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In this paper we study a situation where the planner cannot commit to a
mechanism and the outcome function is substituted by the planner herself. We
assume (i) agents have complete information and play simultaneously and (ii) given
the messages announced by the agents, the planner reacts in an optimal way given
her beliefs. This transforms the implementation problem into a signaling game. We
derive necessary and sufficient conditions for interactive implementation under
different restrictions on the planner's out-of-equilibrium beliefs. We compare our
results to standard results on Nash implementation. Journal of Economic Literature
Classification Numbers: C72, D71, D82. � 1997 Academic Press

1. INTRODUCTION

A number of agents share some information, called the preference profile,
type or state. An outside party, the principal (also called designer or planner)
wants to elicit the information from the agents in order to implement an
outcome that is optimal for her in each possible state (the social choice
rule). In the standard approach to this problem, known as implementation,

article no. ET972318

15
0022-0531�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Many thanks to Eric Maskin, the associate editor, and an anonymous referee for their com-
ments. We are also grateful to seminar audiences at Harvard University, Yale University,
Brown University, Cambridge University, Lund University, University of Copenhagen, University
of Stockholm, University of Alicante, University of Warwick, University of Windsor, and the
Social Choice and Welfare meeting at Maastricht. Any remaining error are our responsibility.



File: DISTIL 231802 . By:DS . Date:12:11:97 . Time:09:34 LOP8M. V8.0. Page 01:01
Codes: 3819 Signs: 3281 . Length: 45 pic 0 pts, 190 mm

the principal can design a mechanism, i.e., a message space and an outcome
function mapping messages into allocations. Once such a task has been
accomplished the implementation problem becomes completely mechanical.
Agents learn the state of nature, send the corresponding equilibrium
message and duly receive a certain allocation. In fact, the task of the
mechanism can be performed by a machine or by a mindless servant.

With the development of the theory of implementation came an appreciation
of an unsatisfactory aspect on which the theory relied: out-of-equilibrium
message profiles may lead to highly undesirable allocations. If the planner
can irrevocably commit to the mechanism, and also prevent ex post
renegotiation among agents, such bad allocations are credible. However,
such assumptions are not universally regarded as satisfactory, so it is
desirable to explore the consequences of assuming otherwise.

Our approach is in the spirit of Becker [4].1 The principal is a full-fledged
player who at each node of the game tree must maximize her expected
payoff, so ``incredible threats'' of choosing very bad outcomes following
certain message profiles are ruled out. Thus, in our theory of interactive
implementation the notion of a mechanism (with its connotations of a
mechanical interaction between agents and the planner) is replaced by a
cheap talk game where in the first stage the agents simultaneously send
messages, and in the second stage the planner reacts in a way that maximizes
her expected utility, given her preferences and her beliefs.

With at least three agents with symmetric information, there always
exists a truth telling perfect Bayesian equilibrium (PBE) of the cheap talk
game. This is similar to the situation in standard Nash implementation,
where ``incentive compatibility'' is trivially satisfied with three or more
agents, and the main problem (as discussed by Maskin [9]) is to knock
out undesirable equilibria. In the cheap talk game there will always exist
undesirable ``babbling'' (or pooling) perfect Bayesian equilibria where
messages do not convey (all) private information. Since we insist on full
implementation, i.e., all equilibria should be optimal for the planner, some
refinement is needed. We use a version of Farrell's [7] neologism proof
equilibrium (see also Grossman and Perry [8] and Maskin and Tirole [11]).
The corresponding notion of implementation is interactive implementation
in FGP (Farrell-Grossman-Perry) equilibrium. The basic idea is that in a
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1 Becker [4] considered moral hazard (with observable actions) rather than adverse selection.
The ``rotten kid'' theorem states that in a family ruled by a benevolent father who treats each
family member's welfare as a ``normal good,'' each (selfish) member is guided toward maximiza-
tion of family welfare, without any need for ``incredible threats.'' In a similar spirit, Sen [14]
argued that if the head of the family is egalitarian, each member is led to equate the interests of
other members with his own, making it unnecessary to precommit to an incentive scheme. In an
interesting recent contribution, Ray and Ueda [13] show how the degree of egalitarianism is
related to incentives to work in a team production model.
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pooling equilibrium, by ``objecting'' (sending a zero probability message) in
an credible way, an agent might be able to ``convince'' the planner that he
is truthfully revealing some (new) information.

We find a necessary and sufficient condition for interactive implementa-
tion in FGP equilibrium. Our results can be related to the standard notion
of implementation in the sense of Maskin [9]. In Maskin's model, the
social optimum is given by a social choice rule. We interpret the social
choice rule as representing the utility maximizing outcomes for the planner.
As we show by example, even if a social choice rule is Nash implementable
in the usual sense,2 there may not exist any preference ordering for the
planner which makes interactive implementation of the social choice rule
possible. This should not be surprising, since in our model the planner
cannot make incredible threats, whereas the occurrence of ``incredible''
outcomes out of equilibrium can be crucial in Maskin's model. On the
other hand, there are social choice rules that can be interactively
implemented but cannot be Nash-implemented in the standard sense. This
is because when the planner is a player, her response to a given set of
messages can depend on the actual equilibrium being played. (The problem
of the planner's equilibrium knowledge is further studied in Baliga and
Sjo� stro� m [2]).

Finally some remarks on related literature. The paper closest in spirit to
ours is Chakravorty, Corchon and Wilkie [5]. They assume the person in
charge of running the mechanism is a benevolent (but mindless) ``keeper''
and not a player: she is neither allowed to figure out the equilibrium
strategies of the agents nor to make inferences from the messages sent by
the agents. Therefore, she is always uninformed. But she must keep in the
spirit of the mechanism and therefore under no circumstances can she pick
an allocation that is not in the range of the social choice rule. In a slightly
different attack on the credibility problem, Maskin and Moore [10]
assumed that the agents cannot commit not to renegotiate the outcome
recommended by the mechanism. Their approach is relevant if no principal
is present, and the mechanism is a sort of constitution for the agents.

2. EXAMPLES

We first give two examples illustrating why interactive implementation
in FGP equilibrium is in general neither easier nor more difficult than
standard Nash implementation. For examples 1 and 2, we suppose there
are three consumers and three commodities, and two states of the world %$

17THE PLANNER AS A PLAYER

2 In the exchange economy, this is equivalent to the well-known condition of Maskin
monotonicity.
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and %". However, the third consumer is only interested in the consumption
of the third good and no other consumer has endowments of this commodity
nor do they derive any utility from consuming the third good. We assume
the third consumer always consumes just her initial endowments so we in
effect have a two-good, two consumer world.

Example 1. A Social Choice Rule which is not interactively implementable
in FGP-equilibria, even though it is Nash-implementable.

Let , be the Walrasian correspondence. In Fig. 1 we show the competitive
equilibria for the states %$ and %" together with agent 1's indifference curves.
The outcomes ,(%$) and ,(%") are the most preferred outcomes by the
planner in states %$ and %", respectively. Consider the cheap talk game
where all three agents simultaneously send messages to the principal. The
message space is sufficiently big to at least include all subsets of the states
of the world. After the agents have spoken, the planner picks an allocation.
There exists a truth-telling separating perfect Bayesian equilibrium, where
the planner's off the equilibrium path beliefs are such that if one agent
should deviate, the planner believes the majority tells the truth. Any
separating equilibrium reveals the true state to the planner and allows her
to pick the right outcome in each state. Now consider a non-revealing
(pooling) perfect Bayesian equilibrium where the agents say the same thing
in each state (say the agents always claim that the state is %"). For any
message, the planner's prior beliefs go through and she picks â, the optimal
compromise: if she cannot get any information from the agents then she

Fig. 1. Example 1.

18 BALIGA, CORCHON, AND SJO� STRO� M
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prefers â. (It is clear that a utility function for the planner rationalizing this
choice exists). An objection is a zero probability message under the equilibrium
strategies.3 Suppose the state is truly %$ and agent 1 objects: ``Please
implement ,(%$) and not â as the state is truly %$.'' This objection is not
reliable: agent 1 prefers ,(%$) to â in both states, so this speech should not
convince the planner that the state is %$ (Farrell [7]). As agent 2 certainly
has no incentive to convince the planner that the state is %$, and as the
situation in state %" is symmetric, the pooling equilibrium is an FGP
equilibrium, i.e., an equilibrium which is free from reliable objections.
Therefore, the competitive equilibrium cannot be interactively implemented.4

On the other hand, if the planner could commit, then there exists a
``canonical'' mechanism which can Nash implement this (Maskin-monotonic)
, (see Osborne and Rubinstein [12, Section 10.4]). If all agents announce
%" always, the canonical mechanism would always pick ,(%"), but agent 1
can ``object'' by asking for an allocation such as a$ (see Fig. 1), which he
prefers to ,(%") if the state is %$ but not if the state is %". The usual interpretation
is that by making this objection, agent 1 ``persuades the planner that the
preference relation announced for him by the others is incorrect'' (Osborne
and Rubinstein [12, p. 188]) The condition of Maskin-monotonicity implies
that such ``persuasive objections'' exist. In our model, the situation is
clearly different. If the agents always announce %", the planner ``knows it''
and will respond with â rather than ,(%"), and moreover an outcome such
as a$ is totally irrelevant unless it is a best response for the planner against
some beliefs.

Example 2. An SCR , which is interactively implementable in FGP
equilibrium, even though it is not Nash implementable.

Figure 2 shows the Walrasian correspondence for states %$ and %" together
with agent 1's indifference curves. In this case this correspondence does not
satisfy Maskin-monotonicity and thus it is not Nash implementable in the
standard sense. Again, â denotes the ``optimal compromise.'' Consider a
pooling equilibrium where no information is revealed. In state %" agent 1
can object that the state is truly %", and this is a convincing speech because
in state %" he prefers ,(%") to â, while in state %$ he prefers â to ,(%"). This

19THE PLANNER AS A PLAYER

3 To make sure that objections are always available, we include auxiliary messages such as
``integers.'' Still, if the agents would ``babble'' by sending each message with positive probability,
no zero-probability message might exist. However, we suppose such mixed strategies are not
used.

4 More precisely, we have shown that these message spaces do not work. It is clear that no
other message space will work either.
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Fig. 2. Example 2.

breaks the pooling equilibrium. As a separating equilibrium always exists
and is optimal, , is interactively implementable.5

Subtle issues arise in our model when there are more than two possible
states. This is illustrated by our next example.

Example 3. There are three agents I=[1, 2, 3] and three states
3=[:, ;, #]. The agents' message spaces include at least all possible subsets
of states. The ranking of the outcomes in the different states by agent 1 and
the planner are as follows:

Agent 1 Planner

State: : ; # : ; #

a b b a b c
d d a d d d
c c c c c b
b a d b a a

20 BALIGA, CORCHON, AND SJO� STRO� M

5 The ``canonical'' mechanism for standard Nash implementation fails because it can get
``stuck'' at ,(%$): any outcome which an agent prefers to ,(%$) when the state is %" would also be
preferred when the state is %$.
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The three states are equally likely. The planner's utility function is such
that relative to beliefs that put probability 1�2 each on : and ; and zero
on #, her best response is d.

Consider a perfect Bayesian equilibrium where all three agents announce
[:, ;] in states : and ; and [#] in state #. The planner picks c if at least
two agents say [#], d if at least two agents say [:, ;], and otherwise plays
a best response to some arbitrary beliefs. But agent 1 can make a reliable
``speech'' in state ; : ``you know from the other agents' messages [:, ;] that
the state is definitely not #. It is really ;, so choose b. I have no reason to
argue this if it is :, but if it is ; I do have this incentive, so you should
believe me.'' So the equilibrium is not FGP. Now consider the following
perfect Bayesian equilibrium. Agents 2 and 3 always announce 3 ; agent 1
announces [:, ;] in states : and ; and [#] in state #. The planner picks
c if agent 1 says [#] and at least one other agent says 3, and d if she hears
any other message profile (the latter is supported by the belief that the state
is : or ; with equal probability). As in the equilibrium above, in both
states : and ; the outcome is d, and agent 1 prefers b (the planner's best
response to ;) to d in state ;, but d to b in state :. But now agent 1 cannot
convince the principal that the state is ;, because the other two agents'
messages do not allow the planner to rule out state #, and in state # outcome
b is agent 1's favorite. Can agent 1 in state ; convince the principal that
the state is in the set [;, #]? This clearly depends on what the planner
would do if she became convinced that the state is in the set [;, #]. In turn,
this depends on what relative probabilities she puts on ; and #. As this is
an out-of-equilibrium situation, it is not clear that the relative probabilities
on [;, #] should be determined by the prior.

This example illustrates two issues: (1) If an objection convinces the
planner that the state is in some set T, how are the relative probabilities
over T determined?6 (2) If a player makes an objection, exactly how much
information can the planner obtain from the other players' (equilibrium)
messages?

3. A GENERAL FORMULATION

There are n�3 agents. Let I be the set of agents. The set of feasible
outcomes is denoted by A. Let 3 be the finite set of possible states of the
world. Let 23 be the set of all subsets of 3. The prior probability of state
% occurring is p(%)>0 for all % # 3. If T�3, then p(T )#7% # T p(%). The
probability distribution pT is derived from the prior as follows: pT (%)=0

21THE PLANNER AS A PLAYER

6 We are grateful to an anonymous referee for stressing this Issue.
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if % � T, and pT (%)= p(%)�p(T) if % # T. For any set X, let *X denote the
number of elements in X.

Weak preferences of agent i in state % are given by the ordering Ri (%).
Thus, for a, b # A, aRi (%) b means agent i (weakly) prefers outcome a to
outcome b in state %. Let Pi (%) represent strict preferences and Ii (%)
indifference. The lower contour set for agent i at allocation a and state %
is Li (a, %)=[b # A : aRi (%) b]. We assume throughout that the true state %
is common knowledge among the agents.

At this point, the literature on mechanism design defines a concept of
social welfare, a social choice rule (SCR), F : 3 � A. We recall the following
definition. If for all b # A, aRi (%) b implies aRi (%$) b, then Ri (%$) is a monotonic
transformation of Ri (%) at a. The social choice rule F is (Maskin)
monotonic if, whenever a # F(%) and for all i, Ri (%$) is a monotonic trans-
formation of Ri (%) at a, then a # F(%$). Also, we say that f is a selection
from F, and write f # F, if f is a single-valued function such that f (%) # F(%)
for all % # 3.

In our setting, the planner is just another player, with an objective function
and a strategy space. The outcomes at the top of the planner's objective
function in each state can be thought of as defining the social choice rule.
The planner differs from the other players in one fundamental respect: the
state is common knowledge to them but not to her. Thus, if the agents are
not using strategies that release their private information in all states, she
will have to choose a best response even though she is not sure of the state.

If allocation a is chosen in state %, the payoff to the planner is U(a, %).
The implied social choice rule is

F(%)#argmax
a # A

U(a, %) (1)

Conversely, if F is a given social choice rule and U is such that (1) holds
for all %, then U is compatible with F.

Let r be a probability distribution over 3 and given some T�3 let 2(T )
be the set of probability distributions over T. Then, given the planner's
utility function U, we define

BR(r)#argmax
a # A

:
% # 3

r(%) U(a, %)

and for any T�3,

BR(T )# .
r # 2(T)

BR(r).

Also, for any T�3 define B(T )#BR( pT), where pT is derived from the
prior as above. Note that BR(T ) is the set of the principal's best responses

22 BALIGA, CORCHON, AND SJO� STRO� M
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for some belief concentrated on the set T, whereas B(T ) are the best
responses if she is not only convinced that the state is in T, but in addition
assigns relative probabilities to states in T according to the prior. Finally,
we say b is a compromise selection from B if b is a single-valued function
such that b(T ) # B(T ) for all T�3.

4. INTERACTIVE IMPLEMENTATION

The message spaces are M=_i # I Mi , where Mi=23_Qi , and Qi=
[1, 2, ..., *3+1].7 Thus, each agent reports a subset of states Ti �3 and
a ``nuisance message'' qi # Qi . A generic message is denoted mi=(Ti , qi).
Let m&i=(m1 , ..., mi&1 , mi+1 , ..., mn). A strategy for agent i is a map +i :
3 � Mi , where +i (%) is the message sent in state %. Let +&i (%)=(+1(%), ...,
+i&1(%), +i+1(%), ..., +n(%)). A strategy for the planner is a function
: : M � A, where :(m) is the allocation chosen in response to the message m.

Suppose the agents use strategies +. The range of + is denoted +(3)=
[m # M: m=+(%) for some % # 3]. For any m # M, +&1(m)#[% # 3 : +(%)=m]
is the set of states where agents send message m. Similarly, +&1

i (mi)#
[% # 3 : +i (%)=mi] and +&1

&i (m&i )#[% # 3 : +&i (%)=m&i]. If +(%)=m for
all % # T�3, we write m=+(T ). Similarly if +i (%)=mi for all % # T�3,
then mi=+i (T ), and if +&i (%)=m&i for all % # T�3, then m&i=+&i (T ).

Definition 1. (+*, :*) is a perfect Bayesian equilibrium (PBE) if

(1) for each % # 3 and each i, :*(+*(%)) Ri (%) :*(+*&i (%), mi) for all
mi # Mi ,

(2) for each m # +*(3), :*(m) # BR( pT), where T=(+*)&1 (m),

(3) for each m # M"+*(3), there exists r # 2(3) such that :*(m) # BR(r).

Part (1) of Definition 1 states that, given the anticipated response from
the planner, each agent sends a message that maximizes his payoff. Part (2)
requires that, for each equilibrium message m, the planner chooses what is
best for her, conditional on the correct belief that the true state belongs to
(+*)&1 (m). Part (3) requires that if m is not sent in equilibrium, then there
exists some belief for the planner such that the planner's response is optimal
conditional on this belief.

23THE PLANNER AS A PLAYER

7 We can consider more general message spaces but nothing is lost by focusing our attention
on the ones we consider.
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A PBE is separating if (+*)&1 (m) is a singleton for all m # +*(3). In this
case the planner can invert +* and is fully informed in equilibrium. A PBE
which is not separating is pooling. In a pooling PBE some ``compromise''
must be chosen by the planner whenever m # +*(3) is such that (+*)&1 (m)
is not a singleton.

Even though all agents have the same information, in equilibrium a single
agent may reveal some unique information (as happened in Example 3).
Such equilibria must be ``incentive-compatible'' (in the second equilibrium
of Example 3, agent 1 prefers d to c in states : and ;, but c to d in state #).
It will be useful to formalize this notion. A deception for agent i, $i , is
a mapping from 3 to 23 which satisfies % # $i (%) for all %. A deception,
denoted $, is a profile of deceptions, one for each agent. Let $(%)=�i # I $i (%),
$& j (%)=�i{ j $i (%).

If the agents use strategies +, then this implies a deception defined by, for
each i,

$i (%)#+&1
i (+i (%)) (2)

Then $(%) are the states the principal, knowing +, will not be able
to distinguish from %. Also, (2) implies $&i (%)=+&1

&i (+&i (%)), i.e., $&i (%)
are the states the principal cannot distinguish from % by looking at the
messages sent by all agents except i. If %$ # $&i (%) and $(%){$(%$) (where
the $i are still defined as in (2)), then $ is a finer partition of the states than $&i ,
that is, under strategy profile + agent i is revealing some unique information.
If Ti �3 for all i, define D(T1 , ..., Tn)#[ j # I : �i # I Ti=<, � i{ j Ti {<].
If (for each i) Ti=+&1

i (mi) for some equilibrium message mi , then
i # D(T1 , ..., Tn) means the messages of the agents in I"[i] are mutually
consistent, given the equilibrium strategies, but the whole n-tuple of messages
is inconsistent. If *D(T1 , ..., Tn)>1, then it is not possible to single out a
unique agent as being inconsistent with the others.8

Definition 2. Given a compromise selection b, a deception $ is incentive
compatible with respect to b if the following holds:

(i) for all i # I and % # 3

b($(%)) Ri (%) b($(%$)) for all %$ # $&i (%).

(ii) For all (%1 , %2 , ..., %n) # 3n, if *D(T1 , ..., Tn)>1 where for each i,
Ti=$i (%i), then there exists p$ # 2(3) and a=a(T1 , ..., Tn) # BR( p$) such
that for each i # D(T1 , ..., Tn) and each % # �j{i Tj , b($(%)) Ri (%) a.

24 BALIGA, CORCHON, AND SJO� STRO� M

8 In particular, if in equilibrium only two agents reveal information, but one of them were to
deviate so their reports contradict each other, the principal may not be able to figure out who
has deviated.
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If $i (%)#+&1
i (+i (%)) is a deception corresponding to some equilibrium

(where the principal breaks ties according to a compromise selection b),
then (as the proof of Theorem 2 below shows), $ must be incentive compatible.
Indeed, part (i) of Definition 2 implies maximization on behalf of each
agent i who reveals unique information on his own. Part (ii) is a condition
similar to the conditions that guarantee incentive compatibility in standard
2-person Nash implementation.

Now we introduce restrictions on the planner's off-the-equilibrium-path
beliefs in the spirit of Farrell [7]. However, in contrast to the standard
models, there is more than one ``sender.'' Therefore, if one agent makes a
surprise announcement, the planner may infer some information from the
other agents' messages.

Definition 3. Let (+*, :*) be a PBE. Suppose there exists %$ such that
+*&i (%$)=m&i , (T $, q$) # Mi , T $/(+*)&1

&i (m&i) but (m&i , (T $, q$)) � +*(3).
Then (T $, q$) is an objection to m&i by player i.

Thus, in some particular equilibrium the agents send m=+*(%$) in state %$.
Observing m&i , the principal infers that the state is in (+*)&1

&i (m&i). An
objection from agent i is a deviation from his equilibrium strategy signaling
that the state is truly in the set T $/(+*)&1

&i (m&i).

Definition 4. Let (+*, :*) be a PBE, and +*&i (%$)=m&i . An objection
(T $, q$) to m&i is BR-reliable for player i if, T $/(+*)&1

&i (m&i), and

(1) for all % # T $ and all a$ # BR(T $), a$Pi (%) :*(+i*(%), m&i), and

(2) for all % # (+*)&1
&i (m&i)"T $ and all a$ # BR(T $), :*(+i*(%), m&i)

Ri (%) a$.

A BR-reliable objection amounts to the following speech: ``The other
agents have announced m&i=+*&i (%$) but I object to that: the state is truly
in T $ and you should pick some element a$ in BR(T $). Your knowledge of
strategies and the other agents' messages tells you that the true state is in
(+*)&1

&i (m&i). But now notice that the set T $/(+*)&1
&i (m&i) satisfies (1)

and (2) of Definition 4. Given this, I will have the incentive to object iff
% # T $, so my speech is credible.''

Definition 4 supposes that, once the principal is convinced that the state
is in the set T $, any probability distribution with support T $ might be a
candidate for the ex post beliefs, consistency requires that the set T $ is
precisely the set of types that would profit for any belief concentrated on T $.
On the other hand, Farrell [7] assumes that if a message convinces the
planner that the state is in T $, her ex post beliefs are given by the priors
restricted to the set T $, denoted PT $ (see also Maskin and Tirole [11]).

25THE PLANNER AS A PLAYER
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Accordingly, in Definition 4 we can replace the set BR(T $) by the set
B(T $)#BR( pT $) to get the definition of B-reliable objection.9

Definition 5. A PBE is a weak FGP-equilibrium if no player has a
BR-reliable objection against any message which is sent in equilibrium
with positive probability. A PBE is an FGP-equilibrium if no player has a
B-reliable objection against any message which is sent in equilibrium with
positive probability.

Definition 6. The social choice rule F (as defined by (1)) is (interactively)
implemented in weak FGP-equilibrium (resp. FGP-equilibrium) if :

(i) for each selection f # F, there exists a weak FGP equilibrium
(resp. FGP equilibrium) (+, :) such that :(+(%))= f (%) for all % ; and

(ii) if (+, :) is a weak FGP-equilibrium (resp. FGP-equilibrium),
then for all %, :(+(%)) # F(%).

Because there always exist truth-telling equilibria and these are trivially
FGP equilibria, only part (ii) of Definition 6 has bite. And since any BR-reliable
objection is B-reliable, it is easier to knock out pooling equilibria using
B-reliable objections (hence an FGP equilibrium is also a weak FGP
equilibrium). Thus, any SCR which is implemented in weak FGP equilibria
is also interactively implementable in FGP equilibria. When there are only
two states, the two concepts are equivalent (in this case an objection can
only be made by singletons, and if T=[%] then B(T )=BR(T )).

Similarly to Definition 6, one can define interactive implementation
in PBE (with no restrictions on out-of-equilibrium beliefs). But due to
the existence of ``babbling'' PBE, interactive implementation in PBE is
(almost) impossible.

Theorem 1. If F is interactively implementable in PBE, then there exists
an outcome a such that a # F(%), \% # 3.

Proof. Suppose F is interactively implemented in PBE using message
spaces _i # I Mi . Let all agents send the message profile m independent of
the state of the world. For any message, the planner's prior goes through
and she implements some a # BR( p), where p is the prior belief. These
strategies and posteriors form a pooling PBE, and since F is implemented,
we must conclude that a # F(%), \% # 3. Q.E.D.
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5. NECESSARY AND SUFFICIENT CONDITIONS FOR
INTERACTIVE IMPLEMENTATION

We introduce a condition which guarantees that reliable objections can
be used to knock out any pooling equilibrium. In our setting, this condition
replaces Maskin monotonicity. As is to be expected, the condition depends
on the planner's utility function U, but only through the sets B(T ) and
BR(T).

Definition 7. The social choice rule F, defined by Eq. (1), is weakly
reliably monotonic if the following holds. Suppose that a deception $ is
incentive compatible with respect to some compromise selection b and
there exists a state % such that b($(%)) � �t # $(%) F(t). Then, there exists i # I,
%$ # 3, T $/S#$&i (%$) such that:

(i) if % # T $ then aPi (%) b($(%)) for all a # BR(T $)

(ii) if % # S"T $, then b($(%)) Ri (%)a for all a # BR(T $)

Theorem 2. F is implementable in weak FGP equilibrium if and only if
F is weakly reliably monotonic.

Proof. Necessity: Suppose F is interactively implementable in weak
FGP equilibrium using message spaces _i # IMi , where for each i, Mi=
23_Qi . Suppose for some compromise selection b the deception $ is incentive
compatible with respect to b and there is some state % such that b($(%)) �

�t # $(%) F(t).
Consider the following perfect Bayesian equilibrium (+*, :*). For all i # I

and % # 3, +i*(%)=($i (%), qi*) where qi* does not depend on %. By
construction, if m=+*(%) then (+*)&1 (m)=$(%) and (+*)&1

&i (m&i)=
$&i (%) for all i. For message profile m, with mi=(Ti , qi), define the
principal's response :*(m) as follows. (i) If m # +*(3), then :*(m)=
b((+*)&1 (m)). (ii) If there is % and i such that mj=+j*(%) for all j{i, and
either mi � +i*(3) or D(T1 , ..., Tn)=[i] then set :*(m)=b($(%$)) for some
%$ # $&i (%). (iii) If for each i there is %i such that mi=+i*(%i) and
*D($1(%1), ..., $n(%n))>1, then pick :*(m)=a($1(%1), ..., $n(%n)) as defined
by Definition 2 part (ii). (iv) For all other m, :*(m) # BR( p$) for some
arbitrary p$ # 2(3).

According to (i) the planner is maximizing his utility relative to equilibrium
messages, and according to (ii)�(iv) there exists beliefs that support his
reaction to out-of-equilibrium messages. As the deception $ is incentive
compatible with respect to b, the agents are also optimizing. For, suppose
at state % player i deviates to mi {+i*(%). Each other player j{i is sending
+j*(%)=($j (%), qj*)=(Tj , qj*). If mi=+i*(%$) for some %$ # $&i (%) then
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player i is not better off by Definition 2 part (i). The same is true if either
mi � +i*(3), or mi=(T $i , qi*) # +i*(3) with D(T&i , T $i)=[i] (where (T&i , T $i)
#(T1 , ..., Ti&1 , T $i , Ti+1 , ..., Tn)) For in this case :*(m)=b($(%$)) for
some %$ # $&i (%), which is an outcome agent i could have attained by
sending +i*(%$). Finally, suppose mi=(T $i , qi*)=($i (%$), qi*)=+i*(%$) for
some %$ � $&i (%) and *D(T&i , T $i)>1. Then i # D(T&i , T $i) and b($(%)) Ri (%)
:*(m) by Definition 2 part (ii). Thus, (+*, :*) is a perfect Bayesian equilibrium.

Since F is implemented and there exists a state % such that :*(+*(%))=
b($(%)) � �t # $(%) F(t), (+*, :*) is not a weak FGP equilibrium. Therefore,
some agent i in some state %$ must have a BR-reliable objection (T $, q) to
+*&i (%$). It must be the case that T $/(+*)&1

&i (+*&i (%$))=$&i (%$)#S, and
the following holds: if % # T $, aPi (%) :*(+*(%)))=b($(%)) for all a # BR(T $);
if % # S"T $, :*(+*(%)))=b($(%)) Ri (%) a for all a # BR(T $). Thus, F is
weakly reliably monotonic. This proves necessity.

Sufficiency: Let the message space for player i be Mi=23_[1, 2, ...,
|3 |+1]. Truthtelling can be supported as an FGP-equilibrium by letting
the planner disregard unilateral deviations. Thus, we only need to show
that there are no non-optimal equilibria.

Suppose there exists a non-optimal weak FGP equilibrium (+, :) such
that for some %* # 3, :(+(%*)) � F(%*). Define a deception $ as follows:
for all i in I and all %, $i (%)=+&1

i (+i (%)). Notice that $(%)=+&1(+(%)) for
all %. Define a compromise selection b as follows: for all T�3 such that
T=$(%) for some % # 3, set b(T )=:(+(%)). Otherwise, b(T ) is arbitrary.

We claim $ is incentive compatible with respect to b. For part (i) of
Definition 2, notice that for all %$ # +&1

&i (+&i (%))=$&i (%), as (+, :) is a
perfect Bayesian equilibrium,

b($(%))=:(+(%)) Ri (%) :(+i (%$)), +&i (%))=:(+(%$))=b($(%$))

For part (ii) of Definition 2, suppose (T1 , ..., Tn)=($1(%1), ..., $n(%n))
satisfies *D(T1 , ..., Tn)>1. Let m#(+1(%1), ..., +n(%n)). If i # D(T1 , ..., Tn),
then �j{i Tj {<. Now, if % # Tj then +j (%)=+j (%j) by definition. Therefore,
if % # �j{i Tj we have m&i=+&i (%) and m=(+&i (%), mi). As (+, :) is a
perfect Bayesian equilibrium,

:(+(%))=b($(%)) Ri (%) :(+&i (%), mi)=:(m)

Now set a(T1 , ..., Tn)=:(m) to get part (ii) of Definition 2. Hence, the
deception $ is incentive compatible with respect to b.

Since F is weakly reliably monotonic, there exists i # I, %$ # 3, T $/
$&i (%$)=S such that: if % # T $ then aPi (%) b($(%)) for all a # BR(T $), and
if % # S"T $, then b($(%)) Ri (%) a for all a # BR(T $). Let the state be % # T $
and consider m$i=(T $, z) � +*(3). Then, m$i is a BR-reliable objection to
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m&i=+&i (%). Then (+, :) is not a weak FGP equilibrium, a contradiction.
This proves sufficiency. Q.E.D.

By replacing ``a # BR(T $)'' by ``a # B(T $)'' in Definition 7, we get the
corresponding definition of reliably monotonic and the following result. We
omit the proof as it similar to that of Theorem 2 (see Baliga, Corchon and
Sjo� stro� m [1]).

Theorem 3. The social choice rule F is implementable in FGP equilibrium
if and only if it is reliably monotonic.

The examples of Section 2 show that Maskin monotonicity is neither
necessary nor sufficient for interactive implementation in FGP equilibria.
They also highlight the role played by ``compromise'' alternatives. Given a
Maskin monotonic social choice function F, we may wonder if there always
exists some preferences for the planner which are compatible with F and
allow interactive implementable in FGP equilibria. The answer is no. We
can exhibit a Maskin monotonic social choice function F such that, if the
planner's utility function is any utility function compatible with F, F cannot
be interactively implemented it FGP equilibria (and a fortiori not in weak
FGP equilibria).

Example 4. A Maskin-monotonic social choice rule F such that, if the
planner's utility function U is any utility function which is compatible with
F, F cannot be interactively implemented in FGP equilibria.

Consider a three person exchange economy with two goods. The social
endowment of good i is |i . There are four states, 3=[%1 , %2 , %3 , %4]. The
preferences of player 3 are fixed at R3(%)=R3 for all %. The preferences of
player 1 are R1(%1)=R1(%2)=R1 and R1(%3)=R1(%4)=R$1 . The preferences
of player 2 are R2(%1)=R2(%3)=R2 and R2(%2)=R2(%4)=R$2 . Let a=
F(%1), b=F(%2), c=F(%3), d=F(%4) be four distinct outcomes. Suppose in
all four cases player 3 gets some small amount =>0 of each good. Let
xi=(xi1 , xi2) denote the amount of goods 1 and 2 consumed by agent i at
allocation x. The preferences of player 1 are given in Fig. 3, where the dot-
ted (resp. solid) line represents an R$1 (resp. R1) indifference curve. The
preferences of player 2 are given in Fig. 4. R$1 and R$2 are actually
isomorphic, and also R1 and R2 . The indifference curves are drawn such
that both player 1 and player 2 are always indifferent between a, b, c and d.
(But the example can be perturbed so that this indifference goes away.)

As F is Maskin monotonic, it is Nash implementable in the standard
sense. Suppose the planner's preferences are represented by U, where U
is any utility function compatible with F. We claim F cannot be reliably
monotonic.
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Fig. 3. Player 1's preferences.

Let d11=a21 be the greatest amount of good 1 consumed by any player
at any of the outcomes a, b, c, d, and let a12=d22 denote the greatest amount
of good 2 consumed by any player at any of the outcomes a, b, c, d. Let K1

and K2 be numbers such that d11<K1<|1 and a12<K2<|2 . Let the area
C1 #A1 _ B1 in Fig. 3 be the union of the sets A1=[x1 : x11�|1&K1 and
x12�K2] and B1=[x1: x11�K1 and x12�|2&K2]. Let C2 #A2 _ B2 in
Fig. 4 be similarly defined.

Fig. 4. Player 2's preferences.
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Now we draw the indifference curves for player 1 in such a way that if
an indifference curve for preferences R1 passes through the area C1 , then
it coincides throughout the consumption set with an indifference curve for
preferences R$1 . Similarly, if an indifference curves for preferences R2 passes
through the area C2 , then it coincides throughout player 2's consumption
set with an indifference curve for preferences R$2 .

Let G1 and H1 be the areas in Fig. 3 given by:
G1=[z : if x # A and x1=z, then aP1x and xR$1a]
H1=[z : if x # A and x1=z, then aP$1x and xR1 a]
Let G2 and H2 be similar for player 2.
It is clear that we can draw the indifference curves in such a way that if

z=(z1 , z2) # G1 (where zi is the consumption of good i) then z1>|1&K1

and z2>K2 . Similarly, if z=(z1 , z2) # G2 then z1>|1&K1 and z2>K2 .
Similar statements hold for H1 and H2 .

Suppose F is reliably monotonic and let e # B(3). Consider the deception
$i (%)=3 for all % for all i, and also the compromise selection b(3)=e and
b(T ) is arbitrary for all other T�3. Clearly, $ is incentive compatible with
respect to b. Since F is reliably monotonic and e � �t # 3 F(t), there exists
i # I, T $/3 and g # B(T $) such that:

(i) if % # T $ then gPi (%) e

(ii) if % � T $, then eRi (%) g.

There are four possibilities, call them I, II, III, IV. If i=1 then either (I)
T $=[%1 , %2] so gP1e and eR$1 g, or (II) T $=[%3 , %4] so gP$1e and eR1 g.
Similarly, there are two possibilities (III and IV) for the case i=2.

Consider first possibility I, where T $=[%1 , %2]. Consider the following
deception $i (%)=[%1 , %2] if % # [%1 , %2] and $i (%)=[%] otherwise for
all i. Consider the compromise selection where b(T $)= g. Clearly, $ is
incentive compatible with respect to b. Since g � �t # T $ F(t), and F is
reliably monotonic, there is some state % where some agent of some type
has an objection. This state cannot be %3 or %4 as $&i (%) for % # [%3 , %4]
for all i is a singleton. Therefore as F is reliably monotonic and
g � �t # T $ F(t), there is %$ # T $ and y # F(%$) such that:

(i) yP2(%$) g

(ii) if % # T $"[%$], then gR2(%) y.

Again there are two possibilities to consider: (Ia) %$=%1 or (Ib) %$=%2 .

(Ia) If %$=%1 then R2(%$)=R2 and F(%$)=a. From (i) and (ii) it follows
that aP2 g and gR$2a. Thus, g2 must be in area G2 in Fig. 4. Then g21>|1&K1

and g22>K2$ , so g11<K1 and g12<|2&K2 . Thus, g1 belongs to the area
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B1 /C1 of Fig. 3. By construction, if an indifference curve for preferences
R1 passes through this area, then it coincides throughout the consumption
set with an indifference curve for preferences R$1 . However, this contradicts
gP1e and eR$1 g.

(Ib) This case is completely symmetric to (Ia).

Thus, possibility I leads to a contradiction. The remaining possibilities
II, III, IV lead to similar contradictions. Thus, F cannot be reliably monotonic.

6. CONCLUSION

This paper has defined a new notion of interactive implementation and
investigated the types of social choice rules that can be interactively
implemented. Our analysis suggests that at least the following questions are
of interest:

(1) There may be other restrictions on beliefs ``off the equilibrium
path'' worth analyzing.

(2) Since messages in our model are cheap talk, it is necessary to
postulate that the planner understands the ``language'' which the agents
speak. On the other hand, if messages were costly to send, standard
refinements such as stability could be more powerful. It is clear that
making messages costly may well be in the planner's interest.

(3) Allowing for other types of interaction (i.e., having the planner
move at the same time as the agents or many times) between the planner
and agents may alter the set of social choice rules that can be interactively
implemented in an interesting manner��Baliga and Sjo� stro� m [3] have
made some preliminary investigations along these lines.

(4) The set of social choice rules that can be interactively implemented
when there is incomplete information among the agents remains to be
characterized.

(5) The principal may be able to commit to an outcome function in
some minimal way. For example, the principal may commit not to change
the outcome from a to b if the expected gain is smaller than some =>0.

(6) Even if the principal cannot commit to an outcome function (for
example because messages are unverifiable to third parties), he may be able
to commit to a ``constitution'' which limits his actions, i.e., which restricts
the set A from which he can choose. Such a commitment can clearly make
the principal better off.
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