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The traditional economics and queueing literature typically assume that customers are fully rational. In

contrast, in this paper, we study canonical service models with boundedly rational customers. We capture

bounded rationality using a framework in which better decisions are made more often, while the best decision

needs not always be made. We investigate the impact of bounded rationality on social welfare and revenue

of a profit maximizing firm when the queue is visible and not visible to the customers. For invisible queues,

from the firm’s perspective, higher bounded rationality always leads to higher optimal prices and higher

revenue when customers are su�ciently boundedly rational. From the social planner’s perspective, there

may be strictly positive social welfare losses when customers are su�ciently boundedly rational. For visible

queues with a fixed price, we prove that a little bit of bounded rationality can lead to strict social welfare

improvement, and we provide a simple inequality under which this improvement happens. With the optimal

prices, however, bounded rationality always decreases social welfare, and a little bit of bounded rationality

always results in revenue losses. We demonstrate that ignoring bounded rationality may result in significant

revenue and social welfare loss.

Key words : Behavioral operations, bounded rationality, consumer information, customer behavior,
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1. Introduction and Summary

When a customer calls a call center or goes to a fast food restaurant, a café or an ATM, and has to

queue for service, does he always accurately and perfectly calculate the benefits and costs of joining

before making his decisions? The traditional economics and queueing literature have assumed that

he does, while anecdotal evidence and experimental studies point to the contrary. In this paper,

we study queueing or service systems without making this “perfect rationality” assumption on the
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part of customers.

Naor (1969) seems to be the first to realize the fact that customers are decision makers. Naor

(1969) and subsequent researchers following his work assume customers are self-interested, can

perfectly optimize their own utilities, and make decisions without any mistakes. Assuming all cus-

tomers are fully rational, Naor (1969) shows that self-interested customers would join a more

congested system than what the the social planner prescribes, and proposes “levying tolls” (i.e.,

pricing) as a way to maximize social welfare. In Naor’s model, customers are assumed to be able to

compute with great precision the expected utility they are about to obtain from making a decision

about whether to join or renege. Furthermore, customers are assumed to be perfectly rational and

prefer joining even if the positive expected utility is negligible. One may ask, Are customers fully

rational? Specifically, does a customer join a queueing system even if his positive expected utility is

negligibly small? Ariely (2009) claims that irrationality is the real invisible hand that drives human

decision making. Indeed, there is abundant empirical evidence that people are boundedly rational

(the related literature review follows in the next section). In this work, we study the e↵ects and

implications of the bounded rationality in canonical queueing or service systems.

While customers have traditionally been assumed to perfectly maximize their expected utility,

we choose to use the logit choice model, which is derived from the classical quantal choice theory

(Luce 1959). This model captures the consistency property: While the best option is not always

chosen, better options are chosen more often (Thurstone 1927, Luce 1959, Blume 1993, McKelvey

and Palfrey 1995, and Su 2008). Further, this model parameterizes the customers’ level of bounded

rationality by �, which allows us to have a continuum of levels of bounded rationality including

the two extremes: a) full rationality where customers are perfect utility-maximizers; and b) full

bounded rationality where each customer randomizes with equal probabilities among all choices

available.

The research setting of this paper, along with our research questions, is depicted in Figure 1.

We study invisible queues (such as a call center) and visible queues (such as a fast food restaurant,

a café or an ATM) separately, from both a social planner’s perspective and a revenue-maximizing
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Figure 1 Research Questions
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(Section 3.3)

How does bounded rationality 
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(Section  3.2)

How does bounded rationality 
affect  social welfare, 
optimal pricing? 
(Section  4.2)

How does bounded rationality 
affect  revenue, optimal 
pricing? 
(Section 4.3) 

firm’s perspective. We investigate the impacts of the bounded rationality on the part of customers.

Finally, through a numerical study, we are interested in whether the queue should be hidden when

price regulation is impossible (as argued in Hassin 1986).

Next, we summarize our main results:

Invisible Queue. In the setting in which the queue is invisible, we prove that there always

exists a unique equilibrium for any price and finite level of bounded rationality. Furthermore, in

equilibrium, each customer uses a non-degenerate probability to join the queue. We show that,

for any fixed price, the revenue function is either decreasing or increasing in the level of bounded

rationality depending on whether the equilibrium joining probability under full rationality is above

one half or not. At the same time, for any fixed level of bounded rationality, the revenue function

is unimodal in price, and thus there exists a unique price to maximize the revenue. We also show

that this revenue-maximizing price and the optimal revenue are both strictly increasing in the level

of bounded rationality when customers are su�ciently boundedly rational. Therefore, the revenue-
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maximizing firm can exploit the bounded rationality when customers are su�ciently boundedly

rational.

In the same system, we prove that the social welfare function is unimodal in the level of bounded

rationality for a fixed price. Moreover, surprisingly, the social welfare is strictly increasing in the

level of bounded rationality under certain conditions. We also show that the social welfare function

is unimodal in price for a fixed level of bounded rationality, and we derive the unique socially

optimal price in closed form. The optimal social welfare (i.e., the social welfare under optimal

pricing) is independent of both level of bounded rationality and arrival rate if customers are not too

boundedly rational. Therefore, the social planner can always correct for the bounded rationality

by charging an appropriate price as long as customers are not too boundedly rational. In contrast,

when customers are too boundedly rational, there exist social welfare losses. We finally demonstrate

that ignoring bounded rationality can lead to significant revenue and social welfare loss.

Visible Queue. In the setting in which the queue is visible to the customers and the price

is fixed, we show that this system is always stable as long as customers are not fully boundedly

rational. We provide a rigorous characterization showing whether and when the social welfare

increases when customers are slightly boundedly rational. To better understand the result, recall

that Naor (1969) shows that when customers are fully rational, self-interested customers join a

more congested system than the socially optimal one. Boundedly rational customers err on both

sides, joining a more congested system and balking when congestion is low. While the former is

detrimental to the social welfare, the latter can be beneficial. The social welfare may thus improve

depending on which one of these e↵ects dominates. We provide a simple characterization of this

dichotomy. While one can characterize how the social welfare behaves when customers are slightly

boundedly rational, we find that it is not necessarily monotone or unimodal with respect to the

level of bounded rationality, which stands in contrast to the case of invisible queues.

We also study the settings when prices are charged optimally (either by a social planner or a

revenue-maximizing firm). We prove that bounded rationality always results in social welfare losses.

In other words, when an arbitrary price is charged by the social planner, the social welfare can
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increase when customers are slightly boundedly rational, yet it can only decrease when the optimal

prices are charged. Thus, the social planer cannot correct for the bounded rationality when the

queue is visible to customers, which is in contrast to the case of invisible queues. We also show

that a little bit of bounded rationality always makes revenue-collecting less profitable, which again

stands in contrast to the case of invisible queues. Again, we demonstrate that ignoring bounded

rationality can lead to significant revenue and social welfare loss.

Finally, we numerically demonstrate that bounded rationality has non-trivial impacts on the

policy recommendations such as whether or not to hide the queue.

There are two main contributions of the paper. First, we seem to be among the first to apply

the quantal choice framework to canonical queueing settings. We take a descriptive approach and

consider bounded rationality, in the sense that decision makers are prone to errors and biases,

instead of taking a normative approach. Second, within this framework, we show the impact of not

accounting for bounded rationality of customers on the ability to manage queues.

The remainder of this paper is organized as follows. The literature is reviewed in §2. §3 presents

the model with the invisible queue. We study the model with the visible queue in §4. §5 is a numeri-

cal study to investigate whether the social planner should reveal (or enforce the revenue-maximizing

firm to reveal) the real-time congestion information of the queue. We provide conclusions in the

last section. Proofs of all the results are relegated to the Appendix.

2. Literature Review

Our study is related to several branches of the literature: bounded rationality in economics, eco-

nomics of queues and behavioral operations.

Bounded rationality in economics: Traditional economic theory postulates that decision

makers are “rational,” i.e., they have su�cient abilities to do perfect optimization in their choices.

Simon (1955) seems to be the first to propose an alternative way to model decision-making behav-

ior: rather than optimizing perfectly, agents search over the alternatives until they find “satis-

factory” solutions. Simon (1957) coins the term “bounded rationality” to describe such human
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behavior. A growing empirical evidence calls into question the full rationality (the utility maxi-

mization paradigm, for instance) on the part of the decision makers. Bounded rationality refers to

a variety of behavioral phenomena in the literature. For a description of systematic errors made by

experimental subjects, see Arkes and Hammond (1985), Hogarth (1980), Kahneman, Slovic, and

Tversky (1981), Nisbett and Ross (1980), and the survey papers by Payne, Bettman, and Johnson

(1992) and by Pitz and Sachs (1984). Tversky and Kahnemann (1974) show that people rely on

a limited number of heuristic principles which in general are useful but sometimes lead to severe

and systematic errors. On the basis of the evidence, Conlisk (1996) o↵ers four convincing reasons

for incorporating bounded rationality in economic models. Geigerenzer and Selten (2001) adopt

heuristics or rules of thumb to model bounded rationality. Thurstone (1927) and Luce (1959) seem

to be the first to develop the framework for stochastic choice rules capturing that better options

are chosen more often. Based on Thurstone (1927) and Luce (1959), McKelvey and Palfrey (1995)

develop a new equilibrium concept quantal response equilibrium (QRE), which incorporates the

idea of bounded rationality, modeled as probabilistic choice, into game theory. This approach has

attracted considerable attention, and has been adopted in a variety of settings. To name just a

few: Bajari and Hortacsu (2001, 2005) in auctions, Cason and Reynolds (2005) in bargaining, Su

(2008) in newsvendor, Basov (2009) in monopolistic screening, Waksberg et al. (2009) in natural

environments and so on. Following the literature, we adopt this approach in the paper.

Economics of queues: Naor (1969) studies the economics of queueing systems when customers

are fully rational. Thereafter, extensive research has been conducted in this direction. Yechiali

(1971, 1972) extends Naor’s model to allow for GI/M/1 queues. Knudsen (1972) extends Naor’s

model to allow for a multi-server queueing system in which arriving customers’ net benefits are

heterogeneous. Lippman and Stidham (1977) extend the Naor model to the finite-horizon and

discounted cases showing that, in these settings, the economic notion of an external e↵ect has a

precise quantitative interpretation. Hassin (1986) considers a revenue maximizing server who has

the opportunity to suppress information on actual queue length, leaving customers to decide on

joining the queue on the basis of the known distribution of waiting times. He shows that it may be,
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but is not always, socially optimal to prevent suppression and that it is never optimal to encourage

suppression when the revenue maximizer prefers to reveal the queue length. For other extensions,

see Van Mieghem (2000), Hassin and Haviv (2003), Afèche (2004), Armony and Maglaras (2004a,

b), Lariviere and Van Mieghem (2004), Allon and Bassamboo (2008), Hsu et al. (2009), Haviv

(2009), and Hassin (2009) for a comprehensive literature review. Although various models along

this line are studied, one common theme in this literature is that full rationality is always assumed.

Larson (1987) claims that “many attributes other than queueing delay contribute to a customer’s

utility or disutility in experiencing a queueing system,” and that “Undoubtedly there are many

factors, psychological, physiological and otherwise, that a↵ect customers’ perceptions of and expe-

riences in queues.” The model of bounded rationality adopted in this paper is mathematically

equivalent to the random utility model which captures these unobserved “factors” by introducing

the idiosyncratic random noise in customer utility function. Leclerc et al. (1995) investigate waiting

time and decision making by asking: Is time like money? They found that the value of consumers’

time is not constant but depends on contextual characteristics of the decision situation. In our

model, the cost of waiting is still a linear function of time, but the random noise term can be

interpreted to capture the “context e↵ects” to some degree.

Another stream of research related to ours is experimental study in queueing. This literature

does not support that individuals are fully rational. Rapoport et al. (2004) study a class of queueing

problems with endogenous arrival times formulated as non-cooperative n-person games in normal

form. Results from their experimental study cannot be fully explained by rational behavior. See

also Bearden et. al (2005) and Seale et al. (2005) along this line.

Behavioral operations: Gino and Pisano (2008) survey the literature on modeling bounded

rationality in economics, finance, and marketing and argue that operations management scholars

should incorporate departures from the rationality assumption into their models and theories. There

is an emerging literature on behavioral operations management, and we refer the readers to Bendoly

et al. (2006) and Bendoly et al. (2008) for this stream of research. We point out two papers that

are closely related to our work: Su (2008) is among the first papers to study bounded rationality
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in operational settings. He applies the logit choice framework to the classic newsvendor model and

characterizes the ordering decisions made by a boundedly rational decision maker. He identifies

systematic biases and investigates the impact of these biases on several operational settings. We

apply a similar framework in this paper, but rather to a queueing setting. Di↵erent from Su (2008)

where there are prior empirical and experimental studies of the newsvendor model that allow

for statistical tests, our study is theoretical, and aims to obtain testable theoretical predictions

that stimulate future empirical and experimental work in service systems. Recently, Plambeck and

Wang (2010) study implications of hyperbolic discounting in service systems. Although the research

setting (i.e., service systems) is similar, the research focus and approach are quite di↵erent. In their

paper, customers lack the self control to undergo an unpleasant experience that would be in their

long-run self interest, which is modeled by psychologists in terms of a hyperbolic discount rate

for utility. In our paper, we model bounded rationality by incorporating stochastic elements into

customers’ decisions using the logit choice framework.

3. The Invisible Queue

3.1. The Model

Consider a single-server queueing system. Potential customers (who are boundedly rational) arrive

to this system according to a Poisson process with rate �. Since customers cannot observe the

state of the system, they have to make a decision a priori whether to arrive to the queue or not.

A customer that does not arrive to the queue receives zero utility. If a customer decides to arrive,

he pays a price p and receives a reward of R on completion of service, R> 0. He also incurs a cost

of C per unit of time while staying in the system (either waiting or being served), C > 0. Service

times are assumed to be independently, identically, and exponentially distributed with mean 1

µ

.

Customers are served on a first-come first-served basis.

In investigating the system, we are first interested in each customer’s strategy. Each customer

decides whether or not to join the queue with probability '(p,�), '(p,�)2 [0,1], where � measures

the level of bounded rationality, i.e., the extent of bounded rationality of the customer. A customer’s
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net benefit or utility of joining is U ⌘R�p�

C

(µ�'(p,�)�)

+ , where we used the fact that the thinning

of a Poisson process with arrival rate � is still a Poisson process with rate '(p,�)� and C

(µ�'(p,�)�)

+

is the customer’s expected waiting cost. The arrival rate '(p,�)� of the queue will be referred

to as e↵ective demand. As discussed in the literature review, each customer’s joining probability

is defined as a logit probability in terms of their expected utility of joining and level of bounded

rationality. Specifically, we define the equilibrium of this queueing system as follows.

Definition 1. (Equilibrium Joining Probability). We say that '(p,�) is an equilibrium join-

ing probability if it satisfies the following

'(p,�) =
e

R�p� C

(µ�'(p,�)�)+

�

1+ e

R�p� C

(µ�'(p,�)�)+

�

, (1)

for � > 0, and

'(p,0) =min{'
0

,1},

where '

0

satisfies

R� p�

C

µ�'

0

�

= 0, (2)

for � = 0.

When � > 0, equation (1) yields a fixed-point problem given that the logit expression in the RHS

includes the equilibrium joining probability (i.e., the LHS).

When � = 0, i.e., customers are fully rational, then the definition is precisely Hassin (1986)’s

equilibrium condition (equation (4.1) on Page 1189). It is possible that there is no '

0

2 [0,1]

satisfying equation (2) and the actual arrival rate then is � since, even if all customers decide to

join, each customer’s expected utility is still strictly positive. According to this definition, we have

'(p,0) =min{µ

�

�

C

�(R�p)

,1}.

The interpretation of the level of bounded rationality � follows from the well-known interpreta-

tion of the coe�cients of logit regressions. One can rewrite equation (1) as follows

log

✓
'(p,�)

1�'(p,�)

◆
=

1

�

U.
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The LHS is the “log odds” of joining the system, so � is the inverse of the di↵erence in the log odds

for any one unit increase in the expected utility of joining the system. For example, when � = 0.5,

then the log odds double for any one unit increase in the expected utility of joining the system;

when � = 1, then the log odds do not change for any one unit increase in the expected utility of

joining the system. This is intuitive: As the level of bounded rationality increases, the log odds so

that the odds of joining the system should decrease given the monotonic transformation.

Next, we investigate whether an equilibrium always exists. Proposition 1 shows that there always

exists a unique equilibrium.

Proposition 1. There always exists a unique equilibrium for the invisible queue, for any finite

price p and level of bounded rationality � > 0.

We are now interested in how the (unique) equilibrium '(p,�) behaves as a function of the price

p and the level of bounded rationality �. For convenience, we let p ⌘ R�

2C

2µ��

denote the price

under which each customer receives exactly zero utility so that the equilibrium joining probability

is half regardless of the level of bounded rationality. The following proposition characterizes the

equilibrium joining probability.

Proposition 2. (i) If p < p, equilibrium joining probability '(p,�) is strictly decreasing in �.

(ii) If p > p, equilibrium joining probability '(p,�) is strictly increasing in �.

(iii) If p= p, equilibrium joining probability '(p,�) = 1

2

for any �.

(iv) For any fixed �, equilibrium joining probability '(p,�) is strictly decreasing in p.

We o↵er the following intuition: when the price is so low that each customer receives strictly

positive utility, the initial joining probability is above half. As the level of bounded rationality

increases, better decisions are made less often, and thus the joining probability decreases as cus-

tomers are more boundedly rational. Interestingly, if the price is set so that each customer receives

exactly zero utility in equilibrium, then increasing the level of bounded rationality has no e↵ect on

the joining probability since each customer randomizes with equal probabilities regardless of the

level of bounded rationality.
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Figure 2 Equilibrium joining probability versus level of bounded rationality for di↵erent prices (R = 15,C =

2, µ= 3,�= 3.)
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It is intuitively clear that '(p,�) is strictly decreasing in price p by equality (1), i.e., a larger

price always results in a lower joining probability, regardless of the level of bounded rationality,

which is basically the “law of demand” in this service setting.

We illustrate this proposition by a numerical study, where we set the parameters R= 15, C = 2,

µ= 3, and �= 3. For any given price p, we numerically solve the equilibrium joining probability

'(p,�) for di↵erent levels of bounded rationality �. We depict our findings in Figure 2. Figure 2

also confirms the behavior with respect to price changes.

3.2. Revenue Maximization

In the previous section, our attention has been focused on the system equilibrium. In this section, we

focus our attention on the revenue generated from such a system. In this sense, we are looking from

a revenue-maximizing firm’s perspective. The firm’s objective is to choose a price p to maximize the

expected revenue ⇧I(p,�)⌘ p'(p,�)�, where '(p,�)� is the e↵ective demand rate to the system.
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Note that we normalize the cost of serving customers to zero without loss of generality.

To investigate the firm’s revenue maximization problem, we first study the behavior of the

revenue ⇧I(p,�) as a function of the price p and the level of bounded rationality �. It is easy to

see from Proposition 2 how the revenue function behaves as a function of the level of bounded

rationality � for any fixed price p, since ⇧I(p,�) is simply a linear transformation of '(p,�).

We next investigate how the revenue ⇧I(p,�) behaves as a function of the price p, for any fixed

level of bounded rationality �. We prove that ⇧I(p,�) is unimodal in p. Hence, there exists a

unique revenue-maximizing price p⇤(�). The firm faces the following tradeo↵ when determining the

optimal price p

⇤(�): Higher prices bring more revenue if the equilibrium joining probability were

unchanged, however, higher prices actually induce strictly lower joining probabilities, as already

shown in Proposition 2. Hence, p⇤(�) is the price that balances the tradeo↵.

Further, we show that the revenue-maximizing price p

⇤(�) strictly increases in the level of

bounded rationality � under certain conditions.

To state Proposition 3 that makes the claim rigorous, we denote �

0

⌘

1

2

R�

2µC

(2µ��)

2 , which is the

level of bounded rationality at which the optimal price p

⇤(�
0

) = p.

Proposition 3. (i) For any fixed level of bounded rationality �, ⇧I(p,�) is unimodal in p, and

thus there exists a unique price p

⇤(�) that maximizes ⇧I(p,�).

(ii) The optimal price p

⇤(�) is strictly increasing in the level of bounded rationality � for � 2

[max{�
0

,0},1).

From this proposition, we obtain that the revenue-maximizing price p

⇤(�) is monotonically

increasing in � if R

4Cµ

(2µ��)

2 .

When the optimal price induces each customer to receive strictly negative utility in equilibrium,

a higher level of bounded rationality would induce the firm to increase its price. The reason is that

higher bounded rationality leads to higher joining probabilities for a fixed price in this case. Hence,

when the optimal price is “already high” (so that each customer receives strictly negative utility

in equilibrium), then increasing the level of bounded rationality leads to “even higher” optimal
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prices. However, when the optimal price is low so that each customer receives strictly positive

utility, then increasing the level of bounded rationality can lead to lower optimal prices, where the

firm’s tradeo↵ is about the benefit of higher prices versus the loss of lower joining probabilities.

Proposition 3 above partially characterizes which one of these e↵ects dominates.

We are now ready to state the result on the e↵ect of the level of bounded rationality on the

optimal revenue ⇧I(p⇤(�),�). Using the envelope theorem, we obtain the following immediate

corollary to Proposition 2.

Corollary 1. (i) If p⇤(�)> p, then optimal revenue ⇧I(p⇤(�),�) strictly increases in �.

(ii) If p⇤(�)< p, then optimal revenue ⇧I(p⇤(�),�) strictly decreases in �.

(iii) p

⇤(�) = p, then optimal revenue ⇧I(p⇤(�),�) = 1

2

�p is constant in �.

By Proposition 3 and Corollary 1, we know that the optimal revenue ⇧I(p⇤(�),�) strictly

increases in � as � is su�ciently large. Therefore, the revenue-maximizing firm can exploit the

bounded rationality when customers are su�ciently boundedly rational.

Finally, we are also interested in how the arrival rate a↵ects the revenue, as it would later be

useful. Recall that in Hassin (1986) where customers are fully rational, there exists some �

0

, when

�> �

0

, the revenue function is independent of �. Interestingly, in our case with boundedly rational

customers, we have that higher arrival rate � always leads to strictly higher revenue.

The following proposition characterizes the e↵ect of arrival rate on the optimal revenue.

Proposition 4. For any fixed price p and level of bounded rationality � > 0, the equilibrium

joining probability is strictly decreasing and the revenue is strictly increasing in the arrival rate �.

The result that higher arrival rates lead to lower equilibrium joining probabilities is not surprising

since more congestion forces each customer to lower his joining probability. However, the result

that more arrivals always lead to more revenue may appear to be surprising. The key insight is

that the marginal revenue increment has to be proportional to the marginal joining probability

decrement given the equilibrium condition. This proposition implies that for any price p, clearly

not necessarily the optimal price, higher arrival rates lead to higher revenue. In particular, higher
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arrival rates lead to higher optimal revenue. Such finding is in stark contrast to Hassin (1986)’s

full-rationality case.

3.3. Social Welfare Maximization

We now turn to study the problem from a social planner’s perspective. The social planner is

interested in maximizing social welfare. In this section, we study the impact of bounded rationality

on the social welfare, both when the price is exogenously given and when the social planner charges

the welfare-maximizing price.

For any price p and level of bounded rationality �, the social welfare function is denoted as

W

I('(p,�)) ='(p,�)�R�

'(p,�)�

µ�'(p,�)�
C. (3)

For mathematical convenience, we may drop the dependence over '(p,�) and write W

I(p,�).

The first term of equation (3) is the average benefit the customers receive from the system, and

the second term is the average waiting cost incurred by the customers. Note that the price p a↵ects

the social welfare only indirectly through the equilibrium joining probability '(p,�).

First, observe that the social welfare W

I('(p,�)) is strictly concave in '(p,�) (Lemma EC.2 in

Appendix C). Combining this fact with the characterization of the equilibrium joining probability

'(p,�), we can characterize how the social welfare behaves as a function of the level of bounded

rationality in Proposition 5.

From Proposition 3, one can obtain that p

⇤(0) = R(1�
q

C

µR

) = R(1�
q

1

v

s

). Note that when

customers are fully rational, the welfare-maximizing price and the revenue-maximizing price coin-

cide.

Proposition 5. (i) If p= p, then social welfare W

I('(p,�)) is constant for � � 0.

(ii) If [p⇤(0)� p][p� p] 0 and p 6= p, then social welfare W

I('(p,�)) strictly increases for � � 0.

(iii) If p 2 (min{p⇤(0), p},max{p⇤(0), p})
S
{p

⇤(0)} and p

⇤(0) 6= p, then social welfare W

I('(p,�))

strictly decreases for � � 0.
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(iv) If [p⇤(0)� p][p� p

⇤(0)]> 0, then social welfare W

I('(p,�)) strictly increases in [0,�
w

(p)] and

strictly decreases in (�
w

(p),1), where

�

w

(p) =
R� p�

q
CR

µ

ln
µ�

q
Cµ

R

��µ+

q
Cµ

R

.

This proposition fully characterizes the social welfare as a function of the level of bounded

rationality. For the first scenario, the joining probability at price p= p is precisely half and it is

independent of the level of bounded rationality. Thus the social welfare in (i) is not impacted by the

level of bounded rationality. For the second scenario, the probability half lies between the joining

probability induced by the welfare-maximizing price when customers are fully rational and the

joining probability induced by price p when customers’ level of bounded rationality is �, so that

increasing the level of bounded rationality makes their “distance” smaller. Thus, the social welfare

strictly increases as customers are more boundedly rational. For the third scenario, the joining

probability induced by the welfare-maximizing price when customers are fully rational is either too

high or too low compared to the joining probability induced by price p when customers’ level of

bounded rationality is �, so that increasing the level of bounded rationality can only make their

“distance” further apart. Therefore, the social welfare strictly decreases in the level of bounded

rationality �. For the last scenario, the joining probability induced by the welfare-maximizing price

when customers are fully rational can be achieved (in the interior). Hence, as the level of bounded

rationality increases from zero, the social welfare is “closer” to the optimal social welfare. In this

case, the social welfare function is unimodal in the level of bounded rationality, and the first-order

condition yields the level of bounded rationality �

w

(p).

We illustrate Proposition 5 by a numerical study. In Example 1, we set the parameters R= 15,

C = 2, µ= 3, and �= 3. For each given price, we compute the social welfare as a function of the level

of bounded rationality and depict it in Figure 3. For this example, one can easily compute p= 13.67
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Figure 3 Illustration of Proposition 4: Example 1 (R= 15,C = 2, µ= 3,�= 3.)
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Figure 4 Illustration of Proposition 4: Example 2 (R= 1,C = 2, µ= 3,�= 3.)
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and p

⇤(0) = 11.84. If p= p= 13.67, then Proposition 5 (i) applies; If p= 22, then Proposition 5 (ii)

applies; If p= 13 or p= p

⇤(0) = 11.84, then Proposition 4 (iii) applies; If p= 0, then Proposition 5

(iv) applies. Figure 3 indeed confirms our theoretical prediction in Proposition 5.
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In Example 2, we set the parameters R = 1, C = 2, µ = 3, and � = 3. Again, for each given

price, we compute the social welfare as a function of the level of bounded rationality as well as the

corresponding equilibrium joining probability and depict them in Figure 4. For this example, one

can easily compute p=�0.33 and p

⇤(0) = 0.18. Observe that for these parameters, case (i) and (ii)

of Proposition 5 are not possible, as confirmed in Figure 4.

Proposition 5 implies that the social welfare function is unimodal in the level of bounded ratio-

nality, as stated in Corollary 2.

Corollary 2. Social welfare W

I('(p,�)) is unimodal in the level of bounded rationality � for

any price p.

We are now ready to investigate the optimal social welfare. We prove that the social welfare

W

I('(p,�)) is unimodal in price p for any level of bounded rationality � (See Lemma EC.4 in

Appendix C for a rigorous justification). Finding the welfare-maximizing price boils down to finding

the optimal joining probability '

⇤
w

. To derive the welfare-maximizing price, we use the first-order

condition @W

I

('(p,�))

@'(p,�)

= 0 and obtain

'

⇤
w

=
µ�

q
Cµ

R

�

,

which is the optimal equilibrium joining probability that induces the optimal social welfare. Suppose

this equilibrium point can be achieved in the interior, then it is required that R 2 (C
µ

,1) if µ< �;

and R 2 (C
µ

,

Cµ

(µ��)

2 ) if µ> �. For cases when the equilibrium point is on the boundary, the problem

becomes trivial: if R 

C

µ

, then it is socially optimal to keep everybody out of the system; if

R�

Cµ

(µ��)

2 when µ> �, then it is socially optimal to let everyone join the system.

We are now ready to state the welfare-maximizing price that maximizes the social welfare. To

state the result, we first substitute the joining probability '

⇤
w

into the equilibrium condition, i.e.,

equation (1), and then we obtain the “unconstrained” optimal price by

p

⇤
w

(�) =R�

s
CR

µ

�� ln
µ�

q
Cµ

R

��µ+
q

Cµ

R

= p

⇤(0)�� ln
'

⇤
w

1�'

⇤
w

,
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which can be negative. The welfare-maximizing price is thus max{0, p⇤
w

(�)}. Proposition 6 charac-

terizes this welfare-maximizing price and the corresponding social welfare.

Proposition 6. (i) If R>

4Cµ

(2µ��)

2 , when � < �

w

(0) where �
w

(0) =
R�

q
CR

µ

ln

µ�
p

Cµ

R

��µ+
p

Cµ

R

, the price p= p

⇤
w

(�)

is the unique price that maximizes the social welfare, p⇤
w

(�) strictly decreases in �, and the optimal

social welfare is W I(p⇤
w

,�) = µR+C�2
p

µRC; when � � �

w

(0), the price p= 0 is the unique price

that yields the maximum social welfare W

I(0,�).

(ii) If R

4Cµ

(2µ��)

2 , the price p= p

⇤
w

(�) is the unique price that maximizes the social welfare, p⇤
w

(�)

strictly increases in �, and the optimal social welfare is W

I(p⇤
w

,�) = µR+C � 2
p

µRC.

We discuss the implications of this proposition as follows:

If '⇤
w

=
µ�

q
Cµ

R

�

>

1

2

, then ln
µ�

q
Cµ

R

��µ+

q
Cµ

R

> 0, which implies that the price p⇤
w

(�) is strictly decreasing

in level of bounded rationality �. In particular, when customers are slightly boundedly rational, the

optimal price strictly decreases. The intuition is that the equilibrium joining probability decreases

as the level of bounded rationality increases. To achieve the desired optimal joining probability '

⇤
w

,

the social planner has to lower the price as the level of bounded rationality increases.

Similarly, if '⇤
w

=
µ�

q
Cµ

R

�

<

1

2

, then ln
µ�

q
Cµ

R

��µ+

q
Cµ

R

< 0, which implies that the price p⇤
w

(�) is strictly

increasing in level of bounded rationality �.

The key insight from this proposition is that the first-best social welfare (which is independent

of the level of bounded rationality and the arrival rate) can be achieved when either (i) the optimal

joining probability for social welfare maximization is strictly above half and the level of bounded

rationality is not too high or (ii) the optimal joining probability for social welfare maximization is

below half.

The intuition for this key insight is the following: In these settings, the social planner can always

correct for the boundedly rationality on the part of customers, i.e., the social planner still achieves

the same optimal social welfare, by charging appropriate prices. However, when the optimal joining

probability for social welfare maximization is strictly above half and the level of bounded rationality
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Figure 5 Optimal Social Welfare: Example 1 (R= 15,C = 2, µ= 3,�= 3,'⇤
w

= 0.7892)
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is su�ciently high, the first-best social welfare cannot be achieved. In other words, when the desired

joining probability is high, to achieve this, the customers have to join with this probability in

equilibrium. However, customers joining probability would be much lower if they are too boundedly

rational, and too low even if the firm does not charge any price. In this case, higher bounded

rationality leads to more social welfare losses, as illustrated in Figure 5. This result stands in

contrast to the case of revenue maximization.

3.4. Impact of Ignoring Bounded Rationality

In this section, we investigate the impact of ignoring bounded rationality while customers are

actually boundedly rational, from both a revenue-maximizer and a social planner’s perspective.

Without taking into account customer bounded rationality, the revenue-maximizing firm will

rationally charge price p

⇤(0) which is generally di↵erent from the revenue-maximizing price p

⇤(�).

Hence, ⇧I(p⇤(0),�) ⌘ p

⇤(0)'(p⇤(0),�)�  ⇧I(p⇤(�),�). We are interested in the revenue loss
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Figure 6 Revenue loss when hiding the queue if bounded rationality is ignored: Example 1 (R = 15,C = 2, µ=

3,�= 3)
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as a result of this ignorance of bounded rationality. As an example,

we use the following data: R= 15,C = 2, µ= 3,�= 3. Figure 6 shows that the revenue loss can be

more than 10% and is not necessarily monotone with respect to the level of bounded rationality. In

fact, lim
�!1�⇧I(�) =1, i.e., the revenue loss can be arbitrarily large as customers are su�ciently

boundedly rational. This directly follows from the fact that lim
�!1 p

⇤(�) =1 (See the first-order

condition in the proof of Proposition 3) and lim
�!1'(p,�) = 0.5.

Without taking into account customer bounded rationality, the social planner will rationally

charge price p

⇤(0) which is generally di↵erent from the welfare-maximizing price max{0, p⇤
w

(�)}.

Similarly, we are interested in the welfare loss �W

I(�)⌘ W

I

(max{0,p⇤
w

(�)},�)�W

I

(p

⇤
(0),�)

W

I

(p

⇤
(0),�)

. For the same

example as the revenue-maximization case, Figure 7 shows that the welfare loss can be significant

(more than 25% for instance) and is not necessarily monotone with respect to the level of bounded

rationality. Figure 8 shows another example (with parameters R= 2,C = 2, µ= 3,�= 3) where the

welfare loss is strictly increasing in the level of bounded rationality.
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Figure 7 Welfare loss when hiding the queue if bounded rationality is ignored: Example 1 (R = 15,C = 2, µ =

3,�= 3)
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Figure 8 Welfare loss when hiding the queue if bounded rationality is ignored: Example 6 (R = 2,C = 2, µ =

3,�= 3)
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4. The Visible Queue

4.1. The Model

In this section, we study a single-server queueing system with arrival rate � and service rate µ with

homogenous boundedly rational consumers as before. The only di↵erence from the model setup

in Section 3.1 is that the queue length is visible to the customers. Hence, every customer does

arrive to the system, but he has the option to balk after observing the queue length. Upon arrival,

observing n customers in the system, each customer chooses to join the queue with the following

logit probability

'

n

=
e

R�p� (n+1)C
µ

�

1+ e

R�p� (n+1)C
µ

�

, (4)

for n = 0,1,2, .... Observe that the fixed price p always appears as R � p in equation (4). For

mathematical convenience, we assume p= 0 in this section. However, the findings easily extend to

the setting where the price is non-zero. We refer readers to the Appendix for a complete treatment.

For ease of exposition, we let �
n

⌘ �'

n

, n= 0,1,2, ..., be the state-dependent arrival rates. Then,

we can treat the number of customers in the system as a birth-death process with birth rate �

n

and death rate µ. Although customers are boundedly rational, we first show that the stability of

the system is guaranteed as long as the level of bounded rationality is finite, i.e., � <1, as stated

in the following proposition.

Proposition 7. The visible queueing system with boundedly rational customers is stable for any

finite �, and the probability distribution in steady-state is as follows:

P

0

=
1

1+⌃1
k=1

�0�1...�
k�1

µ

k

is the probability that the system is in state 0, and

P

n

=
�

0

�

1

...�

n�1

µ

n(1+⌃1
k=1

�0�1...�
k�1

µ

k

)

is the probability in state n, n� 1.
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We are interested in how bounded rationality a↵ects social welfare. We can derive the social

welfare function as follows:

W (�) =⌃1
n=0

�

n

P

n

R�⌃1
n=0

nP

n

C. (5)

The first term in equation (5) is the (long run) average reward and the second term is the average

waiting cost. Notice that if customers are fully rational, i.e., � = 0, then our model reduces to Naor

(1969)’s model.

In this section, we compare the social welfare W (�) and W (0). To compare them, we first define

n

s

= [Rµ

C

] as the threshold queue length used by self-interested customers in deciding to join the

queue or not, and n

0

, the equivalent threshold from a social planner’s point of view. Naor (1969)

shows that n
s

� n

0

, i.e., self-interested customers typically make the system more congested than

the socially optimal level.

Intuitively, bounded rationality creates two e↵ects for the social welfare, the positive e↵ect and

the negative e↵ect. To understand how these two e↵ects come into play, we distinguish the states of

the queueing system in three regions: Region 1 refers to the states when the number of customers

in the system is less than n

0

, Region 2 refers to the states when the number of customers in the

system is greater than n

0

but less than n

s

, and Region 3 refers to all the other states, i.e., those

when the number of customers in the system is greater than n

s

. As the customers become more

boundedly rational, the joining probabilities of the customers become smaller in Region 1 and

2, but greater in Region 3. The e↵ect from Region 1 is negative, from Region 2 is positive and

from Region 3 is negative. As customers become more boundedly rational, these e↵ects take place

simultaneously, and it seems unclear a priori which e↵ect would dominate.

While equation (5) presents a complete characterization of the social welfare in terms of the level

of bounded rationality �, the dependence is quite intricate. Thus we begin by analyzing the social

welfare W (�) in the neighborhood of zero. We are interested in whether a little bit of bounded

rationality increases or decreases the social welfare, i.e., the relationship between W (�) and W (0)



Huang et al.: Bounded Rationality in Service Systems

24 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

when � is su�ciently small. It turns out we are able to completely characterize the conditions in

which one e↵ect dominates the other. We have the following simple inequalities showing when the

social welfare increases or decreases as the customers become slightly boundedly rational.

Proposition 8. If any one of the following three conditions is satisfied:

(1) n

s

<

Rµ

C

�

1

2

;

(2) n

s

= n

0

;

(3) n

s

= Rµ

C

�

1

2

and ⇢> 1,

then W (�) < W (0) when � > 0 is su�ciently small. Otherwise, W (�) > W (0) when � > 0 is

su�ciently small.

According to Proposition 8, if either of the following two conditions is satisfied:

(a) n
s

6= n

0

, and n

s

>

Rµ

C

�

1

2

,

(b) n
s

6= n

0

, n
s

= Rµ

C

�

1

2

and ⇢ 1,

then a little bit of bounded rationality strictly improves the social welfare.1

Notice the logistic probabilities in equation (4), as �! 0, the customers who have strictly positive

expected utility of joining will join the queue with probability converging to 1, and those who

have strictly negative expected utility will join the queue with probability converging to 0. For

the sake of a thought experiment, we assume that there is a single state in which customers join

with non-degenerate probabilities. If it were the case, it must be the “marginal state” either “on

the positive side,” i.e., the state where the customer who observes n
s

� 1 customers in the system,

or “on the negative side,” i.e., the state where the customer who observes n

s

customers in the

system. However, in the true system with boundedly rational customers, as long as the customers

are slightly boundedly rational, there are multiple states in which customers join the system with

non-degenerate probabilities. Considering that the level of bounded rationality is close to zero, it

is intuitively clear that it is the joint e↵ect of the customer behavior in the marginal state on the

1 Finding a simple su�cient and necessary condition for n
s

6= n0 is di�cult. However, Lemma EC.5 in Appendix C
shows that, either of the two conditions is su�cient for n

s

6= n0: (1) ⇢> 1 and n
s

> 1, (2)
p
2� 1< ⇢< 1 and n

s

> 2.
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positive side and the customer behavior on the negative side that determines the direction of the

social welfare change. The e↵ect of the customer behavior in the marginal state on the positive side

improves the social welfare, while the e↵ect of the customer behavior in the marginal state on the

negative side is detrimental to the social welfare. We have to characterize which e↵ect dominates

the other, i.e., to disentangle the joint e↵ect.

The scenario when n

s

= n

0

, i.e., the self-interested (fully rational) customers bring the system

to the social optimality, is rare. However, in this setting, a little bit of bounded rationality causes

each customer to randomize and to join the system with non-degenerate probabilities that can

only decrease the social welfare. In contrast, when n

s

6= n

0

, it is the relative location of n
s

and

Rµ

C

�

1

2

that determines the result. If n
s

>

Rµ

C

�

1

2

, then it is the e↵ect of the customer behavior

on the positive side of the marginal state that dominates. Hence, the social welfare is improved. If

n

s

<

Rµ

C

�

1

2

, the opposite e↵ect would decrease the social welfare.

The case when n

s

= Rµ

C

�

1

2

is more delicate since both e↵ects come into play “simultaneously.”

It turns out that when ⇢ > 1, the congestion level is so high that the negative e↵ect dominates,

and we obtain strictly lower social welfare. When ⇢ 1, the congestion level is low enough to allow

the positive e↵ect to dominate, and we obtain strictly higher social welfare.

We present a numerical study illustrating this result in Figure 9. We approximate the steady-state

distribution by truncating the birth-death process to a finite state space. In this numerical study,

we consider two examples. In the first example, we use the following parameters: R= 18.96,C =

7, µ= 3,�= 5. One can easily compute v

s

= 8.1257, and thus n

s

= 8> Rµ

C

�

1

2

= 7.6257. Based on

our result in Proposition 8, we expect a little bit of bounded rationality to improve the social

welfare in this case, which is confirmed by the graph in the upper panel in Figure 9. Furthermore,

we can see that the social welfare improvement due to bounded rationality can be non-trivial (more

than 10% for example). In the second example, we use the parameters, R= 16,C = 7, µ= 3,�= 5.

For this example, v
s

= 6.8571, and thus n

s

= 6 <

Rµ

C

�

1

2

= 6.3571. For this data, Proposition 8

states that a little bit of bounded rationality decreases the social welfare, which is in agreement

with the graph in the lower panel in Figure 9.



Huang et al.: Bounded Rationality in Service Systems

26 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Figure 9 Local Behavior of Social Welfare: Example 3 (R= 18.96,C = 7, µ= 3,�= 5,n
s

= 8> Rµ

C

� 1
2 = 7.6257)

and Example 4 (R= 16,C = 7, µ= 3,�= 5, v
s

= 6.8571, n
s

= 6< Rµ

C

� 1
2 = 6.3571)
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In other words, compared to fully rational customers, boundedly rational customers err on both

sides, joining a more congested system and balking when congestion is low. While the former

is detrimental to the social welfare, the latter can be beneficial. The social welfare can thus be

improved depending on which of these e↵ects dominates. In Proposition 8, we provide a simple

characterization of this dichotomy. This result appears to be striking: while bounded rationality is

usually associated with suboptimal decisions, it might yield better outcomes for the society overall.

This is due to the externality present among the boundedly rational customers in the system.

As we discussed before, characterizing the social welfare as a function of the level of bounded

rationality is di�cult because of the intricate joint e↵ects coming from the three regions simul-

taneously as customers become more boundedly rational. To understand the social welfare as a

function of the level of bounded rationality, we carry out a numerical study. In the first example,
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Figure 10 Global Behavior of Social Welfare: Example 5 (R= 14.93,C = 7, µ= 3,�= 5,n
s

= 6> Rµ

C

� 1
2 = 5.8986)

and Example 6 (R= 16,C = 7, µ= 3,�= 2.6, v
s

= 6.8571, n
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C

� 1
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the parameters are R = 14.93,C = 7, µ= 3,�= 5, so that n

s

= 6> Rµ

C

�

1

2

= 5.8986. As shown in

the graph in the upper panel of Figure 10, the social welfare strictly increases initially as predicted

by Proposition 8, however, it decreases and then increases again when the customers become more

boundedly rational. In the second example, the parameters are R = 16,C = 7, µ = 3,� = 2.6, so

that v
s

= 6.8571, n
s

= 6< Rµ

C

�

1

2

= 6.3571. As illustrated in the graph in the lower panel of Figure

10, the social welfare initially decreases as predicted by Proposition 8, however, it increases as the

level of bounded rationality becomes larger, and decreases again as the level of bounded rationality

further increases. Thus, even though the social welfare is well behaved for a little bit of bounded

rationality, it does not possess global properties such as convexity/concavity or even unimodality.

This result stands in contrast to the invisible queue where the social welfare function is unimodal

in the level of bounded rationality �.
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4.2. Social Welfare Maximization

In this section, we investigate the implication of bounded rationality for the social welfare if the

social planner can regulate the system by pricing optimally. We are interested in whether bounded

rationality increases or decreases the social welfare. We denote the social welfare function W (p,�)

when the social planner charges price p and customers’ level of bounded rationality is �. Obviously,

the social welfare W (p,�) can be expressed in a similar fashion as equation (5).

Naor (1969) shows that, by “levying tolls” (i.e., charging prices), the social planner can achieve

the social optimum when customers are fully rational. In particular, if any price p

⇤
2 (R �

C(n0+1)

µ

,R �

Cn0
µ

] is charged by the social planner, then the maximum social welfare W

⇤(0) ⌘

sup
p

W (p,0) can be achieved. We study whether the optimal social welfare W

⇤(0) can be achieved

by adding bounded rationality on the part of customers.

We show that when facing boundedly rational customers, the first-best social welfare can never

be achieved, as stated in the following proposition.

Proposition 9. For any price p 2 [0,1) charged to the customers, the social welfare W (p,�) is

strictly lower than the social optimum when � is strictly positive, i.e., W (p,�)<W

⇤(0) for � > 0.

This proposition proves that bounded rationality always results in social welfare losses compared

to the full-rationality case. This is in contrast to both (a) Naor (1969), where levying tolls achieves

the socially optimal welfare and (b) The result in Proposition 8 that a little bit of bounded rational-

ity can increase the social welfare when an arbitrary price is charged. This stems from the following:

When customers are fully rational, the social planner can always regulate the service system by

charging prices to achieve the social optimality W

⇤(0). However, each boundedly rational customer

randomizes with non-degenerate probabilities to join or balk. In this case, the social planner loses

the precise control over the customers’ joining decisions, and thus bounded rationality dilutes the

e↵ectiveness of the price regulation.
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4.3. Revenue Maximization

In this section, we study the situation in which the firm seeks to maximize its own revenue rather

than to optimize the social welfare. We are interested in how bounded rationality impacts the

optimal revenue.

The revenue as a function of the price p and the level of bounded rationality � > 0 is

⇧(p,�) =
1X

n=0

�

n

P

n

p=
1X

n=0

e

R�p� (n+1)C
µ

�

1+ e

R�p� (n+1)C
µ

�

�P

n

p. (6)

When customers are fully rational, i.e., � = 0, we naturally define ⇧(p,0)⌘ lim
�!0

⇧(p,�), for

any price p (one can show such a limit exists). In the setting with fully rational customers, Naor

(1969) shows that choosing the revenue-maximizing price boils down to choosing the optimal integer

n to maximize the revenue function ⇧
n

= �

1�⇢

n

1�⇢

n+1 (R�

Cn

µ

), so that p(n) =R�

Cn

µ

. Let n
r

be the

maximizer, and ⇧
n

r

be the maximized revenue.

We are interested in comparing the optimal revenue ⇧(p⇤(�),�) when the revenue-maximizing

price p

⇤(�) is set, if customers are slightly boundedly rational, and the optimal revenue ⇧
n

r

if

customers are fully rational. To compare them, we first partially characterize the optimal price

p

⇤(�) when � is su�ciently small. We show that when there is a little bit of bounded rationality,

the firm should charge a strictly lower price compared to that under full rationality in order to

maximize its revenue (which is made rigorous in Lemma EC.14 in Appendix C). Based on this

result, we can show how slight bounded rationality impacts the optimal revenue as follows.

Proposition 10. ⇧(p⇤(�),�)<⇧
n

r

when � is strictly positive but su�ciently small.

Proposition 10 implies that a little bit of bounded rationality always results in revenue losses for

the firm. However, this result does not extend to situations when the level of bounded rationality

becomes high. (Clearly, as customers become fully boundedly rational, the optimal revenue goes

to infinity.) The intuition behind Proposition 10 is as follows: A little bit of bounded rationality

forces the revenue-maximizing firm to strictly lower its price compared to full rationality, which in

turn brings strictly lower revenue for the firm. In other words, a little bit of bounded rationality

makes revenue-collecting less profitable.
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Figure 11 Revenue loss when revealing the queue if bounded rationality is ignored (R= 19,C = 7, µ= 2,�= 5)
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4.4. Impact of Ignoring Bounded Rationality

In this section, we investigate the impact of ignoring bounded rationality while customers are actu-

ally boundedly rational, from both a revenue-maximizing firm and a social planner’s perspective.

Without taking into account customer bounded rationality, the revenue-maximizing firm will

rationally charge price p

⇤(0) = R �

Cn

r

µ

. We are interested in the revenue loss due to bounded

rationality. Using the data R = 19,C = 7, µ = 2,� = 5, Figure 11 shows an example where the

revenue loss can be nontrivial (more than 25% for instance). Similar to the invisible-queue case,

the revenue loss can be arbitrarily large as the level of bounded rationality goes to infinity.

Without taking into account customer bounded rationality, the social planner will pick one price

in the range (R�

C(n0+1)

µ

,R�

Cn0
µ

]. We are interested in the welfare loss due to bounded rationality.

Using the same example as in the revenue-maximization case, Figure 12 shows the welfare loss

when the firm charges price R�

Cn0
µ

. Again, we observe non-trivial welfare loss (more than 12%

for instance).
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Figure 12 Welfare loss when revealing the queue if bounded rationality is ignored (R= 19,C = 7, µ= 2,�= 5)
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5. A Numerical Study: Should We Hide the Queue?

In previous sections, we assumed that the queue is either invisible or visible and studied the impact

of pricing on social welfare and the revenue of a firm. In this section, we are interested in whether

the social planner and the firm should reveal the queue length information if they have the option

to do so.

First, it is important to note, if the social planner determines both of the information provision

strategy and the pricing decision, it always prefers to reveal the queue length when customers

are fully rational (See Naor 1969 and Hassin 1986). When customers are boundedly rational,

analytical investigation of this problem is challenging, and thus we turn to numerical studies, which

interestingly show the same conclusion.

We next study an analogous problem from a revenue-maximizing firm’s point of view, where the

firm determines both of the information provision strategy and the pricing decision. Again, we turn

to a numerical study. One example is shown in Figure 13, where we have the parameters R= 60,

C = 16 and µ = 5, and we approximate the revenue function by truncating the state space as
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Figure 13 Arrival Rate Threshold of Hiding the Queue for Social Welfare Maximization (R= 60,C = 16, µ= 5)
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before. From this numerical study, we have the following observation: For any fixed level of bounded

rationality �, there exists a threshold �(�) such that when �> �(�), revealing the queue length is

preferred by the firm, while �< �(�), hiding the queue length is preferred. We call the threshold

�(�) the “revenue threshold” which determines when the firm prefers to reveal or hide the queue

length for a given level of bounded rationality �. As shown in Figure 13, for these parameters, the

revenue threshold �(�) is not necessarily monotone w.r.t. the level of bounded rationality �.

An intermediate problem arises when the social planner regulates the information provision

strategy, yet stops short of regulating prices which allows the revenue maximizer to set those.

Assuming customers are fully rational, Hassin (1986) shows that it may be socially optimal to

prevent the firm from hiding the queue, but that it is never optimal to encourage the firm to

hide the queue length when the firm prefers to reveal the queue length. We are interested in how

bounded rationality impacts this conclusion.

Next, we numerically compute the best strategy for the social planner given that the revenue-
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Figure 14 Arrival Rate Threshold of Hiding the Queue for Social Welfare Maximization (R= 14.93,C = 7, µ= 3)
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maximizing firm chooses its optimal prices. From our numerical study, we observe that, there exists

a threshold b
�(�) such that, when �<

b
�(�), hiding the queue length is preferred; when �>

b
�(�),

revealing the queue length is preferred. We call b�(�) the “welfare threshold” which determines

when the social planner encourages the firm to reveal or hide the queue. Our numerical results

suggest that b�(�) again is not necessarily increasing in �, as shown in Figure 13.

Based on the two threshold functions, one can obtain when the social planner and the revenue-

maximizing firm align up to reveal or hide the queue. Hassin (1986) studies this problem and

show that, in the full-rationality case, it is never worthwhile to induce the firm to hide the queue

when it does not voluntarily choose it, i.e., the revenue threshold �(0) is strictly greater than the

welfare threshold b
�(0). Strikingly, such a conclusion does not generally hold in our setting when

customers are boundedly rational. We illustrate this by a numerical example shown in Figure 14,

where the parameters are R = 14.93, C = 7 and µ = 3. For these parameters, when customers

become su�ciently boundedly rational, the welfare threshold is higher than the revenue threshold.
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For instance, when the level of bounded rationality � = 2 and the arrival rate �= 1.7, the social

planner would like to hide the queue, whereas the firm prefers to reveal the queue. Hence, due to

bounded rationality, the managerial insight that it is never worthwhile to induce the firm to hide

the queue when it does not voluntarily choose it does not extend.

6. Conclusion

The quantal choice paradigm in the behavioral economics literature posits that people are more

likely to select better choices than worse ones but do not necessarily succeed in selecting the very

best choice. In this paper, we adopt this framework to model bounded rationality and apply it to

service systems. Specifically, we study the impact of bounded rationality on the service environment

in canonical queueing systems.

For invisible queues, we show the impact of bounded rationality on the revenue, social welfare

and the optimal price. For any fixed price, the revenue function is monotone. It can be either

decreasing or increasing in the level of bounded rationality depending on whether the equilibrium

joining probability is above one half or not. The optimal social welfare is independent of both level

of bounded rationality and arrival rate when customers are not “too boundedly rational.” When

customers are su�ciently boundedly rational, there may be social welfare losses.

For visible queues with a fixed price, we prove that a little bit of bounded rationality can lead

to social welfare improvement, and we provide a simple inequality under which this improvement

happens. This result is striking. While bounded rationality is typically associated with suboptimal

decisions, the externality among the boundedly rational customers can be beneficial to society.

However, as we demonstrated, the relationship between the social welfare (or revenue) and the

level of bounded rationality is complex, and fails to be monotone or unimodal. With the optimal

prices, we prove that bounded rationality always decreases social welfare, and a little bit of bounded

rationality always results in revenue losses (compared to the full-rationality case). These results

tell us that bounded rationality always dilutes the e↵ectiveness of the price regulation in terms

of improving the social welfare, and that a little bit of bounded rationality always makes price-

collecting less profitable for the revenue-maximizing firm. We demonstrate that ignoring bounded
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rationality may lead to significant revenue and social welfare loss for both invisible and visible

queues.
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Online Appendix for “Bounded Rationality in Service
Systems”

This online Appendix has four parts: Appendix A contains the proofs of the propositions in

Section 3; Appendix B contains the proofs of the propositions in Section 4. Appendix C contains

proofs of all supporting lemmas. Appendix D contains a generalization result of Proposition 8.

EC.1. Appendix A

Proof of Proposition 1. Define g('(p,�)) := e

R�p� C

µ�'(p,�)�
�

1+e

R�p� C

µ�'(p,�)�
�

� '(p,�), then g(0) > 0 and

g(d) =�d< 0, where d :=min{1, 1

⇢

}. g('(p,�)) is continuous in '(p,�). By the intermediate value

theorem, there exists at least one '⇤(p,�)2 (0, d) such that g('⇤(p,�)) = 0. Furthermore, g('(p,�))

is strictly decreasing in '(p,�). Therefore, the solution is unique. ⌅

Proof of Proposition 2. (i) To prove this part, we need Lemma EC.1 in Appendix C, which

states that the equilibrium joining probability is monotone decreasing in the irrationality level if

the joining probability is above one half. The reason we need Lemma EC.1 is the following: the

fact that '(p,�)> 1

2

is equivalent to R�p�

C

µ�'(p,�)�

> 0, which is equivalent to R�p�

C

µ� 1
2�

> 0,

i.e., p < p. Parts (ii) and (iii) can be shown similarly.

(iv) For fixed �, denote F (p,'(p)) := e

R�p� C

µ�'(p)�
�

1+e

R�p� C

µ�'(p)�
�

�'(p), then equation (1) in the main paper

is equivalent to F (p,'(p)) = 0. For convenience, we denote f := f(p,'(p)) =
R�p� C

µ�'(p)�

�

. Using

the implicit function theorem, we take first derivative w.r.t. p in equation F (p,'(p)) = 0. We have

e

f

�(1+ e

f )2
+

e

f

�C'

0(p)

�(1+ e

f )2(µ�'(p)�)2
+'

0(p) = 0.

Simplify the above, we obtain

'

0
(p) =�

e

f (µ�'(p)�)2

�(1+ e

f )2(µ�'(p)�)2 + e

f

�C

< 0.

This completes the proof. ⌅

Proof of Proposition 3. (i) Recall that ⇧I(p,�) := p'(p,�)�, where '(p,�) is the unique solu-

tion to equation (1). For any fixed �, we shall abuse notation by writing ⇧I(p) and '(p) for brevity.
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Taking first derivative, we have ⇧I

0
(p) = �['(p)+ p'

0
(p)], where 0 denotes the derivative. We have

shown that '

0
(p) < 0. Let R

0
h

(p) = 0, we have p = �

'(p)

'

0
(p)

> 0. Now we investigate whether this

necessary FOC has multiple solutions. Substituting '

0(p), we have

p=
�C'(p)

(µ�'(p)�)2
+

�

1�'(p)
.

We are interested in whether this equation has a unique solution. For exposition convenience, we

denote g(p) := �C'(p)

(µ�'(p)�)

2 +
�

1�'(p)

� p, then the question is whether g(p) = 0 has a unique solution.

We claim that g(p) is strictly decreasing in p. It is clear that the first term in the RHS �C'(p)

(µ�'(p)�)

2

is strictly decreasing in p and so are the second and third terms. Hence g(p) is strictly decreasing

in p. Note g(0)> 0, and g(1) =�1, so there exists a unique p

⇤ such that g(p⇤) = 0. Finally, one

can verify the second-order condition is satisfied.

(ii) Now we show the second part. We know p

⇤(�) solves the following equation

p

⇤(�) =
�C'(p⇤(�),�)

(µ�'(p⇤(�),�)�)2
+

�

1�'(p⇤(�),�)
.

Using the implicit function theorem and after simplifying, we have

p

⇤0(�) =
A

@'(p,�)

@�

+(µ�'(p,�)�)3(1�'(p,�))

(µ�'(p,�)�)3(1�'(p,�))2 �A

@'(p,�)

@p

.

Note that A> 0 and @'(p,�)

@p

< 0, we know the denominator is strictly positive. Hence, p⇤
0
(�) has

the same sign as the numerator. If @'(p,�)

@�

� 0, i.e., p⇤(�) � p (by Proposition 1), then p

⇤0(�) >

0. Otherwise, the numerator can be negative depending on the parameters. Hence, p⇤
0
(�) > 0 if

p

⇤(�) � p; Otherwise, p⇤
0
(�) has the same sign as A

@'(p,�)

@�

+ (µ� '(p,�)�)3(1� '(p,�)), where

A= �C(µ+�'(p,�))(1�'(p,�))2 +�(µ�'(p,�)�)3.

To further simplify the result in terms of primitives such as �, we want to know whether the price

p (which leads to equilibrium joining probability 0.5 regardless of the irrationality level including

full rationality) can be optimal. Suppose it were, then we have the condition by plugging it into

the condition the optimal price has to satisfy,

R�

2C

2µ��

=
2�C

(2µ��)2
+2�.
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Simplifying yields

�

0

=
1

2
R�

2µC

(2µ��)2
.

If it is positive, i.e., R�

4µC

(2µ��)

2 , we know
dp

⇤
(�0)

d�

> 0, since @'(p,�0)

@�

= 0. Then, it is clear that for any

� > �

0

, we have dp

⇤
(�)

d�

> 0. On the other hand, if R<

4µC

(2µ��)

2 , so that �
0

< 0, one can easily compute

p

⇤(0) =R(1�
q

C

µR

). Then if p⇤(0)� p, which is equivalent to R

4Cµ

(2µ��)

2 , we have dp

⇤
(0)

d�

> 0. This

then implies that dp

⇤
(�)

d�

> 0 for any � 2 [0,1). ⌅

Proof of Corollary 1. Using the envelope theorem, we have

d⇧I(p⇤(�),�)

d�

= p

⇤(�)�
@'(p⇤(�),�)

@�

.

Then all the results (i), (ii) and (iii) follow directly from Proposition 2 (i)-(iii). ⌅

Proof of Proposition 4. By definition, ⇧I

0
(�) = p['0(�)�+'(�)]. To determine its sign, we want

to first determine the sign of '0(�). There are at least two ways to do this. First, observing the

equilibrium condition, equation (1) in the main paper, suppose '(�) is increasing in �, then it is easy

to see that the LHS is decreasing, while the RHS is increasing, a contradiction. Hence, '⇤0(�)< 0.

The other way is to derive this derivative using the implicit function theorem. For convenience,

denote f := f(�) =
R�p� C

µ�'(�)�

�

, and F (�,'(�)) = e

f

1+e

f

�'(�). The equilibrium condition amounts

to F (�,'(�)) = 0. Taking first derivative and simplifying, we have

Ce

f

�(1+ e

f )2
'

0(�)�+'(�)

(µ�'(�)�)2
+'

0(�) = 0,

which clearly implies

d'

⇤(�)

d�

d⇧I(�)

d�

< 0,

and d'

⇤
(�)

d�

< 0. ⌅

Proof of Proposition 5. (i) According to Lemma EC.3 which gives conditions under which the

social welfare is increasing or decreasing in the irrationality level in Appendix C: if
µ�

q
Cµ

R

�

= 1

2

and

p= p, then W

I(�) is constant for � � 0. Simplifying the conditions yields result (i).

(ii) According to Lemma EC.3: if (
µ�

q
Cµ

R

�

�

1

2

)(p�R+ 2C

2µ��

)> 0, then W

I(�) strictly increases

for all � � 0. Combining and simplifying these states in terms of p⇤(0) and p yields the results.
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(iii) According to Lemma EC.3: if either
µ�

q
Cµ

R

�

>

1

2

and p2 [R�

q
CR

µ

,R�

2C

2µ��

), or
µ�

q
Cµ

R

�

<

1

2

and p 2 (R�

2C

2µ��

,R�

q
CR

µ

], then W

I(�) strictly decreases for all � � 0. Combining these cases

together yields the result in (iii).

(iv) According to Lemma EC.3: if either
µ�

q
Cµ

R

�

>

1

2

and p < min{R �

2C

2µ��

,R �

q
CR

µ

}, or

µ�
q

Cµ

R

�

<

1

2

and p >max{R�

2C

2µ��

,R�

q
CR

µ

}, then W

I(�) strictly increases in [0,�
w

) then strictly

decreases in (�
w

,1). Again, combining and simplifying these states in terms of p⇤(0) and p yields

the results. ⌅

Proof of Proposition 6. (i) Lemma EC.4 in Appendix C shows that the social welfare function

is unimodal in the price, which allows us to invoke the first-order condition to find the optimal

price. For any fixed �> 0 and irrationality level � > 0, to achieve social optimality, the equilibrium

joining probability '(p,�) =
µ�

q
Cµ

R

�

, plugging which into the equilibrium condition equation (1) in

the main paper, we have

e

R�p�
p

CR

µ

�

1+ e

R�p�
p

CR

µ

�

=
µ�

q
Cµ

R

�

.

Solving this equation, we have the unique solution

p

⇤
w

(�) =R�

s
CR

µ

�� log
µ�

q
Cµ

R

��µ+
q

Cµ

R

.

We can easily calculate the optimal social welfare at the optimal price p⇤
w

(�) if it is positive (which

is satisfied when the conditions stated in part (i) on R and � are satisfied). Otherwise, we have to

let price be zero to maximize the social welfare. Part (ii) follows similarly. ⌅

EC.2. Appendix B

Proof of Proposition 7. Let �

n

⌘ �'

n

, µ
n

⌘ µ, then we can treat the number of customers in

the queueing system as a birth-death process with birth rate �

n

and death rate µ

n

. We have the

balance equations :

�

0

P

0

= µ

1

P

1

,

(�
n

+µ)P
n

= µP

n+1

+�

n�1

P

n�1

, n� 1.
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Solving these equations, we have the limiting probabilities :

P

0

=
1

1+⌃1
k=1

�0�1...�
k�1

µ

k

, P

n

=
�

0

�

1

...�

n�1

µ

n(1+⌃1
k=1

�0�1...�
k�1

µ

k

)
, n� 1.

The necessary and su�cient condition for the existence of limiting probabilities is:

⌃1
k=1

�

0

�

1

...�

k�1

µ

k

<1.

Let a
k

=
�0�1...�

k�1

µ

k

, using the ratio test, we have

a

k+1

a

k

=
�

k

µ

= ⇢'

k

! 0, k!1.

The series converges, hence, the condition is always satisfied for � 2 (0,1). ⌅

Proof of Proposition 8. To show this proposition, we want to study the social welfare function

W (�) as � is strictly greater than but arbitrarily close to 0, and compare it with W (0).

We start from the case when only the customers on the two marginal states on the positive and

the negative side randomize. Let �(�) be the probability of joining for the customer who sees n
s

�1

customers in the queue in front of him, and �(�) be the probability of joining for the customer

who observes n
s

customers in the queue. We omit � for simplicity. Let u
0

⌘U

n

s

�1

and u

1

⌘U

n

s

be

their expected utilities of joining respectively.

If n
s

>

Rµ

C

�

1

2

, we have u
0

� 0, u
1

 0, u
0

+u

1

 0. By Lemma EC.10 which gives conditions under

which “less congestion” implies more welfare holds for any number of customers randomizing using

logit probabilities, we need to show

(1��)⇢ns +�(1� �)⇢ns

+1 +��⇢

n

s

+2

< ⇢

n

s

+1

, (EC.1)

when � is small. Some algebra tells us that it su�ces to show

M(�)⌘ �(�⇢+1) =
e

u0
�

1+ e

u0
�

(⇢
e

u1
�

1+ e

u1
�

+1)< 1.

We want to know the sign of M 0(�) when � is small. After lengthy algebra, we have

M

0(�)(1+ e

u0
� )2(1+ e

u1
� )2�2

e

u0
�

=�⇢u

1

e

u0+u1
�

� (⇢+1)u
0

e

2u1
�

� [(⇢+2)u
0

+ ⇢u

1

]e
u1
�

�u

0

< 0,
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when � 2 (0,�⇤
1

), where M

0(�⇤
1

) = 0.

Observing this inequality, we can see that, if u
0

+ u

1

> 0, u
0

> 0, u
1

< 0, i.e., n
s

<

Rµ

C

�

1

2

, then

lim
�!0

M

0(�) > 0. Hence, the social welfare will decrease in this case. If u
0

+ u

1

= 0, u
0

> 0, u
1

< 0,

i.e., n
s

= Rµ

C

�

1

2

, then lim
�!0

M

0(�)> 0. If u
0

= 0, u
1

< 0, then M

0(�) has the same sign as �2⇢u
1

e

u1
�

when � is close to 0, i.e., lim
�!0

M

0(�)> 0.

Next, let us consider the case when the customers in the two marginal states on the positive

side and two marginal states on the negative side randomize. Let �

1

(�),�(�), �(�), �
1

(�) be the

probabilities of joining for the customers who observe n
s

�2, n
s

�1, n
s

, n

s

+1 customers respectively.

We will also omit their dependence on � for brevity hereafter. We want to show

(1��

1

)⇢ns

�1 +�

1

(1��)⇢ns +�

1

�(1� �)⇢ns

+1 +�

1

��(1� �

1

)⇢ns

+2 +�

1

���

1

⇢

n

s

+3

< ⇢

n

s

+1

, (EC.2)

when � is small.

One obvious way to show this inequality is to use the similar technique, di↵erentiation, as for

two customer randomizing cases. But it turns out to be much more complicated and untractable.

Here is a better way. We already knew when � 2 (0,�⇤
1

), Inequality (EC.1) holds. Then, it su�ces

to show

(1��

1

)+�

1

⇢

2

��

1

���

1

⇢

3 +�

1

���

1

⇢

4

< ⇢

2

which is equivalent to

�

1

���

1

1��

1

<

⇢

2

� 1

⇢

3(⇢� 1)
.

This inequality can clearly be satisfied for � 2 (0,�⇤
2

), where �

⇤
2

makes the inequality above equal.

Hence, when � 2 (0,min{�⇤
1

,�

⇤
2

}), inequality (EC.2) is satisfied.

Before we generalize our result, let us also consider the case when the customers in the three

marginal states on the positive side and three marginal states on the negative side randomize. Let

�

2

(�),�
1

(�),�(�), �(�), �
1

(�), �
2

(�) be the probabilities of joining for those who see n

s

� 3, n
s

�

2, ..., n
s

+2 customers respectively. We need to show

(1��

2

)⇢ns

�2 +�

2

(1��

1

)⇢ns

�1 +�

2

�

1

�(1��)⇢ns +�

2

�

1

�(1� �)⇢ns

+1 +�

2

�

1

��(1� �

1

)⇢ns

+2+

�

2

�

1

���

1

(1� �

2

)⇢ns

+3 +�

2

�

1

���

1

�

2

⇢

n

s

+4

< ⇢

n

s

+1

,

(EC.3)
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when � is small. We already knew, when � 2 (0,min{�⇤
1

,�

⇤
2

}), inequality (EC.2) is satisfied. Hence,

it su�ces to show

1��

2

+�

2

⇢

3

��

2

�

1

���

1

�

2

⇢

5 +�

2

�

1

���

1

�

2

⇢

6

< ⇢

3

.

which is equivalent to

�

2

�

1

���

1

�

2

1��

2

<

⇢

3

� 1

⇢

5(⇢� 1)
.

This inequality can clearly be satisfied for � 2 (0,�⇤
3

), where �

⇤
3

makes the inequality above equal.

Hence, when � 2 (0,min{�⇤
1

,�

⇤
2

,�

⇤
3

}), inequality (EC.3) is satisfied.

Clearly, we can proceed as this until the first arrival customer randomizes, i.e., 2n
s

customers

randomize. For the case when any 2n+2 customers randomize, n n

s

� 1, we have the inequality

to be satisfied

�

n

...�

2

�

1

���

1

�

2

...�

n

1��

n

<

⇢

n+1

� 1

⇢

2n+1(⇢� 1)
. (EC.4)

This inequality can clearly be satisfied for � 2 (0,�⇤
n

), where �

⇤
n

makes the inequality above equal.

Hence, when � 2 (0,min{�⇤
1

,�

⇤
2

,�

⇤
3

, ...,�

⇤
n

}), we are done.

Now, we need to consider the cases, when the customers in the 2n marginal states randomize,

where n> n

s

. For example, for n= n

s

+1, we need to show

(1��

n

s

�1

)⇢+�

n

s

�1

(1��

n

s

�2

)⇢2 +�

n

s

�1

�

n

s

�2

�(1��

n

s

�3

)⇢3 + ...+�

n

s

�1

�

n

s

�2

...���

1

...(1� �

n

s

�1

)⇢2ns

+�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

(1� �

n

s

)⇢2ns

+1 +�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

�

n

s

⇢

2n

s

+2

< ⇢

n

s

+1

(EC.5)

when � is small.

Let x(�)2 (�
1

,1) be such that x(�) = y+(1�y)�
1

, where y 2 (0,1), then it is easy to verify that

inequality (EC.3) can be modified to

(1��

2

)⇢ns

�2 +�

2

(1��

1

)⇢ns

�1 +�

2

�

1

�(1��)⇢ns +�

2

�

1

�(1� �)⇢ns

+1 +�

2

�

1

��(1� �

1

)⇢ns

+2+

�

2

�

1

���

1

(1� �

2

)⇢ns

+3 +�

2

�

1

���

1

�

2

⇢

n

s

+4

<x(�)⇢ns

+1

(EC.6)

when � 2 (0,�
1

) for some �

1

> 0. In general, inequality (EC.4) can be modified to

�

n

...�

2

�

1

���

1

�

2

...�

n

1��

n

<

y⇢

n+1

� 1

⇢

2n+1(⇢� 1)
. (EC.7)
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Then, it su�ces to show

�

n

s

⇢

2n

s

+1(⇢� 1)< (1� y)⇢ns

+1

, (EC.8)

which is equivalent to

�

n

s

<

1� y

⇢

n

s

(⇢� 1)
, (EC.9)

which can clearly be satisfied for � 2 (0,�
y

) for some �

y

> 0.

When the number of marginal states in which the customers randomize goes to infinity (by

Proposition 7, the system is always stable), then we need to show the following summable series is

less than ⇢

n

s

+1:

(1��

n

s

�1

)⇢+�

n

s

�1

(1��

n

s

�2

)⇢2 +�

n

s

�1

�

n

s

�2

�(1��

n

s

�3

)⇢3 + ...+�

n

s

�1

�

n

s

�2

...���

1

...(1� �

n

s

�1

)⇢2ns

+ [�
n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

(1� �

n

s

)⇢2ns

+1 +�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

�

n

s

(1� �

n

s

+1

)⇢2ns

+2

+�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�

n

s

+1

(1� �

n

s

+2

)⇢2ns

+3 + ...]< ⇢

n

s

+1

.

(EC.10)

We can show that the part in [.] can be made less than (1�y)(1��

1

)⇢ns

+1 as � 2 (0,"⇤) as follows.

�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

(1� �

n

s

)⇢2ns

+1 +�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

�

n

s

(1� �

n

s

+1

)⇢2ns

+2

+�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�

n

s

+1

(1� �

n

s

+2

)⇢2ns

+3 + ...

= ⇢

2n

s

+1

�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

[(1� �

n

s

)+ �

n

s

(1� �

n

s

+1

)⇢+ �

n

s

�

n

s

+1

(1� �

n

s

+2

)⇢2 + ...]

 ⇢

2n

s

+1(�
n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

)[1+ �

n

s

⇢+ �

2

n

s

⇢

2 + ...]

= ⇢

2n

s

+1(�
n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

)
1

1� �

n

s

⇢

< (1� y)(1��

1

)⇢ns

+1

(EC.11)

The last inequality comes from

�

n

s

�1

�

n

s

�2

...���

1

...�

n

s

�1

(1� �

n

s

⇢)(1��

1

)
<

��

1

...�

n

s

�1

(1� �

n

s

⇢)(1��

1

)
<

1� y

⇢

n

s

(EC.12)

which can easily be satisfied as � is small.

The case when n

s

<

Rµ

C

�

1

2

or n

s

= Rµ

C

�

1

2

can be shown by similar arguments using Lemma

EC.8 which states the equivalent results for the case when only the customers on the two marginal

states randomize with logit probabilities, Lemma EC.10, and Lemma EC.11 which give conditions

under which “more congestion” implies less welfare holds for any number of customers randomizing

using logit probabilities. The proofs are omitted for brevity. Hence, we complete the proof. ⌅
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Proof of Proposition 9. Given Lemma EC.12 in Appendix C which shows that for any price

charged in the interval (R�

C(n0+1)

µ

,R�

Cn0
µ

], the conclusion holds, we only need to show when p

is outside of the interval (R�

C(n0+1)

µ

,R�

Cn0
µ

], the conclusion continues to hold.

We use the same argument as Lemma EC.12. We know that W

n0 is the optimal social welfare

by Yechiali (1971). However, we cannot rule out the case that W (p,�) = W

n0 for some p from

Yechiali (1971)’s results. To rule out the case, we use Haviv and Puterman (1998), who show that

the only average optimal stationary policies are of control limit type, that there are at most two

and, if there are two, they occur consecutively. This implies that the only gain optimal randomized

stationary policies should randomize over the two control limit states if they exist. The argument

is simple: for any randomized policy to be optimal, the deterministic policies it has strictly positive

probabilities should yield the same average reward. In our setting with randomization using logit

probabilities, their result implies that W
n0 is strictly larger than any W (p,�) when � > 0 since the

logit joining probabilities are in the interval (0,1). We complete the proof. ⌅

Proof of Proposition 10. By Lemma EC.14 which shows that the optimal price under a little

bit of irrationality is strictly lower than the optimal price under full rationality, we obtain the

following result: ⇧(p⇤(�),�) =⇧(p⇤ � ✏

�

,�)<⇧(p⇤ � ✏

�

,0)<⇧
n

r

, for � 2 (0, �̄
✏

�

) for some �̄

✏

�

> 0.

⌅

EC.3. Appendix C

Lemma EC.1. For any fixed price p, '(p,�) is strictly decreasing in � when '(p,�)> 1

2

, strictly

increasing in � when '(p,�)< 1

2

, and constant in � when '(p,�) = 1

2

.

Proof of Lemma EC.1. When '(p,�)> 1

2

, we have R� p�

C

µ�'(p,�)�

> 0. We prove the conclu-

sion by contradiction. Suppose ⇧I(p,�) were increasing in �, then '(p,�) and thus the LHS of

equation (1) in the main paper increases in �. Note that, R� p�

C

µ�'(p,�)�

decreases in '(p,�),

and thus
R�p� C

µ�'(p,�)�

�

decreases as � increases. Hence the RHS of equation (1) decreases, while

the LHS '(p,�) increases, which is a contradiction. Therefore, '(p,�) is decreasing in � when

'(p,�)> 1

2

. Similar arguments for other two cases.
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Another way to prove it is taking first derivative w.r.t. � directly in equation (1) using the

implicit function theorem. In fact, we have

[1+
�Ce

f

�(1+ e

f )2(µ�'(p,�)�)2
]
@'(p,�)

@�

=�

fe

f

�(1+ e

f )2
,

where f := f(p,�,'(p,�)) =
R�p� C

µ�'(p,�)�

�

. Hence, @'(p,�)

@�

has the same sign as �f :

sign

@'(p,�)

@�

=�signf.

Indeed, after simplifying, we have

@'(p,�)

@�

=
� ln '(p,�)

1�'(p,�)

(µ�'(p,�)�)2'(p,�)(1�'(p,�))

�(µ�'(p,�)�)2 +�C'(p,�)(1�'(p,�))
,

where we used the fact that f = ln '(p,�)

1�'(p,�)

. Hence, we complete the proof of the lemma. ⌅

Lemma EC.2. W

I('(p,�)) is strictly concave in '(p,�), i.e., @

2
W

I

('(p,�))

@('(p,�))

2 < 0.

Proof of Lemma EC.2. Taking first-order derivative, we have

@W

I('(p,�))

@'(p,�)
= �R�

C�µ

(µ�'(p,�)�)2
.

Taking second-order derivative, we have

@

2

W

I('(p,�))

@('(p,�))2
=�

2�2

µC

(µ�'(p,�)�)3
< 0,

which completes the proof. ⌅

Lemma EC.3.

dW

I

(�)

d�

> 0 if '(p,�)>max{
µ�

q
Cµ

R

�

,

1

2

} or '(p,�)<min{
µ�

q
Cµ

R

�

,

1

2

}; dW

I

(�)

d�

< 0 if

'(p,�)<max{
µ�

q
Cµ

R

�

,

1

2

} and '(p,�)>min{
µ�

q
Cµ

R

�

,

1

2

}; dW

I

(�)

d�

= 0 otherwise.

Proof of Lemma EC.3. Using the chain rule, we have

dW

I(�)

d�

=
dW

I('(�))

d'(�)

'(�)

d�

= [�R�

C�µ

(µ�'(p,�)�)2
]
'(�)

d�

,

which has the same sign as �[�R�

C�µ

(µ�'(p,�)�)

2 ]f , where f := f(�) =
R�p� C

µ�'(�)�

�

. Then, the lemma

follows from determining the sign by discussing all possible cases. ⌅
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Lemma EC.4. W

I(p) is unimodal in the price p.

Proof of Lemma EC.4. By the chain rule, we have W

I

0
(p) = W

I

0
('(p))'

0
(p), but '

0
(p) < 0,

hence, the FOC W

I

0
(p) = 0 is equivalent to W

I

0
('(p)) = 0. By Lemma EC.2 in Appendix C, a

unique solution '(p) exists. Again since '

0
(p)< 0, a unique solution p

⇤ exists. ⌅

Lemma EC.5. If n

s

6= n

0

and all the customers are fully rational except the one who observes

n

s

� 1 customers in the queue and who randomizes with equal probabilities between “join” and

“balk,” then the social welfare would be strictly improved. Moreover, either of the two conditions is

su�cient for n

s

6= n

0

: (1) ⇢> 1 and n

s

> 1; (2)
p

2� 1< ⇢< 1 and n

s

> 2.

Proof of Lemma EC.5. In this case where only the customer who observes n
s

� 1 customers in

the queue is boundedly rational, we can derive an explicit expression for the social welfare function

as follows. For the birth-death process, we have the birth rates, �
n

= �, when n = 0,1, ..., n
s

� 2;

�

n

= 1

2

�, when n= n

s

� 1; �
n

= 0, when n� n

s

. Then, we have:

a

n

=

8
<

:

⇢

n if n< n

s

1

2

⇢

n if n= n

s

0 if n> n

s

.

A ⌘

1X

n=1

a

n

= (a
1

+ a

2

+ ...+ a

n

s

�1

)+ a

n

s

= (⇢+ ⇢

2 + ...+ ⇢

n

s

�1)+
1

2
⇢

n

s

=
⇢(1� ⇢

n

s

�1)

1� ⇢

+
1

2
⇢

n

s

.

P

0

=
1

1+A

=
2(1� ⇢)

2� ⇢

n

s

� ⇢

n

s

+1

.

P

n

= a

n

P

0

, n� 1.

F ⌘

1X

n=0

�

n

P

n

=
n

sX

n=0

�

n

P

n
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= �P

0

[(1+ ⇢+ ...+ ⇢

n

s

�2)+
1

2
⇢

n

s

�1]

= �

2� ⇢

n

s

�1

� ⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

.

G ⌘

1X

n=0

nP

n

=
n

sX

n=0

nP

n

= (
n

sX

n=1

n⇢

n

�

1

2
n

s

⇢

n

s)P
0

= [
⇢

2(1� ⇢

n

s)

(1� ⇢)2
+

⇢[1� (n
s

+1)⇢ns ]

1� ⇢

�

1

2
n

s

⇢

n

s ]P
0

= [
⇢

2(1� ⇢

n

s)

(1� ⇢)2
+

⇢[1� (n
s

+1)⇢ns ]

1� ⇢

�

1

2
n

s

⇢

n

s ]
2(1� ⇢)

2� ⇢

n

s

� ⇢

n

s

+1

=
⇢

1� ⇢

�

(n
s

+1)⇢ns

+1 +n

s

⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

.

Then, we have the social welfare in this case

W

2

= FR�GC = �

2� ⇢

n

s

�1

� ⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

R� [
⇢

1� ⇢

�

(n
s

+1)⇢ns

+1 +n

s

⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

]C.

We want to show W

2

�W (0)> 0, which is equivalent to �RK �CT > 0, where

K ⌘

2� ⇢

n

s

�1

� ⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

�

1� ⇢

n

s

1� ⇢

n

s

+1

,

T ⌘

(n
s

+1)⇢ns

+1

1� ⇢

n

s

+1

�

(n
s

+1)⇢ns

+1 +n

s

⇢

n

s

2� ⇢

n

s

� ⇢

n

s

+1

.

Basic algebra yields

K =
�(⇢� 1)2⇢ns

�1

(⇢ns

+1

� 1)(⇢ns + ⇢

n

s

+1

� 2)
< 0

and

T =
(n

s

+1)⇢ns

+1

�n

s

⇢

n

s

� ⇢

2n

s

+1

(⇢ns

+1

� 1)(⇢ns + ⇢

n

s

+1

� 2)
.

Then

T

K

=
(n

s

+1)⇢ns

+1

�n

s

⇢

n

s

� ⇢

2n

s

+1

�(⇢� 1)2⇢ns

�1

=
⇢

n

s

+2 +n

s

⇢� (n
s

+1)⇢2

(⇢� 1)2
. (EC.13)

But �RK�CT > 0, T

K

>

�R

C

= Rµ

C

⇢= (n
s

+ ✏)⇢, where ✏2 [0,1). Equivalently, we need to show
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⇢

n

s

+1 +n

s

� (n
s

+1)⇢

(⇢� 1)2
>

Rµ

C

. (EC.14)

We claim that inequality (EC.14) is equivalent to n

s

6= n

0

. We show this claim as follows.

If inequality (EC.14) holds, we want to show that n

s

6= n

0

. By definition, n
0

satisfies the two

inequalities (18) and (19) on page 20, Naor (1969), which can be transformed into equivalent

inequalities (20) and (21) on page 20. If n
s

= n

0

, then inequality (21) in Naor (1969) contradicts

with inequality (EC.14) here. Hence, inequality (EC.14) implies that n
s

6= n

0

.

On the other hand, if n
s

6= n

0

, we want to show inequality (EC.14) is true. We know n

s

> n

0

,

i.e., n
s

2 {n

0

+1, n
0

+2, ...}. Naor (1969) shows that W (0) = P (n) as a function of n is “discretely

unimodal.” Hence, we have P (n
s

� 1)>P (n
s

). Simplification yields

⇢

n

s

+1 +n

s

� (n
s

+1)⇢

(⇢� 1)2
>

Rµ

C

,

which is precisely inequality (EC.14). Hence, n
s

6= n

0

implies inequality (EC.14).

Therefore, we have shown that inequality (EC.14) is equivalent to n

s

6= n

0

for ⇢ 6= 1.

For ⇢= 1, we can compute the social welfare directly, W (0) = n

s

n

s

+1

�R�

n

s

2

C. Then n

s

6= n

0

is

equivalent to

n

s

� 1

n

s

�R�

n

s

� 1

2
C >

n

s

n

s

+1
�R�

n

s

2
C.

Simplifying the above, we obtain

n

s

(n
s

+1)

2
>

�R

C

.

Taking limits of the LHS of inequality (EC.14) when ⇢! 1, we know

lim
⇢!1

⇢

n

s

+1 +n

s

� (n
s

+1)⇢

(⇢� 1)2
=

n

s

(n
s

+1)

2

using the L’Hospital rule. Hence, our results hold when ⇢= 1.

Furthermore, we are interested in su�cient conditions on primitives to ensure that n
s

6= n

0

holds.

To show inequality (EC.14), it is su�cient to show that T

K

� (n
s

+1)⇢, which is equivalent to

⇢

n

s

+2 +n

s

⇢� (n
s

+1)⇢2

(⇢� 1)2
� (n

s

+1)⇢
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,

⇢

n

s

+1

� 1

⇢� 1
� (n

s

+1)⇢

when ⇢> 1. But

⇢

n

s

+1

� 1

⇢� 1
= ⇢

n

s + ⇢

n

s

�1 + ...+ ⇢+1> (n
s

� 1)⇢+(⇢2 +1)> (n
s

+1)⇢

as long as n
s

> 1.

Now we prove the case when ⇢< 1, it is equivalent to show

⇢

n

s

+1 +n

s

� (n
s

+1)⇢

(⇢� 1)2
>

Rµ

C

= n

s

+ ✏.

Comparing this inequality with equation (21) on page 20 in Naor 1969, we know that it is necessary

that n
s

6= n

0

. And by the same argument as above, we know it is also su�cient that n
s

6= n

0

.

Again, to find su�cient conditions on the primitives, we o↵er the following discussion. It is

su�cient to show

⇢

n

s

+1

� 1

⇢� 1
= ⇢

n

s + ⇢

n

s

�1 + ...+ ⇢+1 (n
s

+1)⇢.

Clearly, if ⇢ is too small, for example, ⇢< 1

n

s

+1

, the inequality above cannot hold. Note that we

assumed n

s

� 2. We can use induction to show the inequality above. When n

s

= 2, we are showing

⇢

2 + ⇢ + 1  3⇢, i.e., (⇢ � 1)2  0, which cannot be satisfied if ⇢ < 1. Hence, the social welfare

decreases if n
s

= 2 and ⇢< 1. Now, we consider the case when n

s

= 3, then the inequality simplifies

to (⇢� 1)[⇢� (
p

2� 1)](⇢+1+
p

2) 0. When
p

2� 1 ⇢< 1, the inequality is satisfied. Then, we

can use induction to show this inequality holds for any n

s

� 3, if
p

2� 1 ⇢< 1. This completes

our proof. ⌅

The next lemma generalizes the above result.

Lemma EC.6. If n
s

6= n

0

, and the customer who observes n

s

� 1 customers already in the queue

has any level of irrationality, i.e., he joins with probability � 2 [0,1), then the social welfare would

be strictly improved.
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Proof of Lemma EC.6. The proof is similar to that for Lemma EC.5. For this case, we have

P

0

=
1� ⇢

1� (1��)⇢ns

��⇢

n

s

+1

,

F = �

1� (1��)⇢ns

�1

��⇢

n

s

1� (1��)⇢ns

��⇢

n

s

+1

,

G=
⇢

1� ⇢

�

�(n
s

+1)⇢ns

+1 +(1��)n
s

⇢

n

s

1� (1��)⇢ns

��⇢

n

s

+1

.

After some basic but tedious algebra, interestingly and surprisingly, we find T

K

in this case is the

same as equation (EC.13). Hence, we showed the conclusion using the same argument as Lemma

EC.5. ⌅

It is clear that, if the customers “on the negative side,” i.e., the customers whose expected utility

is strictly less than zero, have some degree of irrationality of joining the queue with some strictly

positive probabilities, then the social welfare will deteriorate. We state this simple result formally.

Lemma EC.7. If the customer who observes n

s

customers in front of him, joins the queue with

some positive probability � 2 (0,1], then the social welfare will decrease for any ⇢ 6= 1.

Proof of Lemma EC.7. The argument is intuitively simple: if such a customer joins the queue,

his net e↵ect on the social welfare is strictly negative, thus making the social welfare worse. This

loose argument can be made rigorous using a similar technique as before as follows.

In this case, we have �

n

= �, for n = 0,1, ..., n
s

� 1; �
n

s

= ��, where � 2 (0,1]; and �

n

= 0, for

n� n

s

+1. Then,

a

n

=

8
<

:

⇢

n if n< n

s

+1
�⇢

n if n= n

s

+1
0 if n> n

s

+1.

Long algebra gives us

F = �

1� (1� �)⇢ns

� �⇢

n

s

+1

1� (1� �)⇢ns

+1

� �⇢

n

s

+2

,

G=
⇢

1� ⇢

�

(1� �)(n
s

+1)⇢ns

+1 + �(n
s

+2)⇢ns

+2

1� (1� �)⇢ns

+1

� �⇢

n

s

+2

.

Then, we have

K =
�⇢

n

s(⇢� 1)2

(1� ⇢

n

s

+1)(1� (1� �)⇢ns

+1

� �⇢

n

s

+2)
> 0
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and

T =
�⇢

n

s

+1[(n
s

+1)� (n
s

+2)⇢+ ⇢

n

s

+2]

(1� ⇢

n

s

+1)(1� (1� �)⇢ns

+1

� �⇢

n

s

+2)
.

First, we consider the case when ⇢> 1. To show W

2

<W (0), it is su�cient to show T

K

� (n
s

+1)⇢.

But, T

K

� (n
s

+1)⇢() (n
s

+1)�(n
s

+2)⇢+⇢

n

s

+2

� (n
s

+1)(⇢2�2⇢+1), which is in turn equivalent

to ⇢

n

s

+1�1

⇢�1

= ⇢

n

s + ⇢

n

s

�1 + ...+ ⇢+1� n

s

+1, which is true, since ⇢> 1.

Let us consider the case when ⇢ < 1. To show W

2

< W (0), it is su�cient to show ⇢

n

s

+1�1

⇢�1

=

⇢

n

s + ⇢

n

s

�1 + ...+ ⇢+1 n

s

+1, which is clearly true since ⇢< 1. We complete the proof. ⌅

Now, we consider the case where both the customers “on the positive side” and “on the nega-

tive side” randomize with logit probabilities. We denote W

2

(�) as the social welfare when these

customers randomize.

Lemma EC.8. Let both of the customer who observes n

s

� 1 customers in front of him and the

customer who observes n
s

customers in front of him join the queue with logit probabilities specified in

equation (1) while all other customers are fully rational, and the irrationality level � be su�ciently

small. If any one of the following three conditions is satisfied: (1) n

s

<

Rµ

C

�

1

2

; (2) n

s

= n

0

; (3)

n

s

= Rµ

C

�

1

2

and ⇢> 1, then W

2

(�)<W (0). Otherwise, W
2

(�)>W (0).

Proof of Lemma EC.8. We sketch the main steps here. We know, �
n

= �, for n= 0,1, ..., n
s

�2;

�

n

s

�1

= ��, where � 2 [0,1); �
n

s

= ��, where � 2 (0,1]; and �

n

= 0, for n� n

s

+1.Then, we have

a

n

=

8
>><

>>:

⇢

n if n< n

s

�⇢

n if n= n

s

��⇢

n if n= n

s

+1
0 if n> n

s

+1.

Long algebra yields

F = �

1� (1��)⇢ns

�1

��(1� �)⇢ns

���⇢

n

s

+1

1� (1��)⇢ns

��(1� �)⇢ns

+1

���⇢

n

s

+2

,

G=
⇢

1� ⇢

�

(1��)n
s

⇢

n

s +�(1� �)(n
s

+1)⇢ns

+1 +��(n
s

+2)⇢ns

+2

1� (1��)⇢ns

��(1� �)⇢ns

+1

���⇢

n

s

+2

.

Then, we have

K ⌘

1� (1��)⇢ns

�1

��(1� �)⇢ns

���⇢

n

s

+1

1� (1��)⇢ns

��(1� �)⇢ns

+1

���⇢

n

s

+2

�

1� ⇢

n

s

1� ⇢

n

s

+1

,
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T ⌘

(n
s

+1)⇢ns

+1

1� ⇢

n

s

+1

�

(1��)n
s

⇢

n

s +�(1� �)(n
s

+1)⇢ns

+1 +��(n
s

+2)⇢ns

+2

1� (1��)⇢ns

��(1� �)⇢ns

+1

���⇢

n

s

+2

.

To determine the sign of W
2

(�)�W (0) = �RK�CT , we first need to know the sign of K. Some

algebra tells us, when � = �

⇤
⌘

1

1+�⇢

, K = 0; when � > �

⇤, K > 0; when � < �

⇤, K < 0. Then, we

can discuss which cases are possible under di↵erent assumptions.

First, we assume that n

s

>

Rµ

C

�

1

2

. Under the assumption that � is su�ciently small, if n
s

>

Rµ

C

�

1

2

, i.e., U
n

s

�1

� 0 < 0� U

n

s

, where U

n

s

�1

= R�

n

s

C

µ

, and U

n

s

= R�

(n

s

+1)C

µ

, using the logit

probability specification in equation (4), we can rule out the cases when � 2 [�⇤
,1] by contradiction.

Suppose it were possible that �� �

⇤, when � is small. After substituting the utility functions and

simplifying, we have

⇢e

U

n

s

�1+U

n

s

�

� 1+ ⇢e

U

n

s

�

. (EC.15)

As � goes to zero, the LHS goes to zero while the RHS goes to 1, which is a contradiction. Then,

we have K < 0, to show W

2

(�)>W (0), it is equivalent to show T

K

>

�R

C

. After lengthy algebra, we

have

T

K

=
⇢

n

s

+2 +n

s

⇢� (n
s

+1)⇢2

(⇢� 1)2
+

��⇢

2(⇢ns

+1

� 1)

(��⇢+�� 1)(⇢� 1)
. (EC.16)

For convenience, denote g(�) = ��⇢

2
(⇢

n

s

+1�1)

(��⇢+��1)(⇢�1)

, where � and � are the logit probabilities as func-

tions of the irrationality level �, and we have abused notations by omitting �. Since � < �

⇤ when

� is small, we know ��⇢+�� 1< 0 when � is small. Now, we claim that

lim
�!0

g(�) = 0.

To show this claim, it is su�cient to show

lim
�!0

�� 1

��

=�1.

Indeed, we have

�� 1

��

=�

1+ e

U

n

s

�1
� + e

U

n

s

� + e

U

n

s

�1+U

n

s

�

e

U

n

s

�1+U

n

s

� + e

2U
n

s

�1+U

n

s

�

.
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Multiplying the RHS of this equation by e

�U

n

s

�1
� for both of the numerator and the denominator,

and taking limit, we know it goes to �1, since the numerator goes to 1 and the denominator goes

to 0 as � goes to 0.

Comparing inequality (EC.14) and (EC.16), we know when � is su�ciently small, inequality

(EC.16) holds if inequality (EC.14) holds which is equivalent to n

s

6= n

0

. Hence, under the assump-

tion that n
s

>

Rµ

C

�

1

2

, if and only if n
s

6= n

0

, W
2

(�)>W (0), when � is su�ciently small.

If n
s

<

Rµ

C

�

1

2

, we can similarly show that the social welfare will decrease as follows. We have

U

n

s

�1

+ U

n

s

> 0, which implies that � > �

⇤, which further implies that K > 0. We claim that

W

2

(�) < W (0), which is equivalent to T

K

>

�R

C

. Studying equation (EC.16) again, now we have

g(�)> 0 since �> �

⇤, and we know

lim
�!0

�� 1

��

= 0,

which further implies that

lim
�!0

g(�) =
⇢(⇢ns

+1

� 1)

⇢� 1
.

By Lemma EC.5, one can show that this inequality holds as long as ⇢ 6= 1 regardless of anything

else.

The last case is when n

s

= Rµ

C

�

1

2

, which implies that U

n

s

�1

+ U

n

s

= 0. Then the inequality

�� �

⇤ is equivalent to

⇢� 1+ ⇢e

U

n

s

�

.

If ⇢< 1, then this inequality cannot hold. Therefore, it has to be the case that � < �

⇤ when � is

su�ciently small, which implies that K < 0. We claim that W
2

(�)>W (0), which is equivalent to

T

K

>

�R

C

, which holds if and only if n
s

6= n

0

.

If ⇢> 1, when � is su�ciently small, we have � > �

⇤, which implies that K > 0. We claim that

W

2

(�)<W (0), which is equivalent to T

K

>

�R

C

, which holds regardless of anything else, by Lemma

EC.7. We complete the proof. ⌅

Lemma EC.9. Function W

0

(x) ⌘ �

1�⇢

x

1�⇢

x+1R � [ ⇢

1�⇢

�

⇢

d⇢

x+1

d⇢

1�⇢

x+1 ]C = �

1�⇢

x

1�⇢

x+1R � [ ⇢

1�⇢

�

(x+1)⇢

x+1

1�⇢

x+1 ]C,

x2 [0,+1), is unimodal.
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Proof of Lemma EC.9. Taking the first-order derivative and simplifying, we have

W

0
0

(x) =
1

(1� ⇢

x+1)2
[�R(⇢� 1)⇢x log⇢+C⇢

x+1(1� ⇢

x+1 +(x+1) log⇢)].

We want to show that the equation W

0(x) = 0 has at most one solution, which implies that W
0

(x)

is unimodal. Indeed, W 0
0

(x) = 0 is equivalent to

⇢

x+1 = (x+1) log⇢+
�R(⇢� 1) log⇢

C⇢

+1,

which clearly has at most one solution. ⌅

Lemma EC.10. Assume n

s

6= n

0

. Let ⇢

k

⌘ f(⇢) = (1 � �)⇢ns + �(1 � �)⇢ns

+1 + ��⇢

n

s

+2, V ⌘

⇢f

0(⇢) = (1��)n
s

⇢

n

s +�(1��)(n
s

+1)⇢ns

+1+��(n
s

+2)⇢ns

+2. If k 2 (n
s

, n

s

+1), then W

0

(k�1)⌘

�

1�⇢

k�1

1�⇢

k

R� [ ⇢

1�⇢

�

V

1�⇢

k

]C >W

0

(n
s

) ⌘ �

1�⇢

n

s

1�⇢

n

s

+1R� [ ⇢

1�⇢

�

(n

s

+1)⇢

n

s

+1

1�⇢

n

s

+1 ]C. In general, the property

that “less congestion” implies more welfare holds for any number of customers randomizing using

logit probabilities.

Proof of Lemma EC.10. This lemma follows directly from Lemma EC.9. ⌅

Similarly, we have the following lemma.

Lemma EC.11. Assume n

s

6= n

0

. Let ⇢

k

⌘ f(⇢) = (1 � �)⇢ns + �(1 � �)⇢ns

+1 + ��⇢

n

s

+2, V ⌘

⇢f

0(⇢) = (1��)n
s

⇢

n

s +�(1� �)(n
s

+1)⇢ns

+1+��(n
s

+2)⇢ns

+2. If k 2 (n
s

+1, n
s

+2), then W

0

(k�

1)⌘ �

1�⇢

k�1

1�⇢

k

R� [ ⇢

1�⇢

�

V

1�⇢

k

]C <W

0

(n
s

)⌘ �

1�⇢

n

s

1�⇢

n

s

+1R� [ ⇢

1�⇢

�

(n

s

+1)⇢

n

s

+1

1�⇢

n

s

+1 ]C. In general, the prop-

erty that “more congestion” implies less welfare holds for any number of customers randomizing

using logit probabilities.

Proof of Lemma EC.11. This lemma follows directly from Lemma EC.9. ⌅

Lemma EC.12. If the price p

⇤
2 (R�

C(n0+1)

µ

,R�

Cn0
µ

] is charged to the customers, then the social

welfare W (p⇤,�) is lower than the social optimum, i.e., W (p⇤,�)<W

⇤(0) for � > 0.

Proof of Lemma EC.12. For convenience, we writeW
n0 andW

⇤(0) interchangeably for the first-

best social welfare. We discuss two cases when the optimal prices when full rationality is assumed
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by the social planner are charged. The first case is that n
0

+ ✏

2

is the global maxima of the function

W

0

(x) among the continuous interval [1, n
s

] (and n

0

is the global maximum among the discrete

candidates {1,2, ..., n
s

} as assumed throughout). Let �(�) 2 (0,1) be the probability the customer

who sees n

0

will join the queue (all others are fully rational). To show W

n0(p
⇤
,�) <W

n0 , where

W

n0(p
⇤
,�) is the social welfare when only the customer who sees n

0

customers in front of him is

boundedly rational, using the result of equation (EC.14) in Lemma EC.5 (but using n

0

instead of

n

s

), we know, it is equivalent to show

T

K

>

�R

C

= ⇢v

s

.

But

T

K

=
⇢[(n

0

+1)� (n
0

+2)⇢+ ⇢

n0+2]

(⇢� 1)2
.

Hence, we want to show

(n
0

+1)� (n
0

+2)⇢+ ⇢

n0+2

(⇢� 1)2
> v

s

=
Rµ

C

,

which is precisely the RHS of inequality (22), page 20, Naor (1969). To showW (p⇤,�)<W

n0 , simply

note that W

n0(p
⇤
,�)⇡W (p⇤,�) when � is su�ciently small by similar arguments in Proposition

8. Finally, it is clear that, if only the customer who sees n
0

�1 customers randomize (all others are

fully rational), then the social welfare will decrease.

The second case is that n
0

� ✏

1

is the global maxima among the continuous interval [1, n
s

]. Let

�(�) 2 (0,1) be the probability the customer who sees n

0

� 1 will join the queue. Similar to the

first case, to show W (p⇤,�) <W

n0 , using the results in Lemma EC.8 and EC.11, we know, it is

equivalent to show

n

0

� (n
0

+1)⇢+ ⇢

n0+1

(⇢� 1)2
<

Rµ

C

,

which is precisely the LHS of inequality (22), page 20, Naor (1969), if ✏
1

6= 0 (the interesting case).

So far we have shown that for small irrationality levels, the result holds, i.e., W (p⇤,�)<W

n0 for

� 2 (0, �̄
p

⇤) for some �̄

p

⇤
> 0.
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Now we show the result when � is large in which case the argument above does not apply.

However, we know that W
n0 is the optimal social welfare by Yechiali (1971). However, we cannot

rule out the case that W (p,�) =W

n0 for some p from Yechiali (1971)’s results. To rule out the case,

we use Haviv and Puterman (1998), who show that the only average optimal stationary policies are

of control limit type, that there are at most two and, if there are two, they occur consecutively. This

implies that the only gain optimal randomized stationary policies should randomize over the two

control limit states if they exist. The argument is simple: For any randomized policy to be optimal,

the deterministic policies it has strictly positive probabilities should yield the same average reward.

In our setting with randomization using logit probabilities, their result implies that W
n0 is strictly

larger than any W (p,�) when � > 0 since the logit joining probabilities are in the interval (0,1).

We complete the proof. ⌅

Lemma EC.13. For the revenue-maximizing price p

⇤ = R �

Cn

r

µ

charged to the customers, the

maximum revenue when customers are fully rational cannot be achieved when there is a little bit

irrationality among the customers in general, for � 2 (0, �̄) for some �̄ > 0.

Proof of Lemma EC.13. When the optimal price is charged, under full-rationality assumption,

the customer who observes n
r

�1 customers in front of him will join the queue yet with zero utility.

However, when there is a little bit irrationality, he will join with probability 1/2. Such change will

make the system less congested compared to the fully-rational case. Recall the optimal revenue

under full rationality is

⇧
n

r

= �

1� ⇢

n

r

1� ⇢

n

r

+1

(R�

Cn

r

µ

).

Note that the function f(x) := 1�⇢

x

1�⇢

x+1 is strictly increasing in x when ⇢ 6= 1, so less congestion

implies less revenue. We have ⇧(p⇤,�)<⇧
n

r

, for � 2 (0, �̄) for some �̄ > 0. ⌅

Lemma EC.14. p

⇤(�) = p

⇤(0)�✏

�

for some ✏

�

> 0 when � is strictly positive but su�ciently small.

Proof of Lemma EC.14. We exhaust all candidates to prove this result. First, we show that

p

⇤(�) cannot be equal to p

⇤(0) when � is strictly positive but su�ciently small. By Lemma



e-companion to Huang et al.: Bounded Rationality in Service Systems ec23

EC.13, ⇧(p⇤(0),0) = lim
�!0

⇧(p⇤(0),�)<⇧
n

r

. Hence, we have ⇧(p⇤(0),�) in the neighborhood of

⇧(p⇤(0),0) when � is small by continuity. Now if we charge price p = p

⇤
� ✏ = R �

Cn

r

µ

� ✏ for

some small ✏> 0, then under full rationality, the customer who sees n

r

� 1 customers in front of

him will join the queue with ✏ utility. With irrationality level �, his joining probability would be

'

n

r

�1

= e

✏

�

1+e

✏

�

< 1 but can be su�ciently close to 1, which implies less congestion and thus lower

revenue. We have ⇧(p⇤� ✏,�)<⇧(p⇤� ✏,0)<⇧
n

r

, for � 2 (0, �̄
✏

) for some �̄

✏

> �̄ > 0. However, we

know that lim
�!0

⇧(p⇤ � ✏,�) =⇧(p⇤ � ✏,0), and lim
✏!0

⇧(p⇤ � ✏,0) =⇧
n

r

. Hence, ⇧(p⇤ � ✏,�) can

be made arbitrarily close to ⇧
n

r

when � is small and ✏ is also small. Hence, we have ⇧(p⇤(0),�)<

⇧(p⇤� ✏,�), when � is small and ✏ is also small. This shows that p⇤(0) cannot be the optimal price

when customers are slightly irrational.

Next we show that any price taking this form p = p

⇤ + ✏ = R �

Cn

r

µ

+ ✏ for some fixed small

✏> 0 cannot be the optimal price either. Under full rationality, the customer who observes n
r

� 1

customers in front of him will not join the queue, and the revenue is strictly higher if the price

p

1

= R�

C(n

r

+1)

µ

is charged instead since this modification will still induce the same number of

customers to join and the revenue per customer is strictly higher. We have ⇧(p⇤ + ✏,0)<⇧
n

r

+1



⇧
n

r

. Furthermore, we have ⇧(p⇤ + ✏,�) < ⇧
n

r

+1

for � 2 (0, �̄
✏1

) for some �̄

✏1

> 0. Hence, ⇧(p⇤ +

✏,�)<⇧(p⇤ � ✏

1

,�) when � is small and ✏

1

is also small.

Other prices “faraway from” p

⇤(0) clearly cannot be the optimal price when � is small. Therefore,

p

⇤(�) = p

⇤(0)� ✏

�

for some ✏

�

> 0 when � is small.

Finally, we need to verify the existence of the optimal price p

⇤(�). For any � > 0, we know

⇧(p,�) is continuous over the closed interval [p⇤(0)� C

µ

, p

⇤(0)]. Hence, there exists some p

⇤(�) 2

[p⇤(0)� C

µ

, p

⇤(0)] to maximize ⇧(p,�). We complete the proof. ⌅

EC.4. Appendix D

In this Appendix, we provide a generalization for Proposition 8. For any fixed price p, typically

not optimal, we have a result similar to Proposition 8. To state this result, we define

'(p,n) =
e

R�p� (n+1)C
µ

�

1+ e

R�p� (n+1)C
µ

�

,
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a customer’s probability of joining the system when price p is charged and there are already n

customers in the system ahead of him. Clearly, we have '(0, n) = '

n

. We define n(p) = [ (R�p)µ

C

],

then we have n(0) = n

s

. When customers are fully rational, i.e., � = 0, we have the social welfare

function

W (p,0) = �

1� ⇢

n(p)

1� ⇢

n(p)+1

R� [
⇢

1� ⇢

�

(n(p)+ 1)⇢n(p)+1

1� ⇢

n(p)+1

]C.

We are interested in comparing W (p,0) and W (p,�) when � is small. As before, we focus on

the interesting case when n

s

6= n

0

. It is clear that we have to compare n(p) with n

0

noting that

n(p) n

s

.

Proposition EC.1. If n(p) > n

0

, we have the following result: If any one of the following two

conditions is satisfied: (1) n(p) < (R�p)µ

C

�

1

2

; (2) n(p) = (R�p)µ

C

�

1

2

and ⇢ > 1, then W (p,�) <

W (p,0) when � > 0 is su�ciently small. Otherwise, W (p,�)>W (p,0) when � > 0 is su�ciently

small.

If n(p)< n

0

, we have the following result: If any one of the following two conditions is satisfied:

(1) n(p) < (R�p)µ

C

�

1

2

; (2) n(p) = (R�p)µ

C

�

1

2

and ⇢ > 1, then W (p,�) > W (p,0) when � > 0 is

su�ciently small. Otherwise, W (p,�)<W (p,0) when � > 0 is su�ciently small.

The proof of this result is similar to the proof of Proposition 8, and we omit it for brevity. If

n(p) = n

0

, then p has to be one of the optimal prices p⇤ 2 (R�

C(n0+1)

µ

,R�

Cn0
µ

], the analysis is in

Section 4.2.
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