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Abstract. In various screening environments agents have preferences that are independent

of their type, making standard techniques infeasible. We show how a principal who faces

multiple agents and whose preferences exhibit complementarities can benefit by coordinat-

ing her actions. Coordination delivers a payoff gain to the principal in states with many

high-quality agents and accepts a payoff loss in states with many low-quality agents. Co-

ordination sometimes results in strategic favoritism: the principal may favor agents who

are unambiguously inferior. While this behavior is often attributed to biases, we show that

a rational principal optimally pursues this strategy if complementarities are sufficiently high.
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1. Introduction

Under standard screening techniques, the principal tailors her action to each agent’s pref-

erences by offering a menu of options. For example, in the classic monopoly screening setting,

agents who report a high taste for the good are offered a high quantity at a high price, and

agents who report a low taste for the good are offered a low quantity at a low price. This

technique allows the principal to leverage the structure of the agents’ preferences in

order to price discriminate and increase her own profits.

However, in a number of natural economic situations, agents can have preferences that do

not vary with their type, which makes the tailoring technique infeasible. Examples of such

situations include: (1) a manager downsizing a division and deciding which employees to

keep, but without the authorization to renegotiate salary levels; (2) an executive assembling

a team from within an organization to work on a prestigious project; (3) a regulatory agency

deciding which companies to investigate based on the company’s own regulatory filings; (4)

a grant administrator choosing which research applications to fund.

In these examples, the principal makes a binary decision relevant to each agent (e.g.,

keep or lay off) where one of the outcomes is clearly preferred by the agent. Since none

of the examples allow for side payments or transfers, the intensity with which an agent

desires his preferred outcome is irrelevant to his behavior: regardless of whether an agent

prefers to keep his job a lot or a little, he always wants to maximizes his chance of doing

so. Therefore, agents’ preferences do not vary with their type, which makes the standard

screening technique infeasible, i.e., the principal can gain no leverage from the structure of

the agents’ preferences.

Our contribution in this paper is to show how a principal who faces this situation can

instead leverage the structure of her own preferences. The key feature of our model

that makes this possible is that there are multiple agents across whom the principal’s prefer-

ences exhibits complementarities. For example, in the case of an executive assembling a

team, the complementarities would mean that adding a high-quality agent to the team has

more value to the principal when there are other high-quality agents already present to work

with him. Given this, we show how a principal can exploit a coordination mechanism

to optimally screen the agents. A coordination mechanism works by performing well when



2 NEMANJA ANTIĆ AND KAI STEVERSON

there are strong complementarities to benefit from, and performing poorly when the com-

plementarities are weak. For example, coordination would add high-quality agents to the

team when there are many of them to work together and enhance each other’s productivity

through collaboration. Conversely, when the overall pool of agents is mediocre, coordination

would accept placing low-quality agents on the team. Sometimes rewarding the low quality

agent is necessary for truthful revelation: if only high-quality agents are placed on the team,

then no agent would admit to being low quality. In this way, coordination accepts the fail-

ure necessary for incentive compatibility when the complementarities are weak, in order to

succeed when there are strong complementarities to benefit from.

A counter-intuitive result of coordination is it can sometimes lead to favoring an agent

who the principal knows to be inferior, a phenomenon we refer to as strategic favoritism.

For example, this would mean an agent with a worse type distribution being placed on the

team more often than an agent with a better type distribution, while assuming the agents

are symmetric in all other ways. In other words, strategic favoritism involves rewarding

the agent who is inferior for the principal’s own aims. In practice, favoring an inferior agent

is often assumed to be inefficient and to arise from the principal’s biases. A key insight of

our work is that favoritism can instead be strategic and optimal for an unbiased principal.

To more precisely motivate and discuss coordination and strategic favoritism, we now

describe the mechanism design environment we study in this paper. A principal faces a

number of agents without the use of transfers. The principal decides to take either action

1 or action 0 on each of the agents. Each agent prefer action 1 on himself, and cares about

nothing else. Therefore, we can think of action 1 as the agent keeping his job, being placed on

the project etc. Each agent has a production level that depends on the action taken on him.

Production from action 0 is fixed and known to all players, while production from action 1

depends on the agent’s private type. Agents draw their private types from a distribution

specific to them, and the draws are assumed to be independent across agents. The principal’s

payoff is any increasing and supermodular function of the agent-specific production levels.

The supermodularity is what gives the principal’s preferences complementarities across the

agents.

We say the principal’s choice of action 0 or 1 is the correct response to an agent’s type

if it maximizes that agent’s production level given his type. The incorrect response to



SCREENING THROUGH COORDINATION 3

an agent’s type does the opposite. We call a type a high type if action 1 is the correct

response and a low type if action 0 is the correct response. In the example of assembling

a team, the principal would like to include high-type agents and exclude low-type agents.

Since action 0 provides the same production regardless of type, an incorrect response on a

high type provides the same production as a correct response on a low type. Therefore, high

types always produce more than low types.

Before describing our general results, it will be useful to consider a special case that

starkly demonstrates the logic of coordination. Specifically, consider the environment in

which the agents are fully symmetric and have only two possible types: a high type and

a low type. The optimal mechanism in this setting, as described in Theorem 1, correctly

responds to every agent’s type when the number of high-type agents exceeds a fixed threshold.

Conversely, when the number of high-type agents falls below a lower fixed threshold, the

optimal mechanism incorrectly responds to every agent’s type. If the number of high-type

agents falls between these two thresholds, then the optimal mechanism either takes action 1

on every agent or action 0 on every agent.

This gives a stark demonstration of how coordination works: by grouping the correct

responses on states with more high-type agents, and grouping incorrect responses on states

with more low-types agents. The complementarities rewards the principal for grouping high-

output outcomes of the agents together, which coordination achieves by grouping correct

responses on states with more high types. Conversely, sometimes responding incorrectly

is necessary for truthful revelation: if the principal only responds correctly, then no agent

would admit to being a low type. And coordination places those required incorrect responses

where they do the least damage: on states with more low types. Therefore, coordination

benefits the principal by succeeding when there are strong complementarities to benefit from,

and accepting the failure necessary for incentive compatibility when the complementarities

are weak.

Our general coordination result extends this logic to our full model with asymmetric

agents who may have any number of types. We introduce a partial order on the states that

measures the quality of the states and that has the feature that states higher in the partial

order have more high types. We then define a coordination property which involves the

mechanism grouping its correct responses at states higher in this partial order, and grouping
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its incorrect responses at states lower in the partial order. Theorem 2 establishes that this

coordination property always occurs in an optimal mechanism, which demonstrates that it

is the optimal way to leverage the structure of the principal’s preferences.

A surprising implication of coordination is that it can lead the optimal mechanism to take

action 1 more often on a less productive agent than on a more productive agent, a phenom-

enon we call strategic favoritism. By “less productive agent” we mean an agent with an

unambiguously worse distribution of types, while assuming the agents are symmetric in all

ways other than their type distribution. Hence, strategic favoritism rewards the agent who

is inferior for the principal’s own aims. In practice, giving preferential treatment to inferior

agents is often attributed to biases of the principal (e.g., nepotism). We show instead how fa-

voritism can be optimal for an unbiased, rational principal. More specifically, our Theorem 3

establishes that there always exist beliefs at which every optimal mechanism displays strate-

gic favoritism, provided that the principal’s preferences have enough complementarities. We

characterize the requirement for “enough complementarities” using a simple, closed-form in-

equality. Moreover, when the complementarities are sufficiently high, the magnitude of the

favoritism can be made quite large: the less productive agent can receive action 1 with as

much as a fifty percent higher probability than the more productive agent.

One way in which coordination could manifest in practice is in making use of self-evaluations.

Many organizations ask workers to self-evaluate; this can be part of deciding whom to lay

off or part of a review process that determines internal promotions or placement. When

self-evaluations have content for which verification is impractical, such content must not be

trivially manipulable: it cannot be the case that a worker who evaluates himself favorably

is always rewarded. The logic of coordination suggests a solution through conditioning the

response to the self-evaluation of one worker on the collective self-evaluations of all work-

ers, e.g., placing agents with favorable (unfavorable) self-evaluations on a prestigious project

when the overall quality of self-evaluations is favorable (unfavorable). In the presence of

complementarities, coordinating in this way benefits the organization by performing well

when there are strong complementarities from which the principal can benefit.

Making use of self-evaluations is also important for investigative bodies, e.g., a government

regulator that decides which firms to investigate, based in part on each firm’s own regularity

filings. Just as in the previous discussion, if such regulatory filings are to be useful, they
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cannot be trivially manipulable: even the most innocuous filing must sometimes be inves-

tigated. And in the presence of complementarities, coordination provides a useful way to

proceed. Here, we are interpreting action 1 to mean leaving the firm alone and action 0

to mean investigating the firm. Therefore, complementarities can arise from the fact that

failing to investigate a regulation-violating firm is damaging to competing firms.

Strategic favoritism in self-evaluations could take the form of holding higher-quality agents

to a higher standard. For example, a more talented employee would have to submit a glowing

self-evaluation to be placed on a valuable project, while a low-ability agent would only have to

submit an average report. Similarly, firms less likely to be involved in regulatory violations

need to submit more innocuous regulatory filings to avoid investigation. Holding higher-

quality agents to a higher standard does not necessarily create favoritism, but can lead to

it when done to such an extreme that the lower-ability employee becomes more likely to be

assigned to the project or avoid the layoff.

We present two extensions to our model. First, we consider the robustness of our results to

allowing correlation between agent types. We restrict ourselves to the case where each agent

has only two possible types, and we establish a continuity result regarding the optimal coor-

dination mechanism with certain kinds of positive correlation. In our baseline setting with

independence, incentive compatibility requires all incentive constraints to bind. Introducing

correlation relaxes this requirement, and the robustness result demonstrates that our main

insights do not depend in a knife-edge way on everywhere-binding incentive constraints.

We also consider an extension that allows the agents to collude against the principal. Since

coordination tends to take action 1 on high type agents when there are many of them, the

agents can collude to all report being the highest possible type. However, we show that

the principal can slightly modify the optimal mechanism to become coalition proof while

achieving virtually the same payoff.

The rest of the paper is organized as follows. Section 1.1 discusses related literature.

Section 2 provides a simple example that demonstrates our key ideas of coordination and

strategic favoritism. Section 3 presents the formal model. Section 4 discusses how and why

the optimal mechanism uses coordination. Section 5 discusses the occurrence of strategic

favoritism in the optimal mechanism. Section 6 gives the extensions to the model. Section

7 concludes.
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1.1. Literature Review

There is a large literature on screening with agents who have type-dependent preferences.

Broadly speaking, this literature uses differences in the preferences of the agent to screen,

and optimal screening is based on balancing the rewards from separating agents with the cost

of doing so (this cost could be a transfer, if this is available, or an inefficiency in allocation).

As far as we are aware, all the papers on screening with type-independent preferences differ

from our own work by providing the principal some way to “check” the agents’ reports: this

can take the form of (1) direct verification, where either the principal, or a third party, has

the (possibly costly) ability to see the agent’s type; (2) using repeated interactions to check

reports against the probability law governing type distributions; or (3) checking reports

across agents by exploiting correlation between agents’ types. The papers in each of these

three categories do not allow for our main channel of coordination due to either having a

single agent or assuming the principal’s preferences are separable across agents. In contrast,

our paper does not assume the principal has any way to check the agents’ reports.

Closely related worked by Ben-Porath, Dekel, and Lipman (2014) falls in the first category

of direct verification of each agent’s report at a cost. In their paper, the principal allocates a

single, indivisible good among n agents, who all want the good regardless of their type. The

principal’s payoff depends only on the type of the agent who receives the good, which rules

out complementarities and hence our coordination channel. Rahman (2012) and Chassang

and Padro i Miquel (2014) consider the presence of a monitor or whistle-blower who can

verify the report of the agent for the principal. The mechanisms in these papers rely on

(threats of) verification to incentivize truthful reporting.

Work by Guo and Hörner (2015), Li, Matouschek, and Powell (2015) and Lipnowski and

Ramos (2015) falls into the second category of verifying the agents’ reports using repeated

interaction. These papers consider settings that resemble ours in that there are no transfers,

the principal decides on a binary action, and agents want action 1 regardless of their type.

However, these papers consider only a single agent, which rules out the possibility of coor-

dination. The repeated interactions allow the type-dependent intensity of the agent’s desire

for action 1 to matter. The optimal mechanisms in these papers use a dynamic “budget”

that limits how often the agent can receive action 1 across repeated interactions. Therefore,
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the agent has a greater incentive to ask for action 1 when his preference intensity is high,

which can benefit a principal who prefers taking action 1 on types with higher preference

intensity. In contrast, since we consider a single interaction with each agent, we cannot use

such an inter-temporal trade-off to incentivize our agents. Furthermore, we do not require

any assumption on how the principal’s preferences align with the preference intensity of the

agents.

The idea of imposing a budget across repeated interaction is also used in the older lit-

erature on “linking decisions” (see Jackson and Sonnenschein (2007), Rubinstein and Yaari

(1983), and Fang and Norman (2006)). Differing from the papers discussed in the previous

paragraph, this literature does not use discounted flows for the payoffs of players, but in-

stead focuses on various kinds of limit results. The use of limit results allows for simpler

budgets: in Jackson and Sonnenschein (2007), how often each agent can report a given type

is determined by how likely that type is in the underlying type distribution and thus the

reports are “verified” against the law of large numbers.

In our final category of using correlation to check agents’ reports, we are unaware of any

application to screening problems with type-independent preferences. Of course, exploiting

such correlation is common in the broader mechanism design literature, for example in

Cremer and Mclean (1988) as well as in the classic implementation literature (Maskin, 1999).

In principle, those techniques could be applied to screening problems similar to ours.

2. Simple Example

We now present a simple example that demonstrates our key ideas of coordination and

strategic favoritism. Suppose a principal is deciding whether to delegate a project to two

agents whom we will call agent 1 and agent 2. The principal can delegate the project to

one of the agents individually, to both agents jointly, or to neither agent and do the project

herself. Each agent has a private type, which can be either low (L) or high (H), and that

determines his suitability for the project. The agents draw their types independently of one

another, and agents 1 and 2 have a 2
3

and 1
2

probability of having a high type, respectively.

The agents are working on a fixed salary, so the principal does not have the use of transfers.

Instead the principal can only decide whether to include (action 1) or not include (action 0)
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each agent on the project. Both agents always want to be included on the project regardless

of their type, while the principal cares only about the overall value of the project.

Project value is normalized to zero if the principal does the project herself. Each high

type agent assigned to the project increases its value by 1
2
. However, including even one low

type agent sets the value back to zero, regardless of the other agent’s type and whether or

not he was included. In this way, the project value exhibits complementarities across the

two agents, since working with a low type agent prevents a high type agent from adding

value to the project.

We use notation such as HL to denote the state where agent 1 is a high type and agent

2 is a low type. We also use notation such as 10 to indicate the principal including agent

1 on the project but not agent 2. Project value as a function of the state and action is

summarized in table 1.

Project Value State and Action

1 if state = HH and action = 11

1
2

if state = HH and action = 10 or 01

1
2

if state = HL and action = 10

1
2

if state = LH and action = 01

0 in all other cases

Table 1: Principal’s payoffs in the simple example

Before talking to the agents, the principal is able to commit to a mechanism specifying a

contingent plan of action based on the agents’ self-reports of their own type. The mechanism

used by the principal must be incentive compatible, which requires that truthful reporting

by all agents is an equilibrium.1

The principal faces the challenge that the agents have type-independent preferences, which

raises the question of whether a mechanism helps at all, i.e., whether a principal can im-

prove upon making the best decisions ex-ante (before the agents make reports). Without

a mechanism, the principal’s best course of action is to always include both agents on the

project. This strategy yields an expected payoff of 1
3

and is described in table 2a.

1More precisely, if all agents report truthfully, then no agent can strictly raise his probability of being
included by lying.
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State HH LH HL LL

Action 11 11 11 11

State HH LH HL LL

Action 11 01 01 11

Table 2a: Best ex-ante strategy Table 2b: Coordination mechanism

Under this strategy, at state LH the high type of agent 2 is included on the project but

adds no value because he is paired with a low type of agent 1, which sets the project value

to zero. And the inclusion of a high type always has an implicit cost since, for incentive

compatibility to hold, it must be balanced by including a low type of the same agent at

a different state. Therefore, the inclusion of both agents at state LH is inefficient since it

provides no value but imposes a cost. By committing to a mechanism, the principal can fix

this inefficiency by coordinating her correct and incorrect responses to the agents’ types. By

“correct response” we mean including high type agents and excluding low type agents.

Concretely, suppose the principal correctly responded at states HH and LH and incor-

rectly responded at states HL and LL. This approach is an example of a coordination

mechanism and is described in table 2b.

This coordination mechanism yields an expected payoff of 5
12

, which improves upon the no-

mechanism payoff of 1
3
. This improvement comes through leveraging the complementarities

in the principal’s payoff function by grouping together the correct responses to the agents’

types, and placing them in states with relatively more high types. Grouping the correct

responses together avoids the inefficiency we saw earlier, since a high-type agent is never

paired with a low-type agent. And placing the correct responses in states with more high

types uses the correct responses where they have the most value. In contrast, correctly

responding at state LL has no value to the principal at all since the project value will always

be zero at that state.

We now check whether the above coordination mechanism is incentive compatible. Agent

2 is always placed on the project and so can do no better than telling the truth. Agent 1 also

has no incentive to lie since he has a 50-50 chance of being placed on the project regardless

of what type he reports. Notice that the incentive constraint of both agents bind making

them indifferent among all their reports. This is not an artifact of the current example;

everywhere-binding incentive constraints will be a feature of our general setting.



10 NEMANJA ANTIĆ AND KAI STEVERSON

The coordination mechanism also displays strategic favoritism. Specifically, agent 2 is

placed on the project more often than agent 1 despite being less likely to be a high type.

Hence, coordination resulted in rewarding the inferior agent by including him on the project

more often. A key decision that led to strategic favoritism was that we grouped LH with the

“high states,” where the mechanism responds correctly, and we grouped HL with the “low

states,” where the mechanism responds incorrectly. This decision may seem arbitrary since

HL and LH have the same number of high types. However, reversing this decision would

have violated the incentive constraint of agent 2. Under this reversal, agent 2 is placed on

the project if and only if he makes the same report as agent 1. And since agent 1 is more

likely to be a high type than a low type, agent 2 would have a strict incentive to always

report being a high type. This shows that the coordination mechanism was not arbitrarily

constructed. In fact, the coordination mechanism is optimal in that it yields the highest

payoff to the principal among all incentive-compatible mechanisms.2

3. Model

A single principal faces n agents denoted by i ∈ {1, ..., n}. Agent i draws a privately

known type from the finite set Θi ⊂ R according to distribution µi ∈ ∆Θi. The total state

space is Θ, where Θ :=
∏n

i=1 Θi. Agents draw their types independently, and the principal

and agents share a common prior µ ∈ ∆Θ defined by µ (θ) :=
∏n

i=1 µi (θi) , for all θ ∈ Θ.

Without loss of generality we can suppose that µ is full support since each Θi can be edited

to remove types that never occur. As a standard shorthand, we use Θ−i and µ−i to refer to

the state space and prior with agent i removed.3

For each agent i, the principal chooses a binary action, ai ∈ {0, 1}. Therefore, the princi-

pal’s total action space is is given by A := {0, 1}n. Agent i prefers ai = 1 over ai = 0 and

cares about nothing else. The intensity of the preference for action 1 does not matter; agent

i will always seek to maximize the probability of ai = 1.

Each agent has a production function given by Xi : Θi × {0, 1} → R++, where Xi (θi, ai)

is the production of agent i of type θi when receiving action ai. The type of the agent is

only relevant when action 1 is taken; action 0 always leads to the same production. In other

2Including stochastic mechanisms.
3More precisely, we set Θ−i =

∏
j 6=i Θj and we define µ−i ∈ ∆Θ−i by setting µ−i(t) =

∏
j 6=i µj(tj) for any

t ∈ Θ−i.
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words, we assume that Xi (θi, 0) = Xi (θ
′
i, 0) for all θ′i, θi ∈ Θi. Without loss of generality, we

consider the case where production from action 1 increases with type, i.e., θ′i > θi implies

Xi (θ
′
i, 1) > Xi (θi, 1).

For a state θ ∈ Θ and action profile a ∈ A, we will write X (θ, a) to denote the vector of

production across all agents so that X (θ, a) := (X1 (θ1, a1) , ..., Xn (θn, an)). The principal’s

payoff at state θ when using action profile a is given by

V (θ, a) := W (X (θ, a)) ,

where W : Rn
++ → R++ is any strictly increasing and strictly supermodular4 function. The

properties of W ensure that the principal’s payoff is increasing in the production of each

agent and exhibits complementarities across agents.

We will refer to type θi of agent i as a “high type” if Xi(θi, 1) > Xi(θi, 0),and we refer to

θi as a “low type” if Xi(θi, 1) < Xi(θi, 0). Since production from action 0 is constant across

types, it is easy to see that a high type of agent i will always have weakly higher production

than a low type of agent i, regardless of what actions are used. We let ΘH
i and ΘL

i denote

the set of high and low types, respectively, for agent i.

We say the principal correctly responds to an agent’s type when setting ai = 1 if and only

if agent i’s type is high. Incorrectly responding to an agent’s type means setting ai = 1 if

and only if agent i’s type is low.

To avoid trivial cases, we assume that ΘH
i and ΘL

i are both non-empty for each agent.

If either ΘH
i or ΘL

i is empty, then the principal knows ex ante what action she should take

on agent i, and the problem could be rewritten for the remaining n− 1 agents. For ease of

exposition, we will also assume that ΘL
i ∪ ΘH

i = Θi for each agent i, which only rules out

types whose production does not depend on the action.

The Principal’s Design Problem

The principal commits to a mechanism, which assigns a lottery over A to every state in

Θ. We are restricting attention to direct mechanisms, since the revelation principle applies

in our setting. In other words, a mechanism is any function g : Θ → ∆A, and we let G be

4Strict supermodularity can be defined as follows, for any X,X ′ ∈ Rn: W (X ∨X ′)+W (X ∧X ′) ≥W (X)+
W (X ′), with the inequality strict whenever X 6≥ X ′ and X ′ 6≥ X.
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the space of all mechanisms. We use g (θ) [a] to denote the probability mechanism g assigns

to action a at state θ.

For any mechanism g, state θ and agent i, we let gi (θ) :=
∑

a∈A|ai=1 g (θ) [a] be the

probability that g sets ai = 1 conditional on state θ. For any mechanism g, agent i, and

θi ∈ Θi, define

pgi (θi) :=
∑

θ−i∈Θ−i

gi (θi, θ−i)µ−i(θ−i),

as the probability that g sets ai = 1, conditional on agent i reporting type θi and all other

agents reporting truthfully. We can use pgi (θi) to provide a useful and tight characterization

of incentive compatibility.

Lemma 1. A mechanism g is incentive-compatible if and only if pgi (θi) = pgi (θ′i) for every

agent i and all θi, θ
′
i ∈ Θi.

When deciding what report to make, each agent cares only about the probability of ai = 1.

Therefore, if pgi (θi) > pgi (θ′i), then agent i would never report type θ′i. Hence, truthful

reporting requires that pgi (θi) give the same value for all θi ∈ Θi. And conversely, any agent

is happy to report truthfully if he receives action 1 with the same probability regardless

of his report. Stated another way, incentive compatibility holds if and only if all incentive

constraints of every agent are binding.

Since there are no transfers, the worst case for each agent is always getting action 0.

Hence, individual rationality constraints do not bind and can be safely disregarded. We can

now write the principal’s design problem with which the rest of the paper will be concerned:

max
g∈G

∑
θ∈Θ,a∈A

µ (θ) g (θ) [a]V (θ, a) ,

s.t. pgi (θi) = pgi (θ′i) for all i, θi, θ
′
i ∈ Θi.

We call a mechanism optimal if it solves the above maximization problem.

Generalizations of Agent Preferences

We conclude our model discussion by providing two ways in which the preferences of

the agents could be generalized without substantially altering the analysis that will follow.

Lemma 1 would hold as stated if some agents always preferred action 1 and other agents

always preferred action 0. Therefore, the set of optimal mechanisms is invariant to these
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changes in the preferences of the agents. We restricted ourselves to the case that all agents

prefer action 1 only for ease of exposition.

A more substantial modification to the preference of the agents would be to allow some

of the low types of each agent to prefer action 0; we refer to such types as passive. In terms

of the applications, this may arise if, for example, an agent does not want to be placed on

a project for which he is sufficiently unsuited. Passive agents would willingly reveal their

unsuitably for action 1 to the principal, and hence any optimal mechanism will always take

action 0 on them. This does not interfere with the incentives of the non-passive agents, since

they prefer action 1 and thus have no incentive to pretend to be passive. Hence the design

problem on the remaining non-passive agents resembles our baseline setting, and our main

results could be generalized to this case.

Moreover, if the passive types publicly announce their type prior to non-passive agents

making their reports, then the design problem exactly reduces to our baseline setting applied

to the remaining agents once the passive types are removed. A public announcement could

take the form of a passive agent not showing up to the meeting where a team is being selected

or not completing a required self-evaluation.

4. Coordination

We begin our discussion of coordination by considering environments with fully symmetric

agents who only have two possible types. The two-type symmetric environment provides a

stark demonstration of coordination that highlights the underlying logic. We then provide

a general result that extends the logic of coordination into the full model.

We first formally define the two-type-symmetric environment.

Definition 1. We say the environment is two-type symmetric if there exists L,H ∈ R++

with H > L, and p ∈ (0, 1) such that:

(1) ΘL
i = {L} and ΘH

i = {H} for all i.

(2) µi (H) = p for all i.

(3) Xi (·, ·) = Xj (·, ·) for all i, j.

(4) W (Y ) = W (Y ′) whenever Y and Y ′ are permutations of each other.
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We use
−→
1 and

−→
0 to indicate taking action 1 on every agent and taking action 0 on every

agent, respectively.

Theorem 1. In any two-type symmetric environment, there exists mH ≥ mL and a∗ ∈

{−→1 ,−→0 } such that there is an optimal mechanism that:

(1) Correctly responds to every agent at states with strictly more than mH high types.

(2) Incorrectly responds to every agent at states with strictly less than mL high types.

(3) Plays a∗ at states with strictly between mL and mH high types.

Proof. See Appendix. �

Theorem 1 provides a stark demonstration of how coordination works: by grouping cor-

rect responses on states with more high types, and grouping incorrect responses on states

with more low types. The complementarities in the principal’s payoff function rewards her

for grouping high-output outcomes of the agents together, which coordination achieves by

grouping correct responses on states with more high types. Sometimes responding incor-

rectly is necessary for truthful revelation: if a mechanism only responds correctly, then no

agent would admit to being a low type. Hence, coordination accepts the failure necessary

for incentive compatibility when there is little to lose, in order to succeed when there are

strong complementarities to benefit from.

While omitted from the statement above, the proof of Theorem 1 also specifies what occurs

at states with exactly mH or mL high types. At these cutoff states, the optimal mechanism

mixes between the actions used at states just above and below the cutoff. For example, at

states with exactly mH high types the optimal mechanism mixes between correctly respond-

ing to every agent and a∗.

Theorem 1 does not explicitly characterize the cutoffs mH and mL. However, if the

complementarities are strong enough, then the optimal mechanism will perform what we

call “complete coordination” by setting mH = mL and only using the “correctly respond

to every agent” or “incorrectly respond to every agent” actions. In that case, the value of

the cutoff mH = mL can be calculated from the incentive constraints. In the appendix, we

calculate the cutoff, and provide closed-form inequalities that characterize the requirement

of enough complementarities for complete coordination to occur.
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We now return to our full model with asymmetric agents who can have any number of

types. To define our general notion of coordination, we introduce a partial order on the state

space that gives a measure of the overall quality of the agents.

Definition 2. Let �∗ be the partial order on Θ such that θ′ �∗ θ if and only if for each

agent i, either (i) θ′i = θi or (ii) θi is a low type and θ′i is a high type. Moreover, we will

write θ′ �∗ θ to indicate θ′ �∗ θ and θ′ 6= θ.

In words, θ′ �∗ θ indicates θ′ and θ differ only in that some low type agents in state θ

become high type agents in state θ′. In the case that each agent has only two possible types,

�∗ is identical to the standard order on Rn. When the agents have more than two possible

types, �∗ is coarser than the standard order in that θ′ �∗ θ implies θ′ ≥ θ, but not the other

way around.

Definition 3. We say g is a coordination mechanism if for any θ, θ′ ∈ Θ and a, a′ ∈ A

such that g(θ)[a] > 0 and g(θ′)[a′] > 0, we have:

(1) θ′ �∗ θ implies X (θ′, a′) ≥ X (θ, a) (across-state coordination),

(2) θ′ = θ implies X (θ′, a′) ≥ X (θ, a) or X (θ′, a′) ≤ X (θ, a) (within-state coordination).

Across states, coordination groups the correct responses to the agents’ types to states

higher in the�∗-ranking, which leads to more production at those states. We can equivalently

restate part 1 of Definition 3 in terms of correct and incorrect responses as follows. Suppose

θ′ �∗ θ and θ′i = θi. If a coordination mechanism ever correctly responds to agent i’s type

at θ, then it must correctly respond to agent i’s type with probability one at θ′. Conversely,

if a coordination mechanism ever incorrectly responds to agent i’s type at θ′, then it must

incorrectly respond to agent i’s type with probability one at θ.

Within a single state, coordination correlates the correct responses and incorrect responses

together in such a way to create a most productive action, a second most productive action,

and so forth. This is equivalent to saying that any two actions that are played with positive

probability can be ordered in terms of their vectors of agent production. For a deterministic

mechanism, within-state coordination is trivial because only one action is used at each state.

Theorem 2. There always exists a coordination mechanism that is optimal.

Proof. See section 4.1. �
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Theorem 2 asserts the optimality of coordination. The underlying logic is the same as

we discussed in the two-type symmetric case. The complementarities reward grouping high-

production outcomes together. Both the state and the action influence each agent’s produc-

tion, and coordination across states uses both of these dimensions by grouping the correct

responses to the agents’ types to states higher in the �∗-ranking. Incorrect responses, which

are required for truthful revelation, are placed at states lower in the �∗-ranking where they

do the least damage. Within a single state, coordination leverages the complementarities

by correlating the correct responses into a most productive action, and then a second most

productive action, and so forth.

Notably, Theorem 2 only ensures that coordination occurs in an optimal mechanism and

not for every optimal mechanism. Optimal non-coordination mechanisms arise because the

principal is indifferent about the agent’s type when taking action 0 on that agent. If we

perturbed Xi (θi, 0) to be strictly increasing in θi, then every optimal mechanism would be

a coordination mechanism.

The proof of Theorem 2 is detailed in Section 4.1 below. Despite being discussed first,

Theorem 1 is proved as a corollary to Theorem 2 using the fact that �∗ effectively provides a

total order of the states in the two-type symmetric environment. To see why, note that any

state with m high types will be lower, according to �∗, than at least one state with m + 1

high types. And the symmetry of the setting allows us to restrict attention to mechanisms

that treat all states with the same number of high types symmetrically. Therefore, we can

treat any state with m high types as effectively lower, according to �∗, than any state with

m+ 1 high types.

4.1. Proof of Theorem 2

We first establish that there always exists an optimal mechanism that obeys part 1 of

Definition 3 (across-state coordination). For any θ ∈ Θ, let h (θ) equal one plus the number

of high-type agents at θ. For any ε ≥ 0, define a perturbed version of the principal’s payoff

Ṽε : Θ× A→ R as

Ṽε (θ, a) := (h (θ))εW (X ((θ, a))) .
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The ε-perturbed optimal design problem can be written as

max
g∈G

∑
µ (θ) g (θ) [a] Ṽε (θ, a) ,

such that for every i and any θi, θ
′
i ∈ Θi, p

g
i (θi) = pgi (θ′i).

The constraint set of this perturbed maximization problem does not depend on ε, and

the objective function is jointly continuous in ε and g. Hence, the theorem of the maximum

applies, and the optimal solution is upper hemicontinuous in ε. Therefore, it suffices to show

that every optimal mechanism coordinates across states for any ε > 0, because that would

imply the existence of an optimal mechanism that coordinates across states when ε = 0.

And at ε = 0 we have Ṽε = V , which restores the original design problem with which we are

concerned.

Now fix any ε > 0, and let g be an optimal mechanism of the perturbed problem. (The

existence of an optimal mechanism follows from standard arguments.) Assume by way

of contradiction that g does not coordinate across states. We will construct a modified

mechanism ĝ that is both incentive-compatible and gives a strictly higher payoff than g,

which will contradict the optimality of g. Since g is assumed to fail across-state coordination,

we know there exist two states θ, θ′ and two actions a, a′ such that θ′ �∗ θ, g (θ) [a] > 0,

g (θ′) [a′] > 0 and X (θ, a) 6≤ X (θ′, a′).

Let I ⊆ {1, ..., n} be such that i ∈ I if and only if θi = θ′i. Choose â ∈ A so that for

every i /∈ I we have âi = ai, and for every i ∈ I we have X (θi, âi) = X (θi, ai) ∧X (θ′i, a
′
i).

Choose action â′ so that for every i /∈ I we have â′i = a′i, and for every i ∈ I we have

X (θ′i, â
′
i) = X (θi, ai) ∨X (θ′i, a

′
i). For all i /∈ I , θ′ �∗ θ implies that θ′i is a high type and θi

is a low type, which means we know Xi(θ
′
i, a
′
i) ≥ Xi(θi, ai) regardless of ai and a′i. Therefore

we know that

X (θ, a) ∨X (θ′, a′) = X (θ′, â′) and X (θ, a) ∧X (θ′, a′) = X (θ, â) . (1)

Equation 1, along with the fact that X (θ, a) 6≤ X (θ′, a′) implies X (θ′, â′) ≥ X (θ′, a′) and

X (θ′, â′) 6= X (θ′, a′). Therefore, by the strict monotonicity of W , we have

W (X (θ′, â′)) > W (X (θ′, a′)) . (2)
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Set η > 0 to be arbitrarily small and define a modified mechanism ĝ by setting, for any

θ∗ ∈ Θ and a∗ ∈ A,

ĝ (θ∗) [a∗] =


g (θ∗) [a∗]− η

µ(θ∗)
if (θ∗, a∗) = (θ, a) or (θ∗, a∗) = (θ′, a′)

g (θ∗) [a∗] + η
µ(θ∗)

if (θ∗, a∗) = (θ, â) or (θ∗, a∗) = (θ′, â′)

g (θ∗) [a∗] otherwise.

Mechanism ĝ differs from g by replacing a with â at θ and replacing a′ with â′ at θ′. In

other words, ĝ groups the correct responses from a, a′ at the higher state θ′ and groups the

incorrect responses at the lower state θ.

Let Ṽε (ĝ) and Ṽε (g) be the principal’s payoff from mechanisms ĝ and g, respectively, in

the perturbed setting. We then have that

Ṽε (ĝ)− Ṽε (g) = µ (θ)
η

µ (θ)

(
Ṽε (θ, â)− Ṽε (θ, a)

)
+ µ (θ′)

η

µ (θ′)

(
Ṽε (θ′, â′)− Ṽε (θ′, a′)

)
> η (h (θ))ε {W (X (θ, â))−W (X (θ, a)) +W (X (θ′, â′))−W (X (θ′, a′))}

≥ 0.

The strict inequality follows from the fact that h (θ′) > h (θ) and Equation (2). The weak

inequality follows from Equation (1) and the supermodularity of W . All that remains is to

establish that ĝ is incentive-compatible, for which, using the incentive compatibility of g, it

suffices to prove for all agents i and θ∗i ∈ Θi that pĝi (θ∗i ) = pgi (θ∗i ).

For any i /∈ I, the equality is immediate since, by construction, ĝi (·) = gi (·) for all such

agents. For i ∈ I, ĝi (·) differs from gi (·) at θ and θ′ if and only if a′i was an incorrect response

to θ′i and ai was a correct response to θi. So take that case and suppose θi is a high type;

the case where θi is a low type works similarly. Recall i ∈ I implies θi = θ′i, and therefore

we know that a′i = âi = 0 and ai = â′i = 1. Hence,

pĝi (θi)− pgi (θi) =
ε

µ (θ′)
µ−i

(
θ′−i
)
− ε

µ (θ)
µ−i (θ−i) = 0.

This calculation uses the fact that θi = θ′i. Hence, ĝ is incentive-compatible. Hence we

have established that there always exists an optimal mechanism that obeys across-state

coordination.

The proof of Theorem 2 can be finished by applying the following lemma.
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Lemma 2. Every optimal mechanism obeys within-state coordination

Proof. See Appendix. �

We defer the proof of Lemma 2 to the appendix, but the intuition is straight-forward and

works as follows. Incentive compatibility depends only on the values of gi (θ) for each i and

θ. Therefore, any optimal mechanism g must achieve the highest payoff for the principal

among the class of mechanisms that exactly match g on the values for gi (θ). And that

highest payoff is achieved by making maximum use of the supermodularity of W , by, at each

state, grouping the correct responses together into a most productive action, then a second

most productive action and so forth. And this is precisely what within-state coordination

does. �

5. Strategic Favoritism and Meritocracy

In a variety of environments, the optimal mechanism will display strategic favoritism

by taking action 1 more often on a less productive agent than on a more productive agent.

By “more productive” we mean an unambiguously better distribution of type quality, while

assuming the agents are symmetric in all ways other than their type distribution. Hence,

favoritism involves rewarding an agent who is worse for the principal’s own aims. In prac-

tice, favoritism is often viewed as inefficient and attributed to biases of the principal such

as nepotism; a key insight of our model is that favoritism can arise from purely strategic

considerations and can be optimal even for an unbiased principal. While favoritism occurs

in a robust set of environments, it is not ubiquitous. The more natural outcome of meri-

tocracy, where more productive agents receive action 1 more often, also occurs in a variety

of environments.

The first result of this section, Theorem 3, establishes that, if the complementarities in the

principal’s payoff function exceed a fixed threshold, then strategic favoritism occurs in every

optimal mechanism for an open set of prior beliefs. Moreover, for high-enough complemen-

tarities, the probability the less productive agent receives action 1 can be as much as fifty

percentage points higher than the more productive agent. The second result of this section,

Theorem 4, establishes that there always exists an open set of prior beliefs where meritocracy
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occurs in every optimal mechanism. Moreover, for any prior belief, when the complemen-

tarities are low enough, every optimal mechanism displays meritocracy and not favoritism.

Taken together, these two theorems demonstrate that strategic favoritism and meritocracy

are both robust phenomena, and the first is associated with high complementarities while

the second is associated with low complementarities.

Throughout this section, we restrict attention to the case that agents are symmetric in

all ways other than their type distribution. Specifically, we focus on symmetric principal

payoff functions W , where W (Y ) = W (Y ′) whenever Y is a permutation of Y ′. Addition-

ally, we will assume that the agents share the same production functions Xi(·, ·) and type

spaces Θi.

Given that agents only differ in their distribution of types, we can use stochastic dominance

in those distributions as an unambiguous measure of when one agent is more productive

than another. Specifically, for any µi ∈ ∆Θi and µj ∈ ∆Θj, we say µi strictly first-order

stochastically dominates µj (and write µi >FOSD µj) if∑
θj∈Θj |θj≤c

µj (θj) >
∑

θi∈Θi|θi≤c

µi (θi) ,

for all c ∈ R such that the right-hand side is in (0, 1). This definition slightly strengthens

the standard notion of first-order stochastic dominance; this strengthening is only needed to

show that low enough complementarities always leads to meritocracy (part 2 of Theorem 4).

For all other results, the standard definition would work as well.

To formally define our notions of strategic favoritism and meritocracy, we will find it use

useful to set

P g
i :=

∑
θ∈Θ

gi (θ)µ (θ) ,

which is the overall probability that mechanism g takes action 1 on agent i at prior µ.

Definition 4. We say a mechanism g exhibits strategic favoritism at prior µ if there

exist i, j such that µi >FOSD µj but P g
i < P g

j . We say the strategic favoritism is of magnitude

λ if P g
i + λ < P g

j .

We similarly define meritocracy as follows.
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Definition 5. We say a mechanism g exhibits meritocracy at prior µ if µi >FOSD µj

implies P g
i ≥ P g

j , for all i, j. If, in addition, for some i, j we have µi >FOSD µj and

P g
i > P g

j + λ, then we say the meritocracy is of magnitude λ.

Note that favoritism and meritocracy are mutually exclusive and every mechanism exhibits

exactly one of them.

Whether strategic favoritism or meritocracy occurs will depend on the degree of comple-

mentarities found in the principal’s payoff function, which we formally define as follows.

Definition 6. For any M ≥ 1 and S ⊆ Θ, we say the principal’s payoff function has

complementarities above degree M at S if

W (Y ∨ Y ′)−W (Y ) ≥M (W (Y ′)−W (Y ∧ Y ′)) , (3)

for any Y , Y ′ such that Y 6≤ Y ′, Y 6≥ Y ′ and

Y = X(θ, a) and Y ′ = X(θ′, a′),

for some θ, θ′ ∈ S and a, a′ ∈ A.

For any M ≥ 1, we will also define the principal’s payoff function to have complemen-

tarities below degree M at S in the exact same way, except reversing the inequality in

Equation (3).

When M = 1, Equation (3) holding for any Y, Y ′ is exactly the definition of supermod-

ularity, and therefore the principal’s payoff function always has complementarities above

degree 1. The degree of complementarities of the principal’s payoff function is invariant

to affine transformations on W , which is necessary for any result to work because affine

transformations do not change the set of optimal mechanisms.5

We are now ready to present the first main result of this section.

Theorem 3. Fix (Θ, {Xi}ni=1) such that Θi = Θj and Xi(·, ·) = Xj(·, ·) for all i, j. Let θ ∈ Θ

such that, for some i, j, θi is a high type and θj is a low type. Then:

5Not all potential definitions would have this property. For example, the cross derivative of W is not invariant
to affine transformations.
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(1) For any symmetric principal payoff function W with complementarities above degree

2 at {θ}, there exists an open set of priors at which every optimal mechanism exhibits

strategic favoritism.

(2) Choose any λ ∈
(
0, 1

2

)
. There exists an M > 1 such that, for any symmetric principal

payoff function W with complementarities above degree M at {θ}, there exists an

open set of priors at which every optimal mechanism exhibits strategic favoritism of

magnitude λ.

Proof. See Appendix. �

Part 1 of Theorem 3 establishes that, in a variety of environments, every optimal mech-

anism exhibits strategic favoritism. Part 2 of Theorem 3 establishes that, when the comple-

mentarities are sufficiently high, the strategic favoritism can be quite significant and have

magnitude up to one half.

While strategic favoritism is robust, it is not ubiquitous, and its limits can be understood

through studying when meritocracy occurs.

Theorem 4. Fix (Θ, {Xi}ni=1) such that Θi = Θj and Xi(·, ·) = Xj(·, ·) for all i, j. Then:

(1) For any λ ∈ (0, 1) and any symmetric principal payoff function W , there exists an

open set of priors at which every optimal mechanism exhibits meritocracy of magni-

tude λ.

(2) For any prior µ, there exists an M > 1 such that for any symmetric principal payoff

function W that has complementarities below degree M at Θ, every optimal mecha-

nism exhibits meritocracy at µ.

Proof. See Appendix. �

Theorem 4 demonstrates that meritocracy also occurs in a variety of environments and

always occurs when complementarities are sufficiently low. Since strategic favoritism and

meritocracy are mutually exclusive, this provides a partial converse to Theorem 3 by demon-

strating that strategic favoritism requires high-enough complementarities. Taken together,

the previous two theorems demonstrate that strategic favoritism and meritocracy both occur

in a variety of environments, and the first is associated with high complementarities while

the second is associated with low complementarities.
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To gain an intuition as to how strategic favoritism can be optimal, consider the case in

which each agent has only two possible types: a high type (H) and a low type (L). For each

agent i and type θi ∈ {H,L}, define P g
i (θi) := pgi (θi)µi(θi) to be the joint probability of

agent i being type θi and mechanism g setting ai = 1. In contrast, pgi (θi) gives the probability

of ai = 1 conditional on agent i being type θi. The joint probability allows for across-state

comparisons in changes to P g
i (the overall probability of ai = 1); for any θi, an ε change to

P g
i (θi) changes P g

i by ε.

We can now rewrite the incentive constraint in terms of joint probabilities as

P g
i (L) =

µi (L)

1− µi (L)
P g
i (H), for all i. (4)

By inspecting Equation (4), we can see that raising the probability of action 1 on an H type

of agent i requires raising the probability of action 1 on an L type of agent i. Moreover,

the required amount of additional action 1 on an L type increases in µi(L). In other words,

agents with worse type distributions receive more action 1 on L types for the sake of balancing

the incentive constraints. This creates a channel that advantages agents with worse type

distributions, and can therefore lead to strategic favoritism.

In response to this channel, the optimal mechanism could simply take action 1 less overall,

that is on both types, on agents with higher values for µi(L). However, the logic of coordi-

nation pushes back against this response. Consider the state in which every agent is type

H, then the complementarities reward the principal for taking action 1 on all the agents to-

gether, including the agents with high values for µi(L). And when the complementarities are

strong enough, this reward overcomes the fact that taking action 1 on an H-type agent with

high µi(L) requires a lot of action 1 on an L type elsewhere. In this way, strategic favoritism

arises from how the logic of coordination interacts with the incentives of the agents.

To gain insight into the proof of Theorem 3, we further specialize to the case with two

agents who each have only two possible types. Therefore, the state space can be written as

Θ = {L,H} × {L,H} ,where H is a high type for both agents and L is a low type for both

agents.

In this setting, we will demonstrate how a complete form of coordination can lead to

either strategic favoritism or meritocracy. By a “complete form of coordination”, we mean a

mechanism that always either correctly responds to the types of both agents or incorrectly
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responds to the types of both agents. We will also require that a complete coordination

mechanism correctly (incorrectly) responds with probability one to the types of both agents

when both agents are type H (L). Let g be a complete coordination mechanism, then we

know that

gi(HH) = 1, gi (LL) = 1, for i ∈ {1, 2} ,

g1 (HL) + g2 (HL) = 1 and g1 (LH) + g2 (LH) = 1.

Substituting the above restrictions into the incentive constraint of agents 1 and 2 yields the

following two equations:

g1 (HL) = 1− µ2(H)

µ2 (L)
g2 (LH)

g2 (LH) = 1− µ1 (H)

µ1 (L)
g1 (HL) .

This is a system of two equations with two unknowns, which we can solve for g1 (HL) and

g2 (LH). Thus we have gi(θ) for all θ, which allows us to compute

P g
1 − P

g
2 =

∑
θ∈Θ

µ(θ) (g1(θ)− g2(θ))

= (µ (LH)− µ (HL))

(
µ (HH) + µ (LL)

µ (HH)− µ (LL)

)
.

From this equation we can see that, when µ1 (H) > µ2 (H) > 1
2
, the value of P g

1 −P
g
2 will be

negative, and therefore any complete coordination mechanism exhibits strategic favoritism.

Conversely, if 1
2
> µ1 (H) > µ2 (H), then P g

1 − P g
2 will be positive and so any complete

coordination mechanism exhibits meritocracy.

The first step of the detailed proof of Theorem 3 establishes strategic favoritism in the

case with two types and n = 2 using a similar argument to the above. We use the choice of

the open set of priors and the fact that complementarities are above degree 2 to show that

the optimal mechanism belongs to a small handful of cases, which includes the complete

coordination. We then show that each of those cases exhibits strategic favoritism, much as

we did above for the complete-coordination case. To extend this result to the general case

with any number of types and agents, we focus on priors in which all but two agents are a

low type with probability close to one, and the remaining two agents are one of two types
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with a probability very close to one. These priors are effectively very close to the two-agent

two-type case, which allows us to finish the proof of Theorem 3 by establishing that the set

of optimal mechanisms moves upper hemicontinuously and applying a continuity argument.

6. Extensions

We now consider two extensions to our baseline model. In section 6.1, we examine the

robustness of our results when relaxing the assumption that the agents draw their types

independently. In section 6.2, we show how the principal can construct a virtually optimal

and coalition-proof mechanism.

6.1. Robustness of Coordination Mechanisms

In this section we discuss the robustness of our main results to a small amount of corre-

lation in the agents’ types. For the purposes of this section, we limit ourselves to the case

where each agent has only two possible types: a high type (H) and a low type (L). We estab-

lish continuity results when positive dependence among the agents’ types is introduced.

Positive dependence requires that, when agent i is a high (low) type, the added correlation

makes higher (lower) type profiles more likely for the other n− 1 agents. Under a coordina-

tion mechanism, an agent reporting a high (low) type is more likely to receive action 1 when

the other agents have a higher (lower) type profile. Hence, positive dependence reinforces

each agent’s incentive to tell the truth in a coordination mechanism, which is what allows

our continuity results to work.

A notable feature of our baseline setting is that in any incentive-compatible mechanism

all incentive constraints are binding due to the fact that each agent has the same incentives

regardless of his type. Relaxing the independence assumption leads to different types of the

same agent having different incentives due to differing beliefs about the type distributions

of the other agents. Therefore, once we move away from independence, incentive compati-

bility no longer leads to everywhere-binding incentive constraints. By showing robustness to

positive dependence, we establish that our results do not depend in a knife-edge way on the

large degree of indifference found in the baseline setting. We provide an additional result,

which goes beyond this and shows that the optimal mechanism with independent types is

strictly incentive-compatible and almost optimal on an open set of non-independent priors.
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Throughout this section, we suppose each agent has only two types: one high type (H)

and one low type (L), so that the state space is Θ = {L,H}n. The general space of prior

beliefs on the state space is given by Υ = ∆Θ. We will let ΥI ⊂ Υ be the space of priors

for which types are independent across agents. For any µ ∈ Υ and θ−i ∈ Θ−i, we will write

µ (θ−i) and µ (θ−i|t) to be the overall probability of θ−i and the conditional probability of

θ−i given that agent i has type t. For any µ ∈ Υ, let Iµ ∈ ΥI be the unique independent

prior that puts the same marginal probability as µ on each individual type of each agent.

Definition 7. We say µ ∈ Υ has positive dependence among the agents’ types if for

every agent i and lower set S ⊆ Θ−i∑
θ−i∈S

µ (θ−i|H) ≤
∑
θ−i∈S

Iµ (θ−i) ≤
∑
θ−i∈S

µ (θ−i|L) .

Let Υp be the space of all priors with positive dependence among the agents’ types.

The above definition is equivalent to requiring that µ (θ−i|H) first-order stochastically

dominates Iµ (θ−i), which in turn first-order stochastically dominates µ (θ−i|L). This uses a

multivariate notion of first-order stochastic dominance, which we draw from Shaked and

Shanthikumar (2007).6 Therefore, positive dependence requires that adding correlation

makes higher θ−i more likely when agent i is a high type and less likely when agent i is

a low type.

Theorem 5. Fix any µ ∈ ΥI and any sequence {µm}∞m=1 ⊂ Υp such that µm → µ. Then

there exists a coordination mechanism g and a sequence of mechanism {gm}∞m=1, such that

g is optimal at µ, gm is optimal at µm and gm → g.

Proof. See Appendix. �

While not implied by the statement of Theorem 5, a similar proof could show the optimal

mechanism moves upper hemicontinuously at any independent prior in the space ΥP . How-

ever upper hemicontinuity by itself would not guarantee that the optimal mechanisms with

small amounts of positive dependence would be close to a coordination mechanism. This

gap occurs because Theorem 2 only established coordination in an optimal mechanism and

not for every optimal mechanism. Theorem 5 explicitly addresses this gap by showing that,

6They call this property the “usual stochastic order”, and it is defined on page 266.
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with small a amount of positive dependence, there exists an optimal mechanism close to a

coordination mechanism.

We now move to the second main result of this section, which establishes that a small

amount of positive dependence has the potential to provide strict incentives. For this result,

we will need to exclude trivial mechanisms. Recall that P g
i is the overall probability that g

sets ai = 1.

Definition 8. A mechanism g is trivial if there exists an i such that either P g
i = 1 or P g

i = 0.

A mechanism is trivial if there exists an agent who either always or never receives action

1. A trivial mechanism could never provide strict incentives.

Theorem 6. Take any µ ∈ ΥI and ε > 0; let g be any optimal coordination mechanism at

µ. If g is nontrivial, then there exists an open set of priors ΥO, with µ on the boundary of

ΥO, such that for any ν ∈ ΥO, g is strictly incentive-compatible and furthermore

max
g′∈G

V (g′|ν) < V (g|ν) + ε.

Proof. See Appendix. �

Theorem 6 shows that a coordination mechanism optimal at independent prior µ becomes

strictly incentive-compatible and almost optimal for some open set of nearby priors ΥO.

Strict incentives makes the mechanism robustly incentive-compatible even if we allow agents

to make small mistakes in their reports. The fact that µ is not in the set ΥO follows from

the fact that incentive-compatible mechanisms can never provide strict incentives at an

independent prior. The best we could hope for is that µ is on the boundary of ΥO, which is

what Theorem 6 shows.

6.2. Coalition-Proof Mechanisms

One concern with the optimal direct mechanism is that the agents may be able to collude

to improve their outcomes.7 For example, in the coordination mechanism discussed in section

2, the agents could always get action 1 if they both report a high type. Surprisingly, it turns

out that we can amend the optimal direct mechanism to make it immune to collusion, i.e.,

coalition-proof, with virtually the same payoff to the principal.

7This is a concern in related literature, e.g., Jackson and Sonnenschein (2007).
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The coalition-proof mechanism we propose is inspired by techniques found in the virtual

implementation literature (e.g., Abreu and Matsushima (1992)), where with arbitrarily high

probability, the optimal direct mechanism is implemented. However, given our assumption

that the agents’ preferences are independent of their type, our environment fails to satisfy

Abreu-Matsushima measurability,8, and the results in that work cannot be directly applied

to our setting. Interestingly, we are able to add ideas from the classic implementation

literature, notably integer games (Maskin (1999)), to get around this problem. Our results

also differ from the aforementioned implementation literatures since we focus on immunity

from coalition deviations instead of equilibrium uniqueness.

Our notion of collusion is a coalition of agents performing a joint deviation that strictly

benefits everyone in the coalition. We require that the coalition not be vulnerable to internal

defections; in other words, coalition members must be best-responding to the deviation the

coalition is performing. Members outside the coalition are unaware of the deviation and

report truthfully.

Our coalition-proof mechanism will not be a direct mechanism, but instead requires agents

to report their own type, a guess for each other agent’s type, and an integer. Therefore, a

strategy of agent i is a function σi : Θi → ∆ (Θ× Z), where σi (θi) [t, zi] gives the probability

that agent i of type θi will report profile t ∈ Θ and integer zi ∈ Z. We will say an agent uses

a truthful reporting strategy if he reports his own type truthfully. Truthful reporting makes

no restriction on zi or the guess made about the other agents’ types.

Definition 9. For a fixed mechanism, a valid coalition is a pair (I, {σi}ni=1) that consists

of a non-empty subset of the agents I ⊆ {1, ..., n} and a strategy for each agent i σi such

that the following three conditions hold:

(1) For every i /∈ I, σi is a truthful reporting strategy.

(2) For all i ∈ I, σi is a best response for agent i to {σi}ni=1.

(3) For all i ∈ I, agent i receives a strictly higher payoff than if all agents reported

truthfully.

We say a mechanism is coalition-proof if there does not exist any valid coalitions.

8Since each type of every player assesses all Anscombe-Aumann acts in the same manner, the limit partition
of the set of types for each player is the entire set of types (i.e., in the notation of Abreu and Matsushima
(1992) Ψ0

i = Θi = Ψ∗i ). This implies that, in our setting, only constant social-choice functions are Abreu-
Matsushima measurable, and so the designer can simply choose all players with some exogenous probability.
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For each ε > 0, we will define a coalition-proof mechanism that we denote gε. As ε goes

to zero, gε will converge to the optimal direction mechanism in both payoffs and outcomes.

Therefore, we can generate a coalition-proof mechanism arbitrarily close to optimality. We

will only provide an informal description of gε, which will suffice to convey the key technique.

A formal description of gε can be found in the appendix.

With probability 1− ε, gε implements the optimal direct mechanism, which only relies on

each agent’s report about his own type. With probability ε, gε plays a betting game that

rewards agents for correctly guessing the other agents’ reports.9 However, only the bet of

the agent who reports the zi will count; all other agents will receive no reward. Agents can

opt out of the betting by reporting zi = 0, in which case they receive a fixed reward. The

bets will be calibrated so that the agents break even on every possible bet when everyone is

reporting truthfully. When collusion occurs, the agents in the deviating coalition can make

a strict gain from betting, and hence all agents will desire to report the zi, which destroys

any possible coalition equilibrium.

Theorem 7. For any ε ∈ (0, 1), mechanism gε is coalition proof.

Proof. See Appendix. �

As ε goes to zero, mechanism gε implements the optimal direct mechanism with probability

approaching 1, and, because the principal’s payoff is bounded, the payoff of gε converges to

the optimal payoff. And Theorem 7 establishes that gε is immune to coalitions for any

ε ∈ (0, 1). Hence, we have shown how the principal can achieve a virtually optimal payoff in

a coalition-proof mechanism.

7. Concluding Remarks

In this paper, we studied a principal facing agents with type-independent preferences.

Type-independent preferences, while natural in a number of economic environments, pose a

challenge to the typical screening technique that tailors the principal’s action on each agent

to the preference associated with that agent’s reported type. Type-independent preferences

makes this tailoring impossible. When faced with a single agent, the challenge of type

9Since we have no transfers, the rewards the betting uses simply entails taking action 1 on the agent with
some probability. Higher rewards correspond to higher probability.
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independent preferences is insurmountable and the principal gains nothing from the ability

to commit to a mechanism.

In contrast, a principal who faces multiple agents can leverage complementarities in her

own payoff function by coordinating her actions. Coordination groups the correct responses

to the types of the agents at states with more high types. Conversely incorrect responses to

the types of the agents are grouped at states with more low types. Under complementarities,

the principal’s payoff has greater potential when there are more high type agents. Hence,

coordination allows the principal to accept the failure necessary for incentive compatibility

when the consequence is small in order to ensure success when the potential gain is high. In

the two-type symmetric environment, coordination takes the form of correctly responding

to every agent when the number of high types exceeds a fixed threshold and incorrectly

responding to every agent when the number of high types falls below a second fixed threshold.

We also showed how the optimal mechanism can sometimes display strategic favoritism by

rewarding an agent who is inferior for the principal’s own aims. Behavior such as favoritism

is sometimes attributed to biases such as nepotism, but we show it can arise from purely

strategic considerations and be optimal for an unbiased principal.

The logic of coordination applies beyond the complementarities assumption: whenever

the principal’s utility function is not additively separable, a similar analysis could have been

done. We limited ourselves to the complementarities case to focus our discussion. But

generalizing our results to a more general non-separable environment presents an interesting

direction for future work.

Our focus on type-independent preferences served to highlight our key results by making

standard screening techniques impossible. However, the logic behind coordination would

still operate even if the preferences of agents did depend on their type. Determining how

coordination would combine with standard screening techniques presents another interesting

direction for future study. Allowing transfers or repeated interactions represent two natural

ways to approach this question.
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A. Proofs From Section 4 (For Online Publication)

A.1. Proof of Lemma 2

Let g∗ be an optimal mechanism, and suppose for contradiction that it does not obey

within-state coordination. Then there exists θ ∈ Θ and a, a′ ∈ A such that g∗ (θ) [a] >

0, g∗ (θ) [a′] > 0 and X (θ, a) 6≥ X (θ, a′) and X (θ, a) 6≤ X (θ, a′). Now construct â, â′ ∈ A as

follows

âi =

 ai if Xi (θi, ai) ≥ Xi (θi, a
′
i)

a′i otherwise

and

â′i =

 ai if Xi (θi, ai) < Xi (θi, a
′
i)

a′i otherwise
.

By construction we have

X (θ, â) = X (θ, a) ∨X (θ, a′) and X (θ, â′) = X (θ, a) ∧X (θ, a′) .

Pick ε > 0 to be smaller than both g∗(θ)[a] and g∗(θ)[a′]. Construct a mechanism g defined

as

g
(
θ̃
)

[ã] =


g∗
(
θ̃
)

[ã]− ε if θ̃ = θ and ã ∈ {a, a′}

g∗
(
θ̃
)

[ã] + ε if θ̃ = θ and ã ∈ {â, â′}

g∗
(
θ̃
)

[ã] otherwise

.

It is easy to check that, for all θ̃ ∈ Θ and for each i, gi(θ̃) = g∗i (θ̃), which implies pgi (θ̃) =

pg
∗

i (θ̃). Therefore by Lemma 1, g is incentive compatible.

Let V (g) and V (g∗) be the payoff to the principal from mechanism g and g∗ respectively.

Then:

V (g∗)− V (g) = ε (W (X (θ, a)) +W (X (θ, a′))−W (X (θ, â))−W (X (θ, â′))) < 0

The strict inequality follows from the strict supermodularity of W . And this contradicts the

optimality of g∗, and we have established that g∗ obeys within-state coordination, as desired.

�
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A.2. Proof of Theorem 1

We start by formally defining what it means for an a mechanism to be anonymous. For

any bijection σ : {1, ..., n} → {1, ..., n} we use σ (θ) ∈ Θ and σ (a) ∈ A to mean:

σ (θ) =
(
θσ(1), θσ(2), ..., θσ(n)

)
σ (a) =

(
aσ(1), aσ(2), ..., aσ(n)

)
.

Definition 10. We say a mechanism g is anonymous if for any bijection σ : {1, ..., n} →

{1, ..., n} , and for all θ ∈ Θ, a ∈ A:

g (θ) [a] = g (σ (θ)) [σ (a)] .

We will first show there always exists an anonymous coordination mechanism that is

optimal. To prove this claim perform an ε perturbation of the principal’s payoff function

precisely as was done in the proof of Theorem 2. Importantly, this perturbation maintains

the symmetry of the principal’s payoff function. Let g be an optimal mechanism in this

perturbed setting. Let Σ be the set of all bijections from {1, ..., n} → {1, ..., n}. For each

σ ∈ Σ, define mechanism gσ by setting for each θ, a:

gσ (θ) [a] = g (σ (θ)) [σ (a)] .

By the symmetry of the setting, gσ is optimal for every σ ∈ Σ because it has the same

incentive compatibility properties and principal payoff as g. Now define g∗ε as

g∗ε (θ) [a] =
1

|Σ|
∑
σ∈Σ

gσ (θ) [a] .

The mechanism g∗ε is a mixture of optimal mechanisms and is therefore optimal itself. And

by construction g∗ε is also anonymous. Using the same proof as in Theorem 2, we can show

every optimal mechanisms in the ε-perturbed setting is a coordination mechanism, including

g∗ε . We can then take ε to zero while constructing a sequence of optimal and anonymous

mechanisms. Since the space of mechanisms is compact, this sequence must have a convergent

sub-sequence, and the same upper hemicontinuity argument used in the proof of Theorem 2

will imply that the limit of this sequence is optimal in the original setting. And that limit

mechanism will be both anonymous and a coordination mechanism.
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We now know there exists an anonymous coordination mechanism that is optimal, which

we call g. For the remainder of this proof involves showing that g has all the properties

stated in Theorem 1.

Part 2 of Definition 3 (within-state coordination) combined with anonymity requires that

if θi = θj and ai 6= aj, then g (θ) [a] = 0. Hence, at any state θ, the mechanism g has only

four possible actions: (1) incorrectly respond to every agent’s type (
−→
1 θi=L), (2) correctly

respond to every agent’s type (
−→
1 θi=H), (3) take action 1 on everyone (

−→
1 ) and (4) take action

0 on everyone (
−→
0 ).

Define h′(θ) to be the number of high types at θ, (i.e. h′(θ) = h(θ) − 1, where h(θ) was

defined in the proof of Theorem 2). Using what we established in the previous paragraph

along with the definition of an anonymous coordination mechanism, it is straight-forward to

show the following four facts:

Fact 1: If h′(θ) ≥ 1 and g(θ)
[−→

1 θi=H

]
> 0, then g(θ′)

[−→
1 θ′i=H

]
= 1 whenever h′(θ′) > h′(θ).

Fact 2: If h′(θ) ≤ n−1 and g(θ)
[−→

1 θi=L

]
> 0, then g(θ′)

[−→
1 θ′i=L

]
= 1 whenever h′(θ′) < h′(θ).

Fact 3: If h′(θ) ≤ n− 1 and g(θ)[
−→
0 ] > 0, then g(θ′)[

−→
1 ] = 0 whenever h′(θ′) ≤ n− 1.

Fact 4: If h′(θ) ≥ 1 and g(θ)[
−→
1 ] > 0, then g(θ′)[

−→
0 ] = 0 whenever h′(θ′) ≥ 1.

Let mH be the smallest number weakly greater than 1 such that there exists θ ∈ Θ with

h′(θ) = mH and g(θ)[
−→
1 θi=H ] > 0. If such a number does not exist, then set mH = n. Let mL

be the largest number weakly less than n − 1 such that there exists θ ∈ Θ with h(θ) = mL

and where g(θ)[
−→
1 θi=L] > 0. If such a number does not exist, then set mL = 0.

Using facts 1-2 from above, mH and mL satisfy parts (1) and (2) of Theorem 1. Addition-

ally, by howmL, mH were chosen, at any θ ∈ Θ withmL < h′(θ) < mH , g can only use actions
−→
0 and

−→
1 . And for any θ with mL < h′(θ) < mH , we know that 1 ≤ h′(θ) ≤ n−1. Therefore,

by facts 3-4, there exists a∗ ∈ {−→1 ,−→0 }, such that g(θ)[a∗] = 1 whenever mL < h′(θ) < mH .

This finishes the proof of Theorem 1, but we now consider what happens at states with

exactly mL or mH high types.

First take the case that mH > mL. At states where h′(θ) = mH , we know that
−→
1 θ′i=L

cannot be used since that would contradict how mL was chosen. And combining this with

facts 3-4 from above, we get that only a∗ and
−→
1 θ′i=H

can be used. (Note that if h′(θ) = n,

then fact 3 above does not apply, but then
−→
1 θ′i=H

=
−→
1 anyway). And by analogous logic,

at states with h′(θ) = mL, only actions a∗ and
−→
1 θ′i=L

can be used.
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Now take the case that mH = mL. Actions
−→
1 and

−→
0 can never be used at the same state

since that would violate within-state coordination. Therefore, we can choose a∗ ∈ {−→1 ,−→0 },

such that only a∗,
−→
1 θ′i=H

and
−→
1 θ′i=L

are used at states where h′(θ) = mH = mL. And we

are free to define a∗ in this way since, in the mH = mL case, a∗ is never used anywhere else.

A.3. Complete Coordination in the Two-Type Symmetric Envi-

ronment

As promised in the text of Section 4, we now characterize the complete coordination

mechanisms within the Two-Type Symmetric Environment, where mH = mL and only the

“correctly respond to every agent” and “incorrectly respond to every agent” actions are used.

Any complete coordination mechanisms can be fully described by two values, as given in the

following definition.

Definition 11. For any m ∈ {0, 1, ..., n} and q ∈ [0, 1), the complete coordination

mechanism gm,q

(1) Correctly responds to all agents at states that have strictly more than m high types.

(2) Incorrectly responds to all agents at states that have strictly less than m high types.

(3) Correctly and incorrectly responds to all agents with with probability 1 − q and q

respectively, at states with exactly m high types.

From Lemma 1, we know gm,q is incentive-compatible if and only if each agent has the

same probability of receiving action 1 regardless of what report he makes. This constraint

can be written as

n−1∑
k=m

H (k) + (1− q)H (m− 1) =
m−1∑
k=0

H (k) + qH (m) ,10 (5)

where for any k ∈ 0, ..., n, we define

H (k) :=

(
n− 1

k

)
pk (1− p)n−1−k .

Fixing any agent, H (k) is the probability that exactly k of the n− 1 other agents are type

H.

10As a convention, we set
∑n−1

k=nH (k) and
∑−1

k=0H (k) as equal to zero.
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The left-hand side and right-hand side of Equation (5) give the probability an agent

receives action 1 conditional on reporting H and L, respectively. The two terms on the

left-hand side correspond to the agent receiving action 1 with certainty if at least m other

agents report H and with probability 1 − q if exactly m − 1 other agents report H. The

right-hand side works analogously.

One can show that, for any fixed values of p and n, there exists a unique pair (m, q)

that satisfies Equation (5). In other words, for a fixed two-type-symmetric environment,

there is exactly one complete coordination mechanism that is incentive-compatible. The

following proposition characterizes when that complete coordination mechanism is optimal.

We let the indicator functions
−→
1 θi=H and

−→
1 θi=L, respectively, denote correctly responding

and incorrectly responding to all agents at state θ.

Proposition 1. Assume a two-type symmetric environment, and let (m∗, q∗) be the unique

solution to Equation (5). Define

λ :=
(n−m∗) p

m∗ (1− p) + (n−m∗) p
.

Then gm
∗,q∗ is optimal if and only if at any θ ∈ Θ with exactly m∗ high types,

(1− λ)V
(
θ,
−→
1 θi=H

)
+ λV

(
θ,
−→
1 θi=L

)
≥ V

(
θ,
−→
1
)

and

λV
(
θ,
−→
1 θi=H

)
+ (1− λ)V

(
θ,
−→
1 θi=L

)
≥ V

(
θ,
−→
0
)
.

The full proof of this proposition appeared in an earlier working-paper version of this work

and is proved as a corollary to Theorem 1.

B. Proofs from Section 5 (For Online Publication)

Throughout this section we relax our assumption that µi is full support for each agent i.

For the results in this section, this relaxation is without loss of generality. For Theorem 3

and part 1 of Theorem 4 this is because any open set of priors contains an open subset in

which every prior is full support. And if part 2 of Theorem 4 holds for all priors, it clearly

holds for all full-support priors.

Given a state space Θ and prior µ, we will use supp(µi) ⊆ Θi to denote the support of µi.
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B.1. Proof of Theorem 3

Choose (Θ, {Xi}ni=1) such that Θi = Θj and Xi = Xj for all i, j. Let θ̂ be any state with

at least one high type and one low type. Without loss of generality, we will assume θ̂1 is a

low type and θ̂2 is a high type. Set L = θ̂1 and H = θ̂2

Fix any symmetric principal payoff function with complementarities above degree 2 at {θ̂}.

We will show there always exists an open set of priors at which every optimal mechanism

exhibits strategic favoritism, which will prove the first part of Theorem 3. To do so we first

state a useful proposition.

Proposition 2. Let n = 2 and for any L,H ∈ R with L < H, let Θ = {L,H}×{L,H} and

let Xi(·, ·) = Xj(·, ·) for all i, j. Suppose the principal’s payoff function is symmetric and has

complementarities above degree 2 at state (H,L). Then there exists µ ∈ ∆ {L,H}×∆ {L,H}

with 1 > µ1 (H) > µ2 (H) > 0 such that for every optimal mechanism g, P g
2 > P g

1 .

Proof. See Section B.4. �

To make use of the above proposition, suppose for contradiction that there exists no open

set of priors where strategic favoritism occurs in every optimal mechanism. By assumption,

we know that L,H ∈ Θi for all i. Define U to be the set containing all priors µ that obey

the following three conditions:

• i > 2⇒ µi (L) = 1

• i ≤ 2⇒ µi (H) + µi (L) = 1

• 1 > µ1 (H) > µ2 (H) > 0

Fix an arbitrary µ̂ ∈ U . Since we can think of each prior as a finite dimensional vector, we

can endow
∏

∆Θi with the Euclidian metric. For any ε > 0, let Bε (µ̂) be the epsilon ball

around µ̂ in the space
∏

∆Θi. Let D ⊆
∏

∆Θi be the set of all priors such that µ1 >FOSD µ2.

For each natural number m, define Em (µ̂) as

Em (µ̂) = B 1
m

(µ̂) ∩D.

For each m, Em(µ̂) contains an open subset, and hence by our contradiction assumption

there must exist µm ∈ Em (µ̂) such that there exists a mechanism gm that is optimal at

µm and P gm

1 ≥ P gm

2 . Since G is compact, we know the sequence {gm}∞m=1 has a convergent

subsequence with limit which we denote g. And g will have the property that P g
1 ≥ P g

2 .
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Additionally, since µm ∈ B 1
m

(µ̂) for each m, we know that µm → µ̂. We show in section B.3

below that the set of optimal mechanisms is upper hemicontinuous in the domain
∏

∆Θi.

Hence, g must be optimal at µ̂. So we have shown that for every µ̂ ∈ U there exists at least

one optimal mechanism with the property that P g
1 ≥ P g

2 .

Since every µ̂ ∈ U assigns probability one to every agent i > 2 being a low type, any

optimal mechanism will always take action 0 on every agent i > 2. Therefore, we can

effectively reduce the design problem to just agents 1 and 2. And since agents 1 and 2 can

only be type H or type L at µ̂, we can effectively reduce the type space to just include those

two types. By doing so, we have reduced our setting to the two-type two-agent environment

described in the statement of Proposition 2. And the fact that there exists at least one

optimal mechanism with the property that P g
1 ≥ P g

2 for every µ̂ ∈ U , will therefore contradict

Proposition 2. And hence we have derived our contradiction, and proved part one of Theorem

3.

To prove the second part of Theorem 3 we can employ an analogous argument as we just

used along with the following proposition.

Proposition 3. Let n = 2 and for some L,H ∈ R with L < H, let Θ = {L,H} × {L,H}

and let Xi(·, ·) = Xj(·, ·) Then for any λ ∈
(
0, 1

2

)
there exists a natural number M such that

if the principal’s payoff function is symmetric and has complementarities above degree M at

(H,L), then there exists µ ∈ ∆ {L,H} ×∆ {L,H} with 1 > µ1 (H) > µ2 (H) > 0 such that

in every optimal mechanism g has the property that P g
2 ≥ P g

1 + λ.

Proof. See Section B.5. �

B.2. Proof of Theorem 4

To prove this theorem we make use of the following two propositions, the proofs of which

can be found in sections B.6 and B.7, respectively.

Proposition 4. Fix (Θ, {Xi}ni=1) and any principal payoff function. Choose an agent i and

let tL ∈ ΘL
i . Then there exists a ML ∈ (0, 1) such that for any prior with µ

(
tL
)
> ML, in

every optimal mechanism action 1 is taken on agent i with probability 0. Moreover for any

agent i and tH ∈ ΘH
i there exists MH ∈ (0, 1) such that for any prior with µ

(
tH
)
> MH , in

every optimal mechanism action 1 is taken on agent i with probability 1.
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Proposition 5. Choose (Θ, {Xi}ni=1) with Θi = Θj and Xi(·, ·) = Xj(·, ·) for all i, j and

any prior µ. Let g be an incentive compatible mechanism that does not exhibit meritocracy.

Then there exists M > 1 such that, given any symmetric principal payoff function with

complementarities below degree M at Θ, g is not optimal.

Choose any (Θ, {Xi}bi=1) with Θi = Θj and Xi(·, ·) = Xj(·, ·) for all i, j. Fix any symmetric

principal payoff function. Let tH ,tL be the highest and lowest possible types in each Θi. By

Proposition 4, for each agent i there exists a M i
H ∈ (0, 1) such that µi

(
tH
)
> M i

H implies

every optimal mechanism will take action 1 on agent i with probability 1. Similarly there

exists a M i
L ∈ (0, 1) such that µi

(
tL
)
> M i

L implies every optimal mechanism will take

action 1 on agent i with probability 0. Let MH = maxiM
i
H and ML = maxiM

i
L. Now it

is clearly possible to construct an open set of priors such that each prior µ in the set has

µ1

(
tH
)
> MH and µi

(
tL
)
> ML for each i ≥ 2, as well as µ1 >FOSD µ2 >FOSD ... >FOSD µn.

Therefore, every optimal mechanism g at µ has P g
1 = 1 and P g

i = 0 for all i > 1 . Hence g

displays meritocracy of magnitude λ for any λ ∈ (0, 1), as desired.

To prove the second part of Theorem 4, fix any prior µ. Any optimal mechanism solves

a finite dimensional linear program whose constraint set is entirely determined by µ and Θ,

and does not depend on the principal’s payoff function. Therefore, we can identify a finite

number of “extreme” mechanisms g1, ..., gm, such that, for any principal payoff function,

any optimal mechanism is a convex combination of optimal extreme mechanisms. Re-order

the extreme mechanisms so that g1, ...gk is the subset of these extreme mechanism that do

not display meritocracy. (Note that whether a mechanism exhibits meritocracy does not

depend on the principal’s payoff function). For each i = 1, ..., k let Mi > 1 be the value

specified in Proposition 5. Let M = min {M1, ...,Mk}. Then for any symmetric principal

payoff function with complementarities below M we know that gi is not optimal for all i ≤ k.

Hence any optimal mechanism is a convex combination of two ”extreme” mechanisms that

display meritocracy. And meritocracy is preserved through convex combinations, and hence

all optimal mechanisms exhibit meritocracy. And this proves the second part of Theorem 4.



40 NEMANJA ANTIĆ AND KAI STEVERSON

B.3. Proof that the optimal mechanism is upper hemicontinuous

in the domain of independent priors.

Fix Θ, V and n. Let Γ :
∏n

i=1 ∆Θi ⇒ G be the correspondence where Γ (µ) gives the

set of optimal mechanisms at prior µ. Standard arguments will show Γ is compact-valued

and non-empty valued. We want to show in addition that Γ is upper hemicontinuous. By

the theorem of the maximum it will suffice to show that the set of incentive compatible

mechanisms moves continuously in the domain
∏n

i=1 ∆Θi.

The set of equalities that characterize incentive compatibility move continuously with µ.

And the set of solutions to a continuously changing set of equalities always moves upper

hemicontinuously as long as the set of solutions is always non-empty. And the set of incen-

tive compatible mechanisms is non-empty since always taking action 1 on all the agents is

always incentive compatible. Hence the set of incentive compatible mechanisms moves upper

hemicontinuously.

Now we only need to establish lower hemicontinuity of the set of incentive compatible

mechanisms. Let µm ∈
∏n

i=1 ∆Θi with µm → µ. Then for every mechanism g that is

incentive compatible at µ, we want to show there exists a sequence of mechanisms gm such

that gm → g and gm is incentive compatible at µm for every m.

Define pgi (θi, µ) using the same expression as we used to define pgi (θi), except we now

include µ as an explicit argument instead of a fixed parameter. For i = 0, ...n, we will define

{gm,i}∞m=1 so that for each i, gm,i is incentive compatible at µm for agents 1, .., i and gm,i → g

as m → ∞. Hence gm,n will produce the desired sequence. Without loss of generality, we

will assume there is no agent i for which g always takes action 1 on. If any such an agent

existed, we could simply set our sequences {gm,i}∞m=1 to always take action 1 on that agent

and reformulate the problem on the remaining n− 1 agents.

We proceed by induction on i. As a base case set gm,0 = g for all m. Now assume

{gm,i−1}∞m=1 has been appropriately defined and we will show how to define {gm,i}∞m=1. For

each t ∈ supp(µi), choose θt ∈ Θ, at ∈ A such that ati = 0, θti = t and µ (θt) > 0, g (θt) [at] > 0.

If no such θt, at exists that must mean that pgi (t, µ) = 1 , and since g is incentive compatible

at µ that must mean that pgi (t′, µ) = 1 for all t′ ∈ supp(µi), implying g always takes action

1 on agent i, which we ruled out earlier. Hence, an appropriate θt, at must always exist.
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For any natural number m, define εm : supp(µi)→ R as:

εm (t) := max
t′∈Θi

pg
m,i−1

i (t′, µm)− pg
m,i−1

i (t, µm) .

By construction εm(·) ≥ 0 for all m. The value εm measures how far gm,i−1 is from being

incentive compatible for agent i at prior µm. In the limit, gm,i−1 → g which is fully incentive

compatible at µ, hence εm (t)→ 0 as m→∞ for any t. Since µ (θt) > 0 and g (θt) [at] > 0,

we know µm−i
(
θt−i
)

and gm,i−1 (θt) [at] converge to values strictly above zero as m → ∞.

Hence, we can choose M large enough so that for all m ≥M we have

εm (t)

µm−i
(
θt−i
) < gm,i−1

(
θt
) [
at
]

for all t ∈ Θi.

For each m ≥M define gm,i as follows:

gm,i (θ) [a] =


gm,i−1 (θ) [a]− εm(θi)

µm−i(θ−i)
if (θ, a) = (θt, at) for some t ∈ supp(µi)

gm,i−1 (θ) [a] + εm(θi)
µm−i(θ−i)

if (θ, a) =
(
θt,
(
1, at−i

))
for some t ∈ supp(µi)

gm,i−1 (θ) [a] otherwise.

And since εm → 0, gm,iand gm,i−1 converge together as m→∞, hence gm,i → g must hold.

We next show that for all m ≥M , gm,i is incentive compatible at µm for each agent j where

j ≤ i. Well, for j < i, mechanism gm,i has the same probability of taking aj at each state as

gm,i−1. Therefore gm,i is incentive compatible for agent j since gm,i−i is incentive compatible

for agent j. Now for agent i we have that for any t ∈ supp(µi):

pg
m,i

i (t, µm) = pg
m,i−1

i (t, µm) +
εm (θti)

µm−i
(
θt−i
)µm−i (θt−i)

= pg
m,i−1

i (t, µm) + εm
(
θti
)

= max
t′∈Θi

pg
m−1

i (t′, µm) .

From which it follows that pg
m,i

i (t, µm) = pg
m,i

i (t′, µm) for all t, t′ ∈ supp(µi) and hence gm,i

is incentive compatible for agent i at µm for all m ≥ M . Therefore, we have constructed a

sequence gm,i from M to ∞ with the desired properties, and now we simply renumber the

sequence to go from 1 to ∞, and we are done.�
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B.4. Proof of Proposition 2

We have two agents and a state space of

Θ = {L,H} × {L,H} ,

where L < H and L ∈ ΘL
i and H ∈ ΘH

i for each i. For any prior µ, we write µi to mean

µi (H), and 1− µi for µi (L). Without loss of generality, we can set for each i:

Xi (θi, ai) =


1 if θi = H and ai = 1

0 if θi = L and ai = 1

1
2

if ai = 0

.

For compactness, given production vector X we will write W (X1X2) to mean W ((X1, X2)).

So for example if the mechanism takes action 0 on both agents, then the payoff to the

principal is W
(

1
2

1
2

)
. The assumption of complementarities above degree 2 at (H,L) implies

that

W

(
1

1

2

)
−W

(
1

2

1

2

)
≥ 2

(
W (10)−W

(
1

2
0

))
,

which be rearranged to yield

W

(
1

1

2

)
+ 2W

(
1

2
0

)
−W (

1

2

1

2
) ≥ 2W (10) .

By the strict monotonicity of W , W
(

1
2
0
)
< W

(
1
2

1
2

)
, and therefore

W

(
1

1

2

)
+W

(
1

2
0

)
> 2W (10) . (6)

Lemma 3. Fix a prior µ such that µ1, µ2 ∈
(

1
2
, 1
)

and

W (11
2
)−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) < µi
1− µi

for i = 1, 2.

Then in any optimal mechanism g (HH) [11] = 1.

Proof. Using the supermodularity and symmetry of W , inequality assumed in the statement

of the lemma implies that

W
(
11

2

)
−W (10)

W (11)−W
(
11

2

) < µi
1− µi

for i = 1, 2. (7)
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Let g be an optimal mechanism. We will first establish that g (HH) [10] = 0 and

g (HH) [01] = 0. Suppose for contradiction that g (HH) [10] > 0, which implies P g
2 < 1.

Incentive compatibility will require there to exist θ̂, â with θ̂2 = L, â2 = 0 and g(θ̂) [â] > 0.

Define ã = (â1, 1). For an arbitrarily small ε > 0, construct the following alternate mecha-

nism g̃.

g̃ (θ) [a] =



g (θ) [a] + ε
µ1

if (θ, a) = ((HH) , (11))

g (θ) [a]− ε
µ1

if (θ, a) = ((HH) , (10))

g (θ) [a] + ε
µ1(θ1)

if (θ, a) =
(
θ̂, ã
)

g (θ) [a]− ε
µ1(θ1)

if (θ, a) =
(
θ̂, â
)

g (θ) [a] otherwise

When agent 1 receives action 1 has not changed, hence g̃ is incentive compatible for agent

1. To check incentive compatibility for agent 2 notice that

pg̃2 (H) = pg2 (H) + µ1
ε

µ1

= pg2 (H) + ε

pg̃2 (L) = pg2 (L) + µ1

(
θ̂1

) ε

µ1

(
θ̂1

) = pg2 (L) + ε.

Since g is incentive compatible, pg2 (H) = pg2 (L) and hence pg̃2 (H) = pg̃2 (L) implying that g̃

is incentive compatible.

The difference in the principal’s payoff between g̃ and g is given by:

V (g̃)− V (g) =
ε

µ1

µ (HH)

(
W (11)−W (1

1

2
)

)
− µ

(
θ̂
) ε

µ1

(
θ̂1

) (V (θ̂, â)− V (θ̂, ã))

= εµ2

(
W (11)−W (1

1

2
)

)
− (1− µ2) ε

(
W

(
X1

(
θ̂1, â1

) 1

2

)
−W

(
X1

(
θ̂1, ã1

)
0
))

≥ εµ2

(
W (11)−W (1

1

2
)

)
− (1− µ2) ε

(
W (1

1

2
)−W (10)

)
> 0.

The first inequality holds using supermodularity of W and the fact that â1 = ã1. The second

inequality holds due to Equation (7). And we have violated the optimality of mechanism

g, which provides our desired contradiction and establishes that g (HH) [10] = 0. A similar

argument will show g (HH) [01] = 0.

Now suppose for contradiction that g (HH) [11] < 1. By what we just showed it must

be that g (HH) [00] > 0. Therefore, incentive compatibility requires that for i = 1, 2 there
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exists θi, ai with θii = L, aii = 0 and g (θi) [ai] > 0. Define ã1 = (1, a1
2) and ã2 = (a2

1, 1) . For

an arbitrarily small ε > 0 construct the following modified mechanism g̃

g̃ (θ) [a] =



g (θ) [a] + ε if (θ, a) = ((HH) , (11))

g (θ) [a]− ε if (θ, a) = ((HH) , (00))

g (θ) [a] + ε µ2
µ2(θ12)

if (θ, a) = (θ1, ã1)

g (θ) [a] + ε µ1
µ1(θ21)

if (θ, a) = (θ2, ã2)

g (θ) [a]− ε µ2
µ2(θ12)

if (θ, a) = (θ1, a1)

g (θ) [a]− ε µ1
µ1(θ21)

if (θ, a) = (θ2, a2)

g (θ) [a] otherwise.

To check that g̃ is incentive compatible for agent 1 notice that

pg̃1 (H) = pg1 (H) + εµ2

pg̃1 (L) = pg1 (L) + ε
µ2

µ2 (θ1
2)
µ2

(
θ1

2

)
= pg1 (L) + εµ2

and hence pg̃1 (H) = pg̃1 (L) since g is incentive compatible. A similar argument can be made

for agent 2.

The payoff difference to the principal between g and g̃ is given by:

V (g̃)− V (g) = εµ (HH)

(
W (11)−W (

1

2

1

2
)

)
+ ε

µ2

µ2 (θ1
2)
µ
(
θ1
) (
V
(
θ1, ã1

)
− V

(
θ1, a1

))
+ε

µ1

µ1 (θ2
1)
µ
(
θ2
) (
V
(
θ2, ã2

)
− V

(
θ2, a2

))
≥ µ (HH) ε

(
W (11)−W (

1

2

1

2
)

)
− ε (µ (HL) + µ (LH))

(
W (1

1

2
)−W (10)

)
≥ µ (HH) ε

(
W (1

1

2
)−W (

1

2

1

2
)− 1− µ2

µ2

(
W (1

1

2
)−W (10)

))
+µ (HH) ε

(
W (1

1

2
)−W (

1

2

1

2
)− 1− µ1

µ1

(
W (1

1

2
)−W (10)

))
> 0

The first inequality uses the supermodularity and symmetry of W , while the third inequality

follows from the inequality assumed in the statement of the lemma. Proving the second

inequality makes use of the following relationship which follows from the supermodularity of
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W :

W (11)−W (
1

2

1

2
) = W (11)−W (1

1

2
) +W (1

1

2
)−W (

1

2

1

2
)

≥ 2

(
W (1

1

2
)−W (

1

2

1

2
)

)
.

Hence we have

V (g̃)− V (g) > 0,

which contradicts the optimality of g, and we have established that g (HH) [11] = 1. �

Lemma 4. Fix any prior µ such that µ1, µ2 ∈
(

1
2
, 1
)
. If g is an optimal mechanism with

g (HH) [11] = 1, then g (LL) [11] = 1.

Proof. Let g be any optimal mechanism with g (HH) [11] = 1. By the fact that µ1, µ2 >
1
2
,

incentive compatibility will require g1 (LH) > 0 and g2 (HL) > 0, which means for i = 1, 2

there exists ai with aii = 1 and g (LH) [a1] > 0, g (HL) [a2] > 0. Define ã1 = (0, a1
2) and

ã2 = (a2
1, 0).

We will first show that g (LL) [00] = 0. Suppose not for contradiction. For arbitrary small

ε > 0, construct alternate mechanism g̃ as follows

g̃ (θ) [a] =



g (θ) [a] + ε if (θ, a) = ((LL) , (11))

g (θ) [a] + ε1−µ2
µ2

if (θ, a) = ((LH) , ã1)

g (θ) [a] + ε1−µ1
µ1

if (θ, a) = (HL, ã2)

g (θ) [a]− ε if (θ, a) = ((LL) , (00))

g (θ) [a]− ε1−µ2
µ2

if (θ, a) = ((LH) , a1)

g (θ) [a]− ε1−µ1
µ1

if (θ, a) = (HL, a2)

g (θ [a]) otherwise

To check incentive compatibility of g̃ notice that

pg̃1 (H) = pg1 (H)

pg̃1 (L) = pg1 (L) + ε(1− µ2)− ε1− µ2

µ2

µ2 = pg1 (L) .
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A similar argument can be made of agent 2. Hence g̃ is incentive compatible because g is

incentive compatible. The change in payoff between mechanism g and g̃ is given by:

V (g̃)− V (g) = εµ (LH)
1− µ2

µ2

(
V
(
θ, ã1

)
− V

(
θ, a1

))
+ εµ (HL)

1− µ1

µ1

(
V
(
θ, ã2

)
− V

(
θ, a2

))
+εµ (LL)

(
W (00)−W (

1

2

1

2
)

)
= εµ (LL)

((
V
(
θ, ã1

)
− V

(
θ, a1

))
+ V

(
θ, ã2

)
− V

(
θ, a2

)
−
(
W (

1

2

1

2
)−W (00)

))
≥ εµ (LL)

(
2

(
W (

1

2

1

2
)−W (

1

2
0)

)
−
(
W (

1

2

1

2
)−W (00)

))
> εµ (LL)

(
W (

1

2

1

2
)−W (

1

2
0) +W (0

1

2
)−W (00)−

(
W (

1

2

1

2
)−W (00)

))
= 0

The first and second inequality follow from the strict supermodularity of W . And we have

contradicted the optimality of g and hence g (LL) [00] = 0.

We next show that g (LL) [10] = 0. Suppose g (LL) [10] > 0 for contradiction. For an

arbitrarily small ε > 0, construct the following alternative mechanism g̃.

g̃ (θ) [a] =



g (θ) [a] + ε if (θ, a) = ((LL) , (11))

g (θ) [a] + ε1−µ1
µ1

if (θ, a) = ((HL), ã2)

g (θ) [a]− ε if (θ, a) = ((LL) , (10))

g (θ) [a]− ε1−µ1
µ1

if (θ, a) = ((HL), a2)

g (θ) [a] otherwise

Incentive compatibility of g̃ for agent 1 is immediate because when a1 = 1 is played has not

changed. Incentive compatibility for agent 2 follows from the fact that

pg̃2 (H) = pg2 (H)

pg̃2 (L) = pg2 (L) + ε(1− µ1)− ε1− µ1

µ1

µ1 = pg2 (L) .
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The payoff difference between g̃ and g is given by:

V (g̃)− V (g) = εµ (HL)
1− µ1

µ1

(
V
(
θ, ã2

)
− V

(
θ, a2

))
+ εµ (LL)

(
W (00)−W (0

1

2
)

)
≥ εµ (LL)

(
W (

1

2

1

2
)−W (

1

2
0) +W (00)−W

(
0

1

2

))
> εµ (LL)

(
W (0

1

2
)−W (00) +W (00)−W (0

1

2
)

)
= 0

The two inequalities follow from the strict supermodularity and symmetry of W . And this

contradicts the optimality of g, and hence we have shown that g (LL) [10] = 0. A similar

proof will show that g (LL) [01] = 0. Hence it must be that g(LL)[11] = 1, which finishes

the proof of this lemma. �

Now let g be any optimal mechanism with the property that

g (HH) [11] = g (LL) [11] = 1.

By Lemma 2, g must obey within-state coordination (part 2 of Definition 3). At states

HL and LH, within-state coordination implies that if 11 is used, then action 00 is not.

Therefore, if g1 (HL) ≥ 1−g2 (HL), then g (HL) [00] = 0, and if g1 (HL) ≤ 1−g2 (HL) then

g (HL) [11] = 0. Similarly, g1 (LH) ≥ 1 − g2 (LH) implies g (LH) [00] = 0, and g1 (LH) ≤

1−g2 (LH) implies g (LH) [11] = 0. These facts allows us to fully characterize the mechanism

as a function of the following four values: g1 (HL), g1 (LH), g2 (LH) and g2 (HL). For

example, if we are in the case that g (HL) [00] = 0, then we know g (HL) [10] = 1− g2 (HL)

and g (HL) [01] = 1 − g1 (HL). And g (HL) [11] takes the remaining probability. And the

remaining cases can be similarly analyzed.

Incentive compatibility requires that pgi (θi) = P g
i for each agent i and type θi, which allows

us to define gi(θi) in terms of P g
1 and P g

2 as follows.

g1 (HL) =
P g

1 − µ2

1− µ2

and g1 (LH) = 1− 1− P g
1

µ2

g2 (HL) = 1− 1− P g
2

µ1

and g2 (LH) =
P g

2 − µ1

1− µ1

.

Since gi (θ) must be between 0 and 1, we know that P g
1 ∈ [µ2, 1] and P g

2 ∈ [µ1, 1] must hold.



48 NEMANJA ANTIĆ AND KAI STEVERSON

We have shown that the values of gi(θ) fully characterize the mechanism, and that those

values are in turn characterized by P g
i . Therefore, we can rewrite the principal’s maximiza-

tion problem in terms of P g
1 and P g

2 , constrained by P g
1 ∈ [µ2, 1] and P g

2 ∈ [µ1, 1]. (The

incentive constraints are implicitly accounted for by how we substituted them in to achieve

the previous display equations). The objective function of this maximization problem is a

piece-wise linear function11, and therefore all optimal points have to either be extreme points

of the feasible set, kinks in the objective function or convex combinations of such points.

Hence, it will suffice to show that there is no optimal extreme or kink point with the property

that P g
2 ≤ P g

1 . The kinks in the linear optimization occur when g1 (HL) = 1 − g2 (HL)

or g1 (LH) = 1 − g2 (LH), which, as we discussed above, is when the mechanism switches

between using action 11 and action 00. Therefore we we can enumerate the seven feasible

extreme or kink points as follows:

(1)
P g
1−µ2
1−µ2 =

1−P g
2

µ1
, P g

2 = µ1

(2) P g
1 = 1, P g

2 = µ1

(3) P g
1 = 1, P g

2 = 1

(4)
P g
1−µ2
1−µ2 =

1−P g
2

µ1
,
P g
2−µ1
1−µ1 =

1−P g
1

µ2

(5) P g
1 = µ2, P

g
2 = µ1

(6) P g
1 = µ2, P

g
2 = 1

(7) P g
1 = µ2,

P g
2−µ1
1−µ1 =

1−P g
1

µ2

Some potential points were excluded from this list for being redundant. For example the

point
P g

1 − µ2

1− µ2

=
1− P g

2

µ1

, P g
2 = 1

is equivalent to point (6) above. Whenever 1 > µ1 > µ2 >
1
2
, one can verify that only points

1, 2 and 3 have the property that P2 ≤ P1. Define Ui to be the sum of the principal’s payoff

on states (HL) and (LH) from point i in the above list. (We exclude the payoff from states

(HH) and (LL) since, under the assumption g (HH) [11] = g (LL) [11] = 1, payoff from

those states are fixed.) If max {U1, U2, U3} < max {U4, U5}, then any optimal extreme point

or kink must have P g
1 < P g

2 . Using the sufficient conditions in Lemmas 3 and 4 to ensure

11The domain of the payoff function is [µ1, 1]× [µ2, 1]. By piece-wise linear we mean there are a finite number
of closed sets that cover this domain and such that the payoff function is linear within each of the closed
sets.
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that g (HH) [11] = g (LL) [11] = 1 in any optimal mechanism, we have proved the following

result.

Lemma 5. Suppose that 1 > µ1 > µ2 > 1
2
, max {U1, U2, U3} < max {U4, U5} and for

i ∈ {1, 2}
W (11

2
)−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) < µi
1− µi

.

Then in any optimal mechanism g, P g
1 < P g

2 .

We now seek to find a µ that satisfies all the conditions in Lemma 5, for which it will be

useful to prove a few more lemmas.

Lemma 6. Take any µ with µ1 = µ2 >
1
2

and such that

W (1
1

2
) (1− µ1) +W (

1

2
0)µ1 > W (10) ,

then max {U2, U3} < U4.

Proof. Using µ1 = µ2 we can calculate that following equations

U2

µ (HL)
= W (1

1

2
)
1− µ1

µ1

+W (10)
2µ1 − 1

µ1

+W (
1

2
0)

U3

µ (HL)
= 2W (10)

U4

µ (HL)
= W (1

1

2
)2 (1− µ1) +W (

1

2
0)2µ1

Therefore

U4 − U2

µ (HL)
= W (1

1

2
)

(
2 (1− µ1)− 1− µ1

µ1

)
−W (10)

(
2µ1 − 1

µ1

)
+W (

1

2
0) (2µ1 − 1)

=
(2µ1 − 1)

µ1

(
W (1

1

2
) (1− µ1) +W (

1

2
0)µ1 −W (10)

)
> 0

The inequality follows from assumptions in the statement of the lemma and the fact that

2µ1 − 1 > 0. Next we calculate that

U4 − U3

µ (HL)
= W (1

1

2
)2 (1− µ1)− 2W (10) +W (

1

2
0)2µ1

= 2

(
W (1

1

2
) (1− µ1) +W (

1

2
0)µ1 −W (10)

)
> 0

as desired. �
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Lemma 7. Take any µ with µ1 = µ2 >
1
2

and such that W
(
11

2

)
µ1 + W

(
1
2
0
)

(1− µ1) 6=

W
(

1
2

1
2

)
, then U1 < max {U4, U5} .

Proof. For contradiction suppose that

U1 ≥ max {U4, U5} .

Using µ1 = µ2 we can calculate that:

U1

µ (HL)
= W

(
1

1

2

)
1− µ1

µ1

+W

(
1

2
0

)
(5µ2

1 − 4µ1 + 1)

µ2
1

+W

(
1

2

1

2

)
(1− µ1) (2µ1 − 1)

µ2
1

U4

µ (HL)
= W

(
1

1

2

)
2 (1− µ1) +W

(
1

2
0

)
2µ1

U5

µ (HL)
= W

(
1

2
0

)
2

(
2µ1 − 1

µ1

)
+W

(
1

2

1

2

)
2

1− µ1

µ1

Therefore we can calculate that:

U1 − U4

µ (HL)
= W (1

1

2
)

(
1− µ1

µ1

− 2 (1− µ1)

)
+W (

1

2
0)

(
(5µ2

1 − 4µ1 + 1)

µ2
1

− 2µ1

)
+W (

1

2

1

2
)

(
(1− µ1) (2µ1 − 1)

µ2
1

)
= −W

(
1

1

2

)
(2µ1 − 1) (1− µ1)

µ1

−W
(

1

2
0

)(
(1− µ1)2 (2µ1 − 1)

µ2
1

)

+W

(
1

2

1

2

)
(1− µ1) (2µ1 − 1)

µ2
1

Since U1 ≥ U4 we must have

W

(
1

1

2

)
µ1 +W

(
1

2
0

)
(1− µ1) ≤ W

(
1

2

1

2

)
And we can also calculate that

U1 − U5

µ (HL)
= W

(
1

1

2

)
1− µ1

µ1

+W

(
1

2
0

)(
5µ2

1 − 4µ1 + 1

µ2
1

− 2
2µ1 − 1

µ1

)
+W

(
1

2

1

2

)(
(1− µ1) (2µ1 − 1)

µ2
1

− 2
1− µ1

µ1

)
= W

(
1

1

2

)
1− µ1

µ1

+W

(
1

2
0

)
(1− µ1)2

µ2
1

−W
(

1

2

1

2

)
1− µ1

µ2
1
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Since U1 ≥ U5, we must have

W

(
1

1

2

)
µ1 +W

(
1

2
0

)
(1− µ1) ≥ W

(
1

2

1

2

)
Combining with what we had before gives

W

(
1

1

2

)
µ1 +W

(
1

2
0

)
(1− µ1) = W

(
1

2

1

2

)
which contradicts the assumptions in the statement of this lemma. And it follows that

U1 < max {U4, U5} .

�

Lemma 8. Let α ∈
(

1
2
, 1
)

such that W
(
11

2

)
(1 − α) + W (1

2
0)α > W (10) and W

(
11

2

)
α +

W
(

1
2
0
)

(1− α) 6= W
(

1
2

1
2

)
. Then there exists a ε > 0 such that for any prior µ with µ1 =

α, µ2 ∈ (α− ε, α) we have

max {U1, U2, U3} < max {U4, U5} .

Proof. For this proof we will treat each Ui as a function ∆Θ→ R where Ui (µ) is the value

of solution i when the common prior is µ. It is clear that Ui (·) is a continuous function

for each i. Suppose for contradiction no such ε exists then we can take a strictly positive

sequence εn such that εn → 0 and define µn as µn1 = α, µn2 = α− εn and at each n we would

have

max {U1 (µn) , U2 (µn) , U3 (µn)} ≥ max {U4 (µn) , U5 (µn)} .

Clearly µn → µ where µ1 = µ2 = α. By continuity:

max {U1 (µ) , U2 (µ) , U3 (µ)} ≥ max {U4 (µ) , U5 (µ)} .

But µ obeys the assumptions in the statements of Lemmas 6 and 7, from which it follows

that

max {U1 (µ) , U2 (µ) , U3 (µ)} < max {U4 (µ) , U5 (µ)} .

So we have derived our desired contradiction. �
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We now complete the proof of Proposition 2 by constructing a µ that satisfies the conditions

in Lemma 5. By supermodularity it is clear that

W
(
11

2

)
−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) < W
(
11

2

)
−W (10)

W (10)−W
(

1
2
0
)

and Equation (6) guarantees that

W
(
11

2

)
−W (10)

W (10)−W
(

1
2
0
) > 1,

hence we can find 1
2
< αL < αH < 1 such that for all α ∈ (αL, αH)

W
(
11

2

)
−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) < α

1− α
<
W
(
11

2

)
−W (10)

W (10)−W
(

1
2
0
) . (8)

Moreover, since W
(
11

2

)
> W

(
1
2
0
)
, we know there exists α∗ ∈ (αL, αH) such that

W

(
1

1

2

)
α∗ +W

(
1

2
0

)
(1− α∗) 6= W

(
1

2

1

2

)
.

Define µ so that µ1 = α∗. By Lemma 8, we know that there exists an ε > 0 small enough so

that

S := (α∗ − ε, α∗) ∩ (αL, αH),

is non-empty, and if µ1 = α∗ and µ2 ∈ S, then

max {U1, U2, U3} < max {U4, U5} .

How we constructed µ1, µ2, and Equation (8) together imply µ obeys the conditions in the

statement of Lemma 3. Hence, by Lemma 5 we can conclude that P g
1 < P g

2 for every optimal

mechanism g at µ, as desired.

B.5. Proof of Proposition 3

For this proof we will use the same notation and several of the lemmas that were introduced

in section B.4.

Lemma 9. Fix any µ. Let a, b, c, d ∈ R, such that a > 0 and a+ b+ c+ d = 0. Then there

exists a natural number M such that for any symmetric principal payoff functions that has
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complementarities above degree M at (H,L)

aW

(
1

1

2

)
+ bW

(
1

2

1

2

)
+ cW (10) + dW

(
1

2
0

)
> 0.

Proof. Set M high enough so that
|b|+ |c|
M

< a.

For any symmetric principal payoff function with complementarities above degree M at

(H,L) we have that

a

(
W

(
1

1

2

)
−W

(
1

2
0

))
>
|b|+ |c|
M

(
W

(
1

1

2

)
−W

(
1

2
0

))
>
|b|
M

(
W

(
1

1

2

)
−W (10)

)
+
|c|
M

(
W

(
1

1

2

)
−W

(
1

2

1

2

))
> |b|

(
W

(
1

2

1

2

)
−W

(
1

2
0

))
+ |c|

(
W (10)−W

(
1

2
0

))
.

The first inequality uses how M was defined. The second inequality uses the monotonicity

of W . The third inequality uses the complementarities being above degree M at (H,L). We

then have that

aW

(
1

1

2

)
− |b|W

(
1

2

1

2

)
− |c|W (10) + (−a− |b| − |c|)W

(
1

2
0

)
> 0.

It is clear that b ≥ −|b|, c ≥ −|c| and −a−|b|− |c| ≤ −a− b− c = d. And these inequalities,

along with the previous display equation and the fact that W (·) is defined to be always

positive, imply that

aW

(
1

1

2

)
+ bW

(
1

2

1

2

)
+ cW (10) + dW

(
1

2
0

)
> 0,

as desired. �

Define Ui for i = 1, ..., 7 as was done in the proof of Proposition 2 using the list of cases

enumerated there. Now for any ε ∈
(
0, 1

4

)
define prior µε as

µε1 =
3

4
+ ε and µε2 =

3

4
− ε.

In each of the mechanism in cases 4 − 7, we have that P g
2 − P g

1 at µε converges to 1
2

as

ε → 1
4
. Therefore we can find ε∗ ∈

(
0, 1

4

)
such that P g

2 − P
g
1 > λ at µε

∗
in all those cases.

Set µ = µε
∗
.
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We now use Lemma 9 to show that at µ there exists a M∗ such that any symmetric

principal payoff function that has complementarities above degree M at (H,L) will have the

property:

max {U1, U2, U3} < U4.

To see why note that for each i = 1, 2, 3 one can write

U4 − Ui = aW

(
1

1

2

)
+ bW

(
1

2

1

2

)
+ cW (10) + dW

(
1

2
0

)
for the appropriate choice of a, b, c, d ∈ R with a+ b+ c+ d = 0. One can check that a > 0

for each i = 1, 2, 3 at µ. Therefore, for each i = 1, 2, 3, Lemma 9 implies there exists an M∗
i

so that the U4 − Ui > 0 for all principal payoff functions that have complementarities above

degree M∗
i at (H,L). We will also make use of the following lemma.

Lemma 10. For any M > 1, if the principal’s payoff function has complementarities above

degree M at (H,L), then
W
(
11

2

)
−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) ≤ M

M − 1
.

Proof. First suppose that W
(

1
2

1
2

)
≤ W (10), then we have

W
(
11

2

)
−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) ≤ W
(
11

2

)
−W

(
1
2

1
2

)
W
(
11

2

)
−W

(
1
2

1
2

) = 1 ≤ M

M − 1
,

as desired.

Now suppose that W
(

1
2

1
2

)
> W (10). By definition of complementarities above degree M

we have that

W

(
1

1

2

)
−W (10) ≥M

(
W

(
1

2

1

2

)
−W

(
1

2
0

))
.

By monotonicity, W (10) > W
(

1
2
0
)

so that

W

(
1

1

2

)
−W (10) ≥M

(
W

(
1

2

1

2

)
−W (10)

)
.

We can rearrange this inequality to get

W

(
1

1

2

)
≥MW

(
1

2

1

2

)
−W (10) (M − 1) .
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Since we assumed W
(

1
2

1
2

)
> W (10), it follows that

x−W (10)

x−W
(

1
2

1
2

)
is decreasing in x as long as the numerator and denominator are both positive. Therefore

we have that

W
(
11

2

)
−W (10)

W
(
11

2

)
−W

(
1
2

1
2

) ≤ MW
(

1
2

1
2

)
−W (10) (M − 1)−W (10)

MW
(

1
2

1
2

)
−W (10) (M − 1)−W

(
1
2

1
2

)
=

MW
(

1
2

1
2

)
−MW (10)

(M − 1)W
(

1
2

1
2

)
− (M − 1)W (10)

=

(
M

(M − 1)

)
W
(

1
2

1
2

)
−W (10)

W
(

1
2

1
2

)
−W (10)

=
M

M − 1
,

as desired. �

Since µi >
1
2

for each i, it follows that

µi
1− µi

> 1.

Therefore we can find M∗
4 large enough so that for each i

M∗
4

M∗
4 − 1

<
µi

1− µi
.

Now set M∗ = max {M∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4}. Fix any symmetric principal payoff function that

has complementarities above degree M∗ at (H,L). And all the conditions of Lemma 5 are

satisfied, which implies that every optimal mechanism has to be in cases 4-7. And we choose

µ in such a way that in each of those cases P g
2 − P

g
1 > λ, as desired.

B.6. Proof of Proposition 4

Fix an agent i and choose any tL ∈ ΘL
i . Define Wmax and Wmin as

Wmax = max
θ,a−i|θi∈ΘH

i

{V (θ, (1, a−i))− V (θ, (0, a−i))}

Wmin = min
θ,a−i|θi∈ΘL

i

{V (θ, (0, a−i))− V (θ, (1, a−i))}

By definition of ΘL
i , ΘH

i and fact that W is strictly increasing we have that Wmax and Wmin

are both strictly positive.
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Define ML as

ML =
Wmax

Wmin +Wmax

.

Clearly ML ∈ (0, 1). Now consider any prior µ with µi
(
tL
)
> ML, which is equivalent to

0 < −
(
1− µi

(
tL
))
Wmax + µi

(
tL
)
Wmin.

Suppose for contradiction that g is an optimal mechanism with P g
i > 0 at µ. Incentive

compatibility requires that pgi (t) = P g
i for all t ∈ supp(µi). Therefore, for each t ∈ supp(µi),

we can find θt, at such that θti = t and ati = 1, µ(θt) > 0 and g (θt) [at] > 0. Choose ε > 0

such that

ε < min
t∈Θi

g (θt) [at]

µ−i
(
θt−i
) .

Now consider the following alternative mechanism g′:

g′ (θ) [a] =


g (θ) [a]− ε

µ−i(θ−i)
if (θ, a) = (θt, at) for some t ∈ supp(µi)

g (θ) [a] + ε
µ−i(θ−i)

if (θ, a) =
(
θt,
(
0, at−i

))
for some t ∈ supp(µi)

g (θ) [a] otherwise

To verify that g′ is incentive compatible note that for each t ∈ supp(µi)

pg
′

i (t) = pgi (t)− ε = P g
i − ε.

The payoff difference to the principal between g′ and g is given by:

V (g′)− V (g) =
∑

t∈supp(µi)

µ
(
θt
)
ε

1

µ−i
(
θt−i
) (V (θt, (0, at−i))− V (θt, at)) .

= −
∑

t∈ΘH
i ∩supp(µi)

ε
(
µi (t)V

(
θt, at

)
− V

(
θt,
(
0, at−i

)))
+

∑
t∈ΘL

i ∩supp(µi)

εµi (t)
(
V
(
θt,
(
0, at−i

))
− V

(
θt, at

))

≥ ε

− ∑
t∈ΘH

i ∩supp(µi)

µi (t)Wmax +
∑

t∈ΘL
i ∩supp(µi)

µi (t)Wmin


≥ ε

(
−
(
1− µi

(
tL
))
Wmax + µi

(
tL
)
Wmin

)
> 0.
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And we have violated the optimality of g which gives us our desired contradiction, which

proves that P g
i = 0 as desired.

We can use a similar argument to prove the second part of the proposition and find an

appropriate MH . Choose any tH ∈ ΘH
i and define

Wmax = max
θ,a−i|θi∈ΘL

i

{V (θ, (0, a−i))− V (θ, (1, a−i))}

Wmin = min
θ,a−i|θi∈ΘL

i

{V (θ, (1, a−i))− V (θ, (0, a−i))} .

Define

MH =
Wmax

Wmin +Wmax

.

It is easy to verify that MH ∈ (0, 1), and assume that µ
(
tH
)
> MH which is equivalent to

0 < −
(
1− µ

(
tH
))
Wmax + µ

(
tH
)
Wmin.

Now suppose for contradiction that an optimal mechanism takes action 1 on agent i with

probability less than 1. Similar to above, we then construct an alternative mechanism g′

which slightly raises the probability of action 1 on agent i, and show that it delivers a higher

payoff than the original mechanism. Hence we contradict the optimality of g and are done.

B.7. Proof of Proposition 5

Let θL and θH be the shared smallest and highest type of all the agents. Fix any prior

µ, and suppose g does not exhibit meritocracy at µ, which means there exists j, k such that

µj >FOSD µk and P g
j < P g

k . For any ε ∈ R and any agent i, define µεi ∈ ∆Θi as

µεi (θi) :=


µi (θi)− ε if θi = θH

µi (θi) + ε if θi = θL

µi (θi) otherwise

.

By the fact that we have µj >FOSD µk, we can fix an ε > 0 small enough so that µj >FOSD

µεj >FOSD µ−εk >FOSD µk, and moreover µεj and µ−εk are both well defined. That we can find

such an ε uses the fact that we defined a strict notion of first-order stochastic dominance

instead of the standard notion. Define

M := 1 +
ε
(
1− P g

j

)
P g
k

4n
,
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and it is clear that M > 1. Fix any symmetric principal payoff function with complemen-

tarities below degree M at Θ. We want to show g is not optimal. For conciseness we set

L = Xi(θ
L, 1) and H = Xi(θ

H , 1) for every agent i. Also we set X0 = Xi(θi, 0) for any agent

i and any θi ∈ Θi. Let
−→
L ∈ Rn be the vector assigning production L to every agent and let

−→
L −i indicate assigning production L to every agent except i. Define

X := {X ∈ Rn|∃θ, a such that X = X (θ, a)} .

For any agent i and µi ∈ ∆Θi define

Ui (µi) :=
∑
θi∈Θi

µi (θi)
(
W (Xi (θi, 1) ,

−→
L −i)−W (X0,

−→
L −i)

)
.

Our symmetry assumptions ensure that Ui (·) = Uj (·) for all i, j. Therefore, if µi >FOSD µj,

then Ui (µi) > Uj (µj).

For any X,X ′ ∈ X the definition of complementarities below degree M imply

W (X ∨X ′) +W (X ∧X ′) ≤ W (X) +MW (X ′)− (M − 1)W (X ∧X ′) .

For any X ∈ X , repeatedly applying the previous inequality yields

W (X) + (n− 1)W (
−→
L ) ≤ − (M − 1) (n− 1)W (

−→
L ) +W (Xn,

−→
L −n) +M

n−1∑
i=1

W (Xi,
−→
L −i)

≤ − (M − 1)nW (
−→
L ) +M

n∑
i=1

W (Xi,
−→
L −i).

The second inequality uses the monotonicity ofW and the fact thatXn ≥ L. And rearranging

the above inequality yields that for any X ∈ X :

W (X) ≤ − (Mn− 1)W (
−→
L ) +M

n∑
i=1

W (Xi,
−→
L −i).

Using the supermodularity of W and a similar sequence of steps we can derive that for

any X ∈ X :

W (X) ≥ − (n− 1)W (
−→
L ) +

n∑
i=1

W (Xi,
−→
L −i).
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Let g′ be any incentive compatible mechanism at µ. Let V (g′) be the payoff to the

principal from g′. The inequalities above can be used to derive that

V (g′) ≤ − (Mn− 1)W (
−→
L ) +MnW (X0,

−→
L −1) +M

n∑
i=1

P g′

i Ui (µi) .

We can also derive that

V (g′) ≥ − (n− 1)W (
−→
L ) + nW (X0,

−→
L −1) +

n∑
i=1

P g′

i Ui (µi) .

Deriving these bounds makes use of the symmetry of W as well as the the fact that P g′

i =

pg
′

i (θi) for all θi , which follows from the incentive compatibility of g′.

Now take the case that Uj
(
µεj
)
≥ 0, and we have

Uj (µj) = Uj
(
µεj
)

+ ε
(
W (H,

−→
L −j)−W (

−→
L )
)

≥ ε
(
W (H,

−→
L −j)−W (

−→
L )
)

.

And by definition, for i any we have

Ui (µi) ≤ W
(
H,
−→
L −i

)
−W (

−→
L ).

Let g′ be any incentive compatible mechanism such that P g′

i = P g
i for all i 6= j and P g′

j = 1.

Using the bounds we derived earlier and our definition of M we have

V (g′)− V (g) ≥ −n (M − 1)
(
W (X0,

−→
L −1)−W (

−→
L )
)
− (M − 1)

∑
i 6=j

P g
i Ui (µi) +

(
1− P g

j

)
Uj (µj)

≥ −
ε
(
1− P g

j

)
P g
k

4

(
W (X0,

−→
L −1)−W (

−→
L )
)
−
ε
(
1− P g

j

)
P g
k

4

(
W
(
H,
−→
L −i

)
−W (

−→
L )
)

+
(
1− P g

j

)
ε
(
W
(
H,
−→
L −j

)
−W (

−→
L )
)

≥
(
1− P g

j

)
2

ε
(
W
(
H,
−→
L −j

)
−W (

−→
L )
)

> 0.

Therefore, g′ has a strictly higher payoff than g, and g cannot be optimal.
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Now take the case where Uj
(
µεj
)
< 0 which implies Uk

(
µ−εk
)
< 0 and therefore that

Uk (µk) = Uk
(
µ−εk
)
− ε

(
W (H,

−→
L −k)−W (

−→
L )
)

≤ −ε
(
W (H,

−→
L −j)−W (

−→
L )
)

.

Let g′ be any incentive compatible mechanism such that P g′

i = P g
i for all i 6= k and P g′

k = 0.

And a similar sequence of inequalities to what we used above will show g′ gives a strictly

higher payoff than g, and hence g cannot be optimal. And that finishes the proof. �

C. Proofs from Section 6 (For Online Publication)

C.1. Proof of Theorem 5

We make use of the following lemma the proof of which can be found in section C.1.1.

Lemma 11. Let µ ∈ ΥI and µ′ ∈ Υp such that µ = Iµ
′
. Then any coordination mechanism

that is incentive compatible at µ is incentive compatible at µ′.

Fix any µ ∈ ΥI and let µm → µ where µm ∈ Υp for each m. For every ε > 0, define

a perturbed version of the the principal’s payoff function, V ε, precisely as was done in the

proof of Theorem 2. For each ε > 0, let {gm,ε}∞m=1 be a sequence of mechanisms such that

gm,ε is optimal optimal at µm under payoff function V ε. Since G is compact, we can assume

without loss of generality that this sequence converges and set gε = limm→∞ g
m,ε. Since the

incentive constraints are a finite set of weak inequalities that move continuously with the

prior, the set of incentive compatible mechanisms must move upper hemicontinuously with

the prior. Hence it follows that gε is incentive compatible at µ. Now let Um,ε and U ε be the

optimal principal payoff at µm and µ respectively under V ε. Note that the payoff from gε

equals limm→∞ U
m,ε. We will show gε is optimal at µ under V ε, in other words that

lim
m→∞

Um,ε = U ε. (9)

Since gε is incentive compatible at µ, it is immediate that limm→∞ U
m,ε ≤ U ε. For each m and

ε, let hm,ε be an optimal mechanism at prior Iµ
m

under V ε with associated payoff Um,ε,I . We

know that hm,ε is a coordination mechanism since in the proof of Theorem 2 we established

that all optimal mechanisms are coordination mechanisms under V ε at any independent

prior. Therefore by Lemma 11, hm,ε is incentive compatible at µm, which implies that for
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each m : Um,ε ≥ Um,ε,I , which further implies limm→∞ U
m,ε ≥ limm→∞ U

m,ε,I . Without loss

of generality we can suppose hm,ε converges since G is compact, and let hε = limm→∞ h
m,ε

. And the fact that µm → µ and µ ∈ ΥI implies Iµ
m → µ. In section B.3, we proved the

optimal mechanism moves upper hemicontinuously in the domain ΥI , which implies hε is

optimal at µ under V ε, and therefore

lim
m→∞

Um,ε ≥ lim
m→∞

Um,ε,I = U ε.

We have now shown Equation (9), which implies that gε is optimal at µ under V ε and we

know that gε is a coordination mechanism because in the proof of Theorem 2 we showed that

all optimal mechanism under V ε at a prior in ΥI are coordination mechanisms . Now define

g := limε→0 g
ε and gm := limε→0 g

m,ε. By the theorem of the maximum, the set of optimal

mechanisms moves upper hemicontinuously in ε, and, hence, g is an optimal coordination

mechanism under V at µ and gm is an optimal mechanism under V at µm for each m.

Moreover, by exchanging the order of the limits we get limm→∞ g
m = g, as desired.

C.1.1. Proof of Lemma 11

Let µ ∈ ΥI and µ′ ∈ Υp such that µ = Iµ
′
. Let g be any incentive compatible coordination

mechanism at µ. Fix a single agent i and we will show µ is incentive compatible at µ′ for

agent i. We will assume nothing specific about agent i, so that incentive compatibility for

the rest of the agents can be proved identically. Mechanism g is incentive compatible for

agent i at µ′ if and only if for (t, t′) = (L,H) or (t, t′) = (H,L) the following inequality

holds: ∑
θ−i∈Θ−i

gi (t, θ−i)µ
′ (θ−i|θi = t) ≥

∑
θ−i∈Θ−i

gi (t
′, θ−i)µ

′ (θ−i|θi = t) .

We know that g is incentive compatible at µ which implies that∑
θ−i∈Θ−i

gi (H, θ−i)µ (θ−i) =
∑

θ−i∈Θ−i

gi (L, θ−i)µ (θ−i) .

Hence it suffices for us to show that for (t, t′) = (L,H) or (t, t′) = (H,L)∑
θ−i∈Θ−i

gi (t, θ−i)µ
′ (θ−i|θi = t) ≥

∑
θ−i∈Θ−i

gi (t, θ−i)µ (θ−i) , and

∑
θ−i∈Θ−i

gi (t
′, θ−i)µ (θ−i) ≥

∑
θ−i∈Θ−i

gi (t
′, θ−i)µ

′ (θ−i|θi = t) .
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We will only treat the case where (t, t′) = (H,L); the other case follows mutatis mutandis.

Since we only have two types per agent, the orders �∗ and ≥ coincide. Therefore, by

definition of a coordination mechanism, gi (L, θ−i) is decreasing in θ−i and gi (H, θ−i) is

increasing in θ−i. And since µ′ ∈ ΥP , we know that µ−i (θi|θi = H) first-order stochastically

dominates µ (θ−i) , and µ (θ−i) first-order stochastically dominates µ−i (θi|θi = L). Standard

properties of stochastic dominances then imply the required inequalities. (See page 266 of

Shaked and Shanthikumar (2007) for details).

C.2. Proof of Theorem 6

Fix any µ ∈ ΥI and let g to be an optimal coordination mechanism at µ. Let θH be the

state where every agent is type H, and let θL be the state where every agent is type L. Let

Θn−1 be the set of n states in which exactly n− 1 agents are type H. Let Θ1 be the set of

n states in which exactly 1 agent is type H type.

For any ε > 0 define vε ∈ Υ as

νε (θ) =


µ (θ) + ε if θ = θH or θ = θL

µ (θ)− ε
n

if θ ∈ Θn−1 or θ ∈ Θ1

µ (θ) otherwise

.

Because µ is assumed to be full support, there exists ε̄ > 0 such that the vε (θ) > 0 for all

θ ∈ Θ and ε ∈ (0, ε̄). Define the set ΥO ⊆ Υ as the set of νε for all ε ∈ (0, ε̄). Clearly µ is

on the boundary of ΥO and Iv = µ for any v ∈ Υ.

Since g is incentive compatible at µ, for any agent i and any θi, θ
′
i ∈ Θi∑

θ−i

gi (θi, θ−i)µ (θi, θ−i|θi) ≥
∑
θ−i

gi (θ
′
i, θ−i)µ (θi, θ−i|θi) .

Let v ∈ ΥO. We want to show g is strictly incentive compatible at v, for which it suffices to

show that for each agent i and θ′i 6= θi:∑
θ−i

gi (θi, θ−i) ν (θi, θ−i|θi) ≥
∑
θ−i

gi (θi, θ−i)µ (θi, θ−i|θi) ,

∑
θ−i

gi (θ
′
i, θ−i)µ (θi, θ−i|θi) ≥

∑
θ−i

gi (θ
′
i, θ−i) ν (θi, θ−i|θi) ,

with at least one of the above being strict.
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We will only treat the case that θi = H; the case where θi = L would be similar. Then

the first of the desired inequalities holds strictly if and only if:∑
θ−i

gi (H, θ−i) (ν (H, θ−i|θi)− µ (H, θ−i|θi)) > 0.

Using the fact that Iv = µ we can rewrite the above inequality as∑
θ−i

gi (H, θ−i) (ν (H, θ−i)− µ (H, θ−i)) > 0,

⇔ gi
(
θH
)
ε− gi

(
H, θL−i

) ε
n
−

∑
θ∈ΘHL|θi=H

gi (θ)
ε

n
> 0.

And this inequality holds due to the fact that g is a non-trivial coordination mechanism. In

particular that g is a coordination mechanism implies

gi
(
θH
)
≥ gi (θ) ,

for all θ ∈ Θn−1 such that θi = H. And that g is non-trivial implies

gi
(
θH
)
> gi

(
H, θL−i

)
.

The second of the desired inequalities holds weakly if and only if:∑
θ−i

gi (L, θ−i) (ν (H, θ−i|θi)− µ (H, θ−i|θi)) ≥ 0,

⇔ − gi
(
L, θH−i

)
ε+ gi

(
L, θL−i

) ε
n

+
∑

θ∈Θ1|θi=L

gi (θ)
ε

n
≥ 0.

By the same logic as before, this inequality holds since g is a coordination mechanism. By

definition, ΥO ⊆ Υp, which implies, using an argument similar to the proof of Theorem 5,

that there exists Υ′O ⊂ ΥO such that for any v ∈ Υ′O :

max
g′∈G

V (g′|ν) < V (g|ν) + ε.

C.3. Proof of Theorem 7

We first formally define our coalition-proof mechanism. For any ε > 0, we define gε :

Θn × Zn+ → ∆A. The combined reports of the agents are given by (T, z) ∈ Θn × Zn+, where

T gives all the agents’ report about the total type profile and z is the vector of integers used
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in the betting game. We let Ti ∈ Θ and Tij ∈ Θj denote agent i’s report on the total type

profile and agent j’s type, respectively. We also let zi denote the integer reported by agent

i. Let diag (T ) = (T11, T22, ..., Tnn) be the diagonal vector of each agent’s report about his

own type.

With probability 1 − ε, gε plays the optimal direct mechanism using reports diag (T ),

and with probability ε, gε plays a betting mechanism instead. The betting mechanism is

described by gb : Θn × Zn+ → ∆A. We let gbi (T, z) denote the marginal probability that the

betting mechanism takes action 1 on agent i following report (T, z). We define gb so that

gbi (T, z) =


arg minθ−i∈Θ−i

µ−i (θ−i) if zi = 0

(µ−i (Ti,−i))
−1 arg minθ−i∈Θ−i

µ−i (θ−i) if zi > maxj 6=i zj, and diag (T ) = Ti

0 otherwise

.

The above definition only pins down the marginal probability of acting on each agent at each

state. Since the betting game exists only to incentivize the agents, the marginal probabilities

are all that matter. But to be concrete, we could fully define gb by specifying that the actions

are taken independently across agents within every state

We now show that gε is coalition-proof for all ε > 0. Fix ε ∈ (0, 1), and suppose for

contradiction that ({σi}ni=1 , I) is a valid coalition deviation for gε. For any ti ∈ Θi , let

ρi (ti) denote the probability that agent i reports his own type to be t under strategy σi. For

any t−i ∈ Θ−i, we will define ρ−i (t−i) :=
∏

j 6=i ρj (tj) . For each agent i define

Di := max
θi∈Θi

(ρi (θi)− µi (θi)) .

Since ρi(θi) and µi(θi) are both non-negative and sum to 1 over θi ∈ Θi, we know that Di ≥ 0

for all i. Let S ⊆ I be the set of all agents with Di > 0.

First suppose that |S| ≤ 1. If S is non-empty, then let i ∈ S. Otherwise let i ∈ I. In

either case, for any j 6= i we have Dj = 0 which implies ρj (θj) = µj (θj) for all θj ∈ Θj.

Since types are drawn independently, for any possible strategy i could employ he receives

the same payoff as if each other agent was reporting their own type truthfully. And since

the optimal direct mechanism is incentive compatible, truthfully reporting his own type is

a best response for agent i. Moreover, if agent i gives any report zi > 0, his payoff from

gb is bounded from above by what he would get if he always had the highest zi. At that
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upper-bound his expected payoff from gb when reporting t ∈ Θ−i is

µ−i (t) (µ−i (t))
−1 arg min

θ−i∈Θ−i

µ−i (θ−i) = arg min
θ−i∈Θ−i

µ−i (θ−i) ,

which is the same payoff from gb for setting zi = 0. Hence zi = 0 is a best response for agent

i. So we have established that truthful reporting and setting zi = 0 is a best response for

agent i, which means agent i receives the same payoff as he would in the truthful equilibrium.

But that contradicts condition (3) of the definition of a valid coalition deviation.

Hence it must be that |S| ≥ 2. For each i ∈ S there exists θ∗i ∈ Θi such that ρi (θ∗i ) >

µi (θ
∗
i ). Now fix any agent i ∈ I . Choose any t ∈ Θ−i such that tj = θ∗j for all j ∈ S which

implies ρj (tj) > µj (tj). And for all j /∈ S we have Dj = 0 and hence ρj (tj) = µj (tj). And

since S\ {i} is non-empty we have that ρ−i (t) > µ−i (t). Therefore:

ρ−i (t) (µ−i (t))
−1 arg min

θ−i∈Θ−i

µ−i (θ−i) > arg min
θ−i∈Θ−i

µ−i (θ−i) .

The left-hand side of the above inequality is the payoff agent i gets from the gb when reporting

t for the other agent’s types and when reporting the highest integer. And the right-hand

side of the inequality gives agent j’s payoff from reporting zj = 0. Therefore each agent in I

can profit by having the highest zi and making an appropriate bet t ∈ Θ−i. Therefore each

agent in I’s best response to {σi}ni=1 involves increasing zi until their probability of having

the strictly highest zi is one. However, we know there are at least two agents in I, and it is

impossible for two agents to have the strictly highest zi with probability 1. Hence any such

({σi}ni=1 , I) will violate condition (2) of the definition of coalition proof and we have ruled

out coalition deviations with |S| ≥ 2. And that covers all the possibilities and shows that gε

is coalition proof for all ε ∈ (0, 1).
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