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Abstract

ChatGPT rendered my old data science class obsolete, so I created a new version that leverages
large language models. This paper chronicles my experiences incorporating ChatGPT into the MBA
classroom. I learned that the chatbot does not blur the lines between A and B students, as I only
needed to marginally increase the quizzes’ difficulty to maintain a robust grade distribution. I also
found that MBA students are well suited to “programming in English”—i.e., expressing the required
data transformations in words and then using a large language model to convert their prose into code.
I present informal experimental results that suggest that moderately advanced data-wrangling tasks are
more manageable for students when they program in English than when they use Excel. The integration
of ChatGPT yielded mixed results: both my elective and compulsatory sections seemed more engaged,
but only the former gave me higher evaluations—the compulsatory section gave me significantly lower
teaching scores. Students from both sections also reported working less outside of class.

I thought my class was set. Over the prior two years, I had made an entirely new analytics course. 1 wrote
a textbook on data science with R for MBA students, which revolves around a set of labs that guide the
reader through eight empirical operations management studies—from raw data to final results (Bray 2023).
In addition, I created a corresponding set of interactive R Markdown slide decks that can execute code. The

class went well in the previous year, and I was planning on coasting for the next few years.

How wrong I was. ChatGPT debuted on November 30, a mere 120 days before my first class, and I squandered
the first seven weeks because it took me until the middle of January—when I started preparing for my spring
teaching—to realize the problem it would pose. I remember the moment the harsh reality set in. I copied

the following exercise from my textbook into ChatGPT without further explanation or context:

Exercise 3.43 We will now subject our sample to 10 data filters.

o Start with alibaba_long and group_by() order.

e filter () the grouped tibble accordingly:

o Remove the orders with any() "FAILURE" action. For example, you should remove all the
order = 87717 observations since this order’s 12th action was a "FAILURE".

e Remove orders without exactly one "ORDER" action, one "SIGNED" action, and one
"CONSIGN" action.

e Remove orders that have an action before the "ORDER" action or after the "SIGNED" action.
In other words, there should be an "ORDER" action at time = 0 and a "SIGNED" action at
time = 1.

e Remove orders that correspond to multiple shipper values.

o Remove orders with day_count > 8.

e Remove orders with more than 10 or fewer than 5 posted actions.

e« Remove observations with "ORDER" and "SIGNED" actions, because their time values are
degenerate (mechanically being either 0 or 1).



e ungroup() the filtered tibble and <- it into alibaba_long.
e alibaba_long should have 102331 rows after this step.

This was the most challenging question from my Alibaba lab, which replicates the analysis from Bray
(2020). Last year, around two dozen students visited my office hours to discuss this particular question. So
you can imagine my astonishment when the chatbot produced a correct code solution on its first attempt.
Regrettably, I can’t find the answer it gave me then, but when I give ChatGPT this input now, I receive the
following output:

It seems like you’re working with R programming and the dplyr package, specifically
in manipulating a data frame named “alibaba_long . I’m assuming that your
“alibaba_long” data frame has columns like “order”, “action”, “shipper”, “day_count”,
and “time”. Here’s how you could apply the 10 data filters you mentioned:

library(dplyr)

alibaba_long <- alibaba_long 7>%
group_by (order) %>%

filter(!any(action == "FAILURE"), # Filter out "FAILURE" actions
sum(action == "ORDER") == 1, # Must have ezactly one "ORDER" action
sum(action == "SIGNED") == 1, # Must have ezactly one "SIGNED" action
sum(action == "CONSIGN") == 1, # Must have ezactly one "CONSIGN" action
min(time[action == "ORDER"]) == 0, # "ORDER" action must be at time = 0
max(time[action == "SIGNED"]) == 1, # "SIGNED" action must be at time = 1
n_distinct(shipper) == 1, # Should only have one distinct shipper value per order

day_count <= 8, # Must have day_count <= 8
n() >= 5, n() <= 10) %>% # Must have 5 to 10 actions
ungroup() %>%
filter (! (action %in% c("ORDER", "SIGNED") & time %in% c(0, 1))) # Filter out "ORDER" and "SIGNED" act

# Check if there are 102331 rows left
if (nrow(alibaba_long) != 102331){
print ("The final number of rows in 'alibaba_long' is not 102331.")
} else {
print("Data filtering completed successfully. 'alibaba_long' now has 102331 rows.")

}

Remember to replace the column names if they are different in your actual data.
And be sure to run the checks to see if the transformations have been done
correctly.

While not especially elegant, this code is nevertheless correct—a fact that’s all the more impressive consider-
ing alibaba_long is undefined. I soon discovered that ChatGPT could solve nearly every class question, be
it from a quiz, lecture, or lab. Three weeks before students were slated to bid on it, ChatGPT had rendered
my class an obsolete farce.

After the initial dread subsided, however, it dawned on me that I could teach one of the first-ever classes on
coding with ChatGPT. What an opportunity! I quickly went from desperation to anticipation.

The first order of business was rewriting my syllabus, which now begins with the following:

Large Language Models (LLMs) such as ChatGPT are powerful. = To maximize your
productivity—and stay relevant—you should aim to delegate as much of your workflow to



these language engines as possible. This means you should become comfortable processing and
analyzing data with a computer language—such as R—that LLMs excel at reading and writing.
For instance, ChatGPT can answer nearly every question in my R textbook. Additionally, it’s
adept at explaining its solutions. Case in point, when I instruct it to “run a regression in R
and use the broom package to get its coefficient estimates and fitted values,” it provides the

following response:

Here is an example of how to run a linear regression in R using the
"1Im() "~ function and the broom package to get the coefficient estimates
and fitted values:

# Import the necessary packages
library (broom)

# Create some example data
x <- rnorm(100)
y <= x + rnorm(100)

# Fit the linear regression model
model <- 1lm(y ~ x)

# Use the broom package to get the coefficient estimates
coefs <- tidy(model)
print (coefs)

# Use the broom package to get the fitted values

fitted_values <- augment(model)
print(fitted_values)

In this example, the "1m()"~ function is used to fit a linear regression

model with "y~ as the response variable and “x° as the predictor variable.

The “tidy()~ function from the broom package is then used to extract
the coefficient estimates, and the “augment()  function is used to
extract the fitted values. The “print()” function is used to display
the results.

You can then visualize the fitted values by running

library(ggplot2)
ggplot(fitted_values, aes(x = x, y = .fitted)) + geom_point()

Note that in this example, data is generated randomly, you should
replace it with your own data.

I couldn’t have said it better myself. As you see, switching to R equips you with a software
equivalent of a genie in a bottle, capable of implementing and explaining almost every data
transformation. The tool is a great equalizer; an MBA with an LLM can accomplish almost
anything that an experienced data scientist can. Indeed, MBAs now stand out as the finest
data scientists since the critical analytics differentiator has shifted from technical expertise to
business insight. MBAs will excel as data analysts because they understand the most meaningful
questions to pursue.


https://www.kellogg.northwestern.edu/faculty/bray/doc/opns450/homage.pdf

This class will teach you how to use LLMs to process and analyze data. The only challenge is
transitioning from the spreadsheet to a language. However, once you master the lingua franca
of data science, you will be capable of communicating and collaborating with a machine of
immeasurable power.

After updating the syllabus, I circulated it among the MBA students with the following tagline: “OPNS 451
= Coding with ChatGPT.” This message struck a chord, and the final enrollment in my elective MBA section
swelled from 21 students to 55. In addition to this elective MBA section, I had a compulsatory Master of
Management and Manufacturing (MMM) section, whose total enrollment, 61 students, was predetermined.
I distributed a survey before the first class, which asked the students to rate their agreement with several
statements on a scale from 1 (“strongly disagree”) to 7 (“strongly agree”). 48 out of 55 MBAs and 36 out of
61 MMDMs filled out the survey. Here are their mean responses:

Statement MBA MMM
I am excited to learn how to analyze data with code. 6.06 5.42
Large language models are the most exciting business opportunity right now.  5.27 4.14
I find the prospect of programming intimidating. 3.50 3.86
I would like the workload to be high so that I learn as much as possible. 3.40 2.92
I believe Al could make humanity obsolete in my lifetime. 2.48 2.75

Both classes largely agreed that “Large language models are the most exciting business opportunity right
now” and were thus “excited to learn how to analyze data with code.” Nevertheless, there was some trep-
idation: more than a quarter of students “believe[d] AI could make humanity obsolete in my lifetime,”
with a conviction of at least 4 out of 7, and nearly half of the students reported “find[ing] the prospect of
programming intimidating,” with a conviction of at least 4 out of 7.

I explained that I, too, was nervous since I didn’t know what data science meant in the era of large language
models. I proposed using the class as an opportunity to collectively anticipate how analytics education and
practice will evolve in response to the transformational technology that is ChatGPT 4.0 (I secured each
student a ChatGPT Plus account). I would like to share a few things we learned.

Lessons Learned
Students Will Soon Demand a ChatGPT Retrofit

Consider the following Slack message from one of my elective MBA students:

I thought you’d like this one—I'm currently in a SQL coding class. I went ahead and finished
2.5 hours of labs in 20 minutes. I've never used SQL before and this is being taught like it’s a
pre-ChatGPT world; knowing what I now know, it’s immeasurably frustrating. I feel like I'm in
the film Don’t Look Up.

Programming in English is the Sweet Spot

ChatGPT has unlocked a new paradigm for analytics education: “programming in the English language.”
Students describe the desired data transformations in words, and ChatGPT translates their descriptions into
code. It’s surprisingly effective, and MBA students love it.



To illustrate the power of this approach, I asked the students to use ChatGPT to (i) construct a random
forest model in R, (ii) identify its most predictive variables, (iii) test whether it provides a better in-sample
fit than OLS, and (iv) test whether it provides a better out-of-sample fit than OLS. We accomplished all
of this in 45 minutes in the very first class. Most students had no R experience, yet they could still build
a random forest model and evaluate its performance using a hold-out sample, all within an hour. I even
incorporated missing data in the sample to ensure that the initial random forest run would yield an error.
However, that was not a problem because the students could share the error message with ChatGPT, and
it would modify its solution accordingly.’

Here’s a second example: ChatGPT enabled my students to create an interactive statistical dashboard,
upload it to the cloud, and make it shareable via URL—all within half an hour. The students used the
complex and unfamiliar Shiny package, guided only by the following scanty instructions:

« This is an in-class exercise. The only thing you need to do before class is install.packages("shiny").

¢ Create a new folder in your current R project called my_ shiny_app and within that folder
create a file called app.R. All Shiny applications are saved in an app.R file.

e Ask ChatGPT to give you an example of an app.R file that you could use as a Shiny
template. Copy the code it gives you into your app.R file, and then execute the code by
clicking on the Run App button. A window should pop up with an interactive plot.

e Tell ChatGPT that you would like to create a Shiny app that creates an interactive plot,
based on the table of data found here:
"https://www.dropbox.com/s/eh7f0t7u3rae754/car_data_with_distances.csv?dl=1".
This table has columns brand, defects, distance, and year, among others. The app
should have a drop-down menu that specifies a “brand”, and then filters the data to the
corresponding observations. It should then use the filtered data to create a scatterplot,
with the data in the distance column as the x-axis and the data in the defects column
in the y-axis.

o Ask it to add a regression line, and have it report the statistics of the regression below the
plot. Also ask it to incorporate a slider that allows you to filter the data by year.

¢ Now ask ChatGPT how you can have Shiny Apps.io host your shiny app, so that anyone can
interact with it over the web.

e The dashboard we made was pretty ugly. Create a more elegant report that illustrates the
relationship between distance and defects, upload this version to the cloud, and Slack
the URL to the class grader. Whoever makes the best dashboard, according to the grader,
won’t have to do the cars lab.

The students appreciated this activity because (i) it taught them a concrete skill they could use in their
internships, and (ii) it illustrated the expansion of possibilities afforded by large language models. Without
ChatGPT, the Shiny package would have been too advanced for an MBA class.

In the past, analytics instructors faced a trade-off: R offered more power, while Excel promised simplicity.
But now, R is more powerful and more straightforward because students can better leverage large language
models if they manipulate their data with a computer language. To illustrate this point, I conducted an
experiment. I divided the students into two groups: the first group solved a set of analytics problems with R
and ChatGPT and then solved the same problems with Excel and ChatGPT. Conversely, the second group
began with Excel and ChatGPT before moving on to R and ChatGPT. Hence, all students attempted all
problems with R 4+ ChatGPT and Excel + ChatGPT, with half the class beginning with R and the other
half with Excel, to ensure equal treatment for the approaches. I instructed the students to record the number
of questions they could correctly answer in 30 minutes with each method. Overall, the students correctly
solved more than ten times the number of questions with R than with Excel. Unfortunately, I couldn’t get
a reliable estimate of the Excel + ChatGPT productivity rate because the students essentially gave up in
this case. They quickly realized that they could not elicit sensible Excel instructions from ChatGPT.

1Unfortunately, this demonstration was quite unpopular, so I will scale it back next year.



For instance, consider the following exchange, in which a student asks ChatGPT for Excel instructions to
implement the first filter of Exercise 3.43 (the problem discussed in the introduction):

Student:

I have a table of data called alibaba_ long, with column names order score item brand category
sub__category merchant quantity action_num action time facility shipper day_count. Remove
all observations that correspond to an order with a “FAILURE” action. For example, you should
remove all the order = 87717 observations since this order’s 12th action was a “FAILURE”. Use
Excel

ChatGPT:

To remove all observations that correspond to an order with a "FAILURE" action
in Excel, follow these steps:

e Open your CSV file in Excel.

e Click on the top left cell (A1) to select the entire dataset.

e Go to the ’Data’ tab in the Excel ribbon.

e Click on ’Filter’ in the ’Sort & Filter’ group. This will add filter
arrows to the header row of your dataset.

e Click on the filter arrow in the ’action’ column header.

e In the filter dropdown menu, uncheck ’Select All’ and then check all options
except ’FAILURE’.

e Click ’0OK’ to apply the filter. This will hide all rows with ’FAILURE’ in
the ’action’ column.

e To remove these rows completely, select the visible dataset (excluding the
header row) by clicking and dragging.

e Right-click on the selected dataset and choose ’Delete Row’ from the context
menu.

e Go to the ’Data’ tab and click on ’Filter’ again to turn off the filter.

e Save your modified CSV file.

Now, your CSV file will not have any observations with an order that has a
"FAILURE" action.

Student:

That is eliminating all the lines that have that FAILURE flag, but not the orders associated with
that flag.

ChatGPT:

Apologies for the confusion. To remove all observations corresponding to an
order with a "FAILURE" action in Excel, follow these steps:

e Open your CSV file in Excel.

e Add a new column to the right of the ’order’ column (column B).

e In cell B2, type the following formula and press Enter: =IF(C2="FAILURE",
A2, ""). This will mark the orders associated with the "FAILURE" action.

e Click on the bottom-right corner of cell B2, then drag it down to fill the
entire column B with the formula.

e Select the entire dataset, including the new column B (click on cell Al,
then press Ctrl+Shift+Right Arrow+Down Arrow).



e Copy the selected dataset (press Ctrl+C).

e Open a new sheet in Excel.

e Right-click on cell Al in the new sheet and choose ’Paste Special’> ’Values’
to paste the data without the formulas.

e Click on the ’Data’ tab in the Excel ribbon.

e Click on ’Filter’ in the ’Sort & Filter’ group to add filter arrows to the
header row of your dataset.

e Click on the filter arrow in the ’action’ column header (column C in the
new sheet).

e In the filter dropdown menu, uncheck ’Select All’ and then check all options
except ’FAILURE’.

e Click ’OK’ to apply the filter. This will hide all rows with ’FAILURE’ in
the ’action’ column.

e Click on the filter arrow in the new column B header.

e In the filter dropdown menu, uncheck ’Select All’, and then check ’Blanks’.

e Click ’OK’ to apply the filter. This will show only the rows not associated
with the "FAILURE" action orders.

o Select the entire visible dataset (excluding the header row), right-click,
and choose ’Copy’.

e Open a new sheet in Excel and paste the data in cell Al (right-click,
choose ’Paste’, or press Ctrl+V).

e Delete the extra column B (which was used to mark the orders with "FAILURE"
action) by right-clicking on the column header and choosing ’Delete’.

e Save your modified CSV file.

Now, your CSV file will not have any observations corresponding to an order
with a "FAILURE" action.

These mousing instructions are both tedious and wrong, as they retain all rows without a "FAILURE" rather
than all rows from orders without a "FAILURE". The student attempted to explain this to ChatGPT, but
the chatbot repeated the error on its second attempt.

Now contrast the exchange above with the one that follows. For this case, the student replaced “Use Excel”
with “Use R” at the end of the prompt:

Student:

I have a table of data called alibaba_ long, with column names order score item brand category
sub_ category merchant quantity action num action time facility shipper day count. Remove
all observations that correspond to an order with a “FAILURE” action. For example, you should
remove all the order = 87717 observations since this order’s 12th action was a “FAILURE”. Use
R

ChatGPT:
To achieve this, you would need to subset the dataframe to remove the observations
that correspond to a "FAILURE" action. Here’s how you might do that in R using
the dplyr package:

Firstly, install the required package if you haven’t already.

install.packages("dplyr")

Then load the package:



install.packages("dplyr")

Assuming "order" and "action" are two of the columns in your dataframe, you can
filter out the "FAILURE" actions like so:

alibaba_long <- alibaba_long 7>%
group_by (order) %>%
filter(!any(action == "FAILURE"))

This code groups the data by "order", and then removes any groups/orders where
any of the "action" values are "FAILURE".

If you want to create a new data frame without modifying the original one, you
could do:

alibaba_long_without_failures <- alibaba_long 7%>%
group_by (order) %>
filter(!any(action == "FAILURE"))

This would leave your original dataframe, alibaba_long, unchanged, and create a
new dataframe, alibaba_long_without_failures, without the "FAILURE" actioms.

Now ChatGPT yields an answer that is correct, clear, and easy to implement (just copy three lines of
code into R). This experiment convinced the students of the superiority of the “programming with English”
approach. Indeed, at the end of that class, I overheard one student telling his partner, “I’'m totally sold.”
And when I asked the students to rate “How much do you agree with the following sentence: This class
has convinced me that it’s better to analyze data with code,” on a scale from 1 (“strongly disagree”) to 7
(“strongly agree”), the average survey response was 5.3 for my compulsatory MMM section and 6.0 for my
elective MBA section.

The experiment worked because an Excel framing essentially lobotomizes ChatGPT. Why does ChatGPT
perform more intelligently when operating in R than Excel? First, R is a more expressive tool with more
built-in constructs for data manipulation. For example, the group_by () function in R simplifies the removal
of all observations of a particular order. However, the concept of group_by() doesn’t exist in Excel,
so dropping an entire group of orders isn’t straightforward. Second, Excel operates on a point-and-click
basis, and you can’t train a language model on ephemeral mouse clicks—while there’s a large corpus of R
code online, there’s no corresponding corpus of Excel cursor movements. Third, R solutions are typically
shorter because it’s more efficient to communicate through code than through GUI instructions (e.g.,
“Click on the bottom-right corner of cell B2, then drag it down to fill the entire column
B with the formula.”). Shorter solutions are more robust as they offer fewer chances for hallucination or
derailment.

I presented the “programming with English” paradigm to a room full of analytics instructors at Columbia’s
Future of Analytics Education workshop this May. Few professors seemed aware of this approach—or at
least of its full potential. For example, Ciamac Moallemi showcased a set of plug-ins that enable students
to use higher-level statistical tools in Excel. He explained that these plug-ins were a necessary compromise
since although teaching proper data analytics requires teaching coding, “teaching coding to MBAs is too
heavy a lift” To challenge this claim, I demonstrated how to implement k-means clustering— Ciamac’s
primary example—with an English-to-R translation. I performed a live demo, copying the following prompt
into ChatGPT:

store_ coordinates is a tibble with columns store, long, and lat. Use the k-means clustering
function of R to cluster the store values by long, and lat.



And looking through my history, I see that ChatGPT responded with the following:

To cluster the “store” values in the “store_coordinates™ tibble using the
k-means clustering function in R based on the “long™ and “lat”™ columns, you
can follow these steps:

# Load the required library
library(dplyr)
library(cluster)

# Perform k-means clustering
k <- 3 # Specify the number of clusters you want

# Select only the relevant columns for clustering
coordinates <- store_coordinates %>}, select(long, lat)

# Perform k-means clustering
clusters <- kmeans(coordinates, centers = k)

# Add the cluster labels to the original tibble
store_coordinates <- store_coordinates %>
mutate(cluster = clusters$cluster)

# View the resulting tibble
print (store_coordinates)

In this example, "k~ is set to 3, which means the data will be clustered into
three groups. You can modify this value to match the desired number of clusters.
The resulting “store_coordinates”™ tibble will have an additional column “cluster”
containing the cluster labels assigned by the k-means algorithm.

Note that in order to run this code, you’ll need to have the “dplyr” and “cluster’
packages installed in your R enviromment. If you haven’t installed them yet,
you can use the following commands:

install.packages("dplyr")
install.packages("cluster")

Make sure to run these commands before running the code for clustering.

I then executed this code in R to confirm that it properly clusters the stores. The whole process took around
20 seconds.

After the presentation, Dan Iancu suggested that adopting “programming in English” would require teaching
code validation. For example, we could instruct the students to subject ChatGPT’s code to test problems
for which the correct outputs are known. I will implement this next year.

Use Quizzes, Not Exams

My colleague, Sebastien Martin, has an uncanny understanding of the MBA psyche. Accordingly, I heeded
his suggestion when he advised making all formal assessments “open ChatGPT.” He explained that barring
the chatbot when the students’ grades were most at stake would lead to resentment since I had pitched this



course as “coding with ChatGPT.” This could have presented a dilemma: since there’s never been an “open
ChatGPT” exam, I would not have been able to gauge the difficulty of such a test. Fortunately, however,
I had replaced the midterm and final with 16 start-of-the-class quizzes last year. Assessing the students
with quizzes enabled me to dynamically adjust the difficulty of the questions in response to the students’
performance.?

ChatGPT Does Not Collapse the Grade Distribution

Before my class, I questioned whether I could derive a meaningful grade distribution from a series of “open
ChatGPT” quizzes. Can informative coding exercises be constructed when all students can access ChatGPT’s
coding prowess? This was an open question. Surprisingly, however, I found such exercises all too easy to
create. In fact, a slight increase in the quiz difficulty was sufficient to ensure that the final quiz scores
followed a healthy bell curve (see figure 1).
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Figure 1: Distribution of Quiz Scores

There were several reasons for the diminished returns to ChatGPT. First, the innate complexity of coding
enabled students to consistently discover inventive ways to err. For example, one student told me that she
bungled a question because the solution ChatGPT provided began with install.packages(tidyverse),
which was a line of code she could not execute within her interactive R Markdown file (I had advised the
students to do serious coding in a .R file, but not all of them heeded my advice).

Second, whereas my Spring 2022 students learned to code, my Spring 2023 students learned to code with
ChatGPT, which proved to be an entirely different proposition. Most of my 2023 students could read the
R language, but they could not write it. Accordingly, most of my students were at the chatbot’s mercy,
lacking the inclination or capacity to modify its outputs. Even some of my brightest students would use
ChatGPT for basic tasks, such as checking the number of rows in a table. This overreliance on ChatGPT
led to a brittle performance during quizzes. Since they had yet to write code themselves, they had not made

2Replacing exams with quizzes offers several other advantages. First, it alleviates grading anxiety, as quizzes are low stress
for students. For instance, I received only around four regrade requests across all 16 quizzes. In fact, the students were so
nonchalant about their quiz performance that I found it necessary to remind them to approach the quiz questions as if they
were final exam questions. Second, the students weren’t surprised with their final grades, which progressively unfolded from 16
independent assessments. Third, Dr. Johnson’s insight— “when a man knows he is to be hanged in a fortnight, it concentrates
his mind wonderfully”—applies to twice-weekly quizzes. The students pay keen attention when they know they’ll be quizzed in
three days. Fourth, the quizzes served as an early detection system, allowing me to swiftly identify and intervene with students
who lagged (e.g., I had conducted three quizzes by the end of the second week). Fifth, the students make a point to arrive to
class early with their laptops open, knowing that being late would shorten their quiz time. Additionally, students who come
late no longer vex me, as I know their quiz scores will reflect their tardiness.
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the hundreds of silly mistakes necessary to properly learn the subject—mistakes that invariably cropped up
during the quizzes. The course evaluations support this claim: one student reported, “I think most of the
class does not know how to code in R after this class and rely mainly on ChatGPT,” and another wrote that

the concept of adding ChatGPT into things was valuable, but i think it came at the cost of
actually learning to code. it never felt like we actually had to code, but then there were times
where we needed to do things that did require specific skills. it felt like whiplash on the level of
specificity. i know this is a new factor in this class, but i think it’s worth thinking about.

Third, abstracting the low-level details with a chatbot may have compromised the students’ high-level
understanding. For instance, when I included a tricky problem from the previous homework assignment on
a quiz, 58% of students answered it incorrectly. These students failed to recognize a verbatim copy of a
problem they had solved just two days prior because rather than engage with the details of the problem,
they engaged with a chatbot who did the real engagement for them. Several students expressed regret, in
their course evaluations, for outsourcing so much of the thinking to the chatbot:

Since ChatGPT did most of the heavy lifting, I feel like I didn’t learn as much as I wanted.
Especially in data—analytics.

Because we relied so heavily on ChatGPT—I truly don’t know what a lot of R even means or
what I would use to complete tasks. As well, it was hard to stay engaged.

It was occasionally the case that I would mindlessly complete the quiz without fully knowing
what I was doing due to the time constraint, but I got away with it since ChatGPT is so good at
coding. If there is a way to effectively force students to think about how to use ChatGPT rather
than simply pasting prompts, then that could prove more impactful.

Fourth, students often developed tunnel vision, as crafting GPT prompts would command their undivided
attention. Indeed, the students largely ignored the template solutions we covered in class, opting to spend
their limited quiz time conversing with the chatbot than perusing their notes. For example, a peculiarity
of generalized linear models is that you do not specify the function that maps the linear combination of
the independent variables to the mean of the dependent variable; instead, you specify the inverse of this
function, known as the “link.” I spent nearly ten minutes explaining this, and in the next class, I quizzed
the students on the concept by asking them to explain what the 1ink = "log" option in the following code
signifies:

small_bike %>%

glm(
overtime ~ distance + age + duration,
family = Gamma(link = "log"),
control = list(maxit = 1073),
data = .

) W%

summary %>%

{1/pluck(., "dispersion")}

After the quiz, most students lamented that they “had to guess” for this question since ChatGPT didn’t
know the answer. It led me to question whether the students had forgotten that the quizzes were open
ChatGPT and open notes.

Fifth, echoing the Peltzman Effect, the students used ChatGPT both to enhance their performance and
to reduce their workload. The reported weekly hours worked fell from an average of 4.85 and 3.88, for my
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MBA and MMM sections, to 3.57 and 2.62. The former drop is statistically insignificant, but the latter is
statistically significant at the p = 0.01 level. Furthermore, 22% of students reported not studying for quizzes,
which would have been inconceivable in 2022.2 One student’s end-of-the-quarter feedback confirms a causal
link between ChatGPT and the reduced study times:

I loved how my eyes opened to the possibilities of chat GPT. I wish we had learned more about
the fundamentals R before you showcased the power of the chatGPT tool. After seeing that 1
sort of checked out and knew that I could ask Chat GPT for anything and wouldnt really have
to learn on my own.

After teaching the same class both with ChatGPT (easy mode) and without ChatGPT (hard mode), I am
left with the impression that regardless of the rigor of the course, a class will revert to the equilibrium
whereby A students get As and B students get Bs.

Finally, ChatGPT sometimes struggled with the specialized material we covered in class. For example,
ChatGPT doesn’t know how to query the ChatGPT API from R.

ChatGPT Supercharges Homework Productivity

While ChatGPT did not significantly improve performance for the quizzes, it did so for the out-of-class labs.
Last year, a four-person team typically required around four to five hours to complete a lab. This year, the
self-reported average time spent on an out-of-class lab was 70.0 minutes for the MMMSs and 57.8 minutes
for the MBAs. One student even said that “Regardless of how much work my group put in, I could get the
whole project done solo in an hour or less using ChatGPT.

This reduction in effort coincided with a marked increase in quality. My grader reported a clear improvement
in the students’ lab submissions. For example, in the previous year, it took the students around five weeks
to start incorporating the pipe operator, %>%, in their submissions. This year, nearly every team began using
piping from the outset.

ChatGPT could solve my labs because I provided detailed, step-by-step instructions that students could adapt
as prompts. One of the most common suggestions in the course evaluations was to make the homeworks
more open-ended:

I love that ChatGPT was rapidly integrated into the syllabus. However, assignments became
plug and play. I didn’t need to learn or understand the R material to perform well. In the future,
the professor needs to change the focus of the course from coding in R, to learning how to ask
the right business questions when presented with data. ChatGPT removes barriers to coding,
but if I don’t know what questions to ask I can’t yield this powerful tool.

ChatGPT Atomizes Groups

ChatGPT undermined group work because the students progressed more with the chatbot than with each
other. Consider the following tally of the responses to “Did ChatGPT make group work more or less
rewarding? Please explain”:

Elective MBA  Compulsatory MMM

ChatGPT Made Group Work More Rewarding 22 11
ChatGPT Made Group Work Less Rewarding 17 33
No Clear Relationship Reported 5 10

3However, the mean and median study times were a respectable 16.7 and 15.0 minutes per quiz.
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While a small plurality of the MBAs found that ChatGPT enhanced group work, an overwhelming majority
of MMMs felt it devalued the experience. Most negative comments were along the lines of “there was less
discussion and more asking to ChatGPT.”

Nevertheless, ChatGPT also improved group work in several ways. First, a handful of responses explained
that ChatGPT put the students on an equal footing, facilitating broader participation in homework tasks.
As one student put it, “It evened out where everyone was. Everyone could be helpful.” Second, several
students mentioned that ChatGPT streamlined code hand-offs. For instance, one respondent wrote, “It was
so helpful to be able to copy and paste someone else’s code into ChatGPT and have it explain what’s going
on,” while another noted that ChatGPT “allowed seamless debugging without having to wait for teammates
to respond to questions and allowed me to understand what certain functions were meant to accomplish on
someone else’s code if there weren’t comments.” And one student explained that their team would copy each
student’s code into ChatGPT and ask the bot to compile these versions into a final answer that integrated
the best elements of each. Third, students liked ChatGPTing together because “it was interesting to see
how my peer’s used the tool differently”; accordingly, they “spent more time comparing ways to best utilize
chatgpt and less time troubleshooting menial tasks.” Fourth, the students appreciated the relief from the
usual frustrations of coding;:

[ChatGPT made group work] Way more rewarding! Such a practical class and when you do get
stuck in the code, you have a “get out of jail free” card with chatGPT. Whenever you get stuck
in programming, normally you can get stuck for hours. Totally improves the coding experience!

By obviating the lower-level coding issues, ChatGPT enabled some students to focus on the higher-level
concepts:

ChatGPT made group work more rewarding by moving us out of troubleshooting mode faster.
In my lab assignments I was able to talk to my peers about what was going on in the code and
what the data was telling us as opposed to why a syntax error I made threw an error.

ChatGPT Yields New Teaching Possibilities

Last year, I allocated a third of the class time to the labs. However, with the labs now rendered trivial, I
had roughly ten hours of additional time to fill. I devoted these hours to ChatGPT to meet the expectations
set by promoting the course as “the ChatGPT class.” I developed nine innovations with varying degrees of
success, as figure 2 illustrates. This figure presents the students’ responses to a series of survey questions
that began with, “How did the following go.” For instance, the top plots depict the distribution of responses
to “How did the following go: Student ChatGPT demos,” on a scale from 1 (“very poorly”) to 7 (“very
well”).

When I rank the innovations by their mean score, the student demonstrations top the list. To help keep up
with the breathless developments in generative Al I invited the students to give a five-minute presentation to
the class if they found something they believed their peers would find intriguing. I awarded the presenters a
nominal amount of extra credit, but most student demos were intrinsically motivated—the students wanted
to show something cool to their friends. And on that score, they delivered—these were, by far, the best
student presentations I have witnessed.

For instance, one student demonstrated how we could use the AskYourPDF plug-in to enable ChatGPT
to read the quiz and formulate answers to its three questions without the user needing to open the PDF.
Another student showed that we could generate practice quiz questions by copying the pertinent passage
from the textbook into ChatGPT. Yet another student used ChatGPT to develop a Python program that
reads the top stories on Yahoo News and composes a one-paragraph summary of each in a Word document.
Not to be surpassed, another student harnessed ChatGPT to create a Python program to automate a series
of video game actions, to grind experience points. As the student explains:
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Figure 2: Distribution of Survey Responses
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Student ChatGPT demos

Using ChatGPT in quizzes

Competition involving
ChatGPT-generated R trivia
and ChatGPT lifelines

Using ChatGPT to create
a random sample of
limericks, and then
extract features from this
corpus of text

Who Wants to be a
Millionaire, with ChatGPT
lifelines

Using ChatGPT as a writing
judge, and as a judge of
writing judges

Using the ChatGPT API
to create a universal
solve_with_chatgpt()
function

Testing whether ChatGPT
compliments Excel as well
as it compliments R

Using ChatGPT to run a
random forest in the first
class



I built two [programs]—one is for training combat skills and the other is to train magic while
making money. The first automates gameplay in OldSchool RuneScape to improve gaming effi-
ciency. It autonomously consumes Super Strength and Absorption potions at specified intervals
and interacts with the prayer orb to maintain the player’s Hitpoints at an optimal level based
on game mechanics, where remaining at exactly 1 hitpoint is the most efficient. The script lever-
ages the PyAutoGUI library to simulate mouse movements and clicks, and incorporates a degree
of randomness in these actions to emulate human behavior and avoid detection by the game’s
anti-botting systems. Specifically, the script clicks on a random pixel within the possible ranges,
whether for the prayer orb or the various potions. To add more variability, the time between click
to the prayer orb varies, and each time it is clicked, the script checks to see if a time threshold
has been met for either of the potions; if it has, it clicks on the potion, and doesn’t if it has not.
The second code is much simpler - it is auto-clicker with time variability between each click. The
mouse stays in the same position and clicks over and over, but with sufficiently variable time
between each click that makes it seem human-like. What was special about this code was that,
since it was so simple, I created a GUI complete with a green- and red-laser eyes on my dog for
‘Start’ and ‘Stop,’ respectively. To make it a bit cooler, I included some calculations to be shown
on the GUI, like how much XP I would gain, how many spells would be cast, and how many were
left, and if there was a difference between how many I wanted cast, and how many actually were
cast, that is also shown.

The students loved this presentation. It was compelling because the presenter had no prior coding experience,
being a philosophy and economics major. This presentation thus proved to the class that they, too, could
create genuine software.

In summary, the student presentations made one clear: ChatGPT empowers the students to be creative in
novel and unexpected ways; allow them to show off their unique creations, and you won’t be disappointed.

The second most popular innovation was integrating ChatGPT into the quizzes, a previously discussed
topic. Following that was a gamified version of one of the labs, which pitted the two class sections against
one another. The game had multiple rounds, each corresponding to a lab question. To begin a round, I
would use ChatGPT-generated R trivia to select two team captains. The captains would then guide the class
in collaboratively solving the lab problem. To help with this, I gave the class five one-time-use ChatGPT
“lifelines”:

e Automate the Workforce: The team captains can fire the class and replace them with ChatGPT

o Blunder Bot: Everyone can access ChatGPT 3.5

e Hire a Logical MBA: The team captains can select a student to consult ChatGPT, but after that, that
student can only answer TRUE or FALSE

e Hire a Technical Technical Writer: Ask ChatGPT to provide a detailed description of the code solution

e (all the Exterminator: Request ChatGPT to debug your code

After the class solved the problem, the team captains would ensure everyone understood the solution. Finally,
I would randomly select students and assess their comprehension of the solution with “challenge questions.”
This game worked well but would have been somewhat monotonous without the ChatGPT trivia questions
and lifelines.

The next most popular innovation was an exercise in which ChatGPT created a text corpus and extracted
features from these data. I first showed the students how to have R call ChatGPT to generate a pair of
Kellogg-themed limericks and determine which was funnier. I then showed them how to do the API calls in
parallel to create 1,000 pairs of limericks, with one from each pair marked as more humorous. I then had
the students use logistic regressions to predict which limerick from each pair ChatGPT would find funnier.
The students began with features R could easily extract, such as the string length and word count. And
then I asked, “Could we include the quality of the rhymes in our logisitic regression?” This stumped the
class. One student responded affirmatively but added that it would be “really hard to program.” However,
I prodded further— “Would it really be so hard to program?” —and then students got it: we could use
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ChatGPT to score the limericks along abstract dimensions, such as rhyme, rhythm, whimsy, wit, cleverness,
and humorousness. This was a significant revelation for both me and the students. With some parallel
processing, we extracted these features from each of our 2,000 limericks and then held a Kaggle competition
to determine who could best utilize them.

The next most popular innovation was a recreation of “Who Wants to be a Millionaire,” but with ChatGPT
lifelines (an idea I actually from ChatGPT itself). This exercise was similar to the previous competition
with ChatGPT lifelines, but I also used ChatGPT to create the questions for this one. Specifically, I would
input a block of text into ChatGPT, ask it to write a paragraph that correctly explains what the code does,
and then ask it to write three analogous incorrect paragraphs. Here’s an example of one of the questions:

Which of the following paragraphs explains what this code does:

chess_panel %>
inner_join(
time_to_first_kill %>%
mutate (
kill bucket =
first_kill_move %>Y%
ntile(4) %>%
as.factor
)
) >h
gegplot () +
aes(x = turns, color = kill_bucket) +
geom_density() +
theme_minimal ()

(1) This R code takes the chess panel dataset and performs an outer join with the
time_ to_ first_ kill dataset. It then creates a scatter plot using ggplot2, with the x-axis
representing the number of turns and the y-axis representing the kill_bucket. Each point is
colored based on the kill bucket (quartiles of the first kill move). The plot uses a minimal
theme for better visualization.

(2) This R code takes the chess_panel dataset and performs an inner join with the
time_ to_ first_ kill dataset, which has an additional column kill _bucket created by dividing
the first_ kill move into quartiles. The output of the join is then used to create a bar chart
using ggplot2. The x-axis represents the number of turns, and the bars are colored based
on the kill _bucket (quartiles of the first kill move). The plot uses a minimal theme for
better visualization.

(3) This R code takes the chess_panel dataset and performs an inner join with the
time_ to_ first_ kill dataset, which has an additional column kill_bucket created by dividing
the first_ kill move into quartiles. The output of the join is then used to create a density
plot using ggplot2. The x-axis represents the number of turns, and the density curves are
colored based on the kill bucket (quartiles of the first kill move). The plot uses a minimal
theme for better visualization.

(4) This R code takes the chess panel dataset and performs an inner join with the
time_ to_ first_ kill dataset, which has an additional column kill _bucket created by dividing
the first_ kill move into quartiles. The output of the join is then used to create a line plot
using ggplot2. The x-axis represents the number of turns, and the lines are colored based
on the kill bucket (quartiles of the first kill move). The plot uses a minimal theme for
better visualization.
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The students appreciated questions in this format because MBAs generally spend more time reading code
than writing it. However, creating these paragraph descriptions would have been prohibitively costly without
ChatGPT.

The sixth innovation was an activity that assessed whether I'm a better writer than ChatGPT and whether
the students are better writing judges than ChatGPT. For the former comparison, the students provided
ChatGPT with the solution code for one of my lab questions. Then they requested the chatbot to write
a corresponding bullet-pointed list of instructions that a student could follow to recreate it. The students
subsequently determined whether ChatGPT’s instructions were more straightforward than those I included
in my textbook. Reassuringly, the students largely agreed that my version was clearer. However, when
the students asked ChatGPT to judge which piece of writing it found clearer, it typically held the opposite
view. Hence, while the students generally favored the man-made text, the chatbot favored the machine-made
text. How could we resolve this disagreement? In other words, how could we create an objective measure of
writing clarity to determine who’s the superior writer—me or ChatGPT—and decide who’s the better judge
of writing—the students or ChatGPT? It took the students a while to think of the answer: ask ChatGPT
to write the code corresponding to both sets of written instructions. Fortunately, my written instructions
more frequently yielded the correct answer, allowing us to conclude that humans still reign supreme.

The seventh innovation was a lecture that showed the students how to access the ChatGPT API via the
ask_chatgpt () function of the chatgpt package. We used this function to create the following universal
evaluator function:

solve_with_chatgpt <-
- h>%h
str_c(
"Create R code to do the following: ", #append this message to start of user input

°9

sep = "\n\n"
) Wh
ask_chatgpt %>% #pass result into ChatGPT
str_c(
n
Extract code chunk from the following text. #append this message
Your answer should be a single snippet of code, #to the start of
with no additional commentary. I should be able to #the ask_chatgpt()
compile your output as code. #output
n
sep = "\n\n"
) %% #call ask_chatgpt() a second time to extract the
ask_chatgpt 7%>% #code from the previous ask_chatgpt() output
str_remove ("™ R|TTI\\{R\\} """ I\N{\\}") %>% #clean up second
str_remove_all(" ~"") %>% #ask_chatgpt () output
parse(text = .) %>% #and try to evaluate %t
eval #as R code

This function (i) receives a character string input describing a task, (ii) appends a message to this string
to create a sensible prompt, (iii) prompts ChatGPT to generate code to perform the task, (iv) requests
ChatGPT to extract the code from the output (as the bot typically intersperses text with code), and then
(v) executes the code. For example, when I input "calculate the number of friday the 13ths there
will be in the 21st century" %>} solve_with_chatgpt, I usually get 172 as the output (although not
always, as ChatGPT responses are random). This solution worked pretty well, but one of my students
created an even better version of solve_with_chatgpt (), which used only one ask_chatgpt () call.

Finally, the last two innovations we have already discussed.
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ChatGPT Won’t Motivate an Unenthusiastic Class

I've always had a harder time engaging my MMM students, who are compelled to take the class, than my
MBA students, who choose to do so. As one anonymous student from the 2021 MMM cohort put it,

This should not be a required class for MMMs, or for anybody. ... Most of the class will never
use R again, and this was a wasted course for them. Knowing that, a lot of my classmates just
simply didn’t put any work into the class, so they didn’t learn R, and now they have a bad taste
in their mouths about R and coding in general. For that reason, I think this class was actively
detrimental to the MMM experience. This does not reflect on Bray necessarily, but again on the
administration for making us take an the unnecessary class. Bray’s only mistake was thinking
that we were going to put in hours outside of class to actually learn how to use R—I agree the
only way to learn a coding language is through individual practice and doing labs, but this class
(and most business school classes) just aren’t going to do that (especially if they are mandatory).

Since receiving this comment, I have endeavored to make data science and R more relevant for the MMMs.
I thought ChatGPT was just the ticket, as no one could deny its utility, applicability, and charm. And,
indeed, ChatGPT dissipated the sulky ‘Why do I need to know this?” atmosphere that previously pervaded
the class.

Consequently, I anticipated a considerable increase in my teaching evaluations. I expected the shift in
attention from data science to ChatGPT to increase my MBA scores and to increase my MMM scores by
even more, since this section is less inclined to data analysis. My MBA scores did rise, but my MMM scores
did not rise by more—in fact, they fell. Here are my average course evaluations from 2022 and 2023:

2022 MBA 2023 MBA 2022 MMM 2023 MMM

Overall, how satisfied were you with this 4.77 4.95 3.35 3.03
course?

Overall, how satisfied were you with this 5.15 5.36 3.81 3.21
instructor?

This course challenged me to engage 5.23 5.18 4.31 3.39
intellectually and academically.

This course provided me valuable knowledge, 4.92 5.59 3.88 3.79

skills and/or analytical frameworks.

The students responded on a six-point scale, with one representing “extremely dissatisfied” or “strongly
disagree” and six representing “extremely satisfied” or “strongly agree.” Most of the differences—from pre-
to post-ChatGPT—are statistically insignificant. However, the scores for “This course provided me valuable
knowledge, skills and/or analytical frameworks” increased significantly for the MBAs, at the p = 0.05 level,
and those for “This course challenged me to engage intellectually and academically” dropped significantly
for the MMMs, at the p = 0.01 level.

The difference between the MBA and MMM reception to ChatGPT was even more pronounced in the written
feedback. The MBA responses could be effusive. Here are some examples:

revolutionary course, very bright.

The whole concept of the course was awesome, and I felt like I had to take it to get a leg up on
the competition as I graduate and return to the work force. I think the likelihood that I use R
in my future work is significantly higher knowing that ChatGPT can assist me when I get rusty.
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I loved the cutting—edge nature of the course. Professor Bray is evolving his class to incorporate
large-language models that will undoubtedly transform the future of business.

Using ChatGPT was incredibly helpful and such a novel and bold approach given how new
the technology is. If anyone from Kellogg administration reads these, look at where you can
incorporate ChatGPT and other related tools into other class curriculums, where appropriate.
AT tools like this give MBAs superpowers, and it makes me really excited for the next decade.

I really appreciated the way Prof Bray incorporated ChatGPT into the class. It felt like a
preview of the way the working world will be for us after graduating (both in the Genera-
tive Al sense, and in the “figuring things out as we go” sense). I also appreciated the exer-
cises/activities/competitions in class that broke up any monotony.

Extremely relevant. Enthusiastic professor. Tried things and made an incredible effort to inte-
grate a brand new technology in the class which could be the most impactful and gamechanging
breakthrough for B—school students in decades

The MMM students’ positive comments were more measured, and their negative comments were more
extreme. Here are some examples:

It felt at times like an experiment, in terms of the class exercises—was not a fan of that. Some
were fun, others felt like I was wasting my time.

I felt like this was not applicable to anything I'll ever do at work. I wish the course was more of
an overview of data science, various tools that are used, how to analyze data, etc. than just an
“homage to R” class. I'm not sure when else I'll ever use R and feel like a lot of my time was
wasted this term.

I feel like I learned pretty much nothing in class and my valuable time and tuition has been
wasted. Honestly, feeling a bit resentful about that. The examples used in class are not relevant
in business. As an MBA student, I don’t really care about the professor’s academic research, and
don’t feel like doing those examples is going to help me in any way in the future. I also think
the goal of this class should’ve been how to analyze data (with R / ChatGPT), what critical
questions we should have when analyzing data, instead of how to use R, since we can learn how
to use R on our own, with ChatGPT, or even just use other languages such as Excel (which
the professor hates vehemently for no reason) or Tableau or Python. I know data cleaning is
an important part of data analysis but very few MBA graduate are actually going to clean data
on the job so focusing on that seems to be unnecessary. The in—class exercises of showing how
wonderful ChatGPT is also seems to miss the point (I signed up to learn analysis not to learn
how great ChatGPT is) and I truly felt like I was wasting my time.

This class was by far the biggest waste of my tuition dollars yet. It would have been nice if Bray
started off the class with an introduction of why we should learn r, why r is useful etc because I
still don’t understand the answer to that. Also organization was HORRENDOUS. In a corporate
setting Bray would have been fired immediately for the level or disorganization that goes into his
class.

ChatGPT Will Replace Tutors

At the end of the class, I asked the students to rate “How helpful was ChatGPT as an R tutor?” on a scale
from 1 (“not at all helpful”) to 7 (“extremely helpful”). Here are the response distributions:
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1 2 3 4 5 6 7
Elective MBA 23% 0% 23% 23% 182% 15.9% 59.1%
Compulsatory MMM 0%  7.4% 3.7% 7.4% 14.8% 25.9% 40.7%

70% of responses were either a six or a seven, which explains why my office hours attendance dropped from
around six per week to three per quarter. Additionally, I employed four R tutors last year; this year, I found
no need to hire any.

ChatGPT Eliminates Cheating

In response to the spike in cheating following the pandemic, I created a unique quiz for each student by
randomly drawing from three versions of each question and then shuffling the final arrangement. However,
this cheating safeguard was pointless, as I learned in the mid-course feedback: a student noted that nobody
would peek at their friend’s answers when they can consult an entity with superhuman coding abilities.

ChatGPT Skills Improve with Practice

In an exit survey I distributed on the last day of class, I asked the students to rate on a scale from 1 (“strongly
disagree”) to 7 (“strongly agree”) “How much do you agree with the following sentence: Taking this class
has substantially improved my proficiency with ChatGPT, surpassing what it would have been without the
class.” 1 also asked, “How much do you agree with the following sentence: I used ChatGPT in my other
classes more than I would have, had I not taken this class.” Figure 3 illustrates the results. The students
credit the class with boosting their ChatGPT proficiency, which had spill-over effects for their other courses.

Elective MBA Compulsatory MMM
(44 responses out of 55 students) (54 responses out of 61 students)

2 8:2 Taking this class has substantially
-% 0.3 improved my proficiency with
"é’ 0.2 ChatGPT, surpassing what it would
5 01 e . have been without the class.
@ 0.0 e —r—
5 0.5 .
s g-g | used ChatGPT in my other classes
B o2 . m(l:(Jre tk;lgn Ilwould have, had | not
© taken this class.

1 6 7

How Much Students Agree with the Given Sentence,
From 1 (Strongly Disagree) to 7 (Strongly Agree)

Figure 3: Student Survey Results

Conclusion

Here are the primary takeaways from my quarter teaching data science with ChatGPT to MBAs:

e Students are more productive coding in English than mousing in Excel. My informal in-class experiment
suggests that students can be up to an order of magnitude faster with R + ChatGPT than with Excel
+ ChatGPT. And in a post-class survey, 63% of MMMs and 86% of MBAs reported at least a 5 out
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of 7 agreement with the statement, “This class has convinced me that it’s better to analyze data with
code.” To better leverage large language models, business schools will likely transition from GUI-based
tools, such as Excel or SPSS, to text-based approaches, such as R or Python.

After hearing me evangelize for the “programming in English” approach, Ciamac Moallemi inquired if
it was still necessary to teach data wrangling. I answered affirmatively because the method falls short
if students can’t follow ChatGPT’s output—Iet alone verify its correctness. I learned this the hard
way: Asking the students to construct a random forest model in the first session was the least popular
ChatGPT innovation (see figure 2). When I expressed dismay and surprise over this, one of my top
students offered the following explanation via a Slack:

Btw this is random, but I wanted to share rationale for why me and many other students
had a tough time with the random forest experiment at the beginning of the course. We
were just starting to get our hands around GPT—Ilot of nervousness. I didn’t even know the
difference between 3.5 and 4 really at the time. When we had GPT assist us with simple code
in the first few classes it was great because we could read the output and make some sense
of it. Analogous to language immersion with simple words. The random forest was scary
because few students had any idea what they were actually doing. I don’t think random
forests are part of the standard DECS we all take. So the code it generated was essentially
hieroglyphics. It was nerve-wracking trying to “debug” inscrutable code doing something we
couldn’t explain. The error messages to console were not helping. And they were caused in
retrospect by GPT 3.5’s poor ability to do such complicated tasks. If we did it now, we’d
all know to use GPT-4 and could probably even make sense of the code, but it felt like way
too much all at once. I was worried after that experience that the “prior knowledge” bar
was too high. Quite wrong thankfully! I hope that helps - I remember this experiment was
a negative outlier last time we polled student experience and wanted to share the anecdotal
perspective.

Since our students don’t want to work with “hieroglyphics,” we must teach them the syntax. And since
a lecture that instructs students to read R syntax is analogous to one that instructs them to write R
syntax, you should not expect ChatGPT to meaningful decrease lecture times, as it decreases lab and
homework times. In fact, I'll probably spend more time lecturing next year, because the chatbot dulls
the students’ understanding, which leads to feedback like this:

I am coming out of this class only being able to do data analytics with the help of ChatGPT.
I would have preferred to actually understand it myself but the pace of the course and the
encouragement to use ChatGPT made us not actually learn the content. I am pay a lot
of money to come to Kellogg and I feel it is a waste of my tuition to be encouraged to
use a tool that does not help me to think critically about the underlying logic behind the
course content. Don’t get me wrong, I love ChatGPT. But I think this class should have
more assignments that force students to learn the concepts on their own first before leverage
ChatGPT as a tool to help us do it faster or more efficiently.

Don’t take half measures—if you embrace large language models, then allow them on the formal
assessments. I had to be talked into doing so, as I harbored concerns that ChatGPT would squash
the grade distribution. Thankfully, this did not occur (see figure 1), and allowing the chatbot on
the quizzes was the second most well-received ChatGPT innovation I introduced, after the student
presentations (see figure 2).

ChatGPT makes student groups somewhat redundant, as students can more readily get answers from
ChatGPT than from each other. One student suggested using teams of two next year since four students
running four GPT sessions felt crowded. I suspect four-person data analytics homework groups will
soon be an anachronism.

ChatGPT can trivialize large swaths of your class, especially homework. For instance, ChatGPT
turned my labs into straightforward copy-paste exercises because I had provided thorough instructions
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for the analyses, instructions that proved to be effective ChatGPT prompts. Indeed, ChatGPT 4.0
can follow almost any data-analysis directions that are simple enough for a team of MBA students, so
future assignments must be open-ended. Offloading the lower-level syntactical issues to the chatbot
should enable analytics educators to focus on higher-level conceptual issues, which MBA students are
more inclined towards. As one anonymous student explains:

Also, I think now that ChatGPT automates a lot of the individual coding steps, there is a
big opportunity to have students think more strategically about how they would approach
a data wrangling problem. Questions like what is this data actually showing me? Are any
relevant columns missing that I would need? Is the data in the right units and format for
me? What do I want to group by and filter on? What kind of plot(s) or other visuals would
be most effective given my audience? Huge opportunity for critical thinking here, made
possible by ChatGPT automating some of the coding.

e Productivity gains are context-dependent, as the previous two points illustrate. ChatGPT greatly
simplified the labs—which feature complex, untimed questions backed by comprehensive guidance—
but not the quizzes—which consist of concise, timed questions with minimal direction.

e ChatGPT is an exceptional tutor, but students can become overly reliant on it. My students resembled
second-generation immigrants who understand their parents’ native language but always respond in
English; despite their parents’ wishes, these children will not spontaneously start speaking the mother
tongue. Similarly, students who first learn with ChatGPT are unlikely to begin writing unassisted code
(at least not within the first ten weeks, which was my observation horizon).

e There is demand for a class on data science with large language models. In a pre-class survey, 47%
of MMM students and 77% of MBA students reported at least a 5 out of 7 agreement with the
statement, “Large language models are the most exciting business opportunity right now.” Moreover,
the enrollment in my elective increased by a factor of 2.6. The students in this elective, which I have
so officially renamed to “Data Analytics with Large Language Models,” particularly appreciated the
focus on ChatGPT: the score I received for “This course provided me with valuable knowledge, skills,
and/or analytical frameworks” increased from 4.92 to 5.59 on a six-point scale, a statistically significant
amount. Unfortunately, a class on data analytics with ChatGPT may not hold universal appeal, as
the evaluations for my mandatory core section decreased significantly.
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