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Abstract

Why do rational politicians choose ine¢ cient policy instruments? Environmental regulation,

for example, often takes the form of technology standards and quotas even when cost-e¤ective

Pigou taxes are available. To shed light on this puzzle, we present a stochastic game with

multiple legislative veto players and show that ine¢ cient policy instruments are politically

easier than e¢ cient instruments to repeal. Anticipating this, heterogeneous legislators agree

more readily on an ine¢ cient policy instrument. We describe when ine¢ cient instruments

are likely to be chosen, and predict that they are used more frequently in (moderately)

polarized political environments and in volatile economic environments. We show conditions

under which players strictly bene�t from the availability of the ine¢ cient instrument.



1 Introduction

Over the years, the economics profession has converged at a set of e¤ective policy recom-

mendations for a wide variety of policy areas. For example, there is widespread agreement

that externalities can be more e¢ ciently internalized with Pigou taxes than with command-

and-control interventions, and that it is less distortionary to increase public revenue by elim-

inating economically unjusti�ed tax deductions and exemptions than by raising tax rates.

Likewise, economists have argued that some �scal consolidation policies are less harmful

than others. In practice, however, these recommendations are frequently ignored. Instead,

policy makers often intervene with strictly less e¢ cient policy instruments than others that

are as readily available. This paper concerns why such apparently irrational (all else equal)

political decisions might arise in a world of instrumentally rational agents.

To understand this puzzle, we present a dynamic political economy model in which the

government reacts to external shocks by choosing a policy from a given menu of policies, one

of which is unequivocally Pareto dominated by another available alternative. Indeed, the

ine¢ cient policy is not only Pareto dominated by the alternative at the time of adoption,

but in all possible states of the world. Nevertheless, we show that the ine¢ cient policy

intervention can arise naturally from a simple legislative bargaining model without any

extraneous frictions or informational asymmetries: it is the very ine¢ ciency of the policy

that makes it appealing to legislators. We further show that the availability of the ine¢ cient

policy instrument may, at least in equilibrium, improve the welfare of all policy makers.

Our legislative bargaining model rests on three characteristics. First, legislative policy

decisions involve multiple pivotal players. In particular, policy change requires the consent

of di¤erent veto players who may disagree on when to enact or repeal an intervention.

Second, the status quo policy in a dynamic, multi-period setting is endogenous: the policy

implemented in one period becomes the status quo in the next. Third, the environment is

subject to shocks across time that a¤ect the state-contingent policy preferences of the veto

players in any period, thereby creating the need for periodic renegotiations.

In a closely related model with only one available policy intervention, Dziuda and Loeper

(2016) observed that the three characteristics described above imply that the legislator who

is pivotal for introducing the intervention is distinct from the legislator pivotal for repealing

it. Consequently, the anticipation of her loss of political in�uence makes the legislator pivotal

for implementing the intervention less inclined to introduce it in the �rst place, fearing that

it will be hard to repeal should circumstances change. Loosely speaking, (Markov perfect)

equilibrium behavior involves political gridlock. In this paper, however, we show that when

players can choose not only whether, but also how, to intervene, the fear of future gridlock
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can induce an ine¢ cient policy intervention. Intuitively, the veto players can agree on an

ine¢ cient policy instrument because the ine¢ cient instrument will be easier to repeal. As a

result, there may be states of nature in which the more economically e¢ cient intervention is

not politically feasible, whereas the less e¢ cient intervention is approved by all veto players.

In particular, we characterize conditions under which the ine¢ cient policy instrument is

implemented with positive probability in equilibrium. Intuitively, for an ine¢ cient policy

response to be chosen by rational legislators, it must be the case that the ine¢ ciency is

su¢ ciently high for the more interventionist legislator to approve repealing the policy in

some states, and su¢ ciently low for the less interventionist legislator so that the ease of

repeal o¤sets the cost of ine¢ ciency for using the ine¢ cient policy in other states. For any

strictly positive level of ine¢ ciency, however, there are (nonpathological) distributions of the

state of nature under which legislators use the ine¢ cient instrument in all equilibria.

The theory links both the political system and the level of economic stability to the

choice of policy instrument. To see this, �x the level of economic stability and consider

the political system. If decisions require super-majorities or must be approved by multiple

legislative chambers or interest groups, then there is a larger set of veto players, and the

ideological distance between the two most extreme pivotal players is widened. Gridlock

can be substantial in these circumstances, creating room for the use of easily repealable

instruments. The relationship between ideological polarization and the use of ine¢ cient

instrument, however, turns out to be non-monotonic in our framework. The relative ease of

repealing ine¢ cient policies makes such policies attractive interventions for moderate levels

of ideological polarization, but not when ideological polarization is small or when it is large.

To see why, note that, when the pivotal players have su¢ ciently similar preferences, they are

likely to agree on when to repeal an e¢ cient intervention. Conversely, when their preferences

are su¢ ciently polarized, they are likely to disagree on when to repeal either type of policy

intervention, in which case the strategic bene�t of an ine¢ cient intervention is too small to

outweigh its cost.

To understand the e¤ect of economic volatility, �x the political system. For stable eco-

nomic environments, the current state of nature changes little over time and any policy

intervention can be expected to persist for quite some time. Consequently, the expected cost

of intervening with an ine¢ cient instrument is larger than the option value of being able to

repeal such a policy more readily. On the other hand, if the current economic environment

is volatile, the state of nature can vary considerably and the possibility of at least one veto

player preferring to repeal an intervention relatively quickly can be high. The relative ease

with which ine¢ cient interventions are repealed, therefore, makes use of such instruments

attractive in this situation.
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We show that all veto players can be strictly better o¤ in equilibrium if the ine¢ cient

intervention is available as a policy option. Hence, our paper not only o¤ers a rationale for the

use of ine¢ cient policy instruments, but also implies that they can be bene�cial given the

political constraints induced by a collective choice mechanism with multiple veto players.

The less interventionist player bene�ts from the availability of the ine¢ cient intervention

because it is easier to repeal, and the more interventionist player bene�ts because it makes

policy intervention politically feasible.

The model�s logic can be applied to a variety of settings, including infant industry pro-

tection, environmental regulation, �scal consolidation and �nancial regulation.

Temporary protection of infant industries. Trade theorists (see, e.g., Bardhan

1971) have argued that in the presence of dynamic learning externalities, protecting an infant

industry from foreign competition (or protecting an established industry from a temporary

surge in foreign competition) can raise social welfare. The literature has further shown that

subsidies are preferable to tari¤s because they do not distort consumption and, because of

the double-dividend e¤ect, that tari¤s are preferred to quotas and other non-tari¤ barriers

to trade. However, an important condition for these measures to be socially desirable is

that they must be repealed when the industry matures (or when the temporary increase in

foreign competition vanishes), although policy makers do not know ex-ante when that will

occur (Melitz 2005). The logic of our model suggests that the more free-trade oriented party

might prefer to protect the domestic industry with ine¢ cient non-tari¤ barriers to trade

for fear that the more protectionist party will veto a repeal of more e¢ cient protectionist

policies. In fact, since WWII, governments have increasingly relied on non-tari¤ barriers to

trade to adapt trade policies to changes in trade �ows (Bagwell and Staiger 1990).

Environmental regulation. Despite the sometimes considerable di¤erences in perspec-
tive, economists from left to right tend to recommend Pigou taxes to regulate an externality

because they are cost-e¤ective, require little information, and o¤er a �double dividend�

whereby emission taxes generate public revenues that allow governments to reduce other

distortionary taxes.1 It is thus �a mystery�, according to some economists,2 why the Repub-

1Weitzman (1974) compared quotas and taxes in a setting with incomplete information and zero value
of the tax revenues. But starting with Tullock (1967), there is a large literature in economics on the double
dividend. While a �strong� version of it is controversial, the �weak� version� that the revenues reduce
overall distortions compared to a setting without these revenues� is generally accepted. Only the weak
version is required for the argument we make here. For surveys on the literature on the double dividend, see
Bovenberg (1999), Sandmo (2000), Goulder (2002), or Jorgensen et al. (2013). In part because of the double
dividend, all but four of �fty one prominent economists surveyed in 2011 agreed that a carbon tax would
be the less expensive way to reduce carbon-dioxide emissions. (http://www.igmchicago.org/igm-economic-
experts-panel/poll-results?SurveyID=SV_9Rezb430SESUA4Y)

2On this �mystery,� see: http://www.nytimes.com/2015/07/01/business/energy-environment/us-leaves-
the-markets-out-in-the-�ght-against-carbon-emissions.html. While Pigou taxes are relatively rare also in-
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lican Party in the US blocked such a market-based policy during the Obama administration,

since doing so e¤ectively led to the command-and-control regulation of power plants intro-

duced by that administration in 2015. In line with our model, however, some key Republicans

may have anticipated that the administration would impose some curbs on the energy sector

regardless, forcing them to use ine¢ cient (command-and-control) instruments that would

be easier to repeal once Obama�s term was completed.3 And, at the time of writing, the

Republican administration is indeed working to repeal the regulations. It is hard to envision

that the same attempt would occur if the intervention to be repealed was an e¢ cient carbon

tax combined with a lump-sum subsidy or a tax o¤set.

Fiscal consolidation. Consider a country deciding how to consolidate its �scal policy
after a shock has put its public debt on an unsustainable path. Although its government

can do so along a variety of policy dimensions, we illustrate the logic of our argument by

considering only one possibility, namely whether to focus on increasing revenues or decreasing

outlays. Suppose, as the existing empirical evidence suggests, that a spending cut is less

contractionary and thus statically preferred by the policy makers to a tax increase. In

that case, the less interventionist veto player is the veto player ideologically least inclined

to implement a spending cut, that is, the liberal veto player. Our theory suggests that

the liberal veto player may veto the spending cut and support instead a more costly tax

increase in anticipation that, once the �scal situation improves, it will be easier to convince

the conservative player to decrease taxes than to increase spending to its pre-crisis level.4

Consistent with this logic, there is empirical evidence indicating that �scal adjustments

ternationally, a famous exception is British Columbia, which introduced a carbon tax in 2008. Although
initially controversial, the tax has gained support from all important stakeholders thanks to the rebates
in other taxes that the revenues permit (http://www.nytimes.com/2016/03/02/business/does-a-carbon-tax-
work-ask-british-columbia.html?smid=pl-share&_r=0).

3Jim Manzi, a prominent conservative commentator on climate change, said openly that �a carbon tax
would be, mostly likely, a one-way door: Once we introduce it we�re stuck with it for a long time. What if our
economic and climate models are too aggressive, and there is no practical economic justi�cation for emissions
reductions [. . . ] There are very large potential regrets to a carbon tax.�(In �Conservatives, Climate Change,
and the Carbon Tax�, The New Atlantis, 2008 (21), 15-25)

4See Alesina et al. (2017) for a recent literature review. The �ndings of that literature are still subject to
intense debate, but we would like to point out that the logic of our model applies equally to the opposite case
in which a tax increase is more e¢ cient than a spending cut, the only di¤erence being that the interventionist
player is then the liberal veto player. Our �ndings can also be applied to the reverse problem of �scal stimulus.
In that case, the government must choose between a spending increase of a tax cut. The logic of our model
does not depend on which of the two is more e¢ cient in that case either, but suppose for concreteness
that tax cuts are more expansionary, as is suggested by the existing empirical evidence (see, e.g., Mankiw
2010 and the references therein). In that case, our model o¤ers the following rationale. After an economic
contraction, the liberal veto player foresees that if a tax cut is implemented, the conservative veto player
will be reluctant to increase taxes back to their pre-crisis level once the economy grows again. As a result,
the liberal veto player prefers a spending increase, because it will be easier to convince the conservative veto
player to cut spending once the crisis is over.
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based on spending cuts are longer-lived than �scal adjustments based on tax increases, i.e.,

the e¢ cient adjustment is more persistent than the ine¢ cient one (e.g., Alesina et al. 1998,

Alesina and Ardagna 2013).5

Financial regulation. Financial regulation tends to respond to �nancial crises. For
example, after the �nancial crisis of 2007-2008, the U.S. Congress passed the Dodd-Frank

Wall Street Reform and Consumer Protection Act. Although hailed by many as a step in

the right direction, it is a complex piece of legislation that others consider ine¢ cient. Its

provisions rely on heavy government regulation instead of price instruments recognized as

more e¢ cient at curbing systemic risk. Applying the same lens here as for the environmental

regulation example, the ine¢ ciencies can be viewed as a price paid by liberals to insure at

least some regulation was implemented and, from the perspective of the more laissez faire

members of Congress at the time, an acceptable intervention in response to the fallout

from the crisis but one that can be more easily unpacked in economically calmer times.

Consistent with this view, on June 9 2017, The Financial Choice Act, legislation that would

�undo signi�cant parts�of Dodd-Frank, passed the House 233-186.

Related literature. We are not the �rst ones to o¤er an explanation for why gov-

ernments implement ine¢ cient policies. However, the logic that underlies our argument is,

to the best of our knowledge, novel: ine¢ cient interventions are more likely to be repealed

should circumstances change, making them more likely to be accepted in the �rst place by

all veto players. On the abstract level, there are three main features that distinguish our

paper from the literature. First, the mechanism does not depend on the speci�cities of the

economic environment, or on how the policy interacts with the private sector or the elec-

torate. Instead, ine¢ ciency arises solely from the con�ict of interests between legislators and

the need to adapt the policy to a changing environment. Second, the ine¢ cient policy in

our model is ine¢ cient in a static sense: there exists a policy that gives a strictly greater

�ow payo¤ to all relevant decision makers in all states of nature. Third, the ine¢ cient policy

is not only the result of status quo inertia whereby a previously optimal policy becomes

obsolete. Instead, it is actively implemented by the policy makers.

The paper closest to ours is Dziuda and Loeper (2016), who analyze a similar model

except that they restrict the policy set to policies that are statically Pareto undominated

for some states. They show that ine¢ cient inertia occurs because each pivotal player fears

that policy changes approved by her will be hard to repeal when she wishes to do so. As

a result, the status quo can persist even when Pareto dominated. Hence, any ine¢ ciency

5An alternative explanation for why tax hikes might be chosen even when they are less e¢ cient than
spending cuts is that the latter hurt powerful constituencies such as retirees or unions. However, that
explanation is harder to reconcile with empirical �ndings that governments whose austerity programs focus
on spending cuts are no less likely to be reelected than those who focus on tax increase (Alesina et al. 1998).
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takes form of status quo inertia and any policy change is a Pareto improvement. Riboni and

Ruge-Murcia (2008), Zapal (2011), Duggan and Kalandrakis (2012), Bowen et. al. (2017),

and Dziuda and Loeper (2018) consider related models of dynamic legislative bargaining

which also lead to policy inertia. Relative to these papers, our contribution is to show that

adding a Pareto ine¢ cient alternative to the policy space can mitigate policy inertia. In

particular, legislators may adopt a Pareto-dominated policy change.6

Since our model requires policy makers to respond to shocks, it is related to the literature

on policy reforms. Alesina and Drazen (1991) show that legislators can engage in war

of attrition over who should bear the costs of reform. Fernandez and Rodrik (1991) and

Ali, Mihm and Siga (2017) show that uncertainty over the distributional impact of reforms

may sti�e them. Spolaore (2004) compares the likelihood of policy adjustment across three

stylized institutions. In Strulovici (2010), an endogenous status-quo bias arises if a majority

learns that the new policy is bene�cial for them. Anticipating this situation, policy makers

may not want to try out new policies in the �rst place. Unlike in our model, these papers

consider the policy response to a single shock after which legislators�policy preferences are

�xed over time and restrict attention to e¢ cient policy adjustments. Hence, ine¢ ciency only

takes the form of delays or failure to intervene. In contrast, legislators act without delay in

our model but the solution they adopt is ine¢ cient.

There is also large political science literature that explores ine¢ cient policy making due

to structural characteristics of legislative decisionmaking (e.g., the �libuster or committee

structure). Important examples here include Krehbiel (1998) and Brady and Volden (2006),

who explore models of gridlock, Ortner (2017), who shows that gridlock is likely near the

next election, and Weingast, Shepsle and Johnson (1981) and Cox and McCubbins (2000),

who analyze legislative structure and ine¢ cient public good provision more generally. To our

knowledge, however, there is as yet no analysis focusing directly on the deliberate strategic

choice of ine¢ cient policy change when policy change occurs.

Ine¢ cient policy choices by a unitary actor, whether a single legislator or a fully coordi-

6In a distributive environment, Bowen et. al. (2014) and Anesi and Seidmann (2015) show that endoge-
nous status quo can lead to Pareto ine¢ cient policies, because they allow the proposer or the supporting
coalition to extract greater transfers in the future. In these papers, preferences do not evolve over time, as
in most of the literature on dynamic policy making with an endogenous status quo. Policy dynamics occur
because the proposer changes (e.g., Baron 1996, Bernheim, Rangel and Rayo 2006, Kalandrakis 2004, Anesi
and Duggan 2017, Buisseret and Bernhardt 2017), or because the same proposer forms di¤erent coalitions
over time (e.g., Diermeier and Fong 2011). In contrast, in our model, each proposer always seeks the support
of the same policy maker and the qualitative nature of policy ine¢ ciencies is, by and large, independent of
the allocation of bargaining power. A di¤erent strand of literature assumes that the implemented policy
in�uences future states (see Hassler et al., 2003, for example). Baldursson and Von Der Fehr (2007) is closer
to our story, as they argue that a relatively �brown�party may prefer quotas rather than taxes, because the
relatively ine¢ cient quotas are essentially property rights that are di¢ cult to tighten or remove later.
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nated party or group, can be also explained by aspects of the political economic environment

other than legislative design. In Coate and Morris (1995), Acemoglu and Robinson (2001),

and to some extent Glaeser and Ponzetto (2014), ine¢ cient policy choices arise from an

incumbent legislator�s e¤orts to retain o¢ ce.7 Whereas the Coate and Morris (1995) and

Glaeser and Ponzetto (2014) accounts rest on asymmetric information, Acemoglu and Robin-

son (2001) generate policy ine¢ ciency from a model in which distortionary transfer payments

are designed to counter declining political support and in�uence. Tullock (1993), Grossman

and Helpman (1994), Becker and Mulligan (2003) and Drazen and Limao (2008) argue that

any resource transfer increases wasteful lobbying (rent-seeking) activity. By committing it-

self to ine¢ cient transfers, the government can reduce the level of wasteful lobbying. More

generally, there is an extensive literature on policy distortions induced through special inter-

est groups�lobbying and campaign contribution activities (see Wright 1996 and Grossman

and Helpman 2001 for overviews of the literature)

Aidt (2003) claims that ine¢ cient command-and-control instruments are more bureau-

cracy intensive and, to the extent that bureaucrats in�uence policy design and derive value

from implementing policy, such interventions are favored by bureaucrats. Alesina and Pas-

sarelli (2014) and Masciandaro and Passarelli (2013) o¤er explanations of socially suboptimal

policies that hinge on the median voter failing to internalize the costs and bene�ts to oth-

ers when policies have di¤erent distributional consequences. However, both available policy

choices are Pareto optimal in these papers. In contrast to these approaches, ine¢ ciency in

our model does not depend on groups, informational asymmetries, or reelection concerns.

2 A Simple Example

In this section we present a stylized example to illustrate the key mechanism and to preview

some of our results. The mechanism requires two pivotal players, or legislators, L and R,

both of whom must approve any policy change. Speci�cally, at the start of any legislative

period, nature randomly chooses one legislator to propose a change in, or maintain, the status

quo policy. The other legislator has a veto right over any proposed change in the status quo.

Legislators start with no intervention, denoted by n; and can intervene by introducing either

an e¢ cient instrument p or an ine¢ cient instrument q: The �ow-payo¤ from policy n is

normalized at 0: Intervention gives everyone a bene�t �, and the costs associated with p and

q are wi and wi + ei, respectively, for i 2 fL;Rg. We assume that ei > 0 for each i, so that
ei is the additional bene�t of the e¢ cient instrument.

7See also Canes-Wrone, Herron and Shotts (2001) and Buisseret and Bernhardt (2018) for how electoral
incentives can lead to policy distortions.
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We can immediately make some simple observations:

Proposition 0 Suppose there is only one period. Then the ine¢ cient policy q is never

implemented in equilibrium.

Suppose now that there are two periods and let � > 0 be the common discount factor.

The status quo in the �rst period is n and the �rst-period policy becomes the status quo

in the second period. Assume further that there are only two states, � and �� > �; with ��

occurring with probability �, and suppose that the costs associated with p and q satisfy

wL < � < minfwL + eL; wRg � maxfwL + eL; wR + eRg < ��: (1)

The last inequality in (1) means that in state ��; both players prefer any type of intervention

to n. The �rst two inequalities in (1), however, imply that in state �, the less interventionist

player R prefers no intervention, while the more interventionist player L prefers to intervene

but only if the intervention is with the e¢ cient instrument. In terms of our environmental

application, �� can be interpreted as the usual state of the economy in which both parties agree

that environmental interventions are desirable, while � can be interpreted as an economic

downturn that makes the R party (but not the L party) want to repeal any regulation that

can compromise economic growth. In the case of �scal consolidation, � may be interpreted

as a business-as-usual state in which parties di¤er ideologically on whether public spending

should be cut, while �� can be interpreted as a �scal crisis state in which both parties are

willing either to cut spending or to increase taxes to bring public debt under control.

Consider the last period in this game. In state ��, both players strictly prefer p to any

other policy. So, independently of which player has proposal rights, p is implemented in that

state. What is implemented in the low state �, however, depends on the status quo. If n

is the status quo, R does not approve (propose or accept, depending on the allocation of

proposal rights) any change in policy. Similarly, if p is the status quo, L does not approve of

any change in policy. Finally, if q is the status quo, then the two players agree that either n

or p are better than the status quo, but they disagree on which is best. In this situation, p

is implemented if L has the proposal power and n is implemented otherwise. This reasoning

implies that, in the second period, p is not repealable, but q can be repealable when the

realized state in that period is �.

Consider now the �rst period, and suppose the state is �� with status quo n. Both players�

�rst period �ow-payo¤s are maximized by policy p: But since p is not repealable, R may be

reluctant to approve such a change in policy. In particular, R does not approve p in the �rst

period if the bene�t of p relative to n in state �� is outweighed by the expected cost of being
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stuck with p in state �; that is, if:

� � wR < � (1� �) (wR � �) : (2)

Thus, players fail to intervene e¢ ciently in the �rst period if the disagreement state � is

relatively likely (i.e., 1�� is high), if players are patient, and if R�s preference for intervention
in state � is relatively weak compared to R�s preference for no intervention in state �. On the

other hand, because q is more easily repealed than p, R may be willing to intervene with q:

Denoting by bL 2 [0; 1] the probability that L has the authority to make a take-it-or-leave-it
policy proposal in the second period, R approves an intervention q in the �rst period if

�� � wR � eR � � (1� �) bL (wR � �) : (3)

And since L receives a higher �ow-payo¤ from q than n in state ��, and the likelihood that a

change from status quo q to p in the second period exceeds that from n to p, L also prefers

and approves q over n in the �rst period. Finally, because players�share the same ordinal

policy preferences over n and q in both states, we have the following proposition.

Proposition 1 Suppose there are two periods and

� (1� �) bL (wR � �) + eR � � � wR < � (1� �) (wR � �) :

Then, in the �rst period of any subgame perfect equilibrium,

(i) intervention occurs in �� when the policy menu is fn; p; qg but not when the menu is fn; pg;
(ii) both players strictly prefer menu fn; p; qg to menu fn; pg.

The fact that e¢ cient policies are hard to repeal can make them politically impossible

to agree upon in a dynamic setting. At the same time, as part (i) of the proposition states,

it is precisely because of its ine¢ ciency that both legislators may approve a �rst period

intervention with q in state �. And, as part (ii) of the proposition asserts, adding this

statically Pareto-dominated choice to the policy menu may not only result in its use, but it

also strictly improves equilibrium payo¤s for both players.

To our knowledge, the preceding claims are new to the literature. They are, however,

derived in a stylized example that raises a number of questions. For instance, the cost of

instrument q is limited since q will always be replaced by either n or p in the last period. But

what is the desirability of q in a dynamic model when there is no last period? Furthermore,

the binary state space in the example implies that instrument p will never be repealed once

implemented. But why should the players prefer q to p in a more general setting where both
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interventions may eventually be repealed? To explore these and several other issues further,

the following section generalizes the model to an in�nite number of periods and to more

general distributions of states.

3 Model

Policies, payo¤s, and players. Two in�nitely lived players, L and R, must decide in each
period t 2 N which of three policies fn; p; qg to implement. Their preferences over these
policies in a given period t depend on the realization of the state of nature �t 2 R; and are
speci�ed as in the preceding example. That is, normalizing both players��ow-payo¤ from

policy n in any state � to zero, Ui(�; n) = 0, i 2 fL;Rg, player i�s �ow-payo¤ from policies

p and q relative to policy n in � are, respectively,

Ui (�; p) = � � wi; (4)

Ui (�; q) = � � (wi + ei).

Thus, ei is the period �ow-payo¤ gain for player i from implementing p instead of q in state

�. For simplicity, we assume this gain is independent of �. More importantly, we assume

that ei > 0 for both players. That is, intervention p Pareto dominates intervention q in all

states of nature. Although the state of nature does not a¤ect which intervention is best,

it a¤ects whether an intervention is needed in the �rst place: given the zero �ow-payo¤

from no intervention, n, player i gets a greater �ow-payo¤ from policy p than from policy n

when � � wi, and a greater �ow-payo¤ from q than from n when � � wi + ei. Importantly,
we assume that wL 6= wR; that is, in some states of nature, players disagree whether the

e¢ cient intervention p is preferred to no intervention n. By convention, L denotes the more

interventionist player, so wL < wR.8

Timing of the game. Every period t 2 N starts with some status quo st 2 fn; p; qg,
with s0 = n. At the beginning of period t, both players observe the state �t 2 R. After �t is
observed, L and R must collectively choose a policy from the set fn; p; qg. We assume that
one player makes a take-it-or-leave-it o¤er to the other regarding which policy to implement.

The recognition probability for player i is denoted by bi (�; s) ; which may depend on the

current state � and status quo s. We assume that bi is bounded below by some b > 0:

The recognized proposer o¤ers a policy yt 2 fn; p; qg . If the other player, the veto-player,
8The terms �instrument� and �intervention� are used exclusively in reference to alternatives p and q.

The term �policy�may refer to any of the available alternatives, including n. This looseness should cause
no confusion. Also, we say that a policy p or q is �repealed�when it is the status quo and players agree to
replace it by n:
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accepts this proposal, then yt is implemented; otherwise, the status quo st stays in place.

The policy implemented in t, whether the proposal yt or the status quo st, generates the

�ow-payo¤ for that period, as measured by (4), and becomes the status quo in the next

period, t+1. Each player maximizes her expected discounted payo¤over the in�nite horizon.

The common discount factor is � 2 (0; 1). For simplicity, we initially assume f�t : t � 0g
are distributed identically and independently over time according to some continuous c.d.f.

F with full support. The assumption is relaxed in section 5 to permit serial correlation.

Equilibrium concept. We denote the above game by � and restrict attention to

stationary Markov-perfect equilibria, referred to as �equilibria�in what follows. A stationary

Markov-perfect equilibrium is a subgame-perfect equilibrium in which players use stationary

Markov strategies. In this game, a strategy is stationary Markov if it depends only on the

current state, the current status quo, the identity of the proposer, and the current proposal

at the action node of the veto player.9 Let �i denote i�s stationary strategy and write

� = (�L; �R).

Since our interest regards the use of the ine¢ cient instruments, throughout most of the

paper we focus on equilibria with this property. To this end, the following de�nition is useful.

De�nition 1 Let � be an equilibrium of �. Then, � is an instrument ine¢ cient equi-
librium (IE) if q is implemented with positive probability on the equilibrium path; � is an

instrument e¢ cient equilibrium (EE) otherwise.

Remarks on the assumptions. Some of the assumptions are made for simplicity and
relaxing themmay not change the results. In particular, binary policy levels are not necessary

for the results. To see this, suppose that players can choose any level of p or q and consider

a two-period example again. The ine¢ cient instrument q will not be used in the last period

and the set of states under which p is repealed will be independent of its level. The ine¢ cient

q at any level, however, will still be easier to repeal, and the logic of our paper applies.

However, three assumptions are crucial. First, the mechanics of the model rests on

multiple veto players. With a unicameral legislature taking decision under simple majority

rule, the policy maker i with the median wi would be the unique pivotal decision maker.

However, multiple veto players are natural in politics. Bicameralism, supermajority require-

ments, presidential veto power, or powerful interests groups imply the existence of a set of
9Thus, a stationary Markov strategy for player i 2 fL;Rg consists of two contingent actions. First, a

function that maps the current state and status quo into a policy proposal conditional on i being the proposer.
Second, a function that maps the current state, status quo, and proposal into a choice over accepting or
rejecting the proposal conditional on i being the veto-player. Mixed strategies are admissible. More formally,
writing �S for the set of probability distributions over a set S, i�s proposal strategy takes R� fn; q; pg into
� fn; q; pg; and i�s veto strategy takes R � fn; q; pg2 into � faccept; rejectg. The restriction to stationary
Markovian strategies is standard in the literature on dynamic bargaining with endogenous status quo. We
conjecture that qualitatively di¤erent equilibria would arise if history-dependence were allowed.
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veto-players, or pivots, whose approval is necessary and su¢ cient to enact a policy change.

In the case of a unicameral legislature taking decisions under a quali�ed majoritym 2
�
1
2
; 1
�
,

player L is such that exactly a fraction m of the wi�s are larger than wL and, for player R,

exactlym of the wi�s are smaller than wR. Thus, the degree of heterogeneity, or polarization,

wR � wL, increases in the majority requirement m.
Second, we assume away explicit side-payments. If the players could make unlimited side-

payments then only e¢ cient policies would be implemented in equilibrium. In particular,

policy p would be implemented when �t > (wL + wR) =2, and policy n would be implemented

otherwise. Explicit side payments, however, are rare and often unavailable in politics, partly

because there may not exist a third party that can enforce agreements on such transfers.

Third, we assume that any implemented policy stays in place until it is actively changed.

This is consistent with legislative practice. Most laws and policies enacted by the U.S.

Congress, for example, are permanent: they remain in e¤ect until a new legislative action

is taken. This is the case for mandatory spending policies, which include all entitlements,

currently about 60% of total federal spending (Austin and Levit 2010), constitutional amend-

ments, most statutes in the U.S. code, the Senate�s rules of proceedings, and international

treaties. Likewise, changes to the tax code are permanent unless legislators decide to attach

a sunset provision, that is, a clause that speci�es a period after which the relevant legislative

act automatically expires. Historically, attaching sunset clauses to legislation has been the

exception rather than the norm.10 Nevertheless, legislators are not prohibited from attach-

ing such limitations to any legislation, in which case the availability of sunset clauses seems,

at least prima facie, to remove the need for ine¢ cient instruments. In the supplementary

appendix, however, we present an example that this is not necessarily the case. A careful

analysis of sunsets is beyond the scope of this paper.

4 Analysis

The following lemma states that an equilibrium exists, and that all equilibria have a relatively

simple structure: in any equilibrium of �; players behave as if they were playing a static

version of the game � (a single period) with �ow-payo¤ parameters (w�L; w
�
R; e

�
L; e

�
R) rather

than (wL; wR; eL; eR).11

10See, e.g., Posner and Verneule (2002, pages 1672, 1694, and 1701) on the permanent nature of statutes,
the Senate�s internal rules, or international treaties. As for tax legislation, prior to the Bush administration,
the use of sunsets for changes in the tax code applied mainly to relatively small provisions known as �tax
extenders�and were of signi�cantly smaller scale (Gale and Orszag 2003; Mooney 2004).
11This simple representation of the equilibria relies on the stationarity of � and on f�tg being i.i.d. (an

assumption we relax in Section 5). If � was nonstationary, the same expression would hold but the function
V �i and the parameters e�i and w

�
i would have to be indexed by the period t from which the continuation
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Lemma 1 There exist equilibria in �. Moreover, for any equilibrium �, there exists a unique
tuple (w�L; w

�
R; e

�
L; e

�
R) 2 R4 such that the behavior prescribed by � is the same as the behavior

prescribed by an equilibrium of the game in which players play a single period of � with

payo¤s V �i (�; n) = 0 and
V �i (�; p) = � � w�i ,

V �i (�; q) = � � (w�i + e�i ).
(5)

All proofs are in the Appendix. We call fw�L; w�R; e�L; e�Rg the continuation payo¤ parameters
induced by � and note that they re�ect players� strategic preferences in the equilibrium,

that is, their policy preferences given continuation play �; as distinct from their exogenous

�ideological�preference parameters fwL; wR; eL; eRg.12

The main goal of this paper is to understand the strategic underpinnings of IE and why

they can be bene�cial. Therefore, for the sake of exposition, we focus only on IE. We �rst

derive the properties of IE (Section 4.1) and then focus on their existence (Section 4.2).

Before we proceed, however, let us say a few words about the EE. By de�nition, in

any EE, the ine¢ cient instrument is not used; hence, EE are essentially equivalent to the

equilibria of the two-alternative game of Dziuda and Loeper (2016). They show that in such

equilibria, the more pro-intervention player distorts her votes in favor of p, and the less pro-

intervention player distorts her votes in favor of n. As a result, even EE are ine¢ cient in that

there is excessive status quo inertia: a policy that was once adequate for the environment

becomes obsolete, but players do not act. This kind of ine¢ ciency, however, does not explain

the puzzle outlined in the introduction, namely, why interventions that are ine¢ cient in any

state of the world are implemented. So IE di¤er from EE not in whether the equilibrium

path is ine¢ cient, but in the nature of ine¢ ciency.

4.1 Properties of IE

The following proposition summarizes the main qualitative properties of any IE.

Proposition 2 Let � be an IE. Then the corresponding continuation payo¤ parameters
(w�L; w

�
R; e

�
L; e

�
R) satisfy the following inequalities for some distinct i; j 2 fL;Rg:

(i) w�i < w
�
j ;

(ii) e�j � 0 and e�i > 0;
(iii) w�i < w

�
j + e

�
j :

payo¤ is computed. Likewise, if f�tg was not i.i.d., e�i and w�i would depend on �:
12Duggan and Kalandrakis (2012) provide a very general existence result for dynamic bargaining games

with an endogenous status quo. But to apply their result directly here requires violating our assumption that
U(�; p) � U(�; q) is constant in �. Although introducing some noise to the payo¤s, to ensure the di¤erence
is not locally constant, and letting that noise tend to zero is possible, the result would be a correlated
equilibrium that obscures the particular tradeo¤s of interest here.
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Part (i) of Proposition 2 states that in any IE, one player i 2 fL;Rg, is more interven-
tionist than the other player, j. Part (ii) states that, in equilibrium, players disagree on

the appropriate intervention. In all states, player i prefers using the e¢ cient instrument p

to the ine¢ cient policy q, whereas player j weakly prefers intervening with q rather than p.

Finally, part (iii) implies that, consistent with the intuition provided in the Introduction,

the ine¢ cient instrument q is easier to repeal than the e¢ cient instrument p. To see this,

assume p is the status quo. Then e�i > 0 implies player i always vetoes proposal q and, by

de�nition of w�i , i also vetoes proposal n for all states above w
�
i : Hence, in all such states,

the status quo p remains unchanged. Conversely, for all states below w�i ; i prefers n to any

instrument, so i prefers to repeal p. And since w�i < w
�
j ; j also prefers to repeal p. Thus, p

is repealed in all states below w�i . Both players, however, prefer n to q in all states below

w�j + e
�
j . So (iii) implies that q is repealed on a larger set of states than is p.

When e�j = 0; the policy dynamics implied by Lemma 1 and Proposition 2 may be

quite complex due to possible mixing by player j. For e�j < 0, however, there are only

two possible equilibrium paths, illustrated in Figures 1 and 2 below, depending on whether

maxkfw�k + e�kg < w�j (Figure 1) or w�j < maxkfw�k + e�kg (Figure 2). For concreteness, in
Figures 1 and 2 we illustrate these two possibilities for the equilibria in which i = L and

j = R.13 States are measured along the horizontal axis and policies are indicated by the three

shaded bars above this axis. An arrow identi�es an equilibrium policy change, conditional on

the status quo, for any realized state within the same interval of states as that in which the

arrow is drawn. For intervals of states where there is no arrow drawn, there is no equilibrium

policy change. The status quo at the start of any period in which there is a policy change is

indicated by the origin of the relevant arrow; the arrow head indicates the policy instrument

chosen to replace the status quo.

In Figure 1, for example, suppose that the status quo going into the current period is

n and the realized state is � 2 (maxkfw�k + e�kg; w�R). Player L, prefers to intervene with
p, but state � is high enough so that she prefers to intervene with either instrument rather

13Since wL < wR; it is natural to conjecture that necessarily, i = L. However, one can show that if eR > eL;
then for some F; there also exists an equilibrium in which i = R; so somewhat surprisingly w�R < w

�
L. In such

equilibria, the relatively more interventionist L approves p less frequently than R in equilibrium. Intuitively,
if eR is su¢ ciently large, then whenever R prefers to intervene at all, R strictly prefers to intervene with p
rather than q. But then, for status quo n and � very large, R would approve a proposal q by L. To hedge
against such a possibility, R�s best response strategy involves a bias against n when p is the status quo; that
is, if p is the status quo and the state is not-so-large as to warrant intervention (relative to wR), R blocks
repealing p. Hence, for large enough bias, w�R < w�L; which means that p stays in place for a larger set of
states that L would like. Anticipating R�s bias and the resulting inertia under status quo p, under status
quo n; L proposes to intervene with q rather than with p, rationalizing R�s best response bias. Nevertheless,
one can show that there always exists an equilibrium such that w�L < w

�
R, though this equilibrium need not

be IE. Details available upon request.
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than stay with n. Player R prefers to intervene with q, as the expected bene�t from q being

easier to repeal outweighs the ine¢ ciency cost, but the di¢ culty of repealing p makes her

prefer no intervention n to p. Hence, q is the only alternative that dominates n for both

players in that state. As a result, q is implemented independently of who is the proposer, as

indicated by the upward-pointing arrow. On the other hand, if � > w�R, the intervention is

so desirable that both players prefer intervening with either policy instrument. Since they

di¤er with respect to their ordering of p and q, the implemented policy depends on who has

proposal power. This is indicated by labeling the upward-pointing arrows for such states by

the proposer�s identity. When the status quo is either p or q; the downward-pointing arrows

indicate those states in which the relevant instrument is repealed. As stated in Proposition

2, q is repealed for a larger set of states.

Figure 2 di¤ers from Figure 1 only in that the less interventionist player, R, is willing to

accept p in some states for which L is unwilling to accept the ine¢ cient alternative q. As

a result, for � 2 (w�R; fw�L + e�Lg), R is forced to propose p and, therefore, p is implemented
independently of who has proposal power.

Figure 1. An example of IE with both players choosing q for some states.

Figure 2. An example of IE with both players choosing p for some states.
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4.2 Use of Ine¢ cient Instruments in Equilibrium

In this section, we investigate under which condition all equilibria are IE. The following

proposition shows that this can be the case for any payo¤ parameters (wL; wR; eL; eR). In

particular, no matter how ine¢ cient the policy instrument q is, all equilibria may be IE.

Proposition 3 Let G be a c.d.f. with mean 0 and variance 1: For any (wL; wR; eL; eR) ;

there exists �d > 0 and intervals of positive length, � � (0; 1) and M � R, such that, for any
� 2 �, m 2M and d 2

�
0; �d
�
, all equilibria of � are IE for the c.d.f. F (�) � G

�
��m
d

�
.

The proposition is predicated on the observation that two things must be true of the

distribution of states for all equilibria to be IE. First, extreme states must be su¢ ciently

rare, i.e., d su¢ ciently small, else players would agree most of the time on whether or not to

intervene. As a result, their preferences over which instrument to use would not be distorted

by their expectation of future disagreements. Second, states in which players disagree about

repealing p but agree on repealing q must be su¢ ciently likely. Using Figures 1 and 2, this

means that for d su¢ ciently small, for all equilibria �, the states around the mean m of the

distribution must be in the interval (w�i ;minkfw�k + e�kg).14

In the supplementary appendix (see Proposition 8), we further show that q can be im-

plemented arbitrarily more frequently than p for some distributions G. For example, if G

is normal then, for any " > 0, there exist an m and v such that, under status quo n and

conditional on some intervention being implemented, the probability that q is implemented

relative to p is greater than (1� ").
The following proposition links the use of the ine¢ cient instrument to the degree to which

q is ine¢ cient (parts (i) and (ii)) and to players�ideologies are polarized (part (iii)).

Proposition 4 Fix � 2 (0; 1), the recognition probability functions bL and bR, and the c.d.f.
F . Then:

(i) For any (wL; wR), if all equilibria are IE for some (eL; eR), then all equilibria are IE for

all (e0L; e
0
R) such that e

0
L � eL and e0R � eR.

(ii) For any (wL; wR) and any eL > 0, there exists " > 0 such that all equilibria are IE for

any eR � ".
(iii) For any (eL; eR) ; and any average ideology (wL + wR)=2, there exists an EE as (wR �
wL)! 0. Furthermore, all equilibria are EE as (wR � wL)!1.

The comparative statics in Proposition 4(i) on eR is intuitive. If, for some eR, R approves

the ine¢ cient intervention q in exchange for an increase in the likelihood that the intervention
14Similar result for the exclusive existence of EE holds. For instance, for any m and �; one can show that

as d becomes su¢ ciently large, that is, as extreme states become su¢ ciently likely, all equilibria are EE.
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is repealed in the future, R also approves q for lower degrees of ine¢ ciency. The claim in

Proposition 4(i) regarding changes in eL, however, is less obvious, since an increase in eL
has two e¤ects. On the one hand, L approves repealing a status quo q for more states when

eL is large than when it is small. This, in turn, increases the strategic value of q for R. On

the other hand, since a larger eL implies that L�s payo¤ from q is smaller, L approves any

proposal to implement q in fewer states than when eL is not so large. Regardless of the value

of eL, however, for � large enough, L prefers q to n and R can be sure q is accepted and

implemented on the equilibrium path. In particular, the ine¢ cient policy instrument is used

because it is costly for player L, not because it is costly for player R. Thus, as 4(ii) con�rms,

the ine¢ cient instrument is always chosen (for su¢ ciently high states) if eR is small enough

(where "small enough" depends on wR, wL and eL).

It is informative to reformulate Proposition 4(i) in terms of players�polarization. Recall

that wi and wi+ ei can be interpreted as the ideological position of player i on how often to

intervene when using policy p and q, respectively. For a �xed (wL; wR), as eL increases and

eR falls, the gap between the players�thresholds on policy p remains una¤ected; for policy q,

however, the di¤erence between the two players decreases. Proposition 4(i) then says that

as players become less ideologically polarized about intervention q, they agree to use the

ine¢ cient, but more consensual, policy instrument q more often.

Part (iii) of Proposition 4 concerns how the equilibria change with changes in legislative

polarization on e¢ cient intervention. Given an average ideology, existence of an EE is assured

for su¢ ciently small polarization. Since the players�preferences are essentially aligned in

this case, players are likely to agree on the repeal of p when necessary, so they do not need

to resort to using ine¢ cient q: On the other hand, when polarization is su¢ ciently large,

the players are rarely aligned with respect to whether intervention is warranted. Thus, any

policy is unlikely to be repealed and the players perceive the decision as virtually permanent.

As in a static setting, both agree to an e¢ cient intervention if they agree to intervene at all.

In sum, therefore, part (iii) states that if an ine¢ cient instrument is used in any equilibrium,

then political polarization cannot be too small or too large.

4.3 The Value of Ine¢ cient Instruments

In reality, the menu of available policy instruments is often endogenous. For example, if en-

vironmental policy is chosen at the local level, or by a regulatory body, then the instruments

that are available may be restricted by the federal government and, in such cases, it is not

at all clear whether an ine¢ cient policy instrument would, or should, be made available to

decision makers. As argued in Section 2, there is no social welfare gain to be had from the
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existence of q in a static environment; the question is whether this holds in dynamic settings.

The next result states that, under certain conditions, both players are strictly better o¤

if the ine¢ cient intervention q is available, even if the e¢ cient intervention p is unavailable,

than if they are constrained to choosing only between n and p. In other words, allowing for

an ine¢ cient policy instrument can lead to Pareto superior equilibria in the dynamic game.

Let � (n; p; q) denote the original game, � (n; p) the game in which the ine¢ cient instru-

ment is unavailable, and � (n; q) the game in which the e¢ cient instrument is unavailable.

Say that one equilibrium is Pareto superior to another if both players get a strictly greater

continuation payo¤ in the former.

Proposition 5 For any (wL; wR; eL; eR) and for a nonnegligible set of � 2 (0; 1), there

exists an F such that any equilibrium of � (n; p; q) and of � (n; q) is Pareto superior to any

equilibrium of � (n; p).

Proposition 5 states that for any payo¤ parameters, one can �nd an environment F

in which having the ine¢ cient instrument q available on the menu is welfare-improving.

Proposition 5, however, does not shed light on how the bene�ts from q vary with the payo¤

parameters and F ; that is, in which environments one should expect q to be welfare improv-

ing. Nevertheless, our previous results suggest some conjectures in this regard. Clearly, q

can be bene�cial to the players only if there is some ideological disagreement between them,

as only then q can be used in equilibrium. At the same time, Proposition 4 implies that q

is used only when players are not too polarized. Consequently, players may bene�t from q

for a given distribution F only when their ideological polarization is moderate. Similarly,

players are also more likely to bene�t from q if q is not too ine¢ cient, but the ine¢ ciency for

the less interventionist player L must be su¢ ciently large to make q more easily repealed.

To investigate these conjectures, we consider an in�nite horizon extension of the example

in Section 2 with a distribution F having support f�; ��g. In this simple environment, we
have the following result.

Proposition 6 Suppose there exists � < �� and � 2 (0; 1) such that that, in every period t,
with probability 1� �; � (t) = � and with probability �; � (t) = ��.
(i) No equilibrium of � (n; p) is Pareto superior to any equilibrium of � (n; p; q).

(ii) There exists an equilibrium of � (n; p; q) that is Pareto superior to any equilibrium of

� (n; p) if and only if

wL < � � min fwi + eig � max fwi + eig < ��; and (6)

� (1� �) (wR � �) > (1� � (1� �))
�
�� � wR

�
: (7)
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This statement holds unchanged if we replace � (n; p; q) by � (n; q) :

(iii) Furthermore, all equilibria of � (n; p; q) are Pareto superior to all equilibria of � (n; p)

if and only if (6), (7) and the following hold:

eL >
��

1� �
�
�� � wL

�
+
1� ��
1� � (� � wL) : (8)

Proposition 6 part (i) states that adding the ine¢ cient instrument to the menu of avail-

able policies cannot hurt both players. The intuition for this result is simple: in the two-state

environment, either players agree when to implement and repeal p, in which case adding q

does not a¤ect the equilibrium paths, or they disagree, in which case the equilibria of � (n; p)

are gridlock equilibria and adding q can only help support a more responsive equilibrium,

which is bene�cial at least for the player who proposes q:

Part (ii) characterizes the conditions under which adding q can make both players strictly

better o¤. To understand the intuition for, and implications of, these conditions, note �rst

that condition (6) is essentially equivalent to the condition (1) in the two period example

of Section 2, and has a similar interpretation as in the two period setup.15 Speci�cally,

the last three inequalities in (6) mean that, when choosing between n and q; players�static

preferences are the same, so in the game � (n; q), there exists an equilibrium in which players

agree to implement n in state � and q in state ��. The �rst inequality in (6) means that p

is L�s most preferred policy in either state, so status quo p is never repealed. Hence, in the

game � (n; p), if n is the status quo and R�s preference for n over p in the low state � is

stronger than her preference for p over n in the high state ��, R will not approve intervening

with p and in any equilibrium, players will stay at n forever. This is assured by condition

(7), and in that case, both players are strictly worse o¤ in this no-intervention equilibrium

path than in the equilibrium path of � (n; q), described above.

Now consider the game � (n; p; q). Since, under (7), R does not approve p, adding p

to the game leaves the incentives underlying the equilibria of � (n; q) unchanged. Agreeing

to implement n in state � and q in state ��, therefore, is also an equilibrium of � (n; p; q)

and both players strictly prefer it to the unique equilibrium path of � (n; p). Hence, for the

ine¢ cient instrument to be bene�cial in some equilibrium, players�degree of polarization

must be su¢ ciently large so that they disagree su¢ ciently often on when to repeal p; but

not so large that they agree su¢ ciently often on when to repeal q:

Part (iii) shows that the additional condition (8) is required to ensure both players are

strictly better o¤ in all equilibria of � (n; p; q) relative to � (n; p). The reason is that staying

15The only di¤erence between condition (1) and (6) is that the former requires � < wR; but this extra
condition is implied by (7).
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with n inde�nitely, as in the unique equilibrium path of � (n; p), may remain an equilibrium

in � (n; p; q), leaving L and R indi¤erent between the two games. To see how this can

occur, suppose that L threatens to approve only p if ever q is implemented. If such a threat

is credible, R never approves q and no intervention is ever implemented. Condition (8)

guarantees that no such threat is credible: when eL is su¢ ciently large, L prefers to accept n

rather than stay at q in state �. Thus, to guarantee that both players bene�t unambiguously

from the availability of q, q must be su¢ ciently ine¢ cient for the less interventionist players.

It is worth noting how the conditions of Proposition 6 depend on � and �. From (7) and

(8), the set of wR, wL and eL that satisfy these conditions expands as � falls. Hence, both

players are more likely to bene�t from q if the state in which they disagree over interven-

ing with the e¢ cient policy becomes more likely. And as � increases and players become

more patient, the set of wR satisfying (7) increases and a welfare improving IE equilibrium,

therefore, becomes more likely. However, the right hand side of (8) �rst decreases and then

increases with �. Hence, to bene�t unambiguously from the presence of q, players should be

su¢ ciently, but not excessively, patient.16

5 Volatility and Persistent States

Until now, states, and thereby players�state-contingent preferences, have been assumed i.i.d.

draws over time. In many applications, however, there may be periods of relative stability

when players do not expect to change their positions, other things equal, and there may

also be periods in which new information about the desirability of an intervention arrives

frequently, resulting in frequent revisions of the relevant policy preferences.17 Our main

argument, therefore, that one reason for rational legislators to reject an e¢ cient policy in

favor of an ine¢ cient policy is because ine¢ cient policies are easier to repeal, is attenuated

to the extent that it depends essentially on the i.i.d. assumption. Consequently, we extend

the argument to a more general environment in which the i.i.d. assumption is relaxed to

permit serial correlation.

16The nonmonotonic impact of � on the value of ine¢ cient instument is not an artifact of the two-state
distributions considered in Proposition 6. Condition (6) guarantees that players are in full ideological agree-
ment when choosing between the ine¢ cient instrument q and no intervention n. This makes q particularly
attractive. If the distribution of the state has full support, su¢ ciently patient players may introduce an
ine¢ cient gridlock also to the choice between n and q. As a result, unlike in the two-state case, q may not
strictly improve both players�payo¤s if players are su¢ ciently patient and, further, an IE may not exist.
17A painful example is the US Congressional response to the 2008 �scal collapse. For some years before

2008, the US economy was growing strongly and atypical Congressional economic interventions were minimal.
The fall of Lehman Brothers and the subsequent turmoil in much of the global economy led to serious
Congressional disagreement regarding the appropriate level and duration of any extraordinary intervention,
from whether to bail out banks or the car industry, to extensions of unemployment and welfare bene�ts.
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To capture the possibility that states may persist across periods in an analytically

tractable way, and to allow for players�expectations regarding the persistence of the current

state to vary over time, consider, for every period t, a tuple (�t; vt) 2 R� [0; 1]. Assume the
evolution of such tuples across periods satis�es the following transition property: for all t,

(�t+1; vt+1) =

(
(�t; vt) with probability 1� vt
(�t+1; vt+1) � H with probability vt

;

whereH is some joint c.d.f.. As before, �t is the underlying policy-relevant state. We interpret

the additional variable vt as a measure of volatility of the current policy-relevant state �t or,

equivalently, of players�period t expectations over �t+1. In each period t, the state �t persists

into period t + 1 with probability (1� vt) and, for simplicity, assume the volatility vt also
persists into period t+1; with probability vt, �t+1 and vt+1 are drawn according to the joint

c.d.f. H. Thus, the volatility of future state-contingent policy preferences is redrawn if and

only if the state-contingent policy preferences are redrawn.

Note that the evolution of the state collapses to the basic i.i.d. model if vt � 1 for all

t. Similarly, vt � 0 for all t implies preferences never change, while vt � v 2 (0; 1) for all t
implies the degree of volatility is �xed. With this in mind, we have the following result.

Proposition 7 In any equilibrium �, there exists �v 2 (0; 1] such that q is never implemented
when the realization of volatility is v < �v; but q is implemented with positive probability under

status quo n if v > �v: Moreover, for any (wL; wR; eL; eR) ; for all � su¢ ciently close to 1;

there exists distribution H with full support on R� [0; 1] such that, for all equilibria, �v < 1:

Proposition 7 states that q is implemented on the equilibrium path only in su¢ ciently

volatile economic environments. Intuitively, when players expect the state to remain fairly

stable over time (vt � �v), strategic concerns regarding the possibility of con�ict over repealing
today�s intervention tomorrow, say, are muted and any intervention is e¢ cient. When the

economic environment is expected to be su¢ ciently volatile, however (vt > �v), today�s choice

is likely to need revision in the next period, making salient exactly the sorts of strategic

consideration underlying the use of ine¢ cient interventions.

6 Conclusion

The continued and widespread use of ine¢ cient policy interventions in more-or-less demo-

cratic political systems is a puzzle. For example, while economists uniformly recommend reg-

ulating emissions with Pigou taxes, technology and quantity controls are the most adopted
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instruments in reality. Why would rational politicians agree on the use of Pareto dominated

policy instruments? In our model, an ine¢ cient policy intervention may arise even when

there is no salient legislative history or vested interest. Rather, an ine¢ cient policy may

be chosen precisely because it is ine¢ cient and the environment is expected to change in

the future. From this perspective, the puzzle alluded to above can be understood without

pointing to informational asymmetries, interest group in�uence, or di¤erential distributional

implications of alternative policy instruments among the electorate at large.

With a heterogeneous legislature and multiple veto players, ine¢ cient interventions are

politically easier than e¢ cient interventions to repeal in dynamic environments subject to

policy-relevant stochastic shocks. And since ine¢ cient interventions are easier to repeal,

heterogeneous veto players, di¤erentiated only by the threshold shocks beyond which they

judge some policy intervention to be warranted, can be more willing to agree on responding

to a su¢ ciently severe downside shock with an ine¢ cient instrument. As a consequence,

ine¢ cient interventions are more likely to be used in (moderately) polarized political envi-

ronments and for issues where the fundamentals are subject to change over time.
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8 Appendix

8.1 Notations and Lemmas

Notation 1 For a given stationary Markov strategy pro�le �, the policy outcome in some
period t 2 N with status quo s (t) 2 fn; p; qg can depend on � (t), the identity p (t) of the
proposer recognized in period t, and the realization of players�private randomization devices

(�L (t) ; �R (t)).
18 Let � (t) � (� (t) ; s (t) ; p (t) ; �L (t) ; �R (t)) denote the random variable

that encodes this information. We refer to � (t) as the state of the world in period t: Let

� denote the set of possible states of the world. Note that f� (t) : t 2 Ng is i.i.d.. Let �
denote its probability distribution. For any state of the world � 2 �; � (�) denotes the

corresponding realization of the state of nature: For all s; x 2 fn; p; qg ; �� (s; x) denotes the
18Formally, (�i (t))i2fL;Rg;t2N is a collection of random variables that are i.i.d. across periods and players,

and uniformly distributed on [0; 1] : Each player i privately observes �i (t) at the beginning of period t: A
mixed action for proposer (veto-player) i in period t can then be modelled as a piecewise constant function
from [0; 1] to fn; p; qg (to faccept; rejectg) .
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set of realizations of the state of the world for which status quo s leads to outcome x:

The next lemma de�nes formally the continuation payo¤ parameters used in Lemma 1.

Lemma 2 (Continuation Payo¤) Let � be a Markov strategy pro�le, and let V �i (�; x)
denote the expected discounted payo¤ for player i 2 fL;Rg from implementing policy x 2
fn; p; qg in period 1 conditional on �1 = �; and on players playing � from period 2 onwards.

Then there exist unique w�i 2 R and e�i 2 R such that, for all � 2 R;

V �i (�; p)� V �i (�; n) = � � w�i ; (9)

V �i (�; p)� V �i (�; q) = e�i :

The parameters (w�i ; e
�
i ) correspond to the continuation payo¤ parameters introduced in

Lemma 1. Moreover, w
�
i �wi
�

(e
�
i �ei
�
) can be interpreted as the expected payo¤ gain for player

i of having initial status quo n (p) instead of p (q) in the game � with continuation play �.

Proof. By de�nition, V �i (�; p) � V �i (�; n) is the sum of the �ow payo¤ gain from im-

plementing p instead of n in t = 1 when � (1) = � and � times the continuation payo¤ gain

from period 2 onwards from having s2 = p instead of s2 = n; given continuation play � in

t � 2: Using Notation 1,

V �i (�; p)�V �i (�; n) = ��wi+ �
X

x;y2fn;p;qg

Z
��(p;x)\��(n;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) :

Therefore, to prove the �rst line of (9), it su¢ ces to set

w�i � wi � �
X

x;y2fn;p;qg

Z
��(n;x)\��(p;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) : (10)

An analogous reasoning on the continuation payo¤ gain from implementing p instead of q

proves the second line of (9) with

e�i � ei + �
X

x;y2fn;p;qg

Z
��(p;x)\��(q;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) : (11)

De�nition 2 Let (wc; ec) 2 R4:We say that a stationary strategy pro�le � is subgame perfect
for the continuation payo¤ parameters (wc; ec) 2 R4 if � is a subgame perfect equilibrium of

the game in which players play a single period of � with payo¤s V such that for all � 2 R;
Vi (�; p)� Vi (�; n) = � � wci and Vi (�; p)� Vi (�; q) = eci .
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Lemma 3 (Equilibrium Continuation Payo¤s) A stationary strategy pro�le � is an

equilibrium if and only if � is subgame perfect (in the sense of De�nition 2) for the con-

tinuation payo¤ parameters w� and e� de�ned in Lemma 2. In that case,

w�i � wi
�

=

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)�
Z
��(p;p)\��(n;q)

e�i d� (�) ; (12)

e�i � ei
�

=

Z
��(p;p)\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) (13)

+

Z
��(p;n)\��(q;q)

(w�i + e
�
i � � (�)) d� (�) :

Proof. The proof of the �rst claim follows immediately from our de�nition of subgame

perfection and Lemma 2. Let us now derive (13). Consider the summands

e�i (x; y) �
Z
��(p;x)\��(q;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) (14)

on the R.H.S. of (11) for all policies x and y that are implemented in some state under

status quo p and q, respectively. When x = y; e�i (x; y) = 0: Consider next (x; y) = (q; n) ;

that is, status quo p is replaced by q; and status quo q is replaced by n: Since � is an equi-

librium, it is subgame perfect given continuation payo¤ parameters (w�; e�) ; so for all � 2
�� (p; q)\�� (q; n) ; both players must weakly prefer to implement q to p and n to q in period
1: Moreover, one of them must be indi¤erent between implementing n and q; because if both

players strictly preferred to implement n to q in state v; then under status quo p; either veto

player would accept n; so proposing n instead of q in that period would be a pro�table devia-

tion for the proposer. Therefore, for all � 2 �� (p; q)\�� (q; n) ; � (�)�w�i �e�i = 0 for some
player i: Since F is continuous, this implies that � (�� (p; q) \�� (q; n)) = 0; so e�i (q; n) = 0:
In the case (x; y) = (p; n) ; an analogous reasoning implies that � (�� (q; p) \�� (p; n)) = 0
so e�i (p; n) = 0: Consider now (x; y) = (q; p) ; that is, status quo p is replaced by q and vice

versa. Subgame perfection implies that for all � 2 �� (p; q)\�� (q; p) ; V �i (�; p) = V �i (�; q) ;
so from (9), e�i = 0, and from (14), e�i (q; p) = 0. The only remaining cases are (x; y) equal

to (p; q), (p; n), and (n; q) ; so (11) becomes

e�i � ei
�

=

Z
��(p;p)\��(q;q)

(V �i (� (�) ; p)� V �i (� (�) ; q)) d� (�)

+

Z
��(p;p)\��(q;n)

(V �i (� (�) ; p)� V �i (� (�) ; n)) d� (�) +
Z

��(p;n)\��(q;q)

(V �i (� (�) ; n)� V �i (� (�) ; q)) d� (�) :
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Substituting (9) into the above expression, we obtain (13).

The proof of (12) follows a similar logic as the proof of (13). Consider the summands

w�i (x; y) �
R
��(p;x)\��(n;y) (V

�
i (� (�) ; x)� V �i (� (�) ; y)) d� (�) on the R.H.S. of (10) for all

possible policies x and y that can be implemented under status quo p and n, respectively.

Using the same steps as the ones used to prove � (�� (p; q) \�� (q; n)) = 0 and reversing the
role of p and q; we obtain that � (�� (p; n) \�� (n; q)) = 0; so w�i (n; q) = 0: An analogous
reasoning implies that � (�� (p; q) \�� (n; p)) = 0; so w�i (q; p) = 0. Moreover, for all

� 2 �� (p; n) \ �� (n; p) ; each player i must be indi¤erent between implementing n and p,
so � (�)�w�i � e�i = 0: Since F is continuous, this implies that � (�� (p; n) \�� (n; p)) = 0,
so w�i (n; p) = 0. The only remaining cases left are (x; y) equal to (p; n), (p; q), and (q; n) :

Equation (12) follows then from substituting these three cases into the right-hand side of

(10) and using (9).

Lemma 4 (Necessary and Su¢ cient Conditions for EE)

A) Let � be an EE. Then e�L > 0; e
�
R � 0; w�L < wL < wR < w�R; �� (q; q) � �� (p; p) ; and

for all i 2 fL;Rg ;
w�i � wi
�

=

Z w�R

w�L

(w�i � �) dF (�) : (15)

B) For any EE �; there exists an EE �0 such that players never propose q under any status

quo, w�
0
= w� and for all i 2 fL;Rg ;

e�
0
i � ei
�

=

Z min
n
w�L+e

�0
L ;w

�
R

o
w�L

bR (�; q) (� � w�i ) dF (�) : (16)

C) Reciprocally, if there exists (w�; e�) 2 R4 such that e�R � 0 and such that

w�i � wi
�

=

Z w�R

w�L

(w�i � �) dF (�) ; and (17)

e�i � ei
�

=

Z minfw�L+e�L;w�Rg

w�L

bR (�; q) (� � w�i ) dF (�) ; (18)

then there exists an EE � such that (w�; e�) = (w�; e�).

Proof. Proof of part A: Let � be an arbitrary EE.
Step A1: w�L < w

�
R and for all i 2 fL;Rg ;

w�i � wi
�

=

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�) : (19)
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Since � is an EE, � (�� (n; q)) = 0: Substituting the latter equality into (12), we obtain (19).

Taking di¤erences across players in (19) and solving for w�R � w�L, we obtain w�R � w�L =
wR�wL

1���(��(p;p)\��(n;n)) < 0:

Step A2: e�L � 0 and e�R � 0
Suppose that e�i < 0 for some i 2 fL;Rg : Then in any period t in which s (t) = n, the

proposer is i; and � (t) > maxk2fL;Rg fw�k + e�kg ; subgame perfection implies that the other
player j must accept proposal q: Since q is the outcome that gives the greatest continua-

tion payo¤ to i in that state, the only subgame perfect action for i is to propose q, which

contradicts � being an EE.

Step A3: modulo a zero measure set, �� (p; p) = f� 2 � : � (�) > w�Lg and �� (n; n) =
f� 2 � : � (�) < w�Rg :
For all � 2 � such that � (�) > w�L; L strictly prefers to implement p to n; so subgame per-
fection implies that � =2 �� (p; n) : Since � is an EE, � (�� (p; q)) = 0: By de�nition of ��;
(�� (p; x))x2fn;p;qg is a partition of �; so necessarily, � 2 �� (p; p). Conversely, for all � 2 �
such that � (�) < w�L; from Step A1, � (�) < w

�
R; so both players strictly prefer implementing

n to p: Therefore, subgame perfection implies that � =2 �� (p; p) : Since F is continuous, the
set of � such that � (�) = w�L has probability 0; which proves the �rst equality in Step A3.

For all � 2 � such that � (�) < w�R; R strictly prefers to implement n to p; so subgame perfec-
tion implies that � =2 �� (n; p) : Since � is an EE, � (�� (n; q)) = 0: Since (�� (n; x))x2fn;p;qg
is a partition of �; necessarily, � 2 �� (n; n). Conversely, for all � 2 � such that � (�) > w�R
and, from Step A1, � (�) > w�L; both players strictly prefer implementing p to n: Therefore,

subgame perfection implies that � =2 �� (n; n) : The second equality in Step A3 follows then
from the continuity of F .

Step A4: (w�L; w
�
R) satis�es (15) and w

�
L < wL < wR < w

�
R.

From Step A3, modulo a zero measure set, �� (p; p)\�� (n; n) = f� 2 � : � (�) 2 (w�L; w�R)g.
Substituting this equality into (19), we obtain (15). Step A1 and the assumption that F has

full support imply
R w�R
w�L
(w�L � �) dF (�) < 0 <

R w�R
w�L
(w�R � �) dF (�) : Together with (15), the

above inequalities imply w�L < wL < wR < w
�
R:

Step A5: e�L > 0

For all � 2 �� (p; n) \ �� (q; q) ; both players strictly prefer implementing n to p and
one player must weakly prefers implementing q to n; so mini fw�i + e�i g � � (�) < w�L.

Therefore, mini fw�i + e�i g < w�L; a contradiction with Step A1 and A2. This proves that

� (�� (p; n) \�� (q; q)) = 0. Substituting the latter into (13), we get

e�i � ei
�

=

Z
��(p;p)\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) : (20)
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From Step A3, for almost all � 2 �� (p; p) ; � (�) > w�L; so (20) implies e�L � eL > 0:
Step A6: �� (q; q) � �� (p; p)

For all � 2 �� (q; q) ; subgame perfection implies that one player weakly prefers implementing
q to n; so � (�) � max fw�L + e�L; w�R + e�Rg : From Step A1, A2, and A5, this implies that

� (�) > w�L and so, as shown in Step A3, � 2 �� (p; p).
Proof of part B:We construct the strategy pro�le �0 as the limit of a sequence

�
�k
�
k2N.

We set �0 = �: For any k � 0; we de�ne �k+1 as a function of �k as follows. Consider �rst the
action nodes of veto player i 2 fL;Rg :When comparing n and p; i plays �. When comparing
p and q; i votes for p. When comparing n and q; i votes for q when � (�) > w�i + e

�k

i and for

n otherwise. Consider now the action nodes of proposer i 2 fL;Rg : When the status quo
is n or p; i plays �. When the status quo is q; L proposes n when � � w�L; and p otherwise,
and R proposes n when � � min

n
w�L + e

�k

L ; w
�
R

o
and p otherwise.

Step B1: for all k 2 N, w�k = w�and e�1L � e�0L
By construction, for all k 2 N; �k prescribes the same actions as � when neither the status
quo nor the proposal is q; and these actions never lead to outcome q: So the value of the game

� with initial status quo n (p) is the same with continuation play �k and �: From Lemma 2,

this implies w�
k
= w�:When the status quo is q, by construction of �1; �1 always implements

n or p; and �1 prescribes actions that are subgame perfect given continuation play �: So the

actions prescribed by � and �1 under status quo q di¤er only when one player is indi¤erent

between implementing two policies given continuation play �: Since F is atomeless, Lemma

2 implies that this indi¤erence can occur in a nonnegligibe set of states only between p and

q (and when e�R = 0). In those cases, �1 always prescribes R to choose p; which is what

L prefers given continuation play � since from part A, e�L > 0: So under status quo q; L

is weakly better o¤ when �1 is played than when � is played in the current period, given

continuation play �: Since the path of �1 and � coincide once n or p is implemented, this

implies that under status quo q; L is weakly better o¤ when �1 is played in all periods than

when � is played in all periods. From Lemma 2, this means that e�
1

L � e�0L :
Step B2: for all k 2 N, e�kL > 0 and

e�
k+1

i � ei
�

=

Z min
n
w�L+e

�k

L ;w�R

o
w�L

bR (�; q) (� � w�i ) dF (�) : (21)

Since �0 = � is an EE, Part A implies e�
0

L > 0. To prove Step B2 by induction, suppose

e�
k

L > 0 for some k 2 N, and let us show (21) and e�k+1L > 0. From Lemma 2,
�
e�

k+1

L � ei
�
=�

is the expected payo¤ gain from having status quo p instead of q given continuation play
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�k+1. To compute it, note that from Part A, w�L < w
�
R; and since e

�k

L > 0, we have w�L <

min
n
w�L + e

�k

L ; w
�
R

o
: So by construction of �k+1, on path, status quo q and p both lead to

outcome n when � < w�L; and they both lead to outcome p when � > w
�
R; when � 2 (w�L; w�R)

and L is the proposer, and when � 2
�
min

n
w�L + e

�k

L ; w
�
R

o
; w�R

�
and R is the proposer.

Modulo a negligible set of states, the only remaining case is when R is the proposer and

� 2
�
w�L;min

n
w�L + e

�k

L ; w
�
R

o�
: In that case, status quo q and p lead to outcome n and p,

respectively, so the relative payo¤ gain is ��w�k+1i = ��w�i : Integrating over all these cases,
we obtain (21). From Part A, w�L < w

�
R; so (21) implies e

�k+1

L > eL > 0:

Step B3: for all k � 1; e�k+1L � e�kL and e�
k+1

R � e�kR .
From Step B1 and B2, e�

1

L � e�
0

L : To prove Step B3 by induction, suppose e
�k+1

L � e�
k

L for

some k 2 N; and let us show that e�k+2L � e�k+1L and e�
k+2

R � e�k+1R . From Step B2,

e�
k+2

i � e�k+1i = �

Z min
n
w�L+e

�k+1

L ;w�R

o
minfw�L+e�kL ;w�Rg

bR (�; q) (� � w�i ) dF (�) :

Since e�
k

L � e�k�1L ; R.H.S. of the above is negative for i = L and positive for i = R:

Step B4: �k+1 prescribes subgame perfect action given continuation play �k.

From Part A, e�
0

R � 0: Steps B2 and B3 imply then that for all i 2 fL;Rg and k 2 N;
e�

k

i � 0. So one can easily check that by construction, �k+1 prescribes the veto player

to approve (reject) the proposal when she strictly prefers the proposal (status quo) given

continuation play �k; and that �k+1 prescribes the proposer to propose the policy that she

prefers among those accepted by the veto player, as needed.

Step B5: �0 � limk!1 � exists and satis�es the properties stated in Part B.

From Step B1 and B3, w�
k

i and e�
k

i have a limit as k ! 1, and since �k+1 is a continuous
function of w�

k

i and e�
k

i , it has a limit �
0. From Step B4, by continuity, �0 is an equilibrium,

and by construction of
�
�k
�
k2N ; �

0 never prescribes proposal q, so � is an EE. Taking the

limit in (21), we obtain (16).

Proof of part C: Suppose (w�; e�) 2 R4 solves (17) and (18) with e�R � 0: Let us

construct an EE � such that (w�; e�) = (w�; e�). Consider �rst the action nodes of veto player

i 2 fL;Rg :When comparing n and p; i votes for p when � > w�i and for n otherwise. When
comparing p and q; i votes for p. When comparing n and q; i votes for q when � (�) > w�i +e

�
i

and for n otherwise. Consider now the the action nodes of proposer i 2 fL;Rg : When the
status quo is n or p; i proposes p when � > w�i and n otherwise, When the status quo is q; L

proposes n when � � w�L; and p otherwise, and R proposes n when � � min fw�L + e�L; w�Rg
and p otherwise. By construction, q is never implemented on path. Therefore, to complete

the proof, it su¢ ces to show that � is an equilibrium. From Lemma 3, it is equivalent to
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show that � is subgame perfect given continuation payo¤s (w�; e�), which is what Steps C1

to C3 below do.

Step C1: � is subgame perfect for the continuation payo¤ parameters (w�; e�).

By assumption, e�R � 0, and since e� satis�es (18), we have e�L � eL > 0: So by construction, �
prescribe either veto players to accept (reject) a proposal when it gives her a greater (lesser)

continuation payo¤, given continuation payo¤ parameters (w�; e�). Likewise, � prescribe

either proposer to propose the policy that gives her the greatest continuation payo¤ among

those accepted by the veto player, given continuation payo¤ parameters (w�; e�).

Step C2: w� = w�:

Since w� satis�es (17), the same reasoning as in Step A1 implies w�L < w
�
R: By construction

of �; q is never implemented on path, and status quo n and p lead to di¤erent outcomes only

when � 2 (w�L; w�R) ; in which case either status quo stay in place, and the corresponding con-
tinuation payo¤gain is w�i ��. From Lemma 2, this means that

w�i �wi
�

=
R w�R
w�L
(w�i � �) dF (�) :

This equation can be viewed as a linear equation in w�i ; and it has a unique solution. From

(17), w�i is also a solution to that equation, so w
�
i = w

�
i .

Step C3: e� = e�:

The same reasoning as in Step B2 (taking w� = w� and e�
k

L = e�L) shows that by construction

of �; modulo a negligible set of states, status quo p and q lead to di¤erent outcomes only

when R is the proposer and � 2 (w�L;min fw�L + e�L; w�Rg) ; in which case status quo p and
q lead to outcome p and n, respectively, and the corresponding continuation payo¤ gain is

� � w�i : Therefore, Lemma 2 implies that
e�i �ei
�

=
R minfw�L+e�L;w�Rg
w�L

bR (�; q) (� � w�i ) dF (�) :
Together with (18), that equation implies e�i = e

�
i .

Lemma 5 (Properties of IE) Let � be an IE and let �; % 2 fL;Rg be such that w�� � w�% :
Then e�% � 0 < e� < e��; w�� < w�% ; w�� < mini2fL;Rg fw�i + e�i g ; and �� (q; q) � �� (p; p) :

Proof. Let � be an arbitrary IE.
Step 1: � (�� (p; p) \�� (q; n)) > 0.

In any state � 2 �� (p; n) , each player i must prefer implementing n to p so � (�) � w�i and,
therefore, w�i + e

�
i � � (�) � e�i . Substituting the latter inequality in the equilibrium formula

for e�i ; (13), we obtain

e�i � ei
�

�
Z
(��(p;p)[��(p;n))\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)

) e�i �
ei + �

R
��(p;p)\��(q;n) (� (�)� w

�
i ) d� (�)

1� �� ((�� (p; p) [�� (p; n)) \�� (q; q)) : (22)
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Suppose by contradiction that � (�� (p; p) \�� (q; n)) = 0: Then (22) implies e�L > 0 and

e�R > 0; so both players always strictly prefer to implement p to q; and hence q is never

implemented on path, which is impossible since � is an IE.

Step 2: w�� < mini2fL;Rg (w
�
i + e

�
i ) :

For all � 2 �� (p; p)\�� (q; n) ; both players weakly prefer implementing n to q; i.e., � (�) �
w�i + e

�
i , and at least one player weakly prefers implementing p to n; i.e., � (�) � w�i , so

mini2fL;Rgw
�
i � � (�) � mini2fL;Rg (w

�
i + e

�
i ) ; so w

�
� � � (�) � mini2fL;Rg (w

�
i + e

�
i ) : From

step 1, � (�� (p; p) \�� (q; n)) > 0, so the previous weak inequalities must be strict for some
� 2 �� (p; p) \�� (q; n) ; which implies Step 2.
Step 3: e�% � 0 and e�� > e� > 0:

For all � 2 �� (p; p) ; some player weakly prefers implementing p to n; so � (�) � w��: Since
F is continuous, this inequality is strict for almost all � 2 �� (p; p)\�� (q; n) : Substituting
� (�) > w�� and Step 1 into (22), we get e

�
� > e� > 0. As argued in Step 1, since � is an IE,

e�� > 0 implies e
�
% � 0:

Step 4: �� (q; q) � �� (p; p) :
Let � 2 �� (q; q) : Since � is an equilibrium, in state � (�), some player weakly prefer

implementing q to n, so � (�) � mini2fL;Rg fw�i + e�i g : From Step 2, this implies that � (�) >
w��; so one player must strictly prefer implementing p to n; and therefore � =2 �� (p; n) :
From Step 3, e�� > 0 so � =2 �� (p; q) : Since (�� (p; x))x2fn;p;qg is a partition of �; this

implies � 2 �� (p; p) ; as needed.
Step 5: w�� < w

�
% :

From Step 3, e�% � 0; so (22) implies
R
�2��(p;p)\��(q;n)

�
� (�)� w�%

�
d� (�) < 0. Therefore,

there exists �o � �� (p; p)\�� (q; n) such that � (�o) > 0 and for all �o 2 �o, � (�o) < w�% ;
that is, % strictly prefers implementing n to p in state �o. Since �o � �� (p; p) and since � is
an equilibrium, � must weakly prefer implementing p to n in state �o, i.e., � (�o)� w�� � 0;
which with � (�o) < w�% implies w

�
� < w

�
% :

The next lemma will be used to prove Proposition 4 Part (iii).

Lemma 6 If � is an equilibrium, then

e�i = ei + �

Z
��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) ; (23)

w�i = wi + �

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)� �
Z
��(n;q)

e�i d� (�) : (24)
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and for some D such that (1� �)2 � D � 1;

w�R � w�L =
(1���(��(q;q)))[wR�wL]���(��(n;q))[eR�eL]

D
;

e�R � e�L =
(1���(��(p;p)\��(n;n)))[eR�eL]���(��(p;p)\��(q;n))[wR�wL]

D
;

w�R + e
�
R � w�L � e�L =

(1���(��(p;p)\��(q;fn;qg)))[wR�wL]+(1���(��(p;p)\f��(n;n)[��(n;q)g))[eR�eL]
D

:

(25)

Proof. Step 1: for any equilibrium �; �� (q; q) � �� (p; p) ; �� (n; q) � �� (p; p) ; (24),
and (23).

That �� (q; q) � �� (p; p) follows from Lemma 4A and Lemma 5. To show that �� (n; q) �
�� (p; p) ; let � 2 �� (n; q) : In state � (�) both players must weakly prefer implementing q
to n, so � (�) � maxi2fL;Rg fw�i + e�i g : From Lemma 4A and Lemma 5,

max
i2fL;Rg

fw�i + e�i g � min
i2fL;Rg

fw�i + e�i g > min
i2fL;Rg

fw�i g ;

so � (�) > mini2fL;Rg fw�i g ; which means that one player strictly prefers implementing p to
n; and therefore � =2 �� (p; n) : Since �� (p; q) = ;; and since (�� (p; x))x2fn;p;qg is a partition
of �; necessarily, � 2 �� (p; p) ; as needed.
Substituting �� (n; q) � �� (p; p) into (12), we obtain (24). Finally, since �� (p; n) \
�� (p; p) = ;; �� (q; q) � �� (p; p) implies �� (p; n) \ �� (q; q) = ;: Substituting the lat-
ter equality and �� (q; q) � �� (p; p) into (13), we obtain (23).
Step 2: Proof of the �rst two lines of (25).

Subtracting (24) for i = R from (24) for i = L; and doing the same for (23), we get(
w�R � w�L = wR � wL + �� (�� (p; p) \�� (n; n)) (w�R � w�L)� �� (�� (n; q)) (e�R � e�L)
e�R � e�L = eR � eL + �� (�� (q; q)) (e�R � e�L)� �� (�� (p; p) \�� (q; n)) (w�R � w�L)

:

The above equations can be viewed as a linear system in w�R�w�L and e�L�e�R: Straightforward
algebra shows that its solution is given by the �rst two lines of (25) for

D � (1� �� (�� (p; p) \�� (n; n))) (1� �� (�� (q; q)))��2� (�� (p; p) \�� (q; n))� (�� (n; q)) :

Step 3: Proof of the third line of (25).

From Step 1, �� (q; q) � �� (p; p) and, by de�nition of��; �� (q; n) and�� (q; q) are disjoint,
so

� (�� (p; p) \�� (q; n)) + � (�� (q; q)) = � (�� (p; p) \ f�� (q; n) [�� (q; q)g) : (26)
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From Step 1, �� (n; q) � �� (p; p) and, by de�nition of ��; �� (n; n) and �� (n; q) are

disjoint, so

� (�� (p; p) \�� (n; n)) + � (�� (n; q)) = � (�� (p; p) \ f�� (n; n) [�� (n; q)g) : (27)

Adding up the �rst two lines of (25) and substituting (26) and (27) into the corresponding

expression for w�R + e
�
R � w�L � e�L, we obtain the third line of (25) for the above D.

Step 4: (1� �)2 � D � 1:
That D � 1 is obvious from the de�nition of D: To prove D � (1� �)2 ; observe that
�� (q; q) and �� (p; p) \ �� (q; n) are disjoint. So �� (q; q) is included into the complement
of �� (p; p)\�� (q; n) : Likewise, �� (p; p)\�� (n; n) and �� (n; q) are disjoint, so �� (p; p)\
�� (n; n) is included in the complement of �� (n; q) : Therefore,

D = (1� �� (�� (p; p) \�� (n; n))) (1� �� (�� (q; q)))
��2� (�� (p; p) \�� (q; n))� (�� (n; q))

� (1� � (1� � (�� (n; q)))) (1� � (1� � (�� (p; p) \�� (q; n))))
��2� (�� (p; p) \�� (q; n))� (�� (n; q))

= (1� �) (1� � + � (� (�� (n; q)) + � (�� (p; p) \�� (q; n)))) � (1� �)2 :

8.2 Proofs for Section 4

Proof of Lemma 1. The second claim of Lemma 1 follows from de�nition of (w�; e�) in

Lemma 2, and from Lemma 3. The rest of the proof establishes equilibrium existence.

The strategy of the proof is to de�ne an agent normal-form game �̂ in which we create

an agent for each Markov state of �19 and give this agent payo¤ equal to the continuation

payo¤ of the game starting from this Markov state, as in the standard proof of existence for

�nite Markov games. To make sure that this game has �nitely many players, we assume that

the same agent is playing in any two states that di¤er only in the realization of � (t). We

then show that the agent normal-form game admits a Nash equilibrium in simple strategies

(de�ned below), and hence by Selten 1975, this equilibrium de�nes an equilibrium of �:

Step 1: De�nition of the agent normal form game �̂ associated to �:

De�ne the agent normal-form game �̂ as follows. For all nodes in which i 2 fL;Rg is the
19One can de�ne the Markov states of � as follows. The Markov state associated to a given action node a

is the set of action nodes a0 of � such that the state of nature, the status quo, the identity of the proposer,
and the player who is moving are the same in a as in a0:
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veto player and chooses between x; y 2 fn; p; qg in �; replace i by a player called {̂ (fx; yg) ;
and for all nodes in which i 2 fL;Rg is the proposer facing the status quo x 2 fn; p; qg ;
replace i by a player called {̂ (x) : That is, each i 2 fL;Rg is replaced with 9 di¤erent players,
so �̂ has 18 players. A pure stationary strategy of {̂ (x) (̂{ (fx; yg)) is a mapping from the

realization of � in R to fn; p; qg (to fx; yg). Note that a strategy pro�le of �̂ de�nes a
stationary strategy pro�le in � and vice versa. For any strategy pro�le �̂ of �̂; we de�ne

the the payo¤ of {̂ (x) (of {̂ (fx; yg)) from alternative z 2 fn; p; qg as the expected discounted
payo¤ of i from z in the game � in period 0; conditional on �0 being drawn from F . By

construction of �̂, a Nash equilibrium of �̂ is a stationary Markov perfect equilibrium of �

(Selten 1975). To complete the proof, we show below that �̂ admits a Nash equilibrium.

Step 2: De�nition of simple strategies.

Consider the following class of strategies for the players of �̂; henceforth called simple strate-

gies: for any x 2 fp; qg ; player {̂ (fn; xg) chooses n when � � cfn;xg; and x otherwise, for some
cfn;xg 2 R; player {̂ (fp; qg) chooses p with probability (henceforth w.p.) �fp;qg and q with
the remaining probability for some �fp;qg 2 [0; 1]; for any x 2 fn; p; qg ; player {̂ (x) proposes
n when � � cx; proposes p w.p. �x and q w.p. 1��x when cx < � � �cx, and proposes p w.p.
��x and q w.p. (1� ��x) when � > �cx; for some cx � �cx and some �x; ��x 2 [0; 1] : Note that
the set of parameters

�
cfn;xg

	
x2fp;qg ; fcx; �cx; �x; ��xgx2fn;p;qg satisfying the above restrictions

is closed and convex.

Step 3: For any simple strategy pro�le �̂ and any player {̂ of �̂; there exists a simple

strategy for {̂ that is a best response to �̂�{̂.

Let �̂ be a simple strategy pro�le and let {̂ be a player of �̂. Finding a best response

(not necessarily simple) for {̂ to �̂�{̂ is a standard discrete dynamic programing problem,

so a solution exists for the usual reason (see, e.g., Blackwell 1962). Moreover, any other

best response must give {̂ the same payo¤ in �̂, and hence the same payo¤ for i in �:

By Lemma 2, these payo¤s can be summarized by continuation payo¤ parameters, and

let
�
w�̂{̂ ; e

�̂
{̂

�
denote these parameters when {̂ best responds to �̂�{̂. Then choosing p when

� > w�̂{̂(fn;pg) and n otherwise is a simple best response to �̂ for {̂ (fn; pg) : Choosing q when
� > w�̂{̂(fn;qg) + e

�̂
{̂(fn;qg) and n otherwise is a simple best response to �̂ for {̂ (fn; qg) : And

choosing p over q w.p. 1 if e�̂{̂(fp;qg) > 0; w.p. 0 if e
�̂
{̂(fp;qg) < 0; and with any probability in

[0; 1] if e�̂{̂(fp;qg) = 0 is a simple best response to �̂ for player {̂ (fp; qg). For all x 2 fn; p; qg ; the
best response in simple strategies for player {̂ (x) can be constructed by using the intuition

provided in Section 4.1 and in Figures 1 and 2. Consider, e.g., {̂ (n) in the case e�̂{̂(n) > 0:

Then a best response for {̂ (n) is to propose p when she prefers implementing p to n (given

continuation payo¤ parameter w�̂{̂(n) and e
�̂
{̂(n)) and {̂ (fn; pg) accepts p, to propose q when

she prefers implementing q to n and {̂ (fn; pg) rejects p, and to propose n otherwise. That
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is, if c�̂fn;pgdenote the cuto¤ used by player |̂ (fn; pg) in �̂; then a best response to �̂ for
{̂ (n) is to propose p when � > max

n
w�̂{̂(n); c

�̂
fn;pg

o
; q when � 2

�
w�̂{̂(n) + e

�̂
{̂(n); c

�̂
fn;pg

i
� with

the convention that (a; b) = ; if a � b� and n otherwise, which is a simple strategy. The

simple best response to �̂ of {̂ (fng) when e�̂{̂(n) = 0 and e�̂{̂(n) < 0, and of {̂ (p) and {̂ (q) can
be constructed in a similar fashion. We omit these descriptions for brevity.

Step 4: �̂ admits a Nash equilibrium in simple strategies.

From (4), the payo¤di¤erence between two policies is bounded by E [j�j+ jwij+ jeij] ; so the
expected payo¤ di¤erence between two policy paths is bounded by E[j�j]+jwij+jeij

1�� : Therefore,

by de�nition of w�i and e
�
i (see Lemma 2), [�jw�i j � je�i j; jw�i j+ je�i j] must be included in the

compact set C �
h
�E[j�j]�jwij�jeij

1�� ; E[j�j]+jwij+jeij
1��

i
: So if �̂ is a simple strategy of �̂ whose cuto¤

parameters
�
cfn;xg

	
x2fp;qg ; fcx; �cxgx2fn;p;qg are all in C, then from the construction in Step 3

there exist simple strategies that are best response to �̂ with cuto¤s also in C: Hence, the set

of parameters
��
cfn;xg

	
x2fp;qg ; fcx; �cx; �x; ��xgx2fn;p;qg

�
for which the corresponding simple

strategies are best responses to some simple strategy �̂ is convex and upper-hemicontinuous

in the parameters
n
c�̂fn;xg

o
x2fp;qg

;
�
c�̂x; �c

�̂
x; �

�̂
x; ��

�̂
x

	
x2fn;p;qg of �̂:Kakutani�s �xed point theorem

implies then that �̂ admits an equilibrium in simple strategies.

Proof of Proposition 2. Simply set i = � and j = % in Lemma 5.

Proof of Proposition 4 Parts (i) and (ii) and Part (iii) in the case wR�wL ! 0:.
An equilibrium is either EE or IE, so all equilibria are IE if and only if no EE exist.

Lemma 4 implies that no EE exist if and only if there exists no (w�; e�) 2 R2 such that
e�R � 0 and (17) and (18) hold. The proof proceeds by deriving conditions on the primitive
parameters such that any solution (w�; e�) to (15) and (16) must be such that e�R < 0.

Step 0: Notations.

Condition (15) depends on (w; e) only through w; so let W � (w) denote the set of w� 2 R2

solving (17) for i = L;R. If we �x w� and eL, condition (18) for i = L can viewed as a

�xed point in e�L: It depends on (w; e) only through w
� and eL; so let E�L (w

�; eL) denote the

set of e�L solving (18) for i = L. Since the R.H.S. of (18) is continuous and bounded in e
�
L;

E�L (w
�; eL) is nonempty and closed, so let e�L (w

�; eL) denote its minimum. Finally, if we �x

w�, e�L, and eR; (18) for i = R pins down a unique e
�
R which we denote e

�
R (w

�; e�L; eR) :

Step 1: for all w� 2 W � (w), e�L (w
�; eL) is weakly increasing in eL; and e�R (w

�; e�L; eR) is

weakly increasing in eR and weakly decreasing in e�L:

Since the R.H.S. of (18) for i = L is continuous in (eL; e�L) and weakly increasing in eL;

Theorem 1 in Villas Boas 1997 implies that the smallest �xed point e�L (w
�; eL) is weakly

increasing in eL: The comparative statics on e�R (:) follow readily from (18) for i = R and the

fact that for all w� 2 W � (w) ; w�L < w
�
R (see Lemma 4A).
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Step 2: no EE exists if and only if for all w� 2 W (w), e�R
�
w�; e�L (w

�; eL) ; eR

�
< 0.

As explained at the beginning of this proof, no EE exists if and only if for all solutions to

(17) and (18), e�R < 0. Using the notations of Step 0 and the comparative statics established

in Step 1, no EE exists if and only if e�R
�
w�; e�L (w

�; eL) ; eR

�
< 0 for all w� 2 W � (w).

Step 3: Proof of Proposition 4 Parts (i) and (ii).

Part (i) follows from Step 2, together with the comparative statics established in Step 1.

We now prove Part (ii) : Let w� 2 W � (w) : As shown in Step A1 in the proof of Lemma 4,

w�L < w
�
R; so (18) for i = L implies that e

�
L (w

�; eL) � eL > 0: Finally, (18) for i = R implies

lim
eR!0

e�R

�
w�; e�L (w

�; eL) ; eR

�
= �

Z minfw�L+e�L(w�;eL);w�Rg

w�L

bR (�; q) (� � w�R) dF (�) :

Since F has full support and bR (�; q) > b > 0 for all � 2 R; the R.H.S. of the above equation
is strictly negative. Step 2 implies then that for eR su¢ ciently small, no EE exists.

Step 4: Proof of Proposition 4 Part (iii) in the case wR � wL ! 0.

Suppose Proposition 4 Part (iii) is false in the case wR � wL ! 0. Then from step 2,

there exists
�
wk
�
k2N such that w

k
R � wkL ! 0 and for all k 2 N; for all w�;k 2 W � �wk�,

e�R

�
w�;k; e�L

�
w�;k; eL

�
; eR

�
< 0: Taking di¤erences across players in (17), we obtain w�;kR �

w�;kL =
wkR�wkL

1��(F(w�;kR )�F(w
�;k
L ))

� wkR�wkL
1�� ; so w�;kR > w�;kL and w�;kR � w�;kL !k!1 0. Since w�;kR >

w�;kL , (18) for i = R implies e
�
R

�
w�;k; e�L

�
w�;k; eL

�
; eR

�
� eR+�

R w�;kR
w�;kL

bR (�; q)
�
� � w�;kR

�
dF (�) :

Since w�;kR � w�;kL !k!1 0; continuity of F implies that the R.H.S of the above inequality

tends to eR > 0 as k !1, which contradicts that e�R
�
w�;k; e�L

�
w�;k; eL

�
; eR

�
< 0.

Proof of Proposition 4 Part (iii) case wR � wL ! +1:.
Suppose by contradiction that Part (iii) is false in the case wR�wL ! +1. Then there

exists e 2 (0;+1)2, m 2 R and two sequences
�
wk
�
k2N and (� (k))k2N with the following

properties: wkR�wkL ! +1, for all k 2 N; wkL+wkR = m; and � (k) is an IE for the �ow payo¤
parameters

�
e; wk

�
. Below, we show that for k su¢ ciently large, e�(k)L > 0 and e�(k)R > 0;

which, from Lemma 4, contradicts the assumption that � (k) is an IE.

Step 1: for k su¢ ciently large; w�(k)L < w
�(k)
L + e

�(k)
L < w

�(k)
R + e

�(k)
R � w�(k)R :

Since wkR � wkL ! +1; Equation (25) and inequality D � (1� �)2 in Lemma 6 imply that,
for k large enough,

w
�(k)
R � w�(k)L � (1� �)

�
wkR � wkL

�
� jeR � eLj :

Hence, w�(k)R �w�(k)L ! +1 so for k large enough, w�(k)R > w
�(k)
L , and Lemma 5 implies that
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e
�(k)
L > 0 � e�(k)R : Moreover, (25) and inequality D � (1� �)2 in Lemma 6 imply

w
�(k)
R + e

�(k)
R � w�(k)L � e�(k)L � (1� �)

�
wkR � wkL

�
� jeR � eLj :

So w�(k)R + e
�(k)
R � w�(k)L � e�(k)L ! +1: Together with e�(k)L > 0 � e�(k)R , this implies Step 1.

Step 2: for k su¢ ciently large; e�(k)R � eR+��
�
��(k) (q; q)

�
e
�(k)
R +�

R w�(k)L +e
�(k)
L

w
�(k)
L

�
w
�(k)
L � w�(k)R

�
dF (�) :

Let � 2 ��(k) (p; p)\��(k) (q; n) : Since � (k) is an equilibrium, in state �; both players must
weakly prefer implementing n to q and one player must prefer implementing p to n: Thus,

mini2fL;Rgw
�(k)
i � � (�) � mini2fL;Rg

�
w
�(k)
i + e

�(k)
i

�
: Together with Step 1, this implies

��(k) (p; p) \��(k) (q; n) �
n
� 2 � : w�(k)L � � (�) � w�(k)L + e

�(k)
L

o
: (28)

From (28), for all � 2 ��(k) (p; p) \ ��(k) (q; n) ; � (�) � w�(k)L � e
�(k)
L : Substituting this

inequality into (23), we obtain

e
�(k)
L � eL + ��

�
��(k) (q; q)

�
e
�(k)
L + ��

�
��(k) (p; p) \��(k) (q; n)

�
e
�(k)
L ;

and therefore that e�(k)L � eL= (1� �). Since e�(k)L > 0; the latter inequality implies that e�(k)L

is bounded. From Step 1 and (28), for all � 2 ��(k) (p; p) \��(k) (q; n) ; 0 � � (�)� w�(k)R �
w
�(k)
L � w�(k)R : The preceding inequality and (28) imply that

Z
��(p;p)\��(q;n)

(� (�)� w�R) d� (�) �
Z w

�(k)
L +e

�(k)
L

w
�(k)
L

�
w
�(k)
L � w�(k)R

�
dF (�) :

Substituting the above inequality into (23), we obtain Step 2.

Step 3: as k ! +1; e�(k)L ! �1, e�(k)R ! +1 and w�(k)R �
���w�(k)L

��� :
As shown in Step 1, wkR � wkL ! +1. Therefore, to prove Step 3, it su¢ ces to show that
w
�(k)
L + w

�(k)
R is bounded as k ! 1. To do so, note that if we sum (23) and (24) across

players and collect the terms in factor of w�(k)L + w
�(k)
R and e�(k)L + e

�(k)
R , we obtain 

1� ��
�
��(k) (p; p) \��(k) (n; n)

�
��
�
��(k) (n; q)

�
��
�
��(k) (p; p) \��(k) (q; n)

�
1� ��

�
��(k) (q; q)

� ! w
�(k)
L + w

�(k)
R

e
�(k)
L + e

�(k)
R

!

=

 
m� �

R
��(k)(p;p)\��(k)(n;n) � (�) d� (�)

eL + eR +
R
��(k)(p;p)\��(k)(q;n) � (�) d� (�)

!
:

From Lemma 6, the determinant of that system, which is D; is bounded away from 0 as

k ! 1. Moreover, all the coe¢ cients of the above system are bounded. Therefore, the
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solution w�(k)L + w
�(k)
R must be bounded as k !1; as needed.

Step 4: for k su¢ ciently large; e�(k)L > 0 and e�(k)R > 0.

Step 1 proves that for k large enough, e�(k)L > 0. Let us now prove that e�(k)R > 0. Step 3

together with the integrability of F implies that
R w�(k)L +e

�(k)
L

w
�(k)
L

w
�(k)
L dF (�) ! 0. Substituting

this limit in Step 2, we obtain e�(k)R > 0; as needed.

The proofs of Propositions 3 and 5 rely on the proof of Proposition 6, so we provide the

latter before the former.

Proof of Proposition 6. Parts A and B below prove part (ii), part C proves part (i),

and parts D and E prove part (iii).

Part A: If (6) and (7) hold, there exists an equilibrium of � (n; p; q) and of
� (n; q) that is Pareto superior to any equilibrium of � (n; p).
Assume (6) and (7) hold and de�ne the strategy pro�le �� (n; p; q) of � (n; p; q) as follows:

Under status quo n or q; in state � (��), both players propose and accept n (q), veto q (n),

and in both states, R vetoes p and L accepts p: Under status quo p; L proposes p and

accepts only p, whereas R proposes p and accept any proposal. The path of �� (n; p; q) is as

follows: under status quo n or q; n is implemented in state � and q in state ��, and once p is

implemented, p stays in place forever.

Below, we characterize the equilibria of � (n; p) (Step A1), show that both players strictly

prefer �� (n; p; q) to any equilibrium of � (n; p) (Step A2), and show that �� (n; p; q) is an

equilibrium of � (n; p; q) (Steps A3 to A6). We then show that there exists an equilibrium

�� (n; q) of � (n; q) that has the same path as �� (n; p; q) ; and thus that also Pareto dominates

any equilibrium of � (n; p) (Step A7).

Step A1: In any equilibrium of � (n; p), the initial status quo n stays in place forever.

Let � be an equilibrium of � (n; p). From (6), wL < �; so L gets a strictly greater �ow

payo¤ from p than from any other policy in either state. Therefore, on the path of �; once

implemented, p stays in place forever. Simple algebra shows that (7) means that in state ��

(and thus in state � as well), R strictly prefers implementing n forever to implementing p

forever. Therefore, in either state, given continuation play �; R strictly prefers implementing

n forever to p forever. Therefore, the path of � stays at the initial status quo n forever.

Step A2: Both players strictly prefer �� (n; p; q) to any equilibrium of � (n; p) :

The path of �� (n; p; q) implements n and q in state � and ��, respectively. From (6), both

players get a strictly greater payo¤ from q than from n in state ��, so they strictly prefer the

path of �� (n; p; q) to staying at n forever. Step A2 follows then from Step A1.

Step A3: Given continuation play �� (n; p; q) ; in either state, L strictly prefers imple-

menting p to either n or q.

From (6), p gives a strictly greater �ow payo¤ to L than any other policy in any state, and
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on the path of �� (n; p; q) ; p stays in place forever once implemented.

Step A4: Given continuation play �� (n; p; q) ; both players prefer implementing n to q

( q to n) in state � ( ��).

From (6), both players get a weakly greater �ow payo¤ from n than from q (from q than

from n) in state � (��), and the same continuation value as under �� (n; p; q) ; status quo n or

q lead to the same outcome.

Step A5: Given continuation play �� (n; p; q) ; in any state, R strictly prefers implement-

ing n or q to p.

From Steps A1 and A2, R prefers implementing n and playing �� (n; p; q) thereafter to im-

plementing n forever. Moreover, (7) means that in either state, R strictly prefers n forever

to p forever, which is what happens if p is implemented and �� (n; p; q) is played thereafter.

Therefore, given continuation play �� (n; p; q), in either state, R strictly prefers implementing

n to implementing p: From Step A4, in state ��; R strictly prefers implementing q to n; so

from what precedes, she must strictly prefer implementing q to p in state ��: Since the �ow

payo¤ di¤erence between q and p is independent of �; R also strictly prefers implementing q

to p in state �:

Step A6: �� (n; p; q) is an equilibrium of � (n; p; q).

It is straightforward to check that given the preferences characterized in Steps A3-A5, be-

havior prescribed by �� (n; p; q) is sequentially rational.

Step A7: there exists an equilibrium of � (n; q) that is Pareto superior to any equilibrium

of � (n; p).

By construction, under status quo n or q; �� (n; p; q) never prescribes player to make proposal

p: So �� (n; p; q) de�nes also an equilibrium of � (n; q) ; and A7 follows from A2.

Part B: if there exists an equilibrium of � (n; p; q) or � (n; q) that is Pareto
superior to any equilibrium �� (n; p) of � (n; p), then (6) and (7) must hold.
Let � (n; p; q) be an equilibrium of � (n; p; q) that is Pareto superior to any equilibrium

of � (n; p) (argument for the case of � (n; q) is analogous and is omitted for brevity).

Step B1: wL < �.

Suppose �rst that wL � � and wR � ��. In that case, player R gets a weakly greater �ow

payo¤ from n than from p in either state, so there exists an equilibrium of � (n; p) in which R

unilaterally decides to stay forever at the initial status quo n. This equilibrium implements

the most preferred policy path of R, and thus cannot be dominated by any equilibrium of

� (n; p; q) ; a contradiction. Suppose now that wL � � and wR < ��. In that case, both

players get a greater �ow payo¤ from p (n) than from n (p) in state �� (�), so there exists

an equilibrium of � (n; p) in which players agree to implement n in state � and p in state
��. This equilibrium path is optimal for both players and can thus not be dominated by any

41



equilibrium of � (n; p; q) ; a contradiction.

Step B2: wR > �.

Suppose wR � �. Then both players get a weakly greater �ow payo¤ from p than from n in

either state of nature. So there exists an equilibrium of � (n; p) in which both players�most

preferred alternative p is implemented forever, so this equilibrium cannot be dominated by

any equilibrium of � (n; p; q) ; a contradiction.

Step B3: Given continuation play � (n; p; q) ; L strictly prefers implementing p to n and

p to q; so under status quo p; p stays in place forever.

Step B3 follows from the observation that since wL < �; L gets a strictly greater �ow payo¤

from p than from any other policy in either state of nature.

Step B4: Given continuation play � (n; p; q) ; R weakly prefers implementing q to p in

either state, and R strictly prefers implementing n to q and n to p in state �:

Observe �rst that q must be implemented on the path of � (n; p; q), otherwise � (n; p) would

admit an equilibrium with the same path as � (n; p; q) ; so those equilibria would be payo¤

equivalent. From Step B3, L must veto q under status quo p; so q must be implemented

with positive probability in some state �� 2
�
�; ��
	
under status quo n: Since from Step B3,

L strictly prefers implementing p to q; R must weakly prefer implementing q to p in state

��. Since the �ow payo¤ di¤erence between p and q and the distribution of future states is

independent of the current state, this must be the case in either state, which proves the �rst

claim of Step B4. Since q gives a strictly lower �ow payo¤ than p to R, the �rst claim of

Step B4 implies that R strictly prefers status quo q to status quo p. So it must be that in

some state �0, with positive probability, status quo q leads to some outcome x that R strictly

prefers to p and q: So x must be n: From the �rst claim of Step B4, this implies R strictly

prefers implementing n to p in state �0. Since the �ow payo¤ gain from n relative to p or q

is decreasing in �, this is true for �0 = �:

Step B5: Given continuation play � (n; p; q) ; R strictly prefers implementing n to p in

any state, so under status quo n; p is never implemented.

Suppose Step B5 is false. Since from Step B4, R strictly prefers n to p in �; it must be that

R weakly prefers implementing p to n in state ��. Using Step B3, this means that in state
��, R weakly prefers implementing p forever to n forever, since R can unilaterally impose the

latter policy path under status quo n: Since R gets a greater �ow payo¤ from n than from p

in state �, and since L gets a strictly greater �ow payo¤ from p than from n in either state,

this implies that there exists an equilibrium of � (n; p) in which the initial status quo n stays

in place as long as the state stays at �; and p is implemented at the �rst occurrence of ��

and stays in place forever after. This equilibrium implements L�s most preferred policy path

from the �rst occurrence of state �� onwards. By assumption, L is strictly better o¤ under
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� (n; p; q). For that to be the case, it must be that at the initial status quo n and in state �;

� (n; p; q) implements q or p with positive probability, a contradiction with Step B4.

Step B6: Under status quo n or q; p is never implemented on the path of � (n; p; q).

Suppose Step B6 is false. From Step B5, this implies that p is implemented with positive

probability under status quo q: From Step B4, this means that given continuation play

� (n; p; q), R is indi¤erent between implementing q or p in any state. So from Steps B5, R

strictly prefers implementing n to p and to q in any state, so R must weakly prefer staying

at n forever to playing � (n; p; q). Since she can unilaterally impose n forever in � (n; p) ; she

must weakly prefer any equilibrium of � (n; p) to � (n; p; q) ; a contradiction.

Step B7: Given continuation play � (n; p; q) ; both players strictly prefer implementing q

to n in state ��.

Suppose Step B7 is false. Given the �ow payo¤ speci�cation, this means that some player

weakly prefers implementing n to q in either state. From Step B6, this implies that she

must weakly prefer staying at n forever to playing � (n; p; q). Since she can unilaterally

impose n forever in � (n; p) ; she must weakly prefer any equilibrium of � (n; p) to � (n; p; q) ;

a contradiction.

Step B8: With probability 1; status quo n stays in place in � and is replaced by q in ��.

That n stays in place in state � follows immediately from Step B4. That it is replaced by q

with probability 1 follows from Steps B5 and B7.

Step B9: Status quo q stays in place with probability 1 in state ��; in state �, it is replaced

with positive probability by n and stays in place with the remaining probability.

That q stays in place with probability 1 in state �� follows from Steps B5 and B7. Suppose

now that status quo q is never replaced by n in state �: From Step B6, this implies that q

must stay in place with probability 1: But then both players strictly prefer implementing p

forever, so � (n; p; q) is not an equilibrium, a contradiction.

Step B10: Condition (6) must be satis�ed.

The �rst inequality of (6) comes from Step B1. For the path of play described by Steps

B8 and B9 to be an equilibrium, both players must get a weakly greater (smaller) �ow

payo¤ from n than from q in state � (��). This means that the last three inequalities in (6)

must hold weakly. Suppose by contradiction that the last inequality holds with equality.

Then one player must be indi¤erent between staying at n forever and the equilibrium path.

Since she can unilaterally impose n forever in the game � (n; p) ; she must weakly prefer any

equilibrium of � (n; p) to � (n; p; q) ; a contradiction.

Step B11: Condition (7) must be satis�ed.

Consider the strategy pro�le � (n; p) of � (n; p) de�ned as follows: L always proposes p and

accepts only p, and R proposes n (p) and accepts only n (p) in state � (��). The path of play
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of � (n; p) is such that n stays in place until the �rst occurrence of state ��; at which time n

is replaced by p and p stays in place forever. Since the path of play of � (n; p) implements n

until the �rst occurrence of state �� and never implements p, L must strictly prefers � (n; p) to

� (n; p; q) ; so by assumption, � (n; p) cannot be an equilibrium of � (n; p). From Step B1, R

gets a strictly greater �ow payo¤ from p than from n in either state, so the actions prescribed

by � (n; p) to L are subgame perfect given continuation play � (n; p). The actions prescribed

by � (n; p) to R under status quo p are also subgame perfect since R is not pivotal under

that status quo. From Step B2, R gets a greater �ow payo¤ from n than from p in state �,

so in that state, it is subgame perfect for R not to propose p and to veto p under status quo

n: The only remaining case is when the status quo is n and the state is ��. Since � (n; p) is

not an equilibrium, it must be that R�s actions in that case are not subgame perfect. This

means that in state ��, R must strictly prefer staying at n forever than switching to p forever.

Simple algebra shows that this condition is equivalent to (7).

Part C: Proposition 6 Part (i).
If �� � wR; then implementing n forever is the unique most preferred path of R; and R can
unilaterally impose that path in � (n; p; q).

If � � wL < wR < ��; then implementing n in state � and p in state �� is the most preferred
path of both players, so it is an equilibrium path of � (n; p; q).

Consider now the case in which wL < � < wR < �� and (7) holds. Then as argued in Step

A1, in any equilibrium of � (n; p) ; the initial status quo n stays in place forever. This path

can be unilaterally imposed by either player in � (n; p; q), so either player must weakly prefer

any equilibrium of � (n; p; q) to the equilibrium of � (n; p) :

Consider then the case in which wL < � < wR < �� but (7) is violated. Since wL < �; p

is the alternative that gives L the greatest �ow payo¤ in both states, so in any equilibrium

of � (n; p) and � (n; p; q), L always accepts proposal p and p stays in place forever once

implemented. That (7) is violated means that in state ��, R prefers implementing p forever

to implementing n forever. Therefore, the only equilibrium path of � (n; p) stays at the initial

status quo n as long as the state is �, and moves permanently to p at the �rst occurrence of
��: Now let � be an equilibrium of � (n; p; q) : Suppose �rst that in state ��; R accepts proposal

p under status quo n: Then L will propose p; and R can unilaterally impose the same path

as in � (n; p) by proposing p in state �� and imposing to stay at n in state �. So R must

weakly prefer � to the equilibrium � (n; p) : Suppose now that in state ��; R refuses proposal

p with positive probability under status quo n: Then R must weakly prefer staying at n in

that state given continuation play � to implementing p forever. So R must weakly prefer

the path of � to the equilibrium path of � (n; p) :

Finally, if wR < �; then implementing p forever is the unique most preferred path of both
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players, so this is the equilibrium path for � (n; p; q) and � (n; p) :

Part D: If all equilibria of � (n; p; q) are Pareto superior to any equilibrium of
� (n; p), then (6), (7), and (8) must hold.
Suppose all equilibria of � (n; p; q) are Pareto superior to any equilibrium of � (n; p). We

already know from Part B that (6) and (7) must be satis�ed. So to prove Part D, it su¢ ces

to prove (8). To do so, consider the following strategy pro�le �0 (n; p; q). Under status quo

p; both players propose p; L accepts only p, and R vetoes only q. Under status quo n;

both players proposes n; R accepts only n; and L vetoes only q. Under status quo q; both

players proposes p, L accepts only p; whereas R accepts any policy. By construction, the

path of play of �0 (n; p; q) implements n forever. Since either player can unilaterally impose

that outcome in the game � (n; p) ; �0 (n; p; q) is not Pareto superior to any equilibrium of

� (n; p) ; so by assumption, it cannot be an equilibrium. In what follows, we assume that (8)

is violated, we characterize players�incentives given continuation play �0 (n; p; q) (Step D1)

and show that �0 (n; p; q) is an equilibrium (Step D2), a contradiction.

Step D1: If condition (8) is violated, then given continuation play �0 (n; p; q) ; in either

state, R prefers implementing n to p to q; whereas L prefers implementing p to q to n.

Note �rst that since status quo q and p both lead to policy p, and since p gives both players

a greater �ow payo¤ than q; both players prefer implementing p to q in any state. Moreover,

(7) implies that in either state, R prefers implementing n forever to p forever, which is

what happens if n and p are implemented, respectively, given continuation play �0 (n; p; q).

Therefore, R prefers implementing n to p to q: To complete the proof, it remains to show

that L prefers implementing q to n in either state, given continuation play �0 (n; p; q), or

equivalently, that L prefers implementing q today and p forever after to implementing n

forever. Simple algebra shows that this is equivalent to (8) being violated.

Step D2: If condition (8) is violated, �0 (n; p; q) is an equilibrium.

It is straightforward to check that given the preferences characterized in Step D1, �0 (n; p; q)

prescribe either veto players to accept (reject) a proposal whenever it gives her a greater

(lesser) continuation payo¤, and it prescribe either proposer to propose the policy that gives

her the greatest continuation payo¤ among those accepted by the veto player, as needed.

Part E: If (6), (7), and (8) hold, any equilibrium of � (n; p; q) or � (n; q) is
strictly Pareto superior to any equilibrium of � (n; p) :
Assume (6), (7), and (8). From Part A, the strategy pro�le �� (n; p; q) de�ned in Part A is an

equilibrium that it is strictly Pareto better than any equilibrium of � (n; p). So it su¢ ces to

show that any equilibrium of � (n; p; q) and � (n; q) must have the same path as �� (n; p; q).

Throughout, � is an arbitrary equilibrium of � (n; p; q) :

Step E1: Given continuation play �; in either state, L strictly prefers implementing p to
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n or q; so given continuation play �; status quo p always stays in place.

See the proof of Step A1.

Step E2: Given continuation play �; in either state, R strictly prefers n to p.

Since � is an equilibrium, R weakly prefers implementing n and playing � thereafter to im-

plementing n forever. Moreover, (7) means that in any state, R strictly prefers implementing

n forever to p forever, which, from Step E1, is what happens if p is implemented and � is

played thereafter.

Step E3: p is never implemented on the path of �.

From Step E1, p is never implemented under status quo n. So if Step E3 is false, it must

be that (i) in some state �0; p is implemented with positive probability under status quo q;

and that (ii) in some state �00; q is implemented with positive probability under the initial

status quo n: Since the �ow payo¤ of q relative to p is independent of �; (i) must be true

for all �0 2
�
�; ��
	
, so it must be true for �0 = �00. Therefore, (i) and (ii) imply that R must

strictly prefer implementing p to q and q to n in state �00; a contradiction with Step E2.

Step E4: Given continuation play �; in state �, both players strictly prefer to implement

n to q, so in state �, status quo n or q lead to n:

Suppose by contradiction that given continuation play �; some player i prefers implementing

q to n in state �. Since the �ow payo¤ of n relative to q is decreasing in �; i prefers

implementing q to n in both states, so from Step E3, i weakly prefers implementing q forever

to implementing n forever. But (7) means that in any state, R strictly prefers implementing

n forever to p forever, and thus to q forever. So i must be L: Simple algebra shows that

(8) implies that in state �, L prefers implementing n forever to implementing q today and p

forever after, so L must prefer n forever to q forever, a contradiction. The second claim in

Step E4 follows from the �rst claim and Step E3.

Step E5: Given continuation play �; in state ��, both players strictly prefer to implement

q to n, so in state ��, status quo n or q lead to policy q:

From Step E4, in state �; status quo n and q lead to the same outcome. Moreover, in state ��;

from (6), both players get a strictly greater �ow payo¤ from q than from n: Therefore, given

continuation play �; both players strictly prefer implementing q to n: The second claim in

Step E5 follows from the �rst claim and Step E3.

Step E6: � has the same path as �� (n; p; q) :

This Step follows directly from Steps E3, E4, and E5.

Step E7: any equilibrium of � (n; q) has the same path as �� (n; p; q) :

This step follows directly from the proof of Step E4 and E5.

Proof of Propositions 3 and 5. In the proof below, we �rst show that for the two-

state c.d.f. of Proposition 6, denoted now by F�;��;�; for any (w; e), there exists
�
�; �; ��; �

�
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such that (6), (7), and (8) are satis�ed (Step 1). Under those conditions, we know from

Proposition 6iii) that in any equilibrium, both players strictly bene�t from the availability

of q: We then add a small, full support perturbation to the degenerate c.d.f. F�;��;� so as to

guarantee that � (t) has full support, as implicitly assumed in Propositions 3 and 5 (Step

2). By continuity, when the perturbation is su¢ ciently small, in any equilibrium, players

still unanimously bene�t from the availability of q, which proves Proposition 5 (Step 3). To

prove Proposition 3, note that a full support approximation F of the two-state process F�;��;�
is compatible with the c.d.f. F assumed in Proposition 3 only when � = 0; that is, when

F�;��;� puts probability 1 on �. Step 1 shows that for a nonnegligible sets of
�
�; �; ��

�
, (6),

(7), and (8) are satis�ed even for � = 0. Under those conditions, from Proposition 6 part

(iii), all equilibria of � (n; p; q) for the c.d.f. F�;��;� must be IE, not in the sense that q is

implemented on the equilibrium path with positive probability as required by the de�nition,

but in the weaker sense that conditional on � (t) = �� (which occurs with probability � = 0), q

is implemented. By continuity, that property must be true for a small enough perturbation

of F�;��;�. The equilibria of this perturbed game are IE in the usual sense, which proves

Proposition 3 (Step 4).

Step 1: For any (w; e) ; there exists �� 2 R; �� > 0; and closed intervals � � (0; 1) and

� � R of positive length s.t. for all � 2 �; � 2 �, and � 2 [0; ��], (6), (7), and (8) hold.
For any � 2 (wL;minfwL + eL; wRg) and �� > maxfwL + eL; wR + eRg; (6) holds. Moreover,
simple algebra shows that (7), and (8) can be rewritten as

� <
wR � (1� �) �� � ��

�
�
�� � �

� ; and � <
(1� �) eL + wL � �

�
�
�� � �

� : (29)

The R.H.S. of the two inequalities above are strictly positive if and only if

�� � wR
�� � �

< � <
eL + wL � �

eL
: (30)

Note that for � = wL; the L.H.S. and R.H.S. of (30) are
���wR
���wL

2 (0; 1) and 1; respectively.
Therefore, if we �x �� > maxfwL + eL; wR + eRg, by continuity, there exists closed intervals
of positive length � � (0; 1) and � � (wL;minfwL + eL; wRg) such that for all � 2 � and

� 2 �, (30) holds. Since � and � are closed, by continuity, the R.H.S. of the two inequalities
in (29) are bounded below by some �� > 0 for all � 2 � and � 2 �; as needed.
Step 2: De�nitions.

Let f� (t) : t � 0g denote the process for the two-state c.d.f. F�;��;� of Proposition 6, for
some � 2 [0; 1] and some � < ��. Let f" (t) : t � 0g be a sequence of i.i.d. random variables

distributed according to some c.d.f. G with full support, and for any d � 0; consider the
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i.i.d. process f� (d; t) : t � 0g where � (d; t) � � (t) + d" (t). That is, � (d; t) is the sum of

� (t) and a full support perturbation d" (t). For all X � fn; p; qg, let � (d;X) denote the
game � in which the set of available policies is X and the payo¤ state is f� (d; t) : t � 0g ;
and let � (d;X) be strategy pro�le of � (d;X). Note that for the unperturbed game � (0; X),

one can view the realization of f" (t) : t � 0g as a payo¤ irrelevant, public signal. So for
any d > 0, any behavioral strategy pro�le � (d;X) of � (d;X) de�nes a (possibly correlated)

behavioral strategy pro�le of � (0; X) : In what follows, we refer to this strategy pro�le as

�0 (� (d;X)) :

Step 3 (Proof of Proposition 5): Using the notations of Steps 1 and 2, there exists a closed

interval � � (0; 1) of positive length, �; �� 2 R, � 2 (0; 1) such that for d su¢ ciently small,
for all � 2 �; both players strictly prefer any equilibrium of � (d; fn; p; qg) or � (d; fn; qg)
to any equilibrium of � (d; fn; pg) :
To see why Step 3 proves Proposition 5, simply set F equal to the c.d.f. of � (d; t) for the

values of �; �� 2 R, � 2 (0; 1) and d found in Step 3. To prove Step 3, suppose it is false. Then
for all � � (0; 1) ; �; �� 2 R, � 2 (0; 1), there exists a subsequence dk ! 0 and a sequence

�k ! � 2 �; and a corresponding subsequence of equilibria � (dk; fn; pg) ; � (dk; fn; qg),
and � (dk; fn; p; qg) such that for all k 2 N; some player weakly prefers � (dk; fn; qg) or
� (dk; fn; p; qg) to � (dk; fn; pg). From Step 1, we can pick �; �; ��, and � such that (6),

(7), and (8) hold. For these parameters, for any X � fn; p; qg ; consider the corresponding
sequence of (correlated) strategy pro�les �0 (� (dk; X)) of the game � (0; X) ; as de�ned

in Step 2. Since � (0; X) has �nitely many Markov states, we can assume w.l.o.g. that

�0 (� (dk; X)) converges to some limit � (0; X). Since � (d; t) converges in distribution to

� (t) as d! 0; the limit strategy � (0; X) must be a correlated equilibrium of � (0; X) : Since

players play sequentially in � (0; X), it is easy to check that the arguments made in Steps

A1 and E of the proof of Proposition 6 to characterize the unique equilibrium path under

conditions (6) and (8) are valid also if one allows for correlated strategy pro�les. So the path

of � (0; X) must be the unique (uncorrelated) equilibrium path of � (0; X). By continuity,

some player must weakly prefer the equilibrium path of � (0; fn; p; qg) to the equilibrium
path of � (0; fn; qg) or � (0; fn; p; qg). This contradicts Proposition 6 part (iii).
Step 4 (Proof of Proposition 3): Using the notations of Step 1, for � = 0, there exists

�d > 0 such that for all d 2
�
0; �d
�
; � 2 � and � 2 �, all equilibria of � (d; fn; p; qg) are IE :

To see why Step 4 proves Proposition 3, simply set F equal to the c.d.f. of � (d; t) for � = 0

and the values of � and d found in Step 4. This F satis�es conditions of Proposition 3 because

its c.d.f. is G
�
���
d

�
, and from Step 1, � and � are of positive measure. Throughout this

proof, we �x � = 0 and X = fn; p; qg so we omit X from the notations. In what follows, we

use results established in Step E of the proof Proposition 6. Careful reader will notice that
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Proposition 6 assumes � > 0 , but that inequality is not required for the proof of step E.20

Suppose Step 4 is false. Then there exists a sequence dk ! 0, �k ! � 2 � and �k ! � 2 �
such that for all k 2 N; there exists EE � (dk) of � (dk) for these parameter values. Therefore,
from Step 1, (6), (7), and (8) are satis�ed for �; �; and for some ��. Consider now the sequence

of strategy pro�les �0 (� (dk)) of the game � (0) ; as de�ned in Step 2. Since (6), (7), and (8)

are satis�ed, using the same argument as in Step 3, we can assume that the path of �0 (� (dk))

converges to the unique (uncorrelated) equilibrium path � (0) for the parameters �; �; �� and

� = 0. Since � (dk) is an EE, q is implemented with probability 0 under status quo n: Since

� (dk; t) has full support, for either realization of � (t) ; conditional on continuation play

� (dk), some player weakly prefers implementing n to q; or both weakly prefer implementing

p to q: By continuity, in some equilibrium of � (0) ; conditional on � (t) = ��, some player

must weakly prefer implementing n to q; or both weakly prefer implementing p to q: This

contradicts Step E (E2 and E5) of the proof Proposition 6.

8.3 Proofs for the Model of Section 5

Lemma 7 Consider the model of Section 5. For every strategy pro�le �; let V �i denote the
continuation payo¤ for player i 2 fL;Rg of implementing policy x 2 fn; p; qg in some period
t with state (�t; vt) = (�; v) 2 R � [0; 1] until the next period in which the state is redrawn,
given continuation play �. There exist (wL; wR; eL; eR) 2 R4 such that, for any equilibrium
strategy pro�le � and for all i 2 fL;Rg, � 2 R, and v 2 [0; 1] ;

(1� � (1� v)) [V �i (�; v; p)� V �i (�; v; n)] = � � (1� v)wi � vw�i ;
(1� � (1� v)) [V �i (�; v; p)� V �i (�; v; q)] = (1� v) ei + ve�i .

(31)

Proof. We use Notation 1 with the exception that a state of the world � 2 � now

also includes the realization of the volatility v: For any strategy pro�le �, all � 2 � and

s 2 fn; p; qg, let X� (�; s) denote the policy outcome in a period in which the state of the

world is �, the status quo is s; and players play �: By de�nition of V �i ;

V �i (�; v; p)� V �i (�; v; n)

= � � wi + �
(

(1� v) [V � (�; v; p)� V � (�; v; n)] +
v
R
�2� [V

� (�; v;X� (�; p))� V � (�; v;X� (�; n))] d� (v)

)

=
� � (1� v)wi � v

�
wi � �

R
�2� [V

� (�; v;X� (�; p))� V � (�; v;X� (�; n))] d� (v)
	

1� � (1� v) :

20More precisely, � > 0 is needed in Step E of the proof of Proposition 6 only to guarantee that both players
strictly prefer �� (n; p; q) to any equilibrium of � (n; p) : But it is not needed to prove that all equilibrium of
� (n; p; q) have the same path as �� (n; p; q) ; which is what we use here.
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If we set w�i equal to the term inside the curly brackets on the numerator of the above

fraction, then w�i depends neither � nor on v; which proves the �rst line of (31). The proof

for the second line of (31) follows an analogous argument and is omitted for brevity.

Proof of Proposition 7. Let � be an equilibrium. For q to be implemented on

some equilibrium path, some player i must weakly prefer implementing q to p in some state

(v; �) given continuation play �: From Lemma 7, we have V �i (�; v; q) � V �i (�; v; p) in some
state (v; �) 2 [0; 1)� R if and only if e�i < 0 and v > ei

ei�e�i
: So if e�L � 0 and e�R � 0, for all

(v; �) 2 [0; 1)�R; V �i (�; v; p) > V �i (�; v; q) ; and the �rst part of Proposition 7 holds trivially
for �v = 1: Suppose now that e�i < 0 for some i and let �v � ei

ei�e�i
< 1: Then from Lemma 7,

for all v < �v and all � 2 R; both players weakly prefer implementing p to q in state (v; �) so
q is not implemented on path in such states. When v > �v and when � is su¢ ciently large, i�s

most preferred policy given continuation play � is q; and j prefers to accept q under status

quo n; so q is implemented, as needed.

Consider a sequence of c.d.f. (Hk)k2N such that for all k 2 N; Hk (v; �) = Gk (v)F (�) ;
where Gk has full support and tends to the degenerate distribution which puts probability

1 on v = 1 as k ! 1: Suppose the second claim of Proposition 7 is false. Then from what

precedes, for all k 2 N; there exists an equilibrium � (k) such that e�(k)L � 0 and e�(k)R � 0:
Together with (31), the latter inequalities imply that for all � 2 R and k 2 N; both players
strictly (weakly) prefer implementing p to q given continuation play � (k) when v 2 [0; 1)
(when v = 1). So � (k) never prescribes players to propose q when v 2 [0; 1) ; and we can
assume that this is true as well when v = 1: Since Gk puts probability 0 on v = 1; this

deviation from � (k) does not a¤ect the continuation payo¤ parameters w�(k) and e�(k); and

the modi�ed � (k) is still an equilibrium. W.l.o.g., we can restrict attention to a subsequence

of (� (k))k2N such that w
�(k) and e�(k) converge to some w1 and e1.

Let us now show that the corresponding subsequence of (� (k))k2N converges. For almost

all (�; v) ; � � (1� v)wi � vw1i 6= 0. Together with (31), this implies that for any such

(�; v) ; i strictly prefers to implement p to n for all k su¢ ciently large, or i strictly prefers to

implement n to p for all k su¢ ciently large. An analogous statement holds between n and q;

and between p and q: So for almost all (�; v) ; the action prescribed by � (k) to veto player i

and therefore to proposer i must be pure and constant in k for k su¢ ciently large.

Note �nally that by continuity, limk!1 (� (k)) must be an equilibrium of � for the limit

c.d.f. The limit of (Hk (v; �))k2N as k ! 1 puts probability 1 on v = 1; so the limit

game is equivalent to the game considered in Proposition 3, and by construction, q is never

implemented on path, so it is an EE. Since � can be chosen arbitrarily close to 1; and since

F can be chosen arbitrarily, we obtain a contradiction with Proposition 3.
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Supplementary Appendix to �Gridlock and Ine¢ cient Policy Instruments�

Example 1 Suppose that the support of F is concentrated on three states f�0; �1; �2g that
occur with the respective probabilities f�0; �1; �2g ; and suppose that the payo¤ parameters
are such that

�0 < wL < wL + eL < �1 < wR < wR + eR < �2: (32)

That is, in state �0; both players most prefer no intervention (n) and, in state �2, both

players prefer any intervention to n: In state �1, they disagree: L prefers any intervention

while R prefers no intervention. Suppose that agents can choose between six alternatives

fn; p; q; nS; pS; qSg ; where xS is policy x with a sunset. That is, if in a period with status
quo s 2 fn; p; qg a proposal xS is approved, then policy x is implemented for one period,
after which the status quo reverts to s for the next period. Suppose further, for the sake of

simplicity, that R has full proposal power in state �0; and L has full proposer power in states

f�1; �2g : We show that one can �nd a set of wL 2 (�1; �1) ; wR 2 (�1; �2) so that for eL and
eR su¢ ciently small, the following can be supported as an equilibrium.

� When the status quo is n, then n is proposed in states �0 and �1 and q is proposed in
state �2.

� When the status quo is q, then n is proposed in state �0 and pS is proposed in states
�1 and �2.

� When the status quo is p, then nS is proposed in state �0 and p is proposed in states
�1 and �2.

The intuition for the use of q in state �2 when the status quo is n is as follows. Status

quo p favors the more interventionist player L as it lets her defend the intervention when

she needs it. As a result, in �0, she may be at most willing to accept a temporary change

to n, that is, accept only nS. Since she prefers p to q, however, she may be less willing

to defend q in state �0; so under status quo q; R may be able to implement a change to n

without an attached sunset. Thus, implementing p results in p being the status quo forever,

whereas implementing q can still lead to status quo n. Since n is a better status quo for R in

states of disagreement, R is willing to propose q instead of p in state �2; as the equilibrium

requires.

Proof of Example 1. Let Wi (s) denote the value of the game for player i 2 fL;Rg
when the initial status quo is s 2 fn; p; qg and players play the proposed equilibrium, before
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knowing the realization of � (0). Then

Wi (n)�Wi (q) = �1 (wi � �1 + � (W (n)�W (q))) + �2 (�ei) ;
Wi (n)�Wi (p) = �0� (Wi (n)�Wi (p)) + �1 (wi � �1 + � (Wi (n)�Wi (p)))

+�2 (� (Wi (q)�Wi (p))� ei) ;
Wi (p)�Wi (q) = �0� (Wi (p)�Wi (n)) + (�1 + �2) (� (W (p)�W (q))) :

Rearranging terms, we obtain

Wi (n)�Wi (q) =
�1

1� �1�
(wi � �1)�

�2
1� �1�

ei; (33)

Wi (n)�Wi (p) =
(1� � (�2 + �1))
(1� �) (1� ��1)

(�1 (wi � �1)� �2ei) ;

Wi (p)�Wi (q) = � �0�

(1� �) (1� ��1)
(�1 (w � �1)� �2ei) :

Together with (32), the above equations imply that WL (n) � WL (q) < 0, and WL (p) �
WL (q) > 0; so L prefers status quo p to q to n . And for eR su¢ ciently small, WR (n) �
WR (q) > 0 andWR (p)�WR (q) < 0; so R prefers n to q to p as status quos. In what follows,

we show that if players expect these continuation value, it is subgame perfect for them to

play the proposed equilibrium.

Using (32) and (33), one can readily check that when s = p and � 2 f�1; �2g ; it is
optimal for L to unilaterally impose to stay at the status quo p: Likewise, when s = n and

� 2 f�0; �1g ; it is optimal for R to unilaterally impose to stay at the status quo n:
Consider now s = n and � = �2: For q to be implemented in such state, it must be that

R rejects L0s most preferred option p; which requires

wR � �2 + � (WR (n)�WR (p)) � 0: (34)

SinceR would always accept p with a sunset, it must be that L is weakly prefers implementing

q to implementing pS, which requires

�eL + � (WL (q)�WL (n)) � 0: (35)

Together with (32), (35) implies that L prefers implementing q to implementing n; and to

implementing qS: And �nally, R also must prefer implementing q to staying at the status
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quo n; which requires

�2 � (wR + eR) + � (WR (q)�WR (n)) � 0: (36)

Consider now s = q and � = �0: Alternative n is R�s best choice statically and as the

status quo, and n is indeed accepted if L prefers implementing n to staying at q; which

requires

wL + eL � �0 + � (WL (n)�WL (q)) � 0: (37)

Consider then s = q and � 2 f�1; �2g : Both players strictly prefer implementing pS to
staying at q: However, L prefers a permanent change to p; so for L to propose pS instead,

R must reject p; which means that she must prefer staying at q to implementing p: This

requires that for � 2 f�1; �2g ;

VR (�; q)� VR (�; p) = �eR + � (WR (q)�WR (p)) � 0;

which is true for eR small enough.

Finally, consider s = p and � = �0: L clearly accepts nS (as n is statically better and p

is her best status quo in �0), and R prefers implementing nS to qS. R0s �rst best would be

to implement n, so we have to make sure that L rejects that proposal, which requires

VL (�0; p)� VL (�0; n) = �0 � (wL + eL) + � (W (p)�W (n)) � 0: (38)

From (37) we see that L prefers n to q in �0; so she would also reject q:

Using (33) and isolating wR; conditions (34) and (36) become

wR � (1� �) (1� ��1) �2 + � (1� � (�2 + �1))�1�1
1� � + �2�1 (1� �1 � �2)

+
� (1� � (�2 + �1))�2

1� � + �2�1 (1� �1 � �2)
eR;

wR � (1� ��1) �2 + ��1�1 � eR (1� � (�2 + �1)) :

For eR = 0, these conditions become

�1 <
(1� �) (1� ��1) �2 + � (1� � (�2 + �1))�1�1

1� � + �2�1 (1� �1 � �2)
� wR � (1� ��1) �2 + ��1�1 < �2;

where the two outer inequalities follow from (32). Simple algebra shows that the second

term is strictly smaller than the fourth term, so one can �nd wR 2 (�1; �2) and eR small
enough so that (32), (34), and (36) are satis�ed.

Using (33) and eL = 0, (37) becomes wL � �1; which from (32) holds strictly. So (37)
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holds for eL su¢ ciently small.

Using again (33) and eL = 0, (35) and (38) become

�0 < (1� �1�) �0 + ��1�1 � wL �
(1� �) (1� ��1) �0 + � (1� � (�2 + �1))�1�1

1� � + �2�1 (1� �1 � �2)
< �1:

where the two outer inequalities follow from (32). Simple algebra shows that the second term

is strictly smaller than the fourth term, so one can �nd wL 2 (�0; �1) and eL small enough
so that (32), (35), and (38) are satis�ed, as needed.

The following proposition proves the claim made in the text right after Proposition 3.

Proposition 8 Let G be the c.d.f. of the normal distribution. For any (wL; wR; eL; eR) ; for
any " > 0, there exists � 2 (0; 1) ; d > 0 and � 2 R such that for the c.d.f. F (�) � G

�
���
d

�
;

for any equilibrium of �; conditional on some intervention being implemented under status

quo n, the probability (evaluated before the realization of � (t)) that p is implemented is

smaller than ":

Proof. Throughout that proof, we use the same notations as in the proof of Proposition
3. From Step 1 of that proof, if we �x � = 0; we can pick � 2 (0; 1) ; and � < �� such

that conditions (6), (7), and (8) are satis�ed. Using the same notations as in Step 3 of that

proof, consider a sequence d! 0 , a corresponding sequence of equilibria � (d) of � (d), and

the corresponding sequence of strategy pro�les �0 (� (dk)) of the game � (0) ; as de�ned in

Step 2. As argued in Step 3, we can assume that �0 (� (dk)) converges to an (uncorrelated)

equilibrium � (0) of � (0) :

For all d > 0 along that sequence, consider the cuto¤ states w�(d)i and w�(d)i + e
�(d)
i above

which each player i prefers implementing p and q; respectively, to n, given continuation play

� (d) in the game � (d) : Since the path of play of � (d) converges to the unique equilibrium

path of � (0), by continuity, these cuto¤ states must converge to w�(0)i and w�(0)i + e
�(0)
i : As

argued in Step E of the proof of Proposition 6, the unique equilibrium path of � (0) is such

that status quo s 2 fn; qg leads to policy n and q in state � and ��; respectively. This implies
that for both players,

� < w
�(0)
i + e

�(0)
i = wi + ei < ��:

Moreover, it should be clear from Steps E1 and E2 of the proof of Proposition 6 that w�(0)R >
�� > w

�(0)
L : Therefore,

� < max
i

�
w
�(0)
i + e

�(0)
i

�
= max

i
(wi + ei) < �� < max

i

�
w
�(0)
i

�
: (39)

So for d su¢ ciently small, maxi
�
w
�(d)
i + e

�(d)
i

�
< maxi

�
w
�(d)
i

�
. As explained in Section
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4.1, this implies that under status quo n; n stays in place if � < maxi
�
w
�(d)
i + e

�(d)
i

�
, q is

implemented when � 2
�
maxi

�
w
�(d)
i + e

�(d)
i

�
;maxi

�
w
�(d)
i

��
and p or q is implemented in

states � > maxi
�
w
�(d)
i

�
; depending on who is the proposer. Therefore, under status quo n;

conditional on some intervention being implemented, the probability that p is implemented

is bounded above below by

�(d) =

1�G
�
maxi

�
w
�(d)
i

�
��

d

�
1�G

�
maxi

�
w
�(d)
i +e

�(d)
i

�
��

d

� :

From (39),
maxi

�
w
�(d)
i +e

�(d)
i

�
��

d
!d!0 1 and

maxi

�
w
�(d)
i

�
��

d
�

maxi

�
w
�(d)
i +e

�(d)
i

�
��

d
!d!0 1: One

can easily show that in the case of the normal distribution (as for many other standard

distributions), for any two sequences (an)n2N and (bn)n2N that tend to in�nity,
1�G(an+bn)
1�G(an) ! 0

as n!1, so �(d)! 0 as d! 0; as needed.
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