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Two players simultaneously decide whether or not to acquire new weapons in an arms race game.
Each player’s type determines his propensity to arm. Types are private information, and are independently
drawn from a continuous distribution. With probability close to one, the best outcome for each player
is for neither to acquire new weapons (although each prefers to acquire new weapons if he thinks the
opponent will). There is a small probability that a player is a dominant strategy type who always prefers
to acquire new weapons. We find conditions under which the unique Bayesian–Nash equilibrium involves
an arms race with probability one. However, if the probability that a player is a dominant strategy type
is sufficiently small, then there is an equilibrium of thecheap-talk extensionof the game where the
probability of an arms race is close to zero.

1. INTRODUCTION

Many interactions contain a fundamental element of coordination, so multiple Nash equilibria
exist. For example, a government may not desire an arms race, but prefers to acquire new
weapons if it believes the government of a neighbouring state will acquire them. Then there may
be two pure strategy Nash equilibria: an “arms race” equilibrium in which both governments
acquire new weapons, and a “detente” equilibrium in which neither government acquires any.
Similarly, a depositor may not need his money right away, but prefers to withdraw his money
from the bank if he believes other depositors will do so. Again, two pure strategy Nash equilibria
may exist: a “bank run” equilibrium in which all depositors try to withdraw their money, and a
“liquid” equilibrium with no bank run. In both these examples, one Nash equilibrium is likely to
Pareto dominate the other. Introducing uncertainty can allow us to select one of these equilibria.
In the bank run example, each depositor may assign some very small probability to the event
that the other depositor has suffered a liquidity shock and has a dominant strategy to withdraw
money. In the arms race model, each government may assign a small but positive probability to
the event that the opponent is a truly aggressive type for whom acquiring arms is a dominant
strategy. This kind of uncertainty raises the benefit of taking a defensive action (withdrawing
money or acquiring new weapons). But, since each player knows that his opponent is thinking
this way, amultiplier effectappears, creating an escalating cycle of pessimistic expectations that
spiral toward the Pareto inferior equilibrium. This type of argument was first stated clearly by
Schelling (1960) in his classic book.

Schelling’s insight has been applied to macroeconomic phenomena such as currency attacks
and liquidity crises (see Morris and Shin, 2003). Our article differs from this literature in two
ways. First, in our model there is no common shock to preferences. A player’s type is his private
benefit from taking a certain action, which is independent across players. Second, we study the
role of cheap-talk. In particular, our model sheds some light on the strategic considerations that
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underlie information transmission and coordination in arms negotiations. While it is convenient
to present our model in terms of an arms race, the arguments would apply to any model
where an underlying coordination game has been augmented with incomplete information about
independently drawn types.

Suppose a player’s true propensity to arm,i.e. his type, is his private information. Types
are drawn independently from a continuous distribution. All types prefer the opponent to remain
unarmed, whatever action they themselves take. Also, for all types, the worst possible outcome is
to be unarmed while the opponent arms. However, the type determines whether or not the player
prefers to arm when he is unsure about the actions of the opponent. At one end of the distribution
are the aggressivedominant strategy typeswho prefer to arm regardless of the opponent’s actions.
At the other end of the distribution are the peaceful types who prefer to arm only if they are
virtually sure that the opponent will arm. Let the fraction of dominant strategy types be some
smallε > 0. These types will certainly arm, but this triggers a multiplier effect. Some fraction
δ > 0 of all types are not dominant strategy types but prefer to arm when the opponent arms
with at least probabilityε. These “almost dominant strategy types” will arm if they know that the
dominant strategy types will do so. But then, all types that prefer to arm when the opponent arms
with at least probabilityε + δ will also arm, etc. The contagion takes hold. Even though each
player thinks it isextremely unlikelythat the opponent is a dominant strategy type, theunique
Bayesian–Nash equilibrium may involve an arms race with probability one.

What can be done to escape this logic? One possibility is an “arms control treaty”. However,
in the absence of an enforcement authority (a “World Court”) such treaties are pure cheap-talk. It
is not obvious that cheap-talk can be effective in this kind of situation. Suppose, before making
the decision to arm, each player can send a hawkish (aggressive) or a dovish (conciliatory)
message to the opponent. Since messages are cheap-talk, a player is always free to arm himself
regardless of what messages were sent. Since all types are better off if the opponent does not
arm (whatever they themselves decide to do), one might suspect that all types would send the
same message, namely, whatever message is most likely to persuade the opponent not to arm.
Clearly, if all types send the same message then the talk is not informative and cannot prevent
an arms race spiral. However, we show that in fact there are cheap-talk equilibria where the talk
is informative, and the information that is generated is used to reduce the likelihood of an arms
race. If the dominant strategy types are sufficiently rare, then the equilibrium probability of an
arms race is close to zero. Thus, communication can have the dramatic effect of reducing the
probability of an arms race from one to almost zero.1

The reasoning behind the informative cheap-talk equilibrium is subtle. Although all types
want to reduce the probability that the opponent arms, players who are not dominant strategy
types also want to resolve the uncertainty about the opponent’s action in order to avoid a
coordination failure. Since different types trade off these two objectives at different rates, it is
possible to induce different types to send different messages. Consider a simplified example with
only three types. There is a “very tough” type with a high propensity to arm. He will always
arm himself, regardless of what messages are sent or received. There is “normal” type with a
low propensity to arm. He will arm himself only if he is almost sure that the opponent will arm
(and even in that case, his preference in favour of arming is not very strong). Finally, there is an
intermediate “fairly tough” type with a medium propensity to arm. He prefers to take whatever
action he thinks the opponent is most likely to take. Clearly, it is the fairly tough type who puts
the highest value on resolving the uncertainty about the opponent’s action. The very tough type
and the normal type are mainly interested in reducing the probability that the opponent arms.

1. In any cheap-talk game, there are “babbling” equilibria where the parties simply disregard the messages. We
focus on informative equilibria.
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We construct a separating equilibrium as follows. Sending the conciliatory message “I am a
dove” minimizes the probability that the opponent arms, but the uncertainty about the opponent’s
action is not resolved. Sending the aggressive message “I am a hawk” yields a higher probability
that the opponent arms, but after the talk there is no ambiguity about the opponent’s action.
In equilibrium, the very tough type and the normal type send the dovish message in order to
minimize the probability that the opponent arms, while the fairly tough type sends the hawkish
message in order to minimize the probability of a coordination failure. The equilibrium is “non-
monotonic” in the sense that the types with the highest and lowest cost pool, and the intermediate
type separates out. In order to study contagions, we will work with a continuum of types, but the
intuition for why cheap-talk works in our model is the same as in the discrete example.

Green and Stokey (1980) and Crawford and Sobel (1982) studied sender–receiver games
where only player 1 (the sender) has private information and sends a message, and only player
2 (the receiver) takes an action. Lett ∈ [0, 1] denote player 1’s type, and letp ∈ R denote
player 2’s action. Crawford and Sobel assumed preferences satisfy a sorting condition: the best
value of p, from either player’s standpoint, is strictly increasing int . Under this assumption,
they showed that all equilibria are partition equilibria of a particular kind. Specifically, the
set of types that send a particular message is always convex. Clearly, the sorting condition is
required for this result. With general preferences, different kinds of equilibria may well exist
(see Green and Stokey, 1980). In our model, types are ordered in a natural way according to
their propensity to arm, but “non-monotonic” equilibria exist becauseintermediatetypes have
the strongest preference forcoordinating on the same action as the opponent. This reasoning
depends onboth players being allowed to talk and act (otherwise the issue of coordination is
moot), so it has no counterpart in sender–receiver games of the kind studied by Green and Stokey
(1980) and Crawford and Sobel (1982).

Rubinstein (1989) and Carlsson and van Damme (1993) show how introducing a small
number of dominant strategy types into a coordination game can select a unique Bayesian–Nash
equilibrium. In the Carlsson and van Damme (1993) model, the players make noisy observations
of the true pay-off matrix. Signals (types) consist of a common shock plus a noise term. When the
noise is small, the players’ types are very highly correlated, and there is a unique equilibrium. In
contrast, we assume types are independent. This is a reasonable assumption in many applications.
In the bank-run model, liquidity shocks may be uncorrelated. In the arms race model, the costs
and benefits from acquiring new weapons may depend on psychological, moral, economic and
political considerations that are specific to a certain country or a certain leader. The enjoyment of
the “prestige” of being the leader of a nuclear state, or the pay-off from appeasing an important
constituency by building new weapons systems, are examples of benefits that would seem to be
largely independent across countries. The cost of developing nuclear weapons will be much lower
if a nation has access to technical expertise and fissile material from the former Soviet Union,
but such access will depend on numerous idiosyncratic events. Finally, even if themonetarycost
of building weapons is known to be the same in the two countries, what matters is the economic
(opportunity) cost. The opportunity cost may have a large idiosyncratic component, since it
depends on how much the leader values the pursuit ofother goals (for example, alleviating
poverty), as well as on his beliefs about the needs and resources of his country.

Harsanyi (1973) has shown that every Nash equilibrium of a complete information game
is the limit of (pure strategy) Bayesian–Nash equilibria of any sequence of close-by incomplete
information games with independent types. In contrast, we find a condition under which (in the
absence of communication) only the Pareto-inefficient arms race is a Bayesian–Nash equilibrium
outcome of the game with incomplete information, even as the fraction of dominant strategy types
goes to zero. However, our uniqueness condition is satisfied only if there is sufficient uncertainty
about the actual numerical pay-offs (as opposed to the ordinal ranking of the outcomes). Thus, a
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unique equilibrium can be the result of either sufficient uncertainty about independent types, or
sufficient correlation of types (for a discussion, see Morris and Shin, 2002b).

A large literature on sender–receiver games followed Green and Stokey (1980) and
Crawford and Sobel (1982). Unlike most articles in that literature, in our modelbothplayers have
private information, talk and act. There is a small set of models with a related structure. Baliga
and Morris (2002) discuss an example of cheap-talk with two-sided incomplete information,
Matthews and Postlewaite (1989) consider double auctions, and Austen-Smith (1990) considers
legislators with private information taking part in a debate before they vote. Most closely
related is Banks and Calvert’s (1992) model of a battle-of-the-sexes game with two-sided
incomplete information. In their model, each player has his own favourite outcome, but the
intensity of his preference is determined by his type (“high” or “low”). There is no dominant
strategy type and no multiplier effect. Without communication there are efficient asymmetric
Bayesian–Nash equilibria where one player always gets his favourite outcome. However, the
only symmetricequilibrium involves a randomization which is inefficient. Banks and Calvert
show how communication can produce a symmetric equilibrium where coordination occurs more
frequently, and playeri ’s favourite action is more likely to be chosen when the intensity of his
preference is high. In the battle-of-the-sexes game, playeri always wants playerj to take the
same action as playeri , while in our arms race game playeri always wants playerj not to arm.
Thus, the nature of communication is different in the two cases. Indeed, the true pay-off matrix
in our arms race game is with high probability astag hunt game. Aumann (1990) argues that
communication is particularly difficult in such a game, as each player wants his opponent to take
the same action whatever action he himself takes (in an arms race, each player always wants the
opponent to stop building weapons).

The article by Banks and Calvert (1992) is particularly interesting because they show that a
mediatormay be necessary for efficiency. In our model, we can approximate first-best efficiency
without a mediator when the dominant strategy types are rare. The issue of whether a mediator
is useful when the dominant strategy types are not rare is an interesting topic for future work.

This paper is organized as follows. Section 2 discusses previous models of arms races and
some historical events. Section 3 presents the basic model without communication. Amultiplier
conditionon the distribution of types is shown to be necessary and sufficient for an arms race
to occur with probability one even if the dominant strategy types are very rare. Section 4 shows
how cheap-talk reduces the probability of an arms race to almost zero when the dominant strategy
types are very rare. Section 5 concludes. Technical calculations are contained in the Appendix.

2. ARMS RACES IN THEORY AND PRACTICE

There is in practice not much distinction between offensive and defensive weapons (Schelling
(1960), Jervis (1976)). Even if a country arms for defensive purposes, these armaments will make
other countries feel less secure. Therefore, the suspicion that a country may arm,for whatever
purpose, makes other countries more likely to arm in self-defence, creating an arms race spiral
which makes everyone worse off. This is the well-knownsecurity dilemmaor spiralling model
(Jervis, 1976, 1978). Jervis (1978) based a formal discussion of this dilemma on a stag hunt game,
where each state thinks the best possible outcome is for nobody to arm, but each prefers to arm if
they think the opponent will. Jervis argued that it isirrationality that drives the arms race spiral:
“if the spiral theory is correct, it is so partly because the actors do not understand it or follow its
prescriptions” (Jervis, 1978, p. 81). Indeed, if it is common knowledge that the pay-offs are those
of a stag hunt game, it is not clear why rational players could not refrain from an arms build-
up. Kydd (1997) added incomplete information about the opponent’s preferences. In his model
there are “greedy” states who want war and “security seekers” who want peace. The discrete
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type space means there is no contagion in our sense (if greedy types are sufficiently rare then
there is no reason for security seekers to arm). Kydd (1997) discussed how initial armaments
can signal a player’s type in a multi-period game. We show how, with a continuous type space,
arms races can be triggered by an arbitrarily small probability that a player is “greedy”, and
we show how cheap-talk can signal a player’s type. Schelling (1960) developed a formal model
where players may attack each other inadvertently because of a “false alarm”. Knowing that the
opponent may inadvertently attack, each will be more likely to attack, triggering a contagion. If
the underlying problem is an imperfect warning system, then cheap-talk cannot be the solution.
We show that cheap-talk can be useful when the underlying problem is incomplete information
about the opponent’s preferences.

History provides many examples where fear and distrust, sparked by uncertainty about the
opponent’s motives, appear to have triggered arms races. For example, it is often argued that
the arms race spiral that preceded World War I was caused by Britain’s and Germany’s mutual
distrust of each other, rather than any nation’s desire to fight a war (Sontag (1933), Wainstein
(1971)). Similar mechanisms may have operated during the cold war (Leffler, 1992). The India–
Pakistan arms race is a contemporary example of escalation fuelled by mutual distrust.2

Analogous mechanisms may underliewar initiationsas well. Thucydides (1972, Book I, 23)
claimed that “the growth of Athenian power and the fear which this caused in Sparta” made the
Peloponnesian War inevitable.3 Rousseau (quoted by Jervis, 1976, p. 63) argued that “it is quite
true that it would be much better for all men to remain always at peace. But so long as there is no
security for this, everyone, having no guarantee that he can avoid war, is anxious to begin it at the
moment which suits his own interest and so forestall a neighbour, who would not fail to forestall
the attack in turn at any moment favourable to himself, so that many wars, even offensive wars,
are rather in the nature of unjust precautions for the protection of the assailant’s own possessions
than a device for seizing those of others”. Jervis (1976, p. 94) argues that war broke out in 1914
because “each of the continental powers believed that the side that struck first would gain a
major military advantage. Since to wait for the other side to clarify its intentions could mean
defeat, even a country that preferred the status-quo to a war would feel great pressures to attack”.
This suggests that one can interpret our model as a model of war initiations, with each nation
simultaneously deciding whether to attack or to hold back. However, if the perceived first-strike
advantage is large, then the true pay-off matrix is more likely to be a prisoners’ dilemma than a
stag hunt game. Spiral theorists have argued that the stag hunt game and the prisoner’s dilemma
tend to generate equally bad outcomes (Jervis, 1976, p. 67). In our model, the true pay-off matrix
is a stag hunt game with high probability, and we show that the outcome will be bad for everyone
if a “multiplier condition” is satisfied. However, there is an important difference between our
version of the security dilemma, where it is highly unlikely that a player has a dominant strategy
to attack, and a prisoner’s dilemma, where it is known that each player has a dominant strategy
to attack. The distinction is that pre-play communication is useful in the former but not the latter
case. Our results on the value of communication are irrelevant to the case of war initiations if

2. “Pakistan does not intend to aggress. . . [W]e are the victim of (Indian) aggressions” (Foreign Minister Gohar
Ayub Khan quoted by the Pakistan News Service, June 1999). “In India, one often hears that ‘Pakistan understands’ that
India has no hostile designs on it. . . . In Pakistan, however, there is strong sense that the nation’s survival is potentially at
risk in the event of a major Indian attack. Without a clearer understanding of India’s defence doctrine, this could generate
a catastrophic miscalculation” (CSIS South Asia Monitor, 1 February, 1999).

3. A famous passage describes how the Spartans are spurred on by the Corinthians: “You Spartans are the only
people in Hellas who wait calmly on events, relying on your defence not on action but on making people think you will
act. You alone do nothing in the early stages to prevent an enemy’s expansion; you wait till the enemy has doubled his
strength. Certainly you used to have the reputation of being safe and sure enough; now one wonders if this reputation
was deserved. . . . The Athenians. . . live close to you, yet you still do not appear to notice them; instead of going out to
meet them, you prefer to stand still and wait till you are attacked, thus hazarding everything by fighting with opponents
who have grown far stronger than they were originally” (Thucydides, 1972, Book I, 69).
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the perceived first-mover advantage is large. If a player is inclined to strike even if he thinks his
opponent will not, then the problem becomes one ofdeterrencerather than a security dilemma.4

History shows that negotiations have a mixed record at preventing arms races. The British
attempt to prevent an arms race in Dreadnought warships with Germany in 1912 may be
described as asincere dovish strategy, that is, a dovish attitude with an intent of arming only
if the opponent doesnot appear dovish. The British felt “it might be possible by friendly, sincere
and intimate conversation to avert this perilous development” and that “surely something could
be done to break the chain of blind causation” (Churchill, 1931, p. 75). Churchill proposed a
“naval holiday” for 1913, but the Germans took a hawkish stance, thereby triggering an arms
race. In 1935, the British strategy was not very different from the one used in 1912, but this
time the Germans seemed more accommodating. A naval accord limited the German fleet to
35% of the British. The British worried about the fact that Hitler’s true military strength was
difficult to assess, but they felt that trusting Hitler was a chance worth taking (Kissinger, 1994,
pp. 295–296). In fact, Hitler used aninsincere dovish strategy, signing treaties he did not intend
to respect.5 In 1940, Goebbels explained how Hitler had lured the western powers into a false
sense of security: “up to now we have succeeded in leaving the enemy in the dark concerning
Germany’s real goals. . . . They left us alone and let us slip through the risky zone, and we were
able to sail around all dangerous reefs.And when we were done, and well armed, better than they,
then they started the war!” (Kissinger, 1994, p. 295). On the other hand, the successful test ban
treaty signed by the United States and the Soviet Union in 1963 may have been part of a sincere
dovish strategy onboth parts. Finally, thehawkish strategyof Ronald Reagan, who called the
Soviet Union an “evil empire” prepared “to commit any crime, to lie, to steal” to achieve its
goals (Reagan, 1983), did not prevent him from eventually concluding very successful arms
control talks, once he had become convinced that the U.S. would not be taken advantage of.
These historical examples illustrate the possibility that different “types” use different negotiating
tactics. In our cheap-talk equilibrium, very tough, normal and fairly tough types use different
strategies which may be described as insincere doves, sincere doves, and hawks, respectively.

3. THE ARMS RACE GAME

Two players must simultaneously and independently decide whether or not to invest in a new
weapons programme. The possible choices areBuild new weapons(B) or No new weapons(N).
We normalize the pay-off to zero for each player if both chooseN. A player who choosesN
while the other player choosesB suffers a loss ofd > 0, which represents the disutility of
having a less advanced weapons system than the opponent. Presumably,d could be quite large.
A player who acquires new weapons never has to suffer this cost, as he will always be at least
as strong as his opponent. However, he has to pay the cost of the new weapons. Let playeri ’s
cost of acquiring new weapons be denotedci ≥ 0. This could be a psychological or a monetary
cost. A player who builds the new weapons system while his opponent does not receives a gain of
µ > 0, which represents the value of having a more advanced weapons system than the opponent.

4. During the cold war, two theories were put forward. Some argued that wars are caused by misunderstandings
and mutual distrust (“the security dilemma”). Therefore, the U.S. ought to be friendly and kind to the Soviet Union
in order to prevent any misunderstandings about American motives. But others argued that wars occur because an
aggressor has not been sufficiently deterred (“deterrence theory”). This led to the opposite recommendation,i.e.a policy
of toughness (“deterrence”) against the Soviet Union. Our paper cannot contribute to this debate as we areassuming
the first hypothesis (wars are likely to be caused by mutual distrust). Deterrence theorists may in fact argue that arms
races canpreventwars, by making a war so costly that the opponent is deterred from starting it. A dynamic model along
the lines of Kydd (1997), where players first decide whether or not to arm, and then whether or not to go to war, might
address these issues, but it is beyond the scope of this paper.

5. Hitler’s abrogation of the naval accord is described by Craig (1978, pp. 686–710). Other dovish messages sent
by Hitler included the signing of the German–Polish non-aggression pact.
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We shall be mainly interested in the case whereµ is small, so that the temptation to build new
weapons is not too big (our interest is in coordination problems, not prisoner’s dilemmas). Player
i ’s pay-offs can be represented in a pay-off matrix as follows (playeri chooses a row, playerj a
column):

B N
B −ci µ − ci

N −d 0
(1)

If d > ci > µ for eachi ∈ {1, 2}, then each player thinks thebestpossible outcome is for
neitherplayer to build new weapons, but theworstpossible situation is to refrain from building
while the opponent builds. If these preferences are common knowledge, then there are two pure
strategy Nash equilibria: (B, B) and (N, N). The game is a stag hunt game, as discussed by Jervis
(1978), not a prisoner’s dilemma. Knowing this, rational players should be able to coordinate on
the Pareto dominant equilibrium (N, N), perhaps after communicating with each other (O’Neill,
1999). However, from now on we will assumeci is playeri ’s private information.6

We refer toci as playeri ’s type. Each playeri knows his own typeci , but not the other
player’s typec j . The typesc1 andc2 are independently drawn from the same distribution, with
continuous cumulative distribution functionF . F has support[0, c̄] with F(0) = 0, F ′(c) > 0
whenever 0< c < c̄, andF(c̄) = 1. We assumēc < d. Everything except the truec1 andc2 is
common knowledge.

Since−ci ≥ −c̄ > −d, B is always a (strict) best response againstB. Therefore, there is
a Bayesian–Nash equilibrium where all types chooseB with probability one. Is there any other
Bayesian–Nash equilibrium? Notice thatN is a best response againstN for playeri if and only
if ci ≥ µ. If ci < µ then playeri is adominant strategy type: B is a strictly dominant strategy
for him. The probability that playeri is a dominant strategy type isF(µ), which is close to zero
if µ is small. However, the existence of dominant strategy types may have a large effect on the
set of equilibria even asµ → 0.

Any equilibrium will have a cut-off property: if typeci builds new weapons, then any type
c′

i < ci will also build. The dominant strategy types certainly playB. Knowing that the opponent
(who might be a dominant strategy type) playsB with strictly positive probability, a type that
is “almost” a dominant strategy type (µ − ci negative but close to zero) will also playB. This
“infects” other types with slightly higher cost, who also decide to playB, and so on. Now, if this
contagion stops before all types have been infected, then there must be some cut-off typec∗

i > 0
such that all types with a lower cost than him playB and all types with a higher cost playN.
Typec∗

i himself must be indifferent. Suppose for the moment that the equilibrium is symmetric,
so c∗

1 = c∗

2 = c∗. The condition that playeri ’s type c∗ is indifferent betweenB and N when
player j is expected to chooseB with probability F(c∗) is S(c∗) = 0, where

S(c) ≡ F(c)(d − c) + (1 − F(c))(µ − c). (2)

This leads to the following definition.

Definition1. The distribution satisfies themultiplier condition if F(c)d ≥ c for all
c ∈ [0, c̄].

6. Carlsson and van Damme (1993) assume each player observes the true pay-off matrix with noise, and find
a condition under which each player will choose the action which isrisk dominant in the game that he observes. In
contrast, we assume each player receives no signal about the opponent’s pay-off function, and risk dominance plays no
role. (In our game, (B, B) is risk dominant, in the sense of Carlsson and van Damme, in the true pay-off matrix if and
only if d + µ > c1 + c2.)
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If the multiplier condition is satisfied thenS(c) > 0 for anyµ > 0 and anyc ≥ 0, so there
can be no symmetric Bayesian–Nash equilibrium whereN is chosen with positive probability.
The multiplier condition guarantees that each type will strictly prefer to chooseB whenever he
thinks all types with lower cost than him will chooseB, so the contagion to playB will infect
the whole population. The proof of Theorem 1 shows that when the multiplier condition holds
there are also no asymmetric equilibria whereN is chosen with positive probability. Thus, there
is an arms race with probability one, confirming Schelling’s vicious cycle argument.

Notice thatF(0)d = 0 andF(c̄)d = d > c̄ by assumption. Diagrammatically, the multiplier
condition says that the graph ofF lies on or above a ray through the origin with slope 1/d. The
uniform distribution,F(c) = c/c̄, satisfies the multiplier condition becausecd/c̄ ≥ c for all
c ≥ 0.7 More generally, the multiplier condition is satisfied ifF is concave, because concavity
implies F(c) ≥ c/c̄ ≥ c/d for all c ≥ 0.

If the multiplier condition is violated, then for sufficiently smallµ there existsc∗ < c̄
such thatS(c∗) = 0. That means typec∗ is just indifferent between building and not building
if he thinks his opponent playsB with probability F(c∗). Therefore, there exists a symmetric
Bayesian–Nash equilibrium whereN is chosen with positive probability. Thus, for smallµ the
multiplier condition is necessary as well as sufficient for the contagion to playB to infect the
whole population. The multiplier condition is violated ifF is sufficiently convex. Intuitively,
convexity implies that low-cost types are relatively rare. In the convex case, a player with a
relatively high cost of arming may not want to arm even if he thinks all types with a lower
cost than him will arm, simply because meeting such a low-cost type is unlikely. This stops the
contagion to playB from infecting the whole population.

We now state the formal result.

Theorem 1. (i) If the multiplier condition is satisfied, then for anyµ > 0 there is a unique
Bayesian–Nash equilibrium. In this equilibrium all players choose B, regardless of type.(ii) If the
multiplier condition is violated, then for sufficiently smallµ > 0 there exists a Bayesian–Nash
equilibrium where N is chosen with strictly positive probability.

Proof. If µ ≥ d then B is a dominant strategy for all types, so the analysis is trivial.
Suppose instead that 0< µ < d. First, we establish the cut-off property: ifB is a weak best
response for typeci then it is a strict best response for typec′

i < ci . Indeed, if playeri thinks
player j will chooseB with probability p j , the pay-off to playeri from B is

p j (−ci ) + (1 − p j )(µ − ci ) = (1 − p j )µ − ci

while the pay-off fromN is p j (−d) + (1 − p j ) × 0. Typeci weakly prefersB if and only if

ci ≤ (1 − p j )µ + p j d. (3)

Notice that all of playeri ’s types have the same beliefs about playerj , since types are assumed
to be uncorrelated. If typeci weakly prefersB, then inequality (3) is strict for typec′

i < ci so
typec′

i strictly prefersB. Now we can prove the two parts of the theorem.

(i) If player j choosesB with probability one, then all of playeri ’s types will chooseB
since c̄ < d. Therefore, there is always an equilibrium where all players chooseB,
regardless of type. Suppose in addition there is an equilibrium whereN is played with
positive probability. We claim the multiplier condition is violated. If a player choosesN

7. A sufficient condition for the multiplier condition to hold is forc/F(c) to be non-decreasing. This is true in
the uniform case.
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then he must expect the opponent to chooseN with strictly positive probability, hence ifN
is chosen with positive probability by one player thenboth players must chooseN with
positive probability. Fori ∈ {1, 2} let c∗

i be such thatB is a weak best response for playeri
at the equilibrium if and only if his type satisfiesci ≤ c∗

i . By hypothesis,c∗

i < c̄, for
otherwise playeri choosesN with probability zero. The probability that playeri ∈ {1, 2}

choosesB is pi = F(c∗

i ). Since typec∗

i must be indifferent betweenB andN,

c∗

i = (1 − p j )µ + p j d = (1 − F(c∗

j ))µ + F(c∗

j )d.

Without loss of generality, supposec∗

1 ≤ c∗

2. Then

c∗

1 = (1 − F(c∗

2))µ + F(c∗

2)d ≥ (1 − F(c∗

1))µ + F(c∗

1)d > F(c∗

1)d

since 0< µ < d andF(c∗

1) ≤ F(c∗

2) < 1. Thus, the multiplier condition is violated.
(ii) Suppose the multiplier condition is violated. Then, there existsc′ such thatc′ > d F(c′).

For sufficiently smallµ > 0, we haveS(c′) ≤ 0 where S is defined by (2). Also,
S(c̄) = d − c̄ > 0. By continuity, there isc∗ < c̄ such thatS(c∗) = 0. Let each playeri
chooseB if and only if ci ≤ c∗. SinceS(c∗) = 0, by the construction ofS it follows that
typec∗ is indifferent betweenB andN. Typeci < c∗ strictly prefersB and typeci > c∗

i
strictly prefersN. Thus, these strategies form a Bayesian–Nash equilibrium.‖

A few remarks can be made. First, the proof of Theorem 1 shows that when the multiplier
condition holds, the game is interim dominance solvable. After iterated elimination of strongly
(interim) dominated strategies only the “arms race” outcome remains. Second, the arms race
outcome is inefficient because all types preferN N to B B. Third, the arms race is caused by
mutualdistrust. No contagion can occur if one player’s preferences are common knowledge.8

Harsanyi (1973) has shown that every Nash equilibrium of a complete information game
is the limit of (pure strategy) Bayesian–Nash equilibria of any sequence of close-by incomplete
information games with independent types. Consider a complete information version of the arms
race game withc1 = c2 = c∗. If µ < c∗ then there are two pure strategy Nash equilibria,(B, B)

and (N, N). Now consider a nearby game of incomplete information, where the probability
that a player’s type belongs to the neighbourhood(c∗

− δ, c∗
+ δ) is 1 − ε. Supposeδ > 0

and ε > 0 are small enough so thatdε < c∗
− δ. Then, forc′

∈ (dε, c∗
− δ) we have

F(c′) ≤ ε < c′/d. Thus, the multiplier condition (which guarantees uniqueness of equilibrium)
is violated with a small amount of uncertainty and independent types. Conversely, the uncertainty
is maximized when types are uniformly distributed, in which case the multiplier condition is
satisfied. Thus, sufficient uncertainty generates uniquenesseven if types are independent, and
even though it is common knowledge that the true pay-off function is that of a stag hunt game
with a very high probability. Morris and Shin (2002b) have recently clarified the relationship
between common shocks, independent types, noise and multiplicity. They show that in a general
model of correlated types, uniqueness can be obtained by assumingeithersufficient uncertainty
(as in our model)or sufficient correlation of types (as in Carlsson and van Damme, 1993). Their
results suggest that adding a common shock will not change our uniqueness result, as long as a
sufficient amount of heterogeneity remains after the common shock is accounted for.

Our assumption that the pay-off from choosingN is independent of type is without loss of
generality, because all that matters is the difference between the pay-off from choosingB and the

8. Suppose thatc2 (but notc1) becomes common knowledge as soon as the types are determined by nature. Then
there would exist a Bayesian–Nash equilibrium where player 2 as well as all the non-dominant strategy types of player 1
chooseN wheneverc2 ≥ (1− F(µ))µ + F(µ)d, which happens with probability close to 1 forµ small enough. If both
c1 andc2 become common knowledge as soon as they are determined by nature, then there is an equilibrium where both
players chooseN wheneverc1 ≥ µ andc2 ≥ µ, which again happens with probability close to 1 forµ small enough.
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pay-off from choosingN. It is also without loss of generality to assume the pay-offs are linear
in the type: if the true cost was some increasing functionh(ci ) we would simply define the type
to beh(ci ). The assumption that the type matters equally much when the opponent choosesN as
when he choosesB does involve a loss of generality. An interesting topic for future research is
to study more general pay-off matrices.

What is important for us is that some privately observed parameter influences a player’s
propensity to arm. Although we have talked about thecostof acquiring new weapons, the private
information could equally well relate to a privatebenefitfrom arming. Suppose the monetary cost
of acquiring weapons is commonly known to bec̄ > 0 for all types. Playeri ’s true cost of arming
is ci = c̄ − bi wherebi is the private benefit that playeri derives from acquiring weapons (there
can be a private cost component, which is subtracted frombi ). The true value ofbi is known only
to playeri . If we assumeb1 andb2 are independent random variables with support[0, c̄], then
the model is formally equivalent to the one described above.

4. CHEAP-TALK

From now on we will assume the multiplier condition holds. Without cheap-talk, there is a dis-
continuity in the equilibrium correspondence: ifµ were zero then there would be an equilibrium
where all types chooseN, butµ > 0 implies that a contagion is started by the fractionF(µ) > 0
of dominant strategy types. The game unravels and everybody playsB, as shown in Theorem 1.
In this section, we will show that adding cheap-talk restores continuity in the sense that for small
enoughµ > 0 there exists an equilibrium where almost all types chooseN.

In the cheap-talk extension of the arms race game there are three stages. In stage zero, nature
determinesc1 and c2, andci becomes playeri ’s private information. In stage one, messages
are announced simultaneously and publicly. The two messages that are sent in equilibrium will
be labelled Dove and Hawk. “Dove” is interpreted as a conciliatory message and “Hawk” is
interpreted as an aggressive message. In stage two, the players simultaneously choose eitherB
or N, and playeri ’s pay-off is determined by his pay-off matrix, as in (1). The messages sent in
stage one do not influence the pay-offs directly, but they may convey information about what the
players plan to do in the future. Our main theorem states that arms races can be avoided almost
surely if the fraction of dominant strategy typesF(µ) is sufficiently small, that is, ifµ > 0 is
sufficiently small.

Credible communication is difficult to achieve because, no matter what playeri ’s true type
is and whatever he himself plans to do, he always strictly prefers the opponent to chooseN
(becauseµ > 0 andd > 0). To see the difficulty, let us try to construct the simplest possible
non-trivial cheap-talk equilibrium: there iŝc ∈ (0, c̄) such that playeri says Dove ifci > ĉ and
Hawk if ci < ĉ. But the hawkish message will reveal that playeri has a relatively high propensity
to arm, and the opponent will be inclined to act on this information by arming in self-defence.
But then, types with a high propensity to arm will want to announce Dove unless this message
also does not prevent an arms race. In fact, as we show in the Appendix (Theorem A1), an
arms race must follow with probability one regardless of what playeri says. Thus, this kind
of simple equilibrium is not the solution to our problem. What we need is a slightly more
complicated kind of equilibrium, where players with a very high propensity to arm never reveal
their true nature, but instead behave just like types with a very low propensity to arm. Such
“non-monotonic” equilibria can be constructed by exploiting the fact that it is the types with
intermediate propensity to arm who care most about coordination.

Informally, our equilibrium works as follows. The type space[0, c̄] is partitioned into three
sets: “very tough”, “fairly tough”, and “normal”. The very tough types have the lowest cost of
arming. In particular, the dominant strategy types are very tough. The fairly tough types have a
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slightly higher cost. They are not dominant strategy types, so they are willing to playN if they
think the opponent will. The normal types have the highest cost, and are the ones least willing to
arm. In stage one, fairly tough types say Hawk. Normal and very tough types say Dove. If both
players say Hawk, then neither builds weapons in stage two. (The hawkish message reveals that
both players are fairly tough, but not tough enough to be dominant strategy types.) If both players
say Dove, then a player who is very tough will build new weapons in stage two, while normal
types will not. Finally, if one player says Hawk and the other says Dove, then both players build
in stage two. The partitioning is such that ifµ is small then the fraction of normal types will be
close to one. Therefore, the probability will be close to one that both players say Dove and then
refrain from building new weapons.

Disregard for the moment the issue of incentives in stage one. Suppose an exchange of
dovish messages convinces each player that the opponent iseither normalor very tough. Why
is it now part of an equilibrium for normal types to chooseN? The multiplier condition is still
the key, but now it must be applied to the cumulative distribution over typesconditional on
two dovish messages.This conditional cumulative distribution function has a horizontal part on
the interval of fairly tough types. Graphically, if the horizontal part crosses the ray through the
origin with slope 1/d, then the multiplier condition is violated and the contagion is blocked. The
separation of fairly tough types from the other types generates a convex part of the conditional
cumulative distribution function, which is what is needed to prevent the contagion from taking
hold. Intuitively, because some types who have a lower cost of arming than the normal types
are eliminated, the conditional distribution becomes more conducive to cooperation among the
normal types. Of course, occasionally a normal type will meet a very tough type, in which case
the normal type’s realized pay-off will be−d. Still, the normal types are willing to trust an
opponent who claims to be a dove as long as very tough types aresufficiently rare. This is
guaranteed by the fact that the multiplier condition is violated. Most of the time, an exchange of
dovish messages will be followed by peaceful coexistence.

In the previous paragraph, we discussed stage two without regard for the incentives in stage
one, as if the messages had been exogenously generated public signals. In fact, the messages are
endogenously generated by the players. We need to show that a player prefers to say Hawk if
and only if he is fairly tough. Intuitively, it works as follows. First, the normal types do not want
to deviate from their “sincere dovish strategy” in stage one, because saying Hawk will get them
involved in arms races more often. Second, the very tough types do not want to deviate from their
“insincere dovish strategy” in stage one either. They want to minimize the probability that the
opponent arms, and this is done by masquerading as doves. This allows them to arm unilaterally
against the normal types, who cannot tell a very tough opponent from a normal one. Finally,
consider the fairly tough types. They are rewarded for saying Hawk in stage one by a guarantee
that they will always coordinate with the opponent: they coordinate on (N, N) with other fairly
tough types, and on (B, B) with everyone else. Suppose a fairly tough type deviates by saying
Dove. In stage two he can either behave like a normal type and chooseN, or like a very tough
type and chooseB. The first option is not attractive because his propensity to arm is high enough
that he does not like the gambles normal types take. The second option is not attractive either,
because it implies arming against everyone. By saying Hawk, he at least gets to coordinate on
(N, N) with other fairly tough types.

We now state our main theorem. It will be proved under the regularity assumption thatF
has an infinite Taylor series representation.

Theorem 2. Suppose the multiplier condition is satisfied. For anyδ > 0 there isµ̄ > 0
such that if0 < µ < µ̄ then there is a perfect Bayesian equilibrium of the cheap-talk extension
of the arms race game where N is played with at least probability1 − δ.



362 REVIEW OF ECONOMIC STUDIES

In the remainder of this section we prove this theorem. We need the following lemma, which
is proved in the Appendix.

Lemma 1. Suppose the multiplier condition is satisfied. For sufficiently smallµ > 0,
there exists a triple(cL , c∗, cH ) such that

µ < cL < c∗ < cH < c̄ (4)

[F(cH ) − F(cL)]cL
= (1 − F(cH ))µ (5)

[1 − 2(F(cH ) − F(cL))]cH
= F(cL)d (6)

(1 − F(cH ))(µ − c∗) + F(cL)(−c∗) = F(cL)(−d). (7)

If µ → 0 then cH → 0.

Let (cL , c∗, cH ) be as defined by Lemma 1 and consider the following strategies in the
cheap-talk extension of the arms race game. Playeri is normal if ci > cH , fairly tough if
cL

≤ ci ≤ cH , and very toughif ci < cL . In stage 1, the cheap-talk stage, playeri says
Hawk if he is fairly tough. Otherwise, he says Dove. (Players are allowed to say something else
than “Hawk” or “Dove”, but this will not happen in equilibrium.) In stage 2, the arms race stage,
playeri behaves as follows. Ifci ≤ µ then he choosesB no matter what announcements were
made in stage one. Ifci > µ then playeri plays as follows: (i) if both players said Hawk then
playeri choosesN; (ii) if one player said Dove and the other said Hawk then playeri choosesB;
(iii) if both players said Dove then playeri choosesN if and only if ci ≥ c∗; (iv) if any message
except Dove or Hawk was sent by any player then playeri choosesB.

Intuitively, equation (5) defines a typecL who is indifferent between saying Dove and
following an insincere dovish strategy, and saying Hawk and following ahawkish strategy;
equation (6) defines a typecH who is indifferent between saying Dove and following asincere
dovish strategy,and saying Hawk and following ahawkish strategy; and equation (7) defines a
typec∗ who is indifferent between playingB andN when both players have announced Dove.

We describe theequilibriumannouncements made in stage 1, and the actions playedon the
equilibrium pathin stage 2, in the table below. For example, if player 1 is very tough (c1 < cL )
and player 2 is fairly tough(cL

≤ c2 ≤ cH ), then player 1 says Dove and player 2 says Hawk.
Both players proceed to chooseB, i.e. there is an arms race.

c2 < cL

(Dove)
cL

≤ c2 ≤ cH

(Hawk)
c2 > cH

(Dove)

c1 < cL

(Dove)
B B B B BN

cL
≤ c1 ≤ cH

(Hawk)
B B N N B B

c1 > cH

(Dove)
N B B B N N

We claim that for small enoughµ > 0, these strategies form a perfect Bayesian equilibrium
of the cheap-talk extension of the arms race game. Notice for future reference that (5) and the
fact thatµ < cL implies that there are more normal types than fairly tough types:

1 − F(cH ) > F(cH ) − F(cL). (8)
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In fact the R.H.S. of (8) will be close to zero and the L.H.S. close to one forµ small (for then
bothcL andcH will be close to zero).

Lemma 2. The strategies specified above are sequentially rational in the action stage for
all types, following all messages.

Proof. If ci ≤ µ, then it is clearly in playeri ’s interest to chooseB no matter what
happened in stage 1. Supposeci > µ. If both players announced Hawk in stage 1, then the
opponent is expected to chooseN in stage 2, andN is a best response againstN. If one player
said Dove and the other Hawk, or someone said something else than “Hawk” or “Dove”, then the
opponent is expected to chooseB in stage 2, andB is a best response againstB. Finally, suppose
both players said Dove in stage 1. In this case, playeri thinks his opponent is either a normal
type who will chooseN, or a very tough type who will chooseB (recall that fairly tough types
are the only ones who say Hawk in equilibrium). Now there are 1− F(cH ) normal types and
F(cL) very tough types. Then (7) implies that playeri is indifferent betweenB andN if he is of
typeci = c∗. Clearly it is a best response for playeri to chooseB if ci < c∗ andN if ci ≥ c∗. ‖

We now turn to the cheap-talk stage. Notice that for any type the expected pay-off from
following the strategies specified above is greater than what he gets from playingB B for sure.
Hence, no type has an incentive to send any message other than Hawk or Dove.

Lemma 3. Player i prefers to say Dove if ci ≤ µ.

Proof. The dominant strategy type will go on to chooseB for sure, so his objective is
simply to maximize the probability of his opponent choosingN. If player i says Hawk, his
opponent will chooseN if and only if the opponent is a fairly tough type (who says Hawk
according to his equilibrium strategy), an event which occurs with probabilityF(cH ) − F(cL).
If player i says Dove, his opponent will chooseN if and only if the opponent is a normal type
(who says Dove according to his equilibrium strategy), an event which occurs with probability
1 − F(cH ). By (8), the dominant strategy type prefers to say Dove.‖

Lemma 4. Player i prefers to say Dove ifµ < ci < cL and Hawk if cL ≤ ci < c∗.

Proof. Supposeµ < ci < c∗. First, suppose playeri says Hawk. Then if the other
player also says Hawk both will chooseN. This event occurs with probabilityF(cH ) − F(cL).
Otherwise, both chooseB. The expected pay-off to playeri is

[1 − (F(cH ) − F(cL))](−ci ). (9)

Suppose instead playeri says Dove. Sinceci < c∗ player i will then chooseB at the action
stage whatever his opponent (playerj ) has said. Playerj will chooseN if and only if he is a
normal type (who says Dove according to his equilibrium strategy), an event which occurs with
probability 1− F(cH ). Therefore, playeri ’s expected pay-off from saying Dove is

(1 − F(cH ))(µ − ci ) + F(cH )(−ci ). (10)

But, equation (5) implies that (9) equals (10) ifci = cL so playeri of type cL is indifferent
between Dove and Hawk. Ifci > cL , (10) is smaller than (9) so playeri prefers to say Hawk. If
µ < ci < cL , (10) is bigger than (9) so playeri prefers to say Dove in this case.‖

Lemma 5. Player i prefers to say Hawk if c∗ ≤ ci ≤ cH and Dove if ci > cH .
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Constructing the equilibrium

Proof. Supposeci ≥ c∗. First, suppose playeri says Hawk. If the opponent is a fairly
tough type (who says Hawk according to his equilibrium strategy) then both will chooseN in the
action stage. This event occurs with probabilityF(cH ) − F(cL). Otherwise, both will chooseB.
Therefore, playeri ’s expected pay-off from saying Hawk is

[1 − (F(cH ) − F(cL))](−ci ). (11)

Suppose instead playeri says Dove. If the opponent is a fairly tough type (who says Hawk
according to his equilibrium strategy) then both will chooseB at the action stage. Otherwise, the
opponent will say Dove, playeri will chooseN at the action stage, and the opponent will choose
B if he is very tough andN if he is normal. Therefore, playeri ’s expected pay-off from saying
Dove is

[F(cH ) − F(cL)](−ci ) + F(cL)(−d). (12)

But, equation (6) implies that (11) equals (12) ifci = cH so playeri of type cH is indifferent
between saying Dove and Hawk. By (8), ifci > cH then (11) is smaller than (12) so playeri
prefers to say Dove. Ifc∗

≤ ci < cH , (11) is bigger than (12) so playeri prefers to say Hawk. ‖

These results show that the strategy profile specified is a perfect Bayesian equilibrium of the
cheap-talk extension of the arms race game. SincecL

→ 0 andcH
→ 0 asµ → 0, it is evident

from the construction of the strategies that the fraction of types that playB in equilibrium goes
to zero asµ goes to zero. This completes the proof of our main theorem.

We end with a few remarks. First, there are other informative equilibria. For example, we
have been focusing on the solution labelled(cL , cH ) in Figure 1, but there is another intersection
of the two curves, labelled(ĉL , ĉH ), which also satisfies (5) and (6). One can check that
µ < ĉL < ĉ∗ < ĉH < c̄, whereĉ∗ solves(1 − F(ĉH ))(µ − ĉ∗) + F(ĉL)(−ĉ∗) = F(ĉL)(−d).
In fact, the arguments made above go through and so(ĉL , ĉH ) represents an alternative perfect
Bayesian equilibrium. However, asµ → 0, (ĉL , ĉH ) converges to(0, cmed), wherecmed is the
median cost,F(cmed) =

1
2. This implies that (N, N) is the outcome of the game approximately

half of the time, much worse than the equilibrium represented by(cL , cH ).
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In equilibrium normal types get taken advantage of by very tough types, but this cannot be
avoided.Any cheap-talk equilibrium which does not involve an arms race with probability one
must have the property that dominant strategy types sometimes arm unilaterally against peaceful
opponents. The only way to prevent such unilateral arms build-up would be to get the dominant
strategy type to reveal his true nature, thereby alerting the opponent that he should arm. But this
would not be incentive compatible since the dominant strategy type does not want his opponent
to arm. Our equilibrium allows the dominant strategy types to remain undetected until the time
when actions are chosen.

Recent research has studied the role of informative public signals in global games models
of the Carlsson and van Damme (1993) type (see Metz (2000), Hellwig (2001), Morris and Shin
(2002a)). A sufficiently precise public signal may restore multiple equilibria in that model by
making the common shock sufficiently commonly known (see Hellwig, 2001). This argument
does not apply to our model, since we have independent types and no unobservable, common
shock. However, as discussed above, one can view our cheap-talk stage as endogenously
generating a public signal via voluntary disclosures. Whether or not multiple continuation
equilibria exist following this disclosure depends on whether or not the cumulative distribution
of types conditional on the public information satisfies the multiplier condition.

5. CONCLUSION

This paper makes two contributions. First, we provide a formalization of Schelling’s (1960)
surprise attack dilemma, using incomplete information about preferences rather than an imperfect
warning system. Our model is very close to Schelling’sinformal argument: “if I go downstairs
to investigate a noise at night, with a gun in my hand, and find myself face to face with a burglar
who has a gun in his hand, there is a danger of an outcome that neither of us desires. Even if he
prefers to leave quietly, and I wish him to, there is a danger that he maythink I want to shoot,
and shoot first. Worse, there is danger that he may think thatI think he wants to shoot. Or he
may think thatI think he thinks I want to shoot. And so on” (Schelling, 1960, p. 207). We show
that, even if types are independent and the true pay-off matrix is very likely to be that of a stag
hunt game, amultiplier conditionimplies the existence of a unique Bayesian–Nash equilibrium.
In this equilibrium, there is an arms race with probability one.

Our second contribution is to show how cheap-talk can resolve Schelling’s dilemma. The
cheap-talk equilibrium has several interesting properties. Fairly tough types, with an intermediate
propensity to arm, say Hawk in order to minimize the probability of a coordination failure. Very
tough types and normal types say Dove in order to minimize the probability that the opponent
arms. When a very tough type meets a normal type, there is an exchange of dovish messages
followed by a unilateral arms build-up by the very tough type. When two normal types meet,
they coexist peacefully. For the normal type, this gamble is worth taking as long as the very
tough types are rare. The introduction of cheap-talk raisesall types’ expected pay-offs, since
without cheap-talk the unique equilibrium involves an arms race with probability one (when the
multiplier condition holds).

Much further work remains to be done. In this article, a player is in effect a nation which
behaves as a unitary actor with well-defined preferences. But in reality, the population may
contain elements that have widely different preferences, and they may try to influence the course
of events. Extremists on both sides may not be happy with negotiations that reduce tensions
between the two nations. Rioting may be one way for them to signal their strength. If a riot in
one country makes the leader of the other country fearful, then he will be more likely to arm,
which may lead to escalation, which may make the extremists better off. What will negotiations
look like in such circumstances?
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APPENDIX

The following result was discussed in the text.

Theorem A1. Suppose the multiplier condition is satisfied. Suppose there isĉ ∈ (0, c̄) such that each player
i ∈ {1, 2} says Hawk if ci < ĉ and Dove if ci > ĉ. Then, there will be an arms race with probability one.

Proof. Suppose playeri says Hawk ifci < ĉ and Dove ifci > ĉ. The probability that a player says Dove is
1 − F(ĉ) > 0, and the probability that a player says Hawk isF(ĉ) > 0. Typeĉ is indifferent between saying Hawk and
Dove, he can send either message (it does not matter). In order to obtain a contradiction, suppose some types sometimes
play N.

If both players say Hawk, then it is easy to check that both must chooseB, due to the multiplier condition. Letp
denote the probability that a player who says Hawk will chooseN when he hears the opponent say Dove. Dominant
strategy types with cost less thanĉ say Hawk, and they will surely chooseB. Therefore,p < 1. Let qH (resp.qD)
denote the probability that a player who says Dove will chooseN when he hears the opponent say Hawk (resp. Dove).
For dominant strategy types to be willing to say Hawk, the probability that the opponent choosesN must be greater when
the dominant strategy type says Hawk than when he says Dove, which is equivalent to

qH (1 − F(ĉ)) ≥ pF(ĉ) + qD(1 − F(ĉ)). (A.1)

Since we assumeN is sometimes played, (A.1) impliesqH > 0. That is, some types who say Dove must choose
N if the opponent says Hawk. To make them behave that way, some types who say Hawk must chooseN if the opponent
says Dove. That is,p > 0. There is then some typẽc, whereµ ≤ c̃ < ĉ, who says Hawk and is indifferent between
choosingN andB when he hears Dove. Also, sincep > 0, the inequality (A.1) impliesqD < 1. That is, if both players
say Dove, then there is a non-zero probability of an arms race. But since typeĉ has a lower cost than any other type that
says Dove, if typêc says Dove and the opponent says Dove, then typeĉ certainly prefers to chooseB.

If type ĉ says Hawk and the opponent says Dove, typeĉ will strictly prefer N to B, becausêc > c̃. Therefore, type
ĉ’s expected pay-off from saying Hawk is strictly greater than−ĉ + µqH (1 − F(ĉ)), which is what he would get by
always choosingB. But,

−ĉ + µqH (1 − F(ĉ)) ≥ −ĉ + µ[pF(ĉ) + qD(1 − F(ĉ))] (A.2)

by (A.1). Thus, by saying Hawk, typêc gets strictly more than the R.H.S. of (A.2).
Suppose instead that typeĉ says Dove. We know that he will prefer to playB when the opponent says Dove. If in

addition he playsB when the opponent says Hawk, then by saying Dove he gets the R.H.S. of (A.2). This is strictly less
than what he expects from saying Hawk, which is a contradiction of the definition ofĉ. Thus, typeĉ must strictly prefer
to play N when he says Dove and the opponent says Hawk. Since his cost of building is lower than any other type who
ever says Dove, all types who say Dove must playN when the opponent says Hawk. That is,qH

= 1. But then all types
who say Hawk, except the dominant strategy types, will chooseN when the opponent says Dove. Therefore,c̃ = µ.
Type ĉ’s expected pay-off from saying Dove is

F(ĉ)[p × 0 + (1 − p) × (−d)] + (1 − F(ĉ))[qD(µ − ĉ) + (1 − qD)(−ĉ)].

His expected pay-off from saying Hawk is

F(ĉ)(−ĉ) + (1 − F(ĉ)) × 0.

The last two expressions must be equal, by definition ofĉ. This implies

F(ĉ)(1 − p)d − (1 − F(ĉ))qDµ = (2F(ĉ) − 1)ĉ. (A.3)

Now, (A.1) andqH
= 1 imply that

(2F(ĉ) − 1)ĉ ≤ ((1 − p)F(ĉ) − qD(1 − F(ĉ)))ĉ. (A.4)

Substituting from (A.3) into the L.H.S. of (A.4), and rearranging, yields

F(ĉ)(1 − p)(d − ĉ) ≤ qD(1 − F(ĉ))(µ − ĉ).

However, the L.H.S. is strictly positive and the R.H.S. is non-positive, givenµ < ĉ < d, a contradiction. ‖

Before proving Lemma 1, we need a preliminary technical result. This is where we use the assumption thatF has
a Taylor series representation. Formally, assume there are coefficientsa0, a1, a2 . . . such that
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F(c) =

∑∞

j =0
a j c

j (A.5)

for all c ∈ [0, c̄].

Lemma A1. If the multiplier condition is satisfied, then there existsγ > 0such that F′(c)d > 1 for all c ∈ (0, γ ).

Proof. Since F has a power series representation, the functionλ(c) ≡ F(c)d − c also has a power series
representation

λ(c) =

∑∞

j =0
k j c

j . (A.6)

The multiplier condition says thatλ(c) ≥ 0 for all c ≥ 0. Moreover,k0 = 0 sinceλ(0) = 0. Also, asλ(c̄) = d − c̄ > 0
by assumption, there isj such thatk j 6= 0. Letn ≥ 1 be thesmallestinteger such thatkn 6= 0. For small enoughc > 0
the expression in (A.6) will be dominated by the termkncn. Hence, we must havekn > 0 for λ(c) ≥ 0 to be true forc
close to zero. The derivative ofλ(c) is

λ′(c) =

∑∞

j =1
jk j c

j −1

which for small enoughc > 0 is dominated by the termnkncn−1 > 0. Hence,λ′(c) = F ′(c)d − 1 > 0 for c > 0 close
enough to zero. ‖

We now prove Lemma 1.
Define two functionsH andG as follows:

H(x, y) ≡ [F(y) − F(x)]x − (1 − F(y))µ (A.7)

G(x, y) ≡ [1 − 2(F(y) − F(x))]y − F(x)d. (A.8)

Then, equations (5) and (6) are equivalent to the statement that(x, y) = (cL , cH ) solves the equation system

H(x, y) = 0
G(x, y) = 0.

(A.9)

To analyse this system consider the shape of the two curves defined by (A.9), restricting our attention tox andy
in [0, c̄]. We have

H(0, y) = −(1 − F(y))µ.

Therefore, there is a uniquey ∈ [0, c̄], namely,y = c̄, such thatH(0, y) = 0. Similarly,

H(c̄, y) = −(1 − F(y))(µ + c̄)

so that there is a uniquey ∈ [0, c̄], namely,y = c̄, such thatH(c̄, y) = 0. For 0< x < c̄ we notice that

H(x, 0) = −F(x)x − µ < 0

H(x, c̄) ≡ [1 − F(x)]x > 0

and
∂ H(x, y)

∂y
= F ′(y)(x + µ) > 0.

Therefore, there is a uniquey ∈ (0, c̄) that satisfiesH(x, y) = 0. We may writey = φ(x), whereH(x, φ(x)) ≡ 0 for
all x ∈ [0, c̄]. Notice that for allx > 0, µ → 0 impliesφ(x) → x.

Next, we turn to theG function. We have

G(x, 0) ≡ −F(x)d

so that there is a uniquex ∈ [0, c̄], namely,x = 0, such thatG(x, 0) = 0. Let cmed denote the median type
(F(cmed) = 1/2). We have

G(x, cmed) ≡

[
1 − 2

(
1
2 − F(x)

)]
cmed

− F(x)d = F(x)(2cmed
− d).

Notice that 2cmed
= cmed/F(cmed) ≤ d by the multiplier assumption. Ifcmed/F(cmed) = d thenG(x, cmed) = 0 for

all x ∈ [0, c̄]. However, ifcmed/F(cmed) < d, then there is a uniquex ∈ [0, c̄], namelyx = 0, such thatG(x, cmed) = 0.
Now suppose 0< y < cmed. Then,

G(0, y) ≡ [1 − 2F(y)]y > 0



368 REVIEW OF ECONOMIC STUDIES

and

G(y, y) ≡ y − F(y)d ≤ 0

by assumption. Moreover, fory < cmed,

∂G(x, y)

∂x
= F ′(x)(2y − d) = F ′(x)

(
y

F(cmed)
− d

)
< F ′(x)

(
y

F(y)
− d

)
≤ 0 (A.10)

using the multiplier condition. Hence, for eachy ∈ (0, cmed), there is a uniquex ∈ (0, y] such thatG(x, y) = 0. We
may writex = θ(y), whereG(θ(y), y) ≡ 0 for all y ∈ (0, cmed).

Claim. If 0 < x ≤ y and x and y are sufficiently close to zero, then

0 <
dθ(y)

dy
< 1.

Proof. Totally differentiatingG(θ(y), y) ≡ 0, we obtain

dθ(y)

dy

∂G(x, y)

∂x
+

∂G(x, y)

∂y
= 0.

We calculate
∂G(x, y)

∂x
≡ F ′(x)(2y − d)

and
∂G(x, y)

∂y
≡ 1 − 2(F(y) − F(x)) − 2F ′(y)y.

Therefore,

dθ(y)

dy
= −

∂G(x, y)/∂y

∂G(x, y)/∂x
=

1 − 2(F(y) − F(x)) − 2F ′(y)y

F ′(x)(d − 2y)
. (A.11)

For small enoughx andy, (A.11) is strictly positive since both the numerator and denominator are strictly positive. To
show that (A.11) is strictly smaller than 1, it suffices to show that

1 − 2(F(y) − F(x)) − 2F ′(y)y

F ′(x)(d − 2y)
<

1

F ′(x)d
(A.12)

since, for small enoughx, F ′(x)d > 1 by Lemma A1. But (A.12) is equivalent to

(F ′(y)d − 1)y + (F(y) − F(x))d > 0. (A.13)

The first term in (A.13) is strictly positive for small enoughy, by Lemma A1, while the second term is non-negative
sincey ≥ x. Thus, (A.13) is satisfied. ‖

Figure 1 is a typical depiction of (A.9). Notice that theG function does not involveµ, hence the functionθ does
not involveµ either. However, for allx > 0, µ → 0 impliesφ(x) → x. Since 0< dθ(y)/dy < 1, for small enough
µ > 0 the two curvesy = φ(x) andx = θ(y) must have an intersection arbitrarily close to the point(0, 0) in the positive
quadrant, and withy > x > 0 as depicted in the figure. This point is denoted(x, y) = (cL , cH ). Notice thatcH > cL .

It remains only to show thatµ < cL < c∗ < cH . Notice that for(cL , cH ) close to zero we are guaranteed that

1 − F(cH ) > F(cH ) − F(cL ). (A.14)

The equationH(cL , cH ) = 0 implies

[F(cH ) − F(cL )]cL
= (1 − F(cH ))µ. (A.15)

SincecL > 0 andµ > 0, (A.14) and (A.15) implyµ < cL .
Finally, letc∗ solve (7). That is, letc∗ satisfy

(1 − F(cH ) + F(cL ))c∗
= (1 − F(cH ))µ + F(cL )d. (A.16)

Clearlyc∗ exists, because 1− F(cH )+ F(cL ) > 0. We claim thatcL < c∗ < cH . The equationG(cL , cH ) = 0 implies

[1 − F(cH ) − (F(cH ) − F(cL ))]cH
= F(cL )(d − cL ). (A.17)



BALIGA & SJÖSTRÖM ARMS RACES AND NEGOTIATIONS 369

SincecL < cH , (A.17) implies

(1 − F(cH ) − (F(cH ) − F(cL )))cL < F(cL )(d − cL ) (A.18)

and also

(1 − F(cH ))cH
− (F(cH ) − F(cL ))cL > F(cL )(d − cH ). (A.19)

Now substitute from (A.15) into (A.18) and (A.19) to get

(1 − F(cH ) + F(cL ))cL < (1 − F(cH ))µ + F(cL )d

and

(1 − F(cH ) + F(cL ))cH > (1 − F(cH ))µ + F(cL )d.

But these two inequalities and equation (A.16) implycL < c∗ < cH .

Acknowledgements. We thank three anonymous referees and the editor, Mark Armstrong, for many valuable
comments. We also thank Eric Maskin, Josef Perktold, Ariel Rubinstein and Bill Zame, as well as the participants in
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