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In this paper we present a new algorithm for enhancing the
accuracy of the parameter extraction of straight lines in a two-
dimensional image. The algorithm achieves high accuracy in com-
paratively less computational time than most traditional methods
and is invariant under rotation and translation. The Iterative To-
tal Least Squares (ITLS) method starts from an initial estimate of
the line parameters. When no a priori information about the im-
age is available this estimate can be assigned randomly. Alter-
nately, a lower accuracy method can be used to generate an initial
estimate which will result in faster convergence. Then, a rectangu-
lar window is centered using the current line approximation, and
anew line estimate is generated by making a total least squares fit
through the pixels contained within the window. This is repeated
until convergence is reached. Adaptively adjusting the window
size yields the 4D ITLS process. In addition, a pairwise acceler-
ated ITLS method has been developed which substantially in-
creases the convergence rate. We conclude with some examples
where the ITLS method has been used successfully. © 1995 Academic
Press, Inc.

1. INTRODUCTION

Straight lines are highly distinguishable features in im-
ages and their accurate identification is important in

~ many applications such as robotics [2, 7, 11, 23, 26],

automatic inspection and quality assurance [27], medical
imaging [12, 20], scene analysis [7, 8, 23, 26, 29], and high
accuracy optical character recognition [16-18].

Many line extraction methods have been proposed in
the literature. A good overview can be found in [5]. Most
methods tackle the problem of stroke estimation by first
partitioning the image in collinear regions and then fitting
locally a straight line through each pixel subset. Line
fitting is usually done by a least squares method which we
will briefly review in Section 2. Partitioning is the harder
problem and most approaches are heuristic. Some well
known methods are the iterative end-point fits method
[7], the points of maximum curvature method [7], the
split-and-merge technique [23], and the cellular method
[6]. Using a gradient relaxation technique which incorpo-
rates gray scale and edge information, Bhanu et al. [3, 4]
have successfully implemented real-time image partition-
ing (segmentation) on a VLSI chip. Other methods [1, 13,

14, 19, 21, 22, 24, 25] which employ the Hough transform
are global in that they act directly on the whole image
without requiring partitioning, but their accuracy is lim-
ited by aliasing. These approaches have in common that
the computational time they require may be large to
achieve high accuracy.

In this paper we start from the premise that colinearity
detection and the estimation of linear stroke parameters
in a greyscale image are basically model matching. A
stroke model is constructed and the best match with the
image is sought. A popular method to measure this match
is a two-dimensional cross correlation which can be done
directly or through Fourier transforms. However, be-
cause in general the dimensions of the stroke model are
unknown, the correlation approach becomes extremely
time consuming. The method discussed here is essen-
tially an adaptive model matching method. Indeed, in-
stead of performing all correlations of the model with the
image in every orientation and for all possible stroke di-
mensions, we incorporate an adaptive recursive method-
ology which achieves high accuracy in comparatively
less computational time than most traditional methods.
The presented algorithm is invariant under rotation and
translation. It can usually be used when no a priori infor-
mation about the image is available, but it will converge
faster when a good initial estimate of the line parameters
is given.

The paper is organized as follows. In Section 2, we
briefly review total least squares fitting, also known as
eigenvector line fitting. We present an explicit formula
for the normal vector of a straight line fit in two dimen-
sions. In Section 3 we present the general Iterative Total
Least Squares (ITLS) stroke estimation algorithm. In
Section 4 the ITLS algorithm is solved analytically for a
stroke of infinite length. This leads to an accelerated ver-
sion of the algorithm which is discussed in Section 5.
Section 6 shows four applications of the ITLS method:
stroke estimation in printed characters, vectorization of
images containing straight lines, segmentation of touch-
ing characters, and an example of machine vision for
quality control of printed circuit board manufacturing.
Finally, we conclude in Section 7 and propose directions
for future research.
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2. TOTAL LEAST SQUARES

2.1. Least Squares Approximations

The popularity of the linear least squares regression is
probably due to the fact that the residue minimization can
be done in closed analytical form (that is the main reason
of squaring the point residues). It is a linear method and
is consistent with the orthogonality principle of optimal
approximation in the sense of mean squared error. This
states that the optimal linear approximation of a vector x
by a vector x’ constrained to a subspace M is that vector
x’, for which the error x-x' is orthogonal to M. Although
convenient, least squares estimation does not always
yield the best statistical estimator. However, the Gauss—
Markov theorem shows that the (linear) least-square esti-
mator is the minimum variance unbiased estimator for
Gaussian distributed random variables and independent
error components [7, 8].

In this paper, we address the concept of least squares
approximation only in the specific case of linear approxi-
mation in a two-dimensional space.

The difference between normal or ordinary least
squares and total least squares lies in the definition of the
point residue Res;. As exhibited in Fig. 1, the normal
least squares method defines the point residue as the dif-
ference of the y coordinates, d,, whereas the total least
squares method uses the normal (or shortest) distance of
the point to the line, d.

In Ordinary Least Squares (OLS) one solves for slope
a and intercept b in the equation y = ax + b by minimiz-
ing

Res = 2 (y; — ax; — b)~. ¢}

OLS is not invariant under rotation of the coordinate
system. However, Total Least Squares (TLS), also
known as eigenvector fit for reasons that will become
obvious shortly, is invariant. In TLS one solves for the

v

FIG. 1. Definition of the point residues for ordinary least squares
(d,) and for total least squares (d).
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normal vector n(n,0) in the equation x cos  + y sin8 = n
by minimizing

Res = D, (x;cos 6 + y; sin 6 — n)%. 2

The simplicity of this formula is due to the particular
choice of the equation of the line. Indeed, the normal
vector representation is very convenient to express the
distance to the line and is invariant under rotation of the
coordinate system.

When the image is given in grey scale form, we intro-
duce a weighting factor w; for every point r;. In our case
this can be the grey scale value. A probability measure P
is defined as

Wi

pi = Ej Wj’

€)

and we denote the mean and variance of X by u. and o3,
and its covariance with Y by o,. The residue becomes

Res = E (Res;) = Z pi Res;. )]

2.2. Total Least Squares

It is easy to see that both the OLS and TLS lines con-
tain the mean vector. Translation to the mean vector and
diagonalization of the covariance matrix = shows that n is
the eigenvector of T associated with the smallest eigen-
value and yields the following results (Duda and Hart [7]
also deduct the eigenvector conclusion but do not use a
probability measure P);

2 _ g2 — V(o= g2 + 42
fope = arctan ("y o: — Vo, ~ 03) ""y> )
200y
Ropt = My COS Oope t 1y sin Oop , 6)

and the minimized residue, the mean squared error MSE,

MSEp = 0% 082 Ot + Oy SN 2000 + 05 si0? Oopr.  (7)

3. ITERATIVE TOTAL LEAST SQUARES

3.1. The Concept

In order to identify strokes in an image one has to make
local measurements because a line and a stroke are de-
fined locally. Indeed, there may be several strokes in the
image. A total least squares of the whole image will not
result in the relevant information. To obtain the line pa-
rameters of a stroke a TLS has to be taken on a neighbor-

o
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hood around the line. However, this requires some
knowledge of the line parameters.
A way to resolve this dilemma is an ITLS method:

1. Make a box model of the stroke. The least sophisti-
cated box model is just a rectangular box.

2. Put this box around the initial estimate of the line in
the image.

3. Calculate the TLS of all the points contained within
the box.

4. Take the TLS parameters as the new guess.

5. Repeat from step 2 until convergence is reached.

When no a priori information about the image is avail-
able the initial estimate can be assigned randomly. How-
ever, in many cases a lower accuracy method or prior
knowledge about the image can provide us with an initial
estimate. In the examples in Section 6, we will show how
initial estimates can be obtained in four different settings.
In general, the better the initial estimate, the faster the
convergence. As with all iterative processes, we are con-
cerned with convergence radius and speed of the pro-
cess.

3.2. The Process Dynamics

Consider the box depicted in Fig. 2. The centerline of
the box defines a normal vector n = n e, (where e, is a
unit vector) and a unit tangent vector e,,

n(cos 6, sin 0)

e, = (cos(6 + w/2), sin(@ + 7/2)).

@®)
)

The rectangular box of width w can be described in para-
metric form

Box={rER?>:r=oae,+Be, m=a=mn,t;<B=t},
(10

A\

FIG. 2. The box model.

where n; and ¢ are the coordinates in the (e,, e;) coordi-
nate system.

Also, n; — ny = wand (n, + ny)/2 = n. These parame-
ters are determined by sensing the image along the cen-
terline.

At any time the state of the system is uniquely defined
by the vector L = (6, n, w, £, t;) where n = (n; + n)/2
and w = n, — ny.

The basic ITLS method sequentially performs the up-
date

(11

where g is the operator that uses the state vector L; to
construct a window on the image, computes a TLS esti-
mate, and generates a new state vector L., representing
a new window. We look for the fixed points of the opera-
tor g(-, Image).

To illustrate the basic ITLS process the character “‘I"’
provides us with an excellent example. It is an isolated
image that consists mainly of straight lines. We will show
more realistic images in Section 6. The most simple pro-
cess is one where the width w of the box is given a con-
stant value and an infinite length. This results in taking all
points of the image matrix that fall within that stroke. In
this simplified case, denoted by the 2D basic process, the
state vector L reduces to L = (n, 0). Figure 3 illustrates
this method on the character ““I.”’ The more sophisti-
cated 4D basic process is obtained by assuming a con-
stant width w of the box, but variable start and end
points. The state vector is then L = (6, n, #,, t,), where t,
and ¢, are determined by sensing the image along the
centerline to detect where the box intersects with the
image. When several intersections are detected ¢, and #,
will denote the start and end points of the longest seg-
ment.

A poor initial estimate was deliberately chosen to
clearly show the dynamics of both processes. Despite
this poor choice (Migitia1 = 25, Oinitial = 7/3), both processes
converge. The trajectories (ny, 6;) shown in Fig. 4 show
this convergence to the stable solution » = 16.7 and 6 =
m/2. The significant increase in convergence speed of the
4D process is due to the fact that the two outlier domains
which are intersected by the box in the 2D process are
not included this time. Although a 4D iteration step in-
cludes the centerline sensing, this is only significant for
the first iteration when the whole image needs to be
sensed along the centerline (if no initial #, and ¢, are pro-
vided). Once a segment is locked on, the sensing requires
a negligible amount of computation and the subsequent
iteration steps are of comparable computational effort as
in the 2D case. The 4D ITLS converges therefore more
quickly.

The 4D process is preferred over its 2D counterpart
when applied to a composite image that contains other

Ly = g(Lg, Image),
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FIG. 3. 2D and 4D ITLS with the basic process with initial values of

ny = 25 and 00 = /3.

objects that are unrelated to the straight line segment of
interest. It avoids incorporating those unrelated pixels
which may misguide the algorithm.

4. ANALYTIC SOLUTION OF THE BASIC ITLS PROCESS
FOR A STROKE OF INFINITE LENGTH

For the purpose of analysis, we will study the simple
case of an image that is composed of a single stroke of
infinite length. In this case the basic ITLS process can be
solved exactly and under closed analytic form. This will
prove to be useful later in approximating the ITLS pro-
cess in the case of a ‘‘real’’ image.

Consider the graphic formulation of the problem in Fig.
5. Assuming that the width w of the box equals the width
of the stroke, applying the box function on the image
yields a rhombus.

It is easy to show that the ITLS system is a linear time-
invariant system with solution
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FIG. 4. Plot of convergence of the basic process for the image of
Fig. 3.

O = 27k 6y (12)

(13)

nk=0

when the x-axis coincides with the centerline of the
stroke.

FIG. 5.

The basic process for a stroke of infinite length.
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For this case we observe that the stroke parameters
may be estimated by the following algorithm:

1. Take a random initial vector (ng, 6,). Because the
stroke has infinite length the initial box, also infinitely
long, will intersect it with probability one.

2. Calculate the new estimate (n;, 6;) = g((no, 6y), Im-
age).

3. The exact solution is then

g = 201 - 90 (14)
n=2x.cos 6+ y.sin 6, (15)
where
_ Ny sin 6, — n sin 6,
e = sin(01 - 00) (16)
_ n1cos Gy — ng cos 6,
Ye = Sil’l(01 - 0()) (17)
Convergence of 2D Pairwise Accelerated Process
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FIG. 6. 2D and 4D pairwise accelerated ITLS with initial values of
nyg =25 and 6, = #/3.

Although the case of an infinite isolated stroke is unre-
alistic, it serves as a model for the asymptotic behavior of
ITLS. When the state vector is sufficiently close to the
true stroke parameters and the stroke is reasonably long,
ITLS will closely follow this linear system. In the next
section we show how this model along with its ‘‘one-
step’” solution is used to accelerate the basic ITLS pro-
cess.

5. PAIRWISE ACCELERATED ITLS

We utilize the asymptotic model to incorporate the
one-step solution into the ITLS algorithm. The accelera-
tion potential is obvious; however, if not cautiously ap-
plied, instability could arise. The one-step solution is bas-
ically a linearization only valid in the vicinity of the
correct state vector. Alternately applying one step of the
basic process enhances the stability. Therefore, we pro-
pose the following algorithm:

1. Given an estimate L,, apply a single iteration of the
basic ITLS process to produce an estimate Lyasic.

2. Based upon the pair (L;, Lp,;.) invoke the one-step
solution to compute L.

Since the computational effort of step 2 is negligible,
we denote steps 1 and 2 as one iteration of the pairwise
accelerated ITLS process (for performance comparisons
with basic ITLS).

As is shown in Figs. 6 and 7, this method works very
well, accelerating the basic process considerably without
noticeable effects on stability. The same image and initial
estimates are used for comparison with the basic ITLS.

Figure 8 depicts several convergence points of the
pairwise accelerated ITLS algorithm for different ran-
domly chosen initial conditions, represented by the dot-
ted line. Automatic termination was invoked when the
magnitude of the change in the state vector dropped be-
low a threshold.

In order to evaluate the computational effort of the
pairwise ITLS method we also used the Hough method
and Fourier analysis to extract the straight lines of Fig. 6.
For the pairwise ITLS, extraction up to an absolute accu-
racy of less than 0.01 both in angle (degrees) and transla-
tion (pixels) required 63,748 FLOPS in our Matlab imple-
mentation. Constructing the Hough transform in (r,0)
space of the same image with a resolution of only 2.5
degrees in angle and 1 pixel in translation required
154,533 FLOPS [28]. This does not include finding the
maximum in the Hough transform. Two-dimensional
Fourier analysis with an angle accuracy of 1 degree [15]
(note that Fourier analysis does not extract the transla-
tion n) required 1,256,769 FLOPS. Although both of
these methods theoretically can extract all straight lines
in an image at one time, in practice one only extracts the
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FIG. 7. Comparison of basic and pairwise accelerated ITLS for the
image of Fig. 6.

longest line because of the aliasing which limits the reso-
lution. The same trend was observed in other images.
Thus we conclude that the ITLS method achieves high
accuracy in comparatively less computational time than
most traditional methods.

6. EXAMPLES

In this section we present some examples of how the
ITLS method can be used successfully in different set-
tings.

Figure 9 shows how the 4D pairwise accelerated ITLS
method can be used to automatically extract all straight
lines in an image. As an example the scanned greyscale
image of the letter *‘D’’ was chosen to show how ITLS
performs on images that also contain curves. The initial
conditions were obtained by ‘‘edge tangent detection.”
This is a low accuracy method which detects the longest
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straight stroke in an image by walking around the edge of
the image and finding the longest constant segment in the
tangent plot of this edge walk. This is exemplified by the
plot in the upper right corner of Fig. 9. Segment AB is the
longest constant segment (at an angle of —3/2 or equiv-
alently + 7/2 measured counterclockwise from the verti-
cal axis) and yields the initial estimate, represented by
the dotted line, for stroke 1.

After detection of a line, the corresponding stroke was
“erased’’ by multiplying the inverted box model with the
original image. This was reiterated until all strokes were
“erased.”’ The result is shown in the lower right contour
plot in Fig. 9. Note that we do not advocate the use of
straight lines to detect curves. We are currently investi-
gating an extension of the ITLS method where the box is
curvilinear and has a second order planar curve as a cen-
terline. Also, if one is only interested in recognition of the
character class, a high accuracy method may not be nec-
essary for optical character recognition. It may be inter-
esting in the subsequent stage for determining the partic-
ular ‘‘font or size’’ of the image.

20k

10 20

FIG. 8. Examples of pairwise accelerated ITLS for different ran-
domly chosen initial conditions.
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FIG. 9. Automatic extraction of all straight lines in an image.

The next example shows how the ITLS method ex-
tracts all straight line information from an optical scan of
a graphical image that contains straight lines. This infor-
mation is used to form a vectorized description of the
image which may be used by computer aided design pro-
grams. This process enables capturing, editing, and re-
printing printed graphics. Since partitioning (segmenta-
tion) is an integral part of this task, we used the 4D
pairwise accelerated ITLS. The initial line estimates are
computed as the TLS of the entire image before each line
extraction. The process is shown in Fig. 10.

The third example shows how the ITLS method can be
used in image segmentation. Figure 11 shows the grey-
scale image of the scanned word *‘are.” The first step in
optical character recognition usually involves separation
of the individual characters. This means that words need
to be segmented. It is not too difficult to estimate the
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50 100 50 100
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5 100
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100 / e
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50 100 SIO 160
Str‘oke No. 8 . Stroke No. 9
100} / ] 100 / ________
“ﬁ“’ h -
50t . sor
e o N -~ N o - N = N ’
50 100 50 100

Graph Reconstructed from Vectorization

100+ E

50 100

FIG. 10. The ITLS method used for vectorization of a graphical
image.
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FIG. 11.
tion.

The application of the ITLS method for image segmenta-

average character spacing which yields a first (vertical)
estimate as represented by the dotted lines in Fig. 11.
Similarly, disjoint characters can easily be isolated.
However, in the case of touching characters dissection
should be done with minimal intersection. By inverting
the image so that the characters take on small greyscale
values and the background is assigned large greyscale
values, ITLS can be used effectively to find the optimal
straight line segmentation as shown at the bottom in
Fig. 11.

The last example comes from the field of machine vi-
sion and automatic quality control and exemplifies the
ITLS method on a complex image where high accuracy is
required. Figure 12 shows a printed circuit board. The
manufacturer is concerned with an automatic detection
of defective boards. As the boards move down the pro-
duction line a greyscale image is captured and digitized as
shown in Fig. 13. The initial condition is given by a priori
knowledge of the image. As shown in Fig. 14, the ITLS
method accurately extracts the position and angle of the

—

.2 = B

RS R Y Y R T A R Y A R YR Y

Vi WU W W Ve WP ey W W W b W]

FIG. 12. Photo of a PCB board.

conductor lines. This information may be compared to
specification to automatically determine defects.

7. CONCLUSIONS

In this paper we presented a method to enhance the
accuracy of the parameters estimation of straight lines in
an image. The basic ITLS algorithm was proposed and
both the 2D and 4D versions were discussed. In the theo-
retical case of a single infinite stroke, the problem is

450

400

3505

:@e@‘*@~@é%%@%@i@; -

200§
=0

el

FIG. 13.

Digitized greyscale image of the photo in Fig. 12.
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FIG. 14. The ITLS method extracting straight lines from the greyscale image in Fig. 13.

solved analytically and requires only one step. This, to-
gether with the basic ITLS, leads to the pairwise acceler-
ated ITLS which is considerably faster than the basic
process and still stable. The obtained acceleration is of
the order of 3—4 times compared to the basic ITLS.

These methods achieve high accuracy in compara-
tively less computational time than most traditional
methods and are invariant under rotation and translation.
When no a priori information about the image is available
the required initial estimate of the line parameters can be
assigned randomly. Alternately, a lower accuracy
method can be used to generate an initial estimate which
will result in faster convergence.

Future work will extend the ITLS method to both
straight line and curve extraction. This will involve sec-
ond order planar curves serving as the ‘‘centerline’’ of
the box and orthogonal fitting of second order curves to
yield improved estimates.
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