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This paper analyses how limits to the complexity of statistical models used by market participants
can shape asset prices. We consider an economy in which the stochastic process that governs the evo-
lution of economic variables may not have a simple representation, and yet, agents are only capable of
entertaining statistical models with a certain level of complexity. As a result, they may end up with a
lower-dimensional approximation that does not fully capture the intertemporal complexity of the true
data-generating process. We first characterize the implications of the resulting departure from rational
expectations and relate the extent of return and forecast-error predictability at various horizons to the
complexity of agents’ models and the statistical properties of the underlying process. We then apply our
framework to study violations of uncovered interest rate parity in foreign exchange markets. We find
that constraints on the complexity of agents’ models can generate return predictability patterns that are
simultaneously consistent with the well-known forward discount and predictability reversal puzzles.
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1. INTRODUCTION

The rational expectations framework maintains that agents have a complete understanding of
their economic environment: they know the structural equations that govern the relationship
between endogenous and exogenous variables, have full knowledge of the stochastic processes
that determine the evolution of shocks, and are capable of forming and updating beliefs about as
many variables as necessary. These assumptions are imposed irrespective of how complex the
actual environment is. However, in reality, limits to cognitive and computational abilities mean
that market participants are bound to rely on simplified models that may not fully account for the
complexity of their environment. Thus, to the extent that agents employ such simplified models,
their decisions—and any outcome that depends on those decisions—would depart from what is
predicted by rational expectations.

The editor in charge of this paper was Nicola Gennaioli.
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In this paper, we study how limits to the complexity of statistical models used by market
participants shape asset prices. We consider a framework in which the stochastic process that
governs the evolution of economic variables may not have a simple representation, and yet,
agents are only capable of entertaining statistical models with a certain level of complexity.
As a result, they may end up with a lower-dimensional approximation to the underlying data-
generating process that does not capture its full intertemporal complexity. We show that this
form of model misspecification generates systematic deviations from rational expectations with
sharp predictions for the extent and nature of return and forecast-error predictability at different
horizons.'

We present our results in the context of a simple asset pricing environment, in which a
sequence of exogenous fundamentals (say, an asset’s dividends) are generated by a stochastic
process that can be represented as an n-factor model. While agents can observe the sequence of
realized fundamentals, they neither observe nor know the underlying factors that drive them. As
a result, they rely on their past observations to estimate a hidden-factor model that would allow
them to make predictions about the future. As our main assumption, we assume that agents can
only hold and update beliefs about models with at most k factors, where k may be distinct from
the true number of factors, n. As in Molavi (2022), this assumption captures the idea that there
is a limit to the complexity of statistical models that agents are able to consider, with a larger k
corresponding to a more sophisticated agent who can entertain a richer class of models.

Formally, we assume that agents start with a prior belief with support over the set of k-factor
models and update their beliefs over time in a Bayesian fashion. While simple, this formulation
has three important features. First, the restriction on the support of agents’ priors reflects our
behavioural assumption that agents are incapable of holding and updating beliefs about models
that are more complex than what they can entertain. Second, the assumption that agents in our
framework are Bayesian ensures that any deviation from the predictions of the rational expecta-
tions benchmark is entirely due to the complexity constraint on the agents’ models (as captured
by the wedge between k and n). Third, this formulation implies that all parameters of the mod-
els agents use for forecasting are endogenous outcomes of learning: once we specify the number
of factors k, there are no more degrees of freedom on how agents form their subjective expecta-
tions. As a result, agents’ forecasts (and the resulting price, return, and forecast-error dynamics)
are fully pinned down by (i) the constraint on the complexity of the agents’ models and (ii) the
statistical properties of the true data-generating process.

With our behavioural framework in hand, we first characterize the agents’ subjective expec-
tations in terms of the primitives of the economy. We establish that, as agents accumulate more
observations, their posterior beliefs concentrate on the subset of k-factor models with minimum
Kullback-Leibler (KL) divergence from the true data-generating process. This result implies
that when agents can contemplate models that are as complex as the true model (that is, when
k > n), they can forecast the future realizations of the fundamental as if they knew the true
data-generating process. In other words, when k > n, our framework reduces to the rational
expectations benchmark. Furthermore, the characterization of agents’ subjective expectations
in terms of the KL divergence from the true process enables us to determine price and return
dynamics in the more interesting case when k < n.

1. While we focus on limits to the complexity of agents’ statistical models, one can also consider other dimen-
sions along which decision makers are constrained, such as limited memory (da Silveira er al., 2020; Nagel and Xu,
2022), limited capacity for processing information (as in models of rational inattention), an incomplete understanding of
general equilibrium effects (e.g. due to level-k reasoning as in Farhi and Werning, 2019 or limited “depth of knowledge”
as in Angeletos and Sastry, 2021), and restrictions on the number of variables to pay attention to (Gabaix, 2014).
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Having characterized agents’ subjective expectations, we then turn to the main focus of our
analysis: how the constraint on the complexity of statistical models used by agents shapes asset
prices. More specifically, we study the extent to which the disparity between the number of
factors in the agents’ models (k) and that of the true data-generating process (n) can result in
return and forecast-error predictability. We measure the extent of return and forecast-error pre-
dictability by relying on two families of regressions. These regressions measure the extent to
which current fundamentals predict future returns and forecast errors at different horizons. Our
main theoretical results provide a characterization of the slope coefficients of the aforementioned
regressions in terms of the complexity of agents’ models and the auto-correlation function (ACF)
of the process that drives the fundamentals. Since all parameters in the agents’ models, other than
the number of factors k, are endogenously determined, our results provide sharp predictions for
the extent of return and forecast-error predictability at different horizons.

We then use our characterization theorem to obtain a series of results that relate the term
structure of the slope coefficients of the predictability regressions to the primitives of the envi-
ronment. First, we show that returns and forecast errors are predictable if (and only if) the true
process is more complex than the set of models considered by the agents (that is, k < n). Next,
we show that if agents can entertain more complex models with richer time-series dependen-
cies, their forecast errors (averaged over different horizons) become less predictable. We also
obtain a characterization of the sign pattern of the slope coefficients of the return predictability
regression in terms of the spectrum of the matrix that governs the evolution of the economy’s
fundamental. Specifically, we show that the horizons at which the slope coefficients of the return
predictability regression change signs are tightly linked to this spectrum. We conclude our the-
oretical analysis by showing how one can back out the number of factors in the agents’ model
from their forecasts and the realizations of the fundamental.

We then apply our framework to study violations of uncovered interest rate parity (UIP) in
foreign exchange markets. We show that the behavioural constraint on the complexity of agents’
model can generate return predictability patterns that are simultaneously consistent with two
well-known, but seemingly contradictory violations of UIP, namely, the forward discount and the
predictability reversal puzzles. The forward discount puzzle, which dates back to Fama (1984),
is the robust empirical finding that, in short time horizons ranging from a week to a quarter,
high interest rate currencies tend to have positive excess returns. The predictability reversal
puzzle, more recently documented by Bacchetta and van Wincoop (2010) and Engel (2016),
refers to the fact that high interest rate currencies tend to have negative excess returns over longer
horizons, that is, the violation of UIP reverses sign after some point. The seemingly contradictory
implications of these puzzles for the relationship between currency excess returns and interest
rate differentials has led some to argue for the inadequacy of existing models for explaining UIP
violations (Engel, 2016).

To test our model’s implications for UIP violations at different horizons, we follow Engel
(2016) and run predictive regressions from a trade-weighted average currency return on the cor-
responding interest rate differential. We then compare the resulting slope coefficients to those
implied by our theoretical framework when agents are constrained in the number of factors in
their models. We find that when investors are constrained to using single-factor models, the
model-implied slope coefficients line up with the ones from the data: at short horizons, devia-
tions from rational expectations generate UIP violations that imply positive excess returns for
high interest rate currencies, whereas at longer horizons the pattern reverses, with high interest
rate currencies earning a negative excess return. In other words, our framework generates return
predictability patterns that are simultaneously consistent with the forward discount and pre-
dictability reversal puzzles. Crucially, the model-implied return predictability pattern matches its
empirical counterpart without using data on exchange rates or excess returns: the model-implied
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slope coefficients are constructed solely from the autocorrelation of interest rate differentials.
We also find that as we increase the number of factors in agents’ model, UIP violations mostly
disappear at all horizons.

In the second half of our empirical analysis, we investigate whether our behavioural model’s
predictions are also consistent with evidence from survey data. Using surveys of professional
forecasters, we estimate the extent to which past interest rate differentials predict realized fore-
cast errors and compare the results to the extent of forecast-error predictability implied by our
model. Once again, we find that, under the assumption that agents rely on single-factor mod-
els, the model-implied slope coefficients of forecast-error predictability regressions track their
empirical counterparts fairly closely. In other words, the assumption that market participants
may rely on simpler representations of the interest rate differential process not only leads to pre-
dictable forecast errors but also generates forecast errors that are in line with survey data. This
is despite the fact that the model-implied regression coefficients are constructed solely from the
autocorrelation of interest rate differentials, without relying on survey data.

1.1. Related literature

Our paper contributes to the literature that studies the asset pricing implications of deviations
from rational expectations. The most related branch of this literature considers agents who have
a misspecified view of the true data-generating process as a result of behavioural biases. For
instance, Barberis et al. (1998) assume agents mistakenly believe the innovations in earnings
are drawn from a regime with excess reversals or excess streaks, Gourinchas and Tornell (2004)
consider a model in which agents misperceive the relative importance of transitory and persis-
tent shocks, and Rabin and Vayanos (2010) show that gambler’s fallacy—the belief that random
sequences should exhibit systematic reversals, even in small samples—can generate momentum
and reversal in returns.” As in these papers, deviations from rational expectations in our frame-
work are due to misspecification in agents’ models. However, we depart from the prior literature
along two dimensions. First, we assume that—subject to the constraint on the complexity of their
model—agents can estimate a fully flexible linear factor model with no a priori restrictions on
its parameters. As a result, any distortion in agents’ subjective expectations is purely due to the
mismatch between the dimensions of their model and that of the true process. Second, we show
that such a mismatch not only can result in predictable forecast errors that are in line with sur-
vey data but can also generate UIP violations that are simultaneously consistent with the forward
discount and predictability reversal puzzles.

Another strand of the literature studies how deviations from Bayesian updating shape asset
prices. The extrapolative expectations models of Hirshleifer et al. (2015) and Barberis et al.
(2015) and diagnostic expectations models of Bordalo et al. (2018) are examples of such non-
Bayesian models of updating. In contrast to this literature, we maintain the assumption of
Bayesian updating and instead formulate our departure from rational expectations by assuming
that agents assign zero prior beliefs to complex models with a large number of factors. This for-
mulation allows us to impose constraints on the complexity of agents’ models, while preserving
other features of the rational expectations framework (such as the internal consistency of agents’
subjective expectations).

2. For theoretical and empirical studies of departures from the full information rational expectations benchmark
in the macroeconomics literature, see Coibion and Gorodnichenko (2015), Bordalo ef al. (2020), Angeletos et al. (2020),
Kohlhas and Walther (2021), and Farmer et al. (2023).
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Our paper is also related to the broader literature that studies the implications of vari-
ous kinds of constraints on agents’ cognitive and computational abilities, such as imperfect
or selective memory (Bordalo et al., 2020; Nagel and Xu, 2022; Wachter and Kahana, 2023),
limited capacity for processing information (Sims, 2003), incomplete understanding of general
equilibrium effects (e.g. due to level-k reasoning), and restrictions on the number of vari-
ables to pay attention to (Gabaix, 2014). In contrast to these papers, agents in our framework
observe the exact realization of all economic variables and have a complete understanding
of the relationship between endogenous and exogenous variables. Instead, they are con-
strained in the complexity of the time-series models they fit to the dynamic evolution of the
fundamental.

Our behavioural framework is closely related to Fuster et al. (2010, 2012), who study an
economy in which decision makers forecast a time series using only its last k realizations and
find that when the true process has hump-shaped dynamics, the misspecification in the order of
the autoregressive process generates excess returns that are negatively predicted by lagged excess
return. We extend this framework along two dimensions. First, rather than restricting agents to
forecast a time series using its last k realizations, we allow them to estimate a fully flexible k-
factor model. This is equivalent to using any arbitrary k statics of the past realizations to forecast
the future.’ Second, we use our framework to characterize the extent of return and forecast-
error predictability at various horizons as a function of the number of factors k in agents’ model
and the statistical properties of the underlying data-generating process. Also closely related is
Molavi (2022), who shows that restrictions on the dimensionality of agents’ models can generate
persistence bias, whereby agents attend to the most persistent observables at the expense of less
persistent ones, thus inducing comovement between their various actions. We instead focus on
how constraints on agents’ model complexity shape the extent and nature of return and forecast-
error predictability in asset pricing applications.*

Finally, we also contribute to the literature that studies UIP violations and in particular, the
reversal in currency return predictability (Engel, 2016; Valchev, 2020; Bacchetta and van Win-
coop, 2021). Within this literature, our paper is most closely related to Gourinchas and Tornell
(2004), Candian and Leo (2023), and Granziera and Sihvonen (2022), who study how distortions
in agents’ subjective expectations can explain various exchange rate puzzles.® Different from
these papers, which specify exogenous processes for agents’ subjective expectations, the wedge
between objective and subjective expectations in our framework is an endogenous outcome of
learning. A consequence of this endogeneity is that, in contrast to the literature that hardwires
over- and/or under-reaction of expectations into agents’ models, the forecasts of agents in our
framework may exhibit over- or under-reaction to news depending on the statistical properties
of the underlying data-generating process.

3. We formalize this equivalence in Proposition A.l. The family of k-factor models includes all ARMA(p, q)
processes such that max{p, ¢ + 1} < k and thus nests the family of AR (k) processes as a special case.

4. Methodologically, our paper is also related to the literature on model order reduction in control theory, which
is concerned with characterizing lower-order approximations to large-scale dynamical systems. See Antoulas (2005)
and Sandberg (2019) for textbook treatments of the subject. In contrast to this literature, which mostly focuses on
optimal Hankel-norm approximations, Bayesian learning in our framework implies that agents end up with a model that
minimizes the KL divergence from the true data-generating process.

5. The expectations-based violations of UIP in our framework is also related to Froot and Frankel (1989) and
Chinn and Frankel (2020), who argue that most of the forward premium bias can be attributed to errors in agents’
subjective expectations, as opposed to risk premia.
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1.2.  Outline

The rest of the paper is organized as follows. Section 2 presents the environment and specifies
our behavioural assumption. In Section 3, we introduce the predictability regressions that we
use to quantify the extent of return and forecast-error predictability. We present our main results
in Section 4, where we illustrate how the behavioural constraint on the complexity of agents’
models shapes return and forecast-error predictability at different horizons. In Section 5, we
apply our framework to study violations of UIP in foreign exchange markets. All proofs and
some additional results are provided in the Appendix. The Supplementary Appendix contains
additional empirical results, as well as the proofs not presented in the main paper.

2. MODEL

We start by presenting a reduced-form asset pricing framework that serves as the basis of
our analysis. This framework allows us to focus on the main ingredients of our model, while
abstracting from details that are not central to the analysis. In Section 5, we provide a concrete
application that can be cast into this reduced-form framework in a straightforward manner.

2.1.  Reduced-form framework

Consider a discrete-time economy consisting of a unit mass of identical agents. Agents form
subjective expectations about an exogenous sequence of variables, {x,}2°__ , which we refer to
as the economy’s fundamentals. Depending on the context, the fundamental may correspond
to an asset’s dividend stream over time, interest rate differential between two countries, or any
sequence of variables that can be treated as exogenous in that specific application.

The sequence of fundamentals {x,};°_ is generated by a stationary n-factor model given by

z =A%z +B'g

X =c"z, (1

where z; € R” denotes the vector of factors that drive the dynamic of fundamentals, ¢* € R” is
a vector of constants that captures the fundamental’s loading on each of the n factors, and A*
and B* are square matrices that govern the evolution of factors over time. To ensure stationarity,
we assume that all eigenvalues of A* are inside the unit circle: p(A*) < 1, where p(-) denotes
the spectral radius. The noise terms &; € R"” are independent over time and across factors and
are normally distributed with mean zero and unit variance, that is, &;; ~ N'(0, 1). Without much
loss of generality, we assume that matrix B* that determines the covariance matrix of factor
innovations has full rank. The process that generates the fundamentals can thus be summarized
by the collection of parameters 6* = (A*, B*, ¢*). Note that the formulation in equation (1) is
flexible enough to nest the family of stationary and invertible ARMA processes (Aoki, 1983).

Throughout, we assume that there are no redundant factors in equation (1), in the sense that
the dynamics of the fundamental cannot be represented by a factor model with fewer than n
factors. The number of factors n thus measures the complexity of the data-generating process
(1), as a larger n means that describing the dynamics of the fundamental requires a system of
equations of a higher dimension.

Whereas the fundamental sequence {x,};2__, is assumed to be exogenous, we are interested
in how the fundamentals and the agents’ subjective expectations about them jointly determine

an endogenous sequence of variables {y,}°__, which we refer to as prices. More specifically,
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we assume that the price at time ¢ satisfies the recursive equation

Vi = X + 0B [yi41], 2)

where E;[-] denotes the agents’ time ¢ subjective expectation and J € (0, 1] is a constant.
Equation (2) is akin to a standard no-arbitrage condition with a natural interpretation. For exam-
ple, if the sequence {x,};°__ represents an asset’s dividend stream, then y, corresponds to the
price of the asset at time #, with equation (2) simply capturing the fact that the asset’s price is
the sum of its dividends at that time and its expected future price, discounted at some rate .
We also note that agents’ subjective expectations, E,[-], may be distinct from the expectations
arising from the true data-generating process (1), which we denote by E}[-].

Given the sequence of fundamentals and prices {(x;, y;)};2_.,, we define excess returns at
time # 4 1 as the sum of the fundamental and the change in price between ¢ and ¢ + 1, properly
discounted:

X1 = 0Yig1 — Vi + X;. 3)

Using equation (2), we can also express excess returns as the difference between the realized
and the expected price: X, = 0(¥r+1 — E¢[yi41])-

Together with the specification of how agents’ subjective expectations are formed, equations
(1)—(3) fully describe our environment. Note that while we have abstracted from certain details
of the economy (such as preferences, endowments, and the market structure), our subsequent
analysis applies to any model with the same reduced-form representation as the above frame-
work. As already mentioned, in Section 5, we provide a concrete application that can be cast
into this reduced-form framework in a straightforward manner.

2.2. Constraints on model complexity

While at any given time #, agents observe the sequence of realized fundamentals up to that
time, we assume that they observe neither the underlying factors (zy, ..., z,) nor the collection
of parameters 6* = (A*, B*, ¢*) that governs the data-generating process. As a result, they use
the past realizations of the fundamental to learn about the underlying process that generates
{x;}22 _ ., which they then use to make forecasts about the future.

As our main behavioural assumption, we assume that agents face a constraint on the com-
plexity of statistical models they can consider. Specifically, as in Molavi (2022), we assume that
they can only entertain models with at most k factors, where k may be distinct from the true
number of factors, n, in equation (1). The number of factors, k, thus indexes the agents’ degree
of sophistication, with a larger k corresponding to agents who can entertain a richer class of
models.

Formally, we assume that agents can only hold and update beliefs over the set of k-factor
models O, = {(A,B,c) : A,B € RFkxk p(A) <1, andc € R*} of the following form:

w; = ACU[71 + BS[

x; = c oy, “

where @, € R¥ denotes the vector of k underlying factors, (A, B, ¢) € ®; parameterizes the
process that govern the factors’ evolution and the fundamental’s loading on each of the factors,
and the noise terms ¢;; ~ N(0, 1) are independent over time and across factors. Unless otherwise
stated—and to simplify the analysis—we assume that B has full rank. Note that, with some
abuse of notation, we can write ®; C @, thus capturing the fact that agents with a higher k
can contemplate a larger class of models.
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A few remarks are in order. First, note that we impose no restrictions, other than the number
of factors, on the agents’ models: the k factors (wy, ..., @) in the agents’ model may overlap
with a subset of the n factors (zy, . . ., z,) that drive the fundamental, may be linear combinations
of the underlying n factors, or can be constructed in an entirely different way altogether. Second,
as we discuss in further detail below, the k-factor model agents use for forecasting is an endoge-
nous outcome of learning: agents will rule out models that are less consistent with their past
observations in favour of those that are more so (in a sense that we will formalise). Third, when
k < n, the set of models entertained by agents does not contain the true n-factor data-generating
process in equation (1), that is, 8* ¢ ®. In such a case, our behavioural assumption implies that
irrespective of which k-factor model they use, agents will end up with a misspecified model of
the world. This observation also clarifies the bite of our behavioural assumption: whereas more
sophisticated agents with k > n can recover the model that generates the fundamentals (at least
in principle), those with & < n can at best construct lower-dimensional approximations to the
true data-generating process.

2.3.  Subjective expectations and learning

Agents form their subjective expectations by learning from the past realizations of the funda-
mental and updating their beliefs in a Bayesian fashion. Specifically, we assume that they start
with a common prior belief, x,, = i € A®,, with support over an arbitrary compact subset of
the set of k-factor models at some initial period #y and form Bayesian posterior beliefs u; € A®y
after observing the sequence of fundamentals {x;,, ..., x;_1, x;}.

This formulation has a few important implications. First, it implies that agents assign a zero
prior belief to all models with more than k factors, thus reflecting our assumption that they
are incapable of holding and updating beliefs about models that are more complex than what
they can entertain. Second, aside from the constraint on the number of factors, we allow agents
to estimate a fully flexible model with arbitrary factor dynamics (A), volatility of and covari-
ance between innovations (B), and loading of the fundamental on each of the factors (c). Third,
and most importantly, agents in our framework are fully Bayesian with an internally consis-
tent system of beliefs, in the sense that their subjective expectations satisfy the law of iterated
expectations: E,E,,,[-] = E,[-] for all # > 0 and all ¢. This means that, under agents’ subjec-
tive expectations, all forecast errors at time ¢ + h are unpredictable given their information set
at time t. When coupled with equations (2) and (3), this observation also implies that excess
returns in our framework are equal to the discounted sum of agents’ forecast revisions:®

X = 0" i lXege] = Eilxis ). )

=1

Throughout the rest of the paper, we restrict our attention to agents’ long-run beliefs by assum-
ing that they have already observed a long sequence of past realizations of the fundamental.
Formally, we assume that at any given period ¢, agents observe the sequence {x,, ..., x,—1, X},
and consider the limit as ty — —oo. This assumption allows us to study the systematic implica-
tions of the complexity constraint on agents’ models (i.e. the disparity between k and n), while
abstracting from fluctuations in beliefs that arise due to observing a finite sample.

6. Throughout, we restrict our attention to the unique “fundamental solution” of recursive equation (2), which is
the solution that does not depend on any sunspot shocks.
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2.4. Discussion

We conclude this section with a brief discussion of our framework and its key ingredients.

As already mentioned, the behavioural restriction on the maximum dimension of agents’
model captures the idea that agents may not be able to fully comprehend the time-series rela-
tionships in the data-generating process. Such a lack of comprehension can be due to constraints
on cognition or memory, which may make it difficult for agents to use higher-dimensional mod-
els that are not easy to understand, use, or revise. We provide one example of such a restriction
in Appendix A.1, where we show that an agent who is restricted to the class of k-factor models
is isomorphic to an agent with limited recall, who makes predictions about the future by relying
on at most k summary statistics of the entire history of her past observations. Under this interpre-
tation, an agent with a larger k can construct a richer set of statistics, maintain a more complete
record of the past, and hence better capture the intertemporal dependencies in the underlying
data-generating process.

Despite their limited ability to comprehend the complex time-series properties of the data-
generating process, agents are assumed to fully understand (and have no uncertainty about)
the relationship between endogenous and exogenous variables in equation (2). This is akin to
assuming that agents have a correctly specified model of the economy’s structure, such as pref-
erences, market structure, market clearing, and all partial and general equilibrium effects. The
only potential source of misspecification in agents’ model is in the stochastic process that drives
the fundamental.’

The assumption that agents in our framework are Bayesian with access to a long history
of observations is meant to ensure that any deviation from the predictions of textbook rational
expectations is entirely due to the complexity constraint on their models. Indeed, as we show
in subsequent sections, when the agents’ set of models is flexible enough to contain the true
data-generating process (i.e. when k > n), Bayesian learning guarantees that agents can fore-
cast future realizations of the fundamental as if they knew the true process. In such a case, our
framework coincides with the benchmark rational expectations framework.

Bayesian updating also implies that agents’ posterior beliefs at any given time only depend on
the sequence of realized fundamentals up to that time and is independent of other characteristics
of the economy. Thus, holding their information sets constant, agents in our framework end up
with the same posterior beliefs irrespective of how preferences, endowments, or other features
of the economy are specified.®

Another important feature of our framework is that all parameters of the model agents use
for forecasting are endogenous outcomes of learning: once we specify the number of factors &,
there are no more degrees of freedom on how agents form their expectations. As a result, agents’
forecasts (and the resulting price and return dynamics) are fully pinned down by (i) the limit
on the complexity of their model, as captured by k, and (ii) the true data-generating process
(1) as summarized by 6* = (A*, B*, ¢*). The endogeneity of agents’ model also implies that
the way their forecasts respond to new information cannot be decoupled from the environment
they live in. In particular, as we show in the Supplementary Appendix D, agents’ forecasts may
exhibit systematic over- or under-reaction to news depending on the statistical properties of the

7. In view of equations (2) and (3), this assumption also implies that all realizations of prices and returns up to
time ¢ are measurable with respect to the information set generated by {x; }; <;. Therefore, irrespective of whether past
prices and returns are observable or not, it is sufficient to consider expectations conditioned on the past realizations of
the fundamental.

8. Also, note that the assumptions that agents (i) are Bayesians and (ii) assign a zero prior belief to models with
more than k factors imply that no data or statistical analysis would make them revise their beliefs in such a way that they
end up assigning a non-zero posterior belief to models with more than & factors.
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underlying data-generating process. This is in contrast to the literature that hardwires over- and
under-reaction of expectations into agents’ models.

As a final remark, we note that our focus on the simple no-arbitrage condition in equation
(2) abstracts from potentially important dimensions—such as time-varying discount rates—that
matter for price and return dynamics. Nonetheless, this choice allows us to isolate, in the
most transparent manner, how the agents’ inability to entertain complex models distorts their
subjective expectations and shapes return dynamics.

3. RETURN AND FORECAST-ERROR PREDICTABILITY

Under rational expectations, all future excess returns and forecast errors are unpredictable given
past information. As a result, the extent to which returns and forecast errors are predictable
can serve as a natural measure for how the departure from rational expectations caused by our
behavioural assumption shapes asset price dynamics.

In this section, we first introduce the regressions that we use to assess the implications of
the wedge between the complexity of agents’ model and the true data-generating process for
return and forecast-error predictability. We then characterize the slope coefficients of these pre-
dictability regressions in terms of the statistical properties of the agents’ model and the true
data-generating process.

3.1.  Return predictability

We measure the extent of return predictability by relying on a family of linear regressions that
quantify the extent to which the current realization of the fundamental predicts future excess
returns at different horizons:

Xi4n = a;,x + ,B}r,xxz + &t.ns (6)

where & > 1 denotes the horizon and rx is the excess return, as defined in equation (3). If returns
are unpredictable—as would be the case under rational expectations—then f;* = 0 for all hori-
zons h. If, on the other hand, an increase in the fundamental today is associated with higher
excess returns at horizon &, then f;* > 0. Thus, the family of slope coefficients (81*, p3*, . ..)
not only provides a measure for departures from the rational expectations benchmark but also
determines the extent to which such departures vary with horizon 4.

3.2. Forecast-error predictability

We test for the predictability of forecast errors by relying on a similar family of linear regres-
sions. These regressions, which resemble the specification in Kohlhas and Walther (2021),
measure the extent to which the current realization of the fundamental predicts m-step-ahead
forecast errors at a given horizon i > 1:

fe fe
Xtth+m—1 — IEt-kh—l[xt-‘rh-km—l] = a}zm + ﬁhe,mxr + Et.h,m>s (7)

9. The family of regressions in equation (6) resembles Fama’s (1984) regression specification for testing devia-
tions from the UIP condition. In that context, the fundamental, x;, corresponds to the log interest rate differential between
two countries, y; is the log of the exchange rate, and rx, is the currency excess return at time 7. See Section 5 for a more
detailed discussion of the application of our framework to foreign exchange markets.
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where E[-] denotes the agents’ subjective expectations. The unpredictability of forecast errors
under rational expectations requires that ﬁg‘j’m = 0 for all &, m > 1. Therefore, once again, the
term structure of coefficients ﬂ;‘fm provides us with a natural measure for assessing the impli-
cations of our behavioural framework at different time horizons relative to the benchmark of

rational expectations.

3.3. Characterization

In the remainder of this section, we characterize the slope coefficients of regressions (6) and (7)
in terms of the statistical properties of the agents” model and the true data-generating process.

Recall that the key friction in our framework is that agents rely on potentially simplified
models that do not capture the full intertemporal complexity of the true data-generating pro-
cess. This means that they may misperceive the autocorrelation of the process that generates
the fundamental. To formalize this misperception, let & = E*[x,x;4.1/ IE*[xlz] denote the auto-
correlation of the fundamental at lag v under the true data-generating process. Similarly, let
& = Elxii.] /E[xlz] denote the same autocorrelation under agents’ subjective expectations,
which may be distinct from . The following result expresses the large-sample limits of the
slope coefficients of regressions (6) and (7) in terms of these autocorrelations.

Proposition 1. The slope coefficients of the return and forecast-error predictability regressions

(6) and (7) are given by

_ 5(5;[ — &) = Dt B &G = Go)
1 - Z:ﬁv:l 5T Er_slgs

B (®)

and

ron = Gt = Gm) = DD &1 BN &, — Gio), ©

=1 s=1
respectively, where E is an infinite-dimensional matrix such that Z;; = &_j for all i, j > 1.

This result has a few immediate implications. First, it is straightforward to verify that, if
E[-] = E*[-], then & = & for all 7 and hence, B}* = Z‘fm =0 at all horizons & > 1. Thus,
when agents use the correct model to make forecasts about the future realizations of the fun-
damental—as would be the case with rational expectations—neither excess returns nor forecast
errors are predictable given past realizations of the fundamental. Second, when agents’ subjec-
tive expectations do not coincide with expectations under the true data-generating process (so
that &, # & for some h), the coefficients of the predictability regressions may in general be dif-
ferent from zero. This is despite the fact that agents’ expectations are internally consistent and
satisfy the law of iterated expectations. Finally, Proposition 1 illustrates that the wedge between
the agents’ subjective expectations and rational expectations may have differential impacts on
the slope coefficients at different horizons 4.

Taken together, equations (8) and (9) illustrate how the statistical properties of the true pro-
cess and agents’ subjective model—as summarized by the corresponding autocorrelations—are
sufficient statistics for the extent of return and forecast-error predictability. In fact, according
to these equations, the term structures of the coefficients of the predictability regressions are
closely linked to whether agents over- or under-estimate the true autocorrelation of the data-
generating process at different horizons (that is, whether &} < & or ¥ > £;). However, recall
from Section 2 that agents’ subjective expectations are themselves endogenous outcomes of
learning. This means that, in our framework, the autocorrelation of the fundamental perceived
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by the agents, {{;}22_ ., is also endogenous. Therefore, to apply Proposition 1 to our frame-
work, we first need to characterize agents’ subjective expectations in terms of the primitives of
the economy, namely, (i) the true data-generating process and (ii) the complexity of the models

agents can entertain, as summarized by the maximum number of factors in their model, k.

4. MODEL COMPLEXITY AND ASSET PRICES

With the characterization result in Proposition 1 in hand, we now turn to the main focus of our
analysis: how the constraint on the complexity of statistical models used by market participants
can shape asset prices. More specifically, we study the extent to which the disparity between
the number of factors in agents’ models (k) and that of the true data-generating process (n)
determines the statistical properties of the agents’ models and hence can result in (excess) return
and forecast-error predictability.

4.1.  Subjective expectations under complexity constraint

As a first step, we characterize agents’ subjective expectations in terms of model primitives.

Recall from Section 2 that the true data-generating process can be represented by the collec-
tion of parameters * = (A*, B*, ¢*), all of which are of dimension n, whereas agents’ models
are restricted to the set of k-dimensional models, ®;. Given an arbitrary model 6 € @, for the
agents, denote the KL divergence of model 8 from the true process by

KL©@*0) = E*[—log f* (xi411x,, .. )] — E*[—log f*(xi411x, .. )], (10)

where f* is the density of the fundamental under the true data-generating process, f? is the
agents’ subjective density under model 6, and [E*[-] is the expectation with respect to the true
process. It is well known that the KL divergence is always non-negative and obtains its minimum
value of zero if and only if densities ¢ and f* coincide almost everywhere. As such, KL(0*||9)
can be interpreted as a measure for the disparity between agents’ subjective expectations under
model @ and the true process.

The next result characterizes agents’ subjective expectations in terms of the KL divergence
from the true data-generating process. As discussed in Subsection 2.3, we focus on the outcome
of learning under the assumption that agents have access to a long history of the past realiza-
tions of the fundamental. This allows us to study the systematic implications of the complexity
constraint for agents’ subjective expectations, while abstracting from the fluctuations in beliefs
that arise due to a finite sample.

Proposition 2. Let @k C Oy be an arbitrary compact set with ﬂ(@k) =1 and let ® C @k
denote a collection of k-factor models with a positive measure under the agents’ prior beliefs,
ie in(®)>0.1If

ess inf KL(6*(|0) > min KL(6*(9),
0e® 0e®y

then
lim x4, (©) =0 P*-almost surely.
th—>—00

This result, which is in line with the literature on learning under model misspecification (such
as Berk, 1966; Esponda and Pouzo, 2016), states that agents’ posterior beliefs concentrate on the
subset of k-factor models that have minimum KL divergence from the true data-generating pro-
cess. When agents can contemplate models that are as complex as the true model (that is, when
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k > n, and as aresult, * € ©y), Proposition 2 implies that they assign a posterior belief of zero
to all models with a non-zero KL divergence from the true process 8*. In other words, agents
can forecast the future realizations of the fundamental as if they knew the true process (i.e.
E[-] = E*[-]), in which case our framework coincides with the benchmark of rational expecta-
tions. In contrast, when the model complexity constraint binds (i.e. when k < n so that 6* ¢ ®y),
Proposition 2 implies that agents become convinced, mistakenly, that the fundamental is gener-
ated according to the stochastic process that is closest to the true process as measured by KL
divergence. In juxtaposition with Proposition 1, this result provides us with the necessary ingre-
dients to characterize the implications of the behavioural constraint on the complexity of agents’
models for return and forecast-error predictability.

4.2.  Return and forecast-error predictability

We now use Propositions 1 and 2 to characterize how the constraint on the complexity of agents’
models shapes the extent of return and forecast-error predictability, as captured by the term
structures of slope coefficients of regressions (6) and (7). As already discussed, all parameters
of the model agents use for forecasting are endogenous outcomes of learning. As a result, once
we specify the maximum number of factors & in the agents’ model, there are no more degrees
of freedom on how they form their expectations. This, in turn, implies that the autocorrelation
of the fundamental as perceived by the agents and hence the coefficients of return and forecast-
error predictability regressions can be expressed only in terms of the number of factors & in
the agents’ model and the statistical properties of the true data-generating process. We have the
following result.

Theorem 1. Suppose agents are constrained to k-factor models and let {$}}22 _ denote the
true autocorrelation of the fundamental.

(1) The autocorrelation of the fundamental according to agents’ subjective expectations is

>0 o @M S u) (WM u)
z;’io (M/Msu)z

where M and u are, respectively, a k x k stable matrix and a k x 1 unit vector that minimize

& = forallh >0, (11)

HM,u)=1-2)" g0+ > > ¢Mpher | (12)
s=1

s=1 =1

subject to p(M(I — uu')M') < 1 and ¢ = u'M" ' [M(I — uu')]*~'Mu.
(2) The coefficients of the return and forecast-error predictability regressions are given by

X i;lk - Z:O:I ¢1('l)é;:—t

* =0 (13)
’ 1-3% ot
o0
o = Crm — D PG (14)

=1

This theorem is the main characterization result of the paper. It relates the autocorrelation
of the fundamental as perceived by agents and the resulting coefficients of predictability regres-
sions to (i) the number of factors in agents’ model and (ii) the statistical properties of the true
data-generating process. The theorem follows from combining Proposition 1 with Proposition 2,
according to which agents’ beliefs concentrate on the subset of k-factor models with minimum
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KL divergence from the true data-generating process. Even though the objective function in
equation (12) is in terms of matrix M and vector u, these objects are closely linked to the
parameters of agents’ model, § = (A, B, ¢).!°

The characterization result in Theorem 1 serves two distinct purposes in our analysis. First,
it allows us to directly apply our framework to asset pricing applications. In particular, in any
context in which endogenous and exogenous variables are related to one another via equation
(2), we can use the autocorrelation of the exogenous variables and the expressions in equations
(13) and (14) to compute the implied coefficients of the predictability regressions. This is the
approach we take in the next section. Second, Theorem 1 enables us to perform comparative
static analyses with respect to the primitives of the economy and to compare the extent of return
and forecast-error predictability at different horizons, as we do in the remainder of this section.

We start with a simple result that considers the case where agents’ models are sufficiently
rich to fully capture the statistical properties of the data-generating process.

Proposition 3. Let k and n denote the number of factors in, respectively, agents’ model and the
true data-generating process.

(1) Ifk > n, then p;* = ,ffm = 0 for all horizons h and all m.
(2) Ifk < n, then there exist h, h, and m such that B # 0and ﬁzem # 0.

The first statement establishes that if agents can contemplate models that are as complex
as the true model, then there is no return or forecast-error predictability at any horizon. This
is a consequence of the fact that agents in our framework are Bayesian with access to a long
history of observations. Bayesian updating, together with the assumption that k > n, implies
that agents rule out models that are inconsistent with their past observations in favour of the
true data-generating process, while the large sample size guarantees that they do not suffer from
finite-sample problems such as overfitting. They recover the underlying data-generating process
even if they use models that have too many parameters relative to the true model (i.e. when
k > n). The second statement of Proposition 3 shows that the converse implication is also true: if
there is no predictability, the set of models entertained by agents has to be rich enough to contain
the true underlying model. This result follows from the characterization in Proposition 1, which
implies that * = i, = 0 at all horizons /4 if and only if the model-implied autocorrelation
coincides with the true autocorrelation of the data-generating process at all lags (&, = & for
all 7). But this can happen only if agents are capable of entertaining complex enough models
to understand the time-series dependencies of the underlying process: when k < n, agents are
bound to misperceive the persistence of the data-generating process for at least one horizon,
which in turn manifests itself as predictable returns and forecast errors.

Our next result concerns the extent of return predictability at long horizons.

Proposition 4. Excess returns and forecast errors are not predictable in the long run:
. X __ 1: fe __
lim g;* = lim g;°, =0.
h—o00 h—o00

This result is a direct consequence of the fact that both the true data-generating process (1)
and agents’ subjective model (4) are ergodic and stationary. As a result, the effect of time-
t variables on returns and forecast errors at time ¢ + & die out eventually as & increases,
irrespective of whether the complexity constraint binds or not.

10. For example, as we show in the proof of Theorem 1, the eigenvalues of matrix M that solves (12) coincide
with the eigenvalues of matrix A that minimizes the KL divergence in equation (10).
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Next, we study how changes in the number of factors in agents’ model determine forecast-
error predictability. Let (o7, ¢5, . . .) denote the coefficients of the autoregressive representation
of the true data-generating process: x; = > -, ¢*x,_, + & for some independent and identi-
cally distributed process ¢;.'! Note that these coefficients only depend on the statistical properties
of the true data-generating process and are independent of agents’ subjective model (or its
complexity). We have the following result.

Proposition 5. Ler [ = S b ,ff], where Bi s the coefficient of the forecast-error
predictability regression (7). Then,

(1) B* > 0forallk <n;
(2) ﬁ_f" is decreasing in k;
(3) p* =0forallk > n.

This comparative static result captures the intuitive idea that if agents can entertain more
complex models with richer time-series dependencies, their forecast errors (averaged over differ-
ent horizons) become less predictable. More specifically, Proposition 5 establishes that, holding
the underlying data-generating process fixed, a particular discounted sum of the term struc-
ture of the coefficients of the predictability regression (7) is strictly positive for small values
of k, decreases as the agents rely on more complex models, and becomes equal to zero when k
exceeds n.

4.3. Single-factor models

While the optimization problem in Theorem l—which relates return and forecast-error pre-
dictability to the primitives of the economy—does not have a closed-form characterization for
a general k, it is possible to obtain such a characterization for the case in which agents are
restricted to the class of single-factor models. Despite being only a special case, this closed-form
characterization is a transparent and easy-to-use result that is informative about how the extent
of return and forecast-error predictability varies with horizon £ and the statistical properties of
the true data-generating process.

Proposition 6. If agents are constrained to single-factor models, then the coefficients of the
return and forecast-error predictability regressions are given by

X 5

(A & —&iaéD) (15)
Ton = Srim — G (16)

respectively, where & is the autocorrelation of the fundamental at lag h.

The characterization in Proposition 6 allows us to explore the determinants of the term struc-
ture of the predictability coefficients in further detail. We are particularly interested in the sign
patterns of the return predictability coefficients, that is, whether higher realizations of the fun-
damental at time ¢ predict higher or lower excess returns at time ¢ + 4. Our next result shows
that the spectrum of matrix A* in equation (1), which governs the evolution of the fundamental,
plays a central role in shaping the signs of the coefficients of the return predictability regression.

11. Any process in the form of equation (1) has an invertible representation, and hence, can be expressed as an
autoregressive process (with potentially infinitely many lags).
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Proposition 7. Suppose k = 1 and n = 2. Furthermore, suppose A* has two distinct eigenval-
ues, Ay and A, such that |A| > |12|.

(1) If both eigenvalues are real and A, > 0, then f;* never changes sign.

(2) If both eigenvalues are real and A, < 0, then f;* changes sign at every horizon.

(3) If both eigenvalues are complex, then B;* changes sign at horizons h =rm /|| for r € N,
where ¢ = arg() is the argument of Ay in its polar representation.

That the return predictability pattern depends on the eigenvalues of A* is a consequence of
the fact that these eigenvalues are what determine the behaviour of the autocorrelation of the
data-generating process at different horizons. For example, when A* has a complex conjugate
pair of eigenvalues, & exhibits an oscillatory behaviour. This pattern is then naturally reflected
in the behaviour of 8;*, as agents who are restricted to one-factor models fit a process with an
exponentially decaying autocorrelation to a time series with a more complex autocorrelation.

4.4. Identifying the complexity of agents’ model

Our results so far were focused on characterizing the extent of return and forecast-error pre-
dictability as a function of the complexity of agents’ model. We conclude this section by
establishing how one can back out the number of factors in agents’ model from their forecasts
and the realizations of the fundamental.

Consider the following representation of agents’ m-step-ahead forecasts in terms of the
history of their observations:

oo
E/lxiim] = D ¢ xi41 o, a7
=1

where ("™, ¢, . ..) are a collection of coefficients that are independent of the fundamental’s
realizations. Given these coefficients, let ® denote the (infinite-dimensional) Hankel matrix with

typical element ®;; = ¢i(f:;_1 for all i, j > 1.'> We have the following result.

Proposition 8. Suppose agents are restricted to the class of k factor models, where k < n. Then,

rank(<I>) = k (18)
generically in 0 € O, where ® is the Hankel matrix constructed from coefficients
m p™ Y in equation (17).
1 2 q

This result establishes a key property of agents’ expectations and illustrates how one can use
agents’ forecasts to determine the number of factors in their model. Proposition 8 follows from
the particular structure of matrix ®. The statement that rank(®)= k means that all rows of ®
can be expressed as linear combinations of its first kK rows, which in turn implies that coeffi-
cients (¢§',Z)rl, ¢§2”J)rz, ...) cannot be determined independently from (¢§m), . ¢§Z’)).13 Thus, an
increase in rank(®) translates into expanding the possibilities of how agents can make forecasts

12. We suppress the dependence of ® on m for notational simplicity. Matrix X is said to be a Hankel matrix if
there exists a vector x such that X;; = x;4 ;1 forall i and j.

13. That all rows of an infinite-dimensional Hankel matrix of rank k can be written as a linear combination of
its first k rows is a consequence of what is known as Kronecker’s Theorem. See Theorem 2 of Al’pin (2017) for the
statement.
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using their past observations in the form of equation (17)—as one would anticipate to be the
case when agents rely on a richer set of models with a larger number of factors, k.'*

We conclude with two remarks about the statement of Propositions 8. First, note that one
can recover the number of factors in agents’ model from their forecasts only when k < n. When
k > n, agents’ forecasts coincide with forecasts under rational expectations, which means agents
form the same expectations irrespective of the actual value of k. Second, note that when k < n, it
may still be the case that the model in ®; that minimizes the KL divergence from the true data-
generating process ends up having a lower dimension than k. However, this is a non-generic
scenario, as the minimizer of equation (10) generically falls in ®; \ @;_;.

5. APPLICATION: VIOLATIONS OF UIP

In this section, we apply our framework to study violations of UIP in foreign exchange markets
and investigate the extent to which limits to the complexity of statistical models that agents use
for forecasting can explain various exchange rate puzzles.

We start by providing some background and reproducing the empirical evidence on UIP
violations. We then use the characterization result in Theorem 1 to test our behavioural model’s
predictions for the slope coefficients of return and forecast-error predictability regressions (6)
and (7) in this context.

5.1. Background

One of the central tenets of international finance is the uncovered interest rate parity condition,
which maintains that high interest rate currencies should depreciate vis-a-vis those with low
interest rates. Yet—in what has become known as the “forward discount puzzle”—a vast empir-
ical literature documents that, over short time horizons (ranging from a week to a quarter), high
interest rate currencies tend to appreciate. In other words, short-term deposits of high interest
rate currencies tend to earn a predictively positive excess return.

More recently, Bacchetta and van Wincoop (2010) and Engel (2016) document a distinct
but related puzzle, known as the “predictability reversal puzzle.” They find that UIP violations
reverse sign over longer horizons, with high interest rate currencies earning negative excess
returns at horizons from 4 to 7 years. The seemingly contradictory implications of the forward
discount and predictability reversal puzzles for the relationship between currency excess returns
and interest rate differentials has led some to argue for the inadequacy of existing models for
explaining UIP violations. For example, Engel (2016) argues that risk-based explanations of
the forward discount puzzle—which attribute the violations of UIP to the relative riskiness of
holding short-term deposits in high interest rate countries—cannot account for the predictability
reversal puzzle.

To reproduce the empirical evidence on the above-mentioned UIP violations, we first map
this context to our reduced-form environment in Subsection 2.1. Let the fundamental denote the
log interest rate differential between the US and a foreign country, that is, x;, = i} — i;, where
i; and i are nominal interest rates on deposits held in US dollars and the foreign currency,
respectively. Also, let y; denote the log of the foreign exchange rate, expressed as the US dollar

14. The statement of Proposition 8 is closely related to the well-known result in control theory that the order
of a dynamical system coincides with the rank of the system’s Hankel operator. For a textbook treatment, see, for
example, Antoulas (2005, Theorem 4.40). Proposition 8 generalizes and adapts this result to our behavioural framework
by allowing for expectations that are formed using a misspecified model.
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price of the foreign currency. With the discount rate set to 0 = 1, equation (2) is then nothing
but the (log-linearized) interest rate parity condition:

Ve = (l,* — i) + E[yi111- (19)

Note that, as in Subsection 2.1, the expectation in (19) denotes investors’ subjective expectations,
which may differ from those arising from the true data-generating process. Finally, equation (3)
is simply the definition of currency excess returns:

MX41 = Vi1 — Ve + (@ —iy).

We reproduce the empirical findings on UIP violations at different horizons by following Engel
(2016) and building a trade-weighted average exchange rate and interest rate differential rela-
tive to the US for the following countries: Australia, Canada, the Eurozone (Germany before
its introduction), New Zealand, Japan, Switzerland, and the United Kingdom. The weights are
constructed as the value of each country’s exports and imports as a fraction of the average
value of trade over the seven countries. Monthly exchange rate data is from Datastream and
interest rate differentials are calculated using covered interest rate parity (CIP) from forward
rates, i} —i; = f; — y;, also available from Datastream. We then run the following family of
regressions:

Xepn = azx + ﬂ;rlx(l;* — i)+ Et,hs

where 4 is the horizon measured in months. This regression is, of course, identical to the return
predictability regression (6) in Section 2.

Figure 1 plots the estimated slope coefficients at various horizons. For small values of 4,
we find the slope coefficient to be positive, thus recovering the classic forward discount puz-
zle: at short time horizons, higher interest rate differentials (relative to the US) lead to higher
excess returns. This pattern remains the same up to a horizon of 3 years but then reverses sign,
illustrating the predictability reversal puzzle: for horizons between 4 and 7 years, higher inter-
est rate differentials predict lower excess returns. Finally, as the figure indicates, the estimated
coefficient ;¥ becomes indistinguishable from zero at even longer horizons.

5.2.  Return predictability

Turning to our framework’s predictions, we first calculate the ACF of the interest rate differential
between the trade-weighted average interest rate and the US interest rate. Taking this autocor-
relation, {&},>1, as our primitive, we then calculate the term structure of the model-implied
coefficients f3;* of the return predictability regression using expression (13) in Theorem 1 for
different number of factors, &, in the agents’ model.

As our first exercise, we consider the case in which agents can only entertain single-factor
models, that is, k = 1. Recall that in this special case, we can use the closed-form expression
(15) in Proposition 6 to calculate the model-implied slope coefficients of the return predictability
regression. Figure 2 plots the term structure of the model-implied coefficients for k = 1 together
with the coefficients obtained from the data from Figure 1. As the figure indicates, the pattern
of model-implied coefficients tracks the pattern observed in the data fairly closely (though not
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FIGURE 1
Violation of UIP at different Horizons
Notes: This figure plots estimated slope coefficients, together with 90% confidence intervals, of return predictability regression: rx;j =
apt + BX G —ir) + &y, where /i denotes the horizon in months, x4, is the currency excess return on a trade-weighted average of
seven currencies vis-a-vis the US dollar, and i} — i; is the log interest rate differential between the trade-weighted average interest rate
and the US interest rate. Monthly data from January 1985 to December 2021. Confidence intervals are calculated using Newey and West
(1987) standard errors.

its magnitude)."> Most importantly, we see a reversal in the slope coefficient: model-implied
coefficients are positive for horizons up to 28 months and reverse to a negative sign thereafter.
Figure 2 thus suggests that if agents are constrained to rely on the family of single-factor models
to make forecasts about the evolution of the interest rate differential process, their subjective
expectations result in return predictability patterns that are simultaneously consistent with the
forward discount and predictability reversal puzzles.

It is important to emphasize that while the estimated coefficients in Figure 1 are obtained
from regressing returns on interest rate differentials, the model-implied coefficients in Figure 2
do not use the data on exchange rates or excess returns. Rather, they are simply obtained by
plugging the autocorrelation of the interest rate differential into equation (15).

Next, we investigate how increasing the number of factors in agents’ models impacts the term
structure of model-implied slope coefficients. To this end, we once again use the empirical ACF
of the interest rate differential as an input to calculate £;* for different values of k. However, when
k > 1, there is no closed-form expression for the model-implied slope coefficients. As a result,
we use the characterization result in Theorem 1 to solve for f;* numerically. As a by-product,
we also obtain the model-implied ACF from the perspective of agents who are constrained to
the class of k-factor models (equation (11)).'6

The results are reported in Figure 3. The left panel depicts the model-implied autocorrelation
for k = 1,2, 3, and 10, together with the empirical autocorrelation of the trade-weighted average

15. The mismatch between the magnitudes is due to the fact that the misspecification in agents’ beliefs is the
only driver of currency excess returns in the model, as the reduced-form formulation in equation (2) abstracts from
(subjective) risk premia.

16. Note that the expressions in equations (11)—(13) involve infinite sums. To implement these expressions
numerically, we truncate the infinite sums after 120 terms.
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FIGURE 2
Term structure of return predictability
Notes: This figure plots estimated slope coefficients of return predictability regression from Figure 1 (left axis) together with model-
implied coefficients from a one-factor model given in Proposition 6 (right axis) for different horizons. Monthly data from January 1985
to December 2021.

interest rate differential. As the figure indicates, the model-implied ACFs can differ quite sub-
stantially across various levels of agents’ sophistication. For example, while the 10-factor model
exhibits patterns that are fairly similar to the empirical ACF, the ACF implied by the single-
factor model looks significantly different. Crucially, this is reflected in the model-implied slope
coefficients as illustrated in the right panel of Figure 3: the 10-factor model, which generates a
model-implied ACF that closely tracks the empirical ACF, also results in model-implied slope
coefficients that are significantly smaller at nearly all horizons. This, of course, is to be expected
in view of our results in Section 4. As agents are able to entertain richer and more complex sta-
tistical models, they end up with models that better fit the empirical ACF, which in turn results
in less significant deviations from the rational expectations benchmark and hence less return
predictability.

5.3.  Forecast-error predictability

The findings in Subsection 5.2 indicate that our behavioural framework can generate return
predictability patterns that are simultaneously consistent with the forward discount and pre-
dictability reversal puzzles. In this subsection, we investigate whether the predictions of our
behavioural framework are also consistent with evidence from survey data. Specifically, we
focus on the dynamics of forecast errors and compare the coefficients of forecast-error pre-
dictability regression (7) implied by our model to their empirical counterparts from survey
data.

To obtain the empirical counterpart of the left-hand side of equation (7), we rely on surveys
of professional forecasters, provided to us by Consensus Economics. The surveys query respon-
dents every month about a number of country-specific macroeconomic and financial variables,
including 3-month-ahead forecasts of 3-month interest rates in different countries (Consensus
Economics Inc., 2022). Using these surveys, we calculate a “consensus forecast” for 3-month
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FIGURE 3
Varying the complexity of agents’ model
Notes: The left panel plots the ACF of the trade-weighted interest rate differential (data) together with model-implied autocorrelations
for models with k = 1, 2, 3, and 10 factors constructed from equation (11). The right panel plots the model-implied slope coefficients of
the return predictability regression (6) at different horizons for models with k = 1 and k = 10 factors. Monthly data from January 1985
to December 2021.

interest rates for Canada, the Eurozone, Japan, Switzerland, the United Kingdom, and the United
States by taking the median of all forecasts for each country.'”-'8 We then use these consensus
forecasts to construct forecasts for interest rate differentials between the United States and each
of the other five countries at a monthly frequency. Finally, we subtract the resulting forecasts
from the realized interest rate differentials and obtain monthly estimates for forecast errors of
interest rate differentials.

To estimate the slope coefficients of the family of forecast-error predictability regressions,
we regress the trade-weighted forecast errors of interest rate differentials on the trade-weighted
realized interest rate differentials. To calculate the model-implied slope coefficients, we consider
the case that agents rely on a single-factor model (i.e. kK = 1) and use the expression in equation
(16) for m = 3. Figure 4 plots the empirical and model-implied ﬂ,ff3 at various horizons. As is
evident from the figure, under the assumption that k = 1, the model-implied slope coefficients
of forecast-error predictability regression (7) track their empirical counterparts fairly closely.
Note that whereas the empirically estimated coefficients in Figure 4 are constructed from survey
data, the model-implied coefficients are obtained by simply plugging the autocorrelation of the
interest rate differential into equation (16).

As a final exercise, we use our result in Proposition 8 to obtain a direct estimate for the num-
ber of factors that would be consistent with survey data. Recall from equation (18) that, as long as
k < n, the rank of the Hankel matrix ® constructed from the coefficients in (17) is simply equal
to k. We can therefore perform a direct test of the value of k using the following three-step pro-
cedure: (i) regress the consensus (3-month-ahead) forecasts of interest rate differential obtained

17. Our data set does not contain forecasts for Australia and New Zealand. We therefore drop these countries
from the rest of the analysis. We also restrict our attention to monthly data from June 1998 to December 2021, which
is the period over which we have access to a cross-section of different forecasts for each of the countries in our sample.
See Supplementary Appendix E for more details about the data set.

18. Also see Stavrakeva and Tang (2020) and Kalemli-Ozcan and Varela (2023) for other recent studies of deter-
minants of exchange rate dynamics using survey data and Piazzesi et al. (2015) who use survey data to study the
importance of investor beliefs for bond return predictability.
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FIGURE 4
Term structure of forecast-error predictability.

Notes: This figure plots the empirically estimated (together with 95% confidence intervals) and model-implied slope coefficients of
forecast-error predictability regression (7) for forecast horizon m = 3 months. The model-implied coefficients are constructed under the
assumption that k = 1 from equation (16). Monthly data from June 1998 to December 2021.

from survey data on the past realizations of the (1-month CIP-implied) interest rate differen-

tial to estimate coefficients (¢f3), 53), ...) in equation (17); (ii) construct the Hankel matrix @

with typical element ®;; = ¢i(i)j_] ; and (iii) test for the rank of ®. Note that, technically speak-
ing, implementing step (i) requires regressing the forecasts of interest rate differentials on all
past realizations of interest rate differentials. To implement this step empirically, we perform the
above procedure while varying the number of lags used for estimating (17) from 10 to 20.

Irrespective of the number of lags used, we cannot reject the null hypothesis that rank(®) =
1: the p-values corresponding to the rank test of Donald et al. (2007) never fall below 78%.°
In view of Proposition 8, this finding indicates that forecasts of interest rate differentials are
consistent with a model in which forecasts are formed using a single-factor model. This is, of
course, also consistent with the findings reported in Figure 4 for the extent of forecast-error
predictability at different horizons.

6. CONCLUSIONS

This paper studies how limits to the complexity of statistical models that agents use for forecast-
ing shape asset prices, where we define the complexity of a statistical model as the dimension of
its minimal representation. We develop our results in the context of a simple framework in which
a sequence of exogenous fundamentals are generated by a stochastic process that may be more
complex than what agents can entertain. As a result, agents form their subjective expectations
by relying on lower-dimensional approximations to the underlying data-generating process. The
constraint on the complexity of agents’ models is our only point of departure from the textbook
rational expectations framework: we impose no-arbitrage, maintain the assumption of Bayesian
updating, and assume that agents exhibit no other behavioural biases.

19. See Supplementary Appendix F for details. We also perform the same exercise for each country separately,
finding similar results.
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As our main theoretical result, we characterize how the statistical properties of the true data-
generating process together with the limit on the number of factors in agents’ models shape
agents’ forecasts and the resulting return dynamics. Our theoretical results provide us with
sharp characterizations of the slope coefficients of the return and forecast-error predictability
regressions at all horizons. We then apply our framework to study violations of UIP in foreign
exchange markets. We find that the deviations from rational expectations implied by the limit
on the complexity of agents’ statistical models can generate the well-known forward discount
and predictability reversal puzzles, while simultaneously being consistent with forecast-error
predictability patterns from survey data.

In order to obtain a tractable framework, we made a number of simplifying assumptions.
First, we focused on how relying on lower-dimensional approximations to the data-generating
process shapes the term structure of return predictability for a single asset. However, phenomena
such as momentum and reversal are pervasive, not just in the time series, but also in the cross
section. Extending our framework to multiple assets and exploring the possible implications of
constraints on model complexity for cross-sectional return predictability would be a natural next
step for future work. Second, we focused on a simple environment in which prices relate to fun-
damentals via the simple no-arbitrage condition in equation (2). While this allowed us to isolate
the implications of agents’ inability to entertain high-dimensional models for return dynam-
ics in a transparent manner, we abstracted from other important features, such as time-varying
(fundamental) risk premia. Integrating our behavioural assumption into a more structural setting
with general preferences would shed further light on how distortions in subjective expectations
caused by constraints on model complexity impact asset prices. Finally, throughout the paper,
we assumed k to be exogenous, thus treating the maximum dimension of agents’ model as a
behavioural primitive. An alternative interpretation of the complexity constraint is technological:
agents can in principle use models of any dimension but find estimating a higher-dimensional
model to be more costly. Exploring the implications of this alternative interpretation requires
extending our framework, whereby market participants endogenously choose the complexity of
their models while trading off the benefit of a more accurate understanding of the data-generating
process with the cost of estimating a higher-dimensional model.

APPENDIX
A. Additional results
A.1. Model complexity and bounded recall

The behavioural assumption in the paper maintains that agents can only hold and update beliefs
over the set of models with at most k hidden factors, as represented by equation (4). In this
subsection, we show that an agent who is restricted to the class of k-factor models is isomorphic
to an agent with bounded recall, who relies on at most kK moving averages as summary statistics
for the entire history of her past observations to make predictions about the future. We start by
formalizing how such an agent uses her past observations to make forecasts. We then establish
the isomorphism between the agent with limited memory and an agent who is constrained to
using k-factor models.

Consider an agent who, at any given time #, constructs k moving averages s, =
(S1r, 215 - - - » Skr) Of the past realizations of the fundamental:

k
Sit = wix; + Zflijsjz—l, (A.1)

j=1
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where x; is the realization of the fundamental at time ¢, and w = (w1, ..., wi) and Q = [g;;] €
R¥*k are a vector and a matrix of constants, respectively. We assume that one of these statistics
is simply equal to the fundamental’s most recent realization.?” The key assumption is that the
agent treats these moving averages as summary statistics for making predictions about all future
realizations of the fundamental:

k
Eilx el =D ves; forallz > 1, (A.2)

i=1

where [E,[-] denotes the agent’s subjective expectation and the sequence of vectors v, =
(ve1, ..., 0g) determines how the agent maps the statistics she maintains about the past into
forecasts about the future. Throughout, we assume that the agent’s subjective expectations in
equation (A.2) are internally consistent and satisfy the law of iterated expectations.

A few remarks are in order. First, note that equations (A.1) and (A.2) represent an agent
who is restricted to forecasting the entire future path of the fundamental by relying on at most
k statistics of her past observations. Such an agent can thus be interpreted as one with bounded
recall: an agent with a larger k can construct a richer set of statistics and hence maintain a more
complete record of the past, with the case of k — oo corresponding to an agent who can, in
principle, recall the entire history of her observations.?! Second, it is immediate to verify that the
formulation in equation (A.1) nests the framework in Fuster et al. (2010, 2012), who consider
an agent who can only recall her £ most recent observations. In contrast to their set-up, the agent
represented by equation (A.1) can also construct richer statistics that are conditioned on long
moving averages of observations, rather than only the most recent history. Finally, note that,
aside from internal consistency of subjective expectations, the formulation in equation (A.2)
does not impose any restrictions on how the agent uses her moving averages to form forecasts
about the future; all that matters is that forecasts for all horizons are constructed using the same
k statistics maintained by the agent.

To state our next result, recall that the set of hidden k-factor models studied in the main body
of the paper can be parameterized by 6 € ©, where § = (A, B, ¢) denotes the model parameters
in equation (4). We similarly parameterize the set of agents who forecast the future using k
moving averages by y € ¥y, where v = (w, Q, {v.}22,) denotes the collection of parameters
in equations (A.1) and (A.2). Additionally, we say two agents are isomorphic if, given the same
(infinitely long) history of observations, their forecasts for future realizations of the fundamental
coincide with one another at all horizons. We have the following result.

Proposition A.1. There is an isomorphism between Oy and Yy

The above result establishes that, given an agent who uses a k-factor model with parameters
(A, B, c) € Oy, there always exists an agent with parameters (w, Q, {v;}°2 ) € ¥} who, when
faced the same history of observations, makes the same forecasts at all horizons by maintaining
k moving averages of her past observations (and vice versa).

20. Specifically, we assume that 51, = x; for all 7. This means that w; = 1 and g1 ; = 0 for all j. We also assume
that w and Q are such that (i) the vector of moving averages s; remains bounded at all times and (ii) each element of s;
contains some information about the fundamental (i.e. there does not exist an i such that s;; = 0 for all 7).

21. Note that the notion of bounded recall represented by equations (A.1) and (A.2) is different from the
similarity-based recall model of Bordalo er al. (2020) and the imprecise memory model of da Silveira ez al. (2020).
Unlike these models, the behavioural assumption represented by equations (A.1) and (A.2) is that the agent can only
rely on up to k moving averages for making forecasts, even when the true data-generating process is more complex and
cannot be summarized via k statistics.
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Proposition A.1 provides an alternative interpretation for the wedge between n and k and the
restriction on the complexity of agents’ models. In the main body of the paper, we interpreted
an agent with k < n as an agent who predicts the future by relying on a less complex statistical
model than the true data-generating process. In view of Proposition A.1, an agent with k < n
can alternatively be interpreted as an agent who summarizes the past via fewer statistics than
what is necessary for making unbiased forecasts about the future. Put differently, the restriction
on the complexity of an agent’s model of the data-generating process is equivalent to imposing
a restriction on the number statistics the agent can maintain to recall the past.

A.2. Non-Bayesian estimation

Throughout the paper, we maintained that agents form their subjective expectations by learning
from the past realizations of the fundamental and updating their beliefs in a Bayesian fashion.
Additionally, in Proposition 2, we showed that Bayesian learning implies that agents’ posterior
beliefs concentrate on the subset of k-factor models with minimum KL divergence from the true
data-generating process. In this subsection, we show that agents end up with the same set of
models if, instead of Bayesian updating, they choose their model to minimize the mean-squared
error of their forecasts or rely on a maximum likelihood estimator.

Proposition A.2. Consider an agent who is restricted to the class of k-factor models, Oy, and
let @y denote an arbitrary compact subset of ®y.

(1) Let éIML € arg maxyp, fa(x,, ..., Xg) denote the agent’s maximum likelihood estimator.
Then,

lim KL(Q*HHA,ML) = min KL(6*(|0) P*-almost surely.
—>00 HeOy

(2) Let é,MSE € argminy.g, % ztr:o (xca1 — E‘Z [x:41]1)? denote a model that minimizes the time-
series average of the agent’s squared forecast errors. Then,

lim KL(@*HHAtMSE) = min KL(6*||0) P*-almost surely.
—>00 0ecOy

This result establishes that, under either maximum likelihood or mean-squared error estima-
tion, agents’ estimates of the parameters of the data-generating process converge to the set of
models with minimum KL divergence from the true data-generating process. Therefore, as long
as agents have access to a large enough sequence of observations, they make forecasts using the
same k-factor model irrespective of whether they rely on Bayesian updating, mean-squared-error
minimization, or maximum likelihood estimation. This means that our results on the extent of
return predictability in Theorem 1 and Propositions 3—8 remain applicable irrespective of which
method agents use for model selection.??

A.3. Heterogenous-agent economy

Our results in the main body of the paper rely on the assumption that the economy consists of a
unit mass of identical agents, all of whom are restricted to using models with the same maximum

22. The equivalence between Bayesian updating, maximum likelihood estimation, and mean-squared error mini-
mization only holds when agents have access to an asymptotically large sample of observations. Given any finite sample,
a Bayesian agent holds a non-degenerate posterior belief over the set of all k-factor models. The same clearly does not
apply to the frequentist agents of Proposition A.2.
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number of factors, k. In this subsection, we extend our results by assuming that only a fraction
1 — y of agents are subject to our behavioural constraint, while the remaining y fraction can
entertain models with any number of factors. For simplicity, we refer to the two groups of agents
as behavioural and rational agents, respectively.??

The heterogeneity in the agents’ ability to entertain statistical models of different complex-
ities results in heterogenous subjective expectations. Therefore, as in Allen er al. (2006), we
assume that the relationship between endogenous prices and exogenous fundamentals is given
by the following generalization of equation (2):

Vi = X; + OE [yr41], (A.3)

where E[] = yE*[-14+ (1 — y)E[] denotes the cross-sectional average of agents’ expecta-
tions.?* Iterating on the above, we can also obtain the following counterpart to equation (5) for
excess returns in terms of agents’ expectations:

o0
Xi1 = Z o' (I_Et+II_Et+2 T ]EH-‘I: [Xr+c] — ]E,I_EH_] o 'EH—I [xH—r]) . (A4)

=1

The key observation is that, even though subjective expectations of each group of agents satisfy
the law of iterated expectations, the cross-sectional average expectation E[-] may not. Therefore,
unlike the representative-agent framework of Section 2, excess returns in the heterogenous-agent
economy also depend on higher-order expectations whenever k < n. The failure of the law of
iterated expectations with respect to E[-] in our framework resembles a similar phenomenon in
differential-information economies, such as in Angeletos and Lian (2018) and Angeletos and
Huo (2021).

To characterize the extent of return predictability in the heterogenous-agent economy, we
assume that while rational agents can recover the model used by behavioural agents, behavioural
agents behave as if they live in a representative-agent economy only consisting of agents with
k-factor models. This assumption captures the idea that, given their priors, behavioural agents
are convinced—mistakenly so when k < n—that a k-factor model is sufficient to capture the
process that drives the fundamental.

Proposition A.3. Let ;*(y) denote the slope coefficient of the return predictability regression
(6) in an economy with y and 1 — vy fraction of rational and behavioural agents, respectively.
Then,

() = (1—7) D 07) B, 0), (A.5)

s=0

where $,*(0) is the slope coefficient in the representative-agent economy, given by equation (13).

23. Despite the terminology, recall that all agents in this economy are Bayesian, with the only difference between
the two groups being that the “behavioural” agents assign zero prior beliefs to models consisting of more than k factors.
Furthermore, note that when k£ > n, agents in both groups end up with identical subjective expectations. The subjective
expectations of the two groups differ only when k < n.

24. We assume that [E[-] in equation (A.3) is the unweighted cross-sectional average of agents’ expectations. See
Supplementary Appendix D for a simple micro-foundation based on the overlapping generations model of Allen ez al.
(2006). More generally, depending on the underlying micro-founded model, E[-] may be a weighted average of the
agents’ subjective expectations, with endogenous (and potentially state-dependent) weights (Panageas, 2020). Given our
focus on a reduced-form framework, we abstract from these issues.
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FIGURE A.1
Term structures of return predictability in the heterogeneous-agent economy
Notes: This figure plots the model-implied slope coefficients of the return predictability regression (6) at different horizons for the
representative- and heterogenous-agent economies. Behavioural agents in both economies use a single-factor model. The fraction of
behavioural agents in the heterogenous-agent economy is 10%, that is, y = 0.9.

The above result relates the term structure of £;* in the heterogenous-agent economy to that
of the economy only consisting of behavioural agents. This allows us to use our results in the
main body of the paper to characterize the extent and nature of return predictability in economies
consisting of both rational and behavioural agents. Note that, according to equation (A.5), £;*(y)
is not simply a weighted average of £;*(0) and f;*(1) = 0. Rather, the fact that cross-sectional
average expectations [E[-] do not satisfy the law of iterated expectations implies that the extent of
return predictability at horizon / in the heterogenous-agent economy also depends on the extent
of return predictability in the representative-agent economy at all horizons 7 > h.

We conclude by studying the implications of Proposition A.3 in the context of the for-
eign exchange application in Section 5. Specifically, we use the expression in equation (A.5)
to calculate the model-implied slope coefficients of the return predictability regression in a
heterogeneous-agent economy, in which fraction 1 — y of agents are constrained to using a
single-factor model, while the remaining y fraction can entertain models with any number of fac-
tors. Figure A.1 plots the model-implied coefficients in an economy populated by 90% rational
and 10% behavioural agents, that is, for y = 0.9. As the figure illustrates, the slope coefficients
in the heterogeneous-agent economy look similar to those in the representative-agent economy
consisting of only behavioural agents (i.e. y = 0). This indicates that even small fractions of
behavioural agents can lead to notable deviations from the rational expectations benchmark.

B. Technical appendix
Proof of Proposition 1

According to agents’ subjective model, the fundamental is generated by a stationary process with
a representation in the form of equation (4). Therefore, we can express agents’ m-step-ahead
forecast of the fundamental as follows:

[e¢]

B lmotl = D "%, (B.1)

=1
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where (qﬁfm), ém), ...) is a sequence of coefficients that depends on the parameters of the agents’
model, § = (A, B, ¢). Multiplying both sides of the above equation by x,_,, taking unconditional
expectations [E[-], and dividing both sides by E[xtz] implies that

o0

Emr = D P (B.2)

=1

for all r > 1, where &, = E[x;x,1.]/ E[xtz] is the autocorrelation of the fundamental at lag 7 as
perceived by the agents given their subjective model. Equation (B.2) thus relates the coefficients
in equation (B.1) to the subjective autocorrelations implied by agents’ model.

With equations (B.1) and (B.2) in hand, we now derive the expressions for the slope coeffi-
cients of the predictability regressions (6) and (7). Starting with the forecast-error predictability
regression (7), the representation in equation (B.1) implies that

1 oo
o = —— | E*lxexesnsm—1] — D " E [ —c] (B.3)
E*[x/]

=1

for all # > 1, where [E*[-] denotes the expectation under the true data-generating process. As a
result,

e = G = Gim) — DB — &) + (@Hm_] ->. ¢§'">§h_r),

=1 =1

where & = E*[x;x;4.] /IE*[xlz] is the autocorrelation of the fundamental at lag 7. Note that,
according to equation (B.2), the last term on the right-hand side of the above equation is equal
to zero for all 4 > 1. As a result,

oo

e = Gt — 1) — DG — o) (B.4)

=1

Note that we can write (B.2) as & = Z¢™, where £ and ¢ are infinite-dimensional
vectors with elements fi(m) = &ptio1 and qSl.(m), respectively, and E is an infinite-dimensional
matrix such that Z;; = &_; forall 7, j > 1. Consequently, ¢§”’) = z;’i 1 E;Slé‘ﬁm,l. Replacing
for ¢§m) into equation (B.4) then establishes equation (9).

Turning to the slope coefficient of the return predictability regression (6), note that by the law
of iterated expectations, E[x;4.] = E,E;r1[x;1:]1 = > v | ¢ Ei[xr4,—,] forall z > 1, where
we are using the representation in equation (B.1) and for notational simplicity denoting gzﬁr(l) by
¢,. Consequently,

Erii[Xye] = Eilxieed = D ¢ BepalXper] — Byl o))

r=1
7—1
= Z ¢r (EtJrl [xtJrrfr] - Et [X[+,,r])

r=1
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for all z > 2. Multiplying both sides of the above equation by 67, summing over all 7 > 2, and
using the expression for excess returns in equation (5) implies that

o0 —1
Xpp1 =0 (1 — Bl D) 4+ D0 D B [Xee ] = Bilxipe )

=2 r=1

=0 (st — Eilveat ) + D0 D 0P e (B [yl — Ealx ).

r=1 s=1

Using equation (5) one more time, we can express the second term on the right-hand side
of the above equation in terms of excess returns. In particular, rx,+; = d(x;+1 — E;[x;41]) +
X 41 > ey & ¢y, which in turn implies that rx,1 = d(x,41 — E[x11)/(1 — D02, 8'¢,). As a
result, we can express the slope coefficients of the return predictability regression in terms of the
slope coefficients of the forecast-error predictability regression as follows:

w_ B s (B.5)
h 1— ZS; o ¢r - :

Replacing for §;°, from equation (9) and using the fact that ¢, = 32| Z;!& establishes
equation (8). O

Proof of Proposition 2

We prove this result by verifying that our setting satisfies Assumptions 1-7 of Shalizi (2009)
and invoking Theorem 3 of that paper. To this end, let

S (e, X0)
f‘g(x,,.._,x())

denote the log of the ratio of likelihoods of the fundamental under the true data-generating
process (f*) and under the agents’ subjective model (). This object is clearly measurable
with respect to time ¢ information, thus implying that Assumption 1 of Shalizi (2009) is trivially
satisfied.

Next, we verify that Assumptions 2—4 are also satisfied. By the uniform law of large
numbers (White, 1994, Theorem A.2.2), lim,_, o %log FOCe, xi—1, ..., x0) = h(0*,0) with
P*-probability one uniformly in 6 € @k, where 1(6*,0) = E*[log f?(x,411x:, X,—1, . ..)]. This
implies that

(x,, ..., x0) = log

1
lim —¢%(x;, xi_1, ..., x0) = KL(0*||9) P*-almost surely (B.6)

t—oo t

uniformly in § € Oy, where KL(#*]10) = h(0*, 0*%) — h(6*, 0) is the KL divergence defined in
equation (10). Equation (B.6) readily implies Assumption 3. Furthermore, note that equation
(B.6), together with the dominated convergence theorem, implies that

1
lim ;E*w"(xt, ..., x0)] = KL(6*10),

1—>00

thus establishing Assumption 2. Finally, note that Assumption 4 follows from the fact that, in
our setting, the KL divergence is guaranteed to be finite.
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We now turn to verifying that Assumptions 5-7 of Shalizi (2009) are also satisfied. To this
end, let G, = O for all 7. This readily establishes Assumption 7. It also implies that uo(G;) = 1
and ess infye, KL(0(|0) = ess infy g, KL(0"(|0). Furthermore, (B.6) guarantees that

1
lim sup |—€%(x;, xi—1, ..., x0) — KL(@*||6)| =0 P*-almost surely.

1= geg,

Thus, all three statements of Assumption 5 are satisfied. Finally, to verify Assumption 6, note
that setting G = ®; in equation (18) of Shalizi (2009) implies that

. 1 fg(xla"-a )
limsup—log | ~————

duo(@) < — min KL(@*||#) P*-almost surely.
t—oo 1 6, [*(xs, ..., x0) 0e®;

Therefore, t (@k, 0) <t with P*-probability one for all 6 > 0 and ¢ sufficiently large, where

1 fe(xta-~~s-x0)
G,0) = t: -1 1 dug(@
7(G, 0) max[ ~log 5, 7Gx =0 wo(0)
. 1 NCT ) ]
> 0+ limsup —lo —1 dup) .
t—>oopt & O S, ..., x0) vea) luO( )

Thus, setting G, = @k ensures that Assumption 6 is also satisfied.
Having verified that Assumptions 1-7 of Shalizi (2009) are satisfied, Theorem 3 of that paper
implies the statement in Proposition 2. d

Proof of Theorem 1

Proof of Part 1. By Proposition 2, agents’ long-run beliefs concentrate on the set of mod-
els with minimum KL divergence from the true model. We thus start by characterizing
arg miny o, KL(6"|#). Note that instead of optimizing over ®, we can optimize over 0, U
0,U---U0Q,, where O, is the set of models whose minimal realization consists of r factors.
Therefore, in what follows, and without loss of generality, we assume that model 8 = (A, B, ¢)
is a minimal realization consisting of r < k factors.

Under model € € O,, agents believe that the fundamental is described by the process in
equation (4), where w, € R" is the vector of r hidden factors. As a result, conditional on
{x, 1220 agents believe that w, ;| is normally distributed with mean &, = E,[w, ] and variance

3, where 3 is the unique positive-definite matrix that satisfies the algebraic Riccati equation

~ ~ 1 . ~
2z :A(Z - — Ecc/E) A’ + BB/, (B.7)
c'Xc

@, satisfied the recursive equation &, = (A — gc¢')@,_ + gx;, and g € R" is the Kalman gain
given by

g=A%c(cSe) . (B.8)

Conditional on {x,_.}2, agents believe that the fundamental x,; is normally distributed with

2

mean E,[x; ] = ¢’®; and variance 6, = ¢'$c. Furthermore, their s-step-ahead forecasts of the
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future realization of the fundamental is given by

[e.¢]
E/[xiss] = AT > (A = gc) gx, (B.9)
7=0

for all s > 1, where g is the Kalman gain in equation (B.8). The above expression implies that
the KL divergence (10) of agents’ model 8 from the true data-generating process is given by

1 1
KL(O*10) = —3 log(6;) + 5 log(2m) + 5 a—ZE*[x S A gy B ]

s=1

o0 o0
525> A — g¢)y T g (A — g¢) T GE [xnige ]

s=1 t=1

+ E*[log f* (xr+1lxz, .. )] (B.10)
To minimize the above over 6 € ®,, it is convenient to work with the following change of
variables:
212

\/C’ic.

M=3S""2A%Y2 and u=

(B.11)

Note that # € R" has unit length and M € R"™™" is a stable matrix. In view of equation (B.11),
agents’ s-step-ahead forecasts in equation (B.9) can be written as

00
Ey[xgs] = /MDD M — un)]" Mux, (B.12)
=0

for all s > 1. Similarly, substituting for A, ¢, and g in terms of M and u in (B.10) implies that

1 1
KL(@*0) = E*[log f*(x;1lx:,..)] — = log(a_z) + = log (2r)

1
+360 2E4[x?] —J’ZZ;]E [ X 1t M — wa))* ™" Mu

1 o0 o0
+3 572> W IMA — w )1~ Muad [IM( = )] M [x, %140 1.

o
Il
-
«
I
-

(B.13)

As we show in Lemma C.1 in the Supplementary Appendix, minimizing the above with respect
to (M, u, 6-%) and subject to the constraint that p(M(I — uu’)M’) < 1 is equivalent to min-
imizing (B.10) with respect to (A, B, ¢). Therefore, to obtain the KL minimizer, we minimize
equation (B.13) with respect to (M, u, 6 %) subject to p (M(I — uu’)M’) < 1. We first minimize
equation (B.13) with respect to 6 2. Taking the corresponding first-order condition and plugging
back the result into equation (B.13) implies that minimizing equation (B.13) over (M, u, 6~ 2)
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is equivalent to minimizing

1
KL(#*(|0) = E*[log f*(x,411%:, ...)] + logv/2me + 3 log B*[x?]

1 < * & *
+5 log(l —22 S+ Z¢s¢rf,_s) (B.14)

s=1 =1

over (M, u), where & denotes the true autocorrelation of the fundamental at lag s and ¢, =
u'[M(I — uu')]*"'"Mu. Since only the last term on the right-hand side of equation (B.14)
depends on 6, it follows immediately that minimizing KL(6*||6) is equivalent to minimizing
equation (12) over M and u.

We next derive the expression in equation (11) for the autocorrelation of the fundamental
according to agents’ subjective model. Equation (4) implies that E[x,x,_] = ¢'E[w,0;_,1c =
¢'A"E[ew,@)]c for all h > 0. Therefore, applying the change of variables in equation (B.11)
implies that the subjective autocorrelation at lag 2 > 0 is given by

uM"Gu
L B.15
S G (B.15)
where G = £~ 2E[w,w|]£~"/2. To express Gu in terms of M and u, note that (4) implies that
Elw,o,] = AE[w,w,]A’ + BB'. Multiplying both sides of this equation from the left and the
right by £~/2 implies that G = MGM' + £~1/2BB'S /2. Consequently,

o0
G= ZMf(i*I/zBB/ﬁf”z)M”. (B.16)
s=0

Next, note that multiplying both sides of the the algebraic Riccati equation in equation (B.7) by
3 =172 from the left and the right implies that £ ~'/2BB'£ /2 = T — MM’ + Muu'M’, where we
are using the expressions in equation (B.11). Plugging this into the expression for G in equation
(B.16) and multiplying both sides by u from the right leads to Gu = u + > oo | M*uu’M-*u. This,
together with equation (B.15) and the fact that u'u = 1 then establishes equation (11). U

Proof of Part 2. According to equation (B.3), ﬁgem =< 1 — Zfozl ¢§’")¢‘;‘_T, where
{¢§’”)}f°=1 are the coefficients in equation (B.1). Comparing equation (B.1) to the expression
for agents’ forecasts in equation (B.12) implies that ¢/ = u'M"~'[M(I — uu')]*~"Mu for all
7 > 1, thus establishing equation (14). To establish equation (13), recall from the proof of Propo-
sition 1 that the slope coefficients of the return and forecast-error predictability regressions are
related to one another via equation (B.5). Replacing for [)’ﬁel from equation (14) then establishes
equation (13). ’ O

Proof of Proposition 3

Proof of Part 1. When k > n, the true model is in the set of models considered by the agents,
that is, 0* € ©, C O. As aresult, agents’ subjective expectations coincide with rational expec-
tations, which guarantees that &, = ¢ for all 7. Thus, equations (8) and (9) imply that f;* =

fe, =0forallh > 1. O

Proof of Part 2. We first show that if ﬁﬁ":m =0 for all & and m, then k > n. Suppose to
the contrary that k£ < n. Let (M, ) and (M*, u*) denote the minimizers of equation (12) over
the set of k- and n-factor models, respectively, and define ¢, = u'[M(I — uu’)]*~"Mu and ¢F =
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w*' [M*(I — u*u*")]*"'"M*u*. By part 1, the slope coefficients of the forecast-error predictability
regression arising from the optimal n-factor model are equal to zero at all horizons. Therefore,
equation (14) implies that

o0
&= ¢ré& ., forallh > 1. (B.17)

=1

Furthermore, by assumption, [)’}ff] = 0 for all & under the k-factor model. Therefore, equation
(14) implies that

&= ¢r, forallh=1. (B.18)

=1

Multiplying both sides of the first equation by ¢;, and the second by ¢; and summing over all /,
we get

D s =D didi (B.19)
h=1 h=1

Next, note equations (B.17) and (B.18) also imply that the objective function (12) evaluated at
the optimal solution in the set of all n- and k-factor models is, respectively, equal to

HM*, u®) =1-> ¢:& and HM,u)=1- D &

s=1 s=1

Thus, by equation (B.19), H(M*, u*) = H(M, u), which implies that the k-factor model results
in the same KL divergence from the data-generating process as does the n-factor model, whose
KL divergence from the true process is equal to zero by assumption. Therefore, the data-
generating process has a representation with k < n factors, which contradicts the assumption that
n is the number of factors in the minimal representation of the data-generating process. Hence,
if ﬁfe = 0 for all 4 and m, then k > n. This, coupled with equation (B.5), also guarantees that,

h,m

if k < n, then there exists 7 > 1 such that g;* # 0. O

Proof of Proposition 4

We start with two observations. First, the assumption that p(A*) < 1 implies that lim,_, o, & =
0. Second, |[MI —uu')|; =/p(MI— uu’)M’) < 1 guarantees that coefficients gzﬁ‘gm) =
u'M" "M — uu')]*"'Mu in equations (13) and (14) are absolutely summable for any
given m. In particular, the Cauchy—Schwarz inequality and the fact that the spectral norm is
sub-multiplicative imply that

ad o0
D161 < M oMl > IMA — w5 < o0

s=1 s=1

for all m > 1. With the above in hand, we next show that lim,_, f;* = 0. Recall from
Theorem 1 that the slope coefficient of the return predictability regression satisfies equation (13).
Furthermore,

1 1
l+ouwd—M)"'"Mu  w'(d—oM)~'u’

1= 0" =1 —6u'[T— M — u')]'Mu =

=1
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where the second equality follows from the Sherman-Morrison formula and we are using ¢, to
denote ¢V. Therefore, equation (13) implies that X = du’'(I — M) ~'u(&F — D02, . &5 L),
and hence, by triangle inequality,

h 00
IB7] < Slu'(L— M)~ ul (If:l + D1 + D |¢f+h||é:|).

=1 =1

As a result,

h
lim 8] < olu’ (T — oM) ~'u| lim > |¢c|IEr |, (B.20)
h—o0 h—o0 -

where we are wusing limp_ || =0 and the fact Zfo:l || < oo implies

limy,_ o0 Zf‘;l |¢p: 1111} = 0. To evaluate the right-hand side of equation (B.20), note that
Z?:l |, 1&F | is the Ath term in the Cauchy product of the series > -, |¢.| and > oo, [EF|.
Since the first series is absolutely convergent, Merten’s theorem guarantees that their Cauchy
product also converges, thus implying that the right-hand side of equation (B.20) is equal to

zero. A similar argument implies that lim,_, ,Biem =0. O

Proof of Proposition 5

Lemma B.1. If (M, u) is the minimizer of equation (12), then Y qﬁsﬁf‘] =0, where ¢; =
¢ = w'[MI — uu')]’~"Mu.

Proof. The first-order condition of the optimization problem in equation (12) with respect to
M’ is given by > 02, (&F — D% | &5 )deps /M’ = 0, which in view of equation (14) can be
rewritten as > oo, B¢ d¢,/dM’ = 0. Differentiating ¢, = u'[M(I — uu')]*~'Mu with respect to
M’ then implies that

[e%e] s—=2
> (W[M(I — w7 = ) DM — u')] Mu' [M(T — uu/)]s_’_z) e = 0.

s=1 =0

Multiplying both sides of the above equation by u’ from the left and Mu from the right,
using the fact that u'u = 1, and noting that ¢, = u’'[M(I — uu’)]*"'Mu then implies that

221 B =0. :

With Lemma B.1 in hand, we now proceed to prove Proposition 5. Recall from the proof
of Theorem 1 that the KL divergence of agents’ model from the true data-generating process is
given by equation (B.14). Furthermore, since the fundamental is normally distributed, we have

1 1
E*[log f*(xi111x:, .. )] = —log V21 — EE*[log vary (x;41)] — EE* |:

(¥r41 — ]Ef[xl+1])2]
vary (x;41) '
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Note that var} (xr+1) = Ef[(xr+1 — E[x41D)2] = E*[(xr1 — Efxi111)°]. Therefore,

2
1 [o¢]
E'llog /* (xi+11x, .. )] = —log v/27e — - log E* (xm - Zsé;“xmf)

=1

1
= —logv2me — = logIE*[x,Z]

——log(l —2Z¢ é*+ZZ¢ prer )

=1 s=1

where (47, 3, ...) are the coefficients of the autoregressive representation of the underlying
data-generating process and & is the autocorrelation of the fundamental at lag . Plugging the
above into equation (B.14) therefore implies that

KL(@©*0) = %mg(l -2 B+ Zqﬁsaﬁfé:‘s)

s=1 =1

- —log(1—22¢ §*+ZZ¢ prer, )

=1 s=1

We make three observations. First, equation (14) implies that > oo | ¢&F — Z;OT:] Gsp: L, =
>t bs ﬁfel = 0, where the second equality follows from Lemma B.1. Therefore,

KL(0"[16) = —log(l —ZM*)— —log(l —2Z¢ o T )

=1 s=1

Second, the definition of 4™ and equation (14) imply that £ = 337 | r&r — 3 0° _, drdpe&i_,.
Hence,

KL(©O*0) = %log (ﬁ'fe +1=D i — > ¢ (é:‘ -> ¢::é;n))
=1 h=1

h=1

— %log(l - 22¢ff§k + Z ¢:¢j€zz*c)

=1 T,5=1

Finally, note that (¢}, ¢;, . . .) are the coefficients of the autoregressive representation of the true
process: Ef | [x,]1 = >~ ¢rx,—p. Therefore, &F = > ° | ¢i&r ., and as a result,

. 1 . L) ! S
KL(©"[16) = Elog(ﬂwl—;ebhéh)—Elog(l—éqﬁ,@)-
Hence,

fo — (1 - ng;‘g:) (X1 — 7). (B.21)
=1

This expression now establishes the claims in Proposition 5. First, since KL(6*(|6) > 0, it fol-
lows that ﬁfe > 0. Second, when k > n, we have KL(6*||#) = 0, which guarantees that ﬁfe =0.
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Finally, since the first term on the right-hand side of equation (B.21) is independent of agents’
model, it follows that minimizing KL(6*||0) is equivalent to minimizing 4. Therefore, Propo-
sition 2 implies that increasing the number of factors in agents’ model can only result in a
reduction in S 0

Proof of Proposition 6

By Theorem 1, the slope coefficients of the return and forecast-error predictability regressions
are given by equations (13) and (14), where M and u are, respectively, a k-dimensional sta-
ble matrix and a k-dimensional unit vector, which minimize equation (12). When k = 1, M is
a scalar, denoted by u, satisfying |¢«| < 1 and u € {—1, 1}. This implies that gzﬁfm) = u™ and
¢s(”‘) =0forallm > 1 and all s > 2. As a result, equations (13) and (14) reduce to

)

Ir1x = 1— 5# (é: - /uf;zkfl) and ﬁ;e,m = é}Terfl - /uméfljfl’ (B22)

respectively, and the objective function in equation (12) is given by
H(u,u) =1—2ué + 1 (B.23)

Optimizing the above over ¢ € (—1, 1) and plugging the result into equation (B.22) establishes
the result. O

Proof of Proposition 7

Let p(t) =t"—>" ,7;t""" denote the characteristic polynomial of A*, which is the
n-dimensional square matrix that governs the transitional dynamics of the true data-generating
process. By the Cayley-Hamilton theorem (Horn and Johnson, 2013, p. 109), matrix A* satis-
fies its characteristic polynomial, that is, A*" = >""_| y;A*"~" Multiplying both sides of this
equation by A*"~" implies that

A=y Ay AT forallh > n. (B.24)
It is easy to verify that the auto-covariance of the true process at lag & is given by E*[x,x,1,] =

A" Zc*, where Z = 32 (A*/B*)(A*/B*)'. Therefore, multiplying both sides of equation
(B.24) by ¢*’ from the left and by Zc* from the right and dividing by E*[x] implies that

Er=nér -+ dy, forallh >n. (B.25)
Recall from equation (15) that when k£ = 1, the slope coefficient of the return predictabil-

ity regression is given by fi* = o(&F — &7&r_,)/(1 — &), This observation, combined with
equation (B.25), thus implies that

Br=nB + -+ yap, forallh >n+1. (B.26)
Equation (B.26) establishes that §;* satisfies a recursive equation with coefficients given by the

coefficients of the characteristic polynomial of matrix A*. Since the roots of the characteristic
polynomial of A* are equal to its eigenvalues, the solution to the recursive equation in equation
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(B.26) when all eigenvalues of A* are distinct is given by

n

X __ h—1

= 2 Gidi
i=1

for all i, where (41, ..., 4,) denote the eigenvalues of A* and (¢, ..., () are a collection of
constants that do not depend on /4. Furthermore, note that, by equation (15), fi* = 0, which
implies that >"!_, &; = 0. Therefore, when n = 2, the slope coefficients of the predictability

regression (6) are given by £} = i (1’1’71 — 1371) for all & > 1, where (] is some constant and
A1 and 4, are the eigenvalues of A*. Consequently,
=t
r=p—) B.27
h 2 ( =7 ( )

With the above in hand, we can now prove the various statements of the proposition. In what
follows, we assume that 4, is the eigenvalue with the largest modulus, that is, [4,] > |1,].

Proof of Part 1. Suppose both 1, and 1, are real and that 4; > 0. It is immediate that the
right-hand side of equation (B.27) never changes sign. Therefore, 8;* has the same sign as S5
for all h. U

Proof of Part 2. Suppose both 1| and 4, are real and that 4, < 0. In this case, the right-hand
side of equation (B.27) has the same sign as f5* when / is even, whereas it has the opposite sign
of B3* when h is odd. This means that 8;* changes sign at every horizon. ]

Proof of Part 3. Suppose both 4; and 1, are complex. Since they are eigenvalues of real
matrix A*, they form a complex conjugate pair. We can therefore represent them in polar
coordinates as A; = |4|e’? and 1, = |A|e~?, where without loss of generality we assume that
0 < ¢ < =. Plugging these values into the right-hand side of equation (B.27) implies that

" i )
B e e —e MY 4] sin(he)
bt 2 elr —e~iv 2 sin g

forall h > 1. Since 0 < ¢ < m, the denominator of the ratio on the right-hand side of the above
equation is always positive. Therefore, ;" | has the same sign as £;* if sin(hg) > 0 and has the
opposite sign if g3* if sin(hg) < 0. Therefore, g%, | changes sign at frequency 7 /¢. (]

Proof of Proposition 8

Recall from the proof of Theorem 1 that any k-factor model § € ®, can be represented by the
pair (M, u) defined in equation (B.11). Also recall from equation (B.12) that agents’ m-step-
ahead forecasts are given by

o0
E[x2m] = Zu’M’”_l[M(I — uu)] " Mux, .

=1
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Comparing this equation to the representation in equation (17) implies that coefficients
(¢1(m), ;m), ...) can be expressed in terms of M and u as

¢£”’) =u/M" 'S "My forallz,m > 1, (B.28)

where S = M(I — uu’). As a result, the elements of Hankel matrix ® in equation (18)
are given by <I>f7” = u'M"'S§+/=2Mu for all i, j > 1. In what follows, we first show that
rank(®") = k for m = 1 and then extend the result to all m > 2.

Set m = 1. In view of equation (B.28), we can express ®! as the product two matrices as
follows:

&) =0cC, (B.29)

where O € R**k and C € R¥** are given by

u/

u'S
0=|,82 and C= [Mu SMu S*Mu ] R

respectively. The decomposition in equation (B.29), together with Sylvester’s rank inequality
(Horn and Johnson, 2013, p. 13), implies that

rank(O) + rank(C) — k < rank(®") < min{rank(0), rank(C)}.

Given these inequalities, it is immediate that if rank(O) = rank(C) = k, then rank(<I>(1)) =k,
which establishes the result. Therefore, it is sufficient to show that rank(Q) = rank(C) = k.

We first show that, generically, rank(Q) = k. Suppose to the contrary that rank(O) < k,
which implies that the pair («’, S) is unobservable. Hence, by Popov-Belevitch-Hautus (PBH)
observability criterion (Hespanha, 2018, p. 191), there exist a non-zero vector w and a scalar 1
such that Sw = Aw and u'w = 0. Since S = M(I — uu’), it must be the case that Mw = lw.
This means that the pair (M, u) is such that a right eigenvector of M is orthogonal to u, a
statement that does not hold generically. Therefore, it must be the case that rank(OQ) = k.

Next, we establish that, generically, rank(C) = k. Suppose to the contrary that rank(C) < &,
which implies that the pair (S, Mu) is uncontrollable. Hence, by the PBH criterion for con-
trollability (Hespanha, 2018, p. 152), there exist a non-zero vector w and a scalar 4 such that
w'S = Aw’ and w'Mu = 0. Since S = M(I — uu’), it must be the case that

wM=w', lwu=0.

The above conditions can hold only if either (i) matrix M is rank deficient (with an eigenvalue
A = 0) or (ii) the pair (M, u) is such that a left eigenvector of M is orthogonal to u. But neither
of these conditions can hold generically. Therefore, for a generic 8 € ®;, it must be the case
that rank(C) = k. This, together with the fact that rank(O) = k, establishes that rank(®") = k
generically.

We now show that rank(®™) = k for m > 2. Start with the observation that the expression
in equation (B.28) implies that ¢ = ¢\ 7" + ¢" VM Tterating on this equation, we get

m—1
—r—1 1
P =" Vel
r=0
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(m)

with the convention that ¢f0) = 1. Since <I>g’;) = ¢} j_1» We have
m—1
(I,l(,rr;) = qul(m—r—l)q(i)rjj forallm > 2 andall i, j > 1.
r=0

Therefore, ® = L™ & for an upper-triangular matrix L whose diagonal elements are
all equal to ¢§m—1). Hence, rank(®™) = rank(®") = k as long as ¢§m—l) # 0. But note that
fmil) = u'M"~'u, which is different from zero generically. Thus, generically, rank(®)) = k

for all m > 2. U

Proof of Proposition A.1

We first establish that an agent who uses a k-factor model to represent the underlying data-
generating process makes forecasts about the future by relying on kK moving averages of her past
observations, one of which is the most recent realization of the fundamental.

Consider an agent who uses a k-factor model with parameters § = (A, B, ¢) to make predic-
tions about future realizations of the fundamental. Let 3 and g be the corresponding solution
to the algebraic Riccati equation and the Kalman gain given by equations (B.7) and (B.8),
respectively. It is immediate to verify that (A — gc’)ic = 0, which means that A — g¢’ is a
rank-deficient matrix. Therefore, there exists an invertible matrix V such that the first row of the
product V(A — gc’) is equal to zero, that is, ] V(A — gc’) = 0, where e; denotes the first unit
vector. Depending on properties of V, we consider two separate cases.

First, suppose V is such that ¢, Vg # 0. Let P = L)iLVgV and consider the following vector of
k moving averages of the realizations of the fundamental:

s; =Pgx; + P(A — gc/)P_ls,_l > (B.30)

which can be rewritten as s, = > o o[P(A — g )P~ 'TPgx,, =P > 7 (A — gc) gx;—,. But
recall that the forecasts of an agent who uses a k-factor model with parameters § = (A, B, ¢) are
given by equation (B.9). As a result, one can write the agent’s forecasts in terms of vector s;:

E/[xi4.1 = P L PAP ) s, (B.31)

Comparing equations (B.30)—(B.31) to equations (A.1)—(A.2) implies that an agent who uses a
k-factor model can obtain the same exact forecasts by maintaining a vector of kK moving averages
of the form s, = wx;41 + Qs;, where w = Pg and Q = P(A — gc’)P~!. The proof for this
case is therefore complete once we show that one of the summary statistics that is maintained by
the agent is equal to the most recent realization of the fundamental. To this end, note that

e\sy = eywx; + €1Qs—1 = €|Pgx, + ¢]P(A — gcHP s,y

By construction, ¢;Pg = 1 and ¢| V(A — g¢’) = 0. This therefore guarantees that 51, = x;.
As the second case, suppose matrix V is such that ¢{Vg = 0 and consider the following
vector of kK moving averages of the realizations of the fundamental:

si=(Vg+e)x + V(A —gc)V T —ere))si . (B.32)

The assumption that e] Vg = 0 together with ¢; V(A — g¢’) = 0 implies that e|s; = x;. There-
fore, the first element of s, is equal to the most recent realization of the fundamental.
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Additionally, note that the vector of moving averages in equation (B.32) can be rewritten as

si= D [VA—gc)V ' T —e1e))] (Vg +en)x,
r=0

=D VA —gcY VI —eie)) (Vg +e)xr,
r=0

where the second equality follows from the fact that ¢{ V(A — gc¢’) = 0. Using ¢{ Vg = 0 one
more time implies thats, =V > 72 (A — gc’)" gx,_,. Multiplying both sides of this equation by
(I — eje}) from the left implies that

oo oo
A—ec1e))s; =V (A= gc) g, —e1e)Vex, =V Y (A—gc) gn,, (B33
r=0 r=0

where the first equality follows from the fact that e] V(A — gc¢’)” = 0 and the second equal-
ity is a consequence of ¢, Vg = 0. Additionally, recall that the forecasts of an agent who uses
a k-factor model with parameters 6 = (A, B, ¢) are given by (B.9). Therefore, replacing for
>0 (A — gc) gx,—, with V(I — ee})s, from equation (B.33) into equation (B.9) implies
that the agent’s forecasts can be written in terms of the vector of moving averages s, in equation
(B.32):

Eilxi4.] = C/V_I(VAV_l)r_l(I - elei)st
=V [ —ere) (erc' V' + VAV_I)]F1 (I —ee))s;,

where the second equality follows form the fact that ¢; VA = ¢/ Vgc¢’ = 0. Hence,

B (X1 =V A —ere)) [(elc/V_] + VAV_') I— ele’l)]P1 Sp. (B.34)

Comparing equations (B.32) and (B.34) with equations (A.1) and (A.2) once again establishes
that an agent who uses a k-factor model can obtain the same exact forecasts by maintaining
a vector of kK moving averages of the form s, = wx,;+1 + Qs;, where w = Vg + ¢, and Q =
V(A — g )V~ (I — eje}). Together, the two cases therefore imply that irrespective of the value
of €] Vg, the agent using a k-factor model can always be represented as an agent with limited
memory as formalized by equations (A.1) and (A.2).

Next, we turn to proving the converse implication. Consider an agent who maintains k mov-
ing averages of the past realizations of the fundamental according to equation (A.1) and makes
forecasts according to equation (A.2). Rewriting equations (A.1) and (A.2) in matrix form, we
getsiy1 = wxry1 + Qs and E, [x,4.] = v}s,, where s, is the vector of k moving averages at time
t, w and v, are k-dimensional vectors, and Q is a square k x k matrix. Multiplying both sides
of 5141 = wx,41 + Qs; by v, from the left and using the assumption that E, | [x/414.] = 05/41
implies that

’ ’ /
Eip1lxi14c] = 0,841 = 0, wx 41 +0,Qs;.

Taking conditional expectations from both sides and using the assumption that the agent’s expec-
tations satisfy the law of iterated expectations implies that E,[x;414.] = v, wE,[x;41] + 0. Qs;.
Note that E;[x;114.] = v, ;s and E,[x;11] = v}s;. Hence, v | = v} (wo] + Q) forall > 1,
which in turn implies that v/ = v} (w0} + Q)*~'. Therefore, the forecast of the agent who uses
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k moving averages for the realization of the fundamental can be expressed as

B [xr4:] = 0f (o] + Q) s, = v} (wv} + Q"' D Qwx,_, (B.35)
r=0

for all z > 1. Additionally, note that the assumption that s, = x, implies that ejw =1 and
€,Q = 0, which means that Q is a rank-deficient matrix.

We now show that the forecasts in equation (B.35) coincide with forecasts of an agent who
assumes the true data-generating process is a k-factor model with parameters § = (A, B, ¢),
where

A=wvi+Q, B=pe, c=u, (B.36)
in which e; is the first unit vector and p is a vector in the right null space of Q, that is,
Qp = 0. Given model parameters in equation (B.36), it follows from equation (B.8) that the
corresponding Kalman gain is given by

g = (wo] + Qv (207", (B.37)

where ¥ is the solution to the algebraic Riccati equation in equation (B.7) and satisfies

—

>

S = (wo] + Q)(i — ivlvii)(vlw' +Q)+ pp

’
U &0

- 1 < /™ / /
:Q(Z— — Zvlle)Q + pp'.

v g
Recall that, by assumption, Qp = 0. It is therefore immediate to verify that the positive semi-
definite matrix X = pp’ satisfies the above equation. Therefore, the Kalman gain in equation

(B.37) is given by g = w. Replacing for g and the parameters in equation (B.36) into the
expression for the agent’s forecasts in equation (B.9) leads to

o0
Eilxi4:]1 = 0/1(101)/1 + Q)T_] ZQrthfr,
r=0

which coincides with the expression in equation (B.35). In other words, the forecasts of the agent
with the k-factor model with parameters in equation (B.36) coincide with those of the agent with

k moving averages with parameters given by (w, Q, {v.}). ]
Proof of Proposition A.2
Proof of Part 1. Fix the compact set @k C Oy and let HA,ML € argmaxycp, f(’ (Xry X1y o v vy X0)

denote the agent’s maximum likelihood estimator. Also define h(6*% 60) =
E*[log f?(x;411x;, Xi—1,...)]. Observe that KL(0*||0) = h(0*,0%) — h(6*,0). As a result,
argminy g, KL(0"(|0) = arg max, g, (0", 0), and in particular,

h(@*, %% — h(6*, M) > 0 (B.38)

for all O%L € arg min, g, KL(6*(|0).
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Next, note that

A 1 KL
B, 0% = h(0",O)") = h(©", 0" = —log " (x ... x0)
1 KL 1 AML
+—log £ (x - ox0) = —log " (s xo)

1 ; .
+ ~ log O (s xo) — h(0F, OMY)

Since M- = arg maxgeg, f7 (%, x—1, ..., x0), it follows that

A 1
h(O*,0%1) = h©",0M) < h(©*,0%") — —log 7 s x0)
1 A ~
+ ~ log o (s xo) — R(0F, OMY)

1
<2sup |—log f(xs, ..., x0) — h(6*,06)
QE@k

for all O € arg min, g, KL(0*||0). Taking limits as ¢ — oo from both sides of the above
inequality and using the uniform law of large numbers (White, 1994, Theorem A.2.2) implies
that

h(@*, 0%y — lim (0", OMY) <0, P*-almost surely.
— 00

This inequality, together with the inequality in equation (B.38) therefore guarantees that
lim h(0%, é,ML) = h(*,6%Y), P*-almost surely.
1—>00

Subtracting h(6*, 6*) from both sides of the above equation and using the fact that KL.(6*||6) =
h(@*,6%) — h(6*, 6) then establishes the result. O

Proof of Part 2. Fix an arbitrary compact subset © € Oy of the class of k-factor models and
let OMSF ¢ arg mingep, + > r_o(Xe+1 — E?[x;41])* be a model that minimizes the time-series
average of agents’ forecast errors squared given observations from time 0 to time ¢. Also let
MSE@©*, ) = E*[x;41 — Ef [x,+11]1> denote the expected forecast error squared when agents
forecast the future realizations of the fundamental using model & but the true model is 8*. Finally,
let 0¥ € arg min, g, KL(0*[|0) denote a model with minimum KL divergence from the true
process, 6*.

As a first step, we establish that

MSE(6*, 8) — MSE(#*, %) > 0 (B.39)

for all § € ©. To this end, recall from the proof of Theorem 1 that any model 8 € @ can be
equivalently represented by the tuple (M, u, 6 2), where M is a square k-dimensional stable
matrix,  is a k-dimensional vector of unit length, and 67 is a positive scalar. We also established
that, given agents’ model, their forecasts of the future realizations of the fundamental are given
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by equation (B.12) for all s > 1. Therefore, E,[x,4] = Z‘TX’:, PeXi11_1, Where ¢, = u'[MI —
uu’)]*~"Mu. As a result,

2
o0
MSE(0",0) = E* (Xz+1 —qufxm_f) = E*[x} 1H (M, w), (B.40)
=1

where H(M, u) is given by equation (12). Since E*[xt2+,] only depends on the true data-
generating process and is independent of agents’ model 6, the above equation implies that
minimizing MSE(@*, 0) is equivalent to minimizing H (M, u) over M and u. But recall from
the proof of Theorem 1 that minimizing KL(6*||@) over the set of k-factor models is also equiv-
alent to minimizing equation (12) with respect to M and u, that is, arg miny.g, MSE(0*, 0) =
arg min, g, KL(6*[|0). This establishes equation (B.39).

Next, note that

. R 1< AMSE
MSE(©", %) — MSE(9", 0*) = MSE(®", 6}%) — = > (x,11 — B! [xc1))?
=0

+ % TZ;(;(-X:T+1 - ]Ef'MSE [xe11)* — % TZ;;(x”r] - E(:KL[XTHDZ
+ % TZt(;(er — B2 [x,411)* — MSE(0", 0*").
Since HAIMSE € arg minee@k % thzo (X721 — Ef [x;411)?, it follows that
MSE(*, 0MSE) — MSE(6", 051) < MSE(0", §M5%) — ; i(x,+1 — B L))
=0
+ } g(x,ﬂ — B2 [x,41])> — MSE(0*, 0¥,

and as a result,

. 1<
MSE(#*, OMSE) — MSE(9*, 6%") < 2 sup [MSE(9*, ) — - > e = Ellxe )|
96@;; =0

Taking limits as + — oo from both sides of the above inequality and using the uniform
law of large numbers (White, 1994, Theorem A.2.2) implies that lim,_ ., MSE(0*, GA,MSE) —
MSE(6*, %) < 0 with P*-probability one. Furthermore, note that equation (B.39) guarantees
that lim;_, .o MSE(6*, GAtMSE) — MSE(6*, QKL) > (. Therefore,

lim MSE(¢*, OMSEY = MSE(6*, 6%1),  P*-almost surely.
— 00

Dividing both sides by E*[xtzH] and using equations (B.40) and (B.14) establishes the result. [J
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Proof of Proposition A.3

Since rational agents can fully construct the model used by behavioural agents, the regress of
expectations in equation (A.4) is given by

I_EtI_EIJrl e I_EZJrr [xtJrr] =7 T+I]E:F[xt+r] + (1 - y) Z ysE;kEtJrs[xtJrr]
s=0

for all T > 0, where E[-] and E*[-] are the subjective expectations of the behavioural and rational
agents, respectively, and y denotes the fraction of rational agents. Therefore, the excess return
in the economy with a fraction y of rational agents is given by

o0 o0
() =0=7y)> (67) Do (E;ﬂEm et ers—1] = B Eras [xmm])

s=0 =1

+ 30 (B Dret] = L L),

=1

Taking expectations from both sides of the above equation and using the expression in
equation (5) for excess returns in the representative-agent economy therefore implies that

B I ()] = (1= 7) D 0y E}_ [, (0)].

s=0

Therefore, expected excess return in the heterogenous-agent economy is the discounted sum
of all future expected excess returns of a representative-agent economy populated only by the
behavioural agents. Multiplying both sides of the above equation by x,_; and taking expectations
[E*[-] then establishes the result. O
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