ) ≤ 0}∆t(y

ψ
bt
t (0)

t−1 )+.

The only differences between lines (35) and (37) is that R̄n and bt now correspond to Algorithm 3,

rather than that Algorithm 2, and y
←−
bt
t has replaced ybt∞.

Finally, combining lines (27) and (37) with the following lemma yields Theorem 2.

Lemma 6. The expected period-t myopic regret is O(1/t) +O(1/(n− t)) under Algorithm 3: there

exists C > 0 such that E(rt) ≤ C/t+ C/(n− t), for all n ∈ N and t ≤ n.

This lemma is the same as Lemma 4, except now both the O(1/
√
t) errors between ybtt and ybt∞

and the O(1/
√
n− t) errors between y

←−
bt
t and ybt∞ contribute to your regret.

4.5 Lower Bound with Known Distribution

I will now prove Theorem 3 by creating a lower-bounding version of the methodology developed

in Section 4.3. For example, the lower-bounding decomposition will depend on ∆t(y
ψ
bt
t (0)

t−1 )− and

∆t(y
ψ
bt
t (at)

t−1 )+ (as opposed to ∆t(y
ψ
bt
t (at)

t−1 )− and ∆t(y
ψ
bt
t (0)

t−1 )+); the lower-bounding version of Lemma

3 will ensure the proximity of bt and β under the optimal algorithm (as opposed to Algorithm 2);

and the lower-bounding version of Lemma 4 will establish that the expected myopic regret is Ω(1/t)

(as opposed to O(1/t)).

In this section {bt}1t=n will characterize the inventory levels that correspond to the optimal

actions specified in line (14): bn = β and bt−1 = ψbtt (πbtt at). Unfortunately, we now have little

control over {bt}1t=n, because the optimal policy is unknown. Nevertheless, we can still situate bt

near β for a substantial time interval.

Lemma 7. The inventory vector tends to lie near β under the optimal policy for most of the

second half of the horizon: For all δ > 0, if n is sufficiently large then n3/4 ≤ t ≤ n/2 implies

Pr(bt /∈ Bδ/2(β)) ≤ n−1/2.
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This lemma was the hardest result in this article to prove because the optimal policy is opaque.

Generalizing the technique developed in Section 3.3, I argue that the regret incurred when bt strays

from β is at least as large as the value sacrificed when we chop the linear program into two separate

problems, one with horizon t and endowment tbt and the other with horizon n− t and endowment

nβ − tbt. The concavity of V̄ b
t in b ensures that this division is costly when bt meaningfuly differs

from β.

As before, we will benchmark against the offline linear program, line (18), rather than the offline

integer program, line (16). The following result will enable us to do so:

E(Rn) = E(Rn) +O(1), (38)

where Rt ≡ V̄ bt
t − v

bt
t .

Line (38) holds because the linear program has a solution that partially satisfies at most m cus-

tomers, and thus the integer program must derive at least as much value from resource endowment

β as the linear program does from resource endowment β −mα/n: V β
n ≥ V̄ β−mα/n

n . And since the

shadow price decreases in the inventory level, this implies that V β
n ≥ V̄ β

n −mα′yβ−mα/nn , and hence

that Rn ≥ V̄ β
n − vβn −mα′yβ−mα/nn . Finally, Proposition 4 indicates that E(y

β−mα/n
n ) = O(1) as

n→∞, which establishes the result.

I will now create the lower-bounding version of our regret decomposition. First, note that

πbtt = 1 implies bt−1 = ψbtt (at), and hence v
ψ
bt
t (at)

t−1 = V̄
ψ
bt
t (at)

t−1 −Rt−1. Also, πbtt = 1 implies tbt ≥ at,

which with lines (28) and (29) yield

Rt ≡ V̄ bt
t − v

bt
t

= max
xt∈[0,1]

xtut + V̄
ψ
bt
t (xtat)

t−1 − ut − v
ψ
bt
t (at)

t−1

= max
xt∈[0,1]

(xt − 1)ut + V̄
ψ
bt
t (xtat)

t−1 − V̄ ψ
bt
t (at)

t−1 +Rt−1

≥ max
xt∈[0,1]

(xt − 1)ut + (1− x)a′ty
ψ
bt
t (0)

t−1 +Rt−1

= (a′ty
ψ
bt
t (0)

t−1 − ut)+ +Rt−1

= ∆t(y
ψ
bt
t (0)

t−1 )− +Rt−1.
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Analogously, if πbtt = 0 and tbt ≥ at then lines (28) and (30) yield

Rt ≥∆t(y
ψ
bt
t (at)

t−1 )+ +Rt−1.

Further, we always trivially have

Rt ≥Rt−1.

Now choose δ > 0 small enough to ensure that δι ≤ β, where ι is a vector of ones. In this case,

bt ∈ Bδ/2(β) implies tbt ≥ at for t ≥ 2||α||/δ, which with our previous three inequalities inductively

implies

Rn ≥
n∑

t=d2||α||/δe

rt, (39)

where rt ≡1{bt ∈ Bδ/2(β)}
(
πbtt ∆t(y

ψ
bt
t (0)

t−1 )− + (1− πbtt )∆t(y
ψ
bt
t (at)

t−1 )+
)
.

Finally, combining lines (38) and (39) with the following lemma yields Theorem 3.

Lemma 8. The expected period-t myopic regret is Ω(1/t) under the optimal policy for most of the

second half of the horizon: There exists C > 0 such that E(rt) ≥ C/t, for all sufficiently large t

that satisfies n3/4 ≤ t ≤ n/2.

To establish this result, I show that if bt ∈ Bδ/2(β)—which happens with high probability, by

Lemma 7—then
√
t(ybtt −ybt∞) could be near any γ ∈ Rm. Accordingly, both Type I errors—rejecting

customers that should have been satisfied—and Type II errors—satisfying customers that should

have been rejected—are unavoidable because the shadow price can always be larger or smaller than

anticipated. Specifically, I show that there’s at least a Ω(1/
√
t) chance that both the expected

Type I and Type II errors are Ω(1/
√
t).

5 Conclusion

I began this project by investigating what happens when we extend secretary valuations from the

finite set {v1, · · · , vj} to infinite set [0, 1] in Arlotto and Gurvich’s (2019) multisecretary model. I

found that this extension invalidates Arlotto and Gurvich’s (2019) finite regret bound. Why is this?

Well, in the former case, secretaries are interchangeable parts, which means that your hiring errors
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can be “undone” in the future. For example, you can confidently reject the marginal candidate in

Arlotto and Gurvich’s setting because you’ll almost certainly see his like again (many times over).

But no two men are alike when values are drawn from the uniform distribution. So, in this case,

your hiring mistakes cannot be undone—they will linger forever, making you ever more regretful.

Alright, fine, so your regret increases. But why does it do so at a log(n) rate? Well, suppose

there are n applicants for nβ open positions, and the first man you interview has utility un. Do you

classify him as “hired” or “not hired”? Like all classification problems, you must balance between

the threat of a Type I error and a Type II error. You make a Type I error when you extend a

job offer and the “shadow price” of an open position exceeds un—in this case, you took the slot

of a more deserving applicant. And you make a Type II error when you don’t extend an offer

and un exceeds the “shadow price” of an open position—in this case, you reserved the slot for an

inferior applicant. The “shadow price” of a position equals the utility of the (nβ)th best man out

of the remaining n− 1 candidates, which is order statistic hnβn−1. Hence, you must try to anticipate

whether or not un exceeds hnβn−1. Fortunately, the standard deviation of hnβn−1 drops like 1/
√
n, so

we can think of hnβn−1 as residing in a “confidence interval” whose length is on the order of 1/
√
n.

This has two implications. First, you’ll only have around a 1/
√
n chance of making a hiring mistake

because the optimal action is unambiguous when un falls outside the confidence interval. Second,

the cost of a hiring mistake is also around 1/
√
n because the capability of the man you should have

hired and the capability of the man you did hire both reside in the confidence interval. Thus, the

expected regret of your period-n decision will be on the order of 1/
√
n︸ ︷︷ ︸

mistake probability

· 1/
√
n︸ ︷︷ ︸

mistake cost

= 1/n,

which means that your total regret grows like the harmonic series.

The same principle applies to the more general online linear program, but extending the tight

O(log n) and Ω(log n) bounds to this problem necessitated more refined control over shadow prices.

Hence, I precisely characterize the convergence of dual variable ybt to its deterministic limit, yb∞.

Specifically, I develop weak conditions in which

•
√
t(ybt − yb∞) converges to a multivariate normal for all b ∈ Bδ(β),

• Pr(supb∈Bδ(β) ||ybt − yb∞|| > ε) falls exponentially fast in t,

• E(supb∈Bδ(β) ||ybt − yb∞||
2
) = O(1/t), and

• E(infb∈Bδ(β) ||ybt − yb∞||
2
) = Ω(1/t).

Further, since the supb∈Bδ(β) and infb∈Bδ(β) terms lie inside of the expectation, we can apply these
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bounds to random values of bt, even if they correlate with shadow prices. This was the key to

accommodating the most interesting aspect of the problem: online learning.
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Notes

1 I got the idea for compensated coupling from Arcidiacono and Miller (2011), which used a similar technique to

structurally estimate dynamic programs.

2 To see that the expected regret with nβ initial open slots equals that with n(1 − β) initial open slots, note

that we can re-express the problem of maximizing the capability of each of the nβ men you hire to maximizing one

minus the capability of the n(1− β) men you reject. But one minus a uniform is also a uniform, so this mirror image

problem must yield mirror image regrets.

3 I make three minor changes to the online linear programming model: I impose additional non-negativity con-

straints, u1, a1 ≥ 0, I do not include constraints that are slack in the limit, and I use a cleaner version of the continuous

value assumption, which I inherited from Lueker (1998). The first two modifications are trivial: Accommodating

negative u1 and a1 would be simple because all that matters is the difference, ∆1(y) = u1 − a′1y. And a simple

concentration of measure argument establishes that a constraint that does not bind in the limit has only a O(1)

effect on the expected regret because the probability of it binding decreases exponentially fast in n. (I incorporated

constraints that are slack in the limit in a previous version of the manuscript.) The third change is more noteworthy,

because Assumption 6 is more straightforward and flexible. For example, this assumption permits unbounded shadow

prices and hence unbounded utilities, and it extends the model to cover Arlotto and Xie’s (2020) specification.
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List of Symbols

[x] the set {1, · · · , x}
x ∧ y vector with ith element min(xi, yi)

x ∨ y vector with ith element is max(xi, yi)

x+ max(0, x)

x− max(0,−x)

ej unit vector indicating jth position

ι vector of ones

1{} indicator function

Bδ(b) open ball with radius δ about b

m number of resources to manage

n number of time periods

t generic time period

bt inventory vector, defined as period-t inventory holdings divided by t

b generic inventory vector

β initial inventory vector

τ(δ) first time inventory vector leaves Bδ(β) line (25)

ut utility received by satisfying period-t customer

at resources consumed by satisfying period-t customer

∆t surplus utility function line (20)

µ joint distribution of (ut, at) Assumption 1

α upper bound on at Assumption 4

xt period-t decision variable

ψbt function determining period-(t− 1) inventory vector line (13)

πbt optimal action line (14)

vbt online objective value line (15)

v̄t martingale-policy objective value line (26)

V bt offline objective value line (16)

V̄ bt offline objective value with linear programming relaxation line (18)

Rn regret line (17)

R̄t upper-bound regret relaxation line (27)

Rt lower-bound regret relaxation line (38)

rt myopic regret lines (35), (37), and (39)

Λbt dual objective line (19)

Λ←−
b
t look-back dual objective line (36)

Λ̇t dual objective subgradient line (24)

Λb∞ limiting dual objective line (22)

Λ̇∞ limiting dual gradient line (23)

Λ̈∞ limiting dual Hessian Lemma 1

ωbi ith orthonormal eigenvector of limiting dual Hessian below Lemma 2

σbi ith largest eigenvalue of limiting dual Hessian below Lemma 2

ybt dual optimal solution line (21)

y
←−
b
t look-back dual optimal solution before line (36)

yb∞ limiting dual optimal solution Assumption 5 and Lemma 2

y generic dual solution
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ONLINE APPENDIX OF PROOFS

Lemma 1 Proof. Assumption 6 implies that the event ∆1(y) = 0 and a1 6= 0 has measure zero, for

y sufficiently close to yβ∞. Hence, ∆1(y)+ is almost surely differentiable in y, which means that

∂
∂yΛb∞(y) = ∂

∂y

(
b′y + E(∆1(y)+)

)
= b+ E

(
∂
∂y∆1(y)+

)
= b− E(1{∆1(y) > 0}a1).

Note we can commute the expectation and differentiation because a1 is bounded. Combining the

derivative above with Assumption 6 and the convexity of Λb∞ implies the result.

Lemma 2 Proof. Assumption 5 and Lemma 1 imply that (i) Λ̇β∞(yβ∞) = 0, (ii) Λ̈∞(yβ∞) is non-

singular, and (iii) Λ̇b∞(y) is continuously differentiable in y near yβ∞. Further, Λ̇b∞(y) is continuously

differentiable in b, since ∂
∂b Λ̇

b
∞(y) = I (see the proof of Lemma 1). Accordingly, the implicit function

theorem establishes that each b in a neighborhood of β has a corresponding shadow price vector

yb∞ that has continuous derivative ∂
∂by

b
∞ = − ∂

∂y Λ̇b∞(y)−1 ∂
∂b Λ̇

b
∞(y)|y=yb∞

= −Λ̈b∞(yb∞)−1. Further,

yb∞ must be the unique minimizer of Λb∞ for b near β, because Λ̇b∞(yb∞) = 0 and Λ̈∞(y) is positive

definite for y near yβ∞.

Corollary 1 Proof. This follow immediately from Theorem 3.

Proposition 3 Proof. I will first establish that Σb is continuous and full rank for all b in a neigh-

borhood of β. Lemmas 1 and 2 imply the continuity, and Lemma 1 implies that Σb is full rank

if Cov(1{∆1(yb∞) > 0}a1) is full rank. If this latter matrix were not full rank, then there would

be some γ 6= 0 that almost surely satisfies 1{∆1(yb∞) > 0}a′1γ = E(1{∆1(yb∞) > 0}a′1γ), which

would imply that either (i) ∆1(yb∞) > 0, almost surely, or (ii) 1{∆1(yb∞) > 0}a′1γ = 0, almost

surely. The former case violates Assumption 6 because it implies that E(1{∆1(y+ dy) > 0}a′1γ) =

E(1{∆1(y) > 0}a′1γ) for dy ≤ 0, and the latter case violates Assumption 6 because it implies that

E(1{∆1(y + dy) > 0}a′1γ) = E(1{∆1(y) > 0}a′1γ) for dy > 0.

The fact that
√
t(ybt − yb∞)

d→ N (0,Σb) follows directly from theorem 2.13 of Kosorok (2008), so

it will suffice to show that the conditions of this theorem hold. To use follow Kosorok’s notation,
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define functions

my(u1, a1) ≡b′y + ∆1(y)+,

ṁ(a1) ≡||b||+ ||a1||,

and ṁ∞(u1, a1) ≡b− 1{∆1(yb∞) > 0}a1.

First, the Hessian matrix of E(my(u1, a1)) at y = yb∞ is Λ̈∞(yb∞), which is non-singular when b is

sufficiently close to β, by Lemmas 1 and 2. Second, Assumption 4 establishes that E(ṁ(a1)2) and

E(||ṁ∞(u1, a1)||2) are finite. Third, functions my and ṁ satisfy condition (2.18) of Kosorok (2008):

|my(u1, a1)−mz(u1, a1)| =b′y + ∆1(y)+ − b′z −∆1(z)+

≤(||b||+ ||a1||)||y − z||

=ṁ(a1)||y − z||.

Fourth, Assumption 6 ensures that functions my and ṁ∞ satisfy condition (2.19) of Kosorok (2008):

E
((
my(u1, a1)−myb∞

(u1, a1)− ṁ∞(u1, a1)′(y − yb∞)
)2)

= E
((

∆1(y)+ −∆1(yb∞)+ + 1{∆1(yb∞) > 0}a′1(y − yb∞)
)2)

= E
(
∆1(y)2|1{∆1(y) > 0} − 1{∆1(yb∞) > 0}|

)
≤E

(
(a′1y − a′1yb∞)2|1{∆1(y) > 0} − 1{∆1(yb∞) > 0}|

)
=||y − yb∞||

2
E
(
||1{∆1(y) > 0}a1 − 1{∆1(yb∞) > 0}a1||

2)
≤||α||||y − yb∞||

2
E
(
1{∆1(y ∧ yb∞) > 0}a1 − 1{∆1(y ∨ yb∞) > 0}a1

)
≤||α||||y − yb∞||

2
O(||y − yb∞||)

=o(||y − yb∞||).

Finally, Proposition 4 establishes that ||ybt − yb∞||
p→ 0.

Proposition 4 Proof. Since Proposition 6 establishes that E(supb∈Bδ(β) 1{ybt /∈ Bε(yb∞)}||ybt − yb∞||
2
) =

o(1/t), it will suffice to show that E(supb∈Bδ(β) 1{ybt ∈ Bε(y
b
∞)}||ybt − yb∞||

2
) = O(1/t), for suffi-

ciently small ε > 0. I will establish this result with Theorems 2.14.2 and 2.14.5 of van der Vaart

and Wellner (1996). However, translating the problem into van der Vaart and Wellner’s empiri-

cal processes framework will take some effort. First, I bound the magnitude of ybt − yb∞ in terms

of the magnitude of Λ̇b∞(ŷbt ) − Λ̇bt(ŷ
b
t ), where ŷbt ≡ (ybt + yb∞)/2. Since ŷbt lies between the mini-

2



mizers of Λb∞ and Λbt , the vector ŷbt − yb∞ projects positively onto gradient Λ̇b∞(ŷbt ) and projects

negatively onto subgradient Λ̇bt(ŷ
b
t ). I use this fact to show that (ŷbt − yb∞)′(Λ̇b∞(ŷbt ) − Λ̇bt(ŷ

b
t )) is

larger than some fixed multiple of ||ŷbt − yb∞||
2
, which indicates that ||Λ̇b∞(ŷbt )− Λ̇bt(ŷ

b
t )|| is larger

than some fixed multiple of ||ybt − yb∞||. This, in turn, implies that the expectation of the maximum

of ||Λ̇bt(y)− Λ̇b∞(y)||2, across y in some small ball of yβ∞, is larger than some fixed multiple of the

expectation of 1{||ybt − yb∞|| ≤ ε}||ybt − yb∞||
2
. And bounding the expectation of the maximum of

||Λ̇bt(y)− Λ̇b∞(y)||2 is a classic empirical processes problem.

Now let’s get to the proof. First, Lemma 2 establishes that we can choose δ small enough so

that yb∞ ∈ Bε(y
β
∞) for all b ∈ Bδ(β), in which case ybt ∈ Bε(yb∞) implies ybt ∈ B2ε(y

β
∞), which in turn

implies ŷbt ∈ B3ε/2(yb∞), where ŷbt ≡ (ybt + yb∞)/2.

Second, let σbm denote the smallest singular value of Λ̈∞(yb∞). Lemmas 1 and 2 imply that we

can set δ small enough so that for all b ∈ Bδ(β) we have σbm ≥ σ
β
m/2, and hence

(ŷbt − yb∞)′Λ̈∞(yb∞)(ŷbt − yb∞) ≥ σβm||ŷbt − yb∞||
2
/2.

Next, note that Λ̇b∞(yb∞) = 0 implies

Λ̇b∞(ŷbt ) = Λ̇b∞(ŷbt )− Λ̇b∞(yb∞)

= Λ̈∞(yb∞)(ŷbt − yb∞) + o(||ŷbt − yb∞||),

where the little-o term holds uniformly across b ∈ Bδ(β). Accordingly, we can set ε small enough

so that ybt ∈ B2ε(y
β
∞) implies

||Λ̇b∞(ŷbt )− Λ̈∞(yb∞)(ŷbt − yb∞)|| ≤ σβm||ŷbt − yb∞||/4,

for all b ∈ Bδ(β). Now combining these last two results yields the following, for ybt ∈ B2ε(y
β
∞):

(ŷbt−yb∞)′Λ̇b∞(ŷbt )

= (ŷbt − yb∞)′Λ̈∞(yb∞)(ŷbt − yb∞)

+ (ŷbt − yb∞)′
(
Λ̇b∞(ŷbt )− Λ̈∞(yb∞)(ŷbt − yb∞)

)
≥ σβm||ŷbt − yb∞||

2
/2− ||ŷbt − yb∞||||Λ̇b∞(ŷbt )− Λ̈∞(yb∞)(ŷbt − yb∞)||

≥ σβm||ŷbt − yb∞||
2
/4.
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And combining this with (ŷbt − yb∞)′Λ̇bt(ŷ
b
t ) = (ybt − ŷbt )′Λ̇bt(ŷbt ) ≤ 0, which we get from Lemma 9,

yields the following, for ybt ∈ B2ε(y
β
∞):

||ŷbt − yb∞||||Λ̇b∞(ŷbt )− Λ̇bt(ŷ
b
t )||

≥ (ŷbt − yb∞)′(Λ̇b∞(ŷbt )− Λ̇bt(ŷ
b
t ))

≥ σβm||ŷbt − yb∞||
2
/4.

Hence, ybt ∈ B2ε(y
β
∞) implies

||Λ̇b∞(ŷbt )− Λ̇bt(ŷ
b
t )|| ≥ σβm||ŷbt − yb∞||/4 = σβm||ybt − yb∞||/8.

And thus, we have

E
(

sup
b∈Bδ(β)

1{ybt ∈ Bε(yb∞)}||ybt − yb∞||
2
)

≤ E
(

sup
b∈Bδ(β)

1{ybt ∈ B2ε(y
β
∞)}||ybt − yb∞||

2
)

≤ (8/σβm)2 E
(

sup
b∈Bδ(β)

1{ybt ∈ B2ε(y
β
∞)}||Λ̇bt(ŷbt )− Λ̇b∞(ŷbt )||

2
)

≤ (8/σβm)2 E
(

sup
b∈Bδ(β)

sup
y∈B2ε(y

β
∞)

||Λ̇bt(y)− Λ̇b∞(y)||2
)

= (8/σβm)2 E
(

sup
y∈B2ε(y

β
∞)

||Λ̇βt (y)− Λ̇β∞(y)||
2
)
,

where the last line holds because Λ̇bt − Λ̇b∞ is independent of b. Finally, Lemma 13 establishes that

the expectation in the last line is less than C/t, for some universal constant C > 0.

Proposition 5 Proof. This follows immediately from Lemma 10.

Corollary 2 Proof. This follows from Proposition 4 and Lemma 10.

Proposition 6 Proof. The proof hinges on two key results. The first result is that there exists

δ, C > 0 such that

Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| > ε
)
≤ 4m2 exp(−Cε2t), (40)

for all t ∈ N and sufficiently small ε > 0. The second result is that for all sufficiently large γ > 0

4



there exists δ, C > 0 such that

E
(

sup
b∈Bδ(β)

1{ybt /∈ Bγ1/p(0)}||ybt ||
p) ≤ exp(−Ct), (41)

for all sufficiently large t.

The p = 0 case follows immediately from the line (40). Deriving the p > 0 case from lines (40)

and (41) will take a bit more work. To that end, choose γ large enough so that γ ≥ supb∈Bδ(β) ||yb∞||
p
,

and hence ||ybt − yb∞|| ≤ ||ybt ||+γ1/p (Lemma 2 establishes that this is possible). And with this, lines

(40) and (41) imply that we can choose C > 0 so that we have the following for all sufficiently

small ε and large t:

E
(

sup
b∈Bδ(β)

1{ybt /∈ Bε(yb∞)}||ybt − yb∞||
p)

≤ E
(

sup
b∈Bδ(β)

1{ybt /∈ Bε(yb∞)}1{ybt /∈ Bγ1/p(0)}(||ybt ||+ γ1/p)p
)

+ E
(

sup
b∈Bδ(β)

1{ybt /∈ Bε(yb∞)}1{ybt ∈ Bγ1/p(0)}(||ybt ||+ γ1/p)p
)

≤ E
(

sup
b∈Bδ(β)

1{ybt /∈ Bε(yb∞)}1{ybt /∈ Bγ1/p(0)}2p||ybt ||
p)

+ E
(

sup
b∈Bδ(β)

1{ybt /∈ Bε(yb∞)}1{ybt ∈ Bγ1/p(0)}2pγ
)

≤ 2p E
(

sup
b∈Bδ(β)

1{ybt /∈ Bγ1/p(0)}||ybt ||
p)

+ 2pγ Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| > ε
)

≤ 2p exp(−Ct) + 2p+2γm2 exp(−Cε2t).

The inequality above establishes the p > 0 case. Hence, proving lines (40) and (41) will complete

the argument.

Before getting into the math, let me roughly sketch the proof of line (40). The key tool will

be Lemma 11, which is our only means for positioning ybt . The lemma corresponds to a set of

inequalities that describe a small box, which is roughly aligned with the orthonormal basis {ωbj}mi=1;

if these inequalities all hold, then the box is intact, and ybt resides inside of it. I will use this result to

bound the distance between ybt and yb∞ with the distances between Λ̇bt(y
b
∞+ ηkωbj) and ηkσbjω

b
j , for

j ∈ m, k ∈ {−1, 1}, and η > 0 (these latter distances being the constraints that ensure the integrity

of the box). This reframing simplifies the problem, because Λ̇bt(y
b
∞+ηkωbj) is a sum of i.i.d. bounded

variables. The second part of the proof replaces the ηkσbjω
b
j term in our distance measurements with

with Λ̇b∞(yb∞ + ηkωbj). This step is useful because Λ̇bt(y
b
∞ + ηkωbj)− Λ̇b∞(yb∞ + ηkωbj) is an empirical

5



process. The final part of the proof invokes a standard empirical process result to establish the

desired concentration of measure.

To begin the proof of line (40), note that Lemmas 1 and 2 imply that we can choose δ > 0

and ε > 0 small enough to ensure the existence and continuity of Λ̈∞ between yb∞ and yb∞ + ηkωbj ,

and small enough to ensure that σb1 ≤ 2σβ1 , σbm ≥ σβm/2 > 0, and yb∞ + ηkωbj ≥ 0, for all j ∈ [m],

k ∈ {−1, 1}, b ∈ Bδ(β), and η ≡ ε/(1 + 8
√
mσβ1 /σ

β
m). Now, with these conditions, we can use

Lemma 11 to bound the left-hand side of (40) in terms of more amenable subgradients:

Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| > ε
)

≤ Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| > η(1 + 2
√
mσb1/σ

b
m)
)

≤ Pr
(

sup
b∈Bδ(β)

max
j∈[m]

max
k∈{−1,1}

||Λ̇bt(yb∞ + ηkωbj)− ηkσbjωbj || − ησbm/(2
√
m) > 0

)
≤ Pr

(
sup

b∈Bδ(β)
max
j∈[m]

max
k∈{−1,1}

||Λ̇bt(yb∞ + ηkωbj)− ηkσbjωbj || − ησβm/(4
√
m) > 0

)
. (42)

Now I will frame the last expression above as an empirical process by replacing the ηkσbjω
b
j term

with Λ̇b∞(yb∞ + ηkωbj). To this end, note that the mean value theorem indicates that there exists

ξ ∈ (0, η) for which

Λ̇b∞(yb∞ + ηkωbj) = Λ̇b∞(yb∞ + ηkωbj)− 0

= Λ̇b∞(yb∞ + ηkωbj)− Λ̇b∞(yb∞)

= ηkΛ̈∞(yb∞ + ξkωbj)ω
b
j

= ηkΛ̈∞(yb∞)ωbj + ηk(Λ̈∞(yb∞ + ξkωbj)− Λ̈∞(yb∞))ωbj

= ηkσbjω
b
j + o(η),

where the little-o term holds uniformly across b ∈ Bδ(β). Accordingly, we can set ε small enough

so that supb∈Bδ(β) ||Λ̇b∞(yb∞ + ηkωbj)− ηkσbjωbj || ≤ ησ
β
m/(8

√
m), in which case we have

||Λ̇bt(yb∞ + ηkωbj)− ηkσbjωbj ||

≤ ||Λ̇bt(yb∞ + ηkωbj)− Λ̇b∞(yb∞ + ηkωbj)||+ ||Λ̇b∞(yb∞ + ηkωbj)− ηkσbjωbj ||

≤ ||Λ̇bt(yb∞ + ηkωbj)− Λ̇b∞(yb∞ + ηkωbj)||+ ησβm/(8
√
m).

6



And, finally, combining this with line (42) and the fact that Λ̇bt− Λ̇bt = Λ̇βt − Λ̇βt yields the following:

Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| > ε
)

≤ Pr
(

sup
b∈Bδ(β)

max
j∈[m]

max
k∈{−1,1}

||Λ̇bt(yb∞ + ηkωbj)− ηkσbjωbj || > ησβm/(4
√
m)
)

≤ Pr
(

sup
b∈Bδ(β)

max
j∈[m]

max
k∈{−1,1}

||Λ̇bt(yb∞ + ηkωbj)− Λ̇b∞(yb∞ + ηkωbj)|| > ησβm/(8
√
m)
)

≤
m∑
i=1

m∑
j=1

∑
k∈{−1,1}

Pr
(

sup
b∈Bδ(β)

|e′iΛ̇bt(yb∞ + ηkωbj)− e′iΛ̇b∞(yb∞ + ηkωbj)| ≥ ησβm/(8m)
)

≤
m∑
i=1

m∑
j=1

∑
k∈{−1,1}

Pr
(

sup
y∈Bν(yβ∞)

|e′iΛ̇
β
t (y)− e′iΛ̇β∞(y)| ≥ ησβm/(8m)

)
,

where ν > 0 is a constant that’s large enough to ensure that yb∞+ηkωbj ∈ Bν(yβ∞) for all b ∈ Bδ(β).

Finally, Theorem 2.14.9 of van der Vaart and Wellner (1996) implies that this last expression falls

exponentially fast in t (see the proof of lemma 13 for confirmation of this theorem’s hypothesis.)

This establishes line (40), which establishes the p = 0 case. I will now prove line (41), as-

suming p > 0. The proof will proceed as follows: First, I will bound the probability that ||ybt ||
p

exceeds some γ > 0 with the probability that e′jΛ̇
b
t(ejγ

1/p/
√
m) is negative. This latter ran-

dom variable is easier to work with because it is a sum of i.i.d. random variables. Second,

I will lower bound e′jΛ̇
b
t(ejγ

1/p/
√
m) with a binomial random variable, with success probability

ργ ≡ Pr(u1 > ηγ1/p/(2
√
m)). This characterization will enable me to use the binomial Chernoff

bound to establish that Pr(||ybt ||
p
> γ) falls exponentially fast in t. And finally, I will integrate over

this tail bound to create a corresponding expectation bound.

To begin the proof, I will show that e′jy
b
t > ω implies e′jΛ̇

b
t(ωej) ≤ 0, for ω ∈ R. To see this,

7



take e′jy
b
t ≥ ω and ŷ ≡ ybt − ej(e′jybt − ω)/2, and apply Lemma 9:

0 ≥(ybt − ŷ)′Λ̇bt(ŷ)

=((e′jy
b
t − ω)/2)e′jΛ̇

b
t(ŷ)

=((e′jy
b
t − ω)/2)e′j

(
b−

t∑
s=1

1{∆s(ŷ) > 0}as/t
)

≥((e′jy
b
t − ω)/2)e′j

(
b−

t∑
s=1

1{us > a′seje
′
j ŷ}as/t

)
≥((e′jy

b
t − ω)/2)e′j

(
b−

t∑
s=1

1{u > a′ejω}as/t
)

=((e′jy
b
t − ω)/2)e′jΛ̇

b
t(ωej).

Since e′jy
b
t − ω is positive, by assumption, it follows that e′jΛ̇

b
t(ωej) must be non-positive.

And now, I’ll use this result to replace the shadow price with a simpler subgradient:

Pr
(

sup
b∈Bδ(β)

||ybt ||
p
> γ

)
≤

m∑
j=1

Pr
(

sup
b∈Bδ(β)

e′jy
b
t > γ1/p/

√
m
)

≤
m∑
j=1

Pr
(

sup
b∈Bδ(β)

e′jΛ̇
b
t(ejγ

1/p/
√
m) ≤ 0

)
.

Next, we will bound the complex random variable in the last probability above with a simple

binomial random variable. To that end, choose δ, η > 0 so that η ≤ e′jb for all b ∈ Bδ(β), in which

case we have the following:

sup
b∈Bδ(β)

e′jΛ̇
b
t(ejγ

1/p/
√
m)

= sup
b∈Bδ(β)

e′jb−
t∑

s=1

1{us > a′sejγ
1/p/
√
m)}e′jas/t

≥ sup
b∈Bδ(β)

e′jb−
t∑

s=1

(
1{e′jas ≤ e′jb/2}(e′jb/2)/t+ 1{e′jas > e′jb/2}1{us > a′sejγ

1/p/
√
m)}α/t

)
≥ sup

b∈Bδ(β)
e′jb/2−

t∑
s=1

1{us > e′jbγ
1/p/(2

√
m)}α/t

≥ η/2− ξtα/t,
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where ξt ≡
∑t

s=1 1{us > ηγ1/p/(2
√
m)} is a binomial(t, ργ), with ργ ≡ Pr(u1 > ηγ1/p/(2

√
m)).

Further, since E(u1) ≤ ∞, we must have ργ ≤ γ−1/p, for sufficiently large γ. Hence, combining the

previous two results with the binomial Chernoff bound yields the following for sufficiently large γ:

Pr
(

sup
b∈Bδ(β)

||ybt ||
p
> γ

)
≤

m∑
j=1

Pr(η/2− ξtα/t ≤ 0)

= mPr(ξt ≥ tη/(2α))

≤ m exp
(
− tη

2α

(
log

η

2αργ
− 1
))

≤ m exp
(
− tη

4α
log

ηγ1/p

2α

)
= m(η/(2α))

−tη
4α γ

−tη
4pα ,

where the penultimate line supposes that γ is large enough to satisfy log(ηγ
1/p

2α )/2 ≥ 1. Now

choosing γ large enough to satisfy the previous result and large enough to ensure that ||ybt ||
p ≥ γ

implies ybt /∈ Bε(yb∞) yields the following:

E( sup
b∈Bδ(β)

1{ybt /∈ Bγ1/p(0)}||ybt ||
p
)

≤ γ Pr
(

sup
b∈Bδ(β)

||ybt ||
p ≥ γ

)
+

∫ ∞
x=γ

Pr
(

sup
b∈Bδ(β)

||ybt ||
p
> x

)
dx

≤ γ Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| ≥ ε
)

+

∫ ∞
x=γ

m(η/(2α))
−tη
4α x

−tη
8α dx

≤ γ Pr
(

sup
b∈Bδ(β)

||ybt − yb∞|| ≥ ε
)

+
m(η/(2α))

−tη
4α γ1− tη

8α

tη
8α − 1

.

The last expression above falls exponentially fast in t, by line (40), so this establishes line (41).

Corollary 3 Proof. This is the p = 0 case of Proposition 6.

Lemma 3 Proof. Consider an alternative martingale {b̂t}1t=n in which b̂n ≡ bn and

b̂t ≡

bt b̂t+1 ∈ Bδ(β),

b̂t+1 b̂t+1 /∈ Bδ(β).

In other words, b̂t tracks bt until the first time that bt departs Bδ(β), at which point b̂t remains frozen

in place. By design, b̂t ∈ Bδ(β) implies bt ∈ Bδ(β), and hence Pr(bt /∈ Bδ(β)) ≤ Pr(b̂t /∈ Bδ(β)).

9



And, with this, the result follows from the Azuma–Hoeffding inequality, since ||b̂t − b̂t+1|| ≤

(||β||+ δ + ||α||)/t:

Pr(bt /∈ Bδ(β))

≤ sup
N≥t

Pr(b̂t /∈ Bδ(β)))

≤ sup
N≥t

m∑
j=1

Pr
(
|e′j b̂t − e′jbn| ≥ δ/

√
m
)

≤ sup
N≥t

2m exp
(
− δ2/m

2
∑N−1

s=t (||β||+ δ + ||α||)2/s2

)
< 2m exp

(
− δ2

2m(||β||+ δ + ||α||)2
∫∞
s=t−1 dss

2

)
< 2m exp

(
− δ2(t− 1)

2m(||β||+ δ + ||α||)2

)
. (43)

Corollary 4 Proof. Let {b̂t}1t=n be the alternative martingale defined in the proof of Lemma 3. Note

that we have b̂t /∈ Bδ(β) if and only if t ≤ τ(δ). And, with this, line (43) implies the result:

E(τ(δ)) =
n∑
s=1

Pr(τ(δ) ≥ s)

=

n∑
t=1

Pr(b̂t /∈ Bδ(β))

<
∞∑
t=1

2m exp
(
− δ2(t− 1)

2m(||β||+ δ + ||α||)2

)
= O(1).

Lemma 4 Proof. Bounding the first term of the myopic regret is simple: Since 1{bt /∈ Bδ/2(β)} is

10



independent of
∑t

s=1 us, Lemma 3 indicates that there exists C > 0 for which

E
(
1{bt /∈ Bδ/2(β)}

t∑
s=1

us
)

= Pr(bt /∈ Bδ/2(β))

t∑
s=1

E(us)

≤ exp(−Ct)tE(u1)

= o(1/t).

I will now bound the second term of the myopic regret with Propositions 4 and 6, and Corollary

3. Doing so will take several steps. First, the independence of bt from the random mapping

b 7→ 1{∆t(y
b
∞) > 0}∆t(y

ψbt (at)
t−1 )− establishes that

E
(
1{bt ∈ Bδ/2(β)}1{∆t(y

bt
∞) > 0}∆t(y

ψ
bt
t (at)

t−1 )−
)

= E
(
1{bt ∈ Bδ/2(β)}E

(
1{∆t(y

b
∞) > 0}∆t(y

ψbt (at)
t−1 )−

)∣∣
b=bt

)
.

Accordingly, it will suffice to show that

sup
b∈Bδ/2(β)

E
(
1{∆t(y

b
∞) > 0}∆t(y

ψbt (at)
t−1 )−

)
= O(1/t). (44)

Next, I will remove the random at in the superscript of y
ψbt (at)
t−1 by showing that the following

holds, for all b ∈ Bδ/2(β) and large t:

1{∆t(y
b
∞) > 0}∆t(y

ψbt (at)
t−1 )− ≤ 1{∆t(y

b
∞) > 0}∆t(y

b
∞ + ξt−1ι)

−, (45)

where ξt−1 ≡ supb∈Bδ(β) ||ybt−1 − yb∞|| + C/t, for some constant C that has yet to be defined.

Note that the first term of ξt−1 appears compatible with our shadow price convergence results.

Moreover, ξt−1, unlike y
ψbt (at)
t−1 , is independent of the random function ∆t, which makes the right-

hand side of (45) congruent with Lemma 12. This lemma will convert ξt−1 into something like

supb∈Bδ(β) ||ybt − yb∞||
2
, which is precisely what we need to invoke Proposition 4. But there will also

be a few stray terms, which we’ll bound with Proposition 6 and Corollary 3.

I will now derive line (45). First, note that Assumption 4 and Lemma 2 imply there exits C > 0

11



that satisfies the following, almost surely:

sup
b∈Bδ/2(β)

||yψ
b
t (at)∞ − yb∞|| ≤ C/t.

Accordingly, if we choose t large enough so that b ∈ Bδ/2(β) implies ψbt (at) ∈ Bδ/2(β), then we

have the following:

||yψ
b
t (at)

t−1 − yb∞|| ≤ ||y
ψbt (at)
t−1 − yψ

b
t (at)∞ ||+ ||yψ

b
t (at)∞ − yb∞||

≤ sup
b∈Bδ(β)

||ybt−1 − yb∞||+ C/t

≡ ξt−1.

And, by design, this new variable we’ve defined satisfies y
ψbt (at)
t−1 ≤ yb∞ + ξt−1ι, for b ∈ Bδ/2(β) and

large t, which establishes line (45).

Next, I will apply Lemma 12 to the right-hand side of (45). I can only do so when yb∞ and

yb∞ + ξt−1ι reside in the ε-ball of yβ∞, for some sufficiently small ε. Lemma 2 guarantees that the

first vector can be thus situated, when b ∈ Bδ/2(β) and δ is small, but we have no such guarantee

for the second vector. So we will have to consider the yb∞+ξt−1ι ∈ Bε(yβ∞) and yb∞+ξt−1ι /∈ Bε(yβ∞)

cases separately:

E
(
1{∆t(y

b
∞) > 0}∆t(y

b
∞ + ξt−1ι)

−)
= E

(
E
(
1{yb∞ + ξt−1ι ∈ Bε(yβ∞)}1{∆t(y

b
∞) > 0}∆t(y

b
∞ + ξt−1ι)

− : ξt−1

))
+ E

(
1{yb∞ + ξt−1ι /∈ Bε(yβ∞)}1{∆t(y

b
∞) > 0}∆t(y

b
∞ + ξt−1ι)

−)
≤ E

(
1{yb∞ + ξt−1ι ∈ Bε(yβ∞)}2σβ1 ||ξt−1ι||2

)
+ E

(
1{yb∞ + ξt−1ι /∈ Bε(yβ∞)}(||α||||yb∞||+ ||α||||ξt−1ι||)

)
≤ 2σβ1 ||ι||

2 E(ξ2
t−1) + ||α||||yb∞||Pr(yb∞ + ξt−1ι /∈ Bε(yβ∞))+

+ ||α||||ι||E
(
1{yb∞ + ξt−1ι /∈ Bε(yβ∞)}ξt−1

)
≤ 2σβ1 ||ι||

2 E(ξ2
t−1) + 2||α||||yβ∞||Pr(ξt−1 > ε/(2

√
m))+

+ ||α||||ι||E
(
1{ξt−1 > ε/(2

√
m)}ξt−1

)
.

For the last line, I suppose that δ is small enough so that (i) supb∈Bδ/2(β) ||yb∞|| ≤ 2||yβ∞|| and (ii)

{yb∞ : b ∈ Bδ/2(β)} ⊂ Bε/2(yβ∞), in which case yb∞ + ξt−1ι /∈ Bε(y
β
∞) implies ξt−1 > ε/(2

√
m).
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Further, Proposition 4 establishes that the first term in the last line above is O(1/t), Corollary

3 establishes that the second term is o(1/t), and Proposition 6 establishes that the third term is

o(1/t). Hence, the last expression—which holds for all b ∈ Bδ/2(β)—is O(1/t), which with line (45)

establishes line (44).

Finally, the same argument yields the same bound for the third term of myopic regret.

Lemma 5 Proof. Let {b̂t}1t=n denote the inventory process defined in the proof of Lemma 3, but

derived from from Algorithm 3’s bt values. Just to remind you, the {b̂t}1t=n process tracks the

{bt}1t=n process until time τ(δ)—i.e., until Algorithm 3’s bt values first depart Bδ(β)—at which

point the process freezes in place. The {b̂t}1t=n process will be easier to study because a constant

multiple of t bounds its innovations. And since b̂t ∈ Bδ(β) implies bt ∈ Bδ(β), it will suffice to

establish the concentration of measure for b̂t.

I will bound the distance between b̂t and β with the following inequality:

||b̂t − β|| ≤ ||b̂τ(δ/2)+1 − β||+ ||ξt||+
τ(δ/2)∑
s=t

||E(b̂s : b̂s+1)− b̂s+1||, (46)

where ξt ≡
τ(δ/2)∑
s=t

b̂s − E(b̂s : b̂s+1).

I cap the sums at time τ(δ/2) to give our look-back shadow prices a sufficiently large sample.

Indeed, a sample with n− τ(δ/2) observations will comprise enough data to ensure that the look-

back shadow prices—and hence the b̂t values—are well-behaved. More specifically, I will show that

n− τ(δ/2) = Θ(n) by showing that there exists γ < 1 that satisfies

τ(δ/2) + 1 ≤ γn. (47)

To see this, note that period-t’s resource vector satisfies

(nβ − (n− t)α)/t ≤
(
nβ −

n∑
s=t

xsas
)
/t︸ ︷︷ ︸

=bt

≤ nβ/t,

where the lower bound is within δ/2 of β unless t ≤ n
1+δ/(2||α−β||) , and the upper bound is within

δ/2 of β unless t ≤ n
1+δ/(2||β||) . Hence, if ||α− β|| ≥ ||β||, which we can suppose without loss of

generality, then bt /∈ Bδ/2(β) implies t ≤ n
1+δ/(2||α−β||) .

13



I will now use (46) to inductively prove that there exists C > 0 such that

Pr
( n

max
s=t
||b̂s − β|| > δ

)
≤ (τ(δ/2) + 1− t)

(
2 exp(−Ct) + 2n exp(−C(1− γ)

√
n)
)
, (48)

for all sufficiently large t ≤ n. Initializing our induction will be simple: by definition, we have

Pr(b̂t ∈ Bδ(β)) = 1 for t ≥ τ(δ/2) + 1, which establishes the base case. However, establishing the

inductive step will require unraveling the knotty relationship between look-back shadow prices and

inventory vectors. Specifically, showing that ||b̂t − β|| is small for t ≤ τ(δ/2) will require showing

that ||E(b̂s : b̂s+1)− b̂s+1|| is small for all s ∈ {t, · · · , τ(δ/2)}, which in turn will require showing

that || y
←−
b̂s
s − yb̂s∞|| is small for all s ∈ {t+ 1, · · · , τ(δ/2) + 1}, which in turn will require showing that

||b̂s − β|| is small for all s ∈ {t+ 1, · · · , τ(δ/2) + 1}.

I will now that if (48) holds for sufficiently large t+ 1 ≤ τ(δ/2) + 1, then there a suitably high

probability that

||b̂τ(δ/2)+1 − β|| ≤ δ/2,

||ξt|| ≤ δ/4, (49)

and

τ(δ/2)∑
s=t

||E(b̂s : b̂s+1)− b̂s+1|| ≤ δ/4,

which with line (46) will establish induction. Note that the first inequality in display (49) holds by

the definition of τ(δ/2), so we will only have to concern ourselves with the latter two inequalities.

I will now show that the second inequality in display (49) holds with high probability, conditional

on b̂s ∈ Bδ(β) for all s ∈ {t + 1, · · · , τ(δ/2) + 1}. Since {ξt}1t=τ(δ/2) is a martingale that satisfies

||ξt − ξt+1|| = ||b̂t − E(b̂t : b̂t+1)|| ≤ (||β||+ δ + ||α||)/t, by design, the argument underlying line (43)

analogously implies that there exists C > 0 such that Pr(||ξt|| > δ/4) ≤ exp(−Ct), for all sufficiently

large t. And since Pr(A|B) = Pr(A ∩B)/Pr(B) ≤ Pr(A)/Pr(B), it follows that

Pr
(
||ξt|| > δ/4 :

τ(δ/2)+1
max
s=t+1

||b̂s − β|| ≤ δ
)

≤ Pr(||ξt|| > δ/4)

Pr
(

max
τ(δ/2)+1
s=t+1 ||b̂s − β|| ≤ δ

)
≤ 2 exp(−Ct). (50)

Note, the last line holds because Pr(max
τ(δ/2)+1
s=t+1 ||b̂s − β|| ≤ δ) ≥ 1/2, by our inductive hypothesis.
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I will now show that the third inequality in display (49) holds with high probability, conditional

on b̂s ∈ Bδ(β) for all s ∈ {t + 1, · · · , τ(δ/2) + 1}. This step will take more work. First note that

b̂s+1 ∈ Bδ(β) implies b̂s+1 = bs+1 and b̂s = bs, and thus implies

E(b̂s : b̂s+1)− b̂s+1

= E(bs : bs+1)− bs+1

= ((s+ 1)bs+1 − E(1{∆s+1( y
←−
bs+1

s+1 ) > 0}as+1 : bs+1))/s− bs+1

= ((s+ 1)bs+1 − bs+1 + Λ̇bs+1
∞ ( y
←−
bs+1

s+1 ))/s− bs+1

= Λ̇bs+1
∞ ( y
←−
bs+1

s+1 )/s

= Λ̈∞(ybs+1
∞ )( y

←−
bs+1

s+1 − y
bs+1
∞ )/s+ o(|| y

←−
bs+1

s+1 − y
bs+1
∞ ||)/s

= Λ̈∞(yb̂s+1
∞ )( y

←−
b̂s+1

s+1 − y
b̂s+1
∞ )/s+ o(|| y

←−
b̂s+1

s+1 − y
b̂s+1
∞ ||)/s,

where the penultimate line holds by Lemma 1, since Λ̇
bs+1
∞ (y

bs+1
∞ ) = 0 when bs+1 ∈ Bδ(β) and δ is

small. Thus, we can choose n sufficiently small so that max
τ(δ/2)+1
s=t+1 ||b̂s − β|| ≤ δ and max

τ(δ/2)+1
s=t+1 || y

←−
b̂s
s − yb̂s∞|| ≤

n−1/4 imply

τ(δ/2)∑
s=t

||E(b̂s : b̂s+1)− b̂s+1||

≤
τ(δ/2)∑
s=t

||Λ̈∞(yb̂s+1
∞ )( y

←−
b̂s+1

s+1 − y
b̂s+1
∞ )||/s+ o(|| y

←−
b̂s+1

s+1 − y
b̂s+1
∞ ||)/s

≤
τ(δ/2)∑
s=t

2σβ1 || y←−
b̂s+1

s+1 − y
b̂s+1
∞ ||/s+ o(|| y

←−
b̂s+1

s+1 − y
b̂s+1
∞ ||)/s

≤
τ(δ/2)∑
s=t

3σβ1n
−1/4/s

≤ δ/4. (51)

Note, the third line holds because the largest singular value of Λ̈∞(y
b̂s+1
∞ ) is less than twice the

largest singular value of Λ̈∞(yβ∞) when b̂s+1 ∈ Bδ(β) and δ is small, and the fourth line holds

because the little-o term is less than σβ1n
−1/4 when || y

←−
b̂s+1

s+1 − y
b̂s+1
∞ || ≤ n−1/4 and n is large.

Further, we can use Corollary 3 upper bound the probability that max
τ(δ/2)+1
s=t+1 || y

←−
b̂s
s − yb̂s∞|| >

n−1/4, conditional on max
τ(δ/2)+1
s=t+1 ||b̂s − β|| ≤ δ. Specifically, combining this corollary with line (47)
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and our inductive hypothesis yields the following, for some C > 0 and all sufficiently large n:

Pr
( τ(δ/2)+1

max
s=t+1

|| y
←−
b̂s
s − yb̂s∞|| > n−1/4 :

τ(δ/2)+1
max
s=t+1

||b̂s − β|| ≤ δ
)

≤
τ(δ/2)+1∑
s=t+1

Pr
(

sup
b∈Bδ(β)

|| y
←−
b
s − yb∞|| > n−1/4 :

τ(δ/2)+1
max
s=t+1

||b̂s − β|| ≤ δ
)

≤
τ(δ/2)+1∑
s=t+1

Pr
(

supb∈Bδ(β) || y←−
b
s − yb∞|| > n−1/4

)
Pr
(

max
τ(δ/2)
s=t+1 ||b̂s − β|| ≤ δ

)
≤

τ(δ/2)+1∑
s=t+1

exp(−Cn−1/2(n− s))
1/2

≤ 2n exp(−Cn−1/2(n− τ(δ/2)− 1))

≤ 2n exp(−C(1− γ)
√
n). (52)

And now, finally, we can combine lines (46), (50), (51), and (52) to establish that

Pr(b̂t /∈ Bδ(β) :
n

max
s=t+1

||b̂s − β|| ≤ δ)

≤ Pr
(
||ξt|| > δ/4 :

n
max
s=t+1

||b̂s − β|| ≤ δ
)

+ Pr
( τ(δ/2)∑

s=t

||E(b̂s : b̂s+1)− b̂s+1|| > δ/4 :
n

max
s=t+1

||b̂s − β|| ≤ δ
)

≤ 2 exp(−Ct) + Pr
( τ(δ/2)+1

max
s=t+1

|| y
←−
b̂s
s − yb̂s∞|| > n−1/4 :

n
max
s=t+1

||b̂s − β|| ≤ δ
)

≤ 2 exp(−Ct) + 2n exp(−C(1− γ)
√
n).

And with our inductive hypothesis, this implies that

Pr
( n

max
s=t
||b̂s − β|| > δ

)
= Pr

( n
max
s=t+1

||b̂s − β|| > δ
)

+ Pr(b̂t /∈ Bδ(β) :
n

max
s=t+1

||b̂s − β|| ≤ δ)

≤ (τ(δ/2) + 1− t− 1)(2 exp(−C(t+ 1)) + 2n exp(−C(1− γ)
√
n))

+ 2 exp(−Ct) + 2n exp(−C(1− γ)
√
n)

≤ (τ(δ/2) + 1− t)
(
2 exp(−Ct) + 2n exp(−C(1− γ)

√
n)
)
.
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Lemma 6 Proof. This proof will closely follow the Lemma 4 proof. That proof’s argument estab-

lishes that the first term of the myopic regret is o(1/t), so I will begin with the second term of the

myopic regret. First, define ξt−1 ≡ supb∈Bδ(β) ||ybt−1 − yb∞|| + C/t, for the C > 0 used in the proof

of Lemma 4, and analogously define ξ
←−t+1 ≡ supb∈Bδ/2(β) || y←−

b
t − yb∞||. Note, I subscript this latter

variable with t + 1 because y
←−
b
t is determined by that time. Next, the argument underlying line

(45) establishes the following, for large t:

E
(
1{bt ∈ Bδ/2(β)}1{∆t( y←−

bt
t ) > 0}∆t(y

ψ
bt
t (at)

t−1 )−
)

≤ E
(
1{bt ∈ Bδ/2(β)}1{∆t(y

bt
∞ − ξ

←−t+1ι) > 0}∆t(y
bt
∞ + ξt−1ι)

−)
= E

(
1{bt ∈ Bδ/2(β)}E(1{∆t(y) > 0}∆t(ȳ)−)

∣∣
y=y

bt∞− ξ←−t+1ι, ȳ=y
bt∞+ξt−1ι

)
.

The last line holds because the random function ∆t is independent of bt, ξ←−t+1, and ξt−1.

Now let E represent the event in which yb∞ + ξt−1ι ∈ Bε(y
β
∞) and let E←− represent the event

in which yb∞ − ξ
←−t

ι ∈ Bε(y
β
∞), where ε is the constant defined in Lemma 12. Further, let δ be

small enough so that (i) supb∈Bδ/2(β) ||yb∞|| ≤ 2||yβ∞|| and (ii) {yb∞ : b ∈ Bδ/2(β)} ⊂ Bε/2(yβ∞), in

which case Ec implies ξt−1 > ε/(2
√
m) and Ec←− implies ξ

←−t+1 > ε/(2
√
m). And with this, we can use

Lemma 12 to continue where we left off:

E
(
1{bt ∈ Bδ/2(β)}1{∆t( y←−

bt
t ) > 0}∆t(y

ψ
bt
t (at)

t−1 )−
)

≤ E
(
1{bt ∈ Bδ/2(β)}1{E ∩ E←−}E(1{∆t(y) > 0}∆t(ȳ)−)

∣∣
y=y

bt∞− ξ←−t+1ι, ȳ=y
bt∞+ξt−1ι

)
+ E

(
1{bt ∈ Bδ/2(β)}1{Ec ∪ Ec←−}E(1{∆t(y) > 0}∆t(ȳ)−)

∣∣
y=y

bt∞− ξ←−t+1ι, ȳ=y
bt∞+ξt−1ι

)
≤ E

(
1{bt ∈ Bδ/2(β)}1{E ∩ E←−}2σ

β
1 ||ξt−1ι+ ξ

←−t+1ι||2
)

+ E
(
1{bt ∈ Bδ/2(β)}1{Ec ∪ Ec←−}||α||||y

bt
∞ + ξt−1ι||

)
≤ 4mσβ1 E(ξ2

t−1 + ξ
←−

2
t+1)

+ 2||α||||yβ∞||Pr
(
ξt−1 > ε/(2

√
m) ∪ ξ

←−t+1 > ε/(2
√
m)
)

+ 2
√
m||α||||yβ∞||E

(
1{ξt−1 > ε/(2

√
m) ∪ ξ

←−t+1 > ε/(2
√
m)}ξt−1

)
,

where the last line holds because (x + y)2 ≤ 2x2 + 2y2 and ||ι|| =
√
m. Finally, Proposition 4,

Proposition 6, and Corollary 3 imply that this last expression is less than C/t+C/(n− t), for some

C > 0.
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Finally, the same argument yields the same bound for the third term of myopic regret.

Corollary 5 Proof. Copy the proof of Corollary 4.

Lemma 7 Proof. I will begin with a high-level plan of attack. The main idea of the proof is that

allocating t(β + ξ) units of inventory to the first t periods leaves us with only (n − t)(β − t
n−tξ)

units for the last n− t periods, so bt = β + ξ must imply

vβn ≤ V̄
β+ξ
t + V̄←−

β− t
n−t ξ

t

= tΛβ+ξ
t (yβ+ξ

t ) + (n− t) Λ←−
β− t

n−t ξ

t ( y
←−
β− t

n−t ξ

t )

≡ Λ̄ξt (53)

where V̄←−
b
t , Λ←−

b
t , and y

←−
b
t and are equivalent to V̄ b

n−t, Λbn−t, and ybn−t, but with the order of the

customers reversed. Accordingly, it follows that

Rn ≥ V̄ β
n − Λ̄bt−βt = nΛβn(yβn)− Λ̄bt−βt . (54)

And the expression on the right should be large when bt meaningfully deviates from β since, in the

limit, we have

nΛβ∞(yβ∞)− Λ̄ξ∞ ≥ Ctmin(||ξ||2, 1), (55)

for some C > 0, where4

Λ̄ξ∞ ≡ tΛβ+ξ
∞ (yβ+ξ

∞ ) + (n− t)Λ
β− t

n−t ξ
∞ (y

β− t
n−t ξ

∞ ). (56)

Line (55) suggests that reserving t(β + ξ) units of inventory for the first t periods should sacrifice

Ω(t) units of value when ξ non-negligible. I will leverage this fact to show that Rn is almost always

large when ||bt − β|| is non-negligible. And since E(Rn) is relatively small, by Theorem 1, it follows

that ||bt − β|| is usually negligible.

Before delving into the details, I will provide a more thorough proof sketch. The proof will

have five steps. The first derives limiting bound (55), our only tool for establishing the cost of bt

diverging from β. Now with (55), it’s relatively easy to lower bound the regret when bt = β + ξ,

for some specific ξ that lies outside of a ball of the origin. But that’s not enough, as we must

lower bound this regret when bt = β + ξ, for any ξ that lies outside of a ball of the origin. To
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create such a uniform result, the second part of the proof bounds Λ̄ξt for all ξ ∈ Rm in terms of

Λ̄ζt , y
β+ζ
t , and y

←−
β− t

n−t ζ

t , for some given given ζ ∈ Rm, and the third part uses this bound to show

that supξ /∈B2
√
mε(0) Λ̄ξt is usually smaller than maxk∈{−1,1}maxj∈[m] Λ̄

kεωβj
t , where ε is a small positive

number and {ωβi }i∈[m] are the orthonormal eigenvectors of Λ̈∞(yβ∞)−1. Hence, the second and third

steps of the proof collapse the relevant domain of bt − β from the infinite set Rm \ B2
√
mε(0) to

the finite set {kεωβj : k ∈ {−1, 1} × j ∈ [m]}. The fourth step of the proof uses our shadow price

convergence results to show that nΛβn(yβn) −maxk∈{−1,1}maxj∈[m] Λ̄
kεωβj
t is usually very large, and

the last step combines this with the previous results to establish that ξ = bt − β must rarely fall

outside of B2
√
mε(0).

To begin the proof, note that Lemmas 1 and 2 imply that Λb∞(yb∞) is concave in b, since

∂2

∂b2
Λb∞(yb∞) = ∂

∂by
b
∞ = −Λ̈∞(yb∞)−1 is negative definite. This concavity implies that we can restrict

attention to small ξ vectors, since Λ̄ξ∞ decreases in the magnitude of ξ. But, more importantly, the

concavity implies line (55), as I will now show.

Let i ∈ [m] denote the index of the largest element of ξ, so that either e′iξ = ||ξ||∞ or −e′iξ =

||ξ||∞. Since the minus sign doesn’t meaningfully affect the analysis, I will henceforth suppose

e′iξ = ||ξ||∞ ≡ γ, in which case

Λ̄ξ∞ ≤ sup
{ζ∈Rm : e′iζ=γ}

Λ̄ζ∞. (57)

The solution to this optimization problem satisfies the following first-order conditions for some

Lagrange multiplier λ:

0 = ∂
∂ζ

(
tΛβ+ζ
∞ (yβ+ζ

∞ ) + (n− t)Λ
β− t

n−t ζ
∞ (y

β− t
n−t ζ

∞ )− λ(e′iζ − γ)
)

=t(yβ+ζ
∞ − y

β− t
n−t ζ

∞ )− λei.

Now we’ll use Lemma 2 to differentiate this with respect to γ:

0 = ∂
∂γ 0
∣∣
γ=0

= ∂
∂γ

(
t(yβ+ζ
∞ − y

β− t
n−t ζ

∞ )− λei
)∣∣
γ=0

= −
(
tΛ̈∞(yβ+ζ

∞ )−1 +
t2

n− t
Λ̈∞(y

β− t
n−t ζ

∞ )−1
)
∂
∂γ ζ − ei

∂
∂γλ

∣∣
γ=0

= − nt

n− t
Λ̈∞(yβ∞)−1 ∂

∂γ ζ − ei
∂
∂γλ

∣∣
γ=0

.
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The last line holds because γ = 0 implies ζ = 0. Combining the e′iζ = γ constraint with the

expression above yields

−n− t
nt

e′iΛ̈∞(yβ∞)ei
∂
∂γλ

∣∣
γ=0

= ∂
∂γ e
′
iζ
∣∣
γ=0

= ∂
∂γγ
∣∣
γ=0

= 1,

which implies that

∂
∂γλ

∣∣
γ=0

=
−nt

(n− t)e′iΛ̈∞(yβ∞)ei
.

Further, since λ = 0 when γ = 0, by the concavity of Λb∞(yb∞) in b, it follows that for sufficiently

small γ we have

λ ≤ −ntγ
2(n− t)e′iΛ̈∞(yβ∞)ei

.

By definition, our Lagrange multiplier also satisfies ∂
∂γ sup{ζ∈Rm : e′iζ=γ} Λ̄ζ∞ = λ, which with the

result above yields the following, for sufficiently small γ:

nΛβ∞(yβ∞)− sup
{ζ∈Rm : e′iζ=γ}

Λ̄ζ∞

= −
(

sup
{ζ∈Rm : e′iζ=γ}

Λ̄ζ∞ − sup
{ζ∈Rm : e′iζ=0}

Λ̄ζ∞
)

= −
∫ γ

g=0

∂
∂g sup
{ζ∈Rm : e′iζ=g}

Λ̄ζ∞dg

≥ −
∫ γ

g=0

−ntg
2(n− t)e′iΛ̈∞(yβ∞)ei

dg

=
ntγ2

4(n− t)e′iΛ̈∞(yβ∞)ei

≥ t(||ξ||/
√
m)2

4 maxj∈[m] e
′
jΛ̈∞(yβ∞)ej

.

Note, the first line above holds because the concavity of Λb∞(yb∞) in b implies that nΛβ∞(yβ∞) =

sup{ζ∈Rm : e′iζ=0} Λ̄ζ∞, and the last line holds because γ = ||ξ||∞ ≥ ||ξ||/
√
m. Finally, combining the

result above with line (57) yields line (55).

Second, I will now bound the difference between Λ̄ξt and Λ̄ζt in terms of yβ+ζ
t and y

←−
β− t

n−t ζ

t ,
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which will enable us to invoke our shadow price convergence results. To this end, first note that

Λ̄ξt = max
x∈[0,1]n

n∑
s=1

xsus

s. t.

t∑
s=1

xsas ≤ t(β + ξ),

n∑
s=t+1

xsas ≤ (n− t)
(
β − t

n− t
ξ
)
.

Since this linear program is concave in its constraints, Λ̄ξt must be concave in ξ. Accordingly, the

Λ̄ξt function lies below the hyperplane characterized by supergradient ∂
∂ζ Λ̄ζt ≡ ty

β+ζ
t

∂
∂ζ (β+ζ)+(n−

t) y
←−
β− t

n−t ζ

t
∂
∂ζ

(
β − t

n−tζ
)

= t(yβ+ζ
t − y

←−
β− t

n−t ζ

t ):

Λ̄ξt − Λ̄ζt ≤ t(ξ − ζ)′
(
yβ+ζ
t − y

←−
β− t

n−t ζ

t

)
. (58)

Third, I will use the preceding inequality to establish that

Pr
(

sup
ξ /∈B2

√
mε(0)

Λ̄ξt ≤ max
k∈{−1,1}

max
j∈[m]

Λ̄
kεωβj
t

)
≥ 3/4, (59)

for all sufficiently small ε > 0 and large t. This bound is crucial, as it enables us to replace the

infinite continuum of Λ̄ξt values for all ξ /∈ B2
√
mε(0), with the largest of the 2m values of Λ̄

kεωβj
t . To

begin, note that Lemma 2 yields the following, for k ∈ {−1, 1} and small ε > 0:

yβ+kεωi
∞ − yβ∞ = −kεΛ̈∞(yβ∞)−1ωβi + o(ε) = −kεωβi /σ

β
i + o(ε).

Combining this with (58) yields the following, for t ≤ n/2:

Λ̄ξt − Λ̄
kεωβi
t ≤ t(ξ − kεωβi )′

(
y
β+kεωβi
t − y

←−
β− t

n−tkεω
β
i

t

)
= t(ξ − kεωβi )′

(
y
β+kεωβi∞ − yβ∞ − y

β− t
n−tkεω

β
i

∞ + yβ∞
)

+ t(ξ − kεωβi )′(y
β+kεωβi
t − yβ+kεωβi∞ )− t(ξ − kεωβi )′( y

←−
β− t

n−tkεωi
t − y

β− t
n−tkεωi

∞ )

=
−ntkε
n− t

(ξ − kεωβi )′ωβi /σ
β
i + t||ξ − kεωβi ||(o(ε) +Op(t

−1/2)), (60)

where the last line holds because ||yβ+εωβi
t − yβ+εωβi∞ || and || y

←−
β− t

n−t εωi
t − y

β− t
n−t εωi

∞ || are Op(t
−1/2)
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when t ≤ n/2, by Proposition 4.

Now, to derive (59) from (60), let γi ≡ ξ′ωβi , so that ξ =
∑m

i=1 γiω
β
i , and let j = arg maxi∈[m] |γi|

and k = sign(γj), so that kγj ≥ ||ξ||/
√
m. Further, choose ξ /∈ B2

√
mε, in which case ε ≤ ||ξ||/(2

√
m),

and hence

k(ξ − kεωβj )′ωβj = kγj − ε ≥ ||ξ||/(2
√
m)

and ||ξ − kεωβi || ≤ 2||ξ||.

Finally, set ε small enough so that the o(ε) term in (60) is less than maxi∈[m] ε/(16
√
mσβi ), and

choose t large enough so that the Op(t
−1/2) term is less than maxi∈[m] ε/(16

√
mσβi ), with at least

three-quarters probability. When this last event happens, the previous two inequalities and line

(60) yield the following, for all ξ /∈ B2
√
mε(0):

Λ̄ξt − Λ̄
kεωβj
t ≤ −ntε

n− t
||ξ||/(2

√
mσβj ) + 2t||ξ||(o(ε) +Op(t

−1/2))

≤ −tε||ξ||/(2
√
mσβj ) + 2t||ξ||(ε/(16

√
mσβi ) + ε/(16

√
mσβj ))

≤ −tε||ξ||/(4
√
mσβj )

≤ 0.

This establishes line (59).

Fourth, I will use (55) to show that

Pr
(
nΛβn(yβn)− max

k∈{−1,1}
max
j∈[m]

Λ̄
kεωβj
t ≥ n2/3

)
≥ 3/4. (61)

This expression implies that there is probably at least one combination of k ∈ {−1, 1} and j ∈ [m]

for which allocating t(β + kεωβj ) units of inventory to the first t periods is very costly. And with

(59), this will imply that there’s a decent chance that allocating t(β + ξ) units of inventory to the

first t periods will be very costly, for any ξ /∈ B2
√
mε(0).
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To begin, a nasty series of triangle inequalities yields the following, for ζ ≡ kεωβj :

nΛβn(yβn)− Λ̄ζt ≥ nΛβ∞(yβ∞)− tΛβ+ζ
∞ (yβ+ζ

∞ ) + (n− t)Λ
β− t

n−t ζ
∞ (y

β− t
n−t ζ

∞ )

− n|Λβ∞(yβn)− Λβ∞(yβ∞)|

− t|Λβ+ζ
∞ (yβ+ζ

t )− Λβ+ζ
∞ (yβ+ζ

∞ )|

− (n− t)|Λ
β− t

n−t ζ
∞ ( y

←−
β− t

n−t ζ

t )− Λ
β− t

n−t ζ
∞ (y

β− t
n−t ζ

∞ )|

− t
∣∣∣Λβt (yβn)− Λβ∞(yβn)− Λβ+ζ

t (yβ+ζ
t ) + Λβ+ζ

∞ (yβ+ζ
t )

∣∣∣
− (n− t)

∣∣∣∣Λ←−βt (yβn)− Λβ∞(yβn)− Λ←−
β− t

n−t ζ

t ( y
←−
β− t

n−t ζ

t ) + Λ
β− t

n−t ζ
∞ ( y

←−
β− t

n−t ζ

t )

∣∣∣∣.
Each term on the right is bounded in probability: First, line (55) establishes that nΛβ∞(yβ∞) −

tΛβ+ζ
∞ (yβ+ζ

∞ ) + (n − t)Λ
β− t

n−t ζ
∞ (y

β− t
n−t ζ

∞ ) = Ω(t). Second, since Λβ∞ is differentiable and since

||yβn − yβ∞|| = Op(n
−1/2), by Proposition 4, we have n|Λβ∞(yβn)− Λβ∞(yβ∞)| = Op(n

1/2). Likewise,

t|Λβ+ζ
∞ (yβ+ζ

t )− Λβ+ζ
∞ (yβ+ζ

∞ )| and (n− t)|Λ
β− t

n−t ζ
∞ ( y

←−
β− t

n−t ζ

t )− Λ
β− t

n−t ζ
∞ (y

β− t
n−t ζ

∞ )| are Op(t
1/2) and

Op((n− t)1/2), respectfully. Finally, Proposition 4 and Lemma 15 imply that the last two terms are

also Op(t
1/2) and Op((n− t)1/2). Accordingly, we can set n large enough so that if n3/4 ≤ t ≤ n/2

then there is at least a 75% chance that (i) the Ω(t) term exceeds 2n2/3 and (ii) the sum of

the Op(n
1/2), Op(t

1/2), and Op((n − t)1/2) terms are no more than n2/3, for all combinations of

k ∈ {−1, 1} and j ∈ [m]. And this establishes (61).

Finally, combining (54), (59), and (61) yields the following, for sufficiently small ε, sufficiently

large n, and n3/4 ≤ t ≤ n/2:

Pr(Rn ≥ n2/3 : bt /∈ B2
√
mε(β))

≥ Pr(nΛβn(yβn)− Λ̄bt−βt ≥ n2/3 : bt /∈ B2
√
mε(β))

≥ Pr
(
nΛβn(yβn)− sup

ξ /∈B2
√
mε(0)

Λ̄ξt ≥ n2/3
)

≥ Pr
(
nΛβn(yβn)− max

k∈{−1,1}
max
j∈[m]

Λ̄
kεωβj
t ≥ n2/3 ∩ sup

ξ /∈B2
√
mε(0)

Λ̄ξt ≤ max
k∈{−1,1}

max
j∈[m]

Λ̄
kεωβj
t

)
≥ Pr

(
nΛβn(yβn)− max

k∈{−1,1}
max
j∈[m]

Λ̄
kεωβj
t ≥ n2/3

)
+ Pr

(
sup

ξ /∈B2
√
mε(0)

Λ̄ξt ≤ max
k∈{−1,1}

max
j∈[m]

Λ̄
kεωβj
t

)
− 1

≥ 3/4 + 3/4− 1

= 1/2.
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And now, since E(Rn) = O(log n), by Theorem 1 and line (38), we have

O(log n) = E(Rn)

≥ n2/3 Pr(bt /∈ B2
√
mε(β)) Pr(Rn ≥ n2/3 : bt /∈ B2

√
mε(β))

≥ n2/3 Pr(bt /∈ B2
√
mε(β))/2,

which implies the result.

Lemma 8 Proof. I will show that there exists C > 0 that satisfies

inf
b∈Bδ/2(β)

E
(
πbt∆t(y

ψbt (0)
t−1 )− + (1− πbt )∆t(y

ψbt (α)
t−1 )+

)
≥ Cmσβm/(2t), (62)

for all sufficiently large t. Combining this result with Lemma 7 yields the desired result:

E(rt) = E
(
1{bt ∈ Bδ/2(β)}

(
πbtt ∆t(y

ψ
bt
t (0)

t−1 )− + (1− πbtt )∆t(y
ψ
bt
t (at)

t−1 )+
))

= E
(
1{bt ∈ Bδ/2(β)}E

(
πbt∆t(y

ψbt (0)
t−1 )− + (1− πbt )∆t(y

ψbt (at)
t−1 )+

)∣∣
b=bt

)
≥ Pr(bt ∈ Bδ/2(β)) inf

b∈Bδ/2(β)
E
(
πbt∆t(y

ψbt (0)
t−1 )− + (1− πbt )∆t(y

ψbt (α)
t−1 )+

)
≥ (1− n−1/2)Cmσβm/(2t),

where the second line holds because bt is independent of the random mapping b 7→ πbt∆t(y
ψbt (0)
t−1 )−+

(1− πbt )∆t(y
ψbt (at)
t−1 )+, and the last line holds because we’re given a large t that satisfies n3/4 ≤ t ≤

n/2.

Let me briefly outline how we will establish line (62). First, Lemma 10 implies that there’s a

O(1) chance that we underestimate the shadow price by at least 4ι/
√
t. I use this fact to establish

that there exists some constant C > 0 that satisfies the following for sufficiently large t:

E
(
(1− πbt )∆t(y

ψbt (at)
t−1 )+

)
≥ C E

(
(1− πbt )

(
1{∆t(y

b
∞ − ι/

√
t) > 0} − 1{∆t(y

b
∞ + ι/

√
t) > 0}

)
a′tι/
√
t
)
.

This lower bound looks nasty, but it’s almost exactly in the form we need to apply our one remaining

tool: Assumption 6. However, before applying this assumption, I must eliminate the pesky 1− πbt
term. Fortunately, E

(
πbt∆t(y

ψbt (0)
t−1 )−

)
honors the same bound, except with πbt replacing 1−πbt , which

means that E
(
πbt∆t(y

ψbt (0)
t−1 )−+(1−πbt )∆t(y

ψbt (α)
t−1 )+

)
has a corresponding πbt -free bound, which makes

24



it amenable to Assumption 6. Finally, the last part of the proof combines this assumption with the

fundamental theorem of calculus and Lemma 1 to express this expectation as an integral over Λ̈∞.

To begin the proof, let t be large enough so that b ∈ Bδ/2(β) implies ψbt (at) ∈ Bδ(β). In this

case Lemma 10 establishes that there exists C > 0 that satisfies the following, for all b ∈ Bδ/2(β):

Pr
(
||
√
t(y

ψbt (at)
t−1 − yψ

b
t (at)∞ ) + 4ι|| ≤ 1

)
≥ Pr

(
sup

b∈Bδ(β)
||
√
t(ybt−1 − yb∞) + 4ι|| ≤ 1

)
= Pr

(
sup

b∈Bδ(β)
||
√
t(ybt−1 − yb∞) + 4ι|| ≤ 1

)
> C.

Furthermore, ||
√
t(y

ψbt (at)
t−1 − yψ

b
t (at)∞ ) + 4ι|| ≤ 1 implies the following, when t is large:

y
ψbt (at)
t−1 − yb∞ =(y

ψbt (at)
t−1 − yψ

b
t (at)∞ ) + (y

ψbt (at)∞ − yb∞)

≤ −3ι/
√
t+ ι/

√
t

= −2ι/
√
t,

where the second line follows because ||yψ
b
t (at)∞ − yb∞|| = o(1/

√
t), by Assumption 4 and Lemma 2.

Now combining the previous two results yields the following, for b ∈ Bδ/2(β) and t large:

E
(
(1− πbt )∆t(y

ψbt (at)
t−1 )+

)
≥ E

(
1{||
√
t(y

ψbt (at)
t−1 − yψ

b
t (at)∞ ) + 4ι|| ≤ 1}(1− πbt )∆t(y

b
∞ − 2ι/

√
t)+
)

≥ C E
(
(1− πbt )∆t(y

b
∞ − 2ι/

√
t)+
)

≥ C E
(
(1− πbt )1{∆t(y

b
∞ − ι/

√
t) ≥ 0}∆t(y

b
∞ − 2ι/

√
t)+
)

≥ C E
(
(1− πbt )1{∆t(y

b
∞ − ι/

√
t) ≥ 0}a′tι/

√
t
)

≥ C E
(
(1− πbt )

(
1{∆t(y

b
∞ − ι/

√
t) > 0} − 1{∆t(y

b
∞ + ι/

√
t) > 0}

)
a′tι/
√
t
)
.

Note, the third line above holds because y
ψbt (at)
t−1 is independent of ∆t and πt, and the fifth line holds

because ∆t(y
b
∞−ι/

√
t) ≥ 0 implies ut ≥ a′tyb∞−a′tι/

√
t and hence implies ∆t(y

b
∞−2ι/

√
t)+ ≥ a′tι/

√
t.

Next, an analogous argument implies that we can set C small enough to satisfy the following,
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for b ∈ Bδ/2(β) and large t:

E
(
πbt∆t(y

ψbt (0)
t−1 )−

)
≥ C E

(
πbt
(
1{∆t(y

b
∞ − ι/

√
t) > 0} − 1{∆t(y

b
∞ + ι/

√
t) > 0}

)
a′tι/
√
t
)
.

Finally, adding our two bounds establishes line (62):

E
(
πbt∆t(y

ψbt (0)
t−1 )− + (1− πbt )∆t(y

ψbt (α)
t−1 )+ : b ∈ Bδ/2(β)

)
= C E

((
1{∆t(y

b
∞ − ι/(2

√
t)) > 0} − 1{∆t(y

b
∞ + ι/(2

√
t)) > 0}

)
a′tι/
√
t
)

= C/
√
t

∫ 1

γ=−1
ι′ ∂∂γ E

(
1{∆1(yb∞ − γι/(2

√
t)) > 0}a1

)
dγ

= C/
√
t

∫ 1

γ=−1
ι′Λ̈∞(yb∞ − γι/

√
t)ι/(2

√
t)dγ

≥ C/
√
t

∫ 1

γ=−1
ι′ισβm/(4

√
t)dγ

≥ Cmσβm/(2t).

The penultimate line above holds because the smallest singular value of Λ̈∞(yb∞−γι/
√
t) is at least

half of the smallest singular value of Λ̈∞(yβ∞), when b is near β and t is large.

Lemma 9. (ybt − y)′Λ̇bt(y) ≤ 0 for all t ∈ N, b ∈ Rm
+ , and y ∈ Rm

+ .

Proof. Since Λ̇bt is a subgradient, it satisfies Λbt(y
b
t ) − Λbt(y) ≥ (ybt − y)′Λ̇bt(y). And since Λbt(y

b
t ) ≤

Λbt(y), this yields the result.

Lemma 10. For all γ ∈ Rm and ε > 0 there exist δ, C > 0 such that Pr(supb∈Bδ(β) ||
√
t(ybt − yb∞)− γ|| ≤

ε) ≥ C for all sufficiently large t.

Proof. I will begin with a brief proof sketch. Our primary tool for positioning ybt is is Lemma 11,

which maintains that ybt will be close to yb∞+γ/
√
t for all b ∈ Bδ(β) if Λ̇bt(y

b
∞+(γ+ηkωbj)/

√
t) is close

to ηkσbjω
b
j , for all b ∈ Bδ(β), j ∈ [m], and k ∈ {−1, 1}. And with a few triangle inequalities and some

basic calculus, I show that this condition holds when
√
t(Λ̇βt (y)− Λ̇β∞(y)) is near Λ̈∞(yβ∞)γ for all y

in the ν-ball of yβ∞, for some ν > 0. Finally, I use Lemma 16 to show that there’s an Θ(1) chance of

this happening. This lemma maintains that the mapping (j, y) 7→
√
te′j(Λ̇

β
t (y)− Λ̇β∞(y)) converges

to a Gaussian process whose mean is near Λ̈∞(yβ∞)γ when we condition on
√
t(Λ̇βt (yβ∞)− Λ̇β∞(yβ∞))

being near Λ̈∞(yβ∞)γ.
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Lemmas 1 and 2 imply that we can choose δ small enough so that σb1 ≤ 2σβ1 and σbm ≥ σ
β
m/2 > 0

for all b ∈ Bδ(β). And these lemmas also imply that we can choose t large enough to ensure that

yb∞ + (γ + ηkωbj)/
√
t ≥ 0 for a given η > 0 and all j ∈ [m], k ∈ {−1, 1}, and b ∈ Bδ(β). With this,

Lemma 11 indicates that supb∈Bδ(β) ||
√
t(ybt − yb∞)− γ|| ≤ ε if

sup
b∈Bδ(β)

max
j∈[m]

max
k∈{−1,1}

||
√
tΛ̇bt(y

b
∞ + (γ + ηkωbj)/

√
t)− ηkσbjωbj || ≤ κ, (63)

where η ≡ ε/(1 + 8
√
mσβ1 /σ

β
m) and κ ≡ ησβm/(4

√
m). Further, this inequality holds when the

following inequalities hold for all b ∈ Bδ(β), j ∈ [m], and k ∈ {−1, 1}:

||
√
t(Λ̇βt (yb∞ + (γ + ηkωbj)/

√
t)− Λ̇β∞(yb∞ + (γ + ηkωbj)/

√
t)) + Λ̈∞(yβ∞)γ|| ≤ κ/3, (64)

||
√
tΛ̇bt(y

b
∞ + (γ + ηkωbj)/

√
t)− Λ̈∞(yb∞)γ − ηkσbjωbj || ≤ κ/3, (65)

and ||Λ̈∞(yb∞)γ − Λ̈∞(yβ∞)γ|| ≤ κ/3. (66)

Lines (64)–(66) imply line (63) by the triangle inequality, and by the fact that Λ̇bt(y) − Λ̇b∞(y) is

independent of b, which enables me to change the superscripts in line (64) from b to β. I will now

show that there’s a non-negligible chance that these inequalities hold universally across b, j, and k

in their respective domains.

First, since Bδ(β) is compact and Λ̈∞(yb∞) is continuous in b, by Lemmas 1 and 2, it follows

that we can set δ small enough to make inequality (66) hold universally.

Second, since Λ̇b∞(yb∞) = 0 and Λ̈∞ is locally continuous near yβ∞, the mean value theorem

indicates that there exists ξbtjk ∈ (0, 1) for which

√
tΛ̇b∞(yb∞ + (γ + ηkωbj)/

√
t)

=
√
t(Λ̇b∞(yb∞ + (γ + ηkωbj)/

√
t)− Λ̇b∞(yb∞))

= Λ̈∞(yb∞ + ξbtjk(γ + ηkωbj)/
√
t)(γ + ηkωbj)

= Λ̈∞(yb∞)γ + ηkσbjω
b
j + ζbtjk(γ + ηkωbj),

where ζbtjk ≡ Λ̈∞(yb∞ + ξbtjk(γ + ηkωbj)/
√
t)− Λ̈∞(yb∞).

And the continuity of Λ̈∞ implies that we can set δ small enough so that

sup
b∈Bδ(β)

max
j∈[m]

max
k∈{−1,1}

||ζbtjk(γ + ηkωbj)|| ≤ κ/3,
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for all sufficiently large t. Hence, inequality (65) will hold universally for all sufficiently large t and

small δ.

Finally, I will show that for all sufficiently large t the probability that inequality (64) holds

universally across b ∈ Bδ(β), j ∈ [m], and k ∈ {−1, 1} exceeds some C > 0. Since yb∞ and ωbj are

continuous in b, by Lemmas 1 and 2, it will suffice to show that there exist ν > 0 such that

lim inf
t→∞

Pr
(

sup
y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y)) + Λ̈∞(yβ∞)γ|| ≤ κ/3

)
> 0.

I will prove this inequality with Lemma 16, which with proposition 3.13 of Eaton (1983) implies that

conditional on ζt ≡
√
t(Λ̇βt (yβ∞)− Λ̇β∞(yβ∞)), the random map (j, y) 7→

√
te′j(Λ̇

β
t (y)− Λ̇β∞(y)) weakly

converges to a Gaussian process with domain [m] × Bν(yβ∞), mean function ρζt , and covariance

function Ξ, where

ρζtj (y) ≡ e′jΩ(y, yβ∞)Ω(yβ∞, y
β
∞)−1ζt,

Ξjj̄(y, ȳ) ≡ e′jΩ(y, ȳ)ej̄ − e′jΩ(y, yβ∞)Ω(yβ∞, y
β
∞)−1Ω(yβ∞, ȳ)ej̄ ,

and Ω(y, ȳ) ≡ E(1{∆1(y) > 0}1{∆1(ȳ) > 0}a1a
′
1)− E(1{∆1(y) > 0}a1) E(1{∆1(ȳ) > 0}a′1).

Since Ξ is independent of ζt, the random map (j, y) 7→
√
te′j(Λ̇

β
t (y)− Λ̇β∞(y))− e′jρ

ζt
j (y) is assymp-

totically independent of ζt, and hence assymptotically independent of the random map y 7→ ρζt(y).

Accordingly, for sufficiently large t, we have

Pr
(

sup
y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y)) + Λ̈∞(yβ∞)γ|| ≤ κ/3

)
≥ Pr

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ρζt(y)|| ≤ κ/6

∩ sup
y∈Bν(yβ∞)

||ρζt(y)− Λ̈∞(yβ∞)γ|| ≤ κ/6
)

≥ p1
t p

2
t /2,

where p1
t ≡ Pr

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ρζt(y)|| ≤ κ/6

)
and p2

t ≡ Pr
(

sup
y∈Bν(yβ∞)

||ρζt(y)− Λ̈∞(yβ∞)γ|| ≤ κ/6
)
.

I will now lower bound probability p2
t . It is straightforward to confirm that ||ζt − ρζt(y)|| =

O(||y − yβ∞||)O(||ζt||), which implies that we can choose ν small enough so that ||ζt − Λ̈∞(yβ∞)γ|| ≤
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κ/12 implies ||ζt − ρζt(y)|| ≤ κ/12 for all y ∈ Bν(yβ∞). And this, in turn, implies that

p2
t ≥ Pr

(
||ζt − Λ̈∞(yβ∞)γ|| ≤ κ/12 ∩ sup

y∈Bν(yβ∞)

||ζt − ρζt(y)|| ≤ κ/12
)

= Pr
(
||ζt − Λ̈∞(yβ∞)γ|| ≤ κ/12

)
.

Finally, the limit inferior of this last probability is strictly positive, as t→∞, because ζt converges

to a multivariate normal with a full-rank covariance matrix, by Lemma 16.

I will now lower bound probability p1
t . First, ||ζt − ρζt(y)|| = O(||y − yβ∞||)O(||ζt||) implies that

for a given M > 0 we can set ν small enough so that ||ζt|| ≤M implies ||ζt − ρζt(y)|| ≤ κ/12 for all

y ∈ Bν(yβ∞). And since ζt converges to a multivariate normal, we can choose M large enough so

that the last equality below holds for all sufficiently large t:

Pr
(

sup
y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ρζt(y)|| ≤ κ/6

)
≥ Pr

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt|| ≤ κ/12 ∩ sup

y∈Bν(yβ∞)

||ζt − ρζt(y)|| ≤ κ/12
)

≥ Pr
(

sup
y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt|| ≤ κ/12 ∩ ||ζt|| < M

)
≥ Pr

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt|| ≤ κ/12

)
/2.

Further, Lemma 14 implies that we can set ν small enough so that the last inequality in the

expression below holds:

Pr
(

sup
y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt|| > κ/12

)
= Pr

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt||

2
> κ2/144

)
≤ E

(
sup

y∈Bν(yβ∞)

||
√
t(Λ̇βt (y)− Λ̇β∞(y))− ζt||

2)
/(κ2/144)

≤ 1/2.

Accordingly, we can set ν small enough so that p1
t ≥ 1/4 for all sufficiently large t.

Lemma 11. If b is close enough to β to ensure that {ωbi}i∈[m] and {σbi}i∈[m] exist, and if y ∈ Rm
>0

and η > 0 satisfy y + ηkωbj ≥ 0 and ||Λ̇bt(y + ηkωbj)− ηkσbjωbj || ≤ ησbm/(2
√
m) for all j ∈ [m] and
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k ∈ {−1, 1} then ybt ∈ Bη(1+2
√
mσb1/σ

b
m)(y).

Proof. Combining Lemma 9 with the hypotheses of the current lemma implies the following:

0 ≥ (ybt − y − ηkωbj)′Λ̇bt(y + ηkωbj)

= (ybt − y − ηkωbj)′ηkσbjωbj + (ybt − y − ηkωbj)′(Λ̇bt(y + ηkωbj)− ηkσbjωbj)

≥ ηkσbj(ybt − y)′ωbj − η2k2σbjω
b′
j ω

b
j − ||ybt − y − ηkωbj ||||Λ̇bt(y + ηkωbj)− ηkσbjωbj ||

≥ ηkσbm(ybt − y)′ωbj − η2σb1 − (||ybt − y||+ η)ησbm/(2
√
m).

And since ωb1, · · · , ωbm are orthonormal, there must be at least one j ∈ [m] and one k ∈ {−1, 1} for

which k(ybt − y)′ωbj ≥ ||ybt − y||/
√
m. And thus, we must have

0 ≥ ησbm||ybt − y||/
√
m− η2σb1 −

(
||ybt − y||+ η

)
ησbm/(2

√
m).

Finally, rearranging the terms yields the result.

Lemma 12. There exists ε > 0 such that if y, ȳ ∈ Bε(y
β
∞) then E(1{∆1(y) > 0}

)
∆1(ȳ)−) ≤

2σβ1 ||ȳ − y||
2.

Proof. I will first consider the case in which ȳ ≥ y. To begin, note that 1{∆1(y + dy) > 0} 6=

1{∆1(y) > 0} implies that u1 = a′1(y + O(dy)), in which case ∆1(ȳ)− = a′1(ȳ − y + O(dy)). And

with this, Assumption 6 and Lemma 1 imply the following, for y near yβ∞:

E
((
1{∆1(y + dy) > 0} − 1{∆1(y) > 0}

)
∆1(ȳ)−

)
= E

((
1{∆1(y + dy) > 0} − 1{∆1(y) > 0}

)
a1

)′
(ȳ − y +O(dy))

=
(
∂
∂y E(1{∆1(y) > 0}a1)dy + o(dy)

)′
(ȳ − y +O(dy))

= (ȳ − y)′ ∂∂y E(1{∆1(y) > 0}a1)dy + o(dy)

= (y − ȳ)′Λ̈(y)dy + o(dy).

Accordingly, for y near yβ∞ we have ∂
∂y E(1{∆1(y) > 0}

)
∆1(ȳ)−) = (y − ȳ)′Λ̈(y). And thus, for y
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and ȳ sufficiently close to yβ∞ we have

E(1{∆1(y) > 0}
)
∆1(ȳ)−)

= E(1{∆1(y) > 0}
)
∆1(ȳ)−)− E(1{∆1(ȳ) > 0}

)
∆1(ȳ)−)

=

∫ 1

γ=0

∂
∂γ E(1{∆1(ȳ + γ(y − ȳ)) > 0}∆1(ȳ)−

)
dγ

=

∫ 1

γ=0
(y − ȳ)′Λ̈(ȳ + γ(y − ȳ))(y − ȳ)dγ

≤
∫ 1

γ=0
2σβ1 ||y − ȳ||

2dγ

= 2σβ1 ||y − ȳ||
2,

where the penultimate line holds because the largest singular value of Λ̈(ȳ + γ(y − ȳ)) is smaller

than twice the largest singular value of yβ∞, when y and ȳ are sufficiently close to yβ∞, by Lemma 1.

Now we can use what we’ve just established to prove the ȳ � y case, since

E(1{∆1(y) > 0}
)
∆1(ȳ)−)

≤ E(1{∆1(y) > 0}
)
∆1(ȳ ∨ y)−)

≤ 2σβ1 ||y − ȳ ∨ y||
2

≤ 2σβ1 ||y − ȳ||
2.

Lemma 13. There exists C > 0 such that E
(

supb∈Rm+ supy∈Rm+ ||Λ̇
b
t(y)− Λ̇b∞(y)||2

)
≤ C/t for all

t ∈ N.

Proof. I will show that the conditions of van der Vaart and Wellner’s (1996) theorems 2.14.2 and

2.14.5 are satisfied. First, to translate the problem into van der Vaart and Wellner’s format, note

that

e′j(Λ̇
b
t(y)− Λ̇b∞(y)) =

t∑
s=1

λyj (us, as)/t− E(λyj (u1, a1)),

where λyj (u1, a1) ≡ 1{∆1(y) > 0}e′ja1.

The λyj functions lie under an upper envelope—since |λyj (u1, a1)| ≤ ||α||—and so it will suffice to
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show that van der Vaart and Wellner’s (1996) bracketing integral is finite for the set {λyj}y∈Rm+ ,j∈[m].

To streamline the argument, I will suppose that a1 > 0, almost surely, and that the conditional

distribution of u1 given a1 is characterized by density function f , which is bounded by some M ∈ N.

These assumptions are not necessary, but the argument is messy without them.

For a given ν > 0, define m-dimensional grid G ≡ γZm, where γ ≡ ν/(M ||α||21). Next, let

`(y) ≡ max{g ∈ G : g ≤ y} represent the largest gridpoint that’s weakly less than y ∈ Rm
+ and let

h(y) ≡ min{g ∈ G : g > `(y)} represent the smallest gridpoint that’s strictly larger than `(y), so

that h(y)− `(y) = γι. Finally, define U ≡ F−1
u (1− ν/(2||α||)), A ≡ F−1

a (ν/(2||α||)), and Y ≡ U/A,

where Fu is the CDF of u1 and Fa is the CDF of the smallest element of a1 (which we’ve assumed

to be larger than zero).

I will now show that the pair (1{||y||∞ ≤ Y }λ
h(y)
j , λ

`(y∧Y )
j ) is a ν-bracket that contains λyj . First,

if ||y||∞ ≤ Y then

E
(
(λ
`(y∧Y )
j (u1, a1)− 1{||y||∞ ≤ Y }λ

h(ȳ)
j (u1, a1))2

)1/2
≤ ||α||Pr

(
u1 ∈ (`(y)′a1, `(y)′a1 + γι′a1]

)
≤ ||α||E

(
Pr
(
u1 ∈ (`(y)′a1, `(y)′a1 + γ||α||1] : a1

))
≤ γM ||α||21

= ν.

Next, if e′iy > Y then

E
(
(λ
`(y∧Y )
j (u1, a1)− 1{||y||∞ ≤ Y }λ

h(ȳ)
j (u1, a1))2

)1/2
≤ ||α||Pr

(
u1 > a′1(y ∧ Y )

)
≤ ||α||Pr(u1 > Y a′1ei)

≤ ||α||
(

Pr(a′1ei ≤ A) + Pr(u1 > Y A)
)

≤ ν.

Finally, the set {(1{||y||∞ ≤ Y }λh(y)
j , λ

`(y∧Y )
j )}y∈Rm+ has Nν = (bY/γc + 1)m elements. Note

that E(u1) < ∞ implies U < 2||α||/ν, for all sufficiently small ν. Hence, for small enough ν

we have Nν < (b2||α||/(γνA)c + 1)m ≤ (b2||α||31M/(ν2A)c + 1)m ≤ C/ν2m, which implies that∫ 1
ν=0

√
logNνdν <∞.
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Lemma 14. For all δ > 0 there exist ε > 0 such that E
(

sup
y∈Bε(yβ∞)

||Λ̇bt(y)− Λ̇b∞(y)− Λ̇bt(y
β
∞) + Λ̇b∞(yβ∞)||

2)
≤

δ/t for all t ∈ N.

Proof. The proof is similar to the proof of Lemma 13, except with

λyj (u1, a1) ≡ (1{∆1(y) > 0} − 1{∆1(yβ∞) > 0})e′ja1.

Modifying the proof of Lemma 13 establishes that the bracketing integral of {λyj}y∈Bε(yβ∞),j∈[m]
is

uniformly bounded in ε ∈ [0, 1]. Further, λyj is bounded by envelope function λ̄yj , where

λ̄yj (u1, a1) ≡ (1{∆1(y) > 0} − 1{∆1(ȳ) > 0})e′ja1,

y ≡ y ∧ yβ∞,

and ȳ ≡ y ∨ yβ∞.

I will now show that the second moment of this envelope can be made arbitrarily small. First,

Assumption 6 and Lemma 1 yield the following:

E(λ̄yj (u1, a1)2) = E
(
(1{∆1(y) > 0} − 1{∆1(ȳ) > 0})(e′ja1)2

)
≤ ||α||e′j E

(
(1{∆1(y) > 0} − 1{∆1(ȳ) > 0})a1

)
= ||α||e′j

∫ 1

γ=0

∂
∂γ E

(
1{∆1(ȳ + γ(y − ȳ)) > 0}a1

)
dγ

= −||α||e′j
∫ 1

γ=0
Λ̈∞(ȳ + γ(y − ȳ))(y − ȳ)dγ

= −||α||e′jΛ̈∞(ȳ + γ̄(y − ȳ))(y − ȳ),

for some γ̄ ∈ [0, 1]. And since we constrain y ∈ Bε(yβ∞), it follows that Λ̈∞(ȳ+ γ̄(y− ȳ))→ Λ̈∞(yβ∞)

and (y − ȳ) → 0 as ε → 0. Accordingly, E(λ̄yj (u1, a1)2) → 0 as ε → 0, which with theorems 2.14.2

and 2.14.5 of van der Vaart and Wellner (1996) establishes the result.

Lemma 15. For any compact Ω ⊂ Rm
+ , there exists C > 0 such that

E
(

supy,ȳ∈Ω |Λbt(y)− Λb∞(y)− Λb̄t(ȳ) + Λb̄∞(ȳ)|
2)
≤ C/t for all t ∈ N, b, b̄ ∈ Rm

+ .

Proof. Like in the proofs of Lemmas 13 and 14, I will use theorems 2.14.2 and 2.14.5 of van der

Vaart and Wellner’s (1996). As before, I will cast the problem as an empirical process with a new
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set of functions:

Λbt(y)− Λb∞(y)− Λb̄t(ȳ) + Λb̄∞(ȳ) =
t∑

s=1

λȳy(us, as)/t− E(λȳy(u1, a1)),

where λȳy(u1, a1) ≡ (u1 − a′1y)+ − (u1 − a′1ȳ)+.

Note that |λȳy(u1, a1)| ≤ ||α||diam(Ω) <∞. Accordingly, it will suffice to show that the bracketing

integral of {λyj}y∈Ω,ȳ∈Ω is finite.

To bound this bracketing integral, define m-dimensional grid G ≡ γZm, where γ ≡ ν/(4||α||||ι||).

Next, let `(y) ≡ max{g ∈ G : g ≤ y} represent the largest gridpoint that’s weakly less than y ∈ Rm
+

and let h(y) ≡ min{g ∈ G : g > `(y)} represent the smallest gridpoint that’s strictly larger than

`(y). By design, we have

λ
h(ȳ)
`(y) − λ

`(ȳ)
h(y) ≤ (u1 − a′1(y − γι))+ − (u1 − a′1(ȳ + γι))+

− (u1 − a′1(y + γι))+ + (u1 − a′1(ȳ − γι))+

≤ 4γ||α||||ι||

= ν.

Accordingly, the pair (λ
`(ȳ)
h(y), λ

h(ȳ)
`(y) ) is a ν-bracket that contains λȳy. Finally, there are only O(ν2m)

such brackets; hence, the bracketing integral is finite.

Lemma 16. For all sufficiently small ε > 0, the random mapping (j, y) 7→
√
te′j(Λ̇

b
t(y) − Λ̇b∞(y)),

with j ∈ [m] and y ∈ Rm+ , weakly converges, as t→∞, to a mean-zero Gaussian process with domain

[m]×Rm+ and covariance function Σjj̄(y, ȳ) ≡ e′j E(1{∆1(y) > 0}1{∆1(ȳ) > 0}a1a
′
1)−E(1{∆1(y) >

0}a1) E(1{∆1(ȳ) > 0}a′1)ej̄.

Proof. This is a direct application of theorem 2.3 of Kosorok, a classical empirical processes result.

The proof of Lemma 13 establishes that the corresponding bracketing integral is finite.
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