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1. Introduction
This paper is concerned with two central problems in the
management of a telephone call center. The first is a static
design problem that determines staffing levels according to
which agents will later be assigned to work schedules. The
second is a dynamic control problem whose solution deter-
mines the real-time assignment of incoming calls to agents.
While these two goals are clearly interrelated, their com-
plexity has led most researchers to treat them separately,
in a hierarchical manner. The method we propose in this
paper simultaneously addresses both problems.
We consider a call center model with m customer classes

and r agent pools. As usual in operations research studies,
we view a call center as a queueing system, frequently
referring to callers as “customers” and to call center agents
as “servers.” Each of the pools consists of interchangeable
servers whose common skills dictate the possible customer
classes that these agents can serve, and the speed at which
such service is delivered. There can be more than one pool
that serves a particular customer class, and conversely, there
can be more than one customer class that is served by a
particular agent pool.
Customers of the various classes arrive randomly over

time, and those who cannot be served immediately wait in
a (possibly virtual) infinite-capacity buffer. Two important
assumptions are made in this regard to capture recognized
“real-world” phenomena. First, we assume that customers

of any given class will abandon their calls if forced to wait
too long before commencement of service (see Gans et al.
2003 for further discussion). Second, we allow the arrival
rates for the various customer classes (expressed in units
such as calls per minute) to be both temporally and stochas-
tically variable, i.e., the m-vector of instantaneous arrival
rates is itself a stochastic process. As Gans et al. (2003)
acknowledge in §4.4 of their survey paper, such a view is
realistic, although most published papers on both call cen-
ter staffing and dynamic routing treat average arrival rates
as known and constant over the relevant planning period.
We assume that there are two types of costs: the direct

and indirect variable costs associated with agents staffing
the various pools, which we call “personnel costs”; and
abandonment costs that capture the penalty associated with
“lost business.” The objective of the system manager is to
minimize the sum of these two operating costs in selecting
a staffing level for each pool and then a routing rule by
which calls will be assigned to servers. (A precise descrip-
tion of this call center model and details of the various
probabilistic assumptions are deferred to §2.)
For any given staffing decision, the dynamic routing

problem faced by the system manager is the following.
First, whenever a customer arrives and there exist one or
more idle servers who can handle that customer’s class,
the system manager must choose between routing the
customer immediately to one of them versus having the
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customer wait for later disposition. If the customer is to be
routed immediately, there may be a further choice regard-
ing the server pool to which it will be routed. Second,
each time a server completes the processing of a cus-
tomer and there exist waiting customers of one or more
classes that the server can handle, the system manager
must choose between routing one of those customers to the
server immediately versus idling the server in anticipation
of future arrivals. These resource allocation decisions are
conditioned on system status information at the time of the
choice, including the number of customers waiting in the
various buffers and the number of idle servers in the various
pools.
In the context of a multiclass/multipool call center, the

problem in the previous paragraph is often referred to as
skills-based routing (see Gans et al. 2003, §5.1 for further
discussion). This dynamic routing problem is quite difficult
to address by means of exact analysis, even under sim-
plifying Markovian assumptions. In fact, even in the case
where average arrival rates are constant and known, Gans
et al. (2003, §5.1) describe the dynamic routing problem
as extremely challenging, with most work to date done on
specific problem instances, using various approximations,
and often resulting only in implicit characterization of rout-
ing rules. In light of this, it is not surprising that staffing
decisions and routing objectives are most often treated in a
hierarchical manner as essentially separate problems.
The approach we propose in this paper does not attempt

to disentangle design (staffing) and control (routing) deci-
sions. In particular, it jointly optimizes over both objectives
in a manner that gives rise to a simple staffing algorithm
and an explicit characterization of dynamic routing policies.
The implementation of this method is straightforward, and
it will be shown to be optimal in a precise mathematical
sense. To substantiate that last statement in a setting where
demand rates may vary both temporally and stochastically,
we propose a novel asymptotic regime and an approxima-
tion method that gives rise to several important insights.
Throughout the remainder of this paper, when we

speak of the system manager’s dynamic control problem,
that is understood to mean the skills-based routing problem
described above. This more abstract terminology makes
for economy of expression, and also promotes a symmet-
ric view of the system manager’s problem, which can be
viewed either as one of routing customers or as one of
allocating servers. The main contributions of our paper can
then be summarized as follows.
(1) We propose a new asymptotic parameter regime for

studying call centers. In this regime service rates and aban-
donment rates are accelerated in a linear manner, while
the arrival rates grow super-linearly. The key feature of
this two-scale parameter regime is that the limiting system
“equilibrates instantly” and the dynamic control problem
becomes tractable (see Proposition 1).
(2) We develop an asymptotic lower bound on achiev-

able expected cost, referred to hereafter as an asymptotic

performance bound, that uses a strikingly simple distilla-
tion of the original system data (see Theorem 1).
(3) We establish asymptotic optimality of a simple

staffing and dynamic control policy based on linear pro-
gramming (LP). That is, we prove that our LP-based
method achieves the asymptotic performance bound
referred to above when the arrival rate process is directly
observable (see Theorem 2).
(4) In the case where the arrival rate process is not

observable, we describe a policy that estimates arrival rates
“on the fly” and uses these values as “plug in” estimates
in the previous dynamic control policy. For a suitable class
of estimators (see Proposition 3), this approach is shown
to be asymptotically optimal (see Theorem 3). Based on
these ideas, we develop a discrete-review nonpreemptive
policy that is more suitable for implementation purposes,
and prove it is asymptotically optimal (see Theorem 4).
Numerical examples will be advanced to validate the

accuracy of the approximations discussed above.

Existing Analytical Approaches and Related Work.
As indicated by Gans et al. (2003, §5.1), both staffing and
dynamic routing problems in multiclass/multipool call cen-
ters are essentially outside the reach of exact analytical
methods (for an exception, see, e.g., Gans and Zhou 2003).
Thus, most research on these problems has focused on var-
ious forms of approximations, a particularly prominent role
being played by two asymptotic regimes.
The first is the so-called “conventional” heavy-traffic

regime. Here, the number of servers is held fixed while ser-
vice and arrival rates are accelerated linearly in such a way
that system utilization approaches one. In this manner, and
under appropriate regularity conditions, one can derive so-
called heavy-traffic limit theorems which provide rigorous
approximations to the original system dynamics (cf. Whitt
2001). Harrison and Lopez (1999) is essentially the first
study in which a dynamic control problem is explicitly
solved in the multiclass/multipool setting using conven-
tional heavy-traffic limit theory (see also Gans and van
Ryzin 1997, Harrison 1998, Bell and Williams 2001, and
Mandelbaum and Stolyar 2004).
The second regime considered in the literature to date

is the so-called many-server heavy-traffic regime, which
was first made rigorous by Halfin and Whitt (1981). In
this regime, the arrival rate and the number of servers are
increased in a fixed proportion to each other while the sys-
tem utilization approaches one. There is general accord that
this regime is more appropriate for describing the dynamics
of a call center than the conventional heavy-traffic regime;
see, e.g., Whitt (1992), Garnett et al. (2002), and the recent
survey by Gans et al. (2003). In terms of dynamic con-
trol, Harrison and Zeevi (2004) and Atar et al. (2004) are
the first to analyze a multiclass single-pool system in the
Halfin-Whitt regime and to characterize the optimal control
policy. Unfortunately, this requires one to solve a nonlinear
partial differential equation whose dimension is equal to the
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number of customer classes, and is therefore not a practical
means of deriving implementable control policies. Armony
(2005) analyzes staffing and routing decisions in a single-
class/multipool system operating in the Halfin-Whitt regime
(see also Armony and Maglaras 2004). Finally, Armony
et al. (2005) studies staffing and server allocation decisions
in a multiclass/single-pool system under the assumption
that service rates for all classes are identical.
The two strands of research summarized above assume

that the arrival rates do not exhibit any stochastic or tem-
poral variation. However, statistical evidence suggests that
demand patterns observed in real call centers exhibit such
properties (see Brown et al. 2005, §1.1). When arrival rates
are allowed to vary with time, simplified system dynamics
in the form of fluid-limit differential equations can often
be derived, yet are difficult to solve (see, e.g., Mandelbaum
et al. 1998 and Whitt 2006, as well as the references
therein). Jennings et al. (1996) analyze a particular case
of a staffing problem in a single-class single-pool setting
with time-varying demand. Some implications of demand
uncertainty are discussed in Chen and Henderson (2001). A
recent paper by Wallace and Whitt (2005) investigates with
the aid of simulation several ideas for staffing and routing
decisions in a multiclass/multipool system.
The asymptotic regime described in this paper is closely

related to the concept of pointwise stationary approxima-
tions, which was first described in the context of a simple
Markovian queueing model with nonstationary arrivals by
Green and Kolesar (1991) and subsequently made rigorous
by Whitt (1991) (for further refinements, see Massey and
Whitt 1998). The asymptotic regime that is used in these
papers involves uniform acceleration of transition rates in
the underlying Markov chain, i.e., accelerating arrival rates
and service rates by the same factor.
The point of departure for our current work is the recent

paper by Harrison and Zeevi (2005), which describes a
staffing method for a call center with multiple customer
classes and multiple agent pools under arrival rates that
vary temporally and stochastically. That method reduces
the staffing problem, whose objective is to minimize the
sum of personnel costs and expected abandonment costs,
to a static stochastic program which takes the form of an
LP with recourse. Numerical experiments in Harrison and
Zeevi (2005) indicate that this optimization problem results
in “near optimal” staffing vectors. Moreover, it is infor-
mally argued that the minimum value of the objective func-
tion yields a lower bound on system performance. This
paper is largely concerned with a rigorous derivation of this
bound, and an articulation of staffing and control policies
that achieve it.
The remainder of this paper is organized as follows.

Section 2 provides a precise description of the call cen-
ter model and economic objective. Section 3 describes
the asymptotic parameter regime used in later analysis.
Section 4 gives the main results, and §5 presents “picture

proofs” of these results by means of simulation experi-
ments. Section 6 concludes with some remarks and direc-
tions for future research. Proofs of the main results are
given in Appendix A. Appendix B, which contains proofs
of auxiliary results, is available as an online companion at
http://or.pubs.informs.org/Pages/collect.html.

2. Problem Formulation
In our general call center model, there are m customer
classes and r server pools. Server pool k consists of bk
interchangeable servers "k = 1# $ $ $ # r), and servers in a
given pool may be cross-trained to handle customers of
several different classes. By the same token, there may be
several pools that are able to handle a given customer class.
Customers of the various classes arrive randomly over
time according to a doubly stochastic Poisson process with
instantaneous arrival rates given by %1"t&# $ $ $ #%m"t&;
a more precise definition will be given later. Those cus-
tomers who cannot be served immediately wait in a (possi-
bly virtual) infinite-capacity buffer that is dedicated to their
specific class. An example with m = 3 customer classes
and r = 2 server pools is shown schematically in Figure 1.

To describe server capabilities, we shall use the notion
of processing “activities,” following Harrison and Lopez
(1999). There are a total of n processing activities available
to the system manager in our call center model, each of
which corresponds to agents from one particular pool serv-
ing customers of one particular class (activities are denoted
by solid arrows leading from buffers to server pools in
Figure 1). For each activity j = 1# $ $ $ #n, we denote by
i"j& the customer class being served, by k"j& the server
pool involved, and by 'j the associated mean service rate
(that is, the reciprocal of the mean of the associated service
time distribution). The actual service times are taken to be
exponentially distributed random variables with the above
rates, these being independent of one another and also of
the arrival processes. Note that we allow the service time

Figure 1. A call center with three customer classes, two
agent pools, and four activities.
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distribution of a customer to depend on both the customer’s
class and on the pool to which the server belongs.
An important assumption of our model is that customers

of any given class will abandon their calls if forced to wait
too long for the commencement of service; abandoned calls
are represented by the horizontal dotted arrows emanat-
ing from the storage buffers in Figure 1. Specifically, there
is associated with each class i customer an exponentially
distributed “impatience” random variable ( that has mean
1/)i, independent of the impatience random variables char-
acterizing other customers, and of service times and arrival
processes. The customer will abandon the call when his
or her waiting time in queue (exclusive of service time)
reaches a total of ( time units. This assumption is quite
standard in call center modelling (cf. Garnett et al. 2002,
Harrison and Zeevi 2004, and Gans et al. 2003).
As stated in the introduction, our problem formulation

and analysis emphasize an operating environment in which
the instantaneous arrival rates are random and time vary-
ing, consistent with the observations made in Brown et al.
(2005, §1.1). In addition, service times and the impatience
random variables associated with individual customers are
exponentially distributed, are independent of one another,
and are independent of the arrival processes. To spell out
this structure more precisely, we take as given a complete
probability space "*#!#"& on which are defined m con-
tinuous, nonnegative, integrable arrival rate processes, %i =
"%i"t&+ 0 ! t ! T &, satisfying Ɛ,

∫ T

0 %i"s&ds- <" for i =
1# $ $ $ #m, plus 3m mutually independent Poisson processes,
each with a unit intensity parameter, which are denoted
N "l&

i = "N "l&
i "t&+ 0! t <"& for i= 1# $ $ $ #m and l= 1#2#3.

The Poisson processes N "l&
i are further taken to be indepen-

dent of the arrival rate processes %i. We use the processes
N "1&

i to construct arrivals in our model, defining

Fi"t& +=N "1&
i

(

∫ t

0
%i"s&ds

)

for i= 1# $ $ $ #m and 0! t ! T $ (1)

This is a standard construction of a doubly stochastic
Poisson process (cf. Bremaud 1981); we interpret Fi"t& as
the cumulative number of class i arrivals up to time t. The
unit-rate Poisson processes N "2&

i and N "3&
i will be used to

construct service completions and abandonments, respec-
tively, under a given dynamic control policy, via relation-
ships analogous to (1).
For future purpose, it will be useful to introduce the fol-

lowing matrices. Let R and A be an m × n matrix and
an r × n matrix, respectively, defined as follows: for each
j = 1# $ $ $ #n set Rij = 'j if i= i"j& and Rij = 0 otherwise,
and set Akj = 1 if k = k"j& and Akj = 0 otherwise. Thus,
one interprets R as an input-output matrix, precisely as in
Harrison and Lopez (1999): its "i# j&th element specifies the
average rate at which activity j removes class i customers
from the system. Also, A is a capacity consumption matrix
as in Harrison and Lopez (1999): its "k# j&th element is 1

if activity j draws on the capacity of server pool k and is
zero otherwise. We define an m× n matrix B by setting
Bij = 1 if i"j&= i and Bij = 0 otherwise; elements of this
matrix show which server pools conduct which activities.
Finally, let . = diag")1# $ $ $ # )m& denote the abandonment
rate matrix.

Control Formulation and Objective. The system
manager confronts a two-stage decision problem. First, the
system manager chooses a staffing vector b = "b1# $ $ $ #br&
in $r

+, whose kth component is the number of servers to be
employed during the specified planning period for server
pool k; by assumption, this decision cannot be revised as
actual demand is observed during the period.
Second, the system manager chooses a dynamic con-

trol policy that determines how the calls of various cus-
tomer classes are routed to server pools. The mathematical
approach that we shall adopt in formulating the dynamic
control problem may appear both clumsy and erroneous at
first glance. The apparent error is that certain physically
important constraints are deleted in our formulation, or to
put it another way, our definition of an admissible con-
trol is overly generous. The seemingly clumsy aspect of
our formulation is that we speak in terms of control pro-
cesses, as opposed to specifying the controls as functions
of observed states. However, the approach we adopt is an
efficient one mathematically, given the specific objectives
of this paper, and we shall discuss the “correctness” of our
formulation after the formal mathematical definitions have
been laid out.
A dynamic control is defined as a stochastic process

X = "X"t&+ 0! t ! T & taking values in $n
+, whose sample

paths are right continuous with left limits and Lebesgue
integrable. Writing X"t&= "X1"t&# $ $ $ #Xn"t&&, we interpret
Xj"t& as the number of servers engaged in activity j at
time t. A dynamic control X is said to be admissible with
respect to a staffing vector b if there exist processes Z
and Q, both having time domain ,0#T -, both taking values
in $m

+, and both necessarily unique (see below), that jointly
satisfy conditions (2)–(4) below for all t ∈ ,0#T -. As an aid
to intuition, it is useful to have the following interpretations
from the outset: Zi"t& represents the number of class i cus-
tomers in the system at time t (we call Z the headcount
process, and Zi is its ith component); Qi"t& represents the
number of class i customers in the buffer that are waiting
for service at time t (we call Q the queue-length process,
and Qi is its ith component). The essential relationships
among these processes are the following:

AX"t&!b# (2)

Q"t&=Z"t&−BX"t&"0# (3)

Zi"t&=Fi"t&−N "2&
i

(

∫ t

0
"RX&i"s&ds

)

−N "3&
i

(

∫ t

0
)iQi"s&ds

)

"0 for all i=1#$$$#m$ (4)
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The second term on the right-hand side of (4) is interpreted
as the cumulative number of class i service completions
up to time t, while the third term represents cumulative
class i abandonments; according to (4), the instantaneous
departure rate for class i customers due to abandonments
is )iQi, and the instantaneous departure rate for class i due
to service completions is

∑

'jXj , where the sum is taken
over activities j that serve class i. This is consistent with
the verbal model description provided earlier.
Our first constraint (2) simply requires that the number

of servers in various pools that are engaged in some activity
(as opposed to idle) at time t cannot exceed the total num-
ber of servers in each pool. In the second constraint (3),
BX"t& is a vector whose components represent the number
of servers allocated to various customer classes at time t.
The constraint therefore prohibits allocating to a given class
a number of servers which exceeds the headcount in that
class. The final admissibility condition (4) is the system
dynamics equation.
Given a dynamic control X, the headcount process Z and

the queue-length process Q can be viewed as the unique
solution of (3) and (4): one simply constructs the paths
of Z and Q from jump to jump in accordance with those
relationships, starting from time zero. Because the primi-
tive processes N "l&

i are independent Poisson processes, the
probability of simultaneous jumps (for example, a service
completion and an abandonment occurring simultaneously)
is zero, and hence there almost surely exists at most one
pair "Z#Q& satisfying (3) and (4).
Of course, the usual way to describe a dynamic control

policy is in state feedback form. Having done so, one could
then define the associated stochastic processes Z and Q
as the solution of a system of stochastic equations, and
finally our process X could be defined by applying the
state-feedback rule to the trajectory of "Z#Q&. By taking X
as the primitive specification of a control policy, we are
able to eliminate a whole level of mathematical description
in developing our theory of asymptotic optimality.
Next, we describe the economic objective of the system

manager. Let p = "p1# $ $ $ #pm& be the penalty cost vec-
tor, where pi is the cost associated with abandonment of a
class i customer, and let c = "c1# $ $ $ # cr& be the personnel
cost vector, where ck is the cost of employing a server in
pool k for the entire planning horizon ,0#T -. The objective
of the system manager is to choose a staffing vector b and
an admissible dynamic control X that jointly minimize the
sum of personnel costs and expected abandonment penal-
ties for the various customer classes, which is given by

c · b+ Ɛ
[ m
∑

i=1

piN
"3&
i

(

∫ T

0
)iQi"s&ds

)]

# (5)

where c ·b represents the inner product between the vectors
c and b.

Discussion. A reader may reasonably object that our
problem formulation suffers from the following errors of
omission. First, we allow noninteger values for the staffing
levels bk and the server allocation Xj"t&. This is obviously
unrealistic, although the key relationships (2)–(4) make
mathematical sense even without the integrality restriction.
(The stochastic process Z is automatically integer valued,
but Q may take noninteger values if X does.) Second, we
implicitly allow the system manager to interrupt services
at will, without any associated penalty. Finally, our defini-
tion of an admissible control does not rule out clairvoyance
on the part of the system manager. A realistic formulation
would require that the control X be nonanticipating in an
appropriate sense, but we do not do so for the following
reason.
The asymptotic lower bound derived later in this paper

applies to any family of staffing vectors and admissible
controls, regardless of whether they have the defects enu-
merated above. We will eventually construct a family of
LP-based policies (that is, staffing vectors and dynamic
controls) that are integer valued, nonpreemptive, and suit-
ably nonanticipating, and show that these policies achieve
the asymptotic performance bound. Thus, in the limiting
parameter regime that we consider, the errors of omission
enumerated above do not allow the system manager to
significantly reduce cost. The fact that we grant the sys-
tem manager excessive power in our formulation simply
strengthens our results.

3. An Asymptotic Parameter Regime

A Parametric Family of System Models. Let
f + $+ → $+ be a super-linear function, meaning that
x−1f "x&→" as x→". Let us define a sequence of sys-
tem models indexed by / ∈%. In the /th system, the arrival
process is doubly stochastic with rate %/"·& = f "/&%"·&,
the input-output matrix is R/ = /R, and the abandonment
matrix is ./ = /. . Thus, the arrival rates into all classes
scale up super-linearly, while all service and abandonment
rates scale up linearly. Because the servers work / times
faster, we also scale up personnel costs by a factor of /,
meaning that the personnel cost vector for the /th sys-
tem is c/ = /c. One can express this assumption verbally
by saying that the effective cost of capacity (that is, the
expected cost of processing any given set of customers
using any given set of activities) remains constant as /
varies. Because the arrivals are scaled up by a super-linear
function f "·& while the service rates are only scaled up
linearly, the number of servers required for nominal oper-
ation should increase without bound. Thus, this parameter
regime is characterized by large arrival rates, a large num-
ber of servers, short service requirements, and impatient
customers.
For each system in the sequence indexed by /, the

system manager must choose a staffing vector b/ and a
dynamic control X/. The dynamic control is a right contin-
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uous with left limits process X/ = "X/"t&+ 0! t ! T & tak-
ing values in $n

+. Here, X
/"t&= "X/

1 "t&# $ $ $ #X
/
n "t&&, where

X/
j "t& is interpreted as the number of servers engaged in

activity j in the /th system at time t ∈ ,0#T -. We denote the
sequence of staffing vectors and dynamic control policies
by 0b/1 and 0X/1, respectively. We next define the class of
admissible policies.

Definition 1. A sequence of dynamic controls 0X/1 is
said to be admissible with respect to a given sequence of
staffing vectors 0b/1, if for each /, the dynamic control X/

is admissible with respect to the staffing vector b/, i.e.,
there exist processes Z/ and Q/, both having time domain
,0#T -, both necessarily unique, both taking values in $m

+,
that jointly satisfy

AX/"t&! b/# (6)

Q/"t&=Z/"t&−BX/"t&" 0# (7)

Z/
i "t&= F /

i "t&−N "2&
i

(

∫ t

0
"R/X/&i"s&ds

)

−N "3&
i

(

∫ t

0
)/
i Q

/
i "s&ds

)

" 0# (8)

where

F /
i "t&=N "1&

i

(

∫ t

0
%/

i "s&ds

)

for all i= 1# $ $ $ #m and all t ∈ ,0#T -.

We define the total cost for the /th system under the
dynamic control X/ and staffing level b/ to be

&/"X/#b/&= c/ · b/ +
m
∑

i=1

piN
"3&
i

(

∫ T

0
)/
i Q

/
i ds

)

$

Definition 2. A sequence of staffing vectors 0b/
∗1 along

with a corresponding sequence of admissible dynamic con-
trols 0X/

∗ 1 is said to be asymptotically optimal if, for any
other admissible sequence of staffing vectors 0b/1 and cor-
responding dynamic controls 0X/1,

lim sup
/→"

Ɛ,&/"b/
∗ #X

/
∗ &-

Ɛ,&/"b/#X/&-
! 1$ (9)

It will be shown later that a pair 0b/
∗1, 0X

/
∗ 1 is asymp-

totically optimal if and only if Ɛ,&/"X/
∗ #b

/
∗&-∼ 2f "/&, as

/→", where the constant 2 is minimal.

Limiting Dynamics. For the purpose of the next
proposition, which characterizes the limiting behavior of
the sequence of admissible controls and headcount pro-
cesses, we make the following technical assumption:

/ log/
f "/&

→ 0 as /→"$ (10)

Proposition 1. Assuming that (10) holds, consider any
sequence of staffing vectors 0b/1 and corresponding admis-
sible dynamic controls 0X/1 such that
∫ t

0

/X/"s&ds

f "/&
→

∫ t

0
X"s&ds a.s. as /→" (11)

for all t ∈ ,0#T -, where X"·& is a (random) nonnega-
tive Lebesgue integrable function on ,0#T -. Then, for all
t ∈ ,0#T -,
∫ t

0

/Z/"s&ds

f "/&
→

∫ t

0
Z"s&ds a.s. as /→"# (12)

where

Z"t&= .−1,%"t&−RX"t&-+BX"t&$ (13)

Remark. Under the conditions of Proposition 1, using the
definition of the queue-length process given in (7) and the
above result, we also have for all t ∈ ,0#T -,
∫ t

0

/Q/"s&ds

f "/&
→

∫ t

0
Q"s&ds a.s. as /→"#

where

Q"t&= .−1,%"t&−RX"t&-$

For any sequence of dynamic controls, the condition in (11)
holds for a subsequence. Thus, the condition is not restric-
tive and is not needed for the results stated in next section.

Qualitative Insights and Comparison to Standard
Fluid Limits. Proposition 1 asserts that in the limit, the
headcount process “equilibrates instantly” in the sense that
its dynamics degenerate to those given in (13). This behav-
ior is a consequence of the two-scale asymptotic in which
the abandonments and service completions occur so rapidly
that the system instantly “forgets” its recent state. It is illu-
minating to contrast the results of Proposition 1 with those
derived through “standard” fluid scaling where arrival rates
are scaled up linearly, specifically %̄/"·&= /%"·&, and ser-
vice rates and abandonment rates are kept constant. Under
this scaling, the number of servers should also scale up
linearly to “match” demand. We use an overbar to denote
this standard fluid scaling. The admissibility conditions
are kept the same as in Definition 1. If we consider any
admissible sequence of staffing vectors and dynamic con-
trols 0)X/1 under this scaling such that /−1 )X/"t&→ )X"t&,
almost surely, as / → " for all t ∈ ,0#T -, then there
exist $m

+-valued processes *Z = " *Z"t&+ 0! t ! T & and *Q=
" *Q"t&+ 0! t ! T & such that

/−1" *Z/"·&# *Q/"·&&→ " *Z"·&# *Q"·&& a.s. as /→"#

where *Z solves

*Z"t&=
∫ t

0
%"s&ds−

∫ t

0
R)X"s&ds−

∫ t

0
. *Q"s&ds#

*Z"0&= 0 and *Q"0&= 0
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for all t ∈ ,0#T -. The limiting system dynamics are there-
fore given by the solution to an ordinary differential equa-
tion (with a random “driver” %), which can be shown to
have a unique solution. Unfortunately, the above limiting
system dynamics typically lead to an intractable control
problem. In contrast, the scaling we propose in this sec-
tion gives rise to the tractable limiting dynamics given in
Proposition 1. This will be the key to the asymptotic opti-
mality results proved in §4.

4. Main Results

4.1. An Asymptotic Lower Bound on Achievable
Performance

In this section, we develop an asymptotic lower bound on
the expected cost under any sequence of staffing vectors
and admissible controls. This bound states that the expected
total cost must grow at least at rate f "/&, where f "/& is the
super-linear function that scales the arrival rates for the /th
system. To this end, we define a mapping 3+ $m

+×$r
+ +→$

as follows. For ! ∈$m
+ and b ∈$r

+, we denote by 3"!#b&
the optimal value of the following LP: choose x in $n

+,

min p · "!−Rx& (14)

s.t. Rx! !# Ax! b# x" 0#

where R is the unscaled input-output matrix, A is the capac-
ity consumption matrix, and p is the penalty-rate vector.
Let 4"!#b& denote the optimal solution set of the LP (14);
that is, if x∗ ∈ $n

+ is an optimal solution of the LP, then
x∗ ∈4"!#b&. (Formally, 4 is a point-to-set correspondence
from "!#b& to the solution set.) Let b∗ ∈ $r

+ be a mini-
mizer of

5"b& += c · b+ Ɛ
[

∫ T

0
3"%"t&#b&dt

]

# (15)

where c and % are the unscaled personnel costs and arrival
rate, respectively. The function 5"·& is convex (cf. Harrison
and Zeevi 2005, Proposition 1), and 5"0& is finite because
Ɛ,
∫ T

0 %i"s&ds- < " for all i = 1# $ $ $ #m. Thus, the mini-
mization in (15) can be taken over the compact convex set
0b ∈$r

++ c · b ! 5"0&1. Because we are minimizing a con-
vex function over this set, the minimum in (15) is achieved
by a finite-valued minimizer b∗. The vector b∗ is the staffing
level recommended by Harrison and Zeevi (2005).

Theorem 1. For any sequence of staffing vectors 0b/1 and
corresponding admissible dynamic controls 0X/1,

lim inf
/→"

f "/&−1Ɛ,&/"X/#b/&-

" c · b∗ + Ɛ
[

∫ T

0
3"%"t&#b∗&dt

]

# (16)

where 3"·# ·& is the optimal value function of the LP (14),
and b∗ is the vector that minimizes (15).

Theorem 1 asserts that the expected total cost grows
at least at rate f "/& as the scale factor / grows large.
The asymptotic lower bound on the scaled expected cost
is given by the value of a simple stochastic program,
the computation of which does not involve any control
considerations.

4.2. An Asymptotically Optimal Policy
When ! Is Observable

In this section, we assume that the system manager can
observe the arrival rate process, that is, %"t& is known at
each time t ∈ ,0#T -. In addition, we assume that services
are interruptible. Both assumptions will be relaxed in the
following section. Let the staffing vector b/

∗ for the /th
system be chosen as follows:

b/
∗ =

f "/&b∗
/

# (17)

where b∗ is defined as in Theorem 1. Fix t ∈ ,0#T -, and
consider the LP

min p · "%/"t&−R/x& (18)

s.t. R/x!%/"t&# Ax! b/
∗ # x" 0$

Let 4/"%/"t&#b/
∗& denote the optimal solution set of the

LP (18) as a function of "%/"t&#b/
∗&; that is, if x/

∗ ∈ $n
+

solves the above LP, then x/
∗ ∈ 4/. We note that the LP

(18) is identical to (14), with %/"t& and b/
∗ substituted for

% and b in the right-hand side of the constraints, and R/

replacing R in the left-hand side of the constraints. Thus,
4/ can be defined via 4, the solution set of the “unscaled”
LP (14) given in §4.1. The following “selection theorem”
establishes the existence of a Lipschitz continuous mapping
from "!#b& to the solution set of the LP (14).

Proposition 2. There exists a Lipschitz continuous map-
ping 6+ $m

+×$r
+ +→$n such that 6"!#b& ∈4"!#b& for all

! ∈$m
+ and b ∈$r

+.

Given the “selected” function 6, we now define the func-
tion 6/ as follows: for each t ∈ ,0#T -, let

6/"%/"t&#b/
∗& +=

f "/&

/
6

(

%/"t&

f "/&
#
/b/

∗
f "/&

)

$

Using the relationship between the LP (14) and the LP
(18), we have that 6/"%/"t&#b/

∗& ∈4/"%/"t&#b/
∗& for each

t ∈ ,0#T -, each scaled arrival rate vector %/"t&, and each
staffing vector b/

∗ .
For any t ∈ ,0#T -, let X/

∗ "t& = 6/"%/"t&#b/
∗&, so that

X/
∗ "t& is a pointwise solution to the LP (18). The solu-

tion X/
∗ prescribes a control which may not meet the

admissibility condition (7). To remedy this, we truncate it
appropriately.
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Definition 3 (Minimal Truncation). Let 0b/1 be a se-
quence of staffing vectors and 0X/1 a sequence of dynamic
controls such that AX/"t& ! b/ for all / and t ∈ ,0#T -.
(Note that X/ need not be admissible with respect to b/.)
Let 0 ,X/1 be a sequence of dynamic control which is admis-
sible with respect to 0b/1, and let 0 ,Z/1 denote the cor-
responding sequence of headcount processes. We say that
0 ,X/1 is a minimal truncation of 0X/1, if for each time t ∈
,0#T - and i ∈ 01# $ $ $ #m1,

,X/"t&!X/"t&# and

"B ,X/&i"t&< ,Z/
i "t& implies ,X/

j "t&=X/
j "t&

for all j such that i"j&= i$

The above definition ensures that the truncated control
meets the admissibility condition (7), i.e., the number of
servers assigned to each activity is such that the total
number of servers allocated to each customer class does
not exceed the total headcount in that class. Further, it
ensures that the truncation is in some sense the “minimal”
one that meets the admissibility condition. Definition 5 in
Appendix B.2 describes an example of minimal truncation.
From the definition, it is clear that a minimal truncation is
not in general unique.

Theorem 2. If the technical assumption (10) holds, then
any sequence of dynamic controls obtained by minimal
truncation of 0X/

∗ 1, together with the staffing vectors 0b/
∗1

defined in (17), is asymptotically optimal.

The above theorem asserts that the properly-scaled solu-
tion to the LP (14) essentially prescribes the optimal server
allocation, i.e., it generates controls that achieve the asymp-
totic lower bound.

4.3. An Asymptotically Optimal Tracking Policy
When ! Is Not Observable

In an actual system, the true arrival rates are unknown
and unobservable, and the system manager is only able to
observe the arrival epochs. In light of the results established
in §4.2, in particular Theorem 2, it stands to reason that by
suitably estimating the arrival rates one might still be able
to establish the desired asymptotic optimality. We assume
that the true arrival rate vector is unknown at any instant
of time, but the distribution of the process % is available
(e.g., derived from historical data) prior to the planning
horizon ,0#T -, so that the optimization problem in (15) can
be solved. In particular, throughout this section we assume
that the staffing vector used for the /th system is given
in (17). In contrast, the dynamic control at time t ∈ ,0#T -
may depend on all the events (including arrivals, service
completions, and abandonments) up until that time.
Let us denote the estimator of the arrival rate by %̂/"t&=

"%̂/
1"t&# $ $ $ # %̂

/
m"t&&. We restrict attention to estimators that

are nonanticipating with respect to the information set gen-
erated by arrivals. That is, these estimators are constructed

based on past arrival observations, ruling out clairvoyance
on the part of the system manager.
We now construct a dynamic control policy which hinges

on an arrival rate estimator %̂/"·&; this class of controls will
be referred to as %-tracking controls. The main idea is to
use %̂/"·& to derive a “plug-in” estimate of the LP-based
policy discussed in the previous section. Specifically, for
any t ∈ ,0#T -, let -X/

∗ "t&= 6/"%̂/"t&#b/
∗&, where 6/ is the

Lipschitz continuous mapping defined in §4.2. Thus, -X/
∗

denotes the pointwise solution of the LP (18) with %̂/"t&
substituted for %"t& in the right-hand side of the con-
straints. The key property that the arrival rate estimator
should satisfy for our proposed “plug in” approach to work
is the following.

Definition 4 (Uniform Consistency). An estimator %̂/

is said to be uniformly consistent if it satisfies

%̂/"t&

f "/&
→%"t& a.s. as /→"# (19)

where the convergence is uniform on compact subsets of
"0#T -.

This notion of consistency ensures that the estimator
%̂/"t& is uniformly “close” to the actual arrival rate %"t&
for large enough /, supporting the following result.

Theorem 3. If the technical assumption (10) holds and
the estimator used in the %-tracking policy is uniformly
consistent, then any sequence of dynamic controls obtained
by minimal truncation of 0-X/

∗ 1, together with the staffing
vectors 0b/

∗1 defined in (17), is asymptotically optimal.

A simple estimator of the arrival rate at time t is one that
counts the number of arrivals in a short time window end-
ing at time t, and normalizes this count by the length of the
window. Specifically, let g"·& be a nonnegative increasing
function, and put

%̂/"t&= g"/&,F /"t&− F /"t− g"/&−1&- (20)

for t ∈ ,g"/&−1#T -, where F /"t& = "F /
1 "t&# $ $ $ #F

/
m"t&& is

the vector of the cumulative number of arrivals up until
time t in each customer class, and g"/&−1 represents the
length of the sliding window in which arrivals are counted.
The next result establishes the uniform consistency of this
estimator.

Proposition 3. If g"/& → " and f "/&−1g"/&2 log/ → 0
as /→", then the estimator defined in (20) is uniformly
consistent.

In the above proposition, 1/g"/& represents the length
of a sliding window that is used to estimate the arrival
rates. The above growth condition ensures that the window
length decreases to zero at a slow enough rate so as to
ensure consistent estimation of the arrival rate, while still
shrinking fast enough so that the arrival rate itself does not
change within the window. Assuming that (10) holds, the
hypothesis of this proposition can be satisfied, for example,
by taking g"/&= /2 for some 2 ∈ "0#0$5-.
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4.4. A Discrete-Review !-Tracking Policy

The %-tracking policy described in the previous section
suffers from two shortcomings:
• The arrival rate estimator (20) and the LP (18) need

to be calculated and re-solved, respectively, at each instant
in time. This is clearly not feasible for purposes of imple-
mentation.
• The server allocation is given by a solution to an LP

and therefore may change frequently and in an abrupt man-
ner, resulting in a significant amount of “chatter” in the
controls. This may lead to excessive service interruptions
which are not desirable in a call center environment.
To alleviate the deficiencies stated above, we now pro-

pose a discrete-review implementation of %-tracking poli-
cies. These controls are also based on the estimation of
arrival rates, for which the same window size of g"/&−1

is used. However, instead of a sliding window, nonover-
lapping windows are used, and the LP is solved only at
discrete points in time that mark the ends of these estima-
tion windows. Specifically, we partition the time interval
,0#T - into g"/&T review periods of equal length. In the lth
review period, l = 1# $ $ $ # .g"/&T /, the following estimate
of % is used:

%̂l# / = g"/&

[

F /

(

l− 1
g"/&

)

− F /

(

l− 2
g"/&

)]

#

where F /"t& is the vector of cumulative arrivals up until
time t in each customer class. Here, .x/ is the maximum
integer less than x.
The dynamic control uses the estimator %̂l# / in the same

manner as in the general class of %-tracking policies, i.e.,
the LP (18) is solved with %̂l# / as the right-hand side of the
constraints, and the optimal solution is minimally truncated
to make it admissible. We note that the estimate of the
arrival rate is constant over a review period, and the LP
(18) is solved only at the beginning of each review period.
What we have just described is a %-tracking control with
the estimator explicitly given by

%̂/"t&= g"/&

[

F /

(.tg"/&/
g"/&

)

− F /

(.tg"/&/− 1
g"/&

)]

$ (21)

Because the server allocation is constant within each review
period, no services are interrupted during this time interval.
The only times where any services might be interrupted
occur at the beginning of the review periods.
We now modify the discrete review policy to avoid

service interruptions altogether. In the beginning of each
review period, we let every customer who is being served,
referred to as customers-in-service, complete her/his ser-
vice. When all customers-in-service have completed ser-
vice, server allocation is done based on the solution
obtained from the LP (18) with the estimator (21).
Because no service is ever interrupted, this is a nonpre-
emptive policy. Let -X/

∗ "t& be the optimal solution of the
LP (18) with the estimator (21) in its right-hand side,

i.e., -X/
∗ "t&=6/"%̂/"t&#b/

∗&. Let (
/
l denote the time elapsed

from the beginning of the lth review period in the /th
system until all customers-in-service have completed their
services.
To summarize, the nonpreemptive discrete review pol-

icy is obtained by first dividing the period ,0#T - into
g"/&T review periods. At the beginning of the lth review
period, the arrival rate vector is estimated using %̂l# /, and
the LP (18) is solved with this estimator to obtain -Xl# / =
6/"%̂l# /

∗ #b/&. Then, for a period of length (/
l time units

from the commencement of the review period, servers com-
plete the processing of all customers-in-service. From this
point in time until the end of the review period, servers are
allocated based on the minimal truncation of the dynamic
control -Xl# /

∗ . For implementation, we round off the staffing
vectors and the controls obtained above to the nearest inte-
ger. (We omit this distinction for the purpose of exposition
but clearly this modification has no effect on our asymp-
totic analysis.) The next result establishes that it is possible
to choose the number of review periods such that the esti-
mator is uniformly consistent, and cumulative time spent on
completing work of customers-in-service at the beginning
of review periods is negligible.

Theorem 4. Suppose that the technical assumption (10)
holds, that /−1 log f "/&→ 0 as /→", and that g"/&= /2

for some 2 ∈ "0#0$5-. Then, the sequence of discrete review
dynamic controls obtained by minimal truncation of 0-X/

∗ 1,
together with the staffing vectors 0b/

∗1 as defined in (17),
is asymptotically optimal.

5. Numerical Examples
The key to all our main results is Proposition 1, which
is stated in §3, and says essentially the following: if the
scale of the system is large, then the headcount process Z,
the dynamic control X, and the instantaneous arrival rate
vector % are approximately linked by the simple relation-
ship (13), that is, one has approximately Z"t&= .−1,%"t&−
RX"t&-+BX"t& for all t ∈ ,0#T -.
To provide a “picture proof” of Proposition 1, we con-

sider a simple system with a single-customer class and a
single-server pool (i.e., m = 1 and r = 1), and take the
planning horizon to be one day comprised of T = 480 min-
utes. To illustrate the manner in which the system “equili-
brates” and is then governed by the trajectory given by (13),
let us focus on the following system parameters. We take
the service rates to be '= 1 customers-per-minute, and the
abandonment rate to be ) = 0$5 customers-per-minute. The
arrival rate may be either “high” or “low” with equal prob-
ability assigned to the two paths given in Figure 2.
The cost of employing a server for one day is c =

$240, and the abandonment penalty is p= $2 per customer.
Solving the staffing problem given in (15), we find that
b∗ = 115 servers. Figure 3(a) depicts a sample path of the
headcount process for the given system using the obvi-
ous dynamic control policy X"t& = min"b∗#Z"t&&, t " 0,
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Figure 2. Arrival rate pattern for a single-class/single-
pool example.
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superimposed on the asymptotic path (13) described in
Proposition 1 (these results correspond to a “high” real-
ization of the arrival rate). The headcount process in Fig-
ure 3(a) does indeed fluctuate around the asymptotic path
given in (13).
To illustrate the time it takes an empty system to reach

this “equilibrium” behavior, Figure 3(b) “zooms in” on the
system dynamics around t = 0. The system equilibrates
to the limiting path (13) within one to two minutes, after
which it follows this path, in spite of the temporal changes
in the arrival rate. To summarize, one can say that the lim-
iting system state has essentially no dynamics, it instantly
“forgets” its past and its evolution at any time instant
only depends on the instantaneous arrival rate and the con-
trol policy (which is itself a function of the instantaneous
arrival rate).
Next, we illustrate the lower bound on system perfor-

mance and its achievability (Theorems 1 and 4) by consid-
ering an example in which the dynamic routing policy is
not trivial or obvious. Specifically, we consider a system
with two customer classes "m= 2& which is served by two
server pools "r = 2&. There are three processing activities
"n= 3&. Servers in pool 1 can serve only class 1 customers
(activity 1), while servers in pool 2 are cross-trained and
can serve both class 1 and class 2 customers (activities 2
and 3, respectively). Callers of class 1 and 2 arrive accord-
ing to a doubly-stochastic Poisson process whose rates are
displayed in Figure 4. We take the scaling function to be
f "/& = /2. All the services are exponentially distributed
with unit rate, that is, 'j = 1 customers-per-minute for
j = 1#2#3. Customers of class 1 abandon at rate )1 = 0$2
customers-per-minute, whereas customers of class 2 aban-
don at rate )2 = 1 customers-per-minute. The abandonment
penalties for class 1 and class 2 are p1 = $4 per customer
and p2 = $1 per customer, respectively. The cost of a server
in pool 1 is $600 per day and $720 per day in pool 2 (where
the servers are cross-trained).
Solving the staffing problem in (15) we get b∗ =

"50#50&. We now simulate the system to obtain estimates
of the total expected cost under two policies. The first is
the discrete review nonpreemptive policy derived in §4.3.
We divide the time horizon into review periods of equal
length, and at the beginning of each such review period the
arrival rate is estimated based on the number of arrivals in

Figure 3. (a) Simulation of the headcount process and
the asymptotic analogue given in Proposi-
tion 1. (b) “Relaxation time” to equilib-
rium: the graph depicts the simulated system
dynamic over the first six minutes in Fig-
ure (a), and the corresponding asymptotic
path given in Proposition 1.
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the last review period using (21). With this estimate, we
then solve the LP (18) to obtain a routing of customers
to servers. As soon as a server finishes the tasks to which
s/he was assigned, s/he is allocated a customer based on
the new routing decision. In addition, if the solution of the
LP does not allocate all the servers in some pools, we allo-
cate them whenever there are customers waiting for service
based on the priority rule given by the objective function
of this LP. The performance of this policy is evaluated for
system scales / = 10#20# $ $ $ #200 (with / = 50 being the
“reference system”), and the number of review periods for
the /th system is chosen to be 8/0$45. The second policy,
which serves for comparison purposes, seeks to minimize
the value of the objective function in (5) at each time instant
(specifically, at each arrival or departure epoch, because we
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Figure 4. Arrival rates for the two-class/two-pool
example.
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focus on a nonpreemptive service discipline). In particular,
this is a “greedy” policy which gives priority to the class i
customer for which the penalty rate )ipi is largest. In our
example, this simply means that servers in pool 2 give pri-
ority to class 2, because )2p2 > )1p1. (Recall that servers
in pool 1 can only serve class 1.) For our simulation study,
we consider two staffing levels for the greedy policy: in
the first case we set the staffing level b to be "50#50&, the
optimal value given by our LP-based method; in the second
case we optimize b given that the greedy policy is to be
used for control.
Figure 5 depicts the simulation results for the above

policies at various system scales, with the total expected

Figure 5. Scaled expected total cost as a function of the
system scale "/& for the two-class two-pool
example; dotted lines correspond to a 95%
confidence interval for the simulated results.
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cost scaled by f "/&−1. The simulation results use stratified
sampling based on the arrival rate processes to reduce vari-
ance. This results in a tight confidence interval, because the
variance of the estimator from stratified sampling depends
on the conditional variance, and the variance of the scaled
expected cost conditioned on the arrival rate processes
approaches zero as /→". The number of simulation runs
for both arrival processes depicted in Figure 4 is either 200
(if the system scale / is less than 160) or 50 (if the system
scale / exceeds 170). As is evident, the %-tracking discrete
review policy outperforms the greedy policy with optimized
staffing, which in turn outperforms the greedy policy with
staffing level b= "50#50&. Moreover, as / grows large, the
cost of the system under the discrete review policy is close
to the asymptotic lower bound, differing by about 4% when
/= 50, as predicted by Theorem 4.

6. Concluding Remarks
The notion of a planning horizon plays an important part in
our problem formulation. The interval ,0#T - represents the
smallest block of time over which the staffing level must
be kept constant. Our model assumes that the following
holds: staffing decisions are made before the beginning of
the planning horizon, and temporal and stochastic varia-
tion within the planning horizon are not negligible (or the
interval is not short enough to reasonably support such an
assumption).
Our model assumes that both service times and “impa-

tience” random variables are exponential. The memoryless
property of the exponential distribution allows us to express
various system quantities (e.g., cumulative number of aban-
donments) using a simple time change of a Poisson process
that in turn supports a simple state descriptor. In addition,
we assume that the arrival process is described as a time
change of a Poisson process. While it is important to inves-
tigate the robustness of our method relative to these dis-
tributional assumptions, we do not attempt such analysis
in this paper, leaving it for future work. What we believe
to be true is that the exponential assumptions for arrival
processes and service times can be relaxed, but the expo-
nential assumption with respect to the “impatience” random
variables is crucial to obtain the limiting dynamics given
in (13).
The dynamic routing control proposed in this paper is

given by a minimal truncation of the solution to an LP.
(The minimal truncation effectively projects the solution
onto the space of admissible controls.) As such, this control
does not explicitly use system state information and hence
runs “open loop,” except for the tracking of arrival rate.
However, the asymptotic regime described in this paper is
such that (in the limit) arrival rates translate instantaneously
to system state. Hence, the proposed “open loop” control
implicitly uses state information encoded in arrival rates.
Of course, one can argue that a more refined notion of
asymptotic optimality than the one advocated in this paper
would require a bona fide closed-loop control rule.
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Finally, the model presented in this paper can be ex-
tended to include linear holding costs and to allow admis-
sion control decisions along with dynamic routing control
and staffing. That extension is undertaken in Bassamboo
et al. (2005).

Appendix A. Proofs of the Main Results
Let "*#!#"& be the probability space on which all pro-
cesses described in §3 are defined. Let 't = 7"%"s&+ 0 !
s ! t& represent the information set generated by the arrival
rate process up until time t. In a similar vein, let the infor-
mation set generated by arrivals, departures, and abandon-
ment up until time t in the /th system be represented
by !/

t for all t ∈ ,0#T -. Let D,0#T - denote the space
of functions defined over ,0#T - which are right continu-
ous with left limits. In much of what follows, as well as
in Appendix B, statements are said to hold almost surely
for almost all time t ∈ ,0#T -. (Appendix B is available at
http://or.pubs.informs.org/Pages/collect.html.) Note that the
above is weaker than the assertion that a statement holds
for almost all time t ∈ ,0#T -, almost surely. This distinc-
tion is a consequence of pointwise limits as opposed to
functional limits. Finally, proofs of all lemmas cited in this
appendix can be found in Appendix B.

Proof of Proposition 1. Consider any sequence of
staffing vectors 0b/1 and corresponding admissible dynamic
control policies 0X/1. For each /, the dynamics of the head-
count process are given by (see (6)–(8))

Z/
i "t&= F /

i "t&−N "2&
i

(

∫ t

0
"R/X/&i"s&ds

)

−N "3&
i

(

∫ t

0
)/
i "Z

/"s&−BX/"s&&i ds

)

(22)

for all i = 1# $ $ $ #m and t ∈ ,0#T -. Dividing both sides of
the equation by f "/&, we now appeal to the following two
lemmas that establish the convergence of the rescaled pro-
cesses in (22) as /→".

Lemma 1. For any t ∈ ,0#T -,

F /
i "t&

f "/&
→

∫ t

0
%i"s&ds a.s. as /→"

for all i = 1# $ $ $ #m. Further, consider any admissible se-
quence of dynamic controls 0X/1 that satisfies condition
(11). Then, for any t ∈ ,0#T -,

N "2&
i

(∫ t

0 "R
/X/&i"s&ds

)

f "/&
→

∫ t

0
"RX&i"s&ds a.s. as /→"

for all i= 1# $ $ $ #m.

Lemma 2. Consider any admissible sequence of dynamic
controls 0X/1 which satisfies condition (11). Then,

"i&
Z/

i "t&

f "/&
→ 0# "ii&

∫ t

0

/Z/
i "s&

f "/&
ds→Mi"t&#

"iii&
N "3&

i

(∫ t

0 )
/
i "Z

/"s&−BX/"s&&i ds
)

f "/&

→ )i

(

Mi"t&−
∫ t

0
"BX"s&&i ds

)

almost surely as /→" for all i= 1# $ $ $ #m and for almost
all t ∈ ,0#T -.

Also, we have that 0X/1 satisfies (11) by assumption.
Applying Lemmas 1 and 2 to the three terms on the right-
hand side of (22), and Lemma 2 to the left-hand side of
(22) gives

0=
∫ t

0
"%"s&−RX"s&&ds−.

(

M"t&−
∫ t

0
BX"s&ds

)

# (23)

almost surely for almost all t ∈ ,0#T -, where . =
diag")1# $ $ $ # )m&, and M"t& = "M1"t&# $ $ $ #Mm"t&&. Thus,
we have

∫ t

0

/Z/"s&

f "/&
ds→

∫ t

0
".−1,%"s&−RX"s&-+BX"s&&ds

a.s. as /→"

for all t ∈ ,0#T -. This completes the proof. #

Proof of Theorem 1. Consider any sequence of staffing
vectors 0b/1 and corresponding admissible controls 0X/1.
We shall first prove the result under the assumption that

/b/

f "/&
→ b as /→"# (24)

where b" 0. All subsequent probabilistic statements are to
be interpreted in the almost sure sense and the term is omit-
ted for brevity. Because 0f "/&−1&"X/#b/&1, /= 1#2# $ $ $ #
is a sequence in $+, it has a subsequence 0/n+ n= 1#2# $ $ $1
which converges to the lim inf/→" f "/&−1&"X/#b/&. Fur-
ther, because X/n is admissible, by (6) and assumption (24)
we have that /nX

/n/f "/n& is uniformly bounded. Next, we
state a general result for uniformly bounded nonnegative
functions.

Lemma 3. Given a sequence of uniformly bounded nonneg-
ative functions Y / in D,0#T -, then for every subsequence
there exists a further subsequence Y /n and integrable func-
tion Y such that

∫

B Y
/n"t&dt →

∫

B Y "t&dt as n → " for
any Borel set B of ,0#T -, where Y is nonnegative for almost
all t ∈ ,0#T -.

Appealing to the above lemma, there exists a function
X+ * × ,0#T - +→ $+ defined for almost all 8 ∈ * and
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(Lebesgue) almost all t ∈ ,0#T - and a further subsequence
0/n′ + n

′ = 1#2# $ $ $1 such that

/n′

f "/n′&

∫ t

0
X/n′ "s&ds→

∫ t

0
X"s&ds as n′ →"

for all t ∈ ,0#T -. To simplify notation, we shall drop the
further subsequence index and assume that the above holds
on the initial subsequence. Because Proposition 1 applies
to this subsequence, from (23) it follows that

.

(

M"T &−
∫ T

0
BX"s&ds

)

=
∫ T

0
"%"s&−RX"s&&ds# (25)

where

M"T &= lim
n→"

∫ T

0

/nZ
/n"s&

f "/n&
ds$

We then have

f "/&−1&/n"X/n#b/n&

→ c · b+p · .
(

M"T &−
∫ T

0
BX"s&ds

)

as n→"

= c · b+
∫ T

0
p · ,%"t&−RX"t&-dt# (26)

where the limit follows from Lemma 2(iii) (in the proof of
Proposition 1), and (24) which implies that f "/&−1c/ ·b/ →
c · b as /→" (the last equality follows from (25)). Next,
we show that p · ,%"t&− RX"t&- " 3"%"t&#b& for almost
all t ∈ ,0#T -. Note that X"t& satisfies the constraints of the
LP (14). To this end, we have that for almost all t ∈ ,0#T -
(relative to Lebesgue measure),

%"t&−RX"t&" 0#

AX"t&! b# and

X/n"t&" 0 implies X"t&" 0#

where the first inequality follows from the fact that
∫ t

0 )i"Z
/n"s&−BX/n"s&&i ds

f "/n&

→
∫ t

0
"%i"s&− "RX&i"s&&ds as n→"

for all i = 1# $ $ $ #m, and
∫ t

0 )i"Z
/n"s& − BX/n"s&&i ds is

nondecreasing in t for each /n. Thus, we have
∫ t

0 "%"s&−
RX"s&&i ds is nondecreasing in t. Consequently, %"t& −
RX"t&" 0 for almost all t ∈ ,0#T -. The second inequality
follows using a similar argument and the fact that AX/n !

b/n implies
∫ t

0 "b
/n −AX/n

i "s&&ds is nondecreasing in t for
each /n. The optimality of 3"%"t&#b&, together with the
above result and Fatou’s Lemma, yields that for any admis-
sible sequence of dynamic controls 0X/1 and staffing vec-
tors 0b/1,

lim inf
/→"

f "/&−1Ɛ,&/"X/#b/&-

" c · b+ Ɛ
[

∫ T

0
3"%"t&#b&dt

]

$ (27)

Using the fact that b∗ is the minimizer of the right-hand
side, we get the desired result under assumption (24).
Now, suppose that the limit of the sequence 0/b//f "/&1

as /→" does not exists. Because 0f "/&−1Ɛ,&/"X/#b/&-1
is a sequence in $+, it has a subsequence which converges
to its lim inf. Also, there exists a further subsequence to this
subsequence on which the limit limn′→" /n′b

/n′ /f "/n′&= b
exists. Note that if b is infinite, there is nothing to prove.
If b is finite, then for this subsequence the above analysis
shows that (27) holds. Further, using the fact that b∗ is the
minimizer of the right-hand side of (27), we have that

liminf
/→"

f "/&−1Ɛ,&/"X/#b/&-"c ·b∗+Ɛ
[

∫ T

0
3"%"t&#b∗&dt

]

$

This completes the proof. #

Proof of Proposition 2. Using the Lipschitz selection
theorem (see Aubin and Frankowska 1990, Theorem 9.4.3),
it suffices to show that the correspondence 4 defined
in §4.1 is Lipschitz and 4"!#b& is a nonempty closed con-
vex set for all ! ∈ $m

+ and b ∈ $r
+. For the latter, first

observe that x= 0 is feasible for the LP (14), and second,
nonnegativity of matrices A and R and the fact that each
row of A and R has at least one positive entry implies that
the feasible region is compact. Thus, the solution set of the
LP (14) is nonempty, closed, and convex. Thus, to complete
the proof we need only prove that the correspondence 4
is Lipschitz, i.e., there exist constants C1 and C2 such that
for any !1#!2 ∈$m

+, and b1#b2 ∈$r
+, the following holds:

!"4"!1#b1&#4"!2#b2&&!C11!1 −!21+C21b1 − b21#

where !"A#B& is the Hausdorff distance between the sets
A and B, and 1·1 is the Euclidean norm. Fix !1#!2 ∈ $m

+
and b1#b2 ∈$r

+. Consider any x
∗
1 ∈4"!1#b1&. Using Schrij-

ver (1986, Theorem 10.5), there exists x∗
2 ∈4"!2#b2& such

that 1x∗
1 − x∗

21 ! C11!1 − !21 + C21b1 − b21, where C1

and C2 are constants that depend only on the matrices R
and A. Thus, we have

d"x∗
1#4"!2#b2&&!1x∗

1−x∗
21!C11!1−!21+C21b1−b21#

where d"y#B& denotes the distance between the point y and
set B. Taking the supremum over all points in 4"!1#b1&,
we have

sup
x∈4"!1#b1&

d"x#4"!2#b2&&!C11!1 −!21+C21b1 − b21$

Using a similar argument, we get a bound for
supx∈4"!2#b2&

d"x#4"!1#b1&&, and consequently, by defini-
tion of the Hausdorff distance, we have that the correspon-
dence 4 is Lipschitz. This completes the proof. #

Proof of Theorem 2. The proof is divided into four
steps which will be referenced in the subsequent proofs as
well: Step 1 establishes the convergence of appropriately



Bassamboo, Harrison, and Zeevi: Design and Control of a Large Call Center
432 Operations Research 54(3), pp. 419–435, © 2006 INFORMS

scaled processes to their respective limits; Step 2 estab-
lishes that the effects of minimal truncation are asymp-
totically negligible in a suitable sense; Step 3 derives the
pathwise convergence of the scaled cost; and Step 4 con-
cludes by showing that the latter convergence holds in
expectation.
Let X/

∗ "t& = 6/"%/"t&#b∗& for all t ∈ ,0#T -, where 6/

is the Lipschitz selection mapping defined in §4.2. Let ,X/
∗

denote the minimal truncation of X/
∗ , and ,Z/

∗ be the head-
count process associated with the admissible dynamic con-
trol ,X/

∗ .
Step 1. By Theorem 1 and the definition of asymptotic

optimality, it suffices to show that

lim sup
/→"

f "/&−1Ɛ,&/" ,X/
∗ #b

/
∗&-

! c · b∗ + Ɛ
[

∫ T

0
3"%"t&#b∗&dt

]

$ (28)

Using the definition of 0b/
∗1 in (17), we have

lim
n→"

1
f "/n&

c/n · b/n
∗ = c · b∗$

All subsequent probabilistic statements are to be inter-
preted in the almost sure sense and the term is omitted for
brevity. Next, we state the following result for the sequence
0"//f "/&&Z/1, k= 1#2# $ $ $ $

Lemma 4. If assumption (10) holds, then for any admissi-
ble sequence of controls 0X/1,

lim sup
/→"

sup
0!t!T

/Z/"t&

f "/&
<" a.s.

Consider the subsequence over which the lim sup is
achieved for f "/&−1&/" ,X/

∗ #b
/
∗&. Consider a further subse-

quence 0/n+ n> 01 of this subsequence over which
∫ /n

f "/n&
,X/n
∗ and

∫ /n

f "/n&
,Z/n
∗

converge to a limit (the existence of such a subsequence
follows from Lemma 3 in the proof of Theorem 1 and
Lemma 4). Let

Mi"T &= lim
n→"

∫ T

0

/n" ,Z/n∗ "s&&i
f "/n&

ds for all i= 1# $ $ $ #m#

∫ t

0
" ,X∗"s&&j ds = lim

n→"

∫ t

0

/n" ,X/n∗ "s&&j
f "/n&

ds

for all j = 1# $ $ $ #n

and for all t ∈ ,0#T -. Because over this subsequence condi-
tion (11) holds, we can appeal to Lemma 2(iii) (in the proof
of Proposition 1) and (23) to get that for all i= 1# $ $ $ #m,

lim
n→"

N "3&
i

(∫ T

0 )/n
i " ,Z/n∗ "s&−B ,X/n∗ "s&&i ds

)

f "/n&

= )i

(

Mi"T &−
∫ T

0
"B ,X∗"s&&i ds

)

=
∫ T

0
"%"s&−R ,X∗"s&&i ds$

Step 2. We now show that the truncation effects are neg-
ligible in an appropriate limiting sense.

Lemma 5. Let X/"t& be an untruncated control satisfying
the admissibility condition (6) such that

/

f "/&
X/"t&→X"t& a.s. as /→"#

where the convergence is uniform over compact sets of
"0#T -, and X is a continuous process such that RX"t& !
%"t& for all t ∈ ,0#T -. If ,X/"t& is a minimal truncation of
X/"t& and assumption (10) holds, then for all i= 1# $ $ $ #m,

lim
/→"

1
f "/&

∫ T

0
"%/"s&−R/ ,X/"s&&i ds

= lim
/→"

1
f "/&

∫ T

0
"%/"s&−R/X/"s&&i ds a.s.

Let X∗"t&= 6"%"t&#b∗& for all t ∈ ,0#T -. Then, by the
definition of 6/, we have X/

∗ "t&= f "/&X∗"t&// for all t ∈
,0#T -. Also, because 6 is a Lipschitz continuous mapping
and % is a continuous process, it follows that X∗ is also a
continuous process. Thus, appealing to the above lemma,
we have
∫ T

0
"%"s&−R ,X∗"s&&i ds =

∫ T

0
"%"s&−RX∗"s&&i ds

for all i= 1# $ $ $ #m$

Step 3. Combining the analysis in Steps 1 and 2, we
have

lim
n→"

m
∑

i=1

pi

/nN
"3&
i

(∫ T

0 )/n
i " ,Z/n∗ "s&−B ,X/n∗ "s&&i ds

)

f "/n&

=
m
∑

i=1

pi

∫ T

0
"%"s&−RX∗"s&&i ds

=
∫ T

0
3"%"s&#b∗&ds#

where 3 is the mapping defined for the LP (14). Conse-
quently, we have

lim sup
/→"

f "/&−1&/" ,X/
∗ #b

/
∗&= c · b∗ +

∫ T

0
3"%"s&#b∗&ds$

Step 4. Because &/" ,X/
∗ #b

/
∗& is nonnegative and bounded,

using the reverse Fatou Lemma, we have (28). This com-
pletes the proof. #

Proof of Theorem 3. Recall that

%̂/
i "t&=g"/&,F /

i "t&−F /
i "t−g"/&−1&- for all i=1#$$$#m#

and for all time t ∈ ,0#T -. Let -X/
∗ "t& be the optimal solu-

tion to the LP (18) with the estimator (20), i.e., -X/
∗ "t& =

6/"%̂/"t&#b/
∗&, and let ,X/

∗ denote a minimal truncation
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of -X/
∗ . Let ,Z/

∗ denote the headcount process associated with
the admissible control -X/

∗ .
Before proving the theorem, we sketch an outline of the

proof. First, we express the limiting scaled cost in terms of
the scaled processes. Next, we show that truncation effects
are asymptotically negligible. Then, using the consistency
of the estimator, we establish that the scaled solution of
the LP (18) with %̂ in the right-hand side converges to the
solution of the LP (14). Finally, we use the reverse Fatou
Lemma to get the result in expectation.
Step 1. Convergence of the re-scaled processes to their

limiting counterparts follows exactly as in Step 1 of the
proof of Theorem 2.
Step 2. Let X∗"t& = 6"%"t&#b∗& for all t ∈ ,0#T -. Be-

cause %"t& is continuous and 6 is Lipschitz, X∗"t& is also
continuous. Consider any compact set B ⊂ "0#T -. Using
the definition of the mapping 6/, we have

/

f "/&
-X/
∗ "t&−X∗"t&=6

(

%̂/"t&

f "/&
#b∗

)

−6"%"t&#b∗&$

Because the mapping 6 is Lipschitz continuous, we have

∥

∥

∥

∥

/

f "/&
-X/
∗ "t&−X∗"t&

∥

∥

∥

∥

!C

∥

∥

∥

∥

%̂/"t&

f "/&
−%"t&

∥

∥

∥

∥

for all t ∈ B, where 1·1 is the Euclidean norm. Taking the
supremum over t ∈ B and the limit as /→", and using
the fact that the estimator is uniformly consistent, we get

sup
t∈B

∥

∥

∥

∥

/

f "/&
-X/
∗ "t&−X∗"t&

∥

∥

∥

∥

→ 0 a.s. as /→"$

Thus, -X/
∗ satisfies the conditions of Lemma 5 (in the proof

of Theorem 2). Hence, for i= 1# $ $ $ #m,

∫ T

0
"%"s&−R ,X∗"s&&i ds =

∫ T

0
"%"t&−RX∗"s&&i ds#

where ,X/
∗ is the minimal truncation of -X/

∗ . Repeating
Steps 3 and 4 in the proof of Theorem 2 completes the
proof. #

Proof of Proposition 3. Fix i ∈ 01# $ $ $ #m1. For the
remainder of the proof, we shall focus our attention on the
set of 8s for which

∫ T

0 %i"s&ds > 0 (the result is trivially
true on the complement set). Using the definition of the
estimator, we have

%̂/
i "t&−%/

i "t&

= g"/&

[

F /
i "t&−

∫ t

0
%/

i "s&ds

]

− g"/&

[

F /
i "t− g"/&−1&−

∫ t−g"/&−1

0
%/

i "s&ds

]

+ g"/&
∫ t

t−g"/&−1
%/

i "s&ds−%/
i "t&

for all t ∈ ,g"/&−1#T -. Fix a compact set B ⊂ "0#T -, and
fix / large enough so that g"/&−1 ! inf0s+ s ∈ B1. Then,

sup
t∈B

!%̂/
i "t&−%/

i "t&!
f "/&

! 2 sup
0!t!T

g"/&

f "/&

∣

∣

∣

∣

F /
i "t&−

∫ t

0
%/

i "s&ds

∣

∣

∣

∣

+ sup
t∈B

∣

∣

∣

∣

g"/&
∫ t

t−g"/&−1
%i"s&ds−%i"t&

∣

∣

∣

∣

$ (29)

We shall now show that both terms on the right-hand side
go to zero as /→".
Step 1. For each /, fix 9/ > 0, and let M/ = "M/"t&+ 0!

t ! T & be defined as

M/"t& +=exp
(

9/F
/
i "t&−"e9/−1&

∫ t

0
f "/&%i"s&ds

)

$ (30)

Then, M/ is a martingale adapted to the filtration
7"!/

t ∨'T &. Using Doob’s submartingale inequality (cf.
Ethier and Kurtz 1986), we have for any :> 0,

"
(

sup
0!t!T

g"/&

f "/&

[

F /
i "t&−

∫ t

0
%/

i "s&ds

]

>:
∫ T

0
%i"s&ds

∣

∣

∣

∣

'T

)

= "
(

sup
0!t!T

M/"t&> exp
(

−f "/&
∫ T

0
%i"s&ds

·
(

e9/ − 1− 9/

(

1+ :

g"/&

)))
∣

∣

∣

∣

'T

)

!exp
(

f "/&
∫ T

0
%i"s&ds

(

e9/−1−9/

(

1+ :

g"/&

)))

a.s.

By choosing 9/ = log"1+ :/g"/&&, we have that the right-
hand side of the above equation is bounded by

exp
(

− f "/&

g"/&2
:
∫ T

0
%"s&ds

)

$

Further, for any positive integer l,

"
(

sup
0!t!T

g"/&

f "/&

[

F /
i "t&−

∫ t

0
%/

i "s&ds

]

> :
∫ T

0
%i"s&ds# i.o.

∣

∣

∣

∣

'T

)

!

"
∑

/=l

exp
(

− f "/&

g"/&2
:
∫ T

0
%i"s&ds

)

a.s.#

and because the growth condition implies that the summa-
tion on the right-hand side is finite, we get

"
(

sup
0!t!T

g"/&

f "/&

[

F /
i "t&−

∫ t

0
%/

i "s&ds

]

> :
∫ T

0
%i"s&ds# i.o.

∣

∣

∣

∣

'T

)

= 0 a.s.
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Hence, for any :> 0,

"
(

sup
0!t!T

g"/&

f "/&

[

F /
i "t&−

∫ t

0
%/

i "s&ds

]

> :
∫ T

0
%i"s&ds# i.o.

)

= 0#

and thus,

sup
0!t!T

g"/&

f "/&

∣

∣

∣

∣

F /
i "t&−

∫ t

0
%/

i "s&ds

∣

∣

∣

∣

→ 0

a.s. as /→"$ (31)

Step 2. We now consider the second term on the right-
hand side of (29). Because the set B is closed and 04 B, we
have 0< ;+= inf0s+ s ∈ B1. Further, continuity of %i over
,0#T - implies uniform continuity, thus for any :> 0, there
exists a <> 0 such that for all t# s ∈ ,0#T - with !t− s!< <,
we have !%"s&−%"t&!< :. Choose /1 such that g"/&−1 <
min";#<& for all / >/ 1. Then, for all / >/ 1 and for all
t ∈ B, we have
∣

∣

∣

∣

g"/&
∫ t

t−g"/&−1
%i"s&−%i"t&

∣

∣

∣

∣

! g"/&
∫ t

t−g"/&−1
!%i"s&−%i"t&!ds ! :#

hence,

sup
t∈B

∣

∣

∣

∣

g"/&
∫ t

t−g"/&−1
%i"s&ds−%i"t&

∣

∣

∣

∣

→ 0 a.s. as /→"$

This completes the proof. #

Proof of Theorem 4. Recall that

%̂/"t&= g"/&

[

F /

(.tg"/&/
g"/&

)

− F /

(.tg"/&/− 1
g"/&

)]

#

where .x/ is the maximum integer less than or equal to x,
and -X/

∗ "t& is the optimal solution to the LP (18) with the
estimator (21), i.e., -X/

∗ "t&= 6/"%̂/"t&#b/
∗&. Let ,X/

∗ denote
the admissible dynamic routing policy obtained from X/

∗
as described in §4.4 and ,Z/

∗ the headcount process asso-
ciated with the admissible control ,X/

∗ . Let I
/ denote the

cumulative time spent on completing the previous period’s
assigned task in the /th system. By definition,

I/ =
g"/&T
⋃

i=1

[

i− 1
g"/&

#
i− 1
g"/&

+ (/
i

]

# (32)

where (/
i is the time required to complete the services

of customers-in-service at the beginning of the ith review
period in the /th system. Then, for all t ∈ ,0#T -\I/, ,X/

∗ is
a minimal truncation of X/

∗ .
The key steps in the proof are similar to that of Theo-

rem 3 with the addition that we now need to establish that
the time required for customers-in-service to complete their
services at the beginning of each review period is asymp-
totically negligible in a suitable sense.

Step 1. Convergence of the re-scaled processes to their
limiting counterparts follows exactly as in Step 1 of the
proof of Theorem 2.
Step 2. To establish that the estimator is consistent based

on the growth conditions on f "/& and g"/&, we use the
following result.

Lemma 6. If g"/& → " and f "/&−1"g"/&2 log/& → 0 as
/ → ", then the estimator defined in (21) is uniformly
consistent.

Using the same argument as in Step 2 of Theorem 3, we
have that /X/"t&/f "/&→X"t& as /→", where the con-
vergence is uniform over compact sets of "0#T -. We now
give an analogue of Lemma 5 (in the proof of Theorem 2),
which establishes that the minimal truncation effects are
asymptotically negligible in a suitable sense.

Lemma 7. Let X/"s& be an untruncated control satisfying
the admissibility condition (6), such that
/

f "/&
X/"s&→X"s& a.s. as /→"#

where the convergence is uniform over compact sets of
"0#T -, and X is a continuous process with RX"t&!%"t&
for all t ∈ ,0#T -. Let ,X/"s& be a minimal truncation of
X/"s& over the set I/ defined in (32) and suppose that
assumption (10) holds. Then, for all i= 1# $ $ $ #m,

lim
/→"

1
f "/&

∫ T

0

(

%/
i "s&− "R/ ,X/"s&&i(0s∈,0#T -\I/1

)

ds

! lim
/→"

1
f "/&

∫ T

0
"%/"s&−R/X/"s&&i ds a.s.

Now, by the definition of "/n/f "/n&& ,X/n∗ ,
∫ T

0
"%"s&−R ,X∗"s&&i ds

= lim
n→"

∫ T

0

(

%"s&− /n

f "/n&
R ,X/n

∗ "s&

)

i

ds a.s.

for i= 1# $ $ $ #m. Further, we have

lim
n→"

∫ T

0

(

%"s&− /n

f "/n&
R ,X/n

∗ "s&

)

i

ds

"a&
! lim

n→"

∫ T

0

(

%i"t&−
/n

f "/n&
"R ,X/n

∗ "s&&i(0s∈,0#T -\I/n 1

)

ds

"b&=
∫ T

0
"%"s&−RX∗"s&&i ds a.s.

for i = 1# $ $ $ #m, where X∗"t& = 6"%"t&#b∗& for all t ∈
,0#T -. Inequality (a) follows from nonnegativity of the pro-
cess ,X/

∗ , and equality (b) follows from Lemma 7 because
-X/
∗ satisfies the conditions of the lemma. Finally, repeating

Steps 3 and 4 in the proof of Theorem 2 completes the
proof. #
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