
0 
 

 

DYNAMIC MARKETING MIX ALLOCATIONS IN THE PRESENCE OF 

UNRELIABLE DATA FROM INDIAN MARKETS 

 

 

 

 

Shrihari Sridhar
 

Assistant Professor of Marketing 

Smeal College of Business 

Pennsylvania State University 

E-mail: sus55@psu.edu 

 

 

 

Prasad A. Naik 

Professor of Marketing  

Graduate School of Management 

University of California Davis 

Email: panaik@ucdavis.edu 

 

 

 

Ajay Kelkar 

Co-Founder and Chief Operating Officer 

Hansa Cequity Pvt. Ltd. 

Mumbai 400070 

Email: ajay.kelkar@cequitysolutions.com 
 

 

 

 

 

 

  

mailto:sus55@psu.edu
mailto:panaik@ucdavis.edu
mailto:ajay.kelkar@cequitysolutions.com


1 
 

 

DYNAMIC MARKETING MIX ALLOCATIONS IN THE PRESENCE OF 

UNRELIABLE DATA FROM INDIAN MARKETS 

Abstract 

Mom and pop stores, who lack bar code scanning technology to track brand sales, 

comprise 93% of the Indian retail universe. Consequently, brand managers measure consumer 

demand by using a survey-based metric called retail offtakes, which fallibly indicates the 

quantity sold by retailers. They complement it with an internal metric called secondary sales, 

which fallibly indicates the quantity bought by retailers. Our analysis shows that the direct 

application of standard marketing-mix models to these noisy metrics individually or its convex 

combinations lead to inaccurate estimates of advertising and promotion elasticities. Thus we 

encounter the questions: How to recover correct parameter estimates using unreliable data? How 

to optimally combine multiple metrics to infer consumer demand? How to optimally allocate 

marketing investments in the presence of unreliable data? To address these issues, we formulate 

a new marketing-mix model, which denoises and combines the fallible metrics optimally to 

assess the effectiveness of marketing-mix activities. Our simulation results illustrate that the 

standard approach fails, whereas the proposed approach recovers the marketing-mix 

effectiveness accurately. Next, we analyze the market data from six political regions in India to 

furnish the first empirical evidence on data unreliability via the presence of bias and 

measurement noise in multiple sales metrics. Also, we discover the existence of distribution 

synergies with both advertising and promotion. Moreover, we derive closed-form analytical 

expressions for optimal advertising and promotion investments in the presence of unreliable 

metrics. Finally, we demonstrate that overconfidence due to the presumption that the metrics are 

reliable results in over-spending on advertising and promotion.    

Keywords: Emerging Markets; Kirana Stores; Stochastic Control Theory; Bang-Bang Control; 

Measurement Noise; Marketing-Mix Allocations. 
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1. Introduction 

Indian consumers’ spending will be the 5
th

 largest by 2025, surpassing Germany and crossing 8 

trillion US dollars at purchasing parity, according to the McKinsey Global Institute (2007). This 

study predicates the growth on two forces: household disposable incomes rise at 5.8% annually, 

and the “middle-class” expands from the present 5% to 40% of the country’s billion plus 

population. This emerging opportunity attracts multinational retailers with single brands (e.g., 

IKEA, Apple) and multiple brands (e.g., Wal-Mart, Tesco). Their entry brings with them new 

direct investments, business processes, and marketing know-how. An important know-how for 

marketing managers is to be able to measure consumer demand, assess the impact of various 

factors influencing it, and forecast it over time and across regions. For example, companies can 

use choice models to analyze household purchase behavior or marketing-mix models to analyze 

aggregate market sales, thereby assessing the effectiveness of advertising, promotion, or 

distribution and then allocating resources optimally to various activities, over time, and across 

regions. While this know-how is invaluable, Don Schultz (2012, p. 13) cautions marketing 

managers, 

“If you want to market in another region or country, first learn what’s available 

there … importing marketing systems from the West simply doesn’t work in 

emerging markets.” 

 

The main challenge to successfully importing extant models is the ability to tackle 

unreliability of data. To gain appreciation for data unreliability, we briefly describe how retail 

markets operate in India. Indian consumers buy from kirana shops, which are hole-in-the-wall 

retail stores, over 95% of these 14 million shops are smaller than 500 square feet, run by family 

members, sell a limited assortment of goods in small quantities, offer much-needed credit and 
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home-delivery services to consumers, and don’t use information technology to track inventory or 

sales.
1
 This retail sector is referred to as “unorganized” and it accounts for over 93% of the 

country’s $470 billion industry (Schumpeter 2011), and the rest is attributed to organized sector 

of supermarkets as in the developed countries. This fragmented universe of 14 million shops lack 

bar code scanning technology to track brand sales. Consequently, marketing managers 

commission market research companies to sample several shops nationwide and obtain the 

projected monthly retail sales, which they call retail offtakes it serves as an error-prone proxy 

for consumer demand for brands.  

The second challenge is to reconcile multiple metrics for brand sales. To mitigate 

unreliability in the retail offtakes data, managers also use internal sales-force reports to 

determine secondary sales, which refers to the quantity bought by the retailers. Managers feel 

that secondary sales data may be more reliable because it comes from the “internal” sources. Yet 

it is likely biased because it is not close to consumers’ decision stage, unlike retail offtakes. For 

example, secondary sales data could also reflect the role played by sales contests in influencing 

quantity bought by retailers. Moreover, the two metrics don’t match on a monthly basis, although 

each reflects the common latent demand fallibly. Therefore, managers need a way to reconcile 

unreliable metrics of brand sales when assessing the impact of marketing mix activities.  

Because these challenges are inherent to Indian markets, no study in the extant marketing 

science literature addresses them (e.g., see Hanssens, Parsons and Schultz 2001). Hence we 

know neither the extent or nature of data unreliability, nor the consequences of ignoring 

measurement noise when estimating advertising or promotion effectiveness. More importantly, if 

                                                            
1 For more details, see http://en.wikipedia.org/wiki/Retailing_in_India#cite_ref-IndianRealtyNews_9-0. 

Accessed June 28, 2012.  

http://en.wikipedia.org/wiki/Retailing_in_India#cite_ref-IndianRealtyNews_9-0
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estimated effectiveness is inaccurate, how do we recover the correct estimates using biased and 

unreliable metrics? How do we optimally combine multiple noisy metrics to infer the true 

demand? Finally, how do we determine the optimal spending on advertising and promotion by 

accounting for multiple unreliable metrics?  

To address these issues, we formulate a new marketing-mix model that incorporates the 

role of multiple unreliable metrics. In addition, we illustrate that the standard marketing-mix 

models don’t work in the presence of unreliable data from Indian markets, as Don Schultz (2012) 

foretold. Even if we create composite sales by combining the two metrics, the extant model fails 

to recover marketing-mix elasticities. Then, we show that the proposed approach to filter out 

measurement noise from multiple metrics recovers the marketing mix effects accurately. Next, 

we solve the resulting stochastic control problem to derive closed-form analytical expressions for 

optimal advertising spending and promotion timing. Finally, we deduce propositions that shed 

light on how bias and noise in metrics moderate the optimal decisions with reliable data. 

Specifically, we prove that overconfidence in the metrics the presumption that the metrics are 

reliable enhances spending on advertising and promotion. Hence we derive a correction 

factor, which depends on the extent of bias and noise in metrics. In practice, managers can 

calculate this correction factor using the estimated parameters and adjust their marketing 

spending accordingly. 

The rest of the paper is organized as follows. Section 2 presents a motivating example 

with real data from Indian markets to illustrate that the standard marketing-mix model does not 

work. Section 3 formulates the new model, and Section 4 conducts simulations to show the 

proposed approach recovers the true parameters. Section 5 presents the empirical analysis, and 
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Section 6 derives new propositions on the effects of data unreliability on optimal marketing 

allocations. Section 7 concludes the paper by summarizing the key takeaways.  

2. Motivating Example 

We seek to understand the consequences of “importing” the standard marketing-mix model to 

Indian markets. We relegate the data description to Section 5 and present here the results on the 

estimated elasticities from the standard model: 

           √          ,     (1) 

where    is consumer demand measured by either monthly secondary sales or retail offtakes, λ is 

the carryover effect,         are advertising and promotion effectiveness,         are advertising 

spending and a promotion “on-off” indicator, respectively, and    denotes the normal errors in 

demand specification. The squared root captures the diminishing returns to advertising (see 

Simon and Arndt 1980), which means the incremental sales from additional advertising diminish 

as spending levels increase.  

What would be the elasticities if we apply regression to the unreliable data on secondary 

sales or retail offtakes as the dependent variable? Recall that the theory of errors-in-variables 

predicts that the estimated parameters are unbiased despite measurement noise in the dependent 

variables (e.g., see Greene 1993, Ch. 9). Our results differ from this claim, thus identifying a 

boundary condition when this theory does not hold. To this end, we estimated the standard 

regression model with retail offtakes (or secondary sales) as the dependent variable. To make 

meaningful comparisons later with the to-be-proposed model, we also include the role of 

distribution synergies with advertising and promotion. Specifically, we let distribution enhance 
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the effectiveness of advertising and promotion; i.e.,             , where    is the number of 

stores where this brand is available.  

[Insert Table 1 about here] 

Table 1 presents the estimated elasticities for advertising and promotion in the two 

political regions of India: Karnataka and Maharashtra. For Karnataka, advertising elasticity is 

0.005 based on the secondary sales metric and 0.017 from the retail offtakes metrics, revealing 

that they differ by a factor of 3.4. Similarly, promotion elasticity differs by a factor of 15.5 based 

on whether we use secondary sales or retail offtakes. Even the relative effectiveness via the ratios 

of promotion to advertising elasticities differs widely. Specifically, promotion is twice as 

effective as advertising based on retail offtakes, whereas it is 108 times as effective as 

advertising when secondary sales is the dependent variable. Such a large variation creates a 

dilemma for managers on which metric to use to assess marketing effectiveness for allocating 

budgets to marketing activities.  

For Maharashtra, advertising elasticity of 0.020 or 0.024 represents a reasonable 

variation, but the promotion elasticity differs by a factor of 51.5 based on which metric is used. 

Relative effectiveness also varies widely: promotion is about half as effective as advertising 

based on retail offtakes, but it is 25.8 times as effective based on secondary sales. Such a large 

variation reinforces the dilemma that managers face on the metrics to use, and so they may 

consider creating a composite metric by averaging the two sales metrics.  

To understand the efficacy of this alternative approach, we create a composite sales 

metric   ̅      Retail Offtakes +        Secondary Sales. When the weight    0.5 we 
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average the two metrics; for other weights we obtain asymmetric convex combinations. Then we 

repeat the above analysis, present the results in the lower panel of Table 1, and observe a pattern 

of conflicting results as described above. Specifically, advertising elasticity is negative for 

Karnataka, which is neither correct nor interpretable. It is positive and stable for Maharashtra, 

suggesting any weight would work. However, the same conclusions do not hold for promotion 

elasticity, which varies from 0.112 to 0.580 depending on the weights used.  

In sum, the motivating example reveals that (i) elasticity estimates vary dramatically 

based on which metric is used, (ii) relative effectiveness of advertising to promotion differs too 

much to make reliable budget allocation decisions, and (iii) averaging the metrics does not 

resolve the dual issues of filtering noise and combining information. Thus, the standard 

marketing-mix model does not work when applied to sales data from Indian markets. As Don 

Schultz (2012) suggests, for successfully importing extant models, we need to adapt them to the 

prevailing market conditions, which we next address.   

3. Model Development 

We first formulate a new marketing-mix model that addresses the two challenges: controlling 

unreliability in the metrics and combining information from multiple metrics. Then we describe 

parameter estimation and robust inference.  

3.1 Controlling Data Unreliability 

As described in the Introduction, metrics are unreliable due to the absence of bar code 

scanning technology. Unreliability comprises of the two aspects: measurement noise in each 

metric and the relative bias across multiple metrics. We model the two aspects of unreliability 

using an errors-in-variables framework to ascertain whether noise and bias are statistically 
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significant or not. Indeed, ignoring unreliability ex ante is not innocuous as the motivating 

example illustrates.  

Let     and     denote the observed retail offtakes and secondary sales at time t from a 

given region (e.g., Karnataka), and     (j = 1, 2) be the measurement errors in each metric. 

Because both the metrics reflect common underlying consumer demand,   , we model the errors 

in the metrics as follows: 

[
   

   
]  [

  

   
]  [

   

   
],      (2) 

where   measures the bias in secondary sales relative to the retail offtakes, which is normalized 

to unity because of its proximity to consumers’ purchasing stage. The error vector    

            follows a bivariate normal with zero means and the error variances   
  (j = 1, 2) are 

arranged diagonally in a matrix  . Equation (2) thus formally incorporates the notion of noisy 

metrics, whose presence can be ascertained via the significance of variances.  

 Marketing-mix activities such as advertising and promotion drive the latent consumer 

demand via Equation (1). In addition, it includes the carryover effect   from the lagged demand, 

which the previous research (e.g., Leone 1995, Hanssens et al. 2001) indicates to be important 

due to the inter-temporal influence of marketing actions (e.g., past advertising or promotion 

effects).  

In standard marketing-mix models, the effectiveness of advertising and promotion are 

usually assumed to be constant over time. We relax this assumption for two reasons. First, 

constant effectiveness models imply constant optimal spending over time (Naik and Raman 

2003). But actual spending varies over time, contradicting this predicted pattern. Hence, we relax 
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the assumption by making the effectiveness parameters vary over time. Because the exact nature 

of time variation is not known, recent studies specify random walk evolution (e.g., Kolsarici and 

Vakratsas 2010). That is,           , which parsimoniously captures non-monotonic 

dynamics. Second, recent studies suggest that other marketing activities may enhance the 

effectiveness of advertising, a phenomenon known as synergy (e.g., Naik and Raman 2003, 

Narayanan, Desiraju, and Chintagunta 2004). We extend this notion to capture synergies due to 

distribution intensity, which is hitherto less explored in the extant literature. In other words, if a 

brand is more widely available, then its advertising and promotion activities are likely more 

effective (i.e.,            ).  

We incorporate both the extensions in Equation (1) as follows:  

  [

  

      

      

]  [
 √    

   
   

] [

    

    

    

]  [
 

    

    

]  [

   

   

   

],   (3) 

where the error vector                   follows a trivariate normal        with zero means 

and the covariance matrix  . The variance    
  captures the unexplained portion of the variation 

in the true demand   .  

Equation (3) represents the transition equation in the state space framework (see Harvey 

1994), where                        is the state vector,                   is the drift vector, 

and the matrix in Equation (3) is called the transition matrix   . We link the state vector to the 

unreliable metrics             
  in Equation (1) via the observation equation: 

[
   

   
]  [

   
   

] [

  

      

      

]  [
   

   
],     (4) 
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where we denote the matrix in the above equation by    The above discussion completes the 

model specification, which can be expressed compactly in the state-space form:           

(Equation 4) and                 (Equation 3).  

3.2 Combining Multiple Metrics Optimally 

 As noted in the Introduction, the two metrics do not match exactly; that is,         . 

Hence we need to combine the information in the unreliable metrics to estimate the consumer 

demand  ̂  (which is the first element of the state vector  ̂  . One way to combine multiple 

metrics is to update the estimates proportional to the forecasting errors as follows: 

 ̂   ̂           ̂ ),     (5) 

where the 3 x 2 time-varying matrix    is to be determined. In other words, the elements 

{           } in    are the weights placed on the forecasting errors to obtain  ̂   Similarly, using 

the other elements in   , Equation (5) updates the estimates of advertising and promotion 

effectiveness.  

We seek to determine the optimal weighting matrix   
  such that the estimates  ̂  are as 

close as possible to their true values    on average. Formally stated, if        ̂ , then 

        yields the unbiased estimates. Furthermore, their mean squared error is given by, 

),(

])[()]([][

])ˆ()ˆ()ˆ[( 2

1,21,2

2

1,11,1

2

t

tttttt

ttttttt
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  (6) 
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where the third equality follows by noting tt   is a scalar; and the fourth one interchanges trace 

and expectation operators and sums the diagonal of the matrix   . Next, we prove in the 

Appendix A that  

                             .    (7) 

Finally, to bring the estimates closest to the true values, we choose the matrix    that minimizes 

Equation (6). Recalling that                 for symmetric  , we obtain the first order 

condition: 

   

   
                       .    (8) 

By setting           0, we determine the optimal weighting matrix as follows: 

  
1

11

*

1

*

1

*

1

*

)(

)(

)(















RHHPHPK

RHHPKHP

RKHPHKI

ttt

ttt

ttt

     (9) 

The last equality in Equation (9) provides the optimal weights to combine the multiple 

metrics    in Equation (5). By suppressing the time subscripts for clarity, we furnish closed-form 

expressions for the optimal weights in 

PROPOSITION 1. The optimal combination of the unreliable metrics    and    is given by 

                                   ̂    
      

   , 

where   
  

              

          
 and   

  
               

          
 are the optimal weights, 

   
  

 

  
  and    

  
 

  
  are the signal-to-noise ratios of the two metrics, and   

 is the 

variance of consumer demand.  
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PROOF. See Appendix B. 

Three observations emerge from the above proposition. First, the optimal weights depend 

on both the aspects of unreliability: signal-to-noise ratios    and the relative bias . As the 

signal-to-noise ratio for the metric improves, its weight increases in informing the true consumer 

demand. As the relative bias disappears, so that  equals unity, the weights become symmetric 

functions of signal-to-noise ratios (i.e.,   
  

  

       
).  

Second, the optimal weights do not sum to unity. Hence the composite sales constructed 

via any convex combination of the metrics lead to an incorrect estimate of consumer demand, 

which explains the inaccurate results in the motivating example.  

Finally, and most importantly, the derivation of optimal weights does not require the 

assumption that the measurement errors are normally distributed. In other words, the weights 

given in the proposition are optimal across any distribution of measurement errors with finite 

moments.  

3.3 Parameter Estimation and Robust Inference 

  To assess consumer demand and marketing-mix effectiveness, we apply Equations (5) 

and (9) starting with the initial values    and model parameters (           , whose values 

managers don’t know when the models or markets are new. Hence we describe how to estimate 

parameters via the maximum-likelihood theory. Specifically, we first compute the log-likelihood 

function,  

      ∑               
 
   ,    (10) 
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where        denotes the conditional density of     based on the metrics observed up to the 

previous period,                 . Then, using Equation (4), we find the conditional mean 

 ̂                       so the innovation errors      ̂   are distributed with zero mean 

and the covariance matrix            
   , where (               are the conditional means 

and covariances of the “prior” state vector        . We obtain its moments via Equations (3) and 

(4). Specifically,                  and                
     where (           are the 

conditional means and covariances of the “posterior” state vector          . After the new data 

arrives, that is,           , we update the prior moments via Equations (5), (7), and (9) by 

replacing   ̂            and            . Then, ignoring the irrelevant constants, we 

recursively build the log-likelihood function,  

         ∑                   ̂     
       ̂   

 
   ,   (11) 

where det() denotes the determinant. For further details, see Harvey (1994) or Xie et al. (1997). 

Next, to estimate the parameter vector                               with 

  elements (as necessary for multiple regions), we maximize Equation (11) so that,  

 ̂                   (12) 

Finally, to obtain the standard errors of  ̂, we take the square root of the diagonal we extract 

from the inverse of the matrix:  

 ̂   
      

     |
   ̂

 ,      (13) 

where the Hessian of      is evaluated at the estimated values  ̂.  
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Moreover, to make inferences robust to mis-specification errors, we compute the 

sandwich estimator (White 1982):  

 ̃   ̂   ̂ ̂  ,     (14) 

where V is a p  p matrix of the gradients of the log-likelihood function; that is, ,GGV  and G 

is T  p matrix obtained by stacking the 1  p vector of the gradient of      for each of the T 

observations. In correctly specified models, C = V and so both the equations (13) and (14) yield 

exactly the same standard errors (as they should); otherwise, we use the robust standard errors 

given by the square root of the diagonal elements of  ̃. We next conduct simulations to learn 

how well the proposed approach recovers the model parameters.  

4. Monte Carlo Simulations  

4.1 Simulation Settings 

The simulations shed light on the two issues: the consequences of measurement errors in 

the dependent variables of dynamic models, and the efficacy of the proposed approach. To this 

end, we set the parameter values, generate multiple data sets, estimate the parameters of the 

standard and proposed models, and then compare the results with the known parameter values. 

Specifically, letting T = 100 periods, we generate 1000 data sets using equations (1) and (2) with 

           . The true parameters are             and      . The standard deviations 

of measurement and transition errors equal 100; promotion          , distribution        

      , and advertising              , where        is the uniform random variable; and 

the initial          Applying the proposed approach to the above 1000 simulated data sets, we 

estimate the model parameters one thousand times. We also estimate the standard marketing-mix 
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model 1000 times using the dependent variable as retail offtakes      , secondary sales 

     , and composite sales with              in steps of 0.1.  

[Insert Table 2 about here] 

4.2 Simulation Results 

Table 2 presents the estimates from both the proposed and standard models. Recall that 

the true values are             and      . The proposed approach recovers them 

satisfactorily:  ̂                ,   ̂               ,  ̂               , and  ̂  

             . The proposed approach works because it controls for unreliability in the 

observed metrics. 

In contrast, the standard model fails to recover the true parameters. Averaging over all 

weights, the standard model exhibit severe downward biases:  ̂                 ,  ̂  

               , and  ̂                 . This downward bias for  ̂ varies from 17.86% 

to 98.67%; for  ̂  it varies from 2.20% to 90.05%; for  ̂  it varies from 11.02% to 96.54%. Given 

that all parameters are under-estimated, the resulting optimal budget will be under-stated. 

Consequently, managers who rely on the standard model will under-spend on marketing 

activities.   

The severe biases from the standard model reveal that the presence of measurement noise 

is not innocuous. This finding  noise in the dependent variable induces biases  identifies a 

boundary condition for errors-in-variable theory, which incorrectly suggests without 

qualification that noisy dependent variables are innocuous (see, e.g., Greene 1993, Ch. 9). In 



16 
 

 

contrast to the standard theory, noisy dependent variables also induce biases when the models are 

dynamic. Next, we apply the proposed approach to real data from Indian markets.  

5. Empirical Analysis 

5.1  Data Description 

We analyze the marketing mix activities and sales outcomes for a major brand of hair 

care in India. Due to nondisclosure agreements, we cannot divulge the brand’s identity and 

proprietary data. But we note that the brand is well-known and generates several million US 

dollars in annual revenues. It is distributed widely across urban, semi-urban, and rural regions. 

Over 70 million units are sold monthly nationwide, reaching 130 million consumers (about 25 

million households) through a distribution network of over 3 million outlets in India. To provide 

an empirical generalization, we present results from six political regions that span the breadth of 

the country: Andhra Pradesh, Gujarat, Karnataka, Maharashtra, Tamil Nadu, and Uttar Pradesh. 

The two sales metrics are retail offtakes (i.e., quantity sold by retailers to consumers) and 

secondary sales (i.e., quantity sold to retailers). The two marketing activities are advertising and 

promotion over time. Advertising data include the total GRPs in national and cable television, 

and promotion data indicates the timing of promotions. We augment this information with 

distribution intensity over time, i.e. the percentage of retailers who carried the brand. 

Accordingly, we can test whether distribution exhibits synergies with advertising and promotion. 

In other words, in the presence of synergy, advertising (or promotion) effectiveness enhances 

due to wider brand availability: the greater the penetration, the more effective the advertising (or 

promotion). Table 3 presents the descriptive statistics. 
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[Insert Table 3 about here] 

 For each region, we estimate the proposed model in Equations (3) and (4) by combining 

the metrics as in Proposition 1 and applying the estimation approach described in section 3.3. In 

addition, we account for potential endogeneity in advertising and promotion using an 

instrumental variables approach (Bronnenberg and Mahajan 2001, p. 286). We predict each 

political region’s advertising spending using spending in all other regions, and use this predicted 

spending as the regressor for advertising (e.g., Aravindakshan, Peters, and Naik 2012). Similarly, 

we predict each political region’s promotion timing using the seasonality index from other 

political regions and other products in the category, and use this predicted promotion timing as 

the regressor for promotion.  We next describe the results.  

5.2 Estimation Results 

5.2.1 Fit and Forecasts 

Table 4 shows the fit and forecast for all six regions. As Table 4 shows, the model fits the 

data from all six regions satisfactorily.  For example, in Maharashtra, the fit for retail offtakes 

(MAPE = 9.73%) is better than that for secondary sales (MAPE = 17.62%). Similarly, the out-of-

sample forecasts are satisfactory. Specifically, we estimate the model using 28 observations and 

evaluate the forecast errors based on the last 5 observations in the holdout sample. For example, 

in Tamil Nadu, the out-of-sample for secondary sales (MAPE = 11.62%) is better than that for 

retail offtakes (MAPE = 14.72%). We next describe the parameter estimates. 

 [Insert Tables 4 and 5 about here] 

5.2.2 Unreliability Estimates 
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We focus on the estimates of measurement noise and relative bias. Table 5 presents the 

parameter estimates and robust t-values for all six regions. First, the measurement noise in retail 

offtakes is large and significant in all the six political regions (Andhra Pradesh:            

    , Gujarat:               , Karnataka:                , Maharashtra:    

            , Tamil Nadu:               , Uttar Pradesh:               ). Second, 

the measurement noise in secondary sales also is large and significant in all six political regions 

(Andhra Pradesh:                 , Gujarat:                , Karnataka:    

            , Maharashtra:                , Tamil Nadu:               , Uttar 

Pradesh:               ). Third, the bias in the secondary sales metric is large and 

significant in all the six political regions (Andhra Pradesh:                , Gujarat:    

            , Karnataka:                , Maharashtra:                , Tamil 

Nadu:                , Uttar Pradesh:               ). Thus, systematically across 

the six political regions of India’s emerging markets, these results furnish the first empirical 

evidence that both the metrics are unreliable.  

The presence of unreliability renders the parameter estimates inconsistent (Naik and Tsai 

2000). In other words, managers will estimate parameters of standard marketing-mix models 

inaccurately even if the sample size were asymptotically large. In contrast, the proposed 

approach resolves this problem by filtering out the measurement noise (via Equation 2).  

[Insert Table 6 about here] 

5.2.3. Carryover Effects and Marketing Elasticities 
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The consumer demand exhibits strong carryover effects in all the six political regions --- 

it is large and significant with the median value of 0.9 and ranges from 0.864 to 0.938. 

Furthermore, there exists synergy between distribution and advertising in some regions. 

Specifically, advertising effectiveness increases as brand availability increases in Andhra 

Pradesh (                  Karnataka (               , and Maharashtra (   

            . We also furnish the first empirical evidence for synergy between distribution 

and promotion. Specifically, the effectiveness of promotion increases as the distribution intensity 

increases in Gujarat  (               , Maharashtra (               , Tamil Nadu 

(               , and Uttar Pradesh (               .  

Next, to interpret the advertising and promotion effects more meaningfully, we compute 

the elasticity of advertising and promotion. Note that elasticity means one percent change in 

advertising (or promotion) results in   (or    percentage change in the true consumer demand. 

Denoting (  ̅   ̅   ̅  as the mean values of distribution, advertising and consumer demand, 

respectively, we derive from equation (3) the advertising elasticity             ̅√ ̅      ̅ and 

the promotion elasticity          ̅     ̅ for the region  . Based on the estimated parameters, we 

present the elasticities in Table 6. Across the six regions, the mean advertising and promotion 

elasticity are 0.014 and 0.39, respectively. The estimates of advertising elasticity are smaller than 

those in the US, where typical it is about 0.10 (Sethuraman, Tellis and Briesch 2011). A direct 

comparison of promotion elasticity with those in the US is harder to make due to non-availability 

of meta-analysis. Nonetheless, our mean promotion elasticity is smaller than 2.21 reported in 

some US settings by Nijs et al. (2001).  
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Despite these differences in emerging markets, a generalization that holds is that the 

promotion elasticity exceeds advertising elasticity, indicating that consumers are more 

responsive to promotional offers than advertising messages. These relative elasticities, together 

with the costs of marketing activities, guide the allocation of marketing budgets across the 

regions and activities, which we next discuss.  

6. Normative Analysis 

Given the unreliability of sales metrics, how should brand managers determine the 

optimal advertising spending and promotion timing? How should they alter optimal advertising 

and promotion as unreliability increases? To answer these substantive issues, we formulate and 

solve a manager’s decision-making problem. 

6.1. Decision-making Problem 

Suppose the manager decides to spend on advertising and promotion over time as follows 

                  . Given this marketing-mix plan, the manager generates a sales sequence 

     measured via two noisy metrics       and      , earning an associated profit stream. A 

manager’s decision-making problem is to determine the optimal advertising spending and 

promotion timing sequence so as to maximize the net present value of profits, given by the 

objective function       . The formal problem is as follows: 

     (         )  ∫                          

 

 

   

subject to the dynamic sales evolution 
  

  
      √                 , 

where        and      is the cost of promotion. 

 

(15) 
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Since      is not directly observed and rather it is measured via two noisy metrics, we 

apply Ito’s lemma to obtain the stochastic evolution of the observed metrics: 

    (     √                  )               (16) 

    (      √                   )               (17) 

Thus the presence of measurement noise induces a stochastic control problem. To solve 

this stochastic control problem, we apply the Hamilton–Jacobi–Bellman principle, which leads to 

a partial differential equation for the value function          . The resulting problem is complex 

because, mathematically, the optimal solution to-be-derived has to take into account the 

following multiple trade-offs: the present versus future (captured through the discount rate  ), 

the differential effectiveness of advertising and promotion (captured through       and      ), 

the relative bias in the two metrics (captured through  ), and the effects of unequal signal-to-

noise ratios (captured through    and   ).  

The goal is to derive the optimal advertising spending            , which informs 

how much to spend in each week, and the optimal promotion indicator            , which 

informs whether or not to spend on promotion given the time-varying promotional cost     . 

Consequently, even the control domains are mixed: continuous-valued control for advertising 

and binary switch for promotional timing.   

6.2. Optimal Advertising and Promotion with Data Unreliability  

Nonetheless, we solve the above stochastic control problem analytically, relegate its 

proof to Appendix C, and present here the final results. Let us denote   
     and   

     as the 
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optimal advertising and optimal promotion, respectively, in the presence of perfectly reliable 

metrics (i.e., with no noise or bias). Then the optimal advertising and promotion in the presence 

of unreliable metrics are given by 

 PROPOSITION 2. 
         

     (
       

          
)

 

 

and 

      {
    

     
       

          
     

           
  

PROOF. See Appendix C. 

We designate the expression (
       

          
) as the correction factor (CF). It differs from 

the optimal weights derived in Proposition 1 and depends on the bias and the signal-to-noise 

ratios in a non-trivial manner. Moreover, it moderates the optimal advertising and promotion 

decisions under perfect reliability. Therefore, to quantify it, managers can apply the estimation 

approach in section 3.3 to their market data and thus incorporate the effects of unreliability in 

their decision-making.  

By further analyzing the correction factor, we gain the following two insights. 

PROPOSITION 3. Suppose the metrics are unbiased (   ). Then, as unreliability increases, the 

marketing spending should be reduced. This reduction is more severe for advertising 

than for promotion.  

PROOF. CF =  
     

       
 <1 when    . So 

   
 

   
    and 

   
 

   
            As measurement 

noise increases, the signal-to-noise ratio    decreases and hence the optimal 

advertising and promotion decreases.  
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An insight emerging from Proposition 3 is the following. In the absence of the proposed 

estimation method to quantify measurement noises and in the absence of the formula for the 

correction factor derived in Proposition 2, brand managers have no recourse but to ignore the 

effects of measurement errors. Consequently, they would act as if the metrics are perfect (i.e., 

noise free), which entails over-spending on advertising and promotion as implied by Proposition 

3. In other words, it pays to quantify the magnitude of measurement errors, estimate the signal-

to-noise ratios, and then adjust the spending levels as per the correction factor. Overconfidence 

in data quality is hazardous for profitability.  

Another insight emerging from Proposition 3 is the interaction effect. Specifically, it 

follows from Proposition 2 that the optimal advertising is proportional to the square of the 

correction factor, whereas the optimal promotion is linear in the correction factor. Because the 

correction factor is less than unity (see the proof of Proposition 3), as measurement noise 

increases, the reduction in advertising is faster than that required for promotion, thereby 

generating the interaction effect.  

In sum, this normative analysis demonstrates how unreliable data shapes advertising and 

promotion decisions.  

7. Conclusion 

India represents an emerging opportunity for retailers as the middle class expands from 

5% to 40% of the population and disposable incomes rise at 5.8% annually. However, an 

overwhelming portion (over 90%) of the retail market is unorganized with no barcode 

technology. Consequently marketing managers learn about their brands’ sales via unreliable 

metrics. To mitigate unreliability, managers obtain multiple metrics, which create additional 
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issues of dealing with relative bias in the metrics and optimally combining multiple unreliable 

metrics. These challenges are pervasive as they exist in 14 million kirana shops in India, which 

means managers cannot directly import models from the West to assess the impact of marketing 

effectiveness and thus allocate marketing resources optimally.  

To address these issues, we present empirical and theoretical analyses of the effects of 

data unreliability on both the marketing-mix effectiveness and optimal allocations. First, via 

Proposition 1, we present the optimal weights to combine retail offtakes and secondary sales. 

This optimal combination not only involves a non-trivial function of relative bias and signal-to-

noise ratios of the two sales metrics, but it does not require the normality of measurement errors. 

Moreover, we show how convex combinations of the metrics yield incorrect elasticities, and how 

our proposed method correctly recovers advertising and promotion effectiveness. Subsequently, 

we use real data and validate our model in six different political regions in the country. In the 

empirical analysis, we find that the measurement noise and relative biases are significant across 

all the regions. In the normative analysis, we contribute new propositions to the extant literature.  

Solving the stochastic control problem with mix controls, Proposition 2 derives the optimal 

advertising and promotion decisions in the presence of unreliability metrics. Our results provide 

the correction factor that managers quantify using the proposed estimation approach (in section 

3.3), and thus adjust their decisions to incorporate the effects of unreliability. Proposition 3 shed 

light on how overconfidence in data quality result in marketing overspending. In conclusion, we 

hope that managers use the proposed model and the estimation approach to filter out 

measurement noises in the metrics and adjust their marketing decisions to incorporate the effects 

of data unreliability.   



25 
 

 

Table 1.  Elasticity Estimates with Unreliable Data  

 Karnataka Region Maharashtra Region 

 
Advertising 

Elasticity 

Promotion 

Elasticity 

Advertising 

Elasticity 

Promotion 

Elasticity 

Retail Offtakes (w = 1) 0.017 0.035 0.020 0.012 

Secondary Sales (w = 0) 0.005 0.541 0.024 0.618 

     

Composite Sales =    Retail Offtakes +        Secondary Sales 

w = 0.1 0.003 0.494 0.023 0.58 

w = 0.2 0.001 0.446 0.023 0.539 

w = 0.3 -0.001 0.397 0.023 0.494 

w = 0.4 -0.003 0.348 0.023 0.445 

w = 0.5 -0.005 0.297 0.022 0.392 

w = 0.6 -0.008 0.247 0.022 0.332 

w = 0.7 -0.01 0.195 0.022 0.267 

w = 0.8 -0.012 0.142 0.021 0.194 

w = 0.9 -0.014 0.089 0.021 0.112 
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Table 2. Simulation Results 

 Parameter         

  Estimate % Error Estimate % Error Estimate % Error 

True Values 0.5 
 

0.5 
 

0.5 
 

Proposed Model 

 
0.484 -3.22 0.510 2.00 0.515 3.09 

Standard Model 

Retail Offtakes (w = 0) 0.007 -98.67 0.050 -90.05 0.017 -96.54 

Secondary Sales (w = 1) 0.411 -17.86 0.489 -2.20 0.445 -11.02 

w = 0.1 0.060 -87.92 0.094 -81.19 0.059 -88.22 

w = 0.2 0.127 -74.66 0.139 -72.28 0.101 -79.85 

w = 0.3 0.191 -61.79 0.183 -63.34 0.143 -71.40 

w = 0.4 0.247 -50.68 0.228 -54.36 0.186 -62.87 

w = 0.5 0.292 -41.63 0.273 -45.36 0.229 -54.28 

w = 0.6 0.328 -34.44 0.318 -36.34 0.272 -45.65 

w = 0.7 0.356 -28.77 0.363 -27.31 0.315 -37.00 

w = 0.8 0.379 -24.28 0.409 -18.28 0.358 -28.34 

w = 0.9 0.396 -20.72 0.454 -9.24 0.402 -19.68 

Average 0.254 -49.22 0.273 -45.45 0.230 -54.08 
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Table 3. Descriptive Statistics 

 Andhra 

Pradesh 

Gujarat Karnataka Maharashtra Tamil 

Nadu 

Uttar 

Pradesh 

Retail Offtakes (Average), (Kilo-liters) 128.86 50.70 74.24 169.74 31.93 27.48 

Retail Offtakes (Standard Deviation) 19.52 9.34 13.46 20.20 5.58 7.70 

Secondary Sales (Average), (Kilo-liters) 137.25 68.43 80.94 284.29 29.77 29.81 

Secondary Sales (Standard Deviation) 31.14 24.99 19.91 84.84 6.67 7.64 

Advertising GRPs (Average) 290.73 1571.98 252.35 325.27 1740.38 1281.39 

Advertising GRPs (Standard Deviation) 290.42 1476.83 249.72 224.80 1642.92 1169.81 

% Promotion On-Off (Average) 21.2 21.2 21.2 21.2 21.2 21.2 

% Promotion On-Off (Standard Deviation) 41.5 41.5 41.5 41.5 41.5 41.5 

% Retailers Carrying Brand (Average) 61.2 27.82 49.6 64.7 33.32 47.62 

% Retailers Carrying Brand (Standard Deviation) 1.23 1.35 2.00 2.16 2.28 3.36 
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Table 4. Fit and Forecast 

 

  Andhra 

Pradesh 

Gujarat Karnataka  Maharashtra  Tamil 

Nadu 

Uttar 

Pradesh 

Retail Offtake Fit (MAPE) 

 

8.03 14.89 13.45 9.73 23.33 33.20 

Retail Offtake Forecast (MAPE) 

 

5.90 18.77 13.17 9.47 14.72 18.68 

Secondary Sales Fit (MAPE) 

 

14.84 23.27 15.61 17.62 16.82 19.45 

Secondary Sales Forecast (MAPE) 

 

19.79 24.3 12.7 23.41 11.62 17.30 
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Table 5. Estimation Results 

 

 
Andhra Pradesh Gujarat Karnataka Maharashtra Tamil Nadu Uttar Pradesh 

Parameters Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value 

Carryover Effect,   0.938 60.189 0.924 26.721 0.909 22.718 0.879 26.498 0.895 27.742 0.864 23.830 

Distribution Synergy with 

Advertising,    
0.007 4.743 0.001 0.014 0.004 1.968 0.009 2.642 0.001 0.294 0.001 0.570 

Distribution Synergy with 

Promotion,    
0.251 1.821 0.757 2.682 0.374 1.329 0.876 2.020 0.497 3.489 0.412 4.087 

Relative Bias,   1.063 20.658 1.360 13.517 1.093 19.277 1.695 19.138 0.944 18.267 1.095 15.619 

Retail Offtakes Noise,    11.928 6.921 8.237 8.282 11.085 5.763 18.180 6.343 6.354 6.810 7.102 5.529 

Secondary Sales Noise,    27.044 14.305 21.932 6.287 16.155 5.208 69.086 6.985 5.053 6.706 5.098 4.509 

*Bold estimates are statistically significant at the 95% confidence level.   
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Table 6. Elasticity Estimates in India’s Emerging Markets 

 

  Andhra 

Pradesh 

Gujarat Karnataka  Maharashtra  Tamil 

Nadu 

Uttar 

Pradesh 

Advertising Elasticity 0.029 0.001 0.020 0.032 0.001 0.001 

Promotion Elasticity 0.119 0.409 0.249 0.335 0.513 0.712 
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APPENDIX A: OBTAINING MATRIX Pt TO COMBINE METRICS OPTIMALLY  

We derive Equation (7) by noting that ],[ ttt EP   where  
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To evaluate ],[ ttt EP   we first multiply the cross product terms and then evaluate the 

expectations as follows: 
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where the last equality follows because the middle terms vanish given the independence across 

periods.   
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APPENDIX B: PROOF OF PROPOSITION 1 

We derive the expressions for   
  and   

  to optimally combine the unreliable metrics 

   and   .  

Recall that  ̂    
      

   , where    
   

   are elements in the first row of the matrix 

  
 . We know that      is the variance of the true consumer demand   

 ,   represents the bias 

vector      , and   represents the diagonal variance matrix [
  

  

   
 ]. Using these values, we 

compute   
  as follows: 

                                                             
          

        
       

=   
            

       

=    
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In (B1),   
  

  
   

           
 

  
   

     
    

    
  

 and   
  

   
   

           
 

  
   

     
    

    
  

. To further simplify these expressions, 

we define    
  

 

  
  and    

  
 

  
  to be the signal-to-noise ratios of    and   , respectively. 

Dividing the numerator and denominator of   
  by   

   
 , we express   

  as a function of the bias 

and signal-to-noise ratios as 

                                               
  

              

          
          (B2) 

 

Similarly, dividing the numerator and denominator of   
  by   

   
 , we obtain  

                                                             
  

               

          
           (B3) 

The closed-form expressions in (B2) and (B3) comprise the optimal weights by which to 

combine the multiple unreliable metrics, thus proving Proposition 1. 
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APPENDIX C: DERIVATION OF THE OPTIMAL ALLOCATIONS WITH UNRELIABLE DATA 

We seek to solve the marketing mix allocation problem stated in Equation (15): 

     (         )  ∫                          

 

 

   

subject to 

(i)  
  

  
      √                 ,  

(ii) [
   

   
]  [

  

   
]  [

   

   
].  

 

Applying Ito’s lemma, we observe that             , where       is the standard 

Wiener process. Then,          √                                 =       √     

                         Next, by substituting this expression for    in        

     , we get equation (16), which represents the sales dynamics in the observed metric    . 

Similarly, we derive the equation (17).  

 

We note that the presence of measurement noise in the metrics introduces uncertainty, 

which is represented by the Wiener processes. Consequently, to maximize the total profit  

      , we need to solve a stochastic control problem. To this end, we formulate the stochastic 

Hamilton-Jacobi-Bellman equation as follows: 

            
      

            ̇ (  √         )  

 ̇ (   √          )       
  ̈       

  ̈  , 

(C1) 

where we suppress the time argument for clarity, use the result in Proposition 1, and denote the 

value function by         , with its first partial derivatives as  ̇       ⁄  and the second 

partial derivatives as  ̈        
 ⁄  for each metric        . Thus Equation (C1) is a second-

order partial differential equation.  

 

Next, to determine the optimal advertising, we differentiate the right hand side of (C1) 

with respect to u and get the first-order condition (FOC) as follows: 

    
 ̇   

 √ 
 

 ̇    

 √ 
  ,     (C2) 
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which upon re-arrangement gives the optimal advertising: 

       (       ̇    ̇  )
 
.     (C3) 

Based on previous research (e.g., Aravindakshan, Peters, Naik 2012), we conjecture and confirm 

that the value function                       satisfies the partial differential equation 

(C1). Consequently,  ̇      ̇      and  ̈     To further express         in terms of the 

model parameters, we replace                   
  in the stochastic HJB equation (C1) and 

equate the coefficients for (     ) on both sides of the equality. Simplifying the resulting algebra, 

we obtain 

   
   

 

   
, and    

   
 

   
.      (C4) 

Using the expressions in (C4) and the optimal weights (  
    

   from Proposition 1, we thus 

characterize the optimal advertising strategy in the presence of unreliable metrics: 

        
     (

       

          
)
 

,    (C5) 

where   
                    ⁄   .  

 

Finally, to determine the optimal promotion timings, we differentiate the right hand side 

of (C1) with respect to v to get  

     ( ̇    ̇ ),     (C6) 

which is not a function of the decision variable, v(t). Hence the optimal solution belongs to the 

class of bang-bang controls, indicating when to switch “on” or “off” based on the switching 

function specified by (C6). Using the expressions in (C4) and the optimal weights (  
    

   from 

Proposition 1, we thus characterize the optimal promotion strategy in the presence of unreliable 

metrics: 

      {
    

     
       

          
     

           
   (C7) 

where   
                ⁄ .  

The closed-form expressions in (C5) and (C7) comprise the dynamically optimal 

marketing mix allocations with unreliable data, thus proving Proposition 2. 
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