Discussion of
“Entry vs. Rents: Aggregation with Economies of Scale”
by David Baqae and Emmanuel Farhi (2021)

Alireza Tahbaz-Salehi
Northwestern University

Banco de España 4th Annual Research Conference
Market power in the digital age: measurement, causes, consequences and policies
September 2021
An Aggregation Exercise

• How changes in productivities and markups of disaggregated producers shape aggregate outcomes?

• To my knowledge, first such paper that allows for a general treatment of the extensive margin

• The characterization results are then applied to ...
 ▶ explore how product entry and exit determine allocative efficiency
 ▶ social costs of distortions (distance to frontier)
 ▶ second-best policy interventions (markup regulations & entry subsidies)
An Aggregation Exercise

• How changes in productivities and markups of disaggregated producers shape aggregate outcomes?

• To my knowledge, first such paper that allows for a general treatment of the extensive margin

• The characterization results are then applied to ...
 ▶ explore how product entry and exit determine allocative efficiency
 ▶ social costs of distortions (distance to frontier)
 ▶ second-best policy interventions (markup regulations & entry subsidies)
An Aggregation Exercise

• How changes in productivities and markups of disaggregated producers shape aggregate outcomes?

• To my knowledge, first such paper that allows for a general treatment of the extensive margin

• The characterization results are then applied to ...
 ► explore how product entry and exit determine allocative efficiency
 ► social costs of distortions (distance to frontier)
 ► second-best policy interventions (markup regulations & entry subsidies)
An Aggregation Exercise

• How changes in productivities and markups of disaggregated producers shape aggregate outcomes?

• To my knowledge, first such paper that allows for a general treatment of the extensive margin

• The characterization results are then applied to...
 ▶ explore how product entry and exit determine allocative efficiency
 ▶ social costs of distortions (distance to frontier)
 ▶ second-best policy interventions (markup regulations & entry subsidies)
Main Result

- decomposition of the macro impact of shocks in terms of changes in
 - (a) technical efficiency
 - (b) pure rents
 - (c) quasi rents
 - (d) markups

Theorem

\[
d \log Y = \sum_i \lambda_i F \frac{d \log A_i}{\Delta \text{technology}} - \sum_{i: \text{DRS}} \lambda_i F (1 - \epsilon_i) \left(d \log \lambda_{\pi,i} - d \log \hat{\lambda}_{\pi,i} \right) \\
+ \sum_{i: \text{IRS}} \lambda_i F \left(\gamma_i - 1 \right) \frac{d \log \hat{\lambda}_{\pi,i}}{\Delta \text{quasi-rents}} \\
- \sum_{i: \text{DRS}} \lambda_i F \left(\frac{1 - \epsilon_i}{\pi_i} - 1 \right) d \log \mu_i - \sum_{i: \text{IRS}} \lambda_i F d \log \mu_i
\]

- Two more theorems expressing changes in rents and quasi-rents in terms of model primitives
Main Result

- decomposition of the macro impact of shocks in terms of changes in

 (a) technical efficiency
 (b) pure rents
 (c) quasi rents
 (d) markups

Theorem

\[
d\log Y = \sum_i \lambda_i^F \, d\log A_i \underbrace{\Delta \text{ technology}}_{i:DRS} - \sum_i \lambda_i^F (1 - \epsilon_i) \underbrace{d\log \lambda_{\pi,i} - d\log \lambda_{\pi,i}}_{i:DRS} \underbrace{\Delta \text{ pure rents}}_{\text{DRS}}
\]

\[
+ \sum_i \lambda_i^F \underbrace{(\gamma_i - 1) \, d\log \lambda_{\pi,i}}_{i:IRS} \underbrace{\Delta \text{ quasi-rents}}_{\text{IRS}}
\]

\[
- \sum_i \lambda_i^F \left(1 - \frac{\epsilon_i}{\pi_i} - 1\right) \, d\log \mu_i - \sum_i \lambda_i^F \, d\log \mu_i
\]

- Two more theorems expressing changes in rents and quasi-rents in terms of model primitives
Main Result

- decomposition of the macro impact of shocks in terms of changes in
 (a) technical efficiency
 (b) pure rents
 (c) quasi rents
 (d) markups

Theorem

\[
d \log Y = \sum_i \lambda_i^F \underbrace{d \log A_i}_{\Delta \text{ technology}} - \sum_{i:DRS} \lambda_i^F (1 - \epsilon_i) \underbrace{(d \log \lambda_{\pi,i} - \hat{d} \log \lambda_{\pi,i})}_{\Delta \text{ pure rents}}
\]

\[
+ \sum_{i:IRS} \lambda_i^F \underbrace{(\gamma_i - 1)}_{IRS} \d \log \lambda_{\pi,i} \underbrace{\Delta \text{ quasi-rents}}_{\Delta \text{ quasi-rents}}
\]

\[
- \sum_{i:DRS} \lambda_i^F \left(\frac{1 - \epsilon_i}{\pi_i} - 1 \right) d \log \mu_i - \sum_{i:IRS} \lambda_i^F d \log \mu_i
\]

- Two more theorems expressing changes in rents and quasi-rents in terms of model primitives
Main Result

- decomposition of the macro impact of shocks in terms of changes in

 (a) technical efficiency
 (b) pure rents
 (c) quasi rents
 (d) markups

Theorem

\[
\begin{align*}
\text{d} \log Y &= \sum_i \lambda_i^F \Delta \log A_i - \sum_{i: \text{DRS}} \lambda_i^F (1 - \epsilon_i) (\text{d} \log \lambda_{\pi,i} - \text{d} \log \lambda_{\pi,i}) \\
&\quad + \sum_{i: \text{IRS}} \lambda_i^F (\gamma_i - 1) \text{d} \log \lambda_{\pi,i} \\
&\quad - \sum_{i: \text{DRS}} \lambda_i^F \left(\frac{1 - \epsilon_i}{\pi_i} - 1 \right) \text{d} \log \mu_i - \sum_{i: \text{IRS}} \lambda_i^F \text{d} \log \mu_i
\end{align*}
\]

- Two more theorems expressing changes in rents and quasi-rents in terms of model primitives
How General Is the Result?

- **Very General!**
 - input-output linkages
 - non-trivial markups
 - various degrees of returns to scale
 - general treatment of entry (directed, undirected, and anything in between)
What is Not Captured by the Results?

- Markups shape entry, prices, rents, and quasi-rents, but are treated as primitives.
- Still need to specify the market structure to endogenize the markups → another fixed point equation.
Markups shape entry, prices, rents, and quasi-rents, but are treated as primitives.

Still need to specify the market structure to endogenize the markups → another fixed point equation.
Aggregation Results with Entry

• Paper makes a convincing case that one cannot sidestep modeling the extent and nature of entry.

• Simple economy with no input-output linkages and a single factor of production:

\[\text{DRS + directed entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} \]

\[\text{DRS + undirected entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} - \frac{\epsilon}{\lambda_E} \text{Cov}_\lambda (1/\mu_k, d \log A_k) \]

\[\text{IRS + directed entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} + \frac{1}{\lambda_E} \text{Cov} \left(\frac{\theta_k - 1}{\theta_k - \theta_0}, d \log A_k \right) \]

\[\text{IRS + undirected entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} - \frac{1}{\lambda_E} \text{Cov}_\lambda (1/\mu_k, d \log A_k) \]
Aggregation Results with Entry

• Paper makes a convincing case that one cannot sidestep modeling the extent and nature of entry.

• Simple economy with no input-output linkages and a single factor of production:

 DRS + directed entry: \[d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i \]

 DRS + undirected entry: \[d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i - \frac{\epsilon}{\lambda E} \text{Cov}_{\lambda}(1/\mu_k, d \log A_k) \]

 IRS + directed entry: \[d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i + \frac{1}{\sum \frac{\lambda_k(\theta_k-1)}{\theta_k-\theta_0}} \text{Cov}_{\lambda} \left(\frac{\theta_k-1}{\theta_k-\theta_0}, d \log A_k \right) \]

 IRS + undirected entry: \[d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i - \frac{1}{\lambda E} \text{Cov}_{\lambda}(1/\mu_k, d \log A_k) \]
Aggregation Results with Entry

- Paper makes a convincing case that one cannot sidestep modeling the extent and nature of entry.

- Simple economy with no input-output linkages and a single factor of production:

 DRS + directed entry: \(\frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_k} \)

 DRS + undirected entry: \(\frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_k} - \frac{\epsilon}{\lambda E} \text{Cov}_\lambda \left(\frac{1}{\mu_k}, \frac{d \log A_k}{d \log A_i} \right) \)

 IRS + directed entry: \(\frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_k} + \frac{1}{\lambda E} \text{Cov}_\lambda \left(\frac{\theta_k - 1}{\theta_k - \theta_0}, \frac{d \log A_k}{d \log A_i} \right) \)

 IRS + undirected entry: \(\frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_k} - \frac{1}{\lambda E} \text{Cov}_\lambda \left(\frac{1}{\mu_k}, \frac{d \log A_k}{d \log A_i} \right) \)
Aggregation Results with Entry

- Paper makes a convincing case that one cannot sidestep modeling the extent and nature of entry.

- Simple economy with no input-output linkages and a single factor of production:

 DRS + directed entry: \(d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i \)

 DRS + undirected entry: \(d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i - \frac{\epsilon}{\lambda_E} \text{Cov}_\lambda (1/\mu_k, d \log A_k) \)

 IRS + directed entry: \(d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i + \frac{1}{\sum \frac{\lambda_k(\theta_k-1)}{\theta_k-\theta_0}} \text{Cov} \left(\frac{\theta_k - 1}{\theta_k - \theta_0}, d \log A_k \right) \)

 IRS + undirected entry: \(d \log Y = \sum_{i=1}^{n} \lambda_i \, d \log A_i - \frac{1}{\lambda_E} \text{Cov}_\lambda (1/\mu_k, d \log A_k) \)
Aggregation Results with Entry

- Paper makes a convincing case that one cannot sidestep modeling the extent and nature of entry.

- Simple economy with no input-output linkages and a single factor of production:

 \[\text{DRS + directed entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} \]

 \[\text{DRS + undirected entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} - \frac{\epsilon}{\lambda_E} \text{Cov}_\lambda \left(\frac{1}{\mu_k}, \frac{d \log A_k}{d \log A_k} \right) \]

 \[\text{IRS + directed entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} + \frac{1}{\sum_{i=1}^{n} \lambda_k \left(\frac{1}{\theta_k - \theta_0} \right) \text{Cov}_\lambda \left(\frac{\theta_k - 1}{\theta_k - \theta_0}, \frac{d \log A_k}{d \log A_k} \right) } \]

 \[\text{IRS + undirected entry: } \frac{d \log Y}{d \log A_i} = \sum_{i=1}^{n} \lambda_i \frac{d \log A_i}{d \log A_i} - \frac{1}{\lambda_E} \text{Cov}_\lambda \left(\frac{1}{\mu_k}, \frac{d \log A_k}{d \log A_k} \right) \]
Aggregation Results with Entry

• What should one do with such an observation?

 Next time take the extensive margin seriously!

• But what if one cannot (or does not want to) take an exact, detailed position about what type of firm can enter into each market? Is one out of luck?

• Valuable if the paper can use the main theorem to obtain results that are robust to the specification of $\zeta_{ji} = \mathbb{P}(\text{producer } i|\text{entrant } j)$.

 characterization of the range of possible outcomes?
Aggregation Results with Entry

• What should one do with such an observation?

 Next time take the extensive margin seriously!

• But what if one cannot (or does not want to) take an exact, detailed position about what type of firm can enter into each market? Is one out of luck?

• Valuable if the paper can use the main theorem to obtain results that are robust to the specification of $\zeta_{ji} = \mathbb{P}(\text{producer } i|\text{entrant } j)$. characterization of the range of possible outcomes?
Aggregation Results with Entry

• What should one do with such an observation?

 Next time take the extensive margin seriously!

• But what if one cannot (or does not want to) take an exact, detailed position about what type of firm can enter into each market? Is one out of luck?

• Valuable if the paper can use the main theorem to obtain results that are robust to the specification of $\zeta_{ji} = \mathbb{P}(\text{producer } i|\text{entrant } j)$.

 characterization of the range of possible outcomes?
Potential Application: Monetary Policy

• How would extensive margin + input-output linkages + non-convexities change the positive and normative lessons of the New Keynesian paradigm?

• The key ingredients are already there.

• Really interesting paper, opening up many different avenues for further exploration
Potential Application: Monetary Policy

- How would extensive margin + input-output linkages + non-convexities change the positive and normative lessons of the New Keynesian paradigm?
- The key ingredients are already there.

- Really interesting paper, opening up many different avenues for further exploration