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Abstract

Stag hunt and chicken games are canonical representations of two kinds of
strategic interactions. In stag hunt, aggression feeds on itself, and mutual
fear escalates into con�ict. Chicken is a model of preemption and deterrence.
With complete information, these games have multiple Nash equilbria. Us-
ing standard arguments from the Industrial Organization literature, we �nd
su¢ cient conditions for payo¤ uncertainty to generate a unique Bayesian
Nash equilibrium. These conditions encompass information structures rang-
ing from independent types (as in our previous work) to highly correlated
types (as in global games). Keywords: con�ict, global games, strategic com-
plements, strategic substitutes.



1 Introduction

Simple two-by-two games are frequently used to represent strategic interac-
tions in political science and international relations (see, for example, Jervis
[12]). In this literature, the prisoner�s dilemma plays a prominent role. But
in many instances, stag hunt and chicken games seem more apt metaphors.
Stag hunt captures Hobbes�s �state of nature�, where con�ict is caused by
lack of trust.1 Chicken is a model of preemption and deterrence. The promi-
nence of prisoner�s dilemma games in the literature may be due to analytical
convenience: the prisoner�s dilemma has a unique Nash equilibrium, whereas
stag hunt and chicken have multiple equilibria.
The prisoner�s dilemma can be thought of as a degenerate stag hunt or

chicken game, where extreme levels of hostility have made �war�a dominant
strategy. And even if this scenario is not very likely, a player who is himself
not intrinsically hostile may be unable to completely rule out the possibility
that the opponent is extremely hostile, or that the opponent thinks he is very
hostile... As is well known, this type of reasoning may produce �spirals�of
fear and aggression. The most useful way to think about these spirals is to
formally introduce payo¤ uncertainty. This not only makes the model more
realistic, but it may also generate a unique equilibrium.
Consider a two-player game, where each player must choose either hawk

(H) or dove (D). The hawkish action H might represent an act of war,
accumulation of weapons, or some other aggressive action. In the payo¤
matrix, the row represents the choice of player i; and the column the choice
of player j. Only player i�s payo¤ is indicated.

H D
H hi � c hi
D �d 0

The payo¤from the peaceful outcome (D;D) is, without loss of generality,

1The �state of nature� is sometimes described as a prisoner�s dilemma, but a close
reading of Hobbes [11] reveals that this may be misleading. Hobbes�s fundamental law of
nature says that �every man ought to endevor peace, as far as he has hope of obtaining
it; and when he cannot obtain it, that he may seek, and use, all helps, and advantages of
war�(Hobbes [11], p. 68). Hobbes stresses that the law has two parts, the �rst �to seek
peace, and follow it�, and the second �by all means we can, to defend ourselves�(Hobbes
[11], p. 68). Hobbes clearly believes that what a man should do depends on what other
men are doing, so his �state of nature�is more easily interpreted as a stag-hunt than as a
prisoner�s dilemma.
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normalized to zero. The parameter hi incorporates player i�s bene�ts or costs
from choosing H. If the opponent chooses H then player i su¤ers a cost c if
player i also chooses H, and a cost d if player i chooses D. We assume, for
convenience, that the two parameters c and d are the same for both players.
However, in general we will have h1 6= h2:We refer to hi as player i�s hostility
parameter or type.
Suppose, for the moment, that there is no payo¤ uncertainty: the play-

ers know everything about the game, including each others types. If hi >
maxfc� d; 0g for each i 2 f1; 2g then the game is a prisoner�s dilemma with
a unique Nash equilibrium: (H;H). If c � d < hi < 0 for each i 2 f1; 2g
then the game is a stag-hunt with two Nash equilibria: (H;H) and (D;D):
If 0 < hi < c � d for each i 2 f1; 2g then it is a game of chicken with two
Nash equilibria: (H;D) and (D;H): In games with multiple Nash equilibria,
the criterion of risk-dominance is sometimes used to select a unique out-
come. In the stag-hunt game, the risk-dominant Nash equilibrium is (H;H)
if h1 + h2 > c � d and (D;D) if h1 + h2 < c � d: That is, if the combined
hostility levels are not too big, a con�ict can be avoided. In chicken, the
risk-dominant Nash equilibrium is (H;D) if h1 > h2 and (D;H) if h1 < h2:
That is, the most hostile player is aggressive, the other backs down.
Carlsson and van Damme [8] showed that if the players do not know the

true payo¤ matrix, but receive noisy signals of it, then as the noise vanishes
the players coordinate on the risk-dominant outcome. This insight triggered
a large literature on global games. However, when the noise vanishes, each
player becomes very sure of the opponent�s true payo¤s, and we believe this
is not a plausible assumption for many applications. In reality, payo¤ un-
certainty can be large. Therefore, unlike the global games literature, we
do not focus on �small�perturbations of the payo¤ matrix. We will derive
conditions under which a unique equilibrium exists when there is signi�cant
uncertainty about the opponent�s true payo¤ function. (Unlike Carlsson and
van Damme [8] we assume each player knows his own payo¤ function when
choosing an action.)
Realistically, any parameter in the payo¤matrix could be stochastic. For

convenience, we will assume the uncertainty only relates to the hostility para-
meters, while c and d are common knowledge. We consider two possibilities.
If c < d; then actions are strategic complements, as in a stag-hunt game:
each player is more inclined to choose H; the more likely it is that that his
opponent will choose H: If c > d, then actions are strategic substitutes, as
in a chicken game: each player is more inclined to choose H; the more likely
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it is that the opponent will choose D:
Players with very big hostility parameters are �dominant strategy hawks�

who behave as in a prisoner�s dilemma, with �war�(H) as a dominant strat-
egy. Conversely, players with very small hostility parameters are �dominant
strategy doves� for whom �peace�(D) is dominant. The remaining �mod-
erate� types, who do not have any dominant strategy, must form beliefs
about the opponent�s action before deciding what to do. With strategic
complements, these moderates are coordination types who want to match
the action of their opponent. With strategic substitutes, the moderates are
�opportunists�who want to choose the opposite of their opponent.
In Industrial Organization theory, the contrast between strategic comple-

ments and substitutes organizes the way we think about strategic interaction
(e.g., Bertrand versus Cournot competition). But these concepts are equally
useful in International Relations and con�ict. Two kinds of con�icts are often
distinguished: those where aggression feeds on itself in a cycle of fear, as in
stag hunt; and those where toughness forces the opponent to back down, as
in chicken.2 In stag hunt, actions are strategic complements: the incentive
to choose H is increasing in the probability that the opponent chooses H.
This can trigger an escalating spiral of aggression as in the classic work of
Schelling [17] and Jervis [12]. In a chicken game, actions are strategic sub-
stitutes: the incentive to choose H is decreasing in the probability that the
opponent chooses H. This captures a scenario where players will back down
in the face of aggression. For example, suppose the hawkish action represents
sending soldiers to a disputed territory. If only one country sends soldiers,
then it will control the territory at little cost. But if both countries send
their soldiers, a war could easily break out. If the value of the territory is
not large enough to justify the risk of war, it is a game of chicken.
By using the standard approach from the Industrial Organization litera-

ture, we obtain rather general conditions for a unique equilibrium to exist.
The conditions are stated in terms of properties of the distribution of types.
But they are equivalent to the well-known condition that the slopes of (ap-
propriately de�ned) reaction functions should be less than one in absolute
value. The conditions are satis�ed if types are independently drawn but
di¤use - �large idiosyncratic uncertainty�. For example, even if the ordi-

2�World Wars I and II are often cast as two quite di¤erent models of war.. World
War I was an unwanted spiral of hostility... World War II was not an unwanted spiral of
hostility-it was a failure to deter Hitler�s planned aggression.�Joseph Nye (p. 111, [16]).
Understanding International Con�ict (6th Edition).
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nal payo¤s are those of a stag hunt game with probability close to one, but
there is a large amount of uncertainty about idiosyncratic cardinal payo¤s,
then there is a unique equilibrium. However, independence is not always a
reasonable assumption. In a con�ict over a common resource, types are de-
termined not only by idiosyncratic preferences, but also by the value of the
contested resource. In this case, a player�s type contains information about
his opponent�s type, so types are a¢ liated. Our conditions cover this case as
well.
Consider the case where actions are strategic complements. Informally, a

player is �almost a dominant strategy hawk�if he is not quite hostile enough
to be a dominant strategy hawk, but he is willing to play D only when the
opponent is almost sure to play D. If he cannot rule out the possibility that
the opponent is a very hostile dominant strategy hawk (who surely plays H),
then he feels compelled to play H in self-defense. Thus, the fear of dominant
strategy hawks induces these �almost dominant strategy hawks�to play H;
which in turn creates more fear, inducing even less hostile �almost-almost
dominant strategy hawks�to play H etc. This vicious cycle is a formaliza-
tion of Schelling�s [17] �reciprocal fear of surprise attack�and Jervis�s [12]
�spiral model�. But a more benign spiral might counteract the vicious cy-
cle: the possibility that the opponent is dominant strategy dove (who surely
plays D) induces �almost dominant strategy doves�to play D; which in turn
induces �almost-almost dominant strategy doves�to play D etc. In Section
3, we derive a su¢ cient condition for these spirals to produce a unique equi-
librium. In particular, this happens when types are independent but di¤use,
or are determined by a common shock and small noise as in the global games
literature. In general, a¢ liation has an ambiguous e¤ect on the spirals. On
the one hand, a¢ liation of types makes �almost dominant strategy hawks�
think it is quite likely that the opponent is a dominant strategy hawk, which
intensi�es their fear, and so on. In this sense, a¢ liation promotes unique-
ness when actions are strategic complements. However, if types are strongly
a¢ liated, then there is not much (interim) payo¤ uncertainty. In this case,
multiple equilibria cannot be ruled out.
A di¤erent kind of spiral leads to a unique equilibrium in games with

strategic substitutes. This spiral is created by types who back down in the
face of aggression, triggering more aggression which causes more types to
back down, etc. In Section 4, we derive a su¢ cient condition for uniqueness
in such games. With strategic complements, player i�s fear of dominant
strategy hawks induces �almost dominant strategy doves� to play D: This
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in turn induces player j�s �almost dominant strategy hawks�to play H etc.
Again, with independently drawn di¤use types there is a unique equilibrium.
A¢ liation prevents this type of spiral from gaining ground, because �almost
dominant strategy doves�will think it is quite unlikely that the opponent is
a dominant strategy hawk, which mitigates their fear, and so on. Therefore,
a¢ liation unambiguously works against uniqueness when actions are strategic
substitutes.
We have previously studied the logic of mutual fear and escalation under

the assumption that types are independent (Baliga and Sjöström [5], [6],
Baliga, Lucca and Sjöström [4]). In complementary work, Chassang and
Padro-i-Miguel [9], [10] use the theory of global games and the concept of
risk-dominance to formalize the logic of mutual fear. In this article, we
consider a more general model of a¢ liated types, where both independent
types and highly correlated types are special cases. Morris and Shin ([15])
study games with strategic complements and a broader class of information
structures than global games. They argue that uniqueness results from either
large idiosyncratic uncertainty (as in Baliga and Sjöström [5], [6], Baliga,
Lucca and Sjöström [4]) or from highly correlated types (as in global games).
We draw a similar conclusion for the case of strategic complements but also
consider the case of strategic substitutes.. By exploiting su¢ cient conditions
that are well known from the Industrial Organization literature, we derive
fairly general results in a simple and familiar way.
In Section 5, we use the information structure of global games to contrast

our approach with Carlsson and van Damme [8]. Our general su¢ cient con-
dition for uniqueness implies that as types become highly correlated, games
with strategic complements have a unique Bayesian Nash equilibrium. This
mirrors the well-known result of Carlsson and van Damme [8]. However, when
actions are strategic substitutes, our general su¢ cient condition requires that
types are not too highly correlated - �large idiosyncratic uncertainty�. Alter-
natively, with strategic substitutes a unique equilibrium exists if the players
are (su¢ ciently) asymmetric ex ante. In equilibrium, the ex ante asymmetry
is magni�ed: the ex ante less hostile player is intimidated, the ex ante more
hostile player is very aggressive.
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2 The Model

As discussed above, the payo¤ matrix is

H D
H hi � c hi
D �d 0

The two parameters c and d are �xed and the same for both players. However,
player i�s true hostility parameter (or �type�) hi is his private information.
The hostility parameter hi has a �xed publicly observed component ki as

well as a random privately observed component �i. Thus, player i�s type is

hi = ki + �i:

The game of incomplete information is played as follows. First �1 and �2
are drawn from a symmetric joint distribution with support [�; ��] � [�; ��].
Then player 1 is informed about �1; but not about �2; while player 2 is
informed about �2 but not about �1: Finally, the two players make their
choices simultaneously (H or D).
When the players make their choices, everything except �1 and �2 is

commonly known. In particular, there is no uncertainty about the �xed
parameters k1 and k2. The introduction of k1 and k2 is a convenient way to
allow for ex ante asymmetries in the distribution of hostilities. If k1 = k2
then the two players are ex ante symmetric (and it would be without loss of
generality to assume k1 = k2 = 0): But if k1 6= k2 then there is a commonly
known ex ante asymmetry.
If �1 and �2 are correlated, then player i�s knowledge of �i can be used

to update his beliefs about �j. Formally, the cumulative distribution of
�j conditional on �i = y (where i 6= j) is denoted F (�jy): We assume F (xjy)
is a continuous function of x and y. On the interior of its domain it is
continuously di¤erentiable, with partial derivatives F1(xjy) � @F (xjy)

@x
and

F2(xjy) � @F (xjy)
@y

: Notice that F1(�jy) is the density of �j conditional on
�i = y: Since player j�s type is hj = kj + �j; uncertainty about �j directly
translates into uncertainty about player j�s type. The types h1 and h2 are
correlated if and only if �1 and �2 are correlated. If player i�s type is hi = y;
then player i assigns probability F (x � kjjy � ki) to the event that hj � x.
Indeed, hi = y if and only if �i = y�ki; and hj � x if and only if �j � x�kj:
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The least (resp. most) hostile type of player i has hostility parameter
hi = ki + � (resp. �hi = ki + ��). Notice that, for any y;

F (hj � kjjy � ki) = F (�jy � ki) = 0

and
F (�hj � kjjy � ki) = F (��jy � ki) = 1

since it is impossible for player j to have hostility parameter below hj or
above �hj:
We make the following assumption:

Assumption 1 (i) F1(xjy) > 0 for all x; y 2
�
�; ��
�
and (ii) F2(xjy) � 0 for

all x; y 2 (�; ��).

Part (i) says there is positive density everywhere. Part (ii) says that
F (xjy) is not increasing in y: Therefore, as a player becomes more hostile,
he becomes no less pessimistic about his opponent�s hostility. Part (ii) holds
if �1 and �2 are a¢ liated (Milgrom, 2004, Theorem 5.4.3). A¢ liation is a
natural assumption if the con�ict is over some contested resource such as an
oil �eld, where there is uncertainty about the value of the resource. As a
special case, part (ii) holds if �1 and �2 are independent. Independence is
a natural assumption if the uncertainty is over the players�innate attitudes
towards con�ict. For future reference, we note that Assumption 1 implies
that if y > x then F (yjx)� F (xjy) � F (yjy)� F (xjy) > 0:
We classify types into four categories.

De�nition 1 Player i is a dominant strategy hawk if hi � c � �d and
hi � 0 with at least one strict inequality. Player i is a dominant strategy
dove if hi � c � �d and hi � 0 with at least one strict inequality. Player i
is a coordination type if c � d � hi � 0. Player i is an opportunistic type
if 0 � hi � c� d;.

Notice that coordination types can exist only in games with strategic
complements. For them, H is a best response to H and D a best response to
D. Opportunistic types can exist only in games with strategic substitutes.
For them, D is a best response to H and H a best response to D:
With strategic complements, there is a positive probability that player

i is a dominant strategy hawk (resp. dove) if and only if �hi > 0 (resp.
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hi < c � d). With strategic substitutes, there is a positive probability that
player i is a dominant strategy hawk (resp. dove) if and only if �hi > c � d
(resp. hi < 0). A positive probability of dominant strategy types creates the
�spirals�discussed in the introduction. At this point, we are not assuming
that dominant strategy types exist (but it will be implied by the condition
for uniqueness - see below).

2.1 Bayesian Nash Equilibrium

Suppose player i is of type hi; and thinks player j will chooseD with probabil-
ity �j(hi). (This probability can depend on hi if types are not independent).
Type hi�s expected payo¤ from H is hi � (1 � �j(hi))c, while his expected
payo¤ from D is �(1� �j(hi))d: Thus, if type hi chooses H instead of D; his
net gain is

hi + (d� c)(1� �j(hi)) (1)

A strategy for player i is a function �i : [hi; �hi] ! fH;Dg which speci�es
an action �i(hi) 2 fH;Dg for each type hi 2 [hi;

�hi]: In Bayesian Nash
equilibrium (BNE), all types maximize their expected payo¤. Therefore,
�i(hi) = H if the expression in (1) is positive, and �i(hi) = D if it is negative.
(If expression (1) is zero then type hi is indi¤erent and can choose either H
or D.) We say that player i uses a cuto¤ strategy if there is a cuto¤ point
x 2 [hi; �hi] such that �i(hi) = H for all hi > x and �i(hi) = D for all hi < x:
A cuto¤ equilibrium is a BNE in cuto¤ strategies. Cuto¤ equilibria seem
very natural. They capture the intuition that when a player becomes more
hostile he becomes more likely to show aggression.
If player j uses a cuto¤ strategy with cuto¤ point x; then �j(y) = F (x�

kjjy� ki); so player i�s net gain from choosing H instead of D when his type
is hi = y is

	i(x; y) � y + (d� c) (1� F (x� kjjy � ki)) : (2)

For a cuto¤ strategy to be a best response, player i should be more
inclined to choose H the more hostile he is. That is, 	i(x; y) should be
increasing in y :

	i2(x; y) = 1� (d� c)F2(x� kjjy � ki) > 0 (3)

Figure 1 illustrates this property.
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In view of Assumption 1, (3) holds if d > c: It also holds if d < c and
the two types are not very highly correlated. However, if c is much bigger
than d and the two types are highly correlated, then (3) may be violated.
Intuitively, if types are highly correlated and the players use cuto¤ strategies,
then a very hostile type thinks it is very likely that the opponent chooses H:
If in addition c is much bigger than d, then the (H;H) outcome is very costly.
In this situation, the very hostile type may be more inclined to chooseD than
a less hostile type, and a cuto¤ strategy might not be a best response against
a cuto¤ strategy.
If condition (3) holds then player i�s best response to player j�s cuto¤ x

is to use a cuto¤ point denoted �i(x): The best-response function �i(x) is
de�ned as follows. (i) If 	i(x; hi) � 0 then �i(x) = hi (so player i plays
H with probability one). (ii) If 	i(x; �hi) � 0 then �i(x) = �hi (so player i
plays D with probability one). (iii) Otherwise, �i(x) 2

�
hi;
�hi
�
is the unique

solution to the equation 	i(x; �i(x)) = 0 (all types above �i(x) play H; and
all types below �i(x) play D). As long as 	

i(x; y) is increasing in y, �i(x)
is a well-de�ned continuous function (by the implicit function theorem), and
the slope of �i is obtained by totally di¤erentiating 	

i(x; �i(x)) = 0. Thus,

�0i(x) = �
	i1(x; �i(x))

	i2(x; �i(x))
= � (c� d)F1(x� kjj�i(x)� ki)

1� (d� c)F2(x� kjj�i(x)� ki)
: (4)

A cuto¤ equilibrium is an intersection of the two best response curves. That
is, if h�i denotes player i�s equilibrium cuto¤ point, then we must have
h�1 = �1(h

�
2) and h�2 = �2(h

�
1): Notice that �

0
i(x) > 0 if d > c (strategic

complements) and �0i(x) < 0 if d < c (strategic substitutes). Also notice that
if both equilibrium cuto¤ points h�1 and h

�
2 are interior, hi < h�i <

�hi; then
	1(h�2; h

�
1) = 	

2(h�1; h
�
2) = 0: Using equation (2), the condition 	

i(h�j ; h
�
i ) = 0

for an interior equilibrium becomes

h�i + (d� c)
�
1� F (h�j � kjjh�i � ki)

�
= 0: (5)

Proposition 2 If 	i(x; y) is increasing in y for each i 2 f1; 2g and all
x 2 [hi; �hi]; then a cuto¤ equilibrium exists.

Proof. Since the function	2(�1(x); x) is continuous in x, one of the following
three cases must occur:
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(i) 	2(�1(h2); h2) � 0. In this case the cut-o¤ points (�1(h2); h2) form a
BNE.
(ii) 	2(�1(�h2); �h2) � 0: In this case the cut-o¤ points (�1(�h2); �h2) form a

BNE.
(iii) there is x 2 [h2;

�h2] such that 	2(�1(x); x) = 0: In this case the
cut-o¤ points (�1(x); x) form a BNE.

3 Strategic Complements

Actions are strategic complements when d > c: In this case, (3) holds, so
�i(x) is a well-de�ned continuous function, and a cuto¤ equilibrium exists
by Proposition 2. We �rst derive a su¢ cient condition for this to be the
unique BNE.

3.1 The uniqueness result

Our main result for the case of strategic complements is the following.

Theorem 3 Suppose d > c and for all s; t 2
�
�; ��
�
,

F1(sjt) + F2(sjt) <
1

d� c
: (6)

There is a unique BNE. This BNE is a cuto¤ equilibrium.

In the appendix, we prove that all BNE must be cuto¤ equilibria. At
least one cuto¤ equilibrium exists by Proposition 2. To complete the proof
of Theorem 3, we only need to show that there cannot be more than one
cuto¤ equilibrium.
It su¢ ces to show that the slope of the best response function �i is less

than one in absolute value. As is well known, this guarantees that the two
best response curves can intersect only once (for example, Vives [20]). Equa-
tion (4) can be manipulated as follows:

�0i(x) =
(d� c)F1(x� kjj�i(x)� ki)

1� (d� c)F2(x� kjj�i(x)� ki)

= 1� 1� (d� c) fF1(x� kjj�i(x)� ki) + F2(x� kjj�i(x)� ki)g
	i2(x; �(x))

< 1:
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The inequality is due to (3) and (6). Since we already know that �0i(x) > 0
when d > c; we conclude that 0 < �0i(x) < 1. Thus, the cuto¤ equilibrium is
unique.3

3.2 Diagrammatic illustration

We will illustrate Theorem 3 diagrammatically. Consider the function Q :
[�; ��]! [0; 1] de�ned by Q(�) � F (�j�): Notice that Q(�) = 0 and Q(��) = 1:
By calculus,

�� � �

d� c
=

Z ��

�

�
1

d� c

�
d� >

Z ��

�

fF1(�j�) + F2(�j�)g d�

=

Z ��

�

Q0(�) d� = Q(��)�Q(�) = 1

where the inequality is due to (6). Therefore, for each i 2 f1; 2g;

�hi � hi = �� � � > d� c:

This implies that either �hi > 0 or hi < c�d (or both). That is, for each player,
there is a positive probability of being a dominant strategy type. Whether it
is dominant strategy hawks or doves (or both) which have positive probability
will determine the nature of the equilibrium.
First, suppose hi < c � d < 0 < �hi for each i 2 f1; 2g, so the support

of each player�s types includes both dominant strategy hawks and dominant
strategy doves. Notice that 	i(hj; y) = y + d � c; so �i

�
hj
�
= c � d. That

is, if player j plays H with probability 1 (his cuto¤ point is hj) then player
i�s best response is to choose H whenever he is not a dominant strategy

3If k1 = k2 = 0 (so the players are ex ante symmetric) and �h1 = �h2 > 0 and h1 = h2 <
c � d (so dominant strategy types of both kinds exist), then another su¢ cient condition
for a unique equilibrium in cuto¤ strategies is that the function Q(x) � F (xjx) is concave.
To prove this, de�ne the modi�ed best response function �̂ by using the function

	̂(x; y) � y + (d� c) (1�Q(x))

instead of the function 	: This yields �̂(x) = �(d � c) (1�Q(x)) : If Q is concave, then
�̂ intersects the 45 degree line exactly once. Moreover, � coincides with �̂ on the 45
degree line, so � intersects the 45 degree line in a unique point as well. This shows that
our previous results that relied on concavity (see Baliga, Lucca and Sjöström [4]) can be
generalized to allow correlated types.
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dove: Similarly, 	i(�hj; y) = y; so �i
�
�hj
�
= 0: That is, if player j plays H

with probability 0 (his cuto¤ point is �hj) then player i�s best response is to
choose H whenever he is a dominant strategy hawk. If hj < x < �hj; then
�i(x) 2

�
hi;
�hi
�
is the unique solution to the equation 	i(x; �i(x)) = 0; and

we know that 0 < �0i(x) < 1:
If there are both dominant strategy hawks and dominant strategy doves,

then certainly some types choose H and some types choose D. That is, the
unique equilibrium must be interior: each player i 2 f1; 2g chooses a cut-o¤
point h�i 2

�
hi;
�hi
�
which is a best response to the opponent�s cuto¤ h�j , i.e.,

which satis�es (5). The equilibrium (h�1; h
�
2) is illustrated in Figure 2.

Now suppose some player, say player 1, can be a dominant strategy hawk
but not a dominant strategy dove: c�d < h1 < 0 <

�h1. It is now possible that
in equilibrium player 1 chooses H with probability one, but the equilibrium
is still unique.
If both players can be dominant strategy hawks but not dominant strategy

doves, i.e., hi � c � d for i 2 f1; 2g, then there surely exists an equilibrium
where each player chooses H, regardless of type. By Theorem 3, there can
be no other equilibrium in this case. Thus, if each player can be a dominant
strategy hawk, but not a dominant strategy dove, then peaceful coexistence
is impossible, and each player chooses H with probability one. Intuitively,
the positive probability of dominant strategy hawks triggers a spiral, where
more and types choose H (as discussed in the introduction). In the absence
of dominant strategy doves, there is no benign spiral spreading from the
other direction. Accordingly, all types get swept away by the �hawkish�
spiral. This is an extreme case of Schelling�s [17] dilemma, where con�ict is
triggered by reciprocal fear of surprise attack.4

3.3 Interim rationalizability

The spirals we have discussed correspond to the procedure of �interim ratio-
nalizability� (for a characterization and discussion of this and related pro-
cedures, see Battigalli et. al. [7]). Thus, the unique BNE is the unique
(interim) rationalizable outcome. To see this, suppose the joint distribution
of types is commonly known. For each i 2 f1; 2g; action D can be elimi-
nated for the dominant strategy hawks, i.e., for types such that hi � c � d;

4Conversely, if �hi � 0 for i 2 f1; 2g, so there are no dominant-strategy hawks, then the
unique equilibrium is for each player to choose D, regardless of type.
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because it cannot be a best response to any beliefs. In the next �round�of
elimination, player i eliminates D for all types hi which are not dominant
strategy types, but which satisfy 	i(c� d; hi) > 0: Indeed, for these �almost
dominant strategy hawks�, D cannot be a best response to any beliefs which
assign probability one to player j�s dominant strategy hawks choosing H:
And so on.

3.4 The uniform independent case

Suppose �1 and �2 are independently drawn from a uniform distribution on
[�; ��]: In this case,

F (sjt) =
s� �

�� � �
(7)

so F1(sjt) = 1=
�
�� � �

�
and F2(sjt) = 0: Therefore, (6) holds if and only if

�� � � > d� c: (8)

Theorem 3 implies that (8) is su¢ cient condition for a unique BNE to exist.
Thus, with a uniform distribution, there is a unique equilibrium as long as
the support [�; ��] is big enough.
To simplify the calculations, suppose k2 = k � 0 = k1. Thus, player 2 is

ex ante (weakly) more hostile than player 1. If only one kind of dominant
strategy type exists, say only dominant strategy hawks, then the unique
equilibrium is for both players to choose H regardless of type. For a more
interesting interior equilibrium, assume �� > 0 and � + k < c � d: This
guarantees that the support of each player�s types includes dominant strategy
types of both kinds. Using (7), we solve (5) to get the equilibrium cuto¤
points h�1 = A+

�
�� � �

�
B and h�2 = A+ (d� c)B; where

A � (c� d)���
�� � �

�
� (d� c)

and

B � (c� d)k�
�� � �

�2 � (d� c)2

It can be veri�ed that �� > 0 and � + k < c � d guarantee h�i 2
�
hi;
�hi
�
.

If k > 0 then h�1 < h�2; since �� � � > d � c and B < 0: Thus, if it should
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happen that both players�true types lie in the interval (h�1; h
�
2); then player

1 chooses H (because h1 > h�1) but player 2 chooses D (because h2 < h�2). In
this sense, the ex ante less hostile player becomes ex post the most aggressive
one - because he feels more threatened by the opponent.

3.5 Discussion

Suppose the players are symmetric: k1 = k2 = 0: Now the best response
curves must intersect at the 45 degree line, and the unique equilibrium is a
symmetric cut-o¤ equilibrium, h�1 = h�2 = h�: The symmetric cut o¤ point is
the unique solution in [hi; �hi] to the equation

h� + (d� c) (1� F (h�jh�)) = 0 (9)

The intuition behind Theorem 3 may be brought out by a standard �sta-
bility�argument. Starting at the symmetric cuto¤ equilibrium h�, suppose
both simultaneously reduce their cut-o¤ by " (so a few more types use H).
Then, consider type h� � ". If type h� � " now prefers D, the initial equi-
librium is stable, and this is what we want to verify. In fact there are two
opposing e¤ects. First, at the original cut-o¤h�, type h��" strictly preferred
D, so there is reason to believe he still prefers D. However, the opponent has
now become more hostile. At the initial equilibrium, cuto¤ type h� thought
that the opponent would choose H with probability 1� F (h�jh�): But after
the perturbation, the new cuto¤ type h� � " thinks that the opponent will
choose H with probability 1� F (h� � "jh� � "): If

F1(h
�jh�) + F2(h

�jh�) < 1

d� c
(10)

then the �rst e¤ect dominates, and type h��" will strictly prefer D after the
perturbation, as required by stability. But (10) follows from (6). As usual,
the stability condition guarantees intuitive comparative statics. By (9) and
(10), an increase in d� c will lead to more aggressive behavior (a reduction
in equilibrium h�).
If types are independent, then F2 � 0 and (6) simply requires that the

density of the random variable �i is su¢ ciently spread out, i.e., that there is
�enough uncertainty�about types. Now suppose types are a¢ liated: This im-
pacts the stability of the equilibrium via the expression F1(h�jh�)+F2(h�jh�):
There are two contradictory e¤ects. On the one hand, a¢ liation causes type
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h� to think the opponent is likely to be similar to himself, so F1(h�jh�) is
large. This e¤ect makes uniqueness less likely. On the other hand, a¢ li-
ation causes F2(h�jh�) to be negative. This e¤ect makes uniqueness more
likely. While the �rst e¤ect is easy to understand, in terms of concentrat-
ing the density of types in a smaller area, the second e¤ect is more subtle.
Intuitively, in the above stability argument, a¢ liation causes type h� � " to
be less pessimistic about the opponent�s hostility than type h�; making him
more likely to prefer D: That is, the best response curves are more likely to
have the slopes that guarantee stability and uniqueness.

4 Strategic Substitutes

Actions are strategic substitutes when d < c: In this case, we need to make
su¢ cient assumptions to guarantee that (3) holds, otherwise a cuto¤ equi-
librium may not exist.

4.1 The uniqueness result

Our main result for the case of strategic substitutes is the following.

Theorem 4 Suppose d < c and for all x; s; t 2 (�; ��),

F1(sjt)� F2(sjt) <
1

c� d
(11)

and
F1(sjx)� F2(xjt) <

1

c� d
. (12)

There is a unique BNE. This BNE is a cuto¤ equilibrium.

In the appendix, we prove that all BNE must be cuto¤ equilibria. The
inequality (11) implies

(c� d)F2(sjt) > (c� d)F1(sjt)� 1 � �1:

Therefore, (3) holds, so a cuto¤ equilibrium exists by Proposition 2. To
complete the proof of Theorem 4, we only need to show that there can be at
most one cuto¤ equilibrium.
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It again su¢ ces to show that the slope of the best response function �i is
less than one in absolute value (Vives [20]). Equation (4) implies

1 + �0i(x) = 1 +
(d� c)F1(x� kjj�i(x)� ki)

1� (d� c)F2(x� kjj�i(x)� ki)

=
1 + (c� d) (F2(x� kjj�i(x)� ki)� F1(x� kjj�i(x)� ki))

	i2(x; �i(x))
> 0

The inequality follows from (3) and (11). Since we already know that �0i(x) <
0 when d < c; we conclude that �1 < �0i(x) < 0. Thus, the cuto¤equilibrium
is unique. The unique BNE is, by familiar arguments, the unique interim
rationalizable outcome.
If the inequality (11) holds, then (3) holds, so a cuto¤ equilibrium exists,

and since the slope of the best response function is less than one in absolute
value, there is only one cuto¤ equilibrium. However, this does not quite
guarantee that no non-cuto¤ equilibrium exists. If types are a¢ liated, then
when player 1 is a hostile type he expects player 2 to be a hostile type as
well. When player 1 is less hostile, he expects player 2 to be less hostile.
This opens up the possibility of coordination on non-monotonic strategies.
Player 1�s type h1 backs down, expecting player 2 to be aggressive. But type
h01 < h1; although he is inherently less hostile, may behave more aggressively,
because his expectations about player 2 are di¤erent from the expectations of
type h1. (Clearly, this cannot happen if types are independent, or if types are
a¢ liated but actions are strategic complements). Mathematically, inequality
(12) (which has no analogue in the case of strategic complements) rules out
such non-monotonicities (see the Appendix).
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4.2 Diagrammatic illustration

We will illustrate Theorem 4 diagrammatically. Again let Q(�) � F (�j�):
By calculus,

�� � �

c� d
=

Z ��

�

�
1

c� d

�
d�

>

Z ��

�

fF1(�j�)� F2(�j�g d� �
Z ��

�

fF1(�j�) + F2(�j�g d�

=

Z ��

�

Q0(�) d� = Q(��)�Q(�) = 1

where the �rst inequality is due to (11) and the second is due to the fact that
F2(�j�) � 0: Therefore, for each i 2 f1; 2g;

�hi � hi = �� � � > c� d:

This implies that either �hi > c � d or hi < 0 (or both). That is, for
each player, there is a positive probability of being a dominant strategy type.
Figure 3 illustrates the case where the support of each player�s types includes
both dominant strategy hawks and dominant strategy doves, so the unique
equilibrium must be interior. Thus, player i�s equilibrium cut-o¤point solves
(5). Since �1 < �0i(x) < 0 for all x 2 [hj; �hj]; the two best-response functions
cross exactly once, as shown in Figure 3.
With strategic substitutes the presence of both kinds of dominant strat-

egy types is not necessary for an interior equilibrium, however. Suppose the
two players are symmetric, and each can be a dominant strategy hawk or an
opportunistic type, but not a dominant strategy dove. The unique equilib-
rium must be symmetric and interior. Indeed, while the dominant strategy
hawks surely play H; not all opportunistic types can play H in equilibrium,
because if they did, the opportunistic types would be better o¤ switching to
D: Thus, there is an interior cuto¤ point. Corner equilibria can occur with
asymmetric players. If, for example, player 1 cannot be a dominant strat-
egy hawk, while player 2 cannot be a dominant strategy dove, in the unique
equilibrium all of player 1�s types play D; all of player 2�s types play H:
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4.3 The uniform independent case

Suppose �1 and �2 are independently drawn from a uniform distribution with
support [�; ��]. Conditions (11) and (12) both reduce to

�� � � > c� d (13)

(c.f. inequality (8) for the case of strategic complements). If (13) holds
then a unique BNE exists. This BNE may be at a corner, e.g., if ki is high
then player i might choose H with probability one. If the equilibrium is
interior, it can be computed exactly as in Section 3.4, by �rst substituting
(7) into (5), and then solving explicitly for h�1 and h

�
2: The solutions are,

again, h�1 = A +
�
�� � �

�
B and h�2 = A + (d� c)B: But now we have d < c;

so if k > 0 then h�1 > h�2: Thus, with strategic substitutes, the ex ante less
hostile player 1 is intimidated and chooses a high cuto¤ point, while the ex
ante more hostile player 2 is emboldened and chooses a low cuto¤ point.
Recall that with strategic complements (Section 3.4), the situation was the
opposite: the ex ante most hostile player chose the highest cuto¤ point.

4.4 Discussion

It is interesting to compare Theorems 3 and 4. If types are independent,
then F (sjt) is independent of its second argument, so (6), (11) and (12) all
reduce to the same inequality:

F1(sjt) <
���� 1

d� c

���� (14)

for all s; t 2 (�; ��): Thus, with independent types, (14) is a su¢ cient condition
for uniqueness of equilibrium, whether actions are strategic complements or
substitutes. However, if types are a¢ liated, so that F2(sjt) < 0, then the
hypothesis of Theorem 4 becomes harder to satisfy, because F2(sjt) enters
with a negative sign in (11) and (12).
When actions are strategic substitutes, opportunistic types want to mis-

match the opponent�s action. Opportunistic types with hi close to c � d
are almost indi¤erent between H and D when the opponent plays D: But
these �almost dominant strategy doves�will back down and play D if there
is positive probability that the opponent is a dominant strategy hawk. This
encourages opportunistic types who are �almost dominant strategy hawks�
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to play H; which in turn causes �almost-almost dominant strategy doves�to
back down, and so on. But this spiral may be too weak to determine the
actions of all types when types are a¢ liated, since �almost dominant strategy
hawks�will think it quite unlikely that the opponent is an �almost domi-
nant strategy dove�, and so on. Thus, in games with strategic substitutes,
a¢ liation promotes multiple equilibria.

5 Global Games

In this section we consider the global games information structure of Carlsson
and van Damme [8]. For simplicity, we start by assuming the players are
symmetric ex ante. Thus, k1 = k2 = 0; and player i�s type is hi = �i: Types
are derived from a common shock � plus idiosyncratic shocks. The common
shock � has a density which is strictly positive, continuously di¤erentiable
and bounded on its support � � [�; ��] � R: Player i�s type is �i = � + "ei,
where "ei is an idiosyncratic shock. Here ei is a random variable and " > 0 is
a �xed parameter which calibrates the importance of the idiosyncratic shocks.
The vector (e1; e2) is independent of � and admits a continuous, symmetric
joint density. The support of ei is [�1

2
; 1
2
]: Player i knows his own type but

not the opponent�s. Neither player knows the true �.
In this section, the distribution F "(�jj�i) of �j conditional on �i, where

i 6= j; is indexed by ". Let  " denote the density of �i � �j = "ei � "ej: It
can be shown (see Van Zandt and Vives [19]) that Assumption 1 holds when
" is small.
Carlsson and van Damme [8] show that a unique BNE exists if " is small

enough, so there is very little idiosyncratic noise and the players�types are
highly correlated. Unlike Carlsson and van Damme [8], we assume each player
knows his own payo¤ function (in the Carlsson and van Damme [8] model,
payo¤s depend on � directly, whereas we assume player i�s payo¤ function
only depends on � via hi). We will show that if " is small then our su¢ cient
condition for a unique BNE holds if actions are strategic complements, but
not if actions are strategic substitutes.

Lemma 5 For any �i there is k(�i) such that for all su¢ ciently small " > 0;

jF "(�jj�i)�
Z
t��j��i

 "(t)dtj � k(�i)":
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Lemma 5 follows from the argument of Lemma 4.1 in Carlsson and van
Damme [8]. The proof is omitted.

Proposition 6 F "1 (�jj�i) + F "2 (�jj�i)! 0 as "! 0; for any �i; �j:

Proof. Fix "; �i and �j and de�ne the function R" as follows:

R"(�) � F "(�j + �j�i + �)

Then R" is a continuously di¤erentiable function of �; with derivative

R0"(�) = F "1 (�j + �j�i + �) + F "2 (�j + �j�i + �) (15)

We need to show that R0"(0) ! 0 as " ! 0: Fix � > 0 and " > 0: Lemma 5
implies that

jR"(�)�R"(0)j � (k(�i + �) + k(�i)) " (16)

By the mean value theorem, there is �" 2 (0; �) such that

jR"(�)�R"(0)j = jR0"(�")j � � (17)

Combining (16) and (17), holding � > 0 �xed and letting " ! 0; yields
R0"(�")! 0: Since 0 < �" < � where � is arbitrary, and R0"(�) is a continuous
function of � for each " > 0; we have R0"(0)! 0:

Proposition 6 implies that the inequality (6) holds for " > 0 small enough.
Hence, by Theorem 3 there is a unique BNE if actions are strategic comple-
ments and " is small.
We will now show that the su¢ cient condition for uniqueness in games

with strategic substitutes (Theorem 4) is in general not satis�ed when " is
small. To show this, we consider the case where all distributions are uniform.
If player i draws �i 2 [� + "; �� � "]; then his posterior beliefs about � are
given by a uniform distribution on [�i � "; �i + "]. Player i�s beliefs about
�j are given by a symmetric, triangular distribution around �i with support
[�i � 2"; �i + 2"]: If s; t 2 [� + "; �� � "] then

F "(tjs) =

8>><>>:
1 if t � s+ 2"

1� 1
2

�
1� t�s

2"

�2
if s � t � s+ 2"

1
2

�
1� s�t

2"

�2
if s� 2" � t � s

0 if t � s� 2"
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which implies
F "(tjs) + F "(sjt) = 1: (18)

We also compute

F "1 (tjs) =

8>><>>:
0 if t > s+ 2"
1
4"2
(s� t+ 2") if s � t � s+ 2"

1
4"2
(t� s+ 2") if s� 2" � t � s

0 if t � s� 2"

Notice that
F "1 (tjs) = F "1 (sjt): (19)

Di¤erentiating (18) with respect to s yields5

F "2 (tjs) + F "1 (sjt) = 0: (20)

For js� tj < 2" we have, using (19) and (20),

F "1 (sjt)� F "2 (sjt) = 2F "1 (sjt) =
1

2"2
(js� tj+ 2")

which reaches a maximum 2=" when js� tj = 2": Also,

F "1 (sjx)� F "2 (xjt) = F "1 (sjx) + F "1 (tjx)

by (20), which also reaches a maximum 2=": The inequalities (11) and (12)
require

2

"
<

1

c� d

which is certainly not satis�ed when " is small. Therefore, when " is small
the hypothesis of Theorem 4 is violated. Instead, Theorem 4 implies the
following.

Proposition 7 If distributions are uniform and c > d then there is a unique
BNE for any " > 2 (c� d).

5Combining (19) and (20) yields F1(tjs)+F2(tjs) = 0 so (6) certainly holds. Therefore,
for the case of strategic complements, there is a unique BNE for any " > 0, not just for
small ": But here we are considering strategic substitutes.
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Thus, Theorem 4 implies that when actions are strategic substitutes, a
unique BNE exists if " is big enough. That is, there has to be enough idio-
syncratic uncertainty. When " > 2 (c� d) ; type hi = 0 the �weakest�oppor-
tunistic type puts positive probability on player j being a dominant strategy
hawk. This implies that type 0 and types just above 0 play D: Similarly,
type c� d the �toughest�opportunistic of player i puts positive probability
on player j being a dominant strategy dove. This implies type c � d and
types just below c� d play H: The process of iterated deletion of dominated
strategies can be completed to obtain a unique equilibrium. Uniqueness here
is a stark consequence of �deterrence by fear.�The possibility of con�ict with
dominant strategy hawks makes �weak�opportunistic types behave dovishly,
which in turn encourages hawkish behavior by �tough�opportunistic types,
etc.

We will end by considering the possibility of ex ante asymmetries. If
player 2, say, has an a priori reputation for hostility, and actions are strategic
substitutes, then it is intuitive that player 1 will be quite cautious, which will
embolden player 2, making player 1 even more cautious, etc. The ex ante
asymmetry may feed on itself and create a unique BNE, where player 2 will
have his way while player 1 retreats. For this process to be triggered, the
toughest opportunistic type c�d of player 1 must put signi�cant probability
on facing a dominant strategy hawk of player 2. If " is small, this will be
the case and there is a unique BNE. This is the case of �small noise�and
is the analog of the global games argument with strategic substitutes. It is
formalized in the following proposition.

Proposition 8 Suppose distributions are uniform and c > d: Also suppose
k2 = k > 2" > 0 = k1 (so player 2 is ex ante signi�cantly more hostile than
player 1). Moreover, suppose k + � + " < 0 and �� � " > c� d (so dominant
strategy hawks and doves exist for each player). There is a unique BNE,
where player 1 plays H i¤ h1 � c� d and player 2 plays H i¤ h2 � 0:

The proof is in the Appendix.

To complete the discussion of strategic substitutes, we show that if there
is neither signi�cant idiosyncratic uncertainty (i.e. " is small) nor signi�cant
ex ante asymmetry (i.e. k is small), then multiple equilibria exist. First, if "
is small, the toughest type c�d of player 1 does not put positive probability
on player 2 being a dominant strategy dove. As k is small, type c � d puts
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signi�cant probability on player 2 being an opportunistic type. Hence, his
optimal strategy can depend on whether the opportunistic types of player 2
he faces plays D or H: This can imply the possibility of multiple equilibria
including in the scenario when there is no asymmetry:

Proposition 9 Suppose distributions are uniform and c > d: Also suppose
k2 = k > 0 = k1 and " < (c � d)=8. If k < 2"

�
1� 4"

c�d
�
then multiple BNE

exist.

The proof is in the Appendix. Notice that 2"
�
1� 4"

c�d
�
> 0 as long as

" < (c� d)=8.
To summarize our discussion of games with strategic substitutes, a unique

equilibrium exists if either " or k (or both) are large. Intuitively, deterrence
by fear leads to a unique equilibrium if the fear of con�ict triggers dovish
behavior among the �weak�, while opportunism triggers aggression among
the �strong�. For this to occur, either there must be enough idiosyncratic
uncertainty (" is big), so neither player is convinced that the opponent is sim-
ilar to himself, or it must be common knowledge that one player is inherently
more hostile (k is big). If both " and k are small then multiple equilibria
exist, and the player�s face a genuine coordination problem.

6 Conclusion

Formal models are most useful if they make unambiguous predictions. Well-
known games such as chicken and stag-hunt have multiple Nash equilibria
when the payo¤ matrix is common knowledge. But the assumption that
payo¤s are common knowledge cannot even be approximately satis�ed in
practise. How can the leader of a country be sure of the enemy�s cost and
bene�ts of going to war? When payo¤s are uncertain, equilibria typically
have a �cuto¤�property: each player is aggressive only when his hostility
exceeds the cuto¤. Under quite general conditions, these cuto¤ equilibria are
unique. The su¢ cient conditions for uniqueness of equilibrium are equiva-
lent to the �small slope�conditions, on appropriately de�ned best-response
functions, familiar from the Industrial Organization literature.
As is well known, the slope conditions are useful for comparative statics.

In Baliga, Lucca and Sjöström (2009), we considered how the domestic politi-
cal system a¤ects the leader�s payo¤s, and thereby in�uences the equilibrium
probability of con�ict. In order to obtain a unique equilibrium, we made
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rather stringent assumptions, including independent types. The current pa-
per shows that uniqueness may prevail under much more general conditions.
In certain situations, multiple equilibria cannot be ruled out. In partic-

ular, multiple equilibria can exist if there is �not enough uncertainty�. If
actions are strategic complements then all equilibria must at least be cut-
o¤ equilibria. The equilibrium set might be analyzed using techniques of
monotone comparative statics, along the lines of, say, Bertrand competition
with product di¤erentiation. This is left for future research. However, if ac-
tions are strategic substitutes, then non-cuto¤equilibria may exist, and these
might represent an �irreducible�multiplicity which may limit the usefulness
of the model.

7 Appendix

7.1 Proof of non-existence of non-cuto¤ equilibria

To complete the proofs of Theorem 3 (strategic complements) and Theorem 4
(strategic substitutes), we will show that, under the hypotheses of these the-
orems, any BNE must be a cuto¤ equilibrium. Since the proofs for strategic
complements and substitutes are in part parallel, it is convenient to combine
them. Recall that the hypotheses of either theorem imply that (3) holds.
It su¢ ces to show that one player must use a cuto¤ strategy, because

(3) guarantees that the best response to a cuto¤ strategy must be a cuto¤
strategy. Notice that a constant strategy (always D or always H) is a special
case of a cuto¤ strategy, so if either player uses a constant strategy we are
done. From now on, assume neither player uses a constant strategy: some
types play D and some types play H:
For i 2 f1; 2g; de�ne

xi � inf fhi : �i(hi) = Hg (21)

and
yi � sup fhi : �i(hi) = Dg (22)

By de�nition, xi � yi: Notice that if xi = yi then player i uses a cuto¤
strategy. We will show that there is always some player i such that xi = yi.
Recall that �j(hi) denotes the probability that player j 6= i plays D;

conditional on player i�s type being hi: By de�nition of xi; player i�s type xi
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weakly prefers H, so (1) implies

xi + (1� �j(xi))(d� c) � 0 (23)

Similarly, player i�s type yi weakly prefers D, so

yi + (1� �j(yi))(d� c) � 0 (24)

By de�nition, �j(hj) = D for all hj < xj and �j(hj) = H for all hj > yj:
Therefore, for j 6= i;

F (xj � kjjxi � ki) � �j(xi) � F (yj � kjjxi � ki) (25)

and
F (xj � kjjyi � ki) � �j(yi) � F (yj � kjjyi � ki): (26)

From now on we consider the two cases separately.

Strategic complements. Without loss of generality, assume

y1 � k1 � y2 � k2: (27)

We will show that y1 = x1 so player 1 uses a cuto¤ strategy..
Since c < d, (23) and the �rst inequality of (25) (with i = 1) imply

x1 + (1� F (x2 � k2jx1 � k1))(d� c) � 0 (28)

Similarly, (24) and the �rst inequality of (26) imply

y1 + (1� F (y2 � k2jy1 � k1))(d� c) � 0 (29)

Combining (28) and (29) yields

F (y2 � k2jy1 � k1)� F (x2 � k2jx1 � k1) �
1

d� c
(y1 � x1) (30)

By (27), the inequality (30) implies

F (y1 � k1jy1 � k1)� F (x1 � k1jx1 � k1) �
1

d� c
(y1 � x1) : (31)

By the mean value theorem, there is z 2
�
�; ��
�
such that

(F1(zjz) + F2(zjz)) (y1 � x1) = F (y1 � k1jy1 � k1)� F (x1 � k1jx1 � k1)
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and substituting this in (31) yields

(F1(zjz) + F2(zjz)) (y1 � x1) �
1

d� c
(y1 � x1) : (32)

But we know that y1 � x1; and the hypothesis of Theorem 3 says that

F1(zjz) + F2(zjz) <
1

d� c

Therefore, (32) implies y1 = x1. Therefore, the proof of Theorem 3 is com-
plete.

Strategic substitutes. Assume without loss of generality that

x1 � k1 � x2 � k2 (33)

Since c > d, (23) and the second inequality of (25) imply

xi + (1� F (yj � kjjxi � ki))(d� c) � 0 (34)

By the same reasoning,

yi + (1� F (xj � kjjyi � ki))(d� c) � 0 (35)

Set i = 1 in (34) and (35) and combine the two inequalities to get

F (y2 � k2jx1 � k1)� F (x2 � k2jy1 � k1) �
1

c� d
(y1 � x1) . (36)

Set i = 1 in (34) and i = 2 in (35) and combine the two inequalities to get

F (y2 � k2jx1 � k1)� F (x1 � k1jy2 � k2) �
1

c� d
(y2 � x1) : (37)

Set i = 2 in (34) and i = 1 in (35) and combine the two inequalities to get

F (y1 � k1jx2 � k2)� F (x2 � k2jy1 � k1) �
1

c� d
(y1 � x2) : (38)

Now we need to consider several cases.

Case A: y1� k1 � y2� k2: Using this inequality and (33), the inequality
(36) implies

F (y1 � k1jx1 � k1)� F (x1 � k1jy1 � k1) �
1

c� d
(y1 � x1) (39)
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Applying the mean value theorem twice,

F (y1 � k1jx1 � k1)� F (x1 � k1jy1 � k1)

= [F (y1 � k1jx1 � k1)� F (x1 � k1jx1 � k1)] + [F (x1 � k1jx1 � k1)� F (x1 � k1jy1 � k1)]

= F1(tjx1 � k1) (y1 � x1) + F2(x1 � k1js)(x1 � y1)

= (F1(tjx1 � k1)� F2(x1 � k1js)) (y1 � x1)

for some s; t 2
�
�; ��
�
: Substituting this in (39) yields

(F1(tjx1 � k1)� F2(x1 � k1js)) (y1 � x1) �
1

c� d
(y1 � x1)

But we know that y1 � x1; so the hypothesis of Theorem 4 implies x1 = y1.
(Notice that inequality (12) was required for this step.)
Case B: y1 � k1 < y2 � k2: In this case, the inequality (38) implies

F (y2 � k2jx2 � k2)� F (x2 � k2jy2 � k2) �
1

c� d
(y1 � x2) . (40)

Case B has three subcases.
Sub-case B1: y1 � y2: Here, (40) implies

F (y2 � k2jx2 � k2)� F (x2 � k2jy2 � k2) �
1

c� d
(y2 � x2) .

This is symmetric with inequality (39), but for player 2 instead of player 1.
Applying the mean-value theorem therefore yields x2 = y2:
Sub-case B2: y2 > y1 and k2 � k1: Here, from (37) we obtain

F (y2 � k1jx1 � k1)� F (x1 � k1jy2 � k1) �
1

c� d
(y2 � x1)

This is symmetric with inequality (39), but with y2 replacing y1. Applying
the mean-value theorem therefore yields x1 = y2: But this contradicts y2 >
y1 � x1; so sub-case B2 is impossible.
Sub-case B3: y2 > y1 and k2 < k1: Here, from (38), we obtain

F (y1 � k1jx2 � k1)� F (x2 � k1jy1 � k1) �
1

c� d
(y1 � x2)

This is symmetric with inequality (39), but with x2 replacing x1. Applying
the mean-value theorem therefore yields x2 = y1: Substituting this into (38),
we obtain

F (y1 � k1jy1 � k2)� F (y1 � k2jy1 � k1) � 0: (41)
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However, recall that y > x implies F (yjx)�F (xjy) > 0: Since y1�k2 > y1�k1,
the inequality (41) cannot hold, so sub-case B3 is impossible.

Thus, in both case A and case B, some player uses a cuto¤ strategy.
Therefore, the proof of Theorem 4 is complete.

7.2 Proof of Proposition 8

We use the triangular distribution to determine the beliefs of opportunistic
types.
Conditional on �; player 1�s type h1 = �1 is uniformly distributed on

[� � "; � + "], while player 2�s type h2 = k + �2 is uniformly distributed on
[k + � � "; k + � + "]: A strategy �i : [h; �h] ! fH;Dg speci�es a choice
�i(hi) 2 fH;Dg for each type hi. If player i�s type hi thinks player j will
choose D with probability �j(hi), then his net gain from choosing H instead
of D is

hi + (d� c)(1� �j(hi)): (42)

Remark 10 If �1 < �k � 2"; then player 1 knows that h2 = k + �2 < 0;
so player 2 must be a dominant strategy dove. If �1 > c � d � k + 2"; then
player 1 knows that h2 = k + �2 > c � d; so player 2 must be a dominant
strategy hawk. If �2 < �2"; then player 2 knows that h1 = �1 < 0; so player
1 must be a dominant strategy dove. If �2 > c� d+ 2"; then player 2 knows
that h1 = �1 > c� d; so player 1 must be a dominant strategy hawk.

Consider the process of eliminating (interim) dominated strategies. In
the �rst �round�of elimination, D is eliminated for dominant strategy hawks
(hi � c � d) and H for dominant strategy doves. Now consider the second
round.
By hypothesis, k > 2":When c� d� k+2" < �1 < c� d; player 1 knows

that player 2 is a dominant strategy hawk (see Remark 10). Hence, H can
be eliminated for player 1. Indeed, even if �1 is slightly below c� d� k+2";
H can be eliminated, because player 2 is highly likely to be a dominant
strategy hawk. Let �01 be the largest �1 such that H cannot be eliminated
for player 1�s type �1 in round 2. Notice that �

0
1 < c � d � k + 2": Now if

h2 = �2 + k is slightly below c � d; then player 2 knows that player 1 has
a positive probability of having a type between �01 and c � d: Such types of
player 1 had H removed in round 2 of the elimination of interim dominated
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strategies. Therefore, in round 3, D must be eliminated for types of player 2
slightly below c�d: Let �02 be the largest �2 such thatD cannot be eliminated
for player 2 in round 3. In round 4, player 1�s types slightly below �01 will be
able to remove D, etc.
We claim that this process must eventually eliminate H for all h1 2

(0; c�d); and D for all h2 2 (0; c�d). If this were not true, then the process
cannot proceed below some h�1 > 0 and h�2 > 0: Now, h�2 > h�1 + k � 2";
otherwise type h�1 knows that h2 � h�2, and all such types have eliminated D,
but then H must be eliminated for types slightly below h�1:
Consider player 2�s type h�2 = ��2+k:He knows that h1 = �1 � h�2�k+2" <

c�d�k+2" � c�d: Now H has been eliminated for all h1 2 (h�1; c�d); and
according to type h�2; the probability that player 1�s type lies in this interval
is 1�F "(h�1jh�2�k): Therefore, if D cannot be eliminated for type h�2; it must
be the case that type h�2 weakly prefers D when the opponent uses H with
probability at most F "(h�1jh�2 � k): This implies

h�2 + (d� c)F "(h�1jh�2 � k) � 0

By a similar argument, if H cannot be eliminated for type h�1; then type
h�1 must prefer H when the opponent uses H with probability at least 1 �
F "(h�2 � kjh�1): That is,

h�1 + (d� c) (1� F "(h�2 � kjh�1)) � 0

Subtracting the �rst inequality from the second yields

h�1 � h�2 � (c� d) (1� F "(h�2 � kjh�1)� F "(h�1jh�2 � k)) = 0

where the last equality uses 18. However, this contradicts h�2 > h�1 + k � 2":

7.3 Proof of Proposition 9

By hypothesis, " < (c � d)=8. Suppose k < 2"
�
1� 4"

c�d
�
: Notice the right

hand side of the inequality is strictly positive, by the hypothesis. We will
�rst show that the process of iterated elimination of dominated strategies
stops after the �rst �round�of elimination.
Consider type h1 = c� d: In the second �round�, he cannot rule out the

possibility that player 2 will choose D when h2 < c� d: Moreover, the event
that h2 = �2 + k < c � d has positive probability when �1 = h1 = c � d
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and k < 2": Therefore, we cannot eliminate H for type h1 = c � d. Player
1�s type h1 = 0 cannot eliminate H; because H has not been eliminated for
h2 > 0: Since neither of the �boundary�opportunistic types can eliminate H;
no opportunistic type at all can eliminate H: Clearly, they cannot eliminate
D either. Thus, no opportunistic type of player 1 can eliminate any action
in round 2. A similar argument applies to player 2.
We now show that multiple equilibria exist.
Let h� = (c�d)(2"�k)2

8"2
: Notice that

(c� d) (2"� k)

8"2
> 1

because, by hypothesis, " < (c�d)=8 < (c� d) =4 and k < 2"
�
1� 4"

c�d
�
< 2".

Therefore,

h� + k � 2" =
(c� d) (2"� k)2

8"2
� (2"� k)

=

�
(c� d) (2"� k)

8"2
� 1
�
(2"� k) > 0

Also,

h� + k + 2" =
(c� d) (2"� k)2

8"2
+ k + 2" <

c� d

2
+ 4" < c� d

as, by hypothesis, " < (c� d)=8 and k < 2"
�
1� 4"

c�d
�
< 2":

Consider the following strategies: player 1 plays D if h1 � h�; player 2
plays D if either h2 � 0 or h2 2 [h�; c� d] : Notice that player 2 does not use
a cuto¤ strategy.
Consider player 1 �rst. For player 1 of type h�, the probability that player

2 plays H is F "(h� � kjh�) = (2"�k)2
8"2

and he is indi¤erent between H and D:
Higher types are more aggressive and assess a lower probability that player 2
playsH: These types strictly prefer to playH and, by a symmetric argument,
lower types prefer to play D:
We must also show player 2�s strategy is a best response. For player 2; if

he is a dominant strategy type, the speci�ed strategy is clearly optimal. For
h2 2 [h� + k � 2"; h�];

Prfh1 < h�jh2g = 1�
1

8"2
((h2 � k + 2")� h�)2 = �1(h2):
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Substituting this into (42), the net gain from playing H rather than D be-
comes

h2 +
(d� c)

8"2
(h2 � h� � k + 2")2 : (43)

This is quadratic in h2 and equals zero when h2 = h�: It reaches a maximum
at

ĥ = h� + k � 2"+ 4"2

c� d

which is interior to the interval [h� + k � 2"; h�] because by assumption k <
2"
�
1� 2"

c�d
�
: In fact, (43) is clearly strictly positive for h2 2 [h�+k�2"; h�):

For h2 2 [0; h� + k� 2"]; player 2 knows his opponent plays D and then it is
optimal to play H as (42) is equal to h2 � 0: There is a similar argument for
h2 2 (h�; c� d] and so the entire 	2(h�; h2) picture is as in Figure 4. There
is another equilibrium with the roles of players 1 and 2 reversed. There is
also an equilibrium where player 2 plays H when h2 � 0 and player 1 plays
H when h1 � c� d:6

6Let h� = (c� d)
�
1� (2"�k)2

8"2

�
: Notice that

h� � k � 2" = (c� d)
 
1� (2"� k)

2

8"2

!
� 2"� k

> (c� d) =2� 4" > 0

as 2" > k and (c� d) =8 > ": Also, by k < 2"
�
1� 4"

c�d

�
;

h� � k + 2" = (c� d)
 
1� (2"� k)

2

8"2

!
+ 2"� k

< (c� d)
�
1� (2"� k)

c� d

�
+ 2"� k

= c� d:

Players� strategies are as follows: player 2 plays D i¤ h2 � h�; player 1 plays D i¤
h1 � 0 or h1 2 [h�; c� d] :
Consider player 2 �rst. For player 2 of type h�, the probability that player 1 plays H

is F (h�jh� � k) = 1 � (2"�k)2
8"2 and he is indi¤erent between H and D: Higher types are

more aggressive and assess a lower probability that player 1 plays H: These types strictly
prefer to play H and, by a symmetric argument, lower types prefer to play D:
We must also show player 1�s strategy is a best response. For player 1; if he is a

dominant strategy type, the speci�ed strategy is clearly optimal. For h1 2 [h�; h�+2"�k];
Prfh2 < h�jh1g = 1

8"2 (h
� � k � (h1 � 2"))2 = �2(h1): Substituting this into (42), the net
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Figure 1: Ψi(x,y)
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Figure 2: Equilibrium for Strategic Complements
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Figure 3: Equilibrium for Strategic Substitutes
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Figure 4: Ψ2(h*,h2)
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