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1 Introduction

In multi-sector, input-output economies with nominal rigidities, the first best allocation
is generically unattainable with monetary policy alone (Aoki, 2001; Woodford, 2003b,
2010; La’O and Tahbaz-Salehi, 2022). Even when shocks are exclusively technological,
as long as tax instruments are non-state-contingent, monetary policy can attain at most
a “third-best” allocation: one that features production inefficiency and an endogenous,
state-contingent labor wedge (La’O and Tahbaz-Salehi, 2022; Rubbo, 2023). Optimal
monetary policy in multi-sector economies thereby contrasts sharply to its one-sector
counterpart: in the standard New Keynesian (NK) model with technology shocks, the
first best is achievable with price level stabilization and a constant sales subsidy.

From this observation one might conclude that there are “missing” tax instru-
ments in the multi-sector, input-output NK framework. Indeed, it is clear that a state-
contingent labor income or consumption tax could eliminate the state-contingent labor
wedge. It is less clear, however, what tax instruments would restore production effi-
ciency. The heart of the problem is the following. In this class of models, monetary pol-
icy can target at most one price index. But with sector-specific technology shocks and
nominal rigidities, no price index can eliminate misallocation both within and across
sectors. To this end, finer-tuned fiscal instruments appear necessary.

But what instruments? And in what manner should they to be used? We address
these questions in this paper. Within a broad class of multi-sector NK models with
input-output linkages, and allowing for a rich set of fiscal instruments, we jointly char-
acterize optimal monetary and fiscal policy. Our main result is to demonstrate how dis-
tortionary taxation can be used to restore production efficiency and thereby circumvent
the problem faced by monetary policy. The tax scheme we engineer involves jointly sta-
bilizing all prices set by sellers while generating efficient movements in after-tax prices
faced by buyers.

In any environment with nominal rigidities, fiscal and monetary policy interact:
the efficacy and optimality of monetary policy depend on the details of fiscal policy.
The contribution of this paper is to thereby establish the theoretical benchmark of
sufficiently rich fiscal instruments within the class of multi-sector, input-output NK
economies. Our benchmark differs markedly from—and, in fact, constitutes the polar
opposite of—the standard benchmark of “inactive” fiscal policy in which subsidies are
used only to eliminate steady-state markups. As argued above, the distance between the
two benchmarks is small to non-existent in the one-sector NK framework but widens
with multiple sectors and intermediate good trade. Recent papers consider environ-
ments in the interior of this gap.

Prior to studying monetary policy in environments featuring restricted sets of “ac-
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tive” fiscal instruments, it would be useful to first understand the sufficiently rich fiscal
instruments benchmark. What are the missing fiscal tools that restricted sets may or
may not compensate for? Answering this question, characterizing these instruments,
and establishing this benchmark is what we do in this paper.

The Model and Results. Firms are linked to one another via an input-output network.
They produce goods using labor, capital, and intermediate inputs and are subject to
industry-level productivity shocks, demand shocks, and shocks to elasticities of substi-
tution (or markups). Following the NK framework, firms set prices and face Calvo price
rigidities; we allow the Calvo parameter to vary by sector. A representative household
consumes the final good, supplies labor, saves, and invests in capital. A government
finances exogenous public expenditure and sets fiscal and monetary policy jointly.

We take the standard Ramsey approach and assume the government has access to
a rich set of distortionary, linear tax instruments—including multiple types of sector-
specific, state-contingent tax rates—but cannot raise money with lump-sum taxation.
The latter restriction on fiscal instruments implies that full efficiency, i.e. the “first best,”
cannot be achieved; we later relax this restriction in an extension.

Our main analysis centers on implementation of the Ramsey optimum, which in our
economy coincides with the canonical Lucas and Stokey (1983) benchmark. We focus
on the Ramsey optimum for the following reason: this benchmark exhibits production
efficiency in the sense of Diamond and Mirrlees (1971); see Chari and Kehoe (1999).
Implementation of the Ramsey optimum therefore demonstrates how a sufficiently rich
set of fiscal instruments can restore production efficiency in this class of economies.

Our main theorem characterizes monetary and fiscal policy that jointly implement
the Ramsey optimum. Without loss of generality, we focus on implementations in which
monetary policy stabilizes the final good price level. Our characterization of optimal
fiscal policy yields the following six lessons:

1. The optimal tax structure achieves production efficiency. In order to do so, sector-
specific tax rates play two roles: they stabilize seller prices and generate efficient
fluctuations in after-tax prices.

2. Optimal sector-specific tax rates are state-contingent. They depend on the real-
ized nominal wage, sectoral technologies, and sectoral elasticities of substitution,
but they do not depend on sectoral demand shocks and government spending.
Optimal monetary and fiscal policy are invariant to the vector of price rigidities.

3. Regardless of the network structure, with N sectors production efficiency can be
attained with 2N sector-specific tax instruments: N sales taxes levied on sellers
and N sales taxes levied on buyers. Unlike in standard models with price flexibil-
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ity, taxes levied on sellers and on buyers when sellers face price rigidities are not
equivalent.

4. Sector-specific input taxes on labor, capital, and intermediate goods can substi-
tute for the seller-imposed sales taxes. In this implementation, intermediate good
input taxes are destination-specific but not origin-specific.

5. Sector-specific intermediate good and final good taxes can substitute for the
buyer-imposed sales taxes. In this implementation, intermediate good input taxes
are origin-specific but not destination-specific.

6. Optimal sector-specific tax rates are independent of the availability of lump-sum
taxes.

What roles do the sector-specific tax instruments play in restoring production effi-
ciency? Lesson 1 answers this question. Production efficiency requires no misalloca-
tion within and across sectors—a goal unattainable with monetary policy alone. The
tax scheme we engineer involves jointly stabilizing seller prices while simultaneously
generating efficient movements in after-tax prices faced by buyers. This tax scheme
eliminates misallocation within and across sectors, ensuring efficient production of the
final good.

These dual roles require tax state-contingency. Lesson 2 tells us what dimensions of
the state space the optimal sector-specific taxes are contingent upon. It also answers
the more practical question of what information is needed by the fiscal authority in
order to administer such taxes. We find that the optimal tax rates are contingent on
realized marginal costs and elasticities of substitution or, more generally, desired mark-
ups. While this is arguably a heavy information burden for the fiscal authority, what is
perhaps more surprising are the dimensions of the state space the optimal tax rates are
not contingent upon. Conditional on realized marginal costs, sector-specific tax rates
are independent of sector-specific demand and government spending.

We find that for any implementation of the Ramsey optimum, tax rates are inde-
pendent of the vector of sectoral price rigidities (Calvo parameters). The irrelevance
of sectoral price rigidities for optimal fiscal and monetary policy, even when the opti-
mal allocation does not coincide with the first best, generalizes previously-established
results by Correia, Nicolini and Teles (2008) to multi-sector NK economies with input-
output linkages.

Lessons 1 and 2 are general in that they apply to all implementations of the Ramsey
optimum. Moving on, we explore specific tax implementations. The first is the “least
instruments” implementation: we show that, irrespective of the input-output structure,
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with N>1 sectors and two roles for taxes, 2N sector-specific taxes can implement the
Ramsey optimum (Lesson 3). This implementation requires N sales taxes levied on
sellers and N sales taxes levied on buyers. We thus exploit a non-equivalence between
sales taxes collected on sellers and on buyers when sellers face nominal rigidities, as
highlighted by Poterba, Rotemberg and Summers (1986).

Despite this particular tax non-equivalence, we present two more implementations
that showcase two different tax equivalences. In the first, we assume that the seller-
imposed sales tax is unavailable. The Ramsey optimum can still be implemented:
sector-specific taxes on labor, capital, and intermediate good inputs can substitute for
the missing seller-imposed sales tax (Lesson 4). In the second, we assume that the
buyer-imposed sales tax instrument is unavailable. The Ramsey optimum can again
be implemented: sector-specific intermediate good and final good taxes can substitute
for the missing buyer-imposed sales tax (Lesson 5).

Whether or not the first-best is attainable depends on the availability of lump-sum
tax instruments. A question arises as to whether the availability of lump-sum taxa-
tion alters the optimal sector-specific tax instruments. We show that the answer is no:
whether or not the Ramsey optimum coincides with the first-best changes only the op-
timal aggregate tax rates—it has no effect on the optimal sector-specific tax rates (Les-
son 6). The irrelevance of lump-sum taxation for the optimal sector-specific tax rates
drives home the point that their main function is to restore within-period production
efficiency.

Related literature. This paper demonstrates how a rich set of distortionary tax instru-
ments can be used to implement the Ramsey optimum and completely circumvent the
problem faced by monetary policy. In this sense, our paper is closest in spirit to Correia,
Nicolini and Teles (2008) and Correia, Farhi, Nicolini and Teles (2013). Our contribution
vis-à-vis their work is to extend this insight to multi-sector, input-output NK economies
and, specifically, to characterize within this class of models the sector-level tax rates that
attain production efficiency.

Our results apply to a broad class of multi-sector NK models with or without input-
output linkages. Our framework is fairly general in that it can flexibly nest the economic
environments found in Erceg, Henderson and Levin (2000); Aoki (2001); Mankiw and
Reis (2003); Benigno (2004); Huang and Liu (2005); Woodford (2010); Eusepi, Hobijn and
Tambalotti (2011); Ozdagli and Weber (2017); Pastén, Schoenle and Weber (2020, 2024);
Ghassibe (2021); La’O and Tahbaz-Salehi (2022); Rubbo (2023); Bouakez, Rachedi and
Santoro (2023); Afrouzi and Bhattarai (2023); Xu and Yu (2024), among others.1 Relative

1Related, too, is the work of Faria-e-Castro (2021), Guerrieri et al. (2022), Baqaee and Farhi (2022), and
Rubbo (2024). These papers focus on disaggregated, multi-sector NK models with and without input-
output linkages but feature some form of household heterogeneity. For this reason, our model does not
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to most multi-sector NK models, we add physical capital as a factor of production.
As we have noted, the contribution of our paper vis-à-vis the multi-sector, input-

output NK literature is to establish a benchmark in which the set of tax instruments
is sufficiently rich to achieve production efficiency. A standard benchmark in this lit-
erature is to assume non-state-contingent sales subsidies that eliminate steady-state
markups (as in Woodford, 2003b; Gaĺı, 2008). Recent papers, however, move past this
benchmark and consider the implications of sector-specific and state-contingent gov-
ernment purchases: see Proebsting (2022); Cox et al. (2024); Flynn et al. (2024); Bouakez
et al. (2024) as well as Ramey and Shapiro (1998). In a taxonomy of models, one can
think of these environments as featuring a set of fiscal instruments that is strictly larger
than in the standard benchmark, yet restricted relative to our sufficiently rich fiscal
instrument benchmark.

We complement this growing body of work but focus instead on linear tax instru-
ments. Furthermore, an understanding of both benchmarks—or, both extremes—is
useful for interpreting the interior.

Layout. This paper is organized as follows. In Section 2 we describe the economic
environment; in Section 3 we characterize equilibria. In Section 4 we state and solve the
Ramsey problem, and in Section 5 we study its implementation. In Section 6 we explore
several specific implementations that illustrate the main results of the paper. In Section
7 we conclude. All proofs are found in the Appendix.

2 The Environment

Time is discrete, indexed by t = 0, 1, . . . ,∞. We denote the aggregate state at time t by
st ∈ S where S is a finite set. We let st = {s0, ..., st} ∈ St denote a history of states up
to and including st. We let µ(st|st−1) denote the probability of history st conditional on
st−1, and with slight abuse of notation we let µ(st) denote the unconditional probability
of history st.

There is a representative household with time-separable utility:

∞∑
t=0

∑
st

βtµ(st)U(C(st), L(st)), (1)

explicitly capture these environments. In another related vein, Ghassibe and Ferrari (2024) develop and
analyze a multi-sector, production network model with endogenous price rigidities due to menu costs.
Our model instead features exogenous nominal rigidities: in our baseline we assume Calvo pricing, but
our model can also accommodate informational frictions. Finally, Qiu, Wang, Xu and Zanetti (2024) study
monetary policy in a small open economy with domestic and cross-border input-output linkages. Our
model is closely related but features no international trade.
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with β ∈ (0, 1), where C(st) and L(st) denote the household’s consumption basket and
labor supply at date t, history st. The function U satisfies the typical regularity condi-
tions: it is continuous, twice-differentiable, strictly increasing and strictly concave in
(Ct,−Lt), and satisfies Inada conditions. Throughout, we let UC(s

t) ≡ ∂U(·)/∂C(st) and
UL(s

t) ≡ ∂U(·)/∂L(st).
The household supplies labor, consumes, saves, and invests in capital. The house-

hold’s nominal budget constraint at time t, history st is given by:

(1 + τC(st))P(st)C(st) + P(st)H(st) +B(st) +
∑

st+1|st
Q(st+1|st)Z(st+1|st)

≤ (1− τL(st))W (st)L(st) + (1− τK(st))R(st)K(st−1) + (1 + ι(st−1))B(st−1) + Z(st|st−1)
(2)

where P(st) is the price of the final good, W (st) is the nominal wage, and R(st) is the
nominal rental rate on capital. The household faces taxes on consumption, labor in-
come, and capital income, denoted by τC(st), τL(st), and τK(st), respectively.

The household can borrow and save via three separate instruments. The first is a
one-period, risk-free nominal bond, B(st), which the household can buy or sell at time
t, history st, and which pays (1+ ι(st))B(st) units of money one period later. The house-
hold’s debt holdings are bounded by B(st) ≥ −D for some large constant D. We let B−1

denote initial holdings of government debt. The second instrument is a complete set of
state-contingent Arrow securities, indexed by st+1|st. We let Q(st+1|st) denote the price
at time t, history st, of an Arrow security that pays 1 unit of money in t + 1 if st+1 is
realized and 0 otherwise. The corresponding quantity purchased of this Arrow security
is denoted by Z(st+1|st).

Third, the household can invest in capital; we let H(st) denote the household’s in-
vestment in capital at date t, history st. The law of motion of capital is given by:

K(st) = (1− δ)K(st−1) +H(st), (3)

where δ ∈ (0, 1] is the rate of depreciation. We assume the household is endowed with
K−1 > 0 initial units of capital at time 0. The household solves the following problem.

Household’s Problem. Given initial capital and bond holdings, K−1

and B−1, the household chooses a complete contingent plan,
{C(st), L(st), K(st), H(st), B(st), (Z(st+1|st))st+1}t≥0,st∈St , in order to maximize its
lifetime expected utility (1) subject to (2), (3), and B(st) ≥ −D, for all t ≥ 0, st ∈ St.

Intermediate good production. Production takes place in a finite set of N>1 indus-
tries indexed by i ∈ I ≡ {1, . . . , N}. Each industry consists of two types of firms: (i)
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a measure one continuum of monopolistically-competitive, differentiated good firms,
indexed by m ∈ [0, 1], and (ii) a perfectly-competitive producer that aggregates the
industry’s differentiated goods and produces a uniform sectoral good. We begin by
describing the latter.

Sectoral good production. Within each industry i ∈ I, a perfectly-competitive firm
produces a uniform, sectoral good using a constant returns to scale, constant elasticity
of substitution (CES) production technology over the sector’s differentiated varieties,
m ∈ [0, 1], given by:

Yi(s
t) =

[� 1

0

ymi (s
t)

θi(st)−1

θi(st) dm

] θi(st)

θi(st)−1

, (4)

where θi(st) > 1 denotes the elasticity of substitution across varieties in state st, and
ymi (s

t) denotes the quantity purchased of variety m. The sectoral good producer takes
prices as given and maximizes profits, given by:

Pi(s
t)Yi(s

t)− (1 + τ̂ yi (s
t))

� 1

0

pmi (s
t)ymi (s

t)dm

where Pi(s
t) is the price of sectoral good i, τ̂ yi (s

t) is the sales tax the firm pays on its
purchases of the differentiated varieties, and pmi (s

t) is the price of differentiated good m.
Profit maximization yields the following CES demand curves:

ymi (s
t) =

[
(1 + τ̂ yi (s

t))pmi (s
t)

Pi(st)

]−θi(s
t)

Yi(s
t). (5)

By constant returns to scale, this producer makes zero profits.2 The good produced by
sector i can be used for final good purposes or as an intermediate input to production.

Differentiated goods production. Within each industry i ∈ I, a measure one con-
tinuum of monopolistically-competitive firms use a common constant-returns-to-scale
technology to transform labor, capital, and intermediate inputs into differentiated vari-
eties. The production function of firm m in industry i is given by

ymi (s
t) = Ai(st)Fi(ℓ

m
i (s

t), km
i (s

t), xm
i1(s

t), . . . , xm
iN(s

t)), (6)

where ymi (s
t) is firm output, ℓmi (s

t) and km
i (s

t) are the firm’s labor and capital inputs, and
for every j ∈ I, xm

ij (s
t) is the firm’s usage of intermediate good j. We let Ai(st) denote

an industry-specific productivity shock. The production function Fi is homogeneous of
degree one. Throughout, we assume that labor is an essential input for the production

2We include this producer to ensure that a homogeneous sectoral good is produced while also allowing
for monopolistic competition among the differentiated good firms.
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technology of all goods, in the sense that Fi(0, ki, xi1, . . . , xiN) = 0 and that ∂Fi/∂ℓi > 0

whenever all other inputs are used in positive amounts. Unless otherwise noted—and
without much loss of generality—we also assume that ∂Fi/∂ki > 0 and that ∂Fi/∂xij > 0

for all pairs i and j. The nominal profits of firm m in industry i are given by:

πm
i (s

t) =(1− τ yi (s
t))pmi (s

t)ymi (s
t)− (1 + τ ℓi (s

t))W (st)ℓmi (s
t)− (1 + τ ki (s

t))R(st)km
i (s

t)

−
∑
j∈I

(1 + τxij(s
t))Pj(s

t)xm
ij (s

t),

where pmi (s
t) is the price charged by firm m and Pj(s

t) is price of intermediate good j.
The firm faces a sector-specific sales tax, τ yi (s

t), sector-specific labor and capital input
taxes, τ ℓi (s

t) and τ ki (s
t), and sector-input-specific intermediate good taxes, τxij(s

t), for
every input j ∈ I.

The differentiated good firms are price-setters and are subject to nominal pricing
frictions. We model the nominal rigidity à la Calvo, as in Woodford (2003b). In any given
period, a firm m in sector i can adjust its price with probability 1 − αi. If at time t the
firm can adjust its price, the firm solves the following maximization problem:

p∗i (s
t) ∈ argmax

p

∞∑
v=0

∑
st+v

(αiβ)
v UC(s

t+v)

(1 + τC(st))P(st+v)
πi(s

t+v; p)µ(st+v|st) (7)

subject to demand (5) and technology (6). In this problem, πi(s
t+v; p) are the firm’s

per-period profits in history st+v given price p and βv UC(st+v)
(1+τC(st))P(st+v)

is the household’s
stochastic discount factor. We call p∗i (s

t) the reset price.
A firm m in sector i that is allowed to adjust its price in history st sets its price equal

to the reset price: pmi (s
t) = p∗i (s

t). All other firms in sector i charge a price equal to their
previous period’s price: pmi (s

t) = pmi (s
t−1). We assume that at time 0, the firms in sector i

that do not change their price, begin with a price of pmi,0 = κi, where κi > 0 is an arbitrary,
strictly-positive scalar. We let κ ≡ (κi) ∈ RN

+ denote the vector of initial prices.
Remark. The tax rates τ yi (s

t) and τ̂ yi (s
t) are sales taxes on the purchase of the differ-

entiated varieties in sector i. These taxes differ only in which party is legally obligated
to pay: τ yi (s

t) is the sales tax paid by sellers, while τ̂ yi (s
t) is the sales tax paid by buyers.

Final good production. A perfectly-competitive firm produces the final good, Y(st).
This firm operates a constant returns to scale technology, given by:

Y(st) = F(V1(st)X
f
1 (s

t), . . . , VN(st)X
f
N(s

t)), (8)

where Xf
i (s

t) is the quantity of sectoral good i used in final good production and Vi(st)

is a sector-specific demand shock. We assume that F : RN
+ → R+ is homogeneous of

8



degree one, twice-differentiable in all arguments, has positive and diminishing marginal
products, satisfies F(0) = 0, and satisfies Inada conditions. The final good firm maxi-
mizes profits, given by: P(st)Y(st) −

∑
i∈I(1 + τ fi (s

t))Pi(s
t)Xf

i (s
t), where τ fi (s

t) is a final
good tax on the purchase of sectoral good i. Under constant returns to scale, the price
of the final good is equal to the firm’s marginal cost of its cost-minimizing bundle:

P(st) = min
(Xf

1 (s
t),...,Xf

I (s
t))

∑
i∈I

(1 + τ fi (s
t))Pi(s

t)Xf
i (s

t) (9)

subject to F(V1(st)X
f
1 (s

t), . . . , VN(st)X
f
N(s

t)) = 1. The final good can be used for private
consumption, government consumption, or capital investment.

The government and market clearing. The government consists of a consolidated
monetary and fiscal authority with a commitment technology. The government fi-
nances government spending with state-contingent debt, non-state-contingent debt,
and with distortionary taxation. Its nominal period-t budget constraint is given by:

(1 + ι(st−1))B(st−1) + Z(st|st−1) + P(st)G(st) = B(st) +
∑

st+1|st
Q(st+1|st)Z(st+1|st) + T (st)

(10)
where G(st) is the exogenous level of government consumption in state st. We let T (st)

denote the nominal level of total tax revenue:

T (st) ≡τC(st)P(st)C(st) + τL(st)W (st)L(st) + τK(st)R(st)K(st−1) +
∑
i∈I

τ fi (s
t)Pi(s

t)Xf
i (s

t)

+
∑
i∈I

(
τ yi (s

t) + τ̂ yi (s
t)
) � 1

0

pmi (s
t)ymi (s

t)dm+
∑
i∈I

τ ℓi (s
t)W (st)Li(s

t)

+
∑
i∈I

τ ki (s
t)R(st)Ki(s

t) +
∑
i∈I

∑
j∈I

τxij(s
t)Pj(s

t)Xij(s
t) +

∑
i∈I

Πi(s
t)

where, for every i ∈ I, Li(s
t) =

�
ℓmi (s

t)dm and Ki(s
t) =

�
km
i (s

t)dm denote total labor
and capital usage in sector i, and Xij(s

t) =
�
xm
ij (s

t)dm denotes total intermediate input
usage of good j in sector i. Similarly, for every i ∈ I, we let Πi(s

t) =
�
πm
i (s

t)dm denote
total sector-level profits. As in Correia, Nicolini and Teles (2008) and Angeletos and La’O
(2020), we assume a 100% dividend (profit) tax on the differentiated good firms. In order
to fully rule out replication of lump-sum taxes, we require further restrictions on period
zero policies; we discuss these restrictions in Section 4 when we introduce the Ramsey
problem. Finally, we abstract from the zero lower bound on the nominal interest rate.3

3Ignoring the ZLB is done purely out of convenience and is not central to our results: our model fea-
tures state-contingent consumption taxes and hence we could implement “unconventional fiscal policy”
and circumvent the ZLB as in Correia, Farhi, Nicolini and Teles (2013).
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We assume that the monetary authority directly controls nominal aggregate demand
according to the following ad hoc, cash-in-advance constraint: M(st) = P(st)C(st).
The monetary authority can freely choose M(st) > 0 in every history. By modeling the
monetary instrument in this way, as opposed to the nominal interest rate, we avoid well
known issues of indeterminacy.

For every t ≥ 0, st ∈ St, market clearing in the sectoral goods markets, the aggregate
labor market, and the aggregate capital market, imply:

Yi(s
t) = Xf

i (s
t) +

∑
j∈I

Xji(s
t), ∀i ∈ I; L(st) =

∑
i∈I

Li(s
t); and K(st−1) =

∑
i∈I

Ki(s
t). (11)

Market clearing in the final good for every t ≥ 0, st ∈ St implies:

Y(st) = C(st) +H(st) +G(st). (12)

2.1 Timing and Equilibrium Definition

At each date t, Nature draws the state st ∈ S according to probability distribution µ. The
aggregate state determines sectoral productivities, sectoral elasticities of substitution,
final good demand, and aggregate government spending. Formally, we define functions
Ai : S → R+, θi : S → R+, and Vi : S → R+, for all i ∈ I, and G : S → R+, as exogenous
mappings from the state space to these outcomes.

We assume that the state st ∈ S is common knowledge in period t. In addition, Na-
ture randomly selects which intermediate-good firms are able to set prices that period.
Once prices are set, the sectoral aggregator firm for each sector purchases differentiated
goods and produces the uniform sectoral good, the final good firm purchases sectoral
goods and produces the final good, and the representative household makes its con-
sumption, investment, and labor supply decisions. Intermediate-good firms purchase
inputs and produce output in order to meet realized demand. All allocations adjust so
that supply equals demand and markets clear.

Throughout, we denote an allocation in this economy by χ:

χ ≡{Y(st), C(st), L(st), K(st), H(st), ((Yi(s
t), Li(s

t), Ki(s
t), Xf

i (s
t), (Xij(s

t))j∈I)i∈I ,

((ymi (s
t), ℓmi (s

t), km
i (s

t), (xm
ij (s

t))j∈I)m∈[0,1])i∈I}t≥0,st∈St .

An equilibrium is defined as follows:

Definition 1. An equilibrium is an allocation χ, a price system

{P(st),W (st), R(st), (Q(st+1|st))st+1|st , ((p
m
i (s

t))m∈[0,1], Pi(s
t))i∈I , ι(s

t)}t,st ,

10



a policy

{τC(st), τL(st), τK(st), (τ yi (st), τ ℓi (st), τ ki (st), τ̂
y
i (s

t), τ fi (s
t), (τxij(s

t))j∈I)i∈I ,M(st)}t,st ,

and financial market positions {B(st), Z(st+1|st)}t,st , such that given K−1 and B−1,
{C(st), L(st), K(st), H(st), B(st), (Z(st+1|st))st+1|st}t,st solves the household’s problem
and, for all t, st: (i) prices and allocations satisfy (5) and the price of the sectoral good

i is given by Pi(s
t) =

[�
pmi (s

t)1−θi(st)di
] 1

1−θi(st) , for all i ∈ I; (ii) in sector i, given initial
price κi, the price of an adjusting firm m satisfies pmi (s

t) = p∗i (s
t), where p∗i (s

t) solves (7),
and the price of a non-adjusting firm m satisfies pmi (s

t) = pmi (s
t−1), for all i ∈ I; (iii)

given prices, Y(st) and {Xf
1 (s

t), . . . , Xf
I (s

t)} solve the final good firm’s problem and the
aggregate price level satisfies (9); (iv) the government budget constraint is satisfied; (v)
M(st) = P(st)C(st); and (vi) markets clear.

3 Equilibrium Characterization

We begin by characterizing an equilibrium in this economy. The household’s problem
is standard, we thus focus on the problem of the intermediate good firms. Consider
a typical firm in industry i. Once prices are set, this firm chooses its cost-minimizing
bundle of inputs. Given constant returns to scale and linear tax rates, marginal cost is
the same for all firms within a given industry. Industry-level marginal cost, mci(s

t), is
given by:

mci(s
t) ≡ min

{ℓi,ki,xi1,...,xiN}
(1 + τ ℓi (s

t))W (st)ℓi + (1 + τ ki (s
t))R(st)ki (13)

+
∑
j∈I

(1 + τxij(s
t))Pj(s

t)xij

subject to Ai(st)Fi(ℓi, ki, xi1, . . . , xiN) = 1. Optimality requires:

mci(s
t) =

(1 + τ ℓi (s
t))W (st)

Ai(st)
∂Fi(st)
∂ℓi(st)

=
(1 + τ ki (s

t))R(st)

Ai(st)
∂Fi(st)
∂ki(st)

=
(1 + τxij(s

t))Pj(s
t)

Ai(st)
∂Fi(st)
∂xij(st)

, ∀j ∈ I. (14)

If the firm can reset its price at date t, history st, it maximizes the following objective:

∞∑
v=0

∑
st+v

(αiβ)
v UC(s

t+v)

(1 + τC(st))P(st+v)

{
(1− τ yi (s

t+v))pymi (s
t+v)− mci(s

t+v)ymi (s
t+v)

}
µ(st+v|st)

subject to (5). The firm’s optimal reset price satisfies:

∞∑
v=0

(αiβ)
v
∑
st+v

[
p∗i (s

t)− 1

(1− τ yi (s
t+v))

(
θi(s

t+v)− 1

θi(st+v)

)−1

mci(s
t+v)

]
µ̂i(s

t+v|st) = 0 (15)

11



where µ̂i(s
t+v|st) are sector i’s risk-adjusted probabilities; see Appendix A.1 for their

derivation. Therefore, the firm’s optimal reset price is equal to its expected present dis-
counted value of its desired price in each state. In any state, its desired price is a mark-
up over marginal cost. Combining this with the optimality conditions of the household
and the final good firm, we reach the following equilibrium characterization.

Proposition 1. An allocationχ, a price system, a policy, and financial positions constitute
an equilibrium if and only if, for all t ≥ 0, st ∈ St:

−UL(s
t)

UC(st)
=

[
1− τL(st)

1 + τC(st)

]
W (st)

P(st)
, (16)

UC(s
t)

1 + τC(st)
= β

∑
st+1|st

µ(st+1|st) UC(s
t+1)

1 + τC(st+1)

[
1− δ + (1− τK(st+1))

R(st+1)

P(st+1)

]
, (17)

UC(s
t)

(1 + τC(st))P(st)
= β(1 + ι(st))

∑
st+1|st

µ(st+1|st) UC(s
t+1)

(1 + τC(st+1))P(st+1)
, (18)

Q(st+1|st) = βUC(s
t+1)

UC(st)

(1 + τC(st))P(st)

(1 + τC(st+1))P(st+1)
µ(st+1|st), ∀st+1|st, (19)

lim
t→∞

∑
st

βtµ(st)
UC(s

t)

1 + τC(st)

B(st)

P(st)
= 0, lim

t→∞

∑
st

βtµ(st)
UC(s

t)

1 + τC(st)
K(st) = 0, (20)

the household budget constraint (2), law of motion of capital (3), and initial conditions
K−1 and B−1, are all satisfied; prices and allocations satisfy (5); given initial price Pi,−1 =

κi, the price of sectoral good i satisfies

Pi(s
t) =

[
(1− αi)p

∗
i (s

t)1−θi(st) + αiPi(s
t−1)1−θi(st)

] 1
1−θi(st) ,

where p∗i (s
t) satisfies (15) and marginal cost satisfies (14), for all i ∈ I;

Vi(st)
∂F(st)

∂X̄i(st)
= (1 + τ fi (s

t))
Pi(s

t)

P(st)
, ∀i ∈ I (21)

where X̄i(s
t) ≡ Vi(st)X

f
i (s

t); P(st) is given by (9); the government budget constraint, (10),
is satisfied; M(st) = P(st)C(st); and markets clear.

Proof. See Appendix A.1.

Proposition 1 characterizes an equilibrium in this economy. This characterization
includes the standard household intratemporal and intertemporal optimality condi-
tions in (16)-(18), the Arrow price in (19), transversality conditions in (20), and the final
good demand functions in (21). These demand functions are derived from the final
good firm’s profit maximization problem; they indicate that the final demand for good i

depends on the good’s demand shock, Vi(st), and after-tax relative price.
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4 The Ramsey Problem

In this section we state and solve the Ramsey problem. We begin by defining feasibility.

Definition 2. An allocationχ is feasible if it satisfies technology and resource constraints:
(6) for all i ∈ I and m ∈ [0, 1], (4) for all i ∈ I, (3), (8), (11), and (12).

Let X denote the set of feasible allocations. Following Correia, Nicolini and Teles
(2008), we take a “relaxed” Ramsey approach. The relaxed planning problem we solve is
one of choosing an allocation that maximizes welfare, (1), subject to feasibility, χ ∈ X ,
and the following constraint:

∞∑
t=0

∑
st

βtµ(st)
[
UC(s

t)C(st) + UL(s
t)L(st)

]
= V0. (22)

Condition (22) is similar to the standard implementability condition that arises in Ram-
sey planning problems when lump-sum taxes are unavailable (Lucas and Stokey, 1983;
Chari, Christiano and Kehoe, 1991; Chari and Kehoe, 1999). Any equilibrium must sat-
isfy this constraint; it is derived from the household’s budget constraint, with all equilib-
rium prices and taxes substituted out using the first-order conditions of the household.4

In terms of restrictions on period 0 policies, we follow Chari, Nicolini and Teles
(2020) and Armenter (2008) and assume that the Ramsey planner faces a wealth con-
straint. Specifically, the household must be allowed to keep an exogenous value of initial
wealth of V0 > 0, measured in units of utility. If we denote initial nominal wealth at time
0 by A(s0), then5

UC(s0)

1 + τC(s0)

A(s0)

P(s0)
≥ V0.

With this restriction, as long as the household receives an initial value of wealth (in util-
ity terms) of V0, policies, including initial policies, can be chosen arbitrarily. We formally
state the Ramsey planning problem as follows.

Ramsey Planning Problem. The Ramsey planner chooses an allocation, χ, that maxi-
mizes (1) subject to χ ∈ X and (22).

Following Chari and Kehoe (1999), we write the Ramsey problem in Lagrangian form:

max
χ∈X

∞∑
t=0

∑
st

βtµ(st)W(C(st), L(st),Γ)− ΓV0,

where the function W incorporates the implementability condition into the planner’s
maximand as follows:

W(C(st), L(st),Γ) ≡ U(C(st), L(st)) + Γ(UC(s
t)C(st) + UL(s

t)L(st)). (23)
4We derive condition (22) in Appendix A.2. The government’s budget constraint holds by Walras’s law.
5See Appendix A.2 for an expression for initial wealth, A(s0).
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We let Γ denote the Lagrange multiplier on the implementability condition in (22); aside
from feasibility, this is the only constraint on the planner. We now characterize the first-
order necessary conditions for an interior solution to the Ramsey problem; for short-
hand we let WC(s

t) ≡ ∂W(·)/∂C(st) and WL(s
t) ≡ ∂W(·)/∂L(st).

Proposition 2. The following three sets of first-order conditions are necessary for an inte-
rior solution to the Ramsey problem. For all st ∈ St,

(i) for all i ∈ I and m ∈ [0, 1]:

ymi (s
t) = Yi(s

t), ℓmi (s
t) = Li(s

t), km
i (s

t) = Ki(s
t), and xm

ij (s
t) = Xij(s

t), ∀j ∈ I;

and for all pairs (i, j) ∈ I × I:

Vj(st)

Vi(st)

∂F(st)/∂X̄j(s
t)

∂F(st)/∂X̄i(st)
= Ai(st)

∂Fi(s
t)

∂Xij(st)
; (24)

(ii) for all i ∈ I:

−WL(s
t)

WC(st)
= Ai(st)Vi(st)

∂F(st)

∂X̄i(st)

∂Fi(s
t)

∂Li(st)
, (25)

WC(s
t) = β

∑
st+1|st

µ(st+1|st)WC(s
t+1)

[
1 + Ai(st+1)Vi(st+1)

∂F(st+1)

∂X̄i(st+1)

∂Fi(s
t+1)

∂Ki(st+1)
− δ

]
.

(26)

Proof. See Appendix A.3.

Part (i) of Proposition 2 indicates that at a Ramsey optimum, for every sector i ∈ I,
there is no input dispersion and, hence, no output dispersion. Furthermore, for every
pair of goods (i, j) ∈ I×I, the marginal rate of substitution is equal to the marginal rate
of transformation. Therefore, at a Ramsey optimum, there is no misallocation within or
across sectors.

Part (ii) of Proposition 2 provides the planner’s intratemporal and intertemporal
marginal conditions. Equation (25) indicates that for every technology i ∈ I, the so-
cial marginal rate of substitution between aggregate labor and aggregate consumption,
−WL(s

t)/WC(s
t), is equal to its marginal rate of transformation under technology i. The

latter is given by the marginal product of labor in the production of good i times the
marginal product of good i in the production of the final good. Similarly, equation (26)
indicates that for every technology i ∈ I, the expected social marginal rate of substitu-
tion between consumption today and consumption next period is equal to its expected
marginal rate of transformation under technology i.

A Ramsey optimum in this economy is familiar: the marginal conditions in Proposi-
tion 2 extend the marginal conditions in Chari and Kehoe (1999) and Correia, Nicolini
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and Teles (2008) to multi-sector, input-output economies. The binding implementabil-
ity condition in (22) results in a divergence between the planner’s marginal rates of
substitution and those of the representative household: WC(s

t) and WL(s
t) differ from

UC(s
t) and UL(s

t). Therefore the marginal conditions in (25) and (26) pin down optimal
equilibrium wedges.

These optimal wedges imply that a Ramsey optimum does not coincide with the first
best. Despite this, a Ramsey optimum preserves production efficiency in the sense of
Diamond and Mirrlees (1971); see Chari and Kehoe (1999) and Chari, Nicolini and Teles
(2020) for discussions on this general point. For our purposes, it is sufficient to note
that zero misallocation within or across sectors in every period and every history is a
necessary condition for Ramsey optimality.

Although a Ramsey optimum does not coincide with the first best, our characteriza-
tion in Proposition 2 in fact nests the first best, defined as follows.

First Best Planning Problem. The first best planner chooses an allocation, χ, that maxi-
mizes (1) subject to χ ∈ X .

The first best is the welfare-maximizing allocation in the version of the economy with
all possible tax instruments, including lump-sum taxation. This problem is nested in
our formulation of the Ramsey problem with Γ, the multiplier on the implementability
constraint, set equal to zero: Γ = 0. It follows that the first-order necessary conditions
for the first best are the same conditions stated in Proposition 2, but with WC(s

t) and
WL(s

t) replaced by UC(s
t) and UL(s

t), respectively.

5 Implementation

Recall that κ ≡ (κi) ∈ RN
+ is the vector of initial prices. A Ramsey optimum can be

implemented as follows.

Theorem 1. A Ramsey optimum, χ∗, can be implemented as an equilibrium allocation
with: (i) a monetary policy that targets P(st) = 1 and aggregate tax rates that satisfy, for
all t ≥ 0 and st ∈ St,

1− τL(st)

1 + τC(st)
=

UL(s
t)/WL(s

t)

UC(st)/WC(st)
, (27)

and, for all t ≥ 1 and st ∈ St,

τK(st) = 0 and 1 + τC(st) = ϱ
UC(s

t)

WC(st)
, (28)
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where ϱ > 0 is an arbitrary positive scalar; and (ii) sector-specific tax rates that jointly
satisfy, for all t ≥ 0 and st ∈ St,

1 + τ ℓi (s
t)

1− τ yi (s
t)

= κi

[
θi(s

t)− 1

θi(st)

] [
−WL(s

t)

WC(st)

]−1

Ai(s
t)
∂Fi(s

t)

∂ℓi(st)
, (29)

(1 + τ̂ yi (s
t))(1 + τ fi (s

t)) = κ−1
i

[
−WL(s

t)

WC(st)

] [
Ai(s

t)
∂Fi(s

t)

∂ℓi(st)

]−1

, (30)

and τ ℓi (s
t) = τ ki (s

t) for every i ∈ I, and

1 + τxij(s
t) = (1 + τ ℓi (s

t))(1 + τ fj (s
t)). (31)

for every (i, j) ∈ I × I.
Nominal wages, rental rates, interest rates, and prices in this equilibrium satisfy, for

all t ≥ 0 and st ∈ St,

W (st) =
−WL(s

t)

WC(st)
, R(st) =

[
−WL(s

t)

WC(st)

]
∂Fi(s

t)/∂ki(s
t)

∂Fi(st)/∂ℓi(st)
, (32)

1 = β(1 + ι(st))
∑

st+1|st
µ(st+1|st)WC(s

t+1)

WC(st)
, (33)

and, for all i ∈ I, Pi(s
t) = (1 + τ̂ yi (s

t))κi and pmi (s
t) = κi for all m ∈ [0, 1].

Proof. See Appendix A.4.

A Ramsey optimum can be implemented as an equilibrium allocation in this econ-
omy. Theorem 1 provides implementation in two parts: (i) monetary policy and aggre-
gate tax rates, and (ii) sector-specific tax rates. The final part of the theorem provides the
nominal wages, rental rates, interest rates, and prices associated with this equilibrium.

Part (i) extends the optimal monetary policy results in Correia, Nicolini and Teles
(2008) and the optimal taxation results in Lucas and Stokey (1983) and Chari and Kehoe
(1999) to the class of economies under consideration. We focus on implementations in
which monetary policy targets price stability for the final good: P(st) = 1, in all periods
and histories.6 This is an arbitrary choice: as we are implementing a Ramsey optimum,
the particular price index we target and its level are largely irrelevant. One can thereby
think of P(st) = 1 as a normalization. Given this normalization, the money supply and
the equilibrium nominal interest rate consistent with this policy satisfy M(st) = C(st)

and (33), respectively.

6The final good price, or consumer price index (CPI), is a standard price index targeted by central
banks.
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We furthermore focus on implementations in which the aggregate tax rates satisfy
(27) and (28). Namely, we set the tax rate on capital equal to zero at all horizons (except
for the initial period), and we use the labor income and consumption taxes to match
the planner’s marginal rates of substitution. This is a familiar class of implementations
when labor income, capital income, and consumption taxes are all available (Chari and
Kehoe, 1999; Chari, Nicolini and Teles, 2020; Angeletos and La’O, 2020).

The contribution of our paper lies in the second part of Theorem 1. Part (ii) charac-
terizes the sector-specific tax rates that, together with the monetary policy and aggre-
gate tax rates described in part (i), implement the Ramsey marginal conditions. Herein,
we refer to these as the optimal sector-specific taxes.

We find that the optimal sector-specific tax rates play two roles: they stabilize seller
prices and they simultaneously generate efficient movements in after-tax prices faced
by buyers. Production efficiency requires uniform prices across all intermediate good
sellers within a given sector. If firms within a sector were to set different prices, they
would face different realized demands and, as such, would produce different levels of
output. Price dispersion thereby results in within-sector misallocation—a feature in-
compatible with Ramsey optimality.

Stabilization of within-sector prices cannot be achieved in this class of economies
with monetary policy and aggregate taxes alone.7 To this end, sector-specific tax rates
are used: in particular, condition (29) ensures that the optimal reset price of a firm in
sector i satisfies: p∗i (s

t) = κi, where κi is also equal to the price of the non-resetting firms.
Zero price dispersion within sector i results in zero within-sector misallocation.

Stabilization of seller prices eliminates misallocation within sectors, but without fur-
ther intervention this would result in misallocation across sectors. This is because con-
stant prices cannot, by construction, reflect state-contingent fluctuations in marginal
costs; as a result, constant prices lead to an inefficient allocation of goods across their
final and intermediate good uses. In order to correct this problem and facilitate an
efficient allocation of sectoral goods, after-tax prices faced by buyers must reflect their
efficient shadow values. The optimal sector-specific tax rates accomplish this second
objective: in particular, condition (30) guarantees that after-tax prices faced by buyers
accurately reflect their state-contingent marginal costs of production.

We state these dual roles of the taxes as the first general lesson of our analysis.

Lesson 1. The optimal tax structure achieves production efficiency. In order to do so,
sector-specific tax rates play two roles: they stabilize seller prices and generate efficient
fluctuations in after-tax prices. This eliminates misallocation within and across sectors,
ensuring efficient production of the final good.

7See La’O and Tahbaz-Salehi (2022) for a formal proof of this statement.
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We illustrate these dual roles in a number of examples below. Prior to these ex-
amples, note that our implementation of the Ramsey optimum requires at least some
sector-specific tax rates to be state-contingent. In particular, the optimal tax wedges
in (29) and (30) depend on the realization of the nominal wage, given by W (st) =

−WL(s
t)/WC(s

t), and the sector’s marginal product of labor, Ai(s
t)∂Fi(s

t)/∂ℓi(s
t); more

generally, the optimal tax wedges are contingent on the sector’s marginal cost. The
optimal tax wedges in (29) furthermore vary with the sector’s elasticity of substitution
θi(s

t) or, more generally, its intended mark-up: θi(st)/(θi(st)− 1) under CES.
Theorem 1 thereby informs us on the state-contingency of the optimal tax structure.

It answers the practical question of what information the fiscal authority must have in
order to administer the optimal tax rates: namely, marginal costs and markups. By the
same token, it also answers the question of what information the fiscal authority need
not have. While the optimal tax wedges in (29) and (30) vary with marginal costs and
desired mark-ups, conditional on these objects, they are independent of the vector of
demand shocks, (Vi(st))i∈I , and shocks to government expenditure, G(st).8

Finally, note that the monetary policy, aggregate tax rates, and sector-specific tax
rates characterized in Theorem 1 are all independent of the vector of Calvo parameters,
(αi)i∈I . The irrelevance of the strength of sectoral price rigidities for optimal fiscal and
monetary policy, even away from the first best, generalizes previous results in Correia,
Nicolini and Teles (2008) to multi-sector, input-output NK economies. We state these
observations as the second general lesson of our analysis.

Lesson 2. Optimal sector-specific tax rates are state-contingent. They depend on the
realized nominal wage, sectoral technologies, and sectoral elasticities of substitution,
but they do not depend on sectoral demand shocks and government spending. Optimal
monetary and fiscal policy are invariant to the vector of price rigidities.

6 Implementation Examples

Theorem 1 provides a general characterization of optimal fiscal and monetary policy.
In this section, we move away from this general characterization and explore a number
of specific implementations, focusing on different configurations of the sector-specific
tax instruments. We use these examples to better illustrate the dual roles of the op-
timal sector-specific tax structure and to highlight a few tax equivalences and non-
equivalences. The results in this section are all corollaries of Theorem 1.

8The optimal tax rates are, moreover, sector-specific: they do not depend on any feature that is specific
to an individual firm, i.e. its date of last price adjustment.
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The first implementation we consider is what we call the “least number of instru-
ments” implementation. We show that regardless of the network structure, production
efficiency can be achieved with only 2N sector-specific tax rates.

Corollary 1. Least Number of Instruments Implementation. A Ramsey optimum can be
implemented with the monetary policy and aggregate tax rates described in Theorem 1
and, for every i ∈ I,

1− τ yi (s
t) = κ−1

i W (st)

[
Ai(s

t)
∂Fi(s

t)

∂ℓi(st)

]−1 [
θi(s

t)− 1

θi(st)

]−1

, ∀st ∈ St (34)

1 + τ̂ yi (s
t) = κ−1

i W (st)

[
Ai(s

t)
∂Fi(s

t)

∂ℓi(st)

]−1

, ∀st ∈ St (35)

and
τ ℓi (s

t) = 0, τ ki (s
t) = 0, τ fi (s

t) = 0, and τxij(s
t) = 0,∀j ∈ I, ∀st ∈ St.

In standard models with flexible prices, the side of the market on which a tax is levied
is irrelevant: it makes no difference whether a sales tax is collected from buyers or from
sellers. When prices are rigid, however, this equivalence breaks (Poterba, Rotemberg
and Summers, 1986). We exploit this particular non-equivalence in Corollary 1.

In our economy, the sales tax levied on differentiated good sellers in sector i, τ yi (s
t),

is not equivalent to the sales tax levied on the buyers, τ̂ yi (s
t). Moreover, if these instru-

ments are both available, Ramsey optimality can be attained without the use of the other
sector-specific tax instruments. Specifically, in Corollary 1 the sector-specific taxes on
labor, capital, intermediate inputs, and final goods are all set equal to zero.

In this implementation, the sales tax on sellers is set according to (34) and the sales
tax on buyers is set according to (35). The former satisfies condition (29) in Theorem 1
with τ ℓi (s

t) = 0, and the latter satisfies condition (30) with τ fi (s
t) = 0. Therefore, τ yi (s

t)

ensures that all firms in sector i set uniform prices, while τ̂ yi (s
t) ensures that buyers face

an after-tax price of:

Pi(s
t) = W (st)

[
Ai(s

t)
∂Fi(s

t)

∂ℓi(st)

]−1

= mci(s
t). (36)

This after-tax price accurately reflects the good’s marginal cost of production.9

The two types of sales taxes in this implementation are specifically engineered to ful-
fill the two roles highlighted previously: stabilizing seller prices and generating efficient
fluctuations in after-tax prices. This is why, irrespective of the network structure, only
two tax instruments per sector are sufficient to attain production efficiency.

9In fact, it is evident from equations (34) and (35) that τ̂yi (s
t) reverses the stabilization effects of τyi (s

t)
on prices, but excludes the markup.
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Lesson 3. Regardless of the network structure, with N sectors production efficiency can
be attained with 2N sectoral tax instruments: N sales taxes levied on sellers and N sales
taxes levied on buyers. Unlike in standard models with price flexibility, taxes levied on
sellers and on buyers in this economy are not equivalent.

While the two types of sales taxes in this economy are not equivalent, there exists a
number of tax equivalences. In what follows we explore two alternative implementa-
tions. In one implementation, we assume the seller-imposed sales tax is unavailable;
in the other, the buyer-imposed sales tax is unavailable. In either case, greater than 2N

sector-specific tax instruments are operative.

Corollary 2. Suppose that the tax instrument τ yi (s
t) is unavailable:

τ yi (s
t) = 0, ∀i ∈ I, t ≥ 0, st ∈ St.

Then a Ramsey optimum can be implemented with the monetary policy and aggregate
tax rates described in Theorem 1 and, for every i ∈ I,

τ ℓi (s
t) = τ ki (s

t) = τxij(s
t), ∀j ∈ I, st ∈ St,

1 + τ ℓi (s
t) = κiW (st)−1Ai(s

t)
∂Fi(s

t)

∂ℓi(st)

[
θi(s

t)− 1

θi(st)

]
, ∀st ∈ St, (37)

τ̂ yi (s
t) set according to (35), and τ fi (s

t) = 0, for all st ∈ St.

When the sales tax levied on sellers is unavailable, Ramsey optimality can still be
implemented: in this case, the sector-specific labor, capital, and intermediate input
taxes substitute for the missing tax instrument. This tax equivalence first requires that,
for every sector i ∈ I, input taxes are uniform across all inputs—labor, capital, and inter-
mediate goods—so as not to distort the producers’ relative use of inputs. Second, these
input taxes satisfy (37); this guarantees that all firms within a given sector set uniform
prices. The sales tax collected on buyers continues to ensure that after-tax prices reflect
marginal costs of production.

Note that in this implementation, the intermediate good taxes, τxij(s
t), depend only

on the destination sector i but not the origin sector j. This is because this implementa-
tion requires the input taxes to replicate the missing seller-imposed sales tax on sector
i; it therefore need not contain any information about good j. We summarize this in our
fourth lesson.

Lesson 4. Sector-specific input taxes on labor, capital, and intermediate goods can sub-
stitute for seller-imposed sales taxes. In this case, the optimal intermediate good input
taxes are destination-specific but not origin-specific.

20



Our next example is one in which we restrict the tax structure so that the sales tax
imposed on buyers is unavailable.

Corollary 3. Suppose that the tax instrument τ̂ yi (s
t) is unavailable:

τ̂ yi (s
t) = 0, ∀i ∈ I, st ∈ St.

Then a Ramsey optimum can be implemented with the monetary policy and aggregate
tax rates described in Theorem 1 and, for every j ∈ I,

1 + τxij(s
t) = 1 + τ fj (s

t) = κ−1
j W (st)

[
Aj(s

t)
∂Fj(s

t)

∂ℓj(st)

]−1

, st ∈ St, (38)

τ yj (s
t) set according to (34) and τ ℓj (s

t) = τ kj (s
t) = 0.

When the sales taxes levied on buyers is unavailable, Ramsey optimality can still be
implemented: in this case, the intermediate good and final good taxes substitute for
the missing tax instrument. This tax equivalence requires that, for every good j ∈ I,
intermediate input and final good taxes are equalized so as not to distort the relative use
of good j across various producers and consumers. The intermediate good and final
good taxes moreover satisfy (38); this guarantees that after-tax prices faced by buyers
reflect marginal costs of production. The sales taxes collected on sellers continues to
ensure that seller prices are uniformly set.

Note that in this implementation and unlike in our previous example, the intermedi-
ate good taxes, τxij(s

t), depend only on the origin sector j but not the destination sector
i. This is because this implementation requires the input taxes to replicate the missing
buyer-imposed sales tax on good j; it therefore need not contain any information about
the user of the good, sector i. We summarize this in our fifth lesson.

Lesson 5. Sector-specific intermediate good and final good taxes can substitute for
buyer-imposed sales taxes. In this case, the optimal intermediate good input taxes are
origin-specific but not destination-specific.

Our final example distinguishes the role of the aggregate tax rates vis-à-vis the
sector-specific tax rates. Recall from our implementation of Ramsey optimality in The-
orem 1, aggregate tax rates were set to replicate the Ramsey planner’s marginal rates of
substitution, while the sector-specific tax rates were engineered to restore within-period
production efficiency.

We now consider the case in which lump-sum taxes are available. The following
corollary of Theorem 1 illustrates that the availability of lump-sum taxes affects only
the nature of the aggregate tax instruments—it has no bearing on the optimal sector-
specific tax structure.
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Corollary 4. Suppose lump-sum taxes are available. Then Γ = 0 and Ramsey optimality
coincides with first best optimality: WC(s

t) = UC(s
t) and WL(s

t) = UL(s
t). The first best

can be implemented with aggregate tax rates that satisfy τL(st) = 0, τC(st) = 0, and
τK(st) = 0, for all t ≥ 0, st ∈ St, and monetary policy and sector-specific tax rates as
described in Theorem 1.

When lump sum taxes are available, the first best is attainable. It is nested in our
more general framework with Γ, the multiplier on the implementability constraint, set
equal to zero. It follows from Theorem 1 that the first best can be implemented with
a monetary policy that stabilizes the price of the final good, sector-specific tax rates as
described in part (ii) of the theorem, and all aggregate tax rates set equal to zero.

In the first best, there are no longer any optimal wedges in the planner’s marginal
conditions. It follows that all aggregate tax rates can be set to zero. However, this does
not imply that all sector-specific tax rates can also be set to zero. On the contrary,
whether or not lump-sum taxes are available does not alter the nature of the optimal
sector-specific tax instruments: in either case they are responsible for ensuring within-
period production efficiency. We state this as the sixth and final lesson of our paper.

Lesson 6. Optimal sector-specific tax rates are independent of the availability of lump-
sum taxes.

Remark on Robustness. In our baseline model, the nominal rigidity is assumed to be
a Calvo pricing friction, in line with the standard assumption in the New Keynesian lit-
erature. However, if the nominal rigidity were instead driven by an information friction
in price setting as in, e.g., Woodford (2003a) and Mankiw and Reis (2002), our results on
optimal policy would still hold.

To see why, suppose that firms were to set prices every period under dispersed and
incomplete information. In this case, each seller’s price would be constrained to be
measurable in the firm’s individual information set. Given the tax structure specified in
Theorem 1, all firms in sector i would set its price equal to κi, regardless of its informa-
tion set. This pricing strategy would not only satisfy the firm’s measurability constraint
but would also be optimal from the firm’s perspective.

The tax structure and monetary policy in Theorem 1 can thereby implement a Ram-
sey optimum as described in Proposition 2 regardless of whether the nominal rigidity is
driven by informational frictions, Calvo pricing frictions, or a combination of the two.
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7 Conclusion

In this paper we study optimal monetary and fiscal policy in a multi-sector, NK econ-
omy with input-output linkages and a rich set of tax instruments. With N>1 sectors,
production efficiency can be achieved with 2N state-contingent, sector-specific taxes;
the optimal tax scheme we engineer involves jointly stabilizing all prices set by sellers
while generating efficient movements in after-tax prices faced by buyers.

The optimal sector-specific tax rates we find are contingent on realized marginal
costs and desired mark-ups. Keeping track of these sector-level statistics at business
cycle frequency is arguably a heavy informational burden on the fiscal authority. The
best that fiscal and monetary policy can do given limited information of the government
is an interesting question that we leave for future research.

The contribution of this paper, as we have noted, is to establish a benchmark in
which the set of tax instruments is rich enough to attain production efficiency and to
characterize these instruments. Our benchmark differs prominently from the standard
benchmark in multi-sector NK models of “inactive” fiscal policy in which sales subsi-
dies eliminate steady-state markups. As the literature on multi-sector, input-output NK
models moves away from the standard benchmark and explores richer environments
with larger, more active sets of fiscal instruments, we believe that an understanding and
appreciation of both benchmarks—i.e. both extremes—will prove useful.
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A Appendix

A.1 Proof of Proposition 1

We first derive the optimality conditions of the representative household. We let
βtµ(st)Λ(st) denote the Lagrange multiplier on the household budget set at time t, his-
tory st. The household’s first-order necessary conditions with respect to consumption
and labor are given by, respectively:

UC(s
t)− Λ(st)(1 + τC(st))P(st) = 0, (39)

UL(s
t) + Λ(st)(1− τL(st))W (st) = 0. (40)

The first-order condition with respect to capital K(st) is given by:

−µ(st)Λ(st)P(st)+β
∑

st+1|st
µ(st+1)Λ(st+1)[(1− τK(st+1))R(st+1)+P(st+1)(1− δ)] = 0, (41)

the first-order condition with respect to the bond B(st) is given by:

−µ(st)Λ(st) + β
∑

st+1|st
µ(st+1)Λ(st+1)(1 + ι(st)) = 0, (42)

and the first-order condition with respect to the Arrow security Z(st+1|st) is given by:

−µ(st)Λ(st)Q(st+1|st) + βµ(st+1)Λ(st+1) = 0. (43)

The household transversality conditions are given by:

lim
t→∞

∑
st

βtµ(st)Λ(st)B(st) = 0 and lim
t→∞

∑
st

βtµ(st)Λ(st)P(st)K(st) = 0. (44)

Combining (39) and (40), we obtain the household’s intratemporal condition (16). Next,
using Λ(st) = UC(s

t)/[(1 + τC(st))P(st)], conditions (41) and (42) imply the Euler equa-
tions for capital and bonds in (17) and (18). The first order condition in (43) pins down
the Arrow security price in (19), and (44) imply the transversality conditions in (20).

The final good firm solves the following profit-maximization problem:

max
(Xf

1 (s
t),...,Xf

I (s
t))

P(st)F(V1(st)X
f
1 (s

t), . . . , VI(st)X
f
I (s

t))−
∑
i∈I

Pi(s
t)Xf

i (s
t).

The first-order conditions with respect to Xf
i (s

t) yield the demand functions in (21).
The firm’s cost-minimization problem, stated in (13), yields the optimality condi-

tions in (14). The firm’s price-setting problem is stated in Section 3. Substituting in the

27



demand function, we can rewrite this problem as follows:

max
p

∞∑
v=0

∑
st+v

(αiβ)
v UC(s

t+v)Yi(s
t+v)Pi(s

t+v)θi(s
t+v)

(1 + τC(st))P(st+v)(1 + τ̂ yi (s
t+v))θi(st+v)

[
(1− τ yi (s

t+v))p1−θi(s
t+v)

]
µ(st+v|st)

−
∞∑
v=0

∑
st+v

(αiβ)
v UC(s

t+v)Yi(s
t+v)Pi(s

t+v)θi(s
t+v)

(1 + τC(st))P(st+v)(1 + τ̂ yi (s
t+v))θi(st+v)

[
mci(s

t+v)p−θi(s
t+v)

]
µ(st+v|st)

The firm’s first order condition with respect to its price is given by (15), where we define

µ̂i(s
t+v|st) ≡ UC(s

t+v)

(1 + τC(st))P(st+v)

[
(1− τ yi (s

t+v))Yi(s
t+v)Pi(s

t+v)θi(s
t+v)(θi(s

t+v)− 1)

(1 + τ̂ yi (s
t+v))θi(st+v)

]
µ(st+v|st),

for all st+v, v = 0, . . . ,∞.

A.2 Derivation of Implementability Condition

We take the household’s budget constraint, multiply both sides by Λ(st), and use the
household’s FOCs in (39) and (40) to substitute out consumption and labor prices. Do-
ing so, we obtain:

UC(s
t)C(st) + Λ(st)P(st)K(st) + Λ(st)B(st) + Λ(st)

∑
st+1|st

Q(st+1|st)Z(st+1|st)

= −UL(s
t)L(st) + Λ(st)(1− τK(st))R(st)K(st−1) + Λ(st)P(st)(1− δ)K(st−1)

+ Λ(st)(1 + ι(st−1))B(st−1) + Λ(st)Z(st|st−1)

Multiplying both sides by βtµ(st), summing over t and st, and using the household’s
FOCs for financial assets, (41)-(43), to cancel terms, we obtain:∑
t

∑
st

βtµ(st)
[
UC(s

t)C(st) + UL(s
t)L(st)

]
=Λ(s0)

[
(1− τK(s0))R(s0)K−1 + P(s0)(1− δ)K−1

]
+ Λ(s0)(1 + ι−1)B−1

Using Λ(s0) = UC(s0)/(1 + τC(s0))P(s0), we obtain:∑
t

∑
st

βtµ(st)
[
UC(s

t)C(st) + UL(s
t)L(st)

]
=

UC(s0)

1 + τC(s0)

A(s0)

P(s0)

where initial real wealth is given by:

A(s0)

P(s0)
≡

[
1 + (1− τK(s0))

R(s0)

P(s0)
− δ

]
K−1 + (1 + ι−1)

B−1

P(s0)
.

Although the real rental rate R(s0)/P(s0) is endogenous to both monetary and fiscal
policy, for simplicity we have assumed that time zero policies must satisfy the constraint
that UC(s0)

1+τC(s0)
A(s0)
P(s0)

= V0.
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A.3 Proof of Proposition 2

We write the Ramsey planner’s Lagrangian as follows:

L =
∞∑
t=0

∑
st

βtµ(st)W(C(st), L(st))− ΓV0

−
∞∑
t=0

∑
st

βtµ(st)λC(st)
[
C(st) +K(st)− (1− δ)K(st−1) +G(st)−F(X̄f

1 (s
t), . . . , X̄f

I (s
t))

]
−

∞∑
t=0

∑
st

βtµ(st)
∑
i∈I

λY
i (s

t)

[
Xf

i (s
t) +

∑
j∈I

Xji(s
t)− Ai(st)Fi(Li(s

t), Ki(s
t), Xi1(s

t), . . . , XiI(s
t))

]

+
∞∑
t=0

∑
st

βtµ(st)λL(st)

[
L(st)−

∑
i∈I

Li(s
t)

]
+

∞∑
t=0

∑
st

βtµ(st)λK(st)

[
K(st−1)−

∑
i∈I

Ki(s
t)

]
The planner’s FOCs w.r.t. C(st), L(st), and K(st) are given by:

WC(s
t)− λC(st) =0,

WL(s
t) + λL(st) =0,

−βtµ(st)λC(st) +
∑

st+1|st
βt+1µ(st+1)λC(st+1)

[
1 + λK(st+1)− δ

]
=0,

respectively, for all st. The planner’s FOCs w.r.t. Xf
i (s

t), Li(s
t), and Ki(s

t) are given by:

λC(st)Vi(st)
∂F(st)

∂X̄i(st)
− λY

i (s
t) = 0, ∀i ∈ I

−λL(st) + λY
i (s

t)Ai(st)
∂Fi(s

t)

∂Li(st)
= 0, ∀i ∈ I,

−λK(st) + λY
i (s

t)Ai(st)
∂Fi(s

t)

∂Ki(st)
= 0, ∀i ∈ I.

The FOCs w.r.t. Xij(s
t) are given by

−λY
j (s

t) + λY
i (s

t)Ai(st)
∂Fi(s

t)

∂Xij(st)
= 0, ∀i, j ∈ I × I

Combining these conditions so as to eliminate the multipliers λC(st), λL(st), λK(st) and
λY
i (s

t) for all i ∈ I results in the optimality conditions stated in Proposition 2.

A.4 Proof of Theorem 1

First, for each i ∈ I, we set the tax rates (τ yi (s
t), τ ℓi (s

t)) such that they jointly satisfy:

1 + τ ℓi (s
t)

1− τ yi (s
t)

= κi

[
θi(s

t)− 1

θi(st)

]
1

W (st)
Ai(s

t)
∂Fi(s

t)

∂ℓi(st)
(45)

29



We will later verify that (45) is consistent with (29). With tax rates set according to (45),
the optimal price for each firm m ∈ [0, 1] satisfies:

pmi (ω
t
i) =

∑
st∈S

κiqi(s
t|ωt

i) = κi.

At the Ramsey optimum ymi (s
t) = Yi(s

t); it follows from (5) that Pi(s
t) = (1 + τ̂ yi (s

t))κi.
Next, we set τ ki (s

t) = τ ℓi (s
t). Equilibrium condition (14) implies that the equilibrium

rental rate satisfies:

R(st) = W (st)
∂Fi(s

t)/∂ki(s
t)

∂Fi(st)/∂ℓi(st)
∀i. (46)

Household optimality conditions (16) and (17), when combined with condition (21),
result in:

−UL(s
t)

UC(st)
=

(1− τL(st))

(1 + τC(st))(1 + τ fi (s
t))

νi(st)
∂F(st)

∂x̄i(st)

W (st)

Pi(st)
,

UC(s
t)

(1 + τC(st))
= β

∑
st+1|st

µ(st+1|st) UC(s
t+1)

(1 + τC(st+1))

[
1− δ +

(1− τK(st+1))

(1 + τ fi (s
t+1))

Vi(st+1)
∂F(st+1)

∂x̄i(st+1)

R(st+1)

Pi(st+1)

]
.

where Pi(s
t) = (1 + τ̂ yi (s

t))κi. Combining these conditions with the aggregate tax rates
in (27), yield:

−WL(s
t)

WC(st)
=

κ−1
i W (st)Vi(st)

∂F(st)
∂x̄i(st)

(1 + τ̂ yi (s
t))(1 + τ fi (s

t))
, (47)

WC(s
t) = β

∑
st+1|st

µ(st+1|st)WC(s
t+1)

1− δ +
κ−1
i R(st+1)Vi(st+1)

∂F(st+1)
∂x̄i(st+1)

(1 + τ̂ yi (s
t+1))(1 + τ fi (s

t+1))

 . (48)

Next, we set the tax rates (τ̂ yi (s
t), τ fi (s

t)) such that they jointly satisfy:

κ−1
i

(1 + τ̂ yi (s
t))(1 + τ fi (s

t))
W (st) = Ai(st)

∂Fi(s
t)

∂ℓi(st)
(49)

We will later verify that (49) is consistent with (30). Substituting this expression into (47),
we obtain the Ramsey intratemporal optimality condition in (25). Similarly substituting
this expression into (48) yields:

WC(s
t) = β

∑
st+1|st

µ(st+1|st)WC(s
t+1)

[
1− δ + Ai(st+1)Vi(st+1)

∂F(st+1)

∂x̄i(st+1)

R(st+1)

W (st+1)

∂Fi(s
t+1)

∂ℓi(st+1)

]
.

Combining this with the equilibrium rental rate in (46), we obtain the Ramsey intertem-
poral optimality condition in (26).

30



Finally, taking the ratio of equilibrium condition (21) for sectors j and i, yields:

Vj(st)
∂F(st)
∂x̄j(st)

Vi(st)
∂F(st)
∂x̄i(st)

=
(1 + τ fj (s

t))Pj(s
t)

(1 + τ fi (s
t))Pi(st)

. (50)

Equilibrium condition (14) implies that Pj(s
t) satisfies:

Pj(s
t) = W (st)

[
1 + τ ℓi (s

t)

1 + τxij(s
t)

]
∂Fi(s

t)

∂xij(st)

(
∂Fi(s

t)

∂ℓi(st)

)−1

Substituting this expression for Pj(s
t) into (50) we get:

Vj(st)
∂F(st)
∂x̄j(st)

Vi(st)
∂F(st)
∂x̄i(st)

=
1 + τ fj (s

t)

1 + τ fi (s
t)

[
1 + τ ℓi (s

t)

1 + τxij(s
t)

]
W (st)

Pi(st)

∂Fi(s
t)

∂xij(st)

(
∂Fi(s

t)

∂ℓi(st)

)−1

wherePi(s
t) = (1+ τ̂ yi (s

t))κi. Combining this expression with the taxes set in (49), yields:

Vj(st)
∂F(st)
∂x̄j(st)

Vi(st)
∂F(st)
∂x̄i(st)

=

[
(1 + τ fj (s

t))(1 + τ ℓi (s
t))

1 + τxij(s
t)

]
Ai(st)

∂Fi(s
t)

∂xij(st)

We thus set intermediate input taxes according to (31) and satisfy the Ramsey optimality
condition in (24).

Next, we show that the tax rates set in (45) and (49) coincide with those stated in
the Theorem. Recall that the household’s intratemporal condition is given by (16). Us-
ing this condition we find that under this implementation, the nominal wage satisfies:
W (st) = −WL(s

t)/WC(s
t). Substituting this expression for the nominal wage into (45)

and (49) results in equations (29) and (30), respectively.
What remains to be shown is that we can construct financial asset holdings such

that the household’s budget constraint is satisfied at this allocation in every date t and
history. First, we take the household’s budget constraint in (2) for all periods and states
following and including period r, history sr; we multiply these budget constraints by
βt−rµ(st|sr)Λ(st) and sum over all periods and states following and including period r,
history sr. Doing so, we get:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λ(st)

(1 + τC(st))P(st)C(st) + P(st)K(st) +B(st) +
∑

st+1|st
Q(st+1|st)Z(st+1|st)


=

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λ(st)
[
(1− τL(st))W (st)L(st) + (1 + ι(st−1))B(st−1) + Z(st|st−1)

]
+

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λ(st)
[
(1− τK(st))R(st)K(st−1) + (1− δ)P(st)K(st−1)

]
31



Using the household’s FOCs for financial assets, (41)-(43), the above equation reduces
to:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λ(st)
[
(1 + τC(st))P(st)C(st)− (1− τL(st))W (st)L(st)

]
(51)

= Λ(sr)
[
(1 + ι(sr−1))B(sr−1) + Z(sr|sr−1)

]
+ Λ(sr)

[
(1− τK(sr))R(sr)K(sr−1) + (1− δ)P(sr)K(sr−1)

]
Next, we define A(sr) as follows:

A(sr) ≡ (1+ ι(sr−1))B(sr−1)+Z(sr|sr−1)+(1−τK(sr))R(sr)K(sr−1)+(1−δ)P(sr)K(sr−1);

A(sr) represents the total nominal assets that the household carries into period r, his-
tory sr. Rearranging (51) gives us:

Λ(sr)A(sr) =
∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λ(st)
[
(1 + τC(st))P(st)C(st)− (1− τL(st))W (st)L(st)

]
Next, using conditions (39) and (40), we obtain the following expression for the total real
financial assets that household i carries into period r, history sr:

A(sr)

P(st)
=

(
UC(s

r)

1 + τC(sr)

)−1 ∞∑
t=r+1

∑
st

βt−rµ(st|sr)
[
UC(s

t)C(st) + UL(s
t)L(st)

]
.

Finally, the government’s budget constraint holds by Walras’s law.
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