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Abstract

Two agents want to coordinate their decisions, but may also try to
extract rents from each other. Contracts are incomplete in the sense
that the agents have private information at the time when decisions
are made. Since the agent who owns an asset has the right to make
a unilateral decision regarding this asset, ownership determines dis-
agreement payoffs, which in turn determine the attainable surplus.
We find that nonintegration (where each agent owns one asset) some-
times dominates integration (where one agent owns both assets) and
vice versa. In particular, nonintegration is optimal if the gains from
cooperation are large compared to the possible rents that can be ex-
tracted. Thus, integration does not always provide the most efficient
way to resolve disputes resulting from incomplete contracts.

1 Introduction

A complete contract specifies, ex ante, a decision for every possible state of
the world. With complete contracts, decisions will be first-best (surplus-
maximizing), regardless of ownership and organizational form. However,
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if contracts are incomplete then disputes may occur about how to fill in
the missing details, and haggling over how to settle these disputes may be
costly. Williamson argued that such disputes can be settled at a lower cost
within an integrated firm, since the boss can make decisions unilaterally (see
Williamson [29], [30]). On the other hand, if the boss engages in inefficient
rent-seeking at the employee’s expense, then integration may carry its own
“costs of fiat”. In Williamson’s [29] theory of the firm, the optimal organi-
zational form trades off the costs of fiat under integration against the higher
costs of haggling under nonintegration.

If the parties can negotiate efficiently, they will agree to eliminate ineffi-
cient rent-seeking whether they are integrated or not. However, if they have
private information then the agreement must satisfy incentive-compatibility
(IC) and interim participation constraints. This can make it impossible to
reach the first-best.! The resulting loss of surplus is the cost of haggling. The
participation constraints depend on asset ownership (control rights): in the
integrated firm, the threat point is for the boss to make a unilateral decision,
while in the nonintegrated case, each agent has the right to choose a decision
relating to the asset he owns. Therefore, the cost of haggling will in general
depend on asset ownership. In our theory, the optimal organizational form
minimizes this cost. We find that either organizational form may be optimal,
depending on the parameters. This complements the analysis of Grossman
and Hart [9] and Hart and Moore [12] (henceforth GHM), where the opti-
mal organizational form provides the best incentives for ex ante investments.
There are no ex ante investments in our model.

In our model, reallocating control rights can raise total surplus by allow-
ing better decisions to be made. The logic is reminiscent of Williamson’s [32]
argument that “hostages” can incentivize bargaining and reduce the cost of
haggling. The control rights are the hostages. Consider the relationship be-
tween Nokia and Microsoft. Even before Microsoft acquired Nokia’s Devices
and Services unit, Nokia produced only Windows-based products, and most
Windows Phone devices sold were made by Nokia (O’Brien [19]). The fact
that the nonintegrated companies each controlled assets such as patents gave
them good outside options. The logic of GHM suggests that outside options
give a company bargaining power, which in turn gives it an incentive to invest
in the relationship. In contrast, the logic of our model suggests that the exis-

'In the terminology of the mechanism design literature, the equilibrium agreement is
“incentive efficient” but not necessarily first-best.



tence of good outside options can make it difficult to coordinate production
decisions. In fact, Warren [28] reports on such coordination failures:

“There are real-world examples of situations where Nokia was
building a phone and keeping information about it secret from
us,” said Joe Belfiore, a corporate vice president at Microsoft
who’s in charge of the company’s Windows Phone project. “We
would make changes in the software, or prioritize things in the
software, unaware of the work that they’re doing. And then late
in the cycle we’d find out and say, ‘If we had known that we would
have done this other thing differently and it would have turned

out better!” ” (Warren [28]).

In our model, integration is favored if the “hostages” are very valuable,
so that the potential gain from holding up the other agent — rent seeking — is
large. Eventually, integration consolidated patents in the hands of Microsoft
which removed Nokia’s outside option (Wingfield [35]).

The situation we have in mind is one where important future production
decisions cannot be specified in a long-run contract. If the agents disagree,
then the agent who owns an asset has the unilateral right to make a deci-
sion relating to this asset. This determines the disagreement (reservation)
payoffs. The production decision made by an agent will matter not only to
himself but also to the other agent, and the reservation payoffs depend on the
agents’ privately known types as well as on control rights.? This distinguishes
us from Matouschek [16], who also introduced private information into the
GHM framework. In his model, a seller owns a non-tradable asset which can
be used to produce, at a privately known cost to the seller, an input which
is sold to a buyer with a privately known valuation. Disagreement payoffs
do not depend on the agents’ private information, but do depend on who
owns two tradable assets. Under some conditions, the disagreement payoff

2Consider Grossman and Hart’s [9] example of an electricity generating plant located
next to a coal mine. If the former acquires the latter then the former has the right to
determine the ash content of the coal. Suppose how much a lower ash content is worth to
the power plant is its private information (its type). The power plant’s profit will depend
on the decision (the ash content) as well as on its type. Inasmuch as the manager of the
coal mine is not replaced, his payoff will typically also depend on the decision and on his
type (which may involve the cost of lowering the ash content). Even if the manager is
replaced, the power plant’s profit will still depend on both the ash content and its type.
Hence, reservation payoffs are type-dependent.



should be high as bargaining is likely to break down; in other cases it should
be low to facilitate bargaining. However, it seems natural that there should
be some connection between payoffs from trade and no-trade. For example,
if an efficient seller has a low production cost within a relationship with a
particular buyer, then his disagreement payoff should be high as he (presum-
ably) also has a relatively low cost of producing for some other buyer. An
explicit trading model generating the payoffs at the outside option would be
necessary to derive optimal asset ownership. This is the approach we take.
In our model, disagreement payoffs are type-dependent, and our key results
require knowledge of how the binding participation constraints depend on
types as well as on control rights.

In our model there are two agents A and B, and two production decisions
ga and gp. Each agent i € {A, B} has a privately known type denoted 6;,
which represents his idiosyncratic preference over g;. The decisions g4 and
qp are noncontractible ex ante (before 04 and g are realized). A contract
specifying g4 and ¢ can be negotiated at the interim stage, when agent ¢
knows 6;, with residual decision (or control) rights determining the outside
option. As in GHM, these decision rights are derived from asset ownership.
That is, there are two assets A and B, and the owner of asset ¢ has the right
to choose ¢;. With nonintegration, there is separate ownership of the assets
so each agent i € {A, B} has the right to choose ¢;. With integration, one
agent (“the boss”) owns both assets and has the right to choose both ¢4 and
4B-

The decision ¢; can symbolize many different types of actions. But to be
specific, suppose ¢; is the decision to either make agent i’s product “exclu-
sive”, ¢; = F, or “inclusive”, ¢; = I. An exclusive product of agent ¢ works
mainly if not solely with agent j’s product. An inclusive product of agent i is
designed to work with agent j’s product but also works well on other agents’
products. If ¢; = I and ¢; = E then agent ¢ “holds up” agent j (because
agent ¢ sells his product on all platforms while agent j has tied his fortune to
agent i), and rents p > 0 are transferred from agent j to agent i. If g4 = gp
then each agent enjoys a coordination benefit v > 0.

For example, suppose agent A produces a platform and agent B a prod-
uct such as an app or piece of hardware that works on that platform. Agent
A could choose to customize the platform so it works better with agent B’s
product than with other brands (g4 = E). Or, agent A could facilitate the
creation of products that work on multiple platforms (g4 = [). Similarly,
agent B’s product could be customized to work with agent A’s platform
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(qg = E) or on multiple platforms (¢g = I). Microsoft’s Windows Phone,
Google’s Android or Apple’s iOS are examples of mobile operating systems
that correspond to the standards on one side of a relationship. Nokia, Mo-
torola and Apple smartphones are examples of the products on the other
side. Google’s Android is an inclusive standard while Apple’s iOS is exclu-
sive. HTC and Samsung make phones that work on Android and Windows
Phone. For another example, Github, now part of Microsoft’s cloud com-
puting platform, is based on the open-source software LINUX. This allows
app developers to easily create products that work on both Github and other
platforms (see Greene [7]). Both the platform and the app developers have
coordinated on an inclusive solution. An exclusive scenario would be sub-
ject to hold-up on both sides. The cloud service suffers if an app is sold on
multiple platforms rather than just its own. An app developer that runs its
product exclusively on one cloud service may worry that the cloud service
will allow competitors onto the platform or even produce the app itself. This
is a concern of developers on Amazon’s cloud service (see Greene and Stevens
8)).

We use the revelation principle to study whether the first-best decision
profile can be implemented under integration or nonintegration.® If no con-
tract is signed then each agent gets his reservation payoff, which depends on
his type and on the allocation of control rights. Each agent’s critical type is
the type whose participation constraint is most difficult to satisfy. The key
result is that implementation is possible if and only if the sum of the critical
types’ reservation payoffs is not too large. Intuitively, if this sum is big, then
any agreement must give these critical types a big expected payoff. But other
types can always pretend to be a critical type. To prevent this preference fal-
sification (which we refer to as “haggling”), all types must get a big expected
payoft. Implementability requires that the first-best yields enough surplus to
accomplish this. Understanding the implications of this key result requires
an analysis of how the reservation payoffs depend on control rights and on
the severity of the hold-up problem, which in turn depends on the gains to
coordination (7), rent seeking (p), and the realized types (6).

With nonintegration, the critical types will try to extract rents p (by
choosing I) if negotiations break down. Their reservation payoffs are big

3 As long as the first-best can be implemented by either integration or nonintegration,
there is no need to consider more general governance structures (as these could not im-
prove). See Section 2.3 for further discussion.



when p is big, making it impossible to implement the first best. Intuitively,
to persuade these types to sign a contract, they must be compensated for the
forgone rents. This compensation is large when p is large. Since even a type
who would choose E can pretend to be a type that would choose I, incentive-
compatibility requires that all types benefit from the “compensation”. When
p is large, the first-best does not generate enough surplus to achieve this. On
the other hand, if p is small then the required compensation is small and
there is enough surplus at the first-best to satisfy all constraints.

With integration, two cases must be considered separately. In the co-
operative case, the rent p is small compared to the coordination benefit ~;
in the rent-seeking case, p is instead large compared to . For an intuitive
understanding of the two cases, consider the relationship-specificity of the
technology and the benefits of customization. In the hardware/software ex-
ample, a hardware manufacturer may make “exclusive” design choices that
maximize the utility of a specific operating system; similarly, the operating
system can be designed to exploit patents held by this particular hardware
manufacturer. These choices release coordination benefits whose magnitude
depends on the differentiation between products on each side of the trade. If
the technology is not particularly relationship-specific, say because different
hardware manufacturers use the same chips and different operating systems
run on the same chips, then the rent-seeking case is more likely to occur, be-
cause an inclusive strategy can capture revenue from multiple platforms. But
if different hardware manufacturers produce different chips, then designing
an operating system that runs on multiple chips may not be worthwhile, and
the hardware manufacturer may not find much to gain by working with dif-
ferent software producers who each want their own design. In this case, the
technology is highly relationship-specific, and the cooperative case is more
likely to occur.

Consider integration in the cooperative case (y > p). Naturally, the
boss has a high reservation payoff, as he gets his preferred action profile if
negotiations break down. But the subordinate also has a high reservation
payoff, because in the cooperative case the boss prefers to coordinate (g4 =
gg). Thus, the boss cannot make a credible threat to extract rents from
the subordinate if negotiations break down. Since the critical types of both
agents enjoy large reservation payoffs, there will be insufficient surplus at the
first-best to satisfy all the constraints.

Now consider integration in the rent-seeking case (p > 7). With high
rents p to be extracted from hold-up, the boss has a credible threat to hold
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up his subordinate (forcing him to choose E while the boss chooses I'). Thus,
if p is high the subordinate has a low, and the boss a high, reservation payoff.
Rent-extraction is inefficient since it involves giving up coordination benefits,
so as p increases the subordinate’s reservation payoff decreases faster than the
boss’s reservation payoff increases. Therefore, the sum of the critical types’
reservation payoffs is small if p is big (compared to ), so the integrated firm
can implement the first-best in the rent-seeking case.*

These results formalize the Williamsonian idea that the costs of haggling
depend on the organizational form. However, these costs are not necessar-
ily minimized in an integrated firm. There are parameter regions where the
(private) gains from rent-seeking are larger than coordination benefits, and
the first-best can be implemented with integration but not with nonintegra-
tion. But for parameter regions where coordination benefits are larger than
the potential gains from rent-seeking, the first-best can be implemented with
nonintegration but not with integration.

The rest of the paper is organized as follows. Section 2 presents the basic
model. Section 3 uses the methods of Myerson and Satterthwaite [18] to
compute expected payoffs for incentive-compatible first-best decision rules.
Section 4 studies whether interim participation constraints can be satisfied
with nonintegration, while Section 5 does the same for integration. Section
6 summarizes and interprets the results. Concluding remarks can be found
in Section 7.

2 Model

2.1 Decisions and Payoff Functions

Consider a relationship involving two agents, A and B. Two decisions have
to be made, ¢4 and ¢p. For simplicity, there are only two options, exclusivity,
E, or inclusivity, I, for each decision. For i € {A, B}, let 6; denote agent i’s
type. This type represents a private benefit from choosing I (or, equivalently,
cost of choosing E). Agent i’s type is his private information. The state of
the world is denoted 0 = (04, 0p).

4The surplus loss when the boss holds up the employee is reminiscent of Williamson’s
“cost of fiat”. However, in our model this cost is incurred only out of equilibrium. Since
the desire to avoid this cost lubricates bargaining, it is analogous to the value of a
Williamsonian “hostage”.



Agent i’s payoff function is v;(q, 0;) +t;, where v;(q, 0;) is the benefit type
0; derives from decision profile ¢ = (¢, ¢p) and t; is a monetary transfer. An
outcome of the game consists of a decision profile ¢ = (¢4, gp) and a transfer
profile t = (t4,tp). Budget balance requires that the transfers always sum
to zero: t4 +tg = 0. There are no individual limited liability constraints.

We represent v;(q,6;) in the matrix (1). The row indicates ¢; and the
column indicates g;.

1 E
E  —p gl

This payoff matrix is meant to capture the basic idea that the relationship
has cooperative, opportunistic (rent-seeking) and idiosyncratic elements. If
the decisions are coordinated (either both I or both E) then v > 0 is added
to each agent’s payoff. If ¢; =] and ¢; =FE then agent ¢ gains p > 0 at the
expense of agent j. Finally, #; (which can be positive or negative) represents
an idiosyncratic benefit agent ¢ gets from ¢; =1.

There are two salient cases. In the cooperative case we have v > p. In
this case, the benefit of coordination dominates the possible gains from rent
seeking, and the biggest number in payoff matrix (1) is always on the main
diagonal. In the rent-seeking case we have p > 7. In this case, the gain
from rent seeking dominates the benefit of coordination. The incentives to
cooperate or rent-seek will determine the optimal allocation of control rights.

Types are independently drawn from a distribution with a differentiable
c.d.f. F that has bounded support [Q, @]. We make the following two as-
sumptions on F'.

Assumption 1. F'(0;) < 1/(2v) for all 0; € [0,6]. Also, 0 < —p—~
and 6 > 2. B B
Assumption 2. § = —f and F(6;) = 1 — F(—0;) for all 6, € [6,0].

Assumption 1 says that there is “sufficient uncertainty”; the density F” is
rather flat and not concentrated around one point. This will be used to show
uniqueness of equilibrium when each agent ¢ chooses ¢; non-cooperatively.
Assumption 2 says that F'is symmetric around 0, so the idiosyncratic element
0; is equally likely to favor I or F.

Note that the payoff matrix (1) is highly stylized and symmetric in order
to simplify calculations. For example, one might expect that the coordina-
tion benefit would be different, depending on which decision they coordinate
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on. Suppose g4 = qp = E means the products are optimized to work to-
gether, which raises profits by 7, while g4 = g = I means each product is
optimized to work on multiple platforms, which raises profits by ;. To sim-
plify, we assume v, = v; = . Generalizing to allow for v > 7, would be
straightforward and would not change the qualitative insights. Whether inte-
gration or nonintegration can implement the first-best would still depend on
whether the gains from rent-seeking, p, are large or small compared with the
coordination benefits. However, the exact formulation would be more com-
plicated if v, # ;. To avoid complications that do not add any insights, we

2.2 Time-line

If the agents cannot sign complete (state-contingent) contracts ex ante, will
there necessarily be a loss in surplus (compared to the first-best)? What is
the role of asset ownership? To answer these questions, we rule out ex ante
comprehensive contracting, but allow the agents to freely negotiate a con-
tract at the interim stage (after they have learned their own types). Thus,
interim contracting is frictionless: incentive and participation constraints
must be respected, but on top of that there are no additional Williamsonian
haggling inefficiencies. Following the mechanism design approach, we model
efficient interim negotiations by assuming an impartial mediator proposes
an incentive-compatible revelation mechanism. A first-best mechanism is an
incentive-compatible revelation mechanism that specifies the first-best deci-
sion profile in every state. The idea of a “mediator” is borrowed from the
mechanism design literature. It is a convenient way to model negotiations,
but the mediator should not be thought of as an actual person (“social plan-
ner”).

At the ex ante stage, before the agents know their own types, the mediator
allocates control rights (asset ownership). If he allocates one asset to each
agent, we call this nonintegration. If he allocates both assets to the same
agent, say agent A, we call this integration. The time-line is the following.

Stage 0. Control rights are allocated (the mediator chooses either “integra-
tion” or “nonintegration”).

Stage 1. Each agent ¢ € {A, B} privately observes his own type 6;.



Stage 2. The mediator proposes an incentive-compatible revelation mecha-
nism I". Then each agent (simultaneously) either accepts or rejects I'.
If both accept, then move to stage 3a, otherwise move to stage 3b.

Stage 3. (a) If at stage 2 both agents accepted I', then each agent reveals
his type and an outcome is implemented as specified by I'. (b) If at
least one agent rejected I' at stage 2, then under integration agent A
chooses both g4 and g, while under nonintegration agent A chooses
qa and agent B chooses ¢g.

Decisions and transfers are contractible in the sense that the outcome at
stage 3a is final and not subject to moral hazard or ex post renegotiation.
This frictionless full-commitment benchmark for the interim negotiations will
reveal whether surplus losses are a necessary consequence of the inability to
sign complete contracts ex ante.

At stage 2, each agent has an outside option, namely, to refuse to partic-
ipate in I' and move to stage 3b. For all types to participate, I' must satisfy
interim participation, or individual rationality (IR), constraints: each type
must expect to get at least his reservation payoff, i.e., what he expects to get
if stage 3b is reached. This reservation payoff depends on the allocation of
control rights: under integration, agent A chooses both ¢4 and ¢p at stage
3b, while under nonintegration, agent A chooses ¢4 and agent B chooses gp
simultaneously and independently. (No monetary transfers are ever made
at stage 3b.) Again, the outcome is final and not subject to renegotiation.
If a mechanism I' satisfies all interim IR constraints, then I' is said to be
individually rational. Tt is important to note that in our model, individual
rationality always refers to interim constraints.

The mediator’s objective is to maximize the social surplus. We will char-
acterize the conditions under which a first-best mechanism can satisfy the
IR constraints with integration or nonintegration. If the IR constraints can
be satisfied with integration (resp. nonintegration), then the social surplus
is maximized by choosing integration (resp. nonintegration) at stage 0.

2.3 Discussion
2.3.1 Interim stage

By having a mediator propose a mechanism at stage 2, we can identify
whether, in principle, the first best is implementable by some mechanism.
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By the revelation principle, we may focus on incentive-compatible revela-
tion mechanisms. The cost of haggling will be at the theoretical minimum,
in the sense that negotiations are efficient and subject only to IC and IR
constraints. Asset ownership determines the IR constraints, but assets have
no intrinsic utility; all that matters is the resulting decisions. For this rea-
son, there is nothing to be gained by allowing the revelation mechanism to
reallocate assets.

An important assumption is that the contracting opportunities are the
same in both the integrated and the nonintegrated case. In reality, a dispute
within an integrated firm cannot be settled in court, making it harder to en-
force contracts (see Williamson’s [34] discussion of “forebearance”). However,
real-world organizations do contain mechanisms for aggregating information
and making decisions, perhaps enforced by reputational concerns. In this pa-
per, we isolate the impact of incomplete information and interim contracting
on optimal organization form. Thus, we abstract from the (interesting) pos-
sibility that different organizational forms face different contracting frictions,
such as limits on enforcement.

We rule out renegotiation of the mechanism I'. Suppose after an agent
has rejected a proposed mechanism, renegotiation could occur; perhaps the
agents could engage a new “mediator” to help them negotiate a new agree-
ment. This would strengthen the IR constraints in the original mechanism,
reducing the attainable surplus (under both integration and nonintegration).
Gains from coordination and rents from hold-up may interact in different
ways under renegotiation, which is an interesting topic for future study.
However, the results would depend on the exact details of how renegotia-
tion occurs, and on how beliefs about the state change when a mechanism
is rejected. The study would also have to face a possible infinite regress: if
the renegotiation under the “new mediator” breaks down, the agents may
re-renegotiate under a “new new mediator”, etc.

Another interesting challenge would be to eliminate the mediator(s), and
model the interim contracting stage in a less abstract way. For example, if
agent A owns both assets then he might propose a decision-making procedure
(a mechanism).? Such a study would face the problem of information leakage:
agent B might infer agent A’s type from the procedure he proposes (player
A would be an “informed principal”). The results would again depend on

SWith nonintegration a more symmetric procedure could be used; perhaps each agent
is equally likely to propose a mechanism.
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the exact details of the game, and on how agent B’s beliefs are formed. The
mediator approach allows us to bypass these issues, and derive a theoretical
benchmark from which we can derive intuitions about key variables.

2.3.2 Ex ante stage

At the ex ante stage, the allocation of control rights is determined. In the
spirit of the mechanism design literature, the mediator chooses integration or
nonintegration. Again, the mediator could be dropped at the cost of making
the game more involved. In an alternative formulation, the agents would
acquire assets at the ex ante stage without the help of a mediator. This
would not change the main results: the conditions under which integration
or nonintegration maximizes the surplus. These results are driven by the key
“incomplete contracts” assumption: the allocation of control rights is the
only instrument available for influencing future Inclusivity /Exclusivity deci-
sions. Thus, the two agents cannot, at the ex ante stage, contract on future
decisions. Neither can they influence the payoffs they get from these deci-
sions. Note that agent i’s payoff from decision profile (¢4, ¢g) is independent
of who owns which asset. Asset ownership thus has no intrinsic utility, but
conveys “pure control rights” in the parlance of Segal and Whinston [26].
Payoffs depend on decisions, but er ante it is impossible to contractually
influence the payoff an agent gets from a particular decision.

It is useful to keep in mind a scenario where the two agents have already
acquired their private information the first time they meet. Even if their
interaction will last a long time, our model applies as long as their types
are persistent over time. This might be the case, for example, if the private
information relates to personal skills or knowledge. Suppose instead the
interaction will last a long time and the agents draw new types at some
point. If their initial types are privately known, then the attainable surplus
will initially depend on asset ownership as in our current (static) model.
But if future production decisions can be contracted on, and if they can
commit to using an AGV mechanism in the future, then the future surplus
is independent of the initial ownership. However, such contracting on future
production decisions would go against the spirit of the incomplete contracts
literature (see Section 7 for further discussion).

Consider several ways our current game could be changed to improve the
ex ante contracting abilities. First, suppose that at stage 0, the mediator
first allocates control rights, and then proposes a revelation mechanism I'
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which specifies Inclusivity /Exclusivity decisions as a function of announce-
ments made at the interim stage. The agents must accept or reject I' before
learning their own types. If someone rejects I', then at the interim stage the
agents make decisions non-cooperatively, based on their initially assigned
control rights. But if both accept, they are committed to playing I' at the in-
terim stage. This commitment removes the interim participation constraints:
they are forced to play I' interim. Then for any initial allocation of control
rights, the mediator can always implement the first-best by proposing an
AGV mechanism (d’Aspremont and Gérard-Varet [3]) which satisfies ex ante
participation constraints (see Section 3). This corresponds to a complete
state-contingent contract; the outcome for each state would be specified ex
ante by the AGV mechanism. The issue of integration versus nonintegration
is then moot.5

Next, suppose at the ex ante stage the agents cannot contract on state-
contingent Inclusivity /Exclusivity decisions, but they can contract on a ran-
domized (but not state-contingent) “status quo” decision profile §. At the
interim stage, they can contract on a revelation mechanism I' , which must
satisfy participation constraints with respect to . Segal and Whinston [25]
show that if ¢ has the same distribution as the first-best decision profile, then
an interim individually rational AGV mechanism exists.” Their argument is
as follows: agent i of type 6; could lie and randomize his report to equal
the distribution F. This would give him a payoff equal to the outside option
when agent j tells the truth. But this deviation cannot be profitable as IC
is satisfied by the AGV mechanism. Hence, if IC holds then interim IR also
holds. Because decisions are contractible ex ante, they are divorced from
ownership of assets. Again, the first-best can always be implemented, so the
issue of integration versus nonintegration is moot. We rule out such ex ante
contracts. In the technology example, the parties themselves may know what
a customized or standardized product might be, but it is hard to describe
the features ex ante. Describing a randomization over features would be even

6The issue would also be moot for contracting under complete information, where each
agent knows 6§ = (04,0p). Consider the following mechanism. Agent A makes a take-it-
or-leave-it offer consisting of a proposed decision profile and a transfer to agent B. If agent
B rejects the offer, then he gets some reservation payoff (which may depend on control
rights). In subgame perfect equilibrium, agent A proposes the first-best decision profile
and a transfer such that agent B gets exactly his reservation payoff.

"The constants k; in the AGV mechanism can be chosen so each agent’s ex ante expected
payment is zero. See Segal and Whinston [25] for details.
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harder. In the spirit of the incomplete contracts literature, we rule out ex
ante contracting on mechanisms or on randomized decision profiles.

The allocation of control rights is the only thing to be determined ex
ante. Specifically, the mediator chooses either integration or nonintegration.
Restricting the mediator to these two options is without loss of generality if
the parameter values are such that one of them implements the first-best. But
for other parameter values, alternative allocations of control rights might do
better. Indeed, one particular allocation is guaranteed to do so: the mediator
keeps all the control rights for himself. He can then choose the randomized
decision profile ¢ discussed in the previous paragraph if any agent rejects the
proposed mechanism at stage 2. By the argument of the previous paragraph,
the first-best is implemented. (Of course, in practice this solution would be
irrelevant if for some reason it is impractical to give decision rights to a third
party.) Alternatively, the mediator could allocate stochastic control rights:
if I' is rejected at stage 2 then a randomizing device determines which agent
has which control right. With some probability, the control rights could be
reversed (agent A chooses qp and agent B chooses ¢4). Finally, the mediator
could lower reservation values by allocating contingent control rights: an
agent who rejects I' is forced to give up (or sell) his control rights to the
other agent. If neither integration nor nonintegration can implement the
first-best, then stochastic or contingent control rights could improve. Of
course, in practice if might be difficult to verify which agent has refused
to participate, hence contingent control rights would be hard to enforce.
Similarly, in practice it may be difficult to commit to a randomization.

If we were to consider which allocation of control rights is optimal for all
parameter values, the solution is either known but hard to interpret (let the
mediator hold the control rights), or we have to rule out such unappealing
“solutions”. However, we do not know a systematic basis for doing this,
i.e., where to draw the line between feasible (“reasonable”) and infeasible
(“unreasonable”) governance structures. If the mediator is not allowed to
hold the control rights, can he allocate randomized or contingent rights? We
avoid this issue by restricting attention to parameter values where either
integration or non-integration implement the first-best.
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3 Incentive Compatible First-Best Mechanisms

We begin by identifying first-best allocations. The social surplus is the sum
of agent A’s and agent B’s payoff. We represent the social surplus in the
following matrix. The row indicates ¢4 and the column indicates ¢g.

1 E
I 9A+9B+2'Y 9.4 (2)
FE 93 2"}/

Note that neither p nor (¢4, tp) matter for social surplus.

For any type profile § = (04, 0p), the first-best (socially optimal) decision
profile is denoted ¢*(0) = (¢%(0), q5(6)). By definition, ¢*(#) maximizes the
social surplus, i.e., it selects the biggest number in the matrix (2).® Figure 1
illustrates the first-best. It is easy to see that if §; < —2+ (Case 1) or 0; > 2~
(Case 3) it is optimal to set ¢(0) =F and ¢ () =I respectively. In the
intermediate case (Case 2), where —2v < 6; < 2, the surplus maximizing
decision is always on the main diagonal of the matrix (2). Specifically, ¢*(6) =
(E,E) if04+60p <0, and q*(@) = (I,I) if0r+60p > 0.

81f two numbers are the same, either decision profile can be chosen, but this will happen
with probability zero.
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Figure 1: First Best
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We can sum payoffs and integrate to calculate the ex ante expected social
surplus generated under the first-best decision rule:

(F@D%s+2/‘wF@) 3)

2y

2y

S* = 4yF(2y) — /

We will next consider a first-best mechanism I' and study the constraints
imposed by incentive compatibility. We will use the first-best allocations
q*(f) to compute any type’s expected payoff from I', assuming all types
participate (later, we will check if interim IR constraints hold). The agents

are symmetric, so it suffices to consider agent A.
Let

t(0a) = /:tA(QA,éB)dF(éB)

16



denote agent A’s expected transfer when his type is 04, and let

0 ~ ~
UA(QA)E\/G UA(q*(QA,HB),QA)dF(QB)+t(9,4)

denote type 04’s expected payoff. The ex ante expected payoff for agent A
is

0
VAE/Q UA(HA)CZF(HA)

There are three cases.

Case 1: 04 < —2v. Then g4 = E. Agent A gets v with probability
F(2v) and —p with probability 1 — F(2v). Thus, agent A’s expected payoff

1S

ua(0a) =t(0a) +7F(27) — p(1 = F(27)) = t(0a) —p+ (v +p)F(27). (4)
Case 2: —2v < 04 < 2. Then the decision is (E,E) if 5 < —04, and
(I,I) otherwise, so agent A expects

UA(QA) = t(@A) "‘7"“914(1 — F(—@A))) = t(&A) + v+ QAF(QA). (5)

using Assumption 2.

Case 3: 04 > 2v. Then g4 = I. Agent A gets v with probability
1 — F(—2v) = F(2v), and p with probability 1 — F(2vy). Thus, agent A
expects

ua(0a) = t(04)+04+7F(27)+p(1=F(27)) = t(04) +p+04+(y — p) F(27).
(6)

Incentive compatibility imposes restrictions on the transfer function. In
Case 1, the decision profile is independent of 0 4, so the expected transfer must
equal some constant ¢4 for all such types, and then from (4) the expected
payoff is constant as well. Thus, for all 4 < —2v we have t(04) = t4 and

ua(fa) =uy =ta—p+(y+p)F(27). (7)
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In Case 2, the arguments of Myerson and Satterthwaite [18] imply that
u 4 is differentiable almost everywhere, and u/,(64) = F'(64) for 64 such that
—2v < 04 < 2v. This implies that

0a
ua(024) :gA+/ F(s)ds (8)
—2y
if —2y < 04 < 27.
In Case 3, the arguments of Myerson and Satterthwaite [18] imply «/,(04) =
1. Using integration by parts and Assumption 2, this implies that

2y
ua(0a) = uA(QW)—i—@A—Qv:gA—F/ F(s)ds+ 04 — 2y
= QA‘i‘eA (9)

if 0 A > 2’}/ .
Let V; be agent i’s ex ante expected payoff. We can combine the three
cases to compute V4 and Vz and sum to get:’

Va+ Vg

— wytup+2 ( /_ :: { /_ 92 F(s)ds] dF(0) + /2 eede))

0

(F(s))*ds + 2/ sdF(s). (10)

2y

2y
= uA+uB+47F(27)—2/

Budget balance requires that the sum of the expected payoffs equals the
expected social surplus:

Vi+ Vs =S". (11)
Using (10) and (11), we obtain:

wituy = [ : (F(s)) ds. (12)

9This calculation uses the fact that

2y 0; 2 2~
/_2 [ F)as| are) = F(2) /_2 F(s)ds—/_2 (F(60:))2d0;
2y
= Pz - [ (Fe)R.
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We will use this minimum rent that low types must receive to study when
the first-best is implementable.

The well-known AGV mechanism is a first-best mechanism. Given the
revealed types (64,05), the first-best decision ¢*(0 4, 05) is chosen, and agent
A gets the AGV transfer

g ~ ~
£a(04,0p) = /9 vi(q* (0., 05), 0)dF (0

— /0 va(q*(04,05),04)dF (0.4) + ka (13)

where k4 is a constant. Player B’s transfer is given by the analogous expres-
sion, with a constant k. Budget balance requires k4 + kg = 0.1°

4 Implementing the First-Best with Nonin-
tegration

Whether or not a first-best mechanism satisfies IR constraints depends on
asset ownership. We begin by studying nonintegration, where each agent
owns his own asset. Thus, if stage 3b is reached, each agent i € {A, B}
chooses ¢; knowing his own type 6; but not the other agent’s type 6;. We
will identify the type whose IR constraint is the most difficult to satisfy.
Recall that all IR constraints are interim constraints.

Consider a noncooperative (Bayesian-Nash) equilibrium of this stage 3b
game.'! Since higher types are more inclined to choose I, each agent must

10 A5 alluded to in Section 2.3, the ex ante participation constraints can be satisfied by
a judicious choice of k4. Agent i’s ex ante reservation payoff r{ would depend on how
decisions are expected to be made if someone rejects the mechanism. However, since the
AGV mechanism is first best, its total expected surplus can be no smaller than r$ + r%.
Setting k4 appropriately ensures that each agent i gets at least r{ and so is willing, ex
ante, to accept the mechanism.

1 To simplify, we make two assumptions about the noncooperative game played at stage
3b: (i) passive beliefs: each agent maintains his prior beliefs about the other agent’s type,
and (ii) no cheap talk. Either assumption could be changed, and the results would be
qualitatively the same. Quantitatively the results would change, because the reservation
payoffs would change. But the disagreement point would still not be first best, and con-
trol rights would still matter for the attainable surplus. Passive beliefs were introduced by
Rubinstein [23] and is a common assumption. The model with cheap talk would be remi-
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use a cutoff strategy. Suppose agent B chooses qg =F if and only if 0 < z,
which happens with probability F'(x). Then, agent A prefers g4 =FE if

F(x)y = (1= F(z)p>0a+ F(z)p+ (1 - F(x))y
which is equivalent to
0a < (2F(z) = 1)y —p.

Thus, if agent B uses cutoff x, agent A’s best response is to use the cutoff y
defined by

y=@2F@) -1y —p. (14)
By Assumption 1, the best response function has slope less than one:

dy

2 =2F'(2)y < 1.

0 ()7

Therefore, there is a unique noncooperative equilibrium. By the symmetry
of the game, this equilibrium must be symmetric, and it can be found by
setting © = y in (14). Thus, in the unique equilibrium, each agent uses the
cutoff #* defined by

0" +~v+p=2F0"). (15)

It can be checked that —y — p < #* < —p. Figure 2 illustrates the noncoop-
erative equilibrium under nonintegration.

niscent of Alonso, Dessein and Matouschek [1] and Rantakari [22], but with a comparison
of integration and nonintegration, rather than centralization versus decentralization.
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Figure 2: Nonintegration
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Agent i’s noncooperative equilibrium expected payoff is
VE(O7) = p(1 = F(07)) = —p+ (v + p) F(0) (16)
if 0; < 0" and
Oi+7+ (p—)EF07) (17)

if 0; > 0*.

Since the noncooperative equilibrium is played at stage 3b if I is rejected
at stage 2, agent i’s reservation payoff at stage 2 is given by (16) if 0; < 6*
and (17) if 6; > 0.

Let I be a first-best mechanism. Which type 6; is most reluctant to
accept ' at stage 27 If stage 3b is reached, there is no check on opportunism,
and type 6; > 0" benefits by playing I, thus gaining p when §; < #*. Since p
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is not a social gain, I' will tend to reduce this opportunistic benefit. Indeed,
consider type #; such that 6% < 0; < 2. If he accepts I, the first-best decision
rule will, with some probability, make him forego the opportunistic gain p
by implementing ¢; =F. As the benefit from ¢; =F is decreasing in the type,
in the range [0*, 2] the disadvantage of the first-best is the greatest for type
27. On the other hand, if 6, > 2v then ¢; =I both in the noncooperative
equilibrium and in the first-best, so the disadvantage is not any greater for
types above 2v than it is for type 2. This intuitive argument suggests that
the most difficult IR constraint to satisfy is for type 2v. That is, player ¢’s
critical type is 0; = 2. Lemma 1 verifies that the argument is correct. (All
missing results and proofs are in the Appendix.)

Next, note that under nonintegration, the noncooperative equilibrium
favors type 27v inasmuch as he can benefit from the opportunistic benefit
p. Still, when p is low, type 27 does not need a big transfer to accept
I'. Then, other types would not gain much by pretending to be type 2.
Transfers to all types can be correspondingly low without violating IC. Then
there is enough surplus at the first-best to satisfy all IC and IR constraints
without violating budget balance. But when p is high, it takes a big expected
transfer to make type 2y accept I'. The IC constraints imply the expected
transfer must be high to all types. In terms of the AGV mechanism, we need
k4 > 0 and kg > 0 which violates budget balance, so the first-best cannot
be implemented. Using (12), we get the following result:

Proposition 1 With nonintegration, there exists an individually rational
first-best mechanism if and only if

/_: (F(s))2ds > 2pF(07) + 2v(1 — F(67)). (18)

In the Appendix, we show this can be expressed in terms of rent p and
gains from coordination 7.

Theorem 1 With nonintegration, there exists an individually rational first-
best mechanism if and only if p < p*(vy), where 0 < p*(7y) < 7.
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5 Implementing the First-Best with Integra-
tion

Now we study the IR constraints for a first-best mechanism I' under inte-
gration. Without loss of generality (since the agents are symmetric ex ante),
let agent A be “the boss”. Thus, if stage 3b is reached, agent A unilater-
ally chooses the decision profile (g4, ¢p) which is best for himself, given 6 ,4.
That is, he picks the greatest number in the payoff matrix (1), for i = A.
Notice that agent A’s decision doesn’t depend on his beliefs about 0p, since
fp doesn’t influence his payoff.

Since agent A can choose the decision profile unilaterally if stage 3b is
reached, his reservation payoff at stage 2 is high. If agent B’s reservation
payoff were correspondingly low, agent B would be willing to pay a large
transfer in a first-best mechanism. In this case, an AGV mechanism with
a large positive k4 would be individually rational. But agent B’s reserva-
tion payoff depends on agent A’s incentive to cooperate or rent-seek. In the
cooperative case where v > p, at stage 3b agent A will never behave oppor-
tunistically (in the sense of transferring p from agent B to himself). In the
rent-seeking case where p > ~, at stage 3b agent A will sometimes choose
(qa,q8) = (I,F), a rent-seeking policy which transfers p from agent B to
himself. Since the IR constraints differ in the two cases, we treat them sepa-
rately. We emphasize the key fact that agent B’s reservation payoff at stage
2 is quite different in the two cases: high in the cooperative case (making it
hard to satisfy the IR constraints) but low in the rent-seeking case (making
it easy to satisfy the IR constraints).

5.1 The Cooperative Case

Suppose p < v and ' is rejected at stage 2. At stage 3b agent A chooses
(E,E)if 04 < 0 and (I,]) otherwise. Therefore, if agent A rejects I' at stage
2 then his payoft at stage 3b will be

v+ max{0,60.}. (19)

This is agent A’s reservation payoff at stage 2. Of course, since agent A does
not take 6p into account, his decision at stage 3b is not necessarily first-best;
the exception is when 65 = 0, since then agent B is indifferent between (E,E)
and (I, ) so whatever agent A prefers will be socially efficient. At stage 3b
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agent B gets v if 84 < 0 and 05 + 7 otherwise, so if agent B rejects I' at
stage 2 his expected payoff is

This is agent B’s reservation payoff at stage 2. Figure 3 illustrates what
happens at stage 3b.

Figure 3: Integration: Cooperative Case (p <y)
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Lemma 3 in the Appendix shows that 6z = 0 is agent B’s critical type.
This is intuitive, because if type 0 = 0 rejects the first-best mechanism I"
the boss would anyway choose the first-best decision. Type 5 = 0 would
therefore reject any I' which requires him to make a payment to agent A.
Type 0 # 0 would in principle be willing to pay to implement the first-best,
because if he rejects I' then at stage 3b his preference over (F,E) versus
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(I, I) would not be not taken into account. However, the payment that can
be extracted from type g # 0 is constrained by the fact that he can haggle,
pretending to be type 5 = 0 who is indifferent between (E,E) and (I, ])
and therefore cannot be made to pay. Information rents will be too large.
Intuitively, the boss will require a large “bribe” to give up his control rights
and agree to I'. But the possibility of haggling, and the fact that hold-up is
not a credible threat in the cooperative case, means that only small bribes
can be extracted from the subordinate. In terms of the AGV mechanism,
persuading agent A to give up his control rights requires that k, is large
and positive. But budget balance forces kg = —k, and type 6 = 0 would
certainly not accept a large negative kg. Therefore, the first-best cannot be
implemented:

Theorem 2 If p < v, then with integration no first-best mechanism is indi-
vidually rational.

Finally, combining Theorems 1 and 2 we get:

Theorem 3 Cooperative Case. Suppose p < ~v. Then, with integration no
first-best individually rational mechanism exists; with nonintegration such a
mechanism exists if and only if p < p*(v), where 0 < p*(y) < 7.

5.2 The Rent-Seeking Case

Suppose p > ~v and I is rejected at stage 2. At stage 3b, agent A chooses
(E,E)if 04 <~y —pand (I,E) otherwise. Thus, agent A’s reservation payoff
is max {v,04 + p}. At stage 3b agent B receives 7y if 4 < v — p and —p
otherwise, so agent B’s reservation payoff is

Fly=p)y—p(1=F(y=p))=—p+Fly—p)(v+0p).

Notice that v — p < 0 so F(y — p) < 1/2. Figure 4 illustrates the stage 3b
rent-seeking policy.
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Figure 4: Integration: Rent-Seeking Case (y < p)
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At stage 3b, agent A will always choose qg =F in the rent-seeking case.
Since the high types of agent B would derive a large benefit from ¢ =I,
they are eager to accept I'. In contrast, the low types of B do not mind if
qp =FE. Indeed, if g < —2v then g =F in the first-best for sure, i.e., qp
will be the same at stages 3a and 3b when 05 < —27. These types all have
the same IR constraint, and it is intuitively clear that this is most difficult
IR constraint to satisfy for agent B. Lemma 4 in the Appendix shows this
formally.

From Theorem 1, as p*(y) < 7, we already know that the first-best cannot
be implemented under nonintegration. High rents imply that the benefits
of haggling are high under nonintegration and this creates inefficiency. In
contrast, there are circumstances where the first-best can be implemented
under integration:
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Theorem 4 If p > ~, then with integration a first-best individually rational
mechanism exists if and only if

|6 s = P =06+ ) (21)

To interpret Theorem 4, notice that (21) holds in the following three
scenarios: (i) when the idiosyncratic preference is relatively unimportant;
(ii) when p is only slightly bigger than ~y; (iii) when p is much bigger than .

To prove (i), define z = p — v > 0. We make 0; less important, without
changing the relative size of p and 7, by simultaneously increasing p and ~,
while keeping z = p — v fixed. Now (21) can be written as

/ ! (F(s))2 ds > F(—z)(2y + 2).

_27

Raising v increases the left hand side at the rate
2(F(27)" +2(F(=27))* = 2(F(27))" + 2 (1 = F(2))”

which always exceeds 1 and, in fact, will be close to 2 for v large. But the
right hand side goes up only at the rate 2F(—z) < 1 because —z < 0 and
F(0) = 1/2. Therefore, (21) is bound to hold for « large enough, for any
given z.

To prove (ii), note that (21) holds with strict inequality when p = =,
because the left side lies strictly between + and 2+ while the right side equals
~v when p = ~. Thus (21) also holds for p slightly above ~.

To prove (iii), note that F(y — p) = 0 whenever v — p < 6. Therefore,
(21) holds if p > v — 6.

To visualize inequality (21), suppose F' is the uniform distribution on
[—3,3]. In Figure 5, the purple (or darkly shaded) area is the set of (v, p)
such that p > v and the inequality (21) holds. Thus, if (v, p) belongs to the
this area, the first-best can be implemented under integration. The north-
west edge of the purple area is the set of (7, p) such that there is equality in

(21). If both v and p increase by the same amount then we move into the
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purple area (property (i)); the purple area includes all (v, p) slightly above
the 45 degree line (property (ii)); and if p is increased while ~ is fixed, we
move into the purple area (property (iii)).

Figure 5

The First Best in the Uniform Case
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To understand why is it possible to implement the first-best with inte-
gration in the rent-seeking case, notice that if agent B rejects I' then there is
a chance that he will be held up at stage 3b (the outcome will be (1,E) and
agent B loses p). This imposes an expected cost on all of player B’s types;
in terms of the AGV mechanism, he is willing to accept k4 = —kg > 0.
Haggling (misrepresenting information) is not a serious problem: because all
of agent B’s types will suffer from hold-up if negotiations break down, there
is no type that has to be given a large expected payoff to participate, hence
agent B does not have much to gain from misrepresenting his type. Surplus
is destroyed if stage 3b is reached because actions are not efficiently coordi-
nated, and the extra surplus generated by the first-best can be sufficient to
satisfy both agents’ individual rationality constraints.
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Combining Theorems 1 and 4, we have the following result:

Theorem 5 Rent-Seeking Case. Suppose p > ~v. Then, with nonintegration
no first-best individually rational mechanism exists; with integration such a
mechanism ezists if and only if

| E6 s> Pl -6+ )

_2»}/

6 Summary of the Results

Our results show how the attainable surplus depends on the allocation of
control rights. With nonintegration, each agent has a fairly good bargain-
ing position, because he has some decision rights if negotiations fail. But
the reservation payoff, which determines his bargaining strength, is type-
dependent. If p is large compared to 7y (so the rent-seeking motive is strong),
then some types could gain a lot from rent-seeking if negotiations fail. Their
strong bargaining position spills over to other types, who can always pre-
tend to have a lot to gain from rent-seeking. The threat of such preference
falsification, or “haggling”, by nonintegrated agents may make the first-best
unattainable. Specifically, if the rent-seeking motive is strong, then for a
first-best mechanism I' to both attract the types who benefit the most from
rent-seeking and prevent other types from haggling would require more sur-
plus than is available.

Williamson [30] suggested that integration might eliminate costly hag-
gling. But both integration and nonintegration require information trans-
mission, and where the threat of haggling is more serious depends on the
parameters. Under integration, agent A has a high reservation payoff, since
he has all the decision rights if negotiations break down. Agent B’s reserva-
tion payoff depends on agent A’s relative incentives to cooperate or rent-seek.
In the rent-seeking case (where p is large compared to ), agent B’s reserva-
tion payoff is low because hold-up is a credible threat. Accordingly, agent B
is willing to make a large monetary transfer to agent A in order to get the
first-best decision. This large transfer persuades agent A to give up his deci-
sion rights, so the first-best is implementable with integration. Intuitively, in
the rent-seeking case, if negotiations break down the subordinate’s losses will
exceed the boss’s gains, and this makes it possible to agree on the first-best.
In the cooperative case, however, agent B knows that he will never be held
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up. This means that agent B’s type 85 = 0, who has no idiosyncratic prefer-
ence over which decision to make, has a very good bargaining position. His
other types can pretend to be type g = 0, giving them significant bargain-
ing power as well. Accordingly, agent B will not “bribe” agent A sufficiently
to give up the control rights. Agent A prefers to exercise his control rights
unilaterally. Therefore, if p is small compared to v, the first-best cannot be
implemented with integration.

Figure 6 summarizes the results for both integration and nonintegration.
Again the calculations assume F' is the uniform distribution on [—%, %] The
purple or darkly shaded area is the set of (7, p) such that with integration
a first-best individually rational mechanism exists. The light blue or lightly
shaded area is the set of (v, p) such that with nonintegration a first-best
individually rational mechanism exists (that is, in this area we have p <
p*(7))-

Figure 6
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So far, we have focused on parameter values where either integration
or nonintegration implements the first-best. For the remaining parameter
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values (i.e., the unshaded part of Figure 6), the qualitative principle is the
same: to minimize the information rents required for incentive-compatibility,
the optimal allocation of control rights minimizes the total value of outside
options for the critical types (that are most likely to walk away from ne-
gotiations). Integration yields a strictly higher surplus than nonintegration
within the purple (or darkly shaded) area in Figure 6. It is clear that for
parameters sufficiently close to this area, integration will still yield a higher
surplus than nonintegration (although decisions will be distorted since the
first-best is not implemented). Conversely, nonintegration yields a strictly
higher surplus than integration for parameters sufficiently close to the light
blue (or lightly shaded) area. Somewhere in the unshaded part of Figure 6,
between the darkly and lightly shaded areas, lies the boundary that sepa-
rates the region where integration dominates nonintegration from the region
where the converse is true. Recall, however, the discussion in Section 2.3: in
the unshaded part of Figure 6, the first-best can be implemented by giving
the mediator control rights over both assets. Thus, this ownership struc-
ture dominates both integration and nonintegration in the unshaded part of
Figure 6. Since this is hard to interpret, we do not consider it further.

7 Concluding Comments

Milgrom and Roberts [17] contrasted the bargaining costs of nonintegration
with the “influence costs” of integration (the latter being the costs incurred
when a subordinate expends time and effort on rent-seeking). In contrast,
we treat nonintegration and integration symmetrically, in each case deriving
a cost of haggling from the IC and IR constraints.!?> This symmetry also
distinguishes us from Tadelis [27]. He argued that if noncontractible changes
must be made to a product ex post, then the buyer will enjoy a higher surplus
under integration because he can more easily get the changes he wants; the
drawback of integration is instead that the seller has less incentive to reduce
costs. Each model provides a different perspective on the problem of efficient
conflict resolution under incomplete contracts.

From GHM we take the idea that asset ownership confers residual rights
of control which determine outside options. But we focus on Williamsonian

12Powell [21] considers a (symmetric) model of influence costs. In his model the two
managers play a signal-jamming game where the level of manipulation of signals depends
on allocation of decision rights.
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costs of haggling over production decisions, rather than on the incentives to
invest ex ante.'® Control rights act as a “hostage” (Williamson [32]): an agent
who gives up ownership of an asset becomes more eager to reach an agree-
ment (his participation constraints are relaxed), which reduces the cost of
haggling (lower information rents). In contrast, GHM emphasize that giving
up ownership of an asset makes an agent less willing to make relationship-
specific investments.!* Thus, the models provide different perspectives on
property rights.

Like GHM, we assume bargaining is efficient. However, efficient bargain-
ing does not necessarily imply first-best production decisions because, as
Williamson pointed out, private information may lead to “selective or dis-
tortive information disclosure” (Williamson [30], p. 26). In an interesting
discussion of different ownership structures in the biotechnology industry,'®
Pisano [20] stressed the role of information asymmetries: “The firm in charge
of R&D will accumulate asymmetric information on the technology; likewise,
the partner in charge of marketing will gain asymmetric information on the
technology’s commercial potential. Strategic misrepresentation of new infor-
mation by either party is a possibility.”

Several other papers have studied the role of property rights in efficient
bargaining. In Cramton, Gibbons and Klemperer’s [4] model, equal division
of an asset (a partnership) implements the first-best. This paper showed
that ownership matters, although their result that concentrated ownership is

13Schmitz [24] allows a seller to invest ex ante to learn his disagreement payoff as well as
to increase the value of the object being traded. The buyer has no investment opportunity
so the usual GHM intuition implies the seller should be allowed to own his assets to
minimize hold-up problems. But when there is asymmetric information as the seller learns
his outside option, the canonical result is reversed. It can be optimal for the buyer to own
the assets to reduce the seller’s incentives to collect information. Again, we have no ex
ante investments so our model is quite different.

“Hart and Holmstrom [11] also study ex post conflict, but they study behavioral phe-
nomena that might destroy surplus. Our approach is not behavioral, but has instead
private information at its center; control rights determine outside options which in turn
determine whether agreement is possible. Coordination problems are also studied by
Alonso, Dessein and Matouschek [1] and Rantakari [22], but these are models of central-
ized versus decentralized decision making when agents use cheap-talk, and hence quite
different from our model.

15One firm may own a controlling share in a separate jointly controlled venture or become
a large but minority shareholder in its trading partner; or two firms may have fifty-fifty
ownership and control specific parts of the joint venture, say with one controlling decisions
related to R&D and the other decisions related to marketing.
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never optimal makes their model less suitable for studying the choice of in-
tegration versus nonintegration. Segal and Whinston [25] clarify and greatly
extend Cramton, Gibbons and Klemperer’s [4] insights to allow more gen-
eral assumptions about assets and decisions (see also Segal and Whinston
[26]). But Segal and Whinston [25] consider the case where decisions are
contractible ex ante. As we discussed in Section 2.3, asset ownership be-
comes irrelevant in this case. In contrast, we study the importance of asset
ownership when decisions are completely non-contractible ex ante.

Baker, Gibbons and Murphy [2] argue that decision rights within an or-
ganization are not contractible: the boss cannot formally delegate decision
making to an employee, because the boss always has the right to overturn
the subordinate’s decision. More generally, they argue that formal authority
can only be allocated via asset ownership, although informal authority can
be allocated in a repeated game. In equilibrium the agent who owns the
asset must be better off than he would be by making a unilateral decision,
since the latter option cannot be contracted away. This is similar to our
participation constraint. However, unlike Baker, Gibbons and Murphy [2],
we assume the boss and the subordinate negotiate efficiently at the interim
stage, which leads to our mechanism design approach.

The usual justification for the incomplete contracts assumption is that
the possible states and actions are impossible to fully describe ex ante. At
the interim stage, the set of possible states is known to lie in a much smaller
set, and the set of feasible actions can be verified. In a well-known critique,
Maskin and Tirole [15] proposed complex ex ante contracts that mimic com-
plete contracts. However, it is not clear that a court would enforce such
long-run contracts if the parties, unable to describe states and actions, could
not have forecast scenarios for breach or the circumstances under which tak-
ing a certain action would be prohibitively costly. In such situations, the
penalty doctrine in contract law specifies that courts should not (excessively)
penalize an agent who walks away from the contract (see Eisenberg [5]). An
interim agreement, made with better knowledge of the current conditions,
would be more likely to be enforced by courts. In this case, asset ownership
would play the same role as in our model.
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8 Appendix

8.1 Missing Results and Proofs from Section 4

Lemma 1 Let I' be a first-best mechanism. With nonintegration, agent i’s
interim IR constraints are satisfied for all his types if the interim IR con-
straint 1s satisfied for any type 6; > 2+, which is true if and only if

w >+ (p—7)F(0). (22)

Proof of Lemma 1. By symmetry, it suffices to consider agent A. The IR
constraints require that agent A’s payoff under I', which is either (7), (8) or
(9) depending on 6,4, exceeds the reservation payoff, which is either (16) or
(17), again depending on 64. Thus, we consider the possible cases that can
occur.

If 04 < min{#*, —2v}, then the IR constraint is that (7) should be no less
than (16), that is,

ua(0a) =uy > —p+ (v +p)F(07).
If min{#*, —2v} < 04 < max{f*, —2v}, then the IR constraint is
0a
ua(f4) = uy +/ F(s)ds > —p+ (v + p)F(67).
—2y
If max{60*, =27} < 04 < 27, then the IR constraint is
04
ua(fa) =uy + / F(s)ds>04s+~v+ (p—)F(0%).
If 4 > 27, then the IR constraint is
ua(0a) =us+042>04+v+(p—7)F(O). (23)
Notice that

Y+ (p—=7)FO) > —p+ (v +p)F(07)

using (15) and the fact that 6 < 0. Therefore, the individual rationality
constraint for 4 > 2v, which is uy > v + (p — 7)F(6%), implies all the
others. m
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Proof of Proposition 1. The necessity of (18) follows from (12) and
Lemma 1.

To prove sufficiency of (18), consider the AGV mechanism with transfers
given by (13). Since the mechanism is incentive compatible and the out-
come is first-best, the results of Section 3 apply. If k4 = kg = 0 then the
mechanism is symmetric, so uy = ug. From (12) we obtain

1 [ )
w= g / (F(s))? ds. (24)

Inequality (18) says that (24) exceeds v+ (p—)F(6%). Therefore, by Lemma
22, all IR constraints are satisfied. m

The following result helps us express Proposition 1 in terms of + and p.

Lemma 2 For any vy, there is p*(y) € (0,7) such that (18) holds if and only
if p < p*(7).

Proof of Lemma 2. The left side of (18) can be written as

/2W (F(s)?ds — /0 (1—F(—s))2d3+/02w(F(s))2ds

_ /07 [(F(s))? + (1 — F(s))?] ds.

Since 1/2 < (F(s))” + (1 — F(s))* < 1, this expression lies strictly between
v and 2v. Therefore, if p > ~, it is impossible to satisfy (18). If p is close to
0, then 6" is close to 0 and the right hand side of (18) is close to ~y. If p is
close to 7y, then the right hand side of (18) is close to 2.

We now claim that the right hand side of (18) strictly increases from -~y
to 27 as p increases from 0 to . As the left hand side lies strictly between
~ and 27 and is independent of p, this claim will prove the lemma.

From (15), we get
w1 <0
dp — 2F'(0")y—1

The derivative of the right side of (18) with respect to p is

2P(07) +2(p =) 07 5 = 2F0) 200 =) P'0) g

38



We claim this is positive. This is equivalent to showing
— ) F'(0"

iy =DEO)
which is the same as

F(07) > (p— v+ 2vF(07)) F'(6%) = (2p+ 67) F'(0") (25)
where the equality uses (15). Because 2F"(0%)y < 1,

(20 +0")F'(0") < (2p+ 0%) /2.
Therefore, to show (25) holds we need to show that 2F(6*)y > 2p+ 6. This

is true because of (15) and p < 7. m

Proposition 1 and Lemma 2 together prove Theorem 1.

8.2 Missing Results and Proofs from Section 5.1

Lemma 3 Let T be a first-best mechanism and suppose p < . With integra-
tion the following is true. (a) Agent A’s interim IR constraints are satisfied
for all his types if the interim IR constraint is satisfied for any type 04 > 2,
which s true if and only if

Uy 27 (26)

(b) Agent B’s interim IR constraints are satisfied for all his types if the
interim IR constraint is satisfied for type 0 = 0, which is true if and only if

0
wy >y — / F(s)ds. (27)
oy
Proof of Lemma 3. The proof is analogous to the proof of Lemma 1.
The IR constraints require that the payoff under the mechanism, which is
either (7), (8) or (9) depending on the agent’s type, exceeds the reservation
payoff, which is (19) for agent A and (20) for agent B. Thus, we consider
the possible cases that can occur. First, we consider agent A.

If 04 < —27 then the IR constraint is that (7) should be no less than -,
that is, ua(0a) = u, > 7. If =2y < 0,4 <0, then the IR constraint is

04
ua(f4) = uy +/ F(s)ds > .

—2y
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If 0 <604 < 2v, then the IR constraint is

0a

ua(024) :gA+/ F(s)ds > v+ 0.

_27

If 64 > 27, then the IR constraint is
us(0a) =uy +04> 7404

It is easy to see that all these IR constraints are satisfied if the IR con-
straint holds for 6,4 > 2+, which is (26).

For agent B, the individual rationality constraints are as follows. If g <
—27, then the IR constraint is

1
up(fp) =ug > v+ 593-

If —2v < 0p < 2, then the IR constraint is

OB

1
up(fp) = ug +/ F(s)ds > v+ 563.

—2v

If 6 > 27, then the IR constraint is

1
up(dp) =up+0p>~v+ 593-

It is easy to check that all of agent B’s IR constraints are satisfied if the
IR constraint holds for type 65 = 0, which is (27). m

Then, from Lemma 3 and (12), if the first-best is implementable under
integration then

0

2y

Uyt up = / (F(s))2ds > 2y — / F(s)ds. (28)
—2y -2y

But this never holds, because the middle term and the third term are equal

at v = 0 and the derivative of the middle term with respect to ~ is always

strictly less than the derivative of the third term. Therefore, the inequality

in (28) is violated for all 4 > 0. This proves Theorem 2.
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8.3 Missing Results and Proofs from Section 5.2

Lemma 4 Let " be a first-best mechanism and suppose p > . With integra-
tion the following is true. (a) Agent A’s interim IR constraints are satisfied
for all his types if the interim IR constraint is satisfied for any type 0.4 > 2+,
which is true if and only if

Uy 2> p. (29)

(b) Agent B’s interim IR constraints are satisfied for all his types if the
interim IR constraint is satisfied for any g < —27, which s true if and only

if

up > —p+F(y = p)(y+p). (30)
Proof of Lemma 4. The proof is analogous to the proofs of Lemmas 1
and 3. Suppose first that v — p < —2+v. Then, the individual rationality

constraints for agent A are as follows.
If 64 <~ — p, then the IR constraint is

ua(fa) =uy =7 (31)
If v —p <04 < —2v, then the IR constraint is
ua(0a) =uy > 04+ p. (32)

If =2y <04 < 27, then the IR constraint is

0a
uA(QA):gA+/ F(s)ds > 04+ p. (33)

If 4 > 2v, then the IR constraint is
ua(0a) =uy+04>04+p.

If instead v — p > —2+ then (31) applies when 04 < —27, (33) applies
when v — p < 64 < 2v, and (32) is replaced by the following IR constraint
for the case —27 < 0, <~ —p:

04
ua(f4) = uy +/ F(s)ds > .

—2y
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In either case, it can be checked that all of these IR constraints hold if and
only if the IR constraint holds for 64 > 27, which is (29).

For agent B, the individual rationality constraints are as follows. If g <
—2v then the IR constraint is

ug > —p+F(y—p)(v+p).

If —2v < 0p < 27, then the IR constraint is

0B
un0s) =up + [ F(s)ds = =p+ Pl = )y + p).

If 65 > 27, then the IR constraint is
up(fp) =up+0p = —p+ F(y—p)v+p).

It can be checked that all of agent B’s IR constraints hold if and only if the
IR constraint holds for 5 < —2v, which is (30). m

Proof of Theorem 4. The necessity of (21) follows from Lemma 4 and
(12). To prove sufficiency of (21), consider the AGV mechanism with trans-
fers given by (13). Since the mechanism is incentive compatible and the
outcome is first-best, the results of Section 3 apply. Choose k4 such that
uy = p. By Lemma 4, all of agent A’s IR constraints are satisfied. From (12)
and (21),

uB:/W<F<s>>2ds—sz<v—m<v+p)—p.

—2y

Again by Lemma 4, all of agent B’s IR constraints are satisfied as well. =
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